TC1920 [INFINEON]

32-Bit Single-Chip Microcontroller; 32位单芯片微控制器
TC1920
型号: TC1920
厂家: Infineon    Infineon
描述:

32-Bit Single-Chip Microcontroller
32位单芯片微控制器

微控制器
文件: 总78页 (文件大小:2938K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet, V 1.3, Oct. 2003  
TC1920  
32-Bit Single-Chip Microcontroller  
Microcontrollers  
N e v e r s t o p t h i n k i n g .  
Edition 2003-10  
Published by Infineon Technologies AG,  
St.-Martin-Strasse 53,  
D-81541 München, Germany  
© Infineon Technologies AG 2003.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as warranted  
characteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding  
circuits, descriptions and charts stated herein.  
Infineon Technologies is an approved CECC manufacturer.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address  
list).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
Data Sheet, V 1.3, Oct. 2003  
TC1920  
32-Bit Single-Chip Microcontroller  
Microcontrollers  
N e v e r s t o p t h i n k i n g .  
TC1920  
Preliminary  
Revision History:  
2003-10  
V 1.3  
Previous Version:  
1.2  
Page  
Subjects (major changes since last revision)  
ASC and SSC baudrates calculated for 50 MHz  
DC parameters updated with characterization values  
AC parameters updated with characterization values  
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
mcdocu.comments@infineon.com  
TC1920  
Preliminary  
TC1920 Features  
The TC1920 offers a 32 bit TriCore based microcontroller/DSP, which is mainly designed  
for automotive telematics applications. Due to its high integration, this microcontroller/  
DSP offers high system performance at minimized cost. Typical telematics functions  
processed by RISC-, DSP- and speech- (CODEC) modules are now combined in one  
component. The combination of dedicated automotive peripherals (CAN, J1850) and  
standard peripherals (ADC, SSC/SPI, ASC and IIC), makes this microcontroller/DSP the  
engine tailored for a wide variety of telematics applications such as navigation,  
emergency call, speech interface or communication interface.  
• TriCore CPU/DSP with 4-Stage Pipeline:  
– 100 MHz max. CPU clock frequency, 50 MHz max. FPI Bus clock frequency.  
– 32-bit super-scalar TriCore main CPU  
– 4-GByte unified memory space support  
– Fast context-switching  
– Dual 16 x 16 Multiply-Accumulate (MAC) Unit  
– 64-bit Local Memory Bus (LMB)  
– 32-bit Flexible Peripheral Interface (FPI)  
– 32-bit wide external bus unit (EBU)  
• 32-bit Peripheral Control Processor (PCP2) with DMA-support  
• On-chip memories:  
– 24 KByte Code Scratch-Pad RAM (CSRAM)  
– 8 KByte Instruction Cache (ICACHE)  
– 24 KByte Data Scratch-Pad RAM (DSRAM)  
– 8 KByte Data Cache (DCACHE)  
– 64 KByte fast LMB SRAM  
– 16 KByte FPI SRAM (of which 8 KByte Stand-By SRAM)  
– 20 KByte PCP RAM: 16 KByte Code and 4 KByte Data SRAM  
– 32 KByte Boot ROM  
• Product Specific Peripherals:  
– 14-bit double CODEC with flexible sample rates and FIFO support  
• Automotive Peripherals:  
– Two independent CAN-nodes (TwinCAN) with gateway support  
– J1850 (SDLM)  
• Standard Peripherals:  
– 6-channel, 8-/10-/12-bit ADC  
– 3 x asynchronous serial interface (ASC) with IrDa-support  
– 1 SPI-compatible synchronous serial interface  
– 2-channel IIC  
– 6 x 32 bit timer  
16 I/O- and interrupt pins (GPIO)  
• General Peripherals:  
– Real time clock (RTC)  
Data Sheet  
1
V 1.3, 2003-10  
TC1920  
Preliminary  
– Watchdog timer (WDT)  
• Clock Generation Unit with PLL  
• Debug Support:  
– Debug Interface (OCDS level 2) with Trace Port  
• Power saving features  
• Dual voltage supply (1.8V core, 3.3V I/O)  
• -40°C to +85°C temperature range  
• LBGA-260 package  
Data Sheet  
2
V 1.3, 2003-10  
TC1920  
Preliminary  
Block Diagram  
The figure below shows the block diagram of the TC1920 device.  
LFI  
Bridge  
SRAM  
64 kB  
EBU  
32 bit External M em ory Bus  
ADC  
ASC0  
ASC1  
ASC2  
SSC  
64-bit Local M em ory Bus (LM B)  
MMU  
CODEC  
GPTU0  
GPTU1  
PMU  
DMU  
24KB  
24KB  
CSRAM  
8KB  
TriCore  
(TC1.3)  
DSRAM  
8KB  
DCACHE  
ICACHE  
CPS  
Port  
Control  
IIC  
PCODE  
16kB  
PRAM  
4kB  
PCP2  
OCDS  
Debug  
Interface  
/JTAG  
Twin  
CAN  
FPI-Bus Interface  
J1850  
32-bit Flexible Peripheral Interface (FPI)Bus  
Boot  
ROM  
32kB  
SRAM  
16kB  
RTC  
STM  
SCU  
TC1920  
Figure 1  
TC1920 Device Block Diagram  
Data Sheet  
3
V 1.3, 2003-10  
TC1920  
Preliminary  
Target applications  
• On-board and off-board navigation  
• Emergency call systems  
• Car speech interface  
• Car communication interface  
• Gateways: automotive - infotainment  
• Occupant Sensing  
• Drowsiness detection  
• Rear- & side-mirror replacement  
• Pre-crash sensing  
Logical Symbol  
Alternate Functions  
G P IO /EX Ix,  
PLL_CTRL  
TEST  
Port 0  
8-bit  
Codec Bypass  
GPIO /  
G PTU1  
Port 1  
8-bit  
CLKOUT  
HDRST  
PO RST  
General  
Control  
CAN0/1 / J1850 / SSC  
A SC 0 / IIC  
Port 2  
16-bit  
A SC 1/2 / AD CM U X  
AD CE XTIN / G PTU 0  
Port 3  
16-bit  
NMI  
BYPASS  
6
ADC  
XTAL1  
XTAL2  
XTAL3  
10  
CODEC 0/1  
XTAL4  
VDDOSC1  
83  
O scillators  
PLL  
VSSOSC1  
VDDOSC2  
VSSOSC2  
VDDPLL  
TC1920  
External Bus Interface  
16  
Port 5  
GPIO / Trace  
VSSPLL  
8
O CDS/JTAG  
Control  
VDD  
VDDP  
VDDSB  
VSS  
D igital Circuitry  
P ower Supply  
VDD_COD0  
VSS_COD0  
VDD_COD1  
VSS_COD1  
VREF_CO D  
VGND_COD  
CO DEC  
VDDA  
VSSA  
Analog Power  
Supply  
ADC Analog  
Power Supply  
VAREF  
VAGND  
Figure 2  
Logical Symbol of the TC1920 Device  
Data Sheet  
4
V 1.3, 2003-10  
TC1920  
Preliminary  
Pin Configuration  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
TM_  
C TR L1  
VSS P  
VDD  
_
VSS  
_
VSS A  
_
_
_
_
A
B
C
D
E
F
VSS  
V DDR  
VDD  
N MI  
A
XTAL3  
XTA L1  
P 4.5  
P4.3  
P4.1  
AI0-  
AI1-  
AO+  
C EX T  
_OSC  
OSC1  
GUARD  
ADC  
TM_  
C TR L0  
POR S  
VS S  
_
VSS  
_
_
V AGND  
_
_
VSS P  
VRE F  
_
B Y  
PA SS  
P LLCTRL  
_A0  
V SS  
AD 31  
VDD  
VDD  
X TA L4  
VDD R  
VDD  
XTAL2  
P4.2  
P4.4  
A O1-  
AO1+  
AI1+  
AO-  
B
T
OS C  
P LL  
A DC  
ADC  
COD  
VDD_ VDDP_ VSS  
_
VDD  
VDD P  
VGND  
_
V SSP_ C OD E C LK  
V SS  
AD 27 AD 30  
V DD  
P4.0  
P2.11  
C
D
E
F
C _D IS OU T  
OS C2  
OSC  
GUARD GUARD  
ADC  
COD  
COD0  
VDDP_ VS SP  
_
VDD  
_
VSSP  
_
VA REF  
VSS P  
V SSA_  
V S S  
V SS  
AD 26 AD 28 A D 29  
H R ST  
A I0+  
P2.13 P2.10  
OSC  
OSC  
P LL  
A DC  
A DC  
ADC  
COD0  
V DDP_  
AD 23 AD 24 A D 25 AD 18  
AD 19 AD 20 A D 22 AD 21  
AD 13 AD 14 A D 15 AD 17  
AD 10 AD 11 A D 12 AD 16  
P2.14 P2.8  
P 2.4  
P 2.3  
P 2.0  
COD0  
P 2.15 P2.12 P2.5  
V SS  
V SS  
V SS  
V SS  
V SS  
V SS  
V SS  
V SS  
V SS  
V SS  
V SS  
V SS  
G
H
J
V DDP  
V DDP  
V SS  
VDDP  
V DDP  
VDDP  
VDDP  
V S S  
P2.9  
P2.6  
P2.7  
P2.1  
G
H
J
V S S  
V SS  
P2.2 P3.14 P3.13  
V S S  
V SS  
A D 8  
A D 6  
A D 4  
AD 9  
AD 5  
AD 1  
AD 7  
AD 2  
AD 0  
A 20  
A 15  
A 11  
A8  
V DD  
AD 3  
V DD  
A 22  
A 21  
A 19  
V DD  
A4  
P 3.12 P3.15 P3.11 P 3.9  
SC AN  
V SS  
V S S  
V SS  
V S S  
K
L
P3.10 P3.7  
P 3.8  
P 3.6  
P 3.3  
P 0.5  
P 0.4  
P 0.0  
P 1.6  
P 1.4  
K
L
M OD E  
V S S  
V SS  
V DDP  
VDDP  
P3.0  
P3.5  
P3.1  
P0.1  
P1.2  
P1.1  
TCK  
TD O  
P3.4  
P3.2  
P0.2  
EBU BFC LK  
C LK  
M
N
P
R
T
V DDP  
VDDP  
V DDP  
VDDP  
P0.7  
P0.6  
P0.3  
M
N
P
R
T
0
A23  
A18  
A17  
A16  
A10  
A 7  
A14  
A13  
A 9  
P1.7  
P1.5  
VDD_  
A12  
A1  
B C 1  
C AS  
B C 3  
C S2  
BC 0  
C S6  
C S1  
C S0  
AD V  
A LE  
C KE  
P5.9  
P5.8  
P 5.5  
P 5.2  
P5.3  
SB  
C S  
OVL  
BR K  
OU T  
A6  
W AIT  
P1.3  
P 5.12 P5.7  
TMS  
C S  
GLB  
U
V
A 5  
A3  
R D  
R AS  
BA A  
C S  
BR KIN  
TR S T  
P 5.14 P5.11 P 5.6  
P5.1  
U
V
R D /  
W R  
C M  
OC D  
SE  
A 2  
1
A 0  
2
BC 2  
4
C S5  
5
C S 4  
6
C S3  
7
MR /W  
10  
P 5.15 P5.13 P5.10 P5.4  
11 12 13 14  
P5.0  
15  
TD I  
17  
P 1.0  
18  
EMU D ELAY  
3
8
9
16  
TOP VIEW  
LBGA 260  
Figure 3  
TC1920 Pinning  
Data Sheet  
5
V 1.3, 2003-10  
TC1920  
Preliminary  
Pin List  
Table 1  
Pin Definitions and Functions  
1)  
Symbol  
Pad  
BGA In/  
BALL Out  
Functions  
2)  
External Bus Unit interface  
external address/data bus (multiplexed bus  
mode) or data bus (demultiplexed bus mode) for  
the EBU:  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
274  
273  
272  
271  
270  
269  
268  
264  
263  
262  
261  
260  
259  
258  
253  
252  
251  
250  
249  
248  
247  
243  
242  
241  
240  
239  
238  
237  
232  
231  
230  
229  
L3  
L2  
K3  
K4  
L1  
K2  
K1  
J3  
I/O,s Address/data bus / Data bus line 0  
I/O,s Address/data bus / Data bus line 1  
I/O,s Address/data bus / Data bus line 2  
I/O,s Address/data bus / Data bus line 3  
I/O,s Address/data bus / Data bus line 4  
I/O,s Address/data bus / Data bus line 5  
I/O,s Address/data bus / Data bus line 6  
I/O,s Address/data bus / Data bus line 7  
I/O,s Address/data bus / Data bus line 8  
I/O,s Address/data bus / Data bus line 9  
I/O,s Address/data bus / Data bus line 10  
I/O,s Address/data bus / Data bus line 11  
I/O,s Address/data bus / Data bus line 12  
I/O,s Address/data bus / Data bus line 13  
I/O,s Address/data bus / Data bus line 14  
I/O,s Address/data bus / Data bus line 15  
I/O,s Address/data bus / Data bus line 16  
I/O,s Address/data bus / Data bus line 17  
I/O,s Address/data bus / Data bus line 18  
I/O,s Address/data bus / Data bus line 19  
I/O,s Address/data bus / Data bus line 20  
I/O,s Address/data bus / Data bus line 21  
I/O,s Address/data bus / Data bus line 22  
I/O,s Address/data bus / Data bus line 23  
I/O,s Address/data bus / Data bus line 24  
I/O,s Address/data bus / Data bus line 25  
I/O,s Address/data bus / Data bus line 26  
I/O,s Address/data bus / Data bus line 27  
I/O,s Address/data bus / Data bus line 28  
I/O,s Address/data bus / Data bus line 29  
I/O,s Address/data bus / Data bus line 30  
I/O,s Address/data bus / Data bus line 31  
AD8  
AD9  
J1  
J2  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
AD31  
H1  
H2  
H3  
G1  
G2  
G3  
H4  
G4  
E4  
F1  
F2  
F4  
F3  
E1  
E2  
E3  
D1  
C1  
D2  
D3  
C2  
B1  
Data Sheet  
6
V 1.3, 2003-10  
TC1920  
Preliminary  
Table 1  
Pin Definitions and Functions  
1)  
Symbol  
Pad  
BGA In/  
BALL Out  
Functions  
2)  
External Bus Unit interface (continued)  
external address bus for the EBU or chip select  
output lines.  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
9
6
5
4
3
2
V2  
T5  
V1  
U3  
T4  
U2  
T3  
U1  
R3  
T2  
T1  
P3  
R5  
R2  
P2  
N3  
R1  
P1  
N2  
P4  
M3  
N4  
M4  
N1  
R9  
R8  
R7  
V7  
V6  
V5  
U7  
V8  
T9  
I/O,s Address bus line 0  
I/O,s Address bus line 1  
I/O,s Address bus line 2  
I/O,s Address bus line 3  
I/O,s Address bus line 4  
I/O,s Address bus line 5  
I/O,s Address bus line 6  
I/O,s Address bus line 7  
I/O,s Address bus line 8  
I/O,s Address bus line 9  
I/O,s Address bus line 10  
I/O,s Address bus line 11  
I/O,s Address bus line 12  
I/O,s Address bus line 13  
I/O,s Address bus line 14  
I/O,s Address bus line 15  
