TDA21310XUMA1 [INFINEON]

Half Bridge Based MOSFET Driver,;
TDA21310XUMA1
型号: TDA21310XUMA1
厂家: Infineon    Infineon
描述:

Half Bridge Based MOSFET Driver,

文件: 总23页 (文件大小:694K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High-Performance DrBLADE  
5 mm x 5 mm x 0.6 mm IQFN  
TDA21310  
Data Sheet  
Revision 2.1, 2013-09-05  
Power Management and Multi Market  
Edition 2013-09-05  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2013 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual  
property rights of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the  
failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life  
support devices or systems are intended to be implanted in the human body or to support and/or maintain and  
sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other  
persons may be endangered.  
TDA21310  
Revision History  
Page or Item  
Subjects (major changes since previous revision)  
Revision 2.1 2013-09-05  
Temperature Rise diagram added  
Trademarks of Infineon Technologies AG  
AURIX™, BlueMoon™, C166™, CanPAK™, CIPOS™, CIPURSE™, COMNEON™, EconoPACK™,  
CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, EasyPIM™, EconoBRIDGE™,  
EconoDUAL™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™,  
ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OptiMOS™, ORIGA™,  
PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™,  
SIEGET™, SINDRION™, SIPMOS™, SMARTi™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™,  
TRENCHSTOP™, TriCore™, X-GOLD™, X-PMU™, XMM™, XPOSYS™.  
Other Trademarks  
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,  
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by  
AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum.  
COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™  
of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium.  
HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™  
of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR  
STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc.  
MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc.  
MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE  
OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc.  
Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of  
Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd.  
Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc.  
TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company  
Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments  
Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex  
Limited.  
Last Trademarks Update 2010-10-26  
Data Sheet  
3
Revision 2.1, 2013-09-05  
TDA21310  
Applications  
1
Applications  
Desktop and Server buck-converter  
Single Phase and Multiphase POL  
CPU/GPU Regulation in Desktop Graphics Cards, DDR Memory, Graphic Memory  
High Power Density Voltage Regulator Modules (VRM).  
2
Features  
Compatible to Intel® VR12 Driver and Mosfets Module (DrMOS) functionality for Desktop/Server Applications  
For synchronous buck converter step down voltage applications  
Power MOSFETs rated 25 V for safe operation under all conditions  
Fast switching technology for improved performance at high switching frequencies (> 1 MHz)  
+5 V high side and low side MOSFETs driving voltage  
Compatible to standard +3.3 V PWM controller integrated circuits  
Small package: LG-UIQFN-32-2 (5 x 5 x 0.6 mm³)  
Optimized footprint for improved cooling by the PCB  
DC output current up to 40A  
94% peak efficiency at 1.2V1  
DC input voltage up to +16 V  
Remote driver disable function  
Includes bootstrap diode  
Undervoltage lockout  
Shoot through protection  
Tri-state PWM input functionality  
Top side cooling  
RoHS compliant  
Table 1  
Product Identification  
Temp Range  
Part Number  
TDA21310  
Package  
Marking  
LG-UIQFN-32-2 (5 x 5 x 0.6 mm³)  
TDA21310  
-25 C to 125 C  
Figure 1  
Picture of the Product  
1 Typical power stage efficiency, VIN=12V, VDRV=VCIN=5V, fSW=300kHz, L=210nH, 0.2mΩ, no air flow, no heat sink.  
Data Sheet Revision 2.1, 2013-09-05  
4
TDA21310  
Description  
3
Description  
3.1  
Pinout  
VIN Pin #9  
VIN Pin #10  
VIN Pin #11  
VSWH Pin #12  
Pin #32 VCIN  
Pin #31  
Pin #30  
VDRV  
PGND  
VIN  
Pin #29 VSWH  
VSWH  
PGND  
PGND  
Pin #13  
Pin #14  
Pin #28  
Pin #27 VSWH  
Pin #26 VSWH  
Pin #25 VSWH  
VSWH  
PGND Pin #15  
PGND Pin #16  
Figure 2  
Pinout, numbering and name of pins (transparent top view)  
I/O Signals  
Table 2  
Pin No.  
4
Name  
Pin Type Buffer Type Function  
PWM  
I
I
I
I
+3.3 V logic PWM drive logic input  
The tri-state PWM input is compatible with 3.3 V.  
+3.3 V logic Enable signal (active high)  
5
6
7
DR_EN  
BOOT  
Connect to GND to disable the IC.  
Bootstrap voltage pin  
Analog  
Analog  
Connect to BOOT capacitor  
PHASE  
Switch node (reference for Boot voltage)  
internally connected to VSWH pin, connect to BOOT  
capacitor  
12, 25 to 29, VSWH  
VSWH pad  
O
Analog  
Switch node output  
High current output switching node  
Data Sheet  
5
Revision 2.1, 2013-09-05  
TDA21310  
Description  
Table 3  
Pin No.  
Power Supply  
Name Pin Type Buffer Type Function  
8 to 11, VIN pad  
VIN  
VDRV POWER  
VCIN POWER  
POWER  
Input voltage  
Supply of the drain of the high side MOSFET  
FET gate supply voltage  
31  
32  
High and low side MOSFETs gate drive supply  
Logic supply voltage  
5 V bias voltage for the internal logic  
Table 4  
Pin No.  
1
Ground Pins  
Name  
Pin Type Buffer Type Function  
CGND GND  
Control signal ground  
Should be connected to PGND externally  
13 to 24, 30  
PGND GND  
Power ground  
All these pins must be connected to the power GND  
plane through multiple low inductance vias.  
Table 5  
Pin No.  
2, 3  
Not Connected  
Name  
Pin Type Buffer Type Function  
NC  
No internal connection  
Leave pin floating or tie to GND.  
Data Sheet  
6
Revision 2.1, 2013-09-05  
TDA21310  
Description  
3.2  
General Description  
The Infineon TDA21310 is a multichip module that incorporates Infineon’s premier MOSFET technology for a  
single high side and a single low side MOSFET coupled with a robust, high performance, high switching  
frequency gate driver in a single 32 pin LG-UIQFN-32-2 package. The optimized gate timing allows for  
significant light load efficiency improvements over discrete solutions. State of the art MOSFET technology  
provides exceptional full load performance.  
When combined with Infineon’s family of digital multi-phase controllers, the TDA21310 forms a complete core-  
voltage regulator solution for advanced micro and graphics processors as well as point-of-load applications.  
The TDA21310 is not pin compatible to the Intel 6x6 DrMOS specification, but compatible by functionality. The  
device package height is only 0.6 mm, and is an excellent choice for applications with critical height limitations.  
It has reduced thermal impedance from junction to top case compared to DrMOS, allowing for top side cooling.  
PHASE  
BOOT  
VCIN  
DRIVER  
IC  
VIN  
HS  
Driver  
HS  
MOSFET  
GH  
Level  
UVLO  
Shifter  
10k  
VDRV  
DR_EN  
500k  
Shoot Through  
Protection Unit  
HS  
Logic  
+
CGND  
VCIN  
-
VSWH  
+
16k5  
Input  
Logic  
Tri-  
-
PWM  
7k1  
LS  
VDRV  
State  
MOSFET  
CGND  
GL  
LS  
Logic  
LS  
Driver  
10k  
PGND  
CGND  
VDRV  
Figure 3  
Simplified Block Diagram  
Attention: GH and GL are not accessible. They are mentioned for clarity in this block diagram.  
Data Sheet  
7
Revision 2.1, 2013-09-05  
 
