TDA38725-0000 [INFINEON]

OptiMOS™ IPOL single-voltage synchronous buck regulator 25 A with PMBus interface;
TDA38725-0000
型号: TDA38725-0000
厂家: Infineon    Infineon
描述:

OptiMOS™ IPOL single-voltage synchronous buck regulator 25 A with PMBus interface

文件: 总65页 (文件大小:1651K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TDA38740/25  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Quality Requirement Category: Industrial  
Features  
Single 4.5 V to 17 V application or Wide Input Voltage Range from 3.0 V to 17 V with external Vcc  
Output Voltage Range: 0.25 V to 5.12 V based on Output Feedback resistor divider network  
Enhanced Fast COT Engine Stable with Ceramic output Capacitors without External Compensation  
Optional Forced Continuous Conduction Mode and Diode Emulation for Enhanced Light Load Efficiency  
Pin programmable Output Voltage, Switching Frequency/mode selection with 16 unique selectable settings  
Programmable Switching Frequency from 400 kHz to 2 MHz in steps of 200 kHz, excluding 1600 kHz  
Monotonic Start-Up with Selectable Soft-Start Time through PMBus commands & Pre-Bias Start-Up  
Thermally Compensated Internal Over Current Protection with Eight Selectable Settings  
Enable input with Voltage Monitoring Capability & Power Good Output  
PMBus system interface for reporting of Temperature, Voltage, Current & Power telemetry  
Single image Multiple Time Programming (MTP) for the USER section  
Digitally programmable load-line without any external components  
Operating temp: -40 °C < Tj < 125 °C  
Small Size: 5 mm x 6 mm PQFN  
Lead-free, Halogen-free and RoHS2 Compliant with Exemption 7a  
Applications  
Server Applications  
Storage Applications  
Telecom & Datacom Applications  
Distributed Point of Load Power Architectures  
Description  
The TDA38740/725 is an easy-to-use, fully integrated and highly efficient dc-dc regulator. The onboard PWM  
c87tr855er a7d O9t2MOS™ FETs with integrated bootstrap diode make TDA38740/725 a small footprint solution,  
providing high-efficiency power delivery. Furthermore, it uses a fast Constant On-Time (COT) control scheme,  
which simplifies the design efforts and achieves fast transient response.  
TDA38740/725 is a versatile regulator, operating with wide input and output voltage ranges, offering  
programmable switching frequency from 400 kHz to 2 MHz, and providing eight unique selectable current limits.  
It features a programmable dc loadline, which provides an additional tool to manage the transient response.  
It also features important protection functions, such as pre-bias start-up, thermally compensated current limit,  
over voltage and under voltage protection, and thermal shutdown to give required system level security in the  
event of fault conditions. The dev2ce c87f20urat287 ca7 be eas25y def27ed us270 I7f27e87ꢀs XDP Designer GUI and is  
stored in the on-chip memory. The controller requires the fewest possible external components and results in a  
simplified Bill of Materials (BOM).  
Final Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
1 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Table of contents  
1
2
3
4
5
6
Ordering Information ..................................................................................................... 4  
Functional Block Diagram............................................................................................... 5  
Typical Application Diagram ........................................................................................... 6  
Pin Descriptions ............................................................................................................ 7  
Absolute Maximum Ratings............................................................................................. 9  
Thermal Characteristics ................................................................................................11  
7
7.1  
Electrical Specifications ................................................................................................12  
Electrical Characteristics ......................................................................................................................13  
8
Pin Strap Resistors Application Information ....................................................................19  
9
Typical Efficiency and Power Loss Curves ........................................................................23  
PVin = Vin = 12 V, Vout = 1.2V, Fsw = 600kHz .............................................................................................23  
PVin = Vin = 12 V, Fsw = 800 kHz ................................................................................................................24  
PVin = Vin = 12 V, Fsw = 1000 kHz...............................................................................................................25  
9.1  
9.2  
9.3  
10  
11  
12  
Thermal De-rating curves ..............................................................................................27  
RDS(on)of MOSFET Over Temperature ............................................................................29  
Typical operating characteristics (-ꢀꢁ °C ≤ Tj ≤ +ꢂꢃꢄ °Cꢅ .....................................................30  
13  
General Description ......................................................................................................32  
PMBUS Operating Mode........................................................................................................................32  
Multiple Time Programming Memory (MTP) ........................................................................................32  