I/O,s Address bus line 16  
I/O,s Address bus line 17  
I/O,s Address bus line 18  
I/O,s Address bus line 19  
I/O,s Address bus line 20  
I/O,s Address bus line 21  
I/O,s Address bus line 22  
I/O,s Address bus line 23  
307  
306  
303  
302  
301  
300  
299  
295  
294  
293  
292  
291  
290  
289  
285  
284  
283  
282  
28  
27  
26  
25  
24  
23  
22  
36  
37  
A8  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
CS0  
CS1  
CS2  
CS3  
CS4  
CS5  
CS6  
CSEMU  
CSOVL  
O,u  
O,u  
O,u  
O,u  
O,u  
O,u  
O,u  
O,u  
O,u  
Chip select output 0  
Chip select output 1  
Chip select output 2  
Chip select output 3  
Chip select output 4  
Chip select output 5  
Chip select output 6  
Chip select for emulator region  
Chip select for emulator overlay memory  
Data Sheet  
7
V 1.3, 2003-10  
TC1920  
Preliminary  
Table 1  
Pin Definitions and Functions  
1)  
Symbol  
Pad  
BGA In/  
BALL Out  
Functions  
2)  
External Bus Unit interface (continued)  
control bus for the EBU control lines.  
RD  
RD/WR  
ALE  
ADV  
BC0  
BC1  
BC2  
BC3  
WAIT  
BAA  
11  
12  
45  
46  
218  
17  
16  
15  
32  
U4  
V3  
T10  
R10  
T7  
R6  
V4  
U6  
T8  
U8  
M1  
M2  
U9  
V9  
I/O,u Read control line  
I/O,u Write control line  
O,d  
O,u  
Address latch enable  
Address valid output  
I/O,u Byte control line 0  
I/O,u Byte control line 1  
I/O,u Byte control line 2  
I/O,u Byte control line 3  
I/O,u Wait input  
33  
O,u  
O,d  
O,d  
O,u  
I,u  
Burst address advance output  
External Bus Clock  
Additional clock  
Chip Select Global  
Command Delay  
EBUCLK  
BFCLK0  
CSGLB  
278  
279  
38  
CMDELAY 39  
MR/W  
CKE  
RAS  
CAS  
40  
44  
13  
14  
V10  
U10  
U5  
T6  
O,u  
O,d  
O,u  
O,u  
Motorola-style Read/Write  
Clock Enable  
Row Address Strobe  
Column Address Strobe  
P0  
Port 0  
Port 0 serves as 8-bit general purpose I/O port,  
that can also be used for the codec digital signals.  
P0.[3:0] also serve as external interrupt inputs.  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
94  
95  
98  
102  
103  
104  
105  
106  
R18  
N16  
N17  
P15  
P18  
N18  
N15  
M15  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
EXI0IN  
EXI1IN  
EXI2IN  
EXI3IN  
SCLK  
LRCK  
MUTE0  
MUTE1  
External interrupt input 0  
Ext. interrupt input 1 / DATA_IN  
Ext. interrupt input 2 / DATA_OUT  
Ext. interrupt input 3 / MCLK  
Data Sheet  
8
V 1.3, 2003-10  
TC1920  
Preliminary  
Table 1  
Pin Definitions and Functions  
1)  
Symbol  
Pad  
BGA In/  
BALL Out  
Functions  
2)  
P1  
Port 1  
Port 1 is an 8-bit bidirectional general purpose I/O  
port which is also used as input/output for the  
GPTU1  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
83  
84  
85  
86  
87  
91  
92  
93  
V18  
R16  
P16  
T17  
U18  
R17  
T18  
P17  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GPTU1.0  
GPTU1.1  
GPTU1.2  
GPTU1.3  
GPTU1.4  
GPTU1.5  
GPTU1.6  
GPTU1.7  
GPTU1 I/O line 0  
GPTU1 I/O line 1  
GPTU1 I/O line 2  
GPTU1 I/O line 3  
GPTU1 I/O line 4  
GPTU1 I/O line 5  
GPTU1 I/O line 6  
GPTU1 I/O line 7  
P2  
Port 2  
Port 2 is a 16-bit bidirectional general purpose I/O  
port which is also used as input/output for serial  
interfaces (CAN, J1850, IIC, ASC0, SSC)  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
131  
132  
133  
137  
138  
139  
140  
141  
142  
143  
147  
148  
149  
150  
151  
152  
G18  
G17  
H16  
F18  
E18  
F17  
H15  
G16  
E17  
G15  
D18  
C18  
F16  
D17  
E16  
F15  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
RXDCAN0  
TXDCAN0  
RXDCAN1  
TXDCAN1  
RXJ1850  
TXJ1850  
SCL0  
SDA0  
SCL1  
SDA1  
RXD0  
CAN 0 receiver input  
CAN 0 transmitter output  
CAN 1 receiver input  
CAN 1 transmitter output  
SDLM receiver input  
SDLM transmitter output  
IIC Serial Port Clock line 0  
IIC Serial Port Data line 0  
IIC Serial Port Clock line 1  
IIC Serial Port Data line 1  
ASC0 receiver input/output  
ASC0 transmitter output  
SSC clock line  
P2.8  
P2.9  
P2.10  
P2.11  
P2.12  
P2.13  
P2.14  
P2.15  
TXD0  
SCLK  
MRST  
MTSR  
SSC master receive/slave transmit  
SSC master transmit/slave receive  
PLL_CLC.LOCK Monitoring of PLL_CLC.LOCK  
Data Sheet  
9
V 1.3, 2003-10  
TC1920  
Preliminary  
Table 1  
Pin Definitions and Functions  
1)  
Symbol  
Pad  
BGA In/  
BALL Out  
Functions  
2)  
P3  
Port 3  
Port 3 is a 16-bit bidirectional general purpose I/O  
port which is also used as input/output for serial  
interfaces (ASC0 and ASC1), for timer (GPTU0)  
and ADC control lines  
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
P3.6  
P3.7  
P3.8  
P3.9  
P3.10  
P3.11  
107  
108  
109  
110  
115  
116  
117  
118  
119  
120  
124  
125  
L15  
M16  
M17  
M18  
L17  
L16  
L18  
K17  
K18  
J18  
K16  
J17  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GPTU0.0  
GPTU0.1  
GPTU0.2  
GPTU0.3  
GPTU0.4  
GPTU0.5  
GPTU0.6  
GPTU0.7  
RXD1  
GPTU0 I/O line 0  
GPTU0 I/O line 1  
GPTU0 I/O line 2  
GPTU0 I/O line 3  
GPTU0 I/O line 4  
GPTU0 I/O line 5  
GPTU0 I/O line 6  
GPTU0 I/O line 7  
ASC1 receiver input/output  
ASC1 transmitter output  
ASC2 receiver input/output  
ASC2 transmitter output  
OSCBYP latch-in input  
TXD1  
RXD2  
TXD2  
P3.12  
P3.13  
P3.14  
P3.15  
126  
127  
128  
129  
J15  
H18  
H17  
J16  
I/O  
I/O  
I/O  
I/O  
ADCMUX0/EXI5IN/HWCFG0  
ADC external mux control 0 /  
external interrupt input 5 /  
hardware configuration input 0 /  
ADCMUX1/EXI6IN/HWCFG1  
ADC external mux control 1 /  
external interrupt input 6 /  
hardware configuration input 1  
ADCMUX2/EXI7IN/HWCFG2  
ADC external mux control 2 /  
external interrupt input 7/  
hardware configuration input 2  
ADC external trigger input  
ADEXTIN  
Data Sheet  
10  
V 1.3, 2003-10  
TC1920  
Preliminary  
Table 1  
Pin Definitions and Functions  
1)  
Symbol  
Pad  
BGA In/  
BALL Out  
Functions  
2)  
P4  
Port 4  
Port 4 provides the 6 analog input lines for the AD  
Converter (ADC).  
P4.0  
P4.1  
P4.2  
P4.3  
P4.4  
P4.5  
190  
191  
192  
193  
194  
195  
C11  
A11  
B10  
A10  
C10  
A9  
I
I
I
I
I
I
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
Analog input 0  
Analog input 1  
Analog input 2  
Analog input 3  
Analog input 4  
Analog input 5  
CODEC  
CODEC  
AI0+  
AI0-  
AO0+  
AO0-  
AI1+  
180  
181  
169  
165  
176  
177  
170  
172  
162  
163  
D13  
A13  
A15  
B15  
D14  
A14  
C14  
B14  
A17  
C16  
I
I
O
O
I
CODEC 0 Non-Inverting Input  
CODEC 0 Inverting Input  
CODEC 0 Non-Inverting Output  
CODEC 0 Inverting Output  
CODEC 1 Non-Inverting Input  
CODEC 1 Inverting Input  
CODEC 1 Non-Inverting Output  
CODEC 1 Inverting Output  
Codec External Clock Input  
Codec Disable (power saving)  
AI1-  
I
AO1+  
AO1-  
CEXT  
CODEC_DIS  
O
O
I
I
DEBUG  
DEBUG (OCDS/JTAG Control)  
TRST  
TCK  
TDI  
TDO  
TMS  
OCDSE  
BRKIN  
BRKOUT  
82  
81  
80  
76  
75  
73  
72  
71  
U17  
T16  
V17  
U16  
T15  
V16  
U15  
T14  
I,d  
I,u  
I,u  
O
I,u  
I,u  
I,u  
O
Reset/module enable  
JTAG clock input  
Serial data input  
3)  
Serial data output  
State machine control signal  
OCDS enable input  
OCDS break input  
OCDS break output  
3)  
Test  
Test pins  
SCAN_MODE 114  
K15  
B8  
B4  
I
I
I
I
Scan Mode  
Control current of different analog stages  
Test Mode Control 0  
PLLCTRL_AO  
TM_CTRL0  
215  
202  
TM_CTRL1  
216  
A3  
Test Mode Control 1  
Data Sheet  
11  
V 1.3, 2003-10  
TC1920  
Preliminary  
Table 1  
Pin Definitions and Functions  
1)  
Symbol  
Pad  
BGA In/  
BALL Out  
Functions  
2)  
P5  
Port 5  
TRACE  
[15:0]  
Trace Lines to output CPU or PCP2 OCDS level 2  
trace signals  
P5.0  
P5.1  
P5.2  
P5.3  
P5.4  
P5.5  
P5.6  
P5.7  
70  
69  
68  
67  
63  
62  
61  
60  
59  
58  
54  
53  
52  
51  
48  
47  
V15  
U14  
T13  
R14  
V14  
R13  
U13  
T12  
R12  
R11  
V13  
U12  
T11  
V12  
U11  
V11  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
CPU or PCP2 trace output 0 / GPIO  
CPU or PCP2 trace output 1 / GPIO  
CPU or PCP2 trace output 2 / GPIO  
CPU or PCP2 trace output 3 / GPIO  
CPU or PCP2 trace output 4 / GPIO  
CPU or PCP2 trace output 5 / GPIO  
CPU or PCP2 trace output 6 / GPIO  
CPU or PCP2 trace output 7 / GPIO  
CPU or PCP2 trace output 8 / GPIO  
CPU or PCP2 trace output 9 / GPIO  
CPU or PCP2 trace output 10 / GPIO  
CPU or PCP2 trace output 11 / GPIO  
CPU or PCP2 trace output 12 / GPIO  
CPU or PCP2 trace output 13 / GPIO  
CPU or PCP2 trace output 14 / GPIO  
CPU or PCP2 trace output 15 / GPIO  
P5.8  
P5.9  
P5.10  
P5.11  
P5.12  
P5.13  
P5.14  
P5.15  
BYPASS  
NMI  
161  
160  
159  
158  
B17  
A18  
D16  
B18  
I,d  
I,u  
PLL Bypass Control Input.  
Non-Maskable Interrupt Input  
HRST  
I/O,u Bidirectional Hardware Reset  
PORST  
I,u  
Power-on Reset Input  
PORST must be active during power-up of the  
device  
CLKOUT  
156  
C17  
O
CPU Clock Output  
XTAL1  
XTAL2  
208  
207  
A6  
B7  
I
O
PLL/Oscillator Input/Output  
XTAL3  
XTAL4  
214  
213  
A4  
B5  
I
O
Real Time Clock Oscillator input/output (32 KHz)  
V
V
V
V
206  
212  
211  
205  
A7  
C6  
B6  
D7  
-
-
-
-
Main Oscillator Power Supply (1.8V)  
RTC Oscillator Power Supply (1.8V)  
RTC & Main Oscillator Ground (1.8V)  
RTC & Main Oscillator Power Supply (3.3V)  
DD_OSC1  
DD_OSC2  
SS_OSC  
DDP_OSC  
Data Sheet  
12  
V 1.3, 2003-10  
TC1920  
Preliminary  
Table 1  
Pin Definitions and Functions  
1)  
Symbol  
Pad  
BGA In/  
BALL Out  
Functions  
2)  
V
V
V
V
V
V
V
V
V
V
V
V
V
210  
203  
209  
198  
199  
185  
184  
186  
196  
187  
189  
188  
166  
C7  
-
-
-
-
-
-
-
-
-
-
-
-
-
RTC & Main Oscillator Power Supply (3.3V)  
RTC & Main Oscillator Ground (3.3V)  
RTC & Main Oscillator Ground (3.3V)  
PLL Supply (1.8V)  
DDP_OSC  
SSP_OSC  
SSP_OSC  
DD_PLL  
D8  
A5  
D9  
B9  
PLL Ground (1.8V)  
SS_PLL  
C12  
B12  
D12  
D10  
A12  
D11  
B11  
E15  
ADC Port and Analog Part Power Supply (3.3V)  
ADC Port and Analog Part Ground (3.3V)  
ADC Port and Analog Part Ground (3.3V)  
ADC Port and Analog Part Ground (3.3V)  
ADC Analog Ground (3.3V)  
DDP_ADC  
SSP_ADC  
SSP_ADC  
SSP_ADC  
SSA_ADC  
AREF_ADC  
AGND_ADC  
DDP_COD0  
ADC Reference Voltage  
ADC Reference Ground  
Codec 0 Port and Analog Part Power Supply  
(3.3V)  
V
V
167  
175  
D15  
E15  
-
-
Codec 0 Analog Ground  
SSA_COD0  
DDP_COD1  
Codec 1 Port and Analog Part Power Supply  
(3.3V)  
V
V
V
V
V
V
V
V
V
V
V
174  
168  
173  
178  
179  
217  
224  
200  
201  
204  
97  
D15  
C15  
C15  
B13  
C13  
A2  
-
-
Codec 1 Analog Ground  
SSA_COD1  
SSP_COD0  
SSP_COD1  
REF_COD  
GND_COD  
DDR  
Codec 0 Pad Ground (3.3V)  
Codec 1 Pad Ground (3.3V)  
Codec 0,1 Reference Voltage  
Codec 0,1 Reference Ground  
Stand-By SRAM Power Supply (1.8V)  
Stand-By SRAM Power Supply (1.8V)  
Guard Ring Supply (1.8V)  
-
-
-
-
-
-
-
-
C5  
DDR  
C9  
DD_GUARD  
SS_GUARD  
SS_GUARD  
DD_SB  
A8  
Guard Ring Ground (1.8V)  
C8  
Guard Ring Ground (1.8V)  
R15  
Stand-By SRAM Battery Backed Stand-By Power  
Supply (1.8V)  
4)  
V
-
Port Pins Power Supply (3.3V)  
DDP  
Data Sheet  
13  
V 1.3, 2003-10  
TC1920  
Preliminary  
Table 1  