TDA21310  
Electrical Specification  
4
Electrical Specification  
4.1  
Absolute Maximum Ratings  
Note: TA = 25°C  
Stresses above those listed in Table 6 “Absolute Maximum Ratings” may cause permanent damage to the  
device. These are absolute stress ratings only and operation of the device is not implied or recommended at  
these or any other conditions in excess of those given in the operational sections of this specification. Exposure  
over values of the recommended ratings (Table 8) for extended periods may adversely affect the operation and  
reliability of the device.  
Table 6  
Absolute Maximum Ratings  
Symbol  
Parameter  
Values  
Unit  
Note / Test Condition  
Min.  
Typ.  
Max.  
1.2 MHz  
Frequency of the PWM input  
Maximum DC load current  
Input Voltage  
fSW  
IOUT  
40  
16  
A
V
VIN (DC)  
-0.30  
-0.30  
-0.30  
-1  
Logic supply voltage  
VCIN (DC)  
VDRV (DC)  
VSWH (DC)  
VSWH (AC)  
VPHASE (DC)  
VPHASE (AC)  
VBOOT (DC)  
VBOOT (AC)  
6.5  
6.5  
16  
High and Low side driver voltage  
Switch node voltage  
-102  
25  
PHASE node voltage  
BOOT voltage  
-1  
16  
-10  
-0.3  
-12  
25  
22.5  
31.5  
6.5  
VBOOT-PHASE  
(DC)  
-1  
DR_EN voltage  
VDR_EN  
VPWM  
TJmax  
TSTG  
-0.3  
-0.3  
-40  
-55  
5.5  
5.5  
PWM voltage  
Junction temperature  
Storage temperature  
150  
150  
C  
Note: All rated voltages are relative to voltages on the CGND and PGND pins unless otherwise specified.  
2 AC is limited to 10 ns  
Data Sheet  
8
Revision 2.1, 2013-09-05  
 