Voltage Sense ........................................................................................................................................32  
I2C & PMBus Interface ...........................................................................................................................33  
Infineon XDP Designer GUI....................................................................................................................33  
Programming.........................................................................................................................................34  
Real-time Monitoring ............................................................................................................................34  
13.1  
13.2  
13.3  
13.4  
13.5  
13.6  
13.7  
14  
Theory of Operation......................................................................................................35  
Device Power-On and Initialization ......................................................................................................35  
Pre-bias start-up....................................................................................................................................35  
Internal Low-Droput (LDO) Regulator ..................................................................................................35  
Fast Constant ON-Time Control............................................................................................................36  
EN (Enable) Pin......................................................................................................................................36  
Switching Frequency and FCCM/DEM Operation.................................................................................37  
Soft Start................................................................................................................................................37  
Load-line................................................................................................................................................38  
Output Voltage Differential Sensing.....................................................................................................38  
Output Current Sensing ........................................................................................................................39  
14.1  
14.2  
14.3  
14.4  
14.5  
14.6  
14.7  
14.8  
14.9  
14.10  
15  
Faults and Protections ..................................................................................................40  
Over Current Protection (OCP) .............................................................................................................40  
Output Under Voltage Protection (UVP)...............................................................................................41  
Over Voltage Protection (OVP)..............................................................................................................42  
Over Temperature Protection (OTP) ....................................................................................................43  
Boot Under Voltage Lockout (UVLO) ....................................................................................................43  
Minimum On - Time and Minimum Off - Time ......................................................................................43  
High-Side Short (HSS) Detection ..........................................................................................................44  
15.1  
15.2  
15.3  
15.4  
15.5  
15.6  
15.7  
16  
16.1  
16.2  
Faults Communication ..................................................................................................45  
PMBUS Slave Addressing ......................................................................................................................45  
Real-Time Telemetry.............................................................................................................................45  
Final Datasheet  
2 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
16.3  
16.4  
16.5  
SMBUS/PMBUS PROTOCOLS ................................................................................................................45  
11-BIT Linear Data Format....................................................................................................................51  
16-BIT Linear Data Format....................................................................................................................52  
17  
Design example ............................................................................................................53  
Enabling the TDA38740/725..................................................................................................................53  
Programming the Switching Frequency and Operation Mode............................................................53  
Selecting Input Capacitors....................................................................................................................53  
Inductor Selection.................................................................................................................................54  
Output Capacitor Selection ..................................................................................................................54  
Bootstrap Capacitor..............................................................................................................................55  