Pin Definitions and Functions  
1)  
Symbol  
Pad  
BGA In/  
BALL Out  
Functions  
2)  
5)  
6)  
V
-
-
Core Power Supply (1.8V)  
Ground for Core and Ports  
DD  
SS  
V
1)  
The pin number describes the position of a signal on the silicon. The mapping of the pin number to the  
corresponding BGA ball is done according to the used package.  
2)  
The notification ’,u’ after the input/output type defines an internal pull-up resistor. An internal pull-down resistor  
is indicated by ’,d’. For the lines AD[31:0] and A[23:0], the type of the pull device can be selected ’s’.  
3)  
4)  
5)  
Output driver comparable to GPIO Medium Driver/Sharp Edge.  
The BGA balls for the 3.3V port power supply are: G11, G12, G7, G8, H12, H7, L12, L7, M11, M12, M7, M8.  
The BGA balls for the 1.8V core power supply are:  
A16, B16, B3, C4, D5, J4, L4, R4.  
6)  
The BGA balls for the digital ground are:  
A1, B2, C3, D4, D6, G10, G9, H10, H11, H8, H9, J10, J11, J12, J7, J8, J9, K10, K11, K12, K7, K8, K9, L10,  
L11, L8, L9, M10, M9.  
Data Sheet  
14  
V 1.3, 2003-10  
TC1920  
Preliminary  
System Architecture and Control  
32-Bit TriCore CPU  
• 32-bit architecture with 4-GByte unified data, program and input/output address space  
• Fast automatic context-switch  
• Dual 16 x 16 Multiply-accumulate (MAC) unit  
• Saturating integer arithmetic  
• Register based design with multiple variable register banks  
• Bit handling  
• Packed data operations  
• Zero overhead loop  
• Precise exceptions  
• Flexible power management  
Instruction Set with High Efficiency:  
• 16/32-bit instructions for reduced code size  
• Little endian byte ordering with support for big and little endian byte ordering at bus  
interface  
• Boolean, array of bits, character, signed and unsigned integer, integer with saturation,  
signed fraction, double word integers and IEEE-754 single precision floating-point  
data types  
• Bit, 8-bit byte, 16-bit half word, 32-bit word and 64-bit double word data formats  
• Powerful instruction set  
• Flexible and efficient addressing mode for high code density  
On-chip Code Memories  
PMU Scratch-Pad SRAM (CSRAM):  
The PMU memory consists of 24-KByte Code Scratchpad RAM (CSRAM) and 8-KByte  
Instruction Cache (ICACHE).  
Address range of the CSRAM:  
• D400 0000 - D400 5FFF  
H
H
Boot ROM (BROM):  
The TC1920 contains 32 KByte of Boot ROM memory, which can be used for device  
operating mode initialization routines, bootstrap loader support or test functions.  
The address range of the Boot ROM is:  
• DFFF 8000 – DFFF FFFF  
H
H
Data Sheet  
15  
V 1.3, 2003-10  
TC1920  
Preliminary  
On-chip Data Memories  
DMU Scratch-Pad SRAM (DSRAM):  
The DMU memory consists of 24-KByte Data Scratchpad RAM (DSRAM) and 8-KByte  
Data Cache (DCACHE).  
Address range of the DSRAM:  
• D000 0000 - D000 5FFF  
H
H
Local Memory Bus Memory (LMBRAM):  
Address range of the 64 KByte Local Memory Bus Memory:  
• C000 0000 - C000 FFFF (in segment 12 for cached operation)  
H
H
• E800 0000 - E800 FFFF (in segment 14 for non-cached operation)  
H
H
FPI-Bus Data Memory (FPIDRAM):  
The FPI-Bus Data Memory (FPIDRAM) is a 16-KByte static RAM located on the FPI-  
Bus. It contains two parts: FPIDRAM0 and FPIDRAM1. One half of it (FPIDRAM1) can  
be used for standby power operation.  
Address range of the FPI Data Memory:  
• 9FFF 8000 - 9FFF BFFF (in segment 9 for cached operation)  
H
H
• BFFF 8000 - BFFF BFFF (in segment 11 for non-cached operation)  
H
H
On-chip PCP Memories  
PCP Code Memory (PCODE):  
The address range of the 16 KByte PCP Code Memory (PCODE) is:  
• F002 0000 - F002 3FFF  
H
H
PCP Data Memory (PRAM):  
The address range of the 4 KByte PCP Data Memory (PRAM) is:  
• F001 0000 - F001 0FFF  
H
H
Data Sheet  
16  
V 1.3, 2003-10  
TC1920  
Preliminary  
System Control Unit (SCU)  
The System Control Unit of the TC1920 basically handles all system control tasks. All  
these system functions are tightly coupled and therefore they are handled physically by  
one unit, the SCU. The system tasks of the SCU are:  
• Clock Generation and Control  
• Reset control  
• Power Management control and wake-up  
• Watchdog timer  
• Trace port control  
• Device identification  
• Standby SRAM control  
• External interrupt capability (8 sources)  
System timer (STM)  
The System Timer is designed for global system timing applications requiring both high  
precision and long range. It is used by the CPU for software operating system issues.  
Features:  
• Free-running 56-bit counter  
• All 56 bits can be read synchronously  
• Different 32-bit portions of the 56-bit counter can be read synchronously  
• Driven by clock, f  
(normally identical with the system clock).  
STM  
• Counting begins at power-on reset  
• Continuous operation is not affected by any reset condition except power-on reset  
Data Sheet  
17  
V 1.3, 2003-10  
TC1920  
Preliminary  
External Bus Interface (EBU_LMB)  
EBU_LMB is connected to the Local Memory Bus (LMB) of the TC1920 and also to the  
FPI Bus. EBU_LMB is always a slave on the LMB and a master/slave on the FPI bus.  
Any LMB masters thus can access external memories or devices through EBU_LMB.  
Currently the maximum length of the bursts are according to the size of program and  
data cache lines, i.e. 8 x 32-bit words. Single transfers (non-burst) are supported for 8-  
bit, 16-bit and 32-bit wide access.  
EBU_LM B  
XBC  
LM B Bus 64-bit  
Buffer  
SDRAM  
Slower  
Devices  
50 M Hz  
DM E  
FPI Bus 32-bit  
XM I  
External  
M aster  
External Bus Unit  
EBUL3045_L  
Figure 4  
EBU_LMB block diagram  
Features supported in EBU_LMB:  
• Local Memory Bus (LMB 64-bit) support.  
• External bus frequency: LMB frequency = 1:1 or 1:2 or 1:4.  
• Highly programmable access parameters.  
• Intel-style and Motorola-style peripheral/device support.  
• SDRAM support (burst access, multibanking, precharge, refresh).  
• 16- and 32-bit SDRAM data bus and support of 64, 128 and 256MBit devices.  
• Burst flash support.  
• Multiplexed access (address & data on the same bus) when SDRAM is not present on  
the External Bus.  
• Data Buffering: Code Prefetch Buffer, Read/Write Buffer.  
• External master arbitration (compatible to C166 and other TriCore devices).  
• 8 programmable address regions (1 dedicated for emulator).  
• Little-endian and Big-endian support.  
• CSGLB signal, dedicated pin, bit programmable to combine one or more CS lines, for  
buffer control.  
• RMW signal reflecting a read-modify-write action.  
• Signal for controlling data flow of slow-memory buffer.  
• Slave unit for external (off-chip) master to access devices on the FPI bus.  
• Master unit for FPI master to access external (off-chip) devices.  
• Data Mover Engine.  
Data Sheet  
18  
V 1.3, 2003-10  
TC1920  
Preliminary  
Interrupt System  
• Flexible interrupt prioritizing scheme with 256 interrupt priority levels  
• Fast interrupt response  
• Service requests are serviced by the CPU or by the PCP (two independent interrupt  
buses, that can be selected by each interrupt source)  
PCP Interrupt  
Arbitration Bus  
C PU Interrupt  
Arbitration Bus  
Module A  
PC P Interrupt Control  
n Service  
Request  
Nodes  
PC P  
Interrupt  
Control  
Unit  
M odule  
Kernel  
PCP  
(PICU)  
Kernel  
12 Service  
Request  
Nodes  
12  
Module B  
n Service  
Request  
Nodes  
M odule  
Kernel  
M ain Interrupt Control  
CPU  
Interrupt  
C ontrol  
Unit  
Module C  
CPU  
Core  
(ICU)  
n Service  
Request  
Nodes  
M odule  
Kernel  
4 Service  
Request  
Nodes  
4
Figure 5  
Block Diagram Interrupt System  
Data Sheet  
19  
V 1.3, 2003-10  
TC1920  
Preliminary  
Peripheral Control Processor (PCP)  
C ode  
M em ory  
PC O DE  
Param eter  
M em ory  
PR AM  
PC P  
Processor  
Core  
PCP Service  
R eq. Nodes  
PSRN s  
PC P Interrupt  
C ontrol Unit  
PICU  
FPI-Interface  
FPI Bus  
PC P Interrupt  
Arbitration Bus  
CPU Interrupt  
Arbitration Bus  
M CB04784_m od  
Figure 6  
PCP block diagram  
The PCP is designed to work in partnership with a host CPU and performs many of the  
tasks that would conventionally be performed by CPU interrupt service routines or a  
DMA controller. The PCP off-loads the host CPU from most of the time critical interrupts,  
easing the implementation of systems based on operating systems.  
In principle the PCP may be considered to be a conventional processor which only  
executes code in response to interrupt service requests (i.e. has no processing which is  
not at interrupt level). It has an architecture which efficiently supports DMA type of bus  
transactions to / from arbitrary devices and memory addresses and also some  
reasonable computational capabilities. Whenever the PCP responds to a PCP interrupt  
request (which has a specific interrupt priority level) it will use a register set ("context")  
specific to that individual interrupt level and will also generally execute code which is also  
specific to that interrupt level. For this reason the term "Channel" will be used throughout  
the remainder of this document to refer to all PCP resources associated with a particular  
PCP interrupt level.  
The architecture is flexible enough to allow the implementation of a subset of the  
commands/instructions as a simple DMA controller.  
The PCP has a Harvard architecture (i.e. separate code and data memory spaces). Any  
FPI bus master (including the PCP itself) can access both PCP code (PCODE) and data  
(PRAM) memory via the FPI bus.  
Data Sheet  
20  
V 1.3, 2003-10  
TC1920  
Preliminary  
FPI Bus  
The Flexible Peripheral Interconnect Bus is designed with the requirements of high-  
performance Systems-on-Chip in mind.  
Key Features:  
• Core independent  
• Multi-master capability  
• Demultiplexed operation  
• Clock synchronous  
• Peak transfer rate of up to 200 MBytes/s (@ 50 MHz bus clock)  
• Address and data bus scalable (32 bit address bus, 32 bit data bus )  
• 8-/16- and 32 bit data transfers  
• Broad range of transfer types from single to multiple data transfers  
• Burst transfer capability  
• EMI and power consumption minimized  
LMB-Bus  
The Local Memory Bus is a synchronous, pipelined, split bus with variable block size  
transfer support. All signals relate to the positive clock edge.  
The protocol supports 8,16,32 & 64 bits single beat transactions and variable length 64  
bits block transfers.  
Key Features:  
The LMB provides the following features:  
• Optimized for high speed and high performance  
• 32 bit address, 64 bit data busses  
• Central simple per cycle arbitration  
• Slave controlled wait state insertion  
• Address pipelining (max. depth - 2)  
• Split transactions  
• Variable block length - 2, 4 or 8 beats of 64 bit data  
Data Sheet  
21  
V 1.3, 2003-10  
TC1920  
Preliminary  
On-Chip Debug System (OCDS)  
The TC1920 architecture is supporting OCDS level 1 and 2.  
Level  
Run Time  
Control  
System access via  
Basic PC trace  
JTAG  
Yes  
Trace bus  
1
Yes  
Yes  
No  
No  
2
Yes  
Yes  
Yes  
Table 2  
Module  