 
TDA21310  
Electrical Specification  
4.2  
Thermal Characteristics  
Table 7  
Thermal Characteristics  
Parameter  
Symbol  
Values  
Typ.  
29  
Unit  
Note / Test Condition  
Min.  
Max.  
θJS-driver  
θJtop-driver  
θJS-HS  
K/W  
Thermal resistance between driver  
junction and soldering point3  
Thermal resistance between driver  
junction and top of package  
14  
2
Thermal resistance between high-side  
MOSFET junction and soldering point3  
θJtop-HS  
Thermal resistance between high-side  
MOSFET junction and top of package  
7
θJS-LS  
Thermal resistance between low-side  
MOSFET junction and soldering point3  
1
θJtop-LS  
Thermal resistance between low-side  
MOSFET junction and top of package  
2
θJJ-driver-HS  
θJJ-driver-LS  
θJJ-LS-HS  
Thermal resistance between driver  
junction and high-side MOSFET junction  
40  
60  
36  
Thermal resistance between driver  
junction and low-side MOSFET junction  
Thermal resistance between low-side  
MOSFET junction and high-side MOSFET  
junction  
4.3  
Recommended Operating Conditions and Electrical Characteristics  
Note: VDRV = VCIN = 5 V, TA = 25°C  
Table 8  
Recommended Operating Conditions  
Parameter  
Symbol  
Values  
Unit  
Note / Test Condition  
Min.  
Typ.  
Max.  
16  
6
Input voltage  
VIN  
5
5
5
V
MOSFET driver voltage  
Logic supply voltage  
VDRV  
VCIN  
4.5  
4.5  
6
VCIN rising,3.3V to 3.9V:  
dvCIN/dt > 300V/s  
Junction temperature  
TjOP  
-25  
125  
°C  
3 The junction-soldering point is referred to the bottom exposed pad.  
Data Sheet  
9
Revision 2.1, 2013-09-05  
TDA21310  
Electrical Specification  
Table 9  
Voltage Supply And Biasing Current  
Parameter  
Symbol  
Min.  
Values  
Typ.  
Unit  
Note / Test Condition  
Max.  
UVLO rising  
VUVLO_R  
3.5  
V
VCIN rising,3.3V to 3.9V:  
dvCIN/dt > 300V/s  
VCIN falling  
UVLO falling  
Driver current  
VUVLO_F  
3.1  
12  
IVDRV_300kHz  
mA  
DR_EN = 3.3V,  
fSW = 300 kHz  
IVDRV_1MHz  
IVDRV_PWML  
38  
25  
DR_EN = 3.3V,  
fSW = 1 MHz  
μA  
DR_EN = 3.3V, PWM =  
0 V  
DR_EN = 0V, PWM = 3.3V  
IVDRV_PWMH  
IVCIN_PWML  
12  
IC current (control)  
IC quiescent  
400  
DR_EN = 3.3 V, PWM =  
0 V  
IVCIN_O  
500  
DR_EN = 3.3 V,  
PWM = Open  
DR_EN = 0 V  
ICIN+IDRV  
550  
Table 10  
Logic Inputs And Threshold  
Symbol  
Parameter  
Values  
Typ.  
1.1  
Unit  
Note / Test Condition  
Min.  
0.7  
1.9  
Max.  
DR_EN Input low  
Input high  
VDR_EN_L  
VDR_EN_H  
IDR_EN  
1.3  
V
VDR_EN falling  
VDR_EN rising  
VDR_EN = 1 V  
VPWM falling  
VPWM rising  
VPWM = 1 V  
VPWM_O  
2.1  
2
2.4  
Sink current  
μA  
PWM  
Input low  
VPWM_L  
VPWM_H  
RIN-PWM  
VPWM_O  
VPWM_S  
0.7  
V
Input high  
2.4  
3
k  
Input resistance  
Open voltage  
5
7
1.5  
V
Tri-state shutdown  
window4  
1.2  
1.9  
4 Maximum voltage range for tri-state  
Data Sheet  
10  
Revision 2.1, 2013-09-05  
TDA21310  
Theory of Operation  
Table 11  
Timing Characteristics  
Parameter  
Symbol  
Values  
Typ.  
15  
Unit  
Note / Test Condition  
Min.  
Max.  
PWM tri-state to VSWH rising  
delay or VSWH falling delay  
t_pts  
ns  
VSWH Shutdown Hold-Off time t_tsshd  
150  
20  
PWM to VSWH turn-off  
propagation delay  
t_pdlu  
PWM to VSWH turn-on  
propagation delay  
t_pdll  
20  
20  
20  
DR_EN turn-off propagation  
delay falling  
t_pdl_DR_EN  
t_pdh_DR_EN  
DR_EN turn-on propagation  
delay rising  
PWM minimum pulse width  
PWM minimum off time  
ton_min_PWM  
toff_min_PWM  
25  
100  
5
Theory of Operation  
The TDA21310 incorporates a high performance gate driver, one high-side power MOSFET and one low-side  
power MOSFET in a single 32 pin LG-UIQFN-32-2 package. The advantages of this arrangement are found in  
the areas of increased performance, increased efficiency and lower overall package and layout inductance. This  