VI and VCC/LDO bypass Capacitor........................................................................................................55  
Design Recommendations....................................................................................................................55  
17.1  
17.2  
17.3  
17.4  
17.5  
17.6  
17.7  
17.8  
18  
Layout Recommendations .............................................................................................56  
PCB Metal and Component Placement ................................................................................................57  
Solder Resist..........................................................................................................................................57  
Stencil Design ........................................................................................................................................58  
18.1  
18.2  
18.3  
19  
Package.......................................................................................................................60  
Marking Information .............................................................................................................................60  
Dimensions............................................................................................................................................60  
Tape and Reel Information ...................................................................................................................63  
19.1  
19.2  
19.3  
20  
21  
Environmental Qualifications.........................................................................................64  
Revision History ...........................................................................................................65  
Final Datasheet  
3 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Ordering Information  
1
Order270 I7f8r6at287  
Table 1  
Ordering Information  
Package Type  
Base Part  
Number  
Standard Pack  
Orderable Part Number  
Form and Qty  
TDA38740  
TDA38725  
QFN 5 mm x 6 mm  
QFN 5 mm x 6 mm  
Tape and Reel  
Tape and Reel  
5000  
5000  
TDA38740aabbAUMA1  
TDA38725aabbAUMA1  
TDA38740-aabb  
Configuration File Identifier  
00: Register Configurable  
20: Pin Configurable  
Customer Identifier  
00: Generic part  
Orderable Part Number Description  
TDA38740/25  
29  
35  
34  
33  
32  
31  
30  
36  
1
2
3
4
5
6
28  
ILIM  
PGOOD  
VIN  
VBT  
27  
26  
EN  
BOOT  
25  
VCC/LDO  
PHASE  
PVIN  
24  
23  
22  
VDRV  
GATEL  
37  
GATEL  
PVIN  
7
PGND  
PGND  
PGND  
PGND  
PVIN  
PVIN  
8
21  
20  
19  
9
PVIN  
10  
PGND  
11  
12  
15  
17  
13  
16  
14  
18  
SW SW SW SW SW SW SW SW  
Figure 1  
Package Top View  
Final Datasheet  
4 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Functional Block Diagram  
2
Fu7ct287a5 B58c4 D2a0ra6  
VDRV  
VIN  
VCC/LDO  
AGND  
PGOOD  
LDO  
AGND  
Boot Drive  
IMON  
VO  
VCC  
BOOT  
PVIN  
Boot  
UVLO  
VDAC  
AGND  
VBT  
DIGITAL  
Signal  
POR  
Conditioning  
Block  
BLOCK  
Registers and MTP  
HDrVin  
HDrv  
OVP  
UVLO  
OTP  
Fault Control  
POR, OCP, OVP, OTP, Retry  
PHASE  
SW  
Retry  
UVP  
GATE  
DRIVE  
LOGIC  
VDRV  
EN  
3V3  
LDrVin  
LDrv  
PWM  
VO PVin  
PWM  
COMP  
SS  
SM_ADDR/PROG  
VOSENM  
+
-
ADAPTIVE  
ON-TIME  
GENERATOR  
SET  
ZC  
-
+
PGND  
Zero Cross  
DETECTION  
Sw  
VO  
PGND  
GATEL  
AFE  
AOCP  
VDAC  
Low Side  
Rdson Sensing  
VOSENP  
IMON  
RAMP GENERATOR  
3V3  
3V3  
MODE/TON  
ILIM  
Sw  
ILIM Ref  
3V3  
SM_ALERT#  
VDAC  
VREF  
VBT  
PMBUS INTERFACE BLOCK  
SM_CLK  
VBT  
SM_DATA  
Digital Block  
Figure 2  
Block Diagram  
Final Datasheet  
5 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Typical Application Diagram  
3
Typ2ca5 App52cat287 D2a0ra6  
4.5V<Vin<17V  
Enable  
PVin  
Vin  
Enable  
Boot  
Phase  
SW  
3.3V  
Vcc  
Vcc/LDO  
3.3V  
Vo  
VDRV  
PGood  
PGood  
TDA38740/25  
SM_ALERT#  
SM_CLK  
ALERT#  
CLK  
SM_DAT  
VBT  
DATA  
GATEL  
SM_ADDR/PROG  
VOSENP  
VOSENM  
Ton/Mode  
ILIM  
AGnd  
PGnd  
Figure 3  
TDA38740/725 application circuit for Vout< 2.5 V  
4.5V<Vin<17V  
Enable  
PVin  
Vin  
Enable  
Boot  
Phase  
SW  
3.3V  
Vcc  
Vcc/LDO  
3.3V  
Vo  
VDRV  
PGood  
PGood  
TDA38740/25  
R1  
R2  
R3  
SM_ALERT#  
SM_CLK  
ALERT#  
CLK  
SM_DAT  
VBT  
DATA  
GATEL  
SM_ADDR/PROG  
VOSENP  
VOSENM  
Ton/Mode  
ILIM  
AGnd  
PGnd  
Figure 4  
TDA38740/725 application circuit for Vout> 2.5 V  
Final Datasheet  
6 of 66  
V2.6  
2022-11-16  
 
 
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Pin Descriptions  
4
P27 Descr2pt287s  
Note: A- Analog; D- Digital; [I]- INPUT; [O]- OUTPUT; [B]- BI-DIRECTIONAL; [P]- POWER  
Table 2  
Pin#  
Pin Descriptions  
Pin Name  
Pin Type  
Pin Description  
Connect a resistor to ground to set Over Current Protection  
(OCP) limit. Eight user selectable OCP limits are available.  
Power Good status output pin is open drain. Connect a pull  
up resistor from this pin to an external bias voltage.  
Input voltage for an Internal LDO. A 4.7 uF capacitor should  
be connected between this pin and PGND. If an external  
supply is connected to theVcc/LDO pin, this pin should be  
shorted to the Vcc/LDO pin and a 2.2 uF ceramic capacitor  
can be shared with Vin and Vcc/LDO.  
1
ILIM  
A[I]  
2
PGood  
D[O]  
3
VIN  
A[I]  
Input bias for an external Vcc voltage /Output of the internal  
LDO. A 2.2 uF ceramic capacitor is recommended to use  
between Vcc, VDRV and the Power ground (PGND). An  
optional decoupling capacitor can be placed between  
Vcc/LDO and AGND. Connect to external supply when  
internal LDO not being used.  