Core-related and System Control Modules  
Address Range  
I/O Lines  
Interrupt  
Nodes  
TriCore CPU  
Slave Registers (CPS) F7E0 FFFF  
F7E0 FF00 -  
-
-
-
-
-
-
-
-
CPU_SRC0..3  
CPU_SRCSB  
H
H
1)  
Memory Management  
Unit (MMU)  
F7E1 8000 -  
-
H
F7E1 80FF  
H
Segment Protection  
F7E1 C000 -  
-
H
1)  
Registers  
F7E1 C0FF  
H
1)  
Core Debug  
F7E1 FD00 -  
-
H
(Core OCDS)  
F7E1 FDFF  
H
1)  
TriCore CPU  
F7E1 FE00 -  
-
H
SFR, GPR  
F7E1 FFFF  
H
2)  
Program Memory Unit  
(PMU)  
F87F FD00 -  
-
H
F87F FDFF  
H
2)  
Data Memory Unit  
(DMU)  
F87F FC00 -  
-
H
F87F FCFF  
H
Peripheral Control  
Processor (PCP)  
F000 3F00 -  
PCP_SRC0..11  
-
H
F000 3FFF  
H
External Bus Unit  
(EBU)  
F800 0000 -  
AD[31:0], A[23:0],  
27 control lines  
H
F800 03FF  
H
System Control Unit  
(SCU)  
F000 0000 -  
4 XTAL, PORST,  
EXI_SRC0..4  
H
3)  
F000 00FF  
HRST, 8 EXIN, NMI, NMI  
4 test, CLKOUT,  
BYPASS  
H
FPI Bus Control Unit  
(BCU)  
F000 0200 -  
-
BCU_SRC  
H
F000 02FF  
H
Data Sheet  
22  
V 1.3, 2003-10  
TC1920  
Preliminary  
Table 2  
Module  
Core-related and System Control Modules (cont’d)  
Address Range  
I/O Lines  
Interrupt  
Nodes  
LMB Bus Control Unit  
(LCU)  
F87F FE00 -  
-
-
LCU_SRC  
H
F87F FEFF  
H
LMB to FPI Bus Bridge F87F FF00 -  
(LFI)  
-
-
H
F87F FFFF  
H
Port Control  
(Ports 0, 1, 2, 3, 5)  
F000 2800 -  
P0 (7), P1(7),  
P2(15), P3(15),  
P5(15)  
H
F000 2CFF  
H
Debug Support  
(JTAG, OCDS)  
F000 0400 -  
TRST, TCK, TDI,  
TDO, TMS, OCDSE,  
BRKIN, BRKOUT,  
16 trace outputs  
-
H
F000 04FF  
H
1)  
This address range is also accessed via the CPS by the FPI bus.  
This address range is accessed via the LMB.  
2)  
3)  
The NMI is directly connected to the core (no SRC) and always acts on the highest priority. It is used as highest  
priority interrupt for the NMI input, the watchdog, the PLL and for wake-up via the RTC or via the EXIx inputs.  
On-Chip Peripheral Units  
The TC1920 offers several on-chip peripheral units such as serial controllers, timer units,  
AD converter and Codec interface. Within the TC1920 all these peripheral units are  
connected to the TriCore CPU/system via the FPI (Flexible Peripheral Interconnect) Bus.  
Several IO lines on the TC1920 ports are reserved for these peripheral units to  
communicate with the external world.  
Peripheral Units of the TC1920:  
• Three Asynchronous/Synchronous Serial Channels with baudrate generator, parity,  
framing and overrun error detection, IrDA mode, FIFO buffers.  
• One High Speed Synchronous Serial Channels with programmable data length and  
shift direction  
• TwinCAN Module with two interconnected CAN nodes for high efficiency data  
handling via FIFO buffering and gateway data transfer  
• Serial Data Link Module compliant to SAE Class B J1850 specification  
• IIC module with connection to 2 external busses  
• 2 multi-functional General Purpose Timer Units with three 32-bit timer/counter  
• One Analog-to-Digital Converter Units with 8-bit, 10-bit, or 12-bit resolution and 6  
analog inputs  
• Dual channel Codec interface  
• GPIO blocks  
Data Sheet  
23  
V 1.3, 2003-10  
TC1920  
Preliminary  
Table 3  
Module  
Peripheral Modules  
Address Range  
I/O Lines  
Interrupt Nodes  
Asynchronous  
Serial Channel 0  
(ASC0)  
F000 0A00 -  
RDX0, TDX0  
ASC0_TSRC  
ASC0_RSRC  
ASC0_ESRC  
ASC0_TBSRC  
H
F000 0AFF  
H
Asynchronous  
Serial Channel 1  
(ASC1)  
F000 0B00 -  
RDX1, TDX1  
RDX2, TDX2  
ASC1_TSRC  
ASC1_RSRC  
ASC1_ESRC  
ASC1_TBSRC  
H
F000 0BFF  
H
Asynchronous  
Serial Channel 2  
(ASC2)  
F000 0C00 -  
ASC2_TSRC  
ASC2_RSRC  
ASC2_ESRC  
ASC2_TBSRC  
H
F000 0CFF  
H
Synchronous Serial F000 0800 -  
SCLK, MRST,  
MTSR  
SSC_TSRC  
SSC_RSRC  
SSC_ESRC  
H
Channel (SSC)  
F000 08FF  
H
Inter-IC Bus (IIC)  
F000 0500 -  
SCL[1:0],  
SDA[1:0]  
IIC_XP0SRC  
IIC_XP1SRC  
IIC_XP2SRC  
H
F000 05FF  
H
Real Time Clock  
(RTC)  
F000 0100 -  
-
RTC_SRC  
H
F000 01FF  
H
System Timer Unit F000 0300 -  
-
-
H
(STM)  
F000 03FF  
H
General Purpose  
Timer 0 (GPTU0)  
F000 0700 -  
GPTU0[7:0]  
GPTU1[7:0]  
GPTU0_SRC0..7  
GPTU1_SRC0..7  
CAN_SRC0..7  
SDLM_SRC0..1  
H
F000 07FF  
H
General Purpose  
Timer 1 (GPTU1)  
F000 0600 -  
H
F000 06FF  
H
CAN (TwinCAN)  
F010 0000 -  
RXDCAN[1:0],  
TXDCAN[1:0]  
H
F010 0BFF  
H
SDLM (J1850)  
F000 2600 -  
RXJ1850,  
TXJ1850  
H
F000 26FF  
H
Data Sheet  
24  
V 1.3, 2003-10  
TC1920  
Preliminary  
Table 3  
Module  
Peripheral Modules (cont’d)  
Address Range  
I/O Lines  
Interrupt Nodes  
Speech Interface  
(Codec)  
F000 2400 -  
2*2 analog IN,  
2*2 analog OUT,  
CEXT,  
CODEC_SRC0..5  
H
F000 24FF  
H
CODEC_DIS  
Analog to Digital  
Converter (ADC)  
F000 2200 -  
AIN[5:0] = P4,  
ADEMUX[2:0],  
ADEXTIN  
ADC_SRC0..3  
H
F000 23FF  
H
Asynchronous/Synchronous Serial Interfaces (ASC 0/1/2)  
The Asynchronous/Synchronous Serial Interface ASC provides serial communication  
between the TriCore and other microcontrollers, microprocessors or external  
peripherals. The implementation is held parametrizable in order to allow the usage of  
parallel busses of different width and with different protocols.  
Features:  
• Full duplex asynchronous operating modes  
– 8- or 9-bit data frames, LSB first  
– Parity bit generation/checking  
– One or two stop bits  
– Baudrate from 3.125 MBaud to 0.74 Baud (@ 50 MHz module clock)  
– Multiprocessor mode for automatic address/data byte detection  
– Loop-back capability  
• Half-duplex 8-bit synchronous operating mode  
– Baudrate from 6.25 MBaud to 637 Baud (@ 50 MHz module clock)  
• Double buffered transmitter/receiver  
• Interrupt generation  
– on a transmitter buffer empty condition  
– on a transmit last bit of a frame condition  
– on a receiver buffer full condition  
– on an error condition (frame, parity, overrun error)  
• Support for IrDA  
• Automatic Baudrate Detection  
• 8 Byte FIFO  
Data Sheet  
25  
V 1.3, 2003-10  
TC1920  
Preliminary  
fhw_clk  
C lock  
C ontrol  
Address  
Decoder  
R XD  
TXD  
RXD  
ASC  
M odule  
(Kernel)  
Port  
C ontrol  
TIR  
TXD  
TBIR  
R IR  
Interrupt  
C ontrol  
EIR  
ABSTIR  
ABDETIR  
M CA05253  
Figure 7  
ASC Interface Diagram  
Data Sheet  
26  
V 1.3, 2003-10  
TC1920  
Preliminary  
High-Speed Synchronous Serial Interface (SSC)  
The High Speed Synchronous Serial Interface SSC provides serial communication  
between microcontrollers, microprocessors or external peripherals. The SSC supports  
full-duplex and half-duplex synchronous communication up to 25 MBaud (@ 50 MHz  
module clock). The serial clock signal can be generated by the SSC itself (master mode)  
or be received from an external master (slave mode). Data width, shift direction, clock  
polarity and phase are programmable. This allows communication with SPI-compatible  
devices. Transmission and reception of data are double-buffered. A 16-bit baud rate  
generator provides the SSC with a separate serial clock signal.  
Features:  
• Master and slave mode operation  
– Full-duplex or half-duplex operation  
• Flexible data format  
– Programmable number of data bits : 2 to 16 bit  
– Programmable shift direction : LSB or MSB shift first  
– Programmable clock polarity : idle low or high state for the shift clock  
– Programmable clock/data phase : data shift with leading or trailing edge of SCLK  
• Maximum baudrates: 25 MBaud in Master, 12.5 in Slave mode (@ 50 MHz module  
clock)  
Interrupt generation  
– on a transmitter empty condition  
– on a receiver full condition  
– on an error condition (receive, phase, baudrate, transmit error)  
• Three pin interface  
fhw_clk  
C lock  
C ontrol  
R XD  
M TSR  
M R ST  
SCLK  
TXD  
Address  
Decoder  
SSC  
M odule  
(Kernel)  
R XD  
TXD  
Port  
Control  
EIR  
R IR  
TIR  
Slave  
M aster  
Interrupt  
C ontrol  
M C B04505_m od  
Figure 8  
SSC Interface Diagram  
Data Sheet  
27  
V 1.3, 2003-10  
TC1920  
Preliminary  
Inter-IC Interface (IIC)  
IIC supports a certain protocol to allow devices to communicate directly with each other  
via two wires. One line is responsible for clock transfer and synchronization (SCL), the  
other is responsible for the data transfer (SDA).  
The on-chip IIC Bus module connects the platform buses to other external controllers  
and/or peripherals via the two-line serial IIC interface. The IIC Bus module provides  
communication at data rates of up to 400 kBit/s and features 7-bit addressing as well as  
10-bit addressing. This module is fully compatible to the IIC bus protocol.  
SDA0  
Generic  
data line  
SDA1  
IIC Kernel  
SCL0  
Generic  
clock line  
SCL1  
IIC M odule  
Figure 9  
IIC Bus Line Connections  
The module can operate in three different modes:  
Master mode, where the IIC controls the bus transactions and provides the clock signal.  
Slave mode, where an external master controls the bus and provides the clock signal.  
Multimaster mode, where several masters can be connected to the bus, i.e. the IIC can  
be master or slave.  
The module unloads the CPU of low level tasks like:  
• (De)Serialization of bus data.  
• Generation of start and stop conditions.  
• Monitoring the bus lines in slave mode.  
• Evaluation of the device address in slave mode.  
• Bus access arbitration in multimaster mode.  
IIC Features:  
• Extended buffer allows up to 4 send/receive data bytes to be stored.  
• Selectable baud rate generation.  
• Support of standard 100 kBaud and extended 400 kBaud data rates.  
• Operation in 7-bit addressing mode or 10-bit addressing mode.  
• Flexible control via interrupt service routines or by polling.  
• Dynamic access to up to 2 physical IIC busses.  
Data Sheet  
28  
V 1.3, 2003-10  
TC1920  
Preliminary  
CAN Interface (TwinCAN)  
Figure 10 shows a global view of the functional blocks of the TwinCAN module.  
TwinC AN M odule Kernel  
fC AN  
C AN  
Node A  
CAN  
N ode B  
C lock  
C ontrol  
TXDC A  
R XD CA  
Address  
Decoder  
Port  
M essage  
Control  
O bject  
Buffer  
TXDC B  
R XD CB  
Interrupt  
C ontrol  
TwinC AN C ontrol  
M CB04515  
Figure 10  
General Block Diagram of the TwinCAN Interfaces  
TwinCAN Features:  
• CAN functionality according to CAN specification V2.0 B active.  
• Dedicated control registers are provided for each CAN node.  
• A data transfer rate up to 1MBaud is supported.  
• Flexible and powerful message transfer control and error handling capabilities are  
implemented.  
• Full-CAN functionality: 32 message objects can be individually  
– assigned to one of the two CAN nodes,  
– configured as transmit or receive object,  
– participate in a 2,4,8,16 or 32 message buffer with FIFO algorithm,  
– setup to handle frames with 11 bit or 29 bit identifiers,  
– provided with programmable acceptance mask register for filtering,  
– monitored via a frame counter,  
– configured to Remote Monitoring Mode.  
• Up to eight individually programmable interrupt nodes can be used.  
• CAN Analyzer Mode for bus monitoring is implemented.  
The TwinCAN module has four IO lines. The TwinCAN module is further supplied by a  