module is ideal for use in Synchronous Buck Regulators.  
The power MOSFETs are optimized for 5 V gate drive enabling excellent high load and light load efficiency. The  
gate driver is a robust high-performance driver rated at the switching node for DC voltages ranging from -1 V to  
+16 V. The power density for transmitted power in a multiphase regulator of this approach can easily be higher  
than 40 W per phase within a 25 mm2 area.  
5.1  
Driver Characteristics  
The gate driver of the TDA21310 has two input voltages, VCIN and VDRV. VCIN is the 5 V logic supply for the  
driver. VDRV sets the driving voltage for the high side and low side MOSFETs. The reference for the gate driver  
control circuit (VCIN) is CGND. To decouple the sensitive control circuitry (logic supply) from a noisy  
environment a ceramic capacitor must be placed between VCIN and CGND close to the pins. VDRV needs also  
to be decoupled using a ceramic capacitor (MLCC) between VDRV and PGND in close proximity to the pins.  
PGND serves as reference for the power circuitry including the driver output stage.  
Referring to the Block Diagram page 7, VCIN is internally connected to the UVLO circuit. It will force shut-down  
for insufficient VCIN voltage. VDRV supplies the floating high-side drive consisting of an active boot circuit -  
and the low-side drive circuit. A second UVLO circuitry, sensing the BOOT voltage level, is implemented to  
prevent false GH turn on during insufficient power supply level condition (BOOT cap charging/discharging  
sequence). During undervoltage both GH and GL are driven low actively; further passive pull-down (10 k) is  
placed across gate-source of both FETs.  
Data Sheet  
11  
Revision 2.1, 2013-09-05  
TDA21310  
Theory of Operation  
UVLO Output  
Logic Level  
“H”  
Enable  
Shutdown  
“L”  
VUVLO_R  
VUVLO_F  
VCIN  
Figure 4  
Internal Output Signal from UVLO Unit  
5.2  
Inputs to the Internal Control Circuits  
The PWM is the control input to the IC from an external PWM controller and is compatible with 3.3 V.  
The PWM input has tri-state functionality. When the voltage remains in the specified PWM-shutdown-window for  
at least the PWM-shutdown-holdoff time t_tsshd, the operation will be suspended by keeping both MOSFET  
gate outputs low. Once left open, the pin is held internally at a level of VPWM_O = 1.5 V level.  
Table 12  
PWM Pin Functionality  
PWM logic level  
Driver output  
Low  
GL= High, GH = Low  
GL = Low, GH = High  
GL = Low, GH = Low  
High  
Open (left floating, or high impedance)  
Using a wide range VCIN power supply (from 4.5 V to 6 V) causes a shifting in the threshold voltages for the  
following parameters: VPMW_O, VPWM_H, VPWM_L. The typical behavior of these thresholds over VCIN voltage  
variation is shown in the following graph.  
Data Sheet  
12  
Revision 2.1, 2013-09-05  
TDA21310  
Theory of Operation  
Figure 5  
Variation of PWM levels versus VCIN logic supply voltage  
Attention: The VPWM_S is also temperature dependent.  
VCIN requires a minimum dv/dt of 300V/s in the vicinity of the UVLO threshold to prevent the driver logic from  
emitting any gate drive glitches.  
The DR_EN is an active high signal. When DR_EN is pulled low, the power stage is disabled.  
Table 13  
DR_EN Pin Functionality  
DR_EN logic level  
Driver output  
Low  
Shutdown : GL = GH = Low  
Enable : GL = GH = Active  
Shutdown : GL = GH = Low  
High  
Open (left floating, or high impedance)  
5.3  
Shoot Through Protection  
The TDA21310 driver includes gate drive functionality to protect against shoot through. In order to protect the  
power stage from overlap, both high-side and low-side MOSFETs being on at the same time, the adaptive  