VDRV should be shorted to the Vcc/LDO pin on the PCB. A  
2.2 uF ceramic capacitor is recommended to use between  
VDRV, Vcc/LDO and the Power ground (PGND). Connect to  
external supply when internal LDO not being used.  
Gate of Low-side FET. The signal on this pin should be used  
for test purposes only and should not have external  
components connected to it. Leave it opened if not used.  
Power Ground. S18u5d be c877ected t8 t1e syste6ꢀs 98wer  
ground plane. PGND and AGND are internally connected via  
the lead frame.  
4
5
Vcc/LDO  
VDRV  
A[P]  
A[P]  
6, 37  
GATEL  
PGND  
A [O]  
-
7, 8, 9, 10, 19  
11, 12, 13, 14,  
15, 16, 17, 18  
SW  
A [O]  
A [P]  
Switch Node. Connect these pins to an output inductor.  
Input supply for the power stage.  
20, 21, 22, 23,  
24  
PVin  
Source of High-side FET. Connect a bootstrap capacitor  
between this pin and the Boot pin. A high temperature (X7R)  
0.1 uF or greater value ceramic capacitor is recommended.  
Supply voltage for the high side driver. Connect this pin to  
the Phase pin of the regulator through a bootstrap  
capacitor.  
25  
26  
Phase  
Boot  
A [O]  
A [I]  
Enable pin to turn the IC on and off. Leave it open or ground  
it when not used  
A resistor from this pin to ground defines the default boot  
voltage that the part will boot up in.  
27  
28  
EN  
A [I]  
A[I]  
VBT  
PMBus Slave Address and PROG pin. A resistor to ground on  
this pin points to one of the unique sixteen PMBus slave  
devices which needs to be addressed on the board. The  
29  
SM_ADDR/PROG  
D[I]  
Final Datasheet  
7 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Pin Descriptions  
Pin#  
Pin Name  
Pin Type  
Pin Description  
same address also defines the specific configuration file that  
will be loaded from the OTP during power-up.  
Output voltage feedback pin. Connect this pin to the output  
of the regulator to regulate the output voltage.  
The pin provides the return path for the remote voltage  
sensing. It is used as a reference for the Analog Front End  
(AFE)  
30  
31  
VOSENP  
VOSENM  
A [I]  
A [I]  
Signal ground for the internal circuitry. AGND to be  
connected to PGND on the PCB.  
32  
33  
AGND  
-
Serial data line I/O. PMBus bi-directional serial data line.  
Leave the pin open or ground it if not being used.  
Serial Clock Line Input. PMBus serial clock input. The  
interface is rated to max of 1 MHz. Leave the pin open or  
ground it if not being used.  
SMB Active low alert line. Leave the pin open if not being  
used.  
Multi-function pin. This pin can be used to select one of  
eight switching frequencies, and FCCM or DEM mode by  
connecting a resistor from this pin to ground.  
SM_DATA  
D [B]  
34  
35  
36  
SM_CLK  
D [I]  
D [O]  
D [I]  
SM_ALERT#  
MODE/TON  
Final Datasheet  
8 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Absolute Maximum Ratings  
5
Abs85ute Max26u6 Rat270s  
Stresses higher than those mentioned in Table 3 below may result in permanent damage to the device. These  
are the absolute stress ratings only and the operation of the device is not recommended or implied at these or  
a7y 8t1er c87d2t287ꢀs 27 excess 8f t18se 02ve7 27 t1e rec866e7ded 89erat270 rat270s 27 Tab5e 5. Exposure of  
values over and above the recommended ratings for extended periods may adversely affect the operation and  
reliability of the device.  