clock control, interrupt control, address decoding, and port control logic.  
Data Sheet  
29  
V 1.3, 2003-10  
TC1920  
Preliminary  
The CAN module contains two Full-CAN nodes operating independently or exchanging  
data and remote frames via a gateway function. Transmission and reception of CAN  
frames is handled in accordance to CAN specification V2.0 part B (active). Each of the  
two Full-CAN nodes can receive and transmit standard frames with 11-bit identifiers as  
well as extended frames with 29-bit identifiers.  
Both CAN nodes share the TwinCAN module’s resources in order to optimize the CAN  
bus traffic handling and to minimize the CPU load. The flexible combination of Full-  
functionality and FIFO architecture reduces the efforts to fulfill the real-time requirements  
of complex embedded control applications. Improved CAN bus monitoring functionality  
as well as the increased number of message objects permit precise and comfortable  
CAN bus traffic handling.  
Depending on the application, each of the 32 message objects can be individually  
assigned to one of the two CAN nodes. Gateway functionality allows automatic data  
exchange between two separate CAN bus systems, which reduces CPU load and  
improves the real time behavior of the entire system.  
The bit timings for both CAN nodes are derived from the peripheral clock (f  
) and are  
CAN  
programmable up to a data rate of 1 MBaud. A pair of receive and transmit pins connect  
each CAN node to a bus transceiver.  
Data Sheet  
30  
V 1.3, 2003-10  
TC1920  
Preliminary  
Serial Data Link Module (J1850)  
Figure 11 shows a global view of the functional blocks of the J1850 interface.  
fSDLM  
C lock  
C ontrol  
R XD  
R XJ1850  
TXJ1850  
SDLM  
M odule  
(Kernel)  
Address  
Decoder  
Port  
C ontrol  
TXD  
Interrupt  
C ontrol  
M CB04550  
Figure 11  
General Block Diagram of the SDLM Interface  
The J1850 module communicates with the external world via two I/O lines, the J1850  
bus. The RXD line is the receive data input signal and TXD is the transmit data output  
signal. The Serial Data Link Module provides serial communication to a J1850 based  
serial bus. J1850 bus transceivers have to be implemented externally in a system. The  
J1850 module is conform to the SAE Class B J1850 specification and compatible to  
class 2 protocol.  
General SDLM Features:  
• Compliant to SAE Class B J1850 specification  
• Full support of GM class 2 protocol  
• Variable Pulse Width (VPW) format with 10.4 kBaud  
• High speed receive/transmit 4x mode with 41.6 kBaud  
• Digital noise filter  
• Power save mode and automatic wake up upon bus activity  
• Support of single byte headers or consolidated headers  
• CRC generation & check  
• Support of block mode for receive and transmit  
Data Link Operation Features:  
• 11 bytes transmit buffer  
• Double buffered 11 bytes receive buffer  
• Support of In-frame response (IFR) types 1,2,3  
• Advanced interrupt handling for RX, TX and error conditions  
• All interrupt sources can be enabled/disabled individually  
• Support of automatic IFR for types 1,2 for three byte consolidated headers  
Data Sheet  
31  
V 1.3, 2003-10  
TC1920  
Preliminary  
Timer Units (GPTU 0/1)  
Figure 12 shows a global view of all functional blocks of one GPTU module.  
IN 0  
IN 1  
IN 2  
IN 3  
IN 4  
IN 5  
IN 6  
IN 7  
IO 0  
IO 1  
IO 2  
IO 3  
IO 4  
IO 5  
IO 6  
IO 7  
P0.0 / G PT0  
P0.1 / G PT1  
P0.2 / G PT2  
P0.3 / G PT3  
P0.4 / G PT4  
P0.5 / G PT5  
P0.6 / G PT6  
fGPTU  
C lock  
C ontrol  
Address  
Decoder  
G PTU  
M odule  
(Kernel)  
Port  
Control  
SR0  
SR1  
SR2  
SR3  
SR4  
SR5  
SR6  
SR7  
O UT0  
O UT1  
O UT2  
O UT3  
O UT4  
O UT5  
O UT6  
O UT7  
Interrupt  
C ontrol  
P0.7 / G PT7  
M CB05052_m odified  
Figure 12  
General Block Diagram of the GPTU Interface  
The GPTU consists of three 32-bit timers designed to solve such application tasks as  
event timing, event counting, and event recording. The GPTU communicates with the  
external world via eight inputs and eight outputs.  
The three timers of the GPTU module T0, T1, and T2, can operate independently from  
each other, or can be combined:  
General Features:  
• All timers are 32-bit precision timers with a maximum input frequency of f  
• Events generated in T0 or T1 can be used to trigger actions in T2  
• Timer overflow or underflow in T2 can be used to clock either T0 or T1  
• T0 and T1 can be concatenated to form one 64-bit timer  
/2.  
GPTU  
Features of T0 and T1:  
• Each timer has a dedicated 32-bit reload register with automatic reload on overflow  
• Timers can be split into individual 8-, 16-, or 24-bit timers with individual reload  
registers  
• Overflow signals can be selected to generate service requests, pin output signals, and  
T2 trigger events  
• Two input pins can determine a count option  
Data Sheet  
32  
V 1.3, 2003-10  
TC1920  
Preliminary  
Features of T2:  
• Optionally count up or down  
• Operating modes:  
– Timer  
– Counter  
– Incremental Interface Mode  
• Options:  
– External start/stop, one-shot operation, timer clear on external event  
– Count direction control through software or an external event  
– Two 32-bit reload/capture registers  
• Reload modes:  
– Reload on overflow or underflow  
– Reload on external event: positive transition, negative transition, or both transitions  
• Capture modes:  
– Capture on external event: positive transition, negative transition, or both  
transitions  
– Capture and clear timer on external event: positive transition, negative transition, or  
both transitions  
• Can be split into two 16-bit counter/timers  
• Timer count, reload, capture, and trigger functions can be assigned to input pins. T0  
and T1 overflow events can also be assigned to these functions.  
• Overflow and underflow signals can be used to trigger T0 and/or T1 and to toggle  
output pins  
• T2 events are freely assignable to the service request nodes.  
Data Sheet  
33  
V 1.3, 2003-10  
TC1920  
Preliminary  
Analog to Digital Converter (ADC)  
Figure 13 shows a global view of the ADC module kernel with the module specific  
interface connections.  
VSSA  
V DD A  
VDD M  
VAR EF  
VAGN D  
V SSM  
EM U X0  
EM U X1  
EM U X2  
fA DC  
C lock  
C ontrol  
Port  
Control  
Address  
Decoder  
AIN0  
AIN1  
SR 0  
SR 1  
SR 2  
SR 3  
AD C  
M odule  
Kernel  
Interrupt  
C ontrol  
AIN5  
ASG T  
EXI0IN  
ETR, EG T  
Q TR , Q G T  
TTR, TG T  
EXI7IN  
Interrupt  
Inputs  
ADEXTIN  
TC1920_ADC_blockdiagram  
SW 0TR=0  
SW 0G T=1  
Figure 13  
General Block Diagram of the ADC module  
The on-chip ADC module of the TC1920 is an analog to digital converter with 8-bit, 10-  
bit or 12-bit resolution including sample & hold functionality. The A/D converter operates  
by the method of the successive approximation. A multiplexer selects between up to 6  
analog input channels. Conversion requests are generated either under software control  
or by hardware. An automatic self-calibration adjusts the ADC module to changing  
temperatures or process variations.  
Data Sheet  
34  
V 1.3, 2003-10  
TC1920  
Preliminary  
Features:  
The following functionality has been implemented in the on chip ADC module to fulfill the  
enhanced requirements of embedded control applications:  
• 8-bit, 10-bit, 12-bit A/D Conversion  
• Successive approximation conversion method  
• Total Unadjusted Error (TUE) of ± 2 LSB @ 10-bit resolution  
• Integrated sample and hold functionality  
• 6 analog input channels  
• Dedicated control and status registers for each analog channel  
• Flexible conversion request mechanisms  
• Selectable reference voltages for each channel  
• Programmable sample and conversion timing schemes  
• Limit checking  
• Flexible ADC module service request control unit  
• Automatic control of external analog multiplexer  
• Equidistant samples initiated by timer  
• External trigger inputs for conversion requests  
• Power reduction and clock control feature  
Real Time Clock Unit RTC  
The Real Time Clock (RTC) module is basically an independent timer chain and counts  
clock ticks. The base frequency of the RTC can be programmed via a reload counter.  
The RTC can work fully asynchronous to the system frequency and is optimized on low  
power consumption.  
Features:  
The RTC serves different purposes:  
• Absolute system clock to determine the current time and date  
• Cyclic time based interrupt  
• Alarm interrupt for wake up on a defined time  
• 48-bit timer for long term measurements  
Data Sheet  
35  
V 1.3, 2003-10  
TC1920  
Preliminary  
Codec Interface  
The speech A/D and D/A converters (called codec) is designed for telephone and  
speech recognition quality. They can be used for microphone / earpiece applications.  
The TC1920 configuration implements a dual channel speech codec connected to the  
FPI bus.  
VDD VS S  
VDD VSS  
CO D0  
COD0  
CO D1 CO D1  
ch0 non-inv. input  
ch0 inv. input  
AI0+  
fper  
Clock  
Control  
AI0-  
ch0 non-inv. output  
ch0 inv. output  
AO0+  
AO0-  
Address  
Decoder  
ch1 non-inv. input  
ch1 inv. input  
AI1+  
AI1-  
SR0  
SR1  
SR2  
SR3  
CO DEC  
M odule  
Kernel  
ch1 non-inv. output  
ch1 inv. output  
AO1+  
AO1-  
Interrupt  
Control  
clock disable  
SR4  
SR5  
CO DEC_DIS  
CEXT  
external clock input  
m ute channel 0  
m ute channel 1  
VRE F  
M UTE0  
M UTE1  
COD  
VG ND  
COD  
Codec bypass  
5
IIS  
signals  
Figure 14  
General Codec Overview  
General Purpose I/Os (GPIO)  
• Push/pull output drivers  
• 3.3 Volt operation for GPIO  
• Programmable pull-up/-down devices at all pins  
• Optional Open Drain Output Mode  
Data Sheet  
36  
V 1.3, 2003-10  
TC1920  
Preliminary  
Power Supply  
Figure 15 shows the TC1920 power supply concept, where certain logic modules are  
individually supplied with power. In this way, the noise margin is improved in the  
especially sensitive modules, like the A/D converter and the CODEC.  
VD DA  
VSS A  
VD DA  
VSSA  
VDD A  
VSSA  
VDD A  
VSSA  
VD DA  
VSS A  
VDD A  
VSSA  
RTC  
OSC  
PLL  
(analog)  
ADC  
(analog)  
CO DEC 0  
(analog)  
CO DEC 1  
(analog)  
M AIN  
O SC  
VD DP  
VSS P  
B attery  
ALL DIG ITAL CORE  
CO MPO NENTS  
B acked  
S tand- By  
S RAM  
X
VD DP  
VSS P  
Y
VD D_SB  
VD DR  
VSS  
VDD  
VSS  
VD D  
VSS  
Figure 15  
TC1920 Power Supply Concept  
Data Sheet  
37  
V 1.3, 2003-10  
TC1920  
Preliminary  
Power-Up Sequence  
During Power-Up reset pin PORST has to be held active until both power supply  
voltages have reached at least their minimum values.  
During the Power-Up time (rising of the supply voltages from 0 to their regular operating  
values) it has to be ensured, that the core V power supply reaches its operating value  
DD  
first, and then the GPIO V  
power supply. During the rising time of the core voltage it  
DDP  
must be ensured that 0< V -V  
<0.5 V.  
DD DDP  
During power-down, the core and GPIO power supplies V  
and V  
respectively,  
DDP  
DD  
have to be switched off until all capacitances are discharged to zero, before the next  