control circuitry monitors specific voltages. When the PWM signal transitions to low, the high-side MOSFET will  
begin to turn off after the propagation delay time t_pdlu. When VGS of the high-side MOSFET is discharged  
below 1 V (a threshold below which the high-side MOSFET is off), a secondary delay t_pdhl is initiated. After  
that delay the low-side MOSFET turns on regardless of the state of the “VSWH” pin. It ensures that the  
converter can sink current efficiently and the bootstrap capacitor will be refreshed appropriately during each  
switching cycle. See Figure 8 for more detail.  
Data Sheet  
13  
Revision 2.1, 2013-09-05  
TDA21310  
Application  
6
Application  
6.1  
Implementation  
CBOOT  
470 nF  
PWM  
VIN  
VIN (4.5V - 16V)  
1 µF  
8
7
CIN  
4x10 µF  
6
5
4
3
2
1
VCIN  
32  
31  
30  
9
+ 5 V  
VDRV  
PGND  
10  
11  
12  
13  
14  
15  
16  
1 µF  
VIN  
VIN  
29  
28  
27  
26  
25  
VSWH  
VSWH  
PGND  
VSWH  
L
VOUT  
COUT  
17 18 19 20 21 22 23  
24  
PGND  
Figure 6  
Note:  
Pin interconnection outline (transparent top view)  
1. Pin PHASE is internally connected to VSWH node  
2. It is recommended to place a RC filter between VCIN and VDRV as shown.  
3. During power-up and down sequences, the PWM signal must be either low or tri-state (open voltage), but  
never high, in order to avoid uncontrolled output voltage.  
Data Sheet  
14  
Revision 2.1, 2013-09-05  
TDA21310  
Application  
6.2  
Typical Application  
Figure 7  
Four-phase voltage regulator - typical application (simplified schematic)  
Data Sheet  
15  
Revision 2.1, 2013-09-05  
TDA21310  
Gate Driver Timing Diagram  
7
Gate Driver Timing Diagram  
VPWM_H  
VPWM_H  
VPWM_H  
Tri-State  
VPWM_L  
PWM  
VPWM_L  
t_pdlu  
t_pdll  
t_pts  
t_tsshd  
t_tssh  
t_pts  
VSWH  
Note: VSWH during entering/exiting tri-state  
behaves dependend on inductor current.  
Figure 8  
Adaptive gate driver timing diagram  
Active  
Active  
VDR_EN_H  
DR_EN  
Deactivated  
VDR_EN_L  
t_pdh(DR_EN)  
t_pdl(DR_EN)  
VSWH  
Figure 9  
DR_EN timing diagram (PWM is assumed “high)  
Data Sheet  
16  
Revision 2.1, 2013-09-05  
TDA21310  
Performance Curves Typical Data  
8
Performance Curves Typical Data  
Operating conditions (unless otherwise specified): VIN = +12 V, VCIN = VDRV = +5 V, LOUT=150nH (Cooper,  
FPI0906R1-R15, DCR = 0.29 mΩ) inductor, TA = 25 °C, airflow = 300 LFM, no heatsink. Efficiency and power  
loss reported herein include only TDA21310 losses.  
8.1  
Temperature Rise  
Figure 10 Temperature Rise over Output Current  
Data Sheet  
17  
Revision 2.1, 2013-09-05  
TDA21310  
Performance Curves Typical Data  
8.2  
Driver Current versus Switchig Frequency  
Figure 11 Driver Current over Switching Frequency in CCM Operation  
Data Sheet  
18  
Revision 2.1, 2013-09-05  
TDA21310  
Performance Curves Typical Data  
8.3  
Efficiency and Power Loss versus Switching Frequency  
Figure 12 Efficiency at VIN = 12 V, VCIN = VDRV = 5 V, VOUT = 1.82 V, Parameter: fSW  
Figure 13 Power Loss at VIN = 12 V, VCIN = VDRV = 5 V, VOUT = 1.82 V, Parameter: fSW  
Data Sheet 19 Revision 2.1, 2013-09-05  
TDA21310  
Performance Curves Typical Data  
Figure 14 Efficiency at VIN = 12 V, VCIN = VDRV = 5 V, VOUT = 1.218 V, Parameter: fSW  
Figure 15 Power Loss at VIN = 12 V, VCIN = VDRV = 5 V, VOUT = 1.218 V, Parameter: fSW  
Data Sheet 20 Revision 2.1, 2013-09-05  
TDA21310  
Mechanical Drawing LG-UIQFN-32-2  
9
Mechanical Drawing LG-UIQFN-32-2  
Figure 16 Mechanical dimensions  
Data Sheet  
21  
Revision 2.1, 2013-09-05  
TDA21310  
Mechanical Drawing LG-UIQFN-32-2  
Figure 17 Stencil dimensions (in mm)  
Data Sheet  
22  
Revision 2.1, 2013-09-05  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