Table 3  
Absolute Maximum Ratings  
Values  
Note/ Test  
Conditions  
Description  
Symbol  
Unit  
Min  
-0.3  
-0.3  
-0.3  
Typ  
Max  
25  
Power Input voltage  
LDO Input voltage  
Enable voltage  
VPVIN  
VIN  
-
-
-
V
V
V
Note 1, PVIN Pin  
Note 1, VIN Pin  
EN Pin  
25  
VEN  
25  
-5 V for 5 ns, -0.3  
V dc  
34 V for 1 ns,  
25 V dc  
PVIN-PHASE voltage  
VIN-PHASE voltage  
VPVIN -VPHASE  
VVIN-VPHASE  
VPVIN -VSW  
-
-
-
V
V
V
PVIN-PHASE pin  
VIN-PHASE pin  
PVIN- SW Pin  
-5 V for 5 ns, -0.3  
V dc  
34 V for 1 ns,  
25 V dc  
PVIN-Switch Node  
voltage  
-5 V for 5 ns, -0.3  
V dc  
34 V for 1 ns,  
25 V dc  
Internal Driver voltage  
Gate Low Pin voltage  
VDRV  
-0.3  
-0.3  
-
-
6
6
V
V
Note 1, VCC/VDRV Pin  
GateL Pin  
VGATEL  
-0.3 V for 5 ns, -  
0.3 V dc  
VBOOT  
VBOOT - VPHASE  
VSW  
-
-
-
-
-
-
-
29 V dc  
V
V
V
V
V
V
V
BOOT Pin  
BOOT PHASE Pin  
Switch Node Pin  
Phase Pin  
BOOT voltage  
7 V for 5 ns,  
6 V dc  
-0.3  
-5 V for 5 ns, -0.3  
V dc  
34 V for 1 ns,  
25 V dc  
Switch Node voltage  
Phase Node voltage  
Address/PROG voltage  
-5 V for 5 ns, -0.3  
V dc  
34 V for 1 ns,  
25 V dc  
VPHASE  
Note 1,  
SM_ADDR/PROG Pin  
VSM_ADDR/PROG  
VVOSENP  
-0.3  
3.6  
3.6  
0.3  
Output Positive Sense  
voltage  
-1.5 V for 5 ns, -  
0.3 V dc  
Note 1, VOSENP Pin  
Note 1, VOSENM Pin  
Output Negative Sense  
voltage w.r.t AGND  
VVOSENM  
-0.3  
Voltage Regulator Power  
Good  
VPGOOD  
VILIM  
-0.3  
-0.3  
-0.3  
-
-
-
3.6  
3.6  
3.6  
V
V
V
Note 1, PGOOD Pin  
Note 1, ILIM Pin  
ILIM Voltage  
Note 1, MODE/TON  
Pin  
MODE/TON voltage  
VMODE/TON  
Note 1, VBT voltage  
pin  
VBT voltage  
VVBT  
-0.3  
-
-
3.6  
V
V
Power GND w.r.t Analog  
GND voltage  
-1.5 V for 5 ns, -  
0.3 V dc  
1.5 V for 5 ns,  
0.3 V dc  
VPGND- VAGND  
PGND AGND Pin  
Final Datasheet  
9 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Absolute Maximum Ratings  
Values  
Note/ Test  
Conditions  
Description  
SM CLK voltage  
Symbol  
Unit  
Min  
-0.3  
-0.3  
-0.3  
-40  
Typ  
Max  
3.6  
VSM_CLK  
VSM_DAT  
VSM_ALERT#  
TJmax  
-
-
-
-
-
V
V
SM_CLK Pin  
SM Data voltage  
3.6  
SM_DAT Pin  
SM Alert voltage  
3.6  
V
SM_ALERT# Pin  
Juntion Temperature  
Storage Temperature  
150  
150  
°C  
°C  
-
-
TSTORAGE  
-55  
Note:  
1. PGND and AGND pins are connected together.  
Attention: Stresses beyond these listed under ꢀAbsolute Maximum Ratingsꢁ may cause permanent damage  
to the device. These are stress ratings only and functional operation of the device at these or any  
other conditions beyond those indicated in the operational sections of the specifications are not  
implied.  
Final Datasheet  
10 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Thermal Characteristics  
6
T1er6a5 C1aracter2st2cs  
Table 4  
Thermal Characteristics  
Description  
Symbol Values  
Test Conditions  
Note 2  
Junction to Ambient Thermal Resistance  
Junction to PCB Thermal Resistance  
Junction to Case Top Termal Resistance  
θJA  
θJC-PCB  
θJC  
19 /W  
1.1 /W  
24 /W  
Note 3  
Note:  
2. Thermal resistance is measured with components mounted on a standard EVAL_TDA38740_1.2Vout demo  
board in free air  
3. Thermal resistance is based on the board temperature near pin 22  
Final Datasheet  
11 of 66  
V2.6  
2022-11-16  
 
 
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Electrical Specifications  
7
E5ectr2ca5 Spec2f2cat287s  
Table 5  
Recommended Operating Conditions for Reliable Operation  
Description  
Min  
Max  
17  
17  
5.5  
5.12  
40  
Unit  
Note  
PVin Voltage Range with External Vcc  
PVin Voltage Range with Internal LDO  
Vcc Supply Voltage Range  
Output Voltage Range  
Continuous Output Current Range for  
TDA38740  
3
V
V
V
V
A
Note 4, Note 5  
4.5  
4.5  
0.25  
Note 5 , Note 6 & Note 10  
Note 4 , Note 7  
Note 8  
Note 9  
Continuous Output Current Range for  
TDA38725  
25  
A
Note 9  
400  
-40  
2000  
125  
kHz  
Switching Frequency (excluding 1600 kHz)  
Operating Junction Temperature  
Note 10  
Note:  
4. VCC/VDRV pin is connected to an external bias voltage when Pvin is less than 4.5 V  
5. A common practice is to have 20% margin on the maximum SW node voltage in the design. For applications  
requiring PVin equal to or above 14 V, a small resistor in series with the Boot pin should be used to ensure the  
maximum SW node spike voltage does not exceed absolute maximum specs. Alternatively, a snubber can be  
used at SW node to reduce the SW node spike.  