power-up.  
Note: The states of the pins are undefined when only the port voltage V  
is on.  
DDP  
Data Sheet  
38  
V 1.3, 2003-10  
TC1920  
Preliminary  
ID Register Table  
Table 4  
List of TC1920 ID registers  
Short Name Description  
Address  
Value  
0019 C002  
SCU_ID  
MANID  
CHIPID  
RTID  
SCU Identification Register  
F000 0008  
F000 0070  
F000 0074  
H
H
H
H
H
H
H
H
Manufacturer Identification Register  
Chip Identification Register  
0000 1820  
0000 8902  
0000 0000  
H
H
H
Redesign Tracing Identification Register F000 0078  
RTC_ID  
BCU_ID  
STM_ID  
RTC Module Identification Register  
BCU Identification Register  
F000 0108  
F000 0208  
F000 0308  
0000 5A04  
0000 6A06  
H
H
System Timer Module Identification  
Register  
0000 C002  
H
JDP_ID  
JTAG/OCDS Module Identification  
Register  
F000 0408  
0000 6305  
0000 4604  
H
H
IIC_ID  
IIC Module Identification Register  
GPTU Module Identification Register  
GPTU Module Identification Register  
SSC Module Identification Register  
ASC Module Identification Register  
ASC Module Identification Register  
ASC Module Identification Register  
ADC Module Identification Register  
F000 0508  
F000 0708  
F000 0608  
F000 0808  
H
H
H
H
H
GPTU0_ID  
GPTU1_ID  
SSC_ID  
0001 C002  
0001 C002  
H
H
0000 4503  
H
ASC0_ID  
ASC1_ID  
ASC2_ID  
ADC_ID  
F000 0A08  
F000 0B08  
0000 44E1  
0000 44E1  
0000 44E1  
H
H
H
H
H
H
F000 0C08  
H
F000 2208  
F000 2408  
F000 2608  
0000 3104  
H
CODEC_ID Codec Identification Register  
001C C002  
H
H
H
SDLM_ID  
PCP_ID  
CAN_ID  
CPS_ID  
MMU_ID  
CPU_ID  
EBU_ID  
DMU_ID  
PMU_ID  
LCU_ID  
LFI_ID  
SDLM Module Identification Register  
PCP Module Identification Register  
CAN Module Identification Register  
CPU Module Identification Register  
MMU Identification Register  
0000 4204  
H
F000 3F08  
0020 C003  
H
H
H
F010 0008  
0000 4110  
H
F7E0 FE08  
0015 C004  
0009 C002  
H
H
H
F7E1 8008  
H
CPU Identification Register  
F7E1 FE18  
F800 0008  
000A C003  
H
H
H
H
EBU_LMB Identification Register  
DMU Identification Register  
0014 C003  
0008 C002  
H
F87F FC08  
F87F FD08  
H
H
H
H
PMU Module Identification Register  
LCU Identification Register  
000B C002  
H
H
F87F FE08  
F87F FF08  
000F C003  
LFI Identification Register  
000C C003  
H
Data Sheet  
39  
V 1.3, 2003-10  
TC1920  
Preliminary  
Electrical characteristics  
Parameter Interpretation  
The parameters listed in the following partly represent the characteristics of the TC1920  
and partly its demands on the system. To aid in interpreting the parameters right, when  
evaluating them for a design, they are marked in column “Symbol”:  
CC (Controller Characteristics):  
The logic of the TC1920 will provide signals with the respective characteristics.  
SR (System Requirement):  
The external system must provide signals with the respective characteristics to the  
TC1920.  
Data Sheet  
40  
V 1.3, 2003-10  
TC1920  
Preliminary  
Absolute Maximum Ratings  
Parameter  
Symbol  
Limit Values  
min. max.  
Unit Notes  
Ambient temperature  
Storage temperature  
Junction temperature  
TA  
-40  
-65  
85  
°C  
°C  
°C  
V
under bias  
under bias  
TST  
TJ  
150  
125  
4.2  
Voltage on I/O Supply pins with VDDP  
respect to ground (VSS)  
-0.5  
Voltage on Core Supply pins  
with respect to ground (VSS)  
VDD  
-0.3  
-0.3  
2.1  
2.1  
2.1  
4.2  
10  
V
Voltage on PLL Supply pins  
with respect to ground (VSS)  
VDDPLL  
V
PLL  
Voltage between Oscillator  
Supply Pins and ground (VSS).  
VDDOSC -0.3  
V
Voltage on any pin with respect VIN  
to ground (VSS)  
-0.5  
-10  
V
Input current on any pin during I  
overload condition  
mA  
mA  
W
OV  
Absolute sum of all input  
currents at overload condition  
ΣI  
|100|  
1.4  
OV  
Power dissipation  
PDISS  
Note: Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in  
the operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
During absolute maximum rating overload conditions (VIN>VDD or VIN<VSS) the  
voltage on VDD pins with respect to ground (VSS) must not exceed the values  
defined by the absolute maximum ratings.  
Data Sheet  
41  
V 1.3, 2003-10  
TC1920  
Preliminary  
Package Parameters (P-LBGA-260)  
Parameter  
Symbol  
Limit Values  
Unit Notes  
min.  
max.  
1.4  
Power dissipation  
Thermal resistance  
PDISS  
RTHA  
W
27.8  
K/W Chip to ambient  
Operating Conditions  
The following operating conditions must not be exceeded in order to ensure correct  
operation of the TC1920. All parameters specified in the following sections refer to these  
operating conditions, unless otherwise noticed.  
Parameter  
Symbol  
Limit Values  
min. max.  
Unit Notes  
1)  
Supply voltage  
VDDP  
VDD  
3.0  
3.6  
V
I/O supply  
2)  
1.71  
1.71  
1.89  
1.89  
1.89  
V
Core supply  
PLL supply  
VDDPLL  
V
VDDOSC 1.71  
V
Oscillator supply  
Ground voltage  
VSS  
0
V
Input current on any pin  
during overload  
condition  
I
-5  
5
mA  
V
V
> VDDP + 0.3V  
< VSS - 0.3V  
OV  
OV  
OV  
Absolute sum of all input Σ| I  
currents at overload  
condition  
|
|50|  
85  
mA  
°C  
OV  
Ambient temperature  
under bias  
TA  
-40  
CPU clock  
fCPU  
CL  
100  
50  
MHz  
pF  
External Load  
Capacitance  
1)  
Voltage overshoot to 4 V is permissible, provided the pulse duration is less than 100 µs and the cumulated  
summary of the pulses does not exceed 1 h  
2)  
Voltage overshoot to 2 V is permissible, provided the pulse duration is less than 100 µs and the cumulated  
summary of the pulses does not exceed 1 h  
Data Sheet  
42  
V 1.3, 2003-10  
TC1920  
Preliminary  
DC Characteristics  
GPIO pins  
Parameter  
Symbol  
Limit values  
Unit Test  
Conditions  
min.  
max.  
Output low voltage  
(strong driver)  
V
V
V
V
V
V
-
1
0.4  
V
V
V
V
V
V
I
I
= 10 mA  
= 2.5 mA  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OL  
Output high voltage  
(strong driver)  
2.4  
-
-
I
I
I
I
I
= - 2.5 mA  
OH  
OL  
OH  
OL  
OH  
Output low voltage  
0.4  
-
= 1 mA  
1)  
(medium driver)  
Output high voltage  
2.4  
-
= - 1 mA  
= 100 µA  
= - 100 µA  
1)  
(medium driver)  
Output low voltage  
0.4  
-
1)  
(weak driver)  
Output high voltage  
2.4  
1)  
(weak driver)  
Input low voltage  
Input high voltage  
V
V
-0.3  
2.0  
0.8  
V
LVTTL  
IL  
V
+0.3 V  
whatever is  
lower  
IH  
DDP  
or  
3.7V  
Input leakage current  
I
-
±500  
nA  
0V< V <  
in  
OZ1  
V
V
V
V
V
DDP  
OUT  
OUT  
OUT  
OUT  
2)  
Pull-up current  
|I  
|I  
|I  
|I  
|
-
1
µA  
µA  
µA  
µA  
pF  
= 2.0V  
= 0.8V  
= 0.8V  
= 2.0V  
PUH  
3)  
Pull-up current  
|
20  
-
-
PUL  
PDL  
Pull-down current  
Pull-down current  
|
0.8  
-
|
20  
-
PDH  
1)  
Pin capacitance  
C
10  
f = 1MHz @  
IO  
o
T = 25 C  
A
1)  
Not subject to production test, verified by design/characterization.  
2)  
3)  
The maximum current that may be drawn while the respective signal line remains inactive.  
The minimum current that must be drawn in order to drive the respective signal line active.  
Data Sheet  
43  
V 1.3, 2003-10  
TC1920  
Preliminary  
NMI Pin  
NMI Pin is an input pin with different Pull-Up characteristics than other pins. The related  
characteristics are given in the following table  
Parameter  
Symbol  
Limit values  
Unit Test  
Conditions  
min.  
max.  
Max. current allowed  
through the Pull-Up  
device while pin (input)  
voltage remains still at the  
high level  
|I  
|I  
|
-
4
uA  
V
=2.0V  
PUH  
PUL  
OUT  
Min. current needed  
|
100  
-
uA  
V
=0.8V  
OUT  
through the Pull-Up  
device so that pin voltage  
is driven to the low level.  
Note: NMI Pin does not have a Pull-Down device.  
Oscillator Pins  
Parameter  
Symbol Limit values  
min.  
Unit Test  
Conditions  
max.  
Input leakage current  
(analog input) at  
XTAL1  
I
-
±200  
nA  
0V< V < V  
OZ1  
in  
DDP  
CC  
1)  
Input low voltage  
XTAL1  
V
SR  
-
0.3  
V
V
-
ILX  
Input high voltage  
V
0.8  
V
V
V
V
-0.3  
-0.35  
-0.4  
f
f
f
f
=4MHz  
=8MHz  
=12MHz  
=16MHz  
IHX  
DD  
DD  
DD  
DD  
OSC  
OSC  
OSC  
OSC  
2)  
XTAL1  
SR  
-0.43  
XTAL1 input current  
I
-
-
± 20  
µA  
µA  
0V < V < V  
IN  
IX1  
DD  
CC  
2)  
XTAL3 input current  
I
± 0.5  
0V < V < V  
IN  
IX3  
DD  
CC  
1)  
Only applicable in deep sleep mode  
2)  
Not subject to production test, verified by design/characterization.  
Data Sheet  
44  
V 1.3, 2003-10  
TC1920  
Preliminary  
IIC Pins  
Each IIC Pin is an open drain output pin with different characteristics than other pins. The  
related characteristics are given in the following table  
Parameter  
Symbol  
Limit values  
Unit Test  
Conditions  
min.  
max.  
Output low voltage  
V
CC  
-
0.4  
0.6  
V
3 mA  
6 mA  
OL  
1)  
Input high voltage  
V
0.7V  
3.6  
V
-
IH  
DDP  
SR  
1)  
Input low voltage  
V
-0.3  
0.3V  
V
-
IL  
DDP  
SR  
Input leakage current  
I
-
-
+ - 500  
10  
nA  
pF  
OZ2  
CC  
1)  
Pin capacitance  
C
f=1MHz@  
IO  
o
CC  
T =25 C  
A
1)  
Not subject to production test, verified by design/characterization.  
Note: No 5 V IIC interface is supported with these pads. Only voltages lower than 3.60  
V must be applied to these pads.  
Note: IIC pins have no Pull-Up and Pull-Down devices.  
Data Sheet  
45  
V 1.3, 2003-10  
TC1920  
Preliminary  
ADC Analog I/O DC Characteristics  
Parameter  
Symbol Limit values  
Unit Test  
Conditions  
min.  
typ.  
max.  
Core supply voltage  
Analog supply voltage  
Analog supply ground  
V
SR  
1.71  
1.8  
1.89  
V
V
V
V
V
V
-
DD  
V
SR  
3.0  
-0.1  
1.5  
3.3  
0.0  
-
3.6  
-
-
-
-
-
DDA  
V
SR  
+0.1  
SSA  
3)  
Reference voltage  
V
V
V
V
+
AREF  
AGND  
DDA  
0.05  
Reference ground  
V
V
V
SSA  
+ 0.05  
SSA  
SSA  
- 0.05  
Analog input voltage  
V
V
AREF  
A
AGND  
Internal A/D Converter  
clock  
f
0.5  
3.5  
MHz -  
ANA  
Input leakage current  
(analog input)  
I
-
±200  
±500  
+5  
nA  
nA  
mA  
-
0V< V <  
in  
OZ1  
CC  
V
DDA  
Input leakage current  
I
-
0V< V <  
in  
OZ2  
( V  
, V  
)
CC  
V
AGnd  
ARef  
DDA  
1) 5)  
Overload current  
Overload coupling factor  
Sample time  
I
-2  
-
AOV  
SR  
2)  
-4  
-3  
3)  
k
1.0x10  
1.5x10  
I
I
>0  
<0  
A
AOV  
AOV  
t
t
CC 4*(CHCON .STC+2)*t  
for channel n  
s
n
BC  
3)  
Conversion time  
CC t + 40*t + 2*t  
for 8- bit  
conversion  
c
S
BC  
DIV  
DIV  
DIV  
t =1/f  
BC  
BC,  
t
=1/f  
DIV  
DIV,  
t + 48*t + 2*t  
for 10- bit  
conversion  
S
BC  
see Figure 17.  
t + 56*t + 2*t  
for 12- bit  
S
BC  
conversion  
Data Sheet  
46  
V 1.3, 2003-10  
TC1920  
Preliminary  
Parameter  
Symbol Limit values  
Unit Test  
Conditions  
min.  
typ.  
max.  
4)  
Total unadjusted error  
TUE  
CC  
± 1 LSB  
for 8- bit  
conversion  
± 2 LSB  
± 6 LSB  
for 10- bit  
conversion  
5)  
for 12- bit  
conversion  
On resistance of the  
R
1900  
Ohm  
AIN  
transmission gates in the CC  
7)  
analog voltage path  
Resistance of the  
reference voltage path  
R
CC  
2000  
10  
Ohm  
pF  
REF  
7)  
Switched capacitance at  
the analog voltage input. CC  
C
AINSW  
7)  
Total capacitance at  
analog voltage input  
C
CC  
-
15  
-
pF  
AINTOT  
6)  