TDA21310XUSA1

Half Bridge Based MOSFET Driver,
INFINEON

TDA21320

Half Bridge Based MOSFET Driver,
INFINEON

TDA21321

Half Bridge Based MOSFET Driver,
INFINEON

TDA21321XUMA1

Half Bridge Based MOSFET Driver, WIQFN-38
INFINEON

TDA2140

LINEAR INTEGRATED CIRCUIT
NXP

TDA21472

Analog Circuit,
INFINEON

TDA21472AUMA1

Switching Regulator, 1500kHz Switching Freq-Max, PQCC39, QFN-39
INFINEON

TDA2148

AM AMPLIFIER FOR FRENCH SOUND IF STANDARD
INFINEON

TDA21490

TDA21490 专为服务器、存储、人工智能(AI) 和网络应用中使用的高性能 xPU、ASIC和SOC提供强健可靠的电压调节器(VR) 而设计。TDA21490 采用高热效封装的 OptiMOSTM 功率 MOSFETs,具有同类产品中最佳的效率。低静态电流驱动器可以启用深度睡眠模式,进一步提高轻载效率,还可以提供精准的电流感测,有助于大幅提升系统性能。
INFINEON

TDA2151

LINEAR INTEGRATED CIRCUIT
NXP

TDA2161

LINEAR INTEGRATED CIRCUIT
ETC

TDA2170

TV VERTICAL DEFLECTION OUTPUT CIRCUIT
STMICROELECTR