6. PVin with internal LDO is used. For single-rail applications with the internal LDO and PVin = 4.5 V-5.4 V, the internal  
LDO may enter dropout mode. AOCP limits can be reduced due to the lower VCC voltage.  
7. The TDA38740/725 is designed to function with VCC down to 4.5 V. However, electrical specifications such as  
AOCP limits may be degraded.  
8. The maximum output voltage is limited by the minimum off-time. For output voltages above 2.56 V an external  
feedback resistor divider is needed.  
9. Refer to Section 15.1 for maximum output current rating at different ambient temperature and OCP threshold  
tolerance  
10. The maximum LDO output current must be limited within 50 mA for operations requiring the full operating  
temperature range of -40 °C TJ 125 °C. Thermal De-rating may be needed at an elevated ambient  
temperature to ensure the junction temperature remains within the recommended operating range.  
Final Datasheet  
12 of 66  
V2.6  
2022-11-16  
 
 
 
 
 
 
 
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Electrical Specifications  
7.1  
E5ectr2ca5 C1aracter2st2cs  
Unless otherwise specified, these specifications apply over, 4.5 V ꢁ V27 = PV27 ꢁ ꢂꢃ V, in 0 °C < TJ < 125 °C.  
Typical values are specified at Ta = 25 °C.  
Table 6  
Electrical Characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Power Stage  
VBoot Vsw= 5.0 V, Io =  
35 A, Tj =25 °C  
Top Switch  
Rds(on)_Top  
Rds(on)_Bot  
-
-
2.9  
-
-
6Ω  
Vcc = 5.0, Io= 35 A, Tj  
=25 °C  
Bottom Switch  
1.00  
Bootstrap Diode  
Forward Voltage  
I(Boot) = 25 mA  
-
-
-
780  
950  
175  
175  
mV  
µA  
SW = 0 V, EN = 0 V  
-
-
SW Leakage Current  
ISW  
SW = 0 V, EN = high,  
No Switching  
SW Node rising edge,  
40 A , Internal LDO,  
Tj=25 °C, Note 11  
-
-
10  
10  
-
-
Dead Band Time  
Tdb  
ns  
SW Node falling edge,  
40 A , Internal LDO,  
Tj=25 °C, Note 11  
Supply Voltage  
PVin, Vin and External VCC  
PVin range (using  
external VCC = 5V)  
-
3-17  
-
V
Fsw = 600 kHz  
-
-
4.5 -17  
4.5 17  
5
-
-
V
V
V
Vin Range (using  
internal LDO)  
Fsw = 2000 kHz  
External VCC  
4.5  
5.5  
Supply Current  
Iin  
PVin Supply Current  
(standby)(External  
Vcc)  
EN = Low, No Switching,  
Note 14  
Iin (Standby)  
-
-
-
-
2
-
-
-
-
PVin Supply Current  
(dynamic)(External  
Vcc)  
EN = High, Fs = 800kHz,  
Vin=PVin=12 V,  
Vout =1.1 V, Note 14  
Iin (Dyn)  
15  
12  
48  
mA  
PVin Supply Current  
(standby)(Internal  
Vcc)  
EN = Low, No Switching,  
Note 14  
Iin (Standby)  
PVin Supply Current  
(dynamic)(Internal  
Vcc)  
EN = High, Fs = 800kHz,  
Vin=PVin=12 V,  
Vout =1.1 V, Note 14  
Iin (Dyn)  
Remote Voltage  
Sense Inputs  
VOSENP, VOSENM  
VOSENP = 3.6 V  
-
-85  
-
-
-
230  
µA  
µA  
µA  
VOSENP Input Current  