Switched capacitance at  
the positive reference  
voltage input.  
C
CC  
15  
pF  
AREFSW  
7)  
1)  
Analog overload conditions during operation occur if the voltage on the respective ADC pin exceeds the  
specified operating range (i.e. VAOV > VDDP+0.3V or VAOV < VSSP-0.3V ) or a short circuit condition occurs on  
the respective ADC pin. The absolute sum of input leakage and IAOV currents on all port pins must not exceed  
10 mA at any time. The supply voltage (VDD, VDDP and VSS, VSSP) must remain within the specified limits.  
Under short-circuit conditions the corresponding pin is not ready for use.  
2)  
The overload coupling factor (kA) defines the worst case relation of an overload condition (IOV) at one pin to  
the resulting total leakage current (IleakTOT) into an adjacent pin: |IleakTOT| = kA × |IOV| + IOZ1V  
Thus under overload conditions an additional error leakage voltage (VAEL) will be induced onto an adjacent  
analog input pin due to the resistance of the analog input source (RAIN). That means VAEL = RAIN × |IleakTOT|.  
Please see also the analog/digital converter specification, chapter “Error Through Overload Conditions”, for  
further explanations.  
3)  
4)  
The nominal conversion time is valid for VAREF>3.0. For VAREF<3.0, it is approximately double.  
At VAREF=+3.3V and VAGND in the specified range. For VAREF<3.3V, TUE rise and is to be multiplied with a  
factor of 3.3/Vref. For VAGND outside the specified range, TUE is not guaranteed.  
5)  
6)  
7)  
Tested in production on request. Standard production test is 10-bit TUE test.  
Not subject to production test, verified by design/characterization.  
Simulation values.  
Data Sheet  
47  
V 1.3, 2003-10  
TC1920  
Preliminary  
A/D C onverter  
R AIN , Source  
R AIN, O n  
VA IN  
C AIN , Block  
C AINTO T  
-
C AINS W  
C AINSW  
=
M CS04879  
Figure 16  
Equivalent Circuitry of an Analog Input  
A/D Converter Module  
Sam ple  
Tim e tS  
Peripheral  
Clock D ivider  
(1:1) to (1:8)  
Program m able  
Clock D ivider  
(1:1) to (1:256)  
fANA  
fDIV  
fBC  
fAD C  
Program m able  
C ounter  
1:4  
CO N .PCD  
C O N.CTC  
CH CO N n.STC  
fTIM ER  
Arbiter  
(1:20)  
Control U nit  
(Tim er)  
Control/Status Logic  
Interrupt Logic  
External Trigger Logic  
External M ultiplexer Logic  
R equest G eneration Logic  
M CA04657_m od  
Figure 17  
ADC Clock Circuit  
Data Sheet  
48  
V 1.3, 2003-10  
TC1920  
Preliminary  
Codec Electrical Characteristics  
Parameter  
Symbol Limit values  
min. typ.  
Unit  
Test  
Conditions  
max.  
1.89  
3.6  
Digital supply voltage  
Analog supply voltage  
Analog supply ground  
V
V
V
1.71  
3.0  
1.8  
3.3  
0.0  
1.2  
V
V
V
V
V
DD  
DDA  
SSA  
AREF  
-0.1  
1.14  
+0.1  
+1.26  
1)  
2)  
External reference voltage V  
Analog reference ground  
V
V
V
V
0.05  
- V  
V
+
AGND  
AIN  
SSA  
SSA  
SSA  
0.05  
3)  
Analog input voltage  
(RMS)  
0.775  
0.775  
-
V
V
rms  
rms  
Analog output voltage  
(RMS)  
AOUT  
Input Resistace of the  
Analog Inputs  
Ra  
-
30  
15  
60  
30  
1.2  
kOhm differential  
input, gain:  
4)  
-12,-6, 0 dB  
-
-
kOhm single-ended  
input, gain:  
-12,-6, 0 dB  
-
-
kOhm differential  
input, gain:  
6 to 30 dB  
-
-
kOhm single-ended  
input, gain:  
6 to 30 dB  
Internal Reference  
V
1.1  
1.3  
V
AGCCR.  
BGPSEL[1,0]  
=00  
BGP  
Voltage Vref (Bandgap  
5)  
Voltage)  
1)  
Reference voltage outside the nominal range causes reduced dynamic range, decreased distortion/clipping  
margins, increased/decreased gain.  
2)  
3)  
4)  
5)  
VSSA=VAGND=0V  
Please take the gain settings of the analog preamplifier into account, therefore Vimaxreal=Vimax/gain  
Simulation value.  
For external usage only, Bandgap reference voltage is strongly dependent on the external load (<500 MOhm).  
In this case, high impedance buffer must be used.  
Data Sheet  
49  
V 1.3, 2003-10  
TC1920  
Preliminary  
Codec ADC and DAC path characteristics  
Test conditions1)  
Parameters  
min.  
typ.  
max.  
Unit  
0
< 0.025  
Attenuation distortion  
(ref. freq. 1014 Hz)  
(ref. level 0dBm0)2)  
dB  
dB  
dB  
dB  
dB  
-0.25  
-0.25  
-0.25  
0
0.025-0.0375  
0.0375-0.3  
0.3-0.425  
> 0.425  
0.25  
0.45  
-55  
-45  
dB  
at 0dBm0  
Signal to total distor-  
tion  
-0.3  
-0.6  
-1.6  
0.3  
0.6  
1.6  
dB  
dB  
dB  
+3 to -40 dBm0  
-40 to -50 dBm0  
-50 to -55 dBm0  
Gain tracking  
(ref. freq. 1014 Hz)  
(ref. level 0dBm0)2)  
-80  
-75  
dBm  
0
receive &transmit  
Idle channel noise  
-80  
-60  
0
-75  
-50  
0.8  
dB  
dB  
dB  
Cross talk  
at 0dBm0  
Harmonic distortion  
-0.8  
-
receive &transmit  
Gain  
(ref. freq. 1014 Hz)  
(ref. level 0dBm0)2)  
3)  
-60  
-40  
-35  
-35  
dB  
dB  
Receive (0.0375-0.425)  
Transmit (0.0375-0.425)  
Power supply  
3)  
rejection ratio (PSRR)  
1)  
2)  
3)  
Values given in this table are valid for all sampling frequencies.  
0dBm0 is equivalent to -12dBm is equal to 194.7 mVRMS.  
Supply ripple 70 mV.  
Note: Numbers without units in the test conditions column are relative frequency values  
to the chosen sampling frequency. e.g. 0.425 equals 3.4 kHz @ 8 kHz sampling  
frequency.  
Data Sheet  
50  
V 1.3, 2003-10  
TC1920  
Preliminary  
Power Supply Current  
Parameter  
Symbol  
Limit values  
Unit  
Test Conditions  
1)  
typ.  
max.  
Active mode supply  
current  
IDD  
260  
mA  
Sum of all IDD.  
2) 3)  
4)  
Idle mode supply current IID  
170  
mA  
mA  
at 1.8V Core Supply  
at 1.8V Core Supply  
Deep sleep mode supply IDDS  
0.25  
current  
1)  
Typical values are measured at 25°C, CPU clock at 100MHz and nominal supply voltage, i.e. 3.3V for VDDP  
and 1.8V for VDD, VDDPLL, VDDOSC  
2)  
3)  
PORST=V  
IH  
The typical power consumption values in active mode are measured while running a typical application pattern.  
The power consumption of modules can increase or decrease using different application programs. The PLL  
is bypassed and powered down during this measurement.  
4)  
CPU is in idle state, input clock to all peripherals are enabled.  
AC Characteristics  
Operating Conditions apply.  
Output Rise/Fall Times  
GPIO pins  
Rise/fall time measurements are made between 10% and 90%.  
The following table is valid for the GPIO pins pad drivers. Output pad characteristics are  
controllable via DRVCTRx registers.  
Pad Modus  
Symbol  
Limit values  
Temp Unit Test  
rise / fall time  
Comp  
Conditions  
min.  
max.  
Strong driver  
• sharp edge  
• medium edge  
SF  
SM  
SS  
-
-
-
3
6
12  
yes  
yes  
yes  
ns  
ns  
ns  
@50pF  
@50pF  
@50pF  
1)  
1)  
• soft edge  
1)  
Not subject to production test, verified by design/characterization.  
Data Sheet  
51  
V 1.3, 2003-10  
TC1920  
Preliminary  
Timing Characteristics  
(Operating Conditions apply)  
Note: Timing parameters are not subject to production test, they are verified by design/  
characterization.  
2.4V  
2.0V  
0.8V  
2.0V  
0.8V  
Test Points  
0.4V  
M CT04880  
AC inputs during  
testing are driven at 2.4V for a logic “1” and 0.4V for a logic “0”. Timing  
measurements are made at V  
for a logic “1” and V  
for a logic “0”.  
IHmin  
ILmax  
Figure 18  
Input/Output Waveforms for AC Tests  
- for GPIO, Dedicated and EBU pins  
External Oscillator at XTAL1 Timing Requirements  
(Operating Conditions apply)  
Parameter  
Symbol  
Limits  
Unit  
min.  
max.  
1)  
Main Oscillator XTAL frequency  
with/without  
PLL  
fOSC SR  
4
16  
MHz  
MHz  
3)  
Frequency of an external oscillator with PLL  
fOSCDD  
4
-
25  
25  
2)  
4)  
driving at XTAL1  
without PLL  
SR  
Input Clock high time  
Input Clock low time  
Input Clock rise time  
Input Clock fall time  
t1  
t2  
t3  
t4  
SR 16  
SR 16  
ns  
ns  
ns  
ns  
7
7
SR −  
SR −  
Data Sheet  
52  
V 1.3, 2003-10  
TC1920  
Preliminary  
1)  
Oscillator Bypass Pin P3.11 latch-in value high. Internal oscillator provides the input clock signal.  
2)  
Oscillator Bypass Pin P3.11 latch-in value low. Internal oscillator disabled. External oscillator provides the input  
clock signal.  
3)  
4)  
Internal PLL provides the system clock. BYPASS pin latch-in value low. PLL prescaler value P=1.  
Internal PLL bypassed. BYPASS pin latch-in value high. External oscillator provides the system clock directly.  
When ADC and CODEC modules are active their frequency limitations must be taken into consideration,  
together with LMB/FPI bus frequency ratio. Otherwise, minimum frequency in this mode can go as low as zero.  
tO SC  
VIH X  
Input C lock  
at XTAL1  
0.5 V DD OSC  
VILX  
t4  
t3  
t1  
t2  
M CT04882  
Figure 19  
External Clock at XTAL1 Requirements  
, V and V are defined in the Oscillator Pins DC Characteristics  
Note: V  
DDOSC  
IHX  
IHL  
Chapter.  
Note: It is strongly recommended to measure the oscillation allowance (negative  
resistance) in the final target system (layout) to determine the optimal parameters  
for the oscillator operation. Please refer to the limits specified by the crystal  
supplier.  
Data Sheet  
53  
V 1.3, 2003-10  
TC1920  
Preliminary  
CPU Clock Timing  
(Operating Conditions apply; C = 50 pF)  
L
Parameter  
Symbol  
Limits  
min. max.  
Unit  
CLKOUT period  
tCLKOUT 10  
ns  
CC  
CLKOUT high time  
CLKOUT low time  
CLKOUT rise time  
CLKOUT fall time  
t1 CC 4  
t2 CC 4  
3
3
ns  
ns  
ns  
ns  
t3 CC  
t4 CC  
tCPUCLK  
0.9 V DD  
0.1 V DD  
0.5 VDD  
CLKOUT  
t4  
t3  
t1  
t2  
M CT04883  
Figure 20  
CLKOUT Timing  
Data Sheet  
54  
V 1.3, 2003-10  
TC1920  
Preliminary  
PLL Parameters  
1)  
Parameter  
Symbol  
Limit Values  
min. max.  
Unit  
Accumulated jitter  
DN  
see Figure 21  
2)  
VCO frequency range  
fVCO  
100  
150  
200  
250  
300  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
µs  
3)  
4)  
5)  
150  
200  
250  
20  
2)  
PLL base frequency  
fPLLBASE  
80  
3)  
20  
130  
180  
230  
200  
4)  
5)  
20  
20  
PLL lock-in time  
tL  
1)  
Not subject to production test, verified by design/characterization.  
2)  
3)  
4)  
5)  
@ vcosel = ’00’  
@ vcosel = ’01’  
@ vcosel = ’10’  
@ vcosel = ’11’  
Note: When TC1920 starts-up with the PLL not bypassed, first user instructions are  
executed with the frequency defined by the VCO free-running frequency  
(fPLLBASE) and by the reset value of the PLL_CLC register (the K-divider and  
VCOSEL bitfields). It is software responsibility to initialize its own appropriate  
values in the bitfields in this register, before giving the command for the VCO to  
lock to the input frequency. For more information, see the Users Manual, System  
Units, System Control Unit chapter.  
Data Sheet  
55  
V 1.3, 2003-10  
TC1920  
Preliminary  
fSYS = 100 MHz (K = 3)  
fSYS = 80 MHz (K = 3)  
fSYS = 60 MHz (K = 5)  
fSYS = 40 MHz (K = 7)  
TC1920_pll_jitter  
±5.0  
ns  
DN  
±4.0  
±3.0  
±2.0  
±1.0  
±0.0  
0
5
10  
15  
20  
25  
30  
35  
P
DN  
= Max. jitter  
P
K
= Number of consecutive fSYS periods  
= K-divider of PLL  
Figure 21  
Approximated Maximum Accumulated PLL Jitter  
The following two formulas define the (absolute) approximate maximum value of jitter DN  