Final Datasheet  
VOSENP = -0.3 V  
VOSENM = 0.3 V  
-
-
-155  
13 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Electrical Specifications  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VOSENM Input  
Current  
VOSENM = -0.3 V  
-200  
-
-
µA  
Differential Input  
Voltage Range  
-
-
-
2.56  
V
VOSENM Input CM  
Voltage  
±300  
-
mV  
MODE/TON  
Output Current  
VBT/ILIM/SM_ADDR  
Output Current  
-
-
104  
15  
-
-
µA  
µA  
Open-Drain  
Outputs-20mA  
Drive  
SM_CLK, SM_DAT, SM_ALERT#  
Output Low Voltage  
On Resistance  
I = 20 mA  
I = 20 mA  
0 3.6 V  
-
-
-
7
-
0.26  
V
-
Tri-State Leakage  
On-Time Timer  
-5  
5
µA  
Frequency Range  
(programmable)  
Excluding 1600 kHz  
and in steps of 200 kHz  
400  
--  
2000  
KHz  
ns  
Tj=25C, PVin=12 V,  
Vo=0 V, Note 11  
Minimum On-Time  
Minimum Off-Time  
-
-
25  
-
-
Tj=25C, VFB=0 V,  
Toff(Min)  
Note 11  
150  
ns  
System Set Point Accuracy  
ꢄ.ꢅꢆ V ꢁ V8ut ꢁ ꢄ.445 V  
0.45 V ꢁ V8ut ꢁ ꢄ.995 V  
ꢂ.ꢄ V ꢁ V8ut ꢁ 2.52 V  
-
-
-
±10  
±8  
-
-
-
mV  
mV  
%
-40 °C ꢁ TJ ꢁ ꢂꢅꢆ°C  
Typ = 3σ, Note 11 & 12  
±1  
VCC LDO Output  
Vcc  
5.5 V PVin 17 V,  
Vcc Output Voltage  
Vcc  
4.7  
-
5.0  
5.3  
-
V
when Icc =20 mA,  
Cload = 2.2 uF, Tj=25C  
PVin = 4.5 V, Icc=20 mA,  
Cload=2.2uF, Tj=25C  
VCC Dropout  
Vcc_drop  
650  
mV  
Under Voltage  
Lockout  
Vcc_Good Start  
Threshold  
Vcc Rising Trip Level  
3.8  
3.6  
4.0  
4.2  
4.0  
VCC_UVLO_Start  
V
V
Vcc_Good Stop  
Threshold  
VCC_UVLO_Stop Vcc Falling Trip Level  
Enable_UVLO_Start Ramping up  
3.8  
Enable-Start-  
Threshold  
0.61  
0.51  
0.65  
0.55  
0.69  
0.59  
Enable-Stop-  
Threshold  
Enable_UVLO_Stop Ramping down  
Final Datasheet  
14 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Electrical Specifications  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
BOOT_UVLO_Risin Boot-Phase Ramping  
up, Note 11  
Boot Rising Threshold  
3.7  
3.85  
4.0  
g
V
Boot Falling  
Threshold  
BOOT_UVLO_Fallin Boot-Phase Ramping  
3.5  
3.65  
3.8  
g
down, Note 11  
Over Current Limit  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
10  
15  
20  
25  
30  
40  
50  
60  
10  
15  
20  
25  
25  
25  
25  
25  
TDA38740 Current  
Limit Threshold  
(Valley Current)  
Ioc  
Tj = 25 °C, Vcc =5.0 V,  
A
TDA38725 Current  
Limit Threshold  
(Valley Current)  
Ioc  
Tj = 25 °C, Vcc =5.0 V,  
See Note 11  
A
Current Limit  
Threshold Accuracy  
±20  
%
Over Voltage  
Protection  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0.8  
1.0  
1.2  
1.35  
1.5  
1.8  
2.2  
2.85  
1.6  
2.0  
2.4  
2.7  
3.0  
3.6  
4.4  
5.7  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
In VOUT_SCALE_LOOP  
1:1 mode,  
8 Discrete Options  
V
Fixed OVP Threshold  
(Programmable)  