in [ns] dependent on the K-factor, the system clock frequency fSYS in [MHz], and the  
number P of consecutive fSYS periods.  
P
×
735  
[1]  
+ 0.5 ]  
DN [ns] = ± [(  
+ 0.9)  
×
for P <  
0.25× fSYS  
fSYS  
0.25  
fSYS  
×
K
735  
for P >  
[2]  
DN [ns] = ±  
[
0.25× fSYS  
+ 1.4 ]  
fSYS  
×
K
With rising number P of clock cycles the maximum jitter increases linearly up to a specific  
value of P. Beyond this value of P the maximum accumulated jitter remains at a constant  
value.  
Data Sheet  
56  
V 1.3, 2003-10  
TC1920  
Preliminary  
Timing for EBU_LMB Clock Outputs  
(Operating Conditions apply; C = 50 pF)  
L
Parameter  
Symbol  
Limits  
min. max.  
Unit  
EBUCLK period  
EBUCLK high time  
EBUCLK low time  
EBUCLK rise time  
EBUCLK fall time  
BFCLK0 period  
t1 CC 10  
t2 CC 4.5  
t3 CC 3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t4 CC  
t5 CC  
2.5  
2.5  
t6 CC 20  
t7 CC 9  
t8 CC 9  
BFCLK0 high time  
BFCLK0 low time  
BFCLK0 rise time  
BFCLK0 fall time  
t9 CC  
t10 CC  
3.5  
2.5  
t1(t6)  
0.9 V DD  
0.1 V DD  
EBUCLK/  
0.5 V DD  
BFCLK0  
t2(t7)  
t3(t8)  
t5(t10)  
t4(t9)  
M CT04884  
Figure 22  
EBU_LMB Clock Output Timing  
Data Sheet  
57  
V 1.3, 2003-10  
TC1920  
Preliminary  
Timing for SDRAM Access Signals  
(Operating Conditions apply; C = 50 pF)  
L
Parameter  
Symbol  
Limits  
min. max.  
Unit  
CKE high from EBUCLK  
t1 CC -  
7.0  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKE low from EBUCLK  
t2 CC 2.0  
t3 CC -  
A(23:0) output valid from EBUCLK  
A(23:0) output hold from EBUCLK  
CS(6:0) low from EBUCLK  
CS(6:0) high from EBUCLK  
RAS low from EBUCLK  
7.0  
-
t4 CC 2.0  
t5 CC -  
7.0  
-
t6 CC 2.0  
t7 CC -  
7.0  
-
RAS high from EBUCLK  
t8 CC 2.0  
t9 CC -  
CAS low from EBUCLK  
7.0  
-
CAS high from EBUCLK  
t10 CC 2.0  
t11 CC -  
RD/WR low from EBUCLK  
RD/WR high from EBUCLK  
BC(3:0) low from EBUCLK  
BC(3:0) high from EBUCLK  
AD(31:0) output valid from EBUCLK  
AD(31:0) output hold from EBUCLK  
AD(31:0) input setup to EBUCLK  
7.0  
-
t12 CC 2.0  
t13 CC -  
7.0  
-
t14 CC 2.0  
t15 CC -  
7.7  
-
t16 CC 2.0  
t17 SR 2.0  
-
AD(31:0) input hold from EBUCLK  
t18 SR 4.0  
-
ns  
Data Sheet  
58  
V 1.3, 2003-10  
TC1920  
Preliminary  
Write Access:  
EBUCLK  
t1  
CKE  
t3  
t5  
t4  
Row  
Column  
A(23:0)  
t6  
CSx  
t8  
RAS  
t7  
t10  
CAS  
t9  
t12  
RD/WR  
BC(3:0)  
AD(31:0)  
t11  
t13  
t14  
Data  
(0)  
Data  
(n-1)  
t15  
t16  
Read Access:  
EBUCLK  
t2  
CKE  
t3  
t4  
Row  
Column  
A(23:0)  
t6  
CSx  
RAS  
t10  
t9  
CAS  
RD/WR  
BC(3:0)  
t13  
t14  
t18  
t17  
Data  
(0)  
Data  
(n-1)  
AD(31:0)  
MCT05319  
Figure 23  
SDRAM Access Timing  
Data Sheet  
59  
V 1.3, 2003-10  
TC1920  
Preliminary  
Timing for Burst Flash Access Signals  
Operating Conditions apply; C = 50 pF)  
L
Parameter  
Symbol  
Limits  
min. max.  
Unit  
A(23:0) output valid from BFCLK0  
A(23:0) output hold from BFCLK0  
CS(6:0) low from BFCLK0  
ADV low from BFCLK0  
t1 CC −  
11.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t2 CC 0.0  
t3 CC −  
t5 CC −  
t6 CC 3.0  
t7 CC −  
t8 CC 3.0  
t9 CC −  
t11 SR 6.0  
t12 SR 3.0  
9.0  
10.0  
ADV high from BFCLK0  
BAA low from BFCLK0  
10.0  
BAA high from BFCLK0  
RD low from BFCLK0  
10.0  
AD(31:0) input setup to BFCLK0  
AD(31:0) input hold from BFCLK0  
Data Sheet  
60  
V 1.3, 2003-10  
TC1920  
Preliminary  
BFCLK0  
A[23:0]  
ADV  
t1  
t5  
t3  
t2  
Address Valid  
t6  
CSx  
RD  
t9  
t7  
t8  
BAA  
t11  
t12  
Valid  
Valid  
D[31:0]  
Note: Between the end of the Address Phase (ADV goes high) and the beginning of the Command  
Phase (RD goes low) several cycles of Command Delay Phase can be inserted.  
mct04889_mod_la  
Figure 24  
Burst Flash Access Timing (Instruction Read)  
Data Sheet  
61  
V 1.3, 2003-10  
TC1920  
Preliminary  
1)  
Timing for Demultiplexed Access Signals  
(Operating Conditions apply; C = 50 pF)  
L
Parameter  
Symbol  
Limits  
min. max.  
8.0  
Uni  
t
ALE high from EBUCLK  
t1 CC −  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ALE low from EBUCLK  
t2 CC 2.0  
t3 CC −  
A(23:0) output valid from EBUCLK  
A(23:0) output hold from EBUCLK  
CS(6:0) low from EBUCLK  
CS(6:0) high from EBUCLK  
MR/W low from EBUCLK  
8.0  
t4 CC 2.0  
t5 CC −  
8.0  
t6 CC 2.0  
t7 CC −  
8.0  
MR/W high from EBUCLK  
RMW low from EBUCLK  
t8 CC 2.0  
t9 CC −  
8.0  
RMW high from EBUCLK  
t10 CC 1.0  
t11 CC −  
RD low from EBUCLK  
8.0  
RD high from EBUCLK  
t12 CC 0.0  
t13 CC −  
RD/WR low from EBUCLK  
RD/WR high from EBUCLK  
CMDELAY input setup to EBUCLK  
CMDELAY hold from EBUCLK  
WAIT input setup to EBUCLK  
WAIT hold from EBUCLK  
8.0  
t14 CC 2.0  
t15 SR 4.0  
t16 SR 3.0  
t17 SR 4.0  
t18 SR 3.0  
t19 CC −  
BC(3:0) low from EBUCLK  
BC(3:0) high from EBUCLK  
AD(31:0) output valid from EBUCLK  
AD(31:0) output hold from EBUCLK  
AD(31:0) input setup to EBUCLK  
AD(31:0) input hold from EBUCLK  
8.0  
t20 CC 2.0  
t21 CC −  
8.0  
t22 CC 0.0  
t23 SR 4.0  
t24 SR 4.0  
1)  
It is user responsibility to program an appropriate whole number of clock cycles to generate the correct phase  
length according to the particular asynchronous memory/peripheral device specification.  
Data Sheet  
62  
V 1.3, 2003-10  
TC1920  
Preliminary  
EBUCLK  
ALE  
t1  
t2  
t3  
t4  
Address  
A(23:0)  
CSx  
t5  
t6  
t7  
MR/W  
t14  
RD/WR  
CMDELAY  
t16  
t15  
t13  
t18  
t17  
WAIT  
t20  
t19  
t19  
t20  
BC(3:0)  
AD(31:0)  
t21  
t22  
Data Out  
MCT05320  
Figure 25  
Demultiplexed Write Access  
Data Sheet  
63  
V 1.3, 2003-10  
TC1920  
Preliminary  
EBUCLK  
ALE  
t1  
t2  
t3  
t4  
Address  
A(23:0)  
CSx  
t6  
t5  
MR/W  
RMW  
t8  
t10  
t9  
t12  
RD  
t16  
t15  
t11  
CMDELAY  
t18  
t17  
WAIT  
t19  
t19  
t20  
BC(3:0)  
AD(31:0)  
t23  
t24  
Data  
Note: RMW signal is available only during Read-Modify-Write Access.  
MCT05321  
Figure 26  
Demultiplexed Read Access  
Data Sheet  
64  
V 1.3, 2003-10  
TC1920  
Preliminary  
1)  
Timing for Multiplexed Access Signals  
(Operating Conditions apply; C = 50 pF)  
L
Parameter  
Symbol  
Limits  
min. max.  
Unit  
ALE high from EBUCLK  
t1 CC −  
8.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ALE low from EBUCLK  
t2 CC 2.0  
t3 CC −  
AD(31:0) output valid from EBUCLK  
AD(31:0) output hold from EBUCLK  
AD(31:0) input setup to EBUCLK  
AD(31:0) input hold from EBUCLK  
CS(6:0) low from EBUCLK  
CS(6:0) high from EBUCLK  
MR/W low from EBUCLK  
8.0  
t4 CC 0.0  
t5 SR 4.0  
t6 SR 4.0  
t7 CC −  
8.0  
t8 CC 1.0  
t9 CC −  
8.0  
MR/W high from EBUCLK  
RMW low from EBUCLK  
t10 CC 2.0  
t11 CC −  
8.0  
RMW high from EBUCLK  
t12 CC 1.0  
t13 CC −  
RD/WR low from EBUCLK  
RD/WR high from EBUCLK  
RD low from EBUCLK  
8.0  
t14 CC 2.0  
t15 CC −  
8.0  
RD high from EBUCLK  
t16 CC 0.0  
t17 SR 4.0  
t18 SR 3.0  
t19 SR 4.0  
t20 SR 3.0  
t21 CC −  
CMDELAY input setup to EBUCLK  
CMDELAY hold from EBUCLK  
WAIT input setup to EBUCLK  
WAIT hold from EBUCLK  
BC(3:0) low from EBUCLK  
BC(3:0) high from EBUCLK  
8.0  
t22 CC 2.0  
1)  
It is user responsibility to program an appropriate whole number of clock cycles to generate the correct phase  
length according to the particular asynchronous memory/peripheral device specification.  
Data Sheet  
65  
V 1.3, 2003-10  
TC1920  
Preliminary  
EBUCLK  
ALE  
t1  
t2  
t3  
t4  
Address  
Data  
AD(31:0)  
CSx  
t7  
t4  
t8  
t3  
t9  
MR/W  
t14  
RD/WR  
CMDELAY  
WAIT  
t18  
t17  
t13  
t20  
t19  
t22  
t21  
t21  
t22  
BC(3:0)  
MCT05322  
Figure 27  
Multiplexed Write Access  
Data Sheet  
66  
V 1.3, 2003-10  
TC1920  
Preliminary  
EBUCLK  
ALE  
t1  
t2  
t5  
t3  
t6  
Address  
Data  
AD(31:0)  
CSx  
t4  
t8  
t7  
t10  
t11  
MR/W  
RMW  
t12  
t16  
RD  
t18  
t17  
t15  
CMDELAY  
t20  
t19  
WAIT  
t21  
t21  
t22  
BC(3:0)  
Note: RMW signal is only available during Read-Modify-Write Access.  
MCT05323  
Figure 28  
Multiplexed Read Access  
Data Sheet  
67  
V 1.3, 2003-10  
TC1920  
Preliminary  
Timing for External Bus Arbitration Signals  
(Operating Conditions apply; C = 50 pF)  
L
Parameter  
Symbol  
Limits  
min. max.  
Unit  
HOLD input setup to EBUCLK  
HOLD input hold from EBUCLK  
HLDA low from EBUCLK  
t1 SR 6.0  
t2 SR 8.0  
t3 CC −  
t4 CC −  
t5 SR 8.0  
t6 SR 8.0  
t7 CC −  
t8 CC −  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10.0  
9.0  
HLDA high from EBUCLK  
HLDA input setup to EBUCLK  
HLDA input hold from EBUCLK  
BREQ low from EBUCLK  
10.0  
9.0  
BREQ high from EBUCLK  
Note: The signals HOLD, HLDA and BREQ are alternate function of the CS5, CS6 and  
CSOVL Pins.  
Data Sheet  
68  
V 1.3, 2003-10  
TC1920  
Preliminary  
External Master Mode  
EBU C LK  
t1  
t2  
H OLD  
t4  
H LDA  
t3  
t8  
BR EQ  
t7  
External Slave Mode  
EBU C LK  
t7  
t8  
BR EQ  
H LDA  
H OLD  
t5  
t6  
t1  
t2  
M CT05324_m od  
Figure 29  
External Bus Arbitration Timing  
Data Sheet  
69  
V 1.3, 2003-10  
TC1920  
Preliminary  
SSC Master Mode Timing  
(Operating Conditions apply; C = 50 pF)  
L
Parameter  
Symbol  
Limit Values  
max.  
Unit  
min.  
CC 40  
CC  
SCLK period  
t
t
t
t
ns  
ns  
ns  
ns  
SCLK  
MTSR low/high from SCLK edge  
MRST setup to SCLK edge  
MRST hold from SCLK edge  
-
2.0  
5
6
7
SR 15  
SR 15  
-
-
tSCLK  
0.9 VD D  
SCLK  
0.5 VDD  
(C O N.PO ,CO N.P H=00 or 11)  
0.1 VD D  
0.9 VD D  
0.1 VD D  
SCLK  
0.5 VDD  
(C O N.PO ,CO N.P H=01 or 10)  
t5  
MTSR  
MRST  
State n-1  
S tate n  
State n+1  
t6  
t7  
Data valid  
Data valid  
M C T04885m od  
Figure 30  
SSC Master Mode Timing  
Data Sheet  
70  
V 1.3, 2003-10  
TC1920  
Preliminary  
Package Outlines  
Figure 31  
LBGA-260 Package  
You can find all of our packages, sorts of packing and other in our Infineon Internet Page  
“Products”: http://www.infineon.com/products  
Data Sheet  
71  
V 1.3, 2003-10  
TC1920  
Preliminary  
Data Sheet  
72  
V 1.3, 2003-10  
((73))  
Infineon goes for Business Excellence  
“Business excellence means intelligent approaches and clearly  
defined processes, which are both constantly under review and  
ultimately lead to good operating results.  
Better operating results and business excellence mean less  
idleness and wastefulness for all of us, more professional  
success, more accurate information, a better overview and,  
thereby, less frustration and more satisfaction.”  
Dr. Ulrich Schumacher  
h t t p : / / w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

TC19230200J0G

Barrier Strip Terminal Block
AMPHENOL

TC19232000J0G

Barrier Strip Terminal Block
AMPHENOL

TC19232200J0G

Barrier Strip Terminal Block
AMPHENOL

TC19233100J0G

Barrier Strip Terminal Block
AMPHENOL

TC19233200J0G

Barrier Strip Terminal Block
AMPHENOL

TC19234200J0G

Barrier Strip Terminal Block
AMPHENOL

TC19236200J0G

Barrier Strip Terminal Block
AMPHENOL

TC19238000J0G

Barrier Strip Terminal Block
AMPHENOL

TC19239100J0G

Barrier Strip Terminal Block
AMPHENOL

TC19239200J0G

Barrier Strip Terminal Block
AMPHENOL

TC1931D

12.5 - 15.5 GHz 21dBm MMIC
TRANSCOM

TC1950

14 - 18 GHz LNA MMIC
TRANSCOM