OVP_Vth  
In VOUT_SCALE_LOOP  
1:2 mode,  
8 Discrete Options.  
Note 11 & 13  
V
Output Fixed OVP  
Threshold Accuracy  
See note 11  
±5  
-
%
Relative to Vout in steps  
of 50 mV in  
50  
400  
mV  
Final Datasheet  
15 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Electrical Specifications  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VOUT_SCALE_LOOP 1:1  
mode  
Relative OVP  
Threshold  
(programmable)  
Relative to Vout in steps  
of 100 mV  
VOUT_SCALE_LOOP 1:2  
100  
-
800  
mV  
mode  
VOUT_SCALE_LOOP 1:1  
-
-
±100  
±200  
-
-
mV  
mV  
Output Relative OVP  
Threshold Accuracy  
VOUT_SCALE_LOOP 1:2,  
Note 13 & 14  
Under Voltage  
Protection  
UVP Trip Threshold  
UVP_Vth  
Relative to Vout in steps  
of 50 mV in  
VOUT_SCALE_LOOP 1:1  
mode  
50  
-
-
400  
800  
mV  
mV  
Relative to Vout in steps  
of 100 mV in  
VOUT_SCALE_LOOP 1:2  
mode  
100  
VOUT_SCALE_LOOP 1:1  
-
-
±100  
±200  
-
-
mV  
mV  
Output Relative UVP  
Threshold Accuracy  
VOUT_SCALE_LOOP 1:2,  
Note 13 & 14  
IMON Reporting  
Accuracy  
Vin = 12 V, Vout = 1.2 V,  
Iout = 40 A, Note 11  
IMON Accuracy  
Imon  
-
±6  
-
%
Power Good  
Pgood  
mA  
µA  
Pgood Sink Current  
IPG  
VPG = 0.5 V, Rpull-up =  
500 to 3.3 V  
-
5
-
6
5
Pgood Open Drain  
Leakage Current  
VPG = 3.6 V  
-5  
Pgood Low Voltage  
Pgood Low Voltage  
VPG_L  
VPG_H  
Vin = Vcc = 5 V, I = 20 mA  
-
-
-
-
0.1  
0.7  
V
V
Vin = Vcc = 0 V, Rpull-up  
= 4.7 4Ω t8 ꢇ.ꢇ V, Note  
11  
Thermal Shutdown  
Thermal Shutdown  
Hysteresis  
Note 11  
Note 11  
-
-
-
-
-
-
140  
20  
-
-
-
-
-
-
°C  
PMBus Reporting  
kHz  
kHz  
kHz  
Normal  
Fast  
100  
400  
Bus Speed  
High-Speed  
1000  
0.625,  
0.977,  
1.953,  
Output Voltage  
Resolution  
mV  
See Note 14 & 15  
16 of 66  
-
-
Final Datasheet  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Electrical Specifications  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
3.906  
Output Voltage Filter  
Rate  
kHz  
kHz  
V
-
-
-
-
8
379  
-
-
Output Voltage Update  
Rate  
-
VOUT_SCALE_LOOP=1:  
1
2.56  
5.12  
Highest Reported Vout  
VOUT_SCALE_LOOP=1:  
2
V
-
-40 - 125 (Tj),  
4.5 V < Vcc < 5.5 V,  
%
%
-2  
-1  
-
-
2
1
ꢄ.ꢅꢆ ꢁ V8ut ꢁ ꢄ.ꢆ;  
VOUT_SCALE_LOOP in  
1:1 mode  
Vout Reporting Accuracy  
-40 - 125 (Tj),  
4.5 V < Vcc < 5.5 V,  
ꢄ.ꢆ<V8ut ꢁ ꢅ.ꢆꢅ;  
VOUT_SCALE_LOOP in  
1:1 mode  
A
-
-
-
0.0625  
8
-
-
-
Iout Resolution  
Iout Filter Rate  
Iout Update Rate  
kHz  
kHz  
379  
Iout Digital Monitoring  
Range  
A
-
-
64  
0 -125 ,  
4.5 V<Vcc<5.5 V  
ꢄ A ꢁ I8ut ꢁ ꢈꢄ A  
%
-
±6  
-
Iout Accuracy (PMBus)  
ꢄ.ꢅꢆ V ꢁ V8ut ꢁ ꢅ.ꢆꢅ V  
-
-
1
4
-
-
Temperature Resolution  
Temperature Filter Rate  
kHz  
Temperature Update  
Rate  
-
-40  
-
189  
-
-
125  
-
kHz  
Temperature Monitoring  
Range  
Temperature Reporting  
Accuracy  
Note 11  
±1  
PMBus Interface  
Timing Specifications  
SM_DAT, SM_CLK  
0.997  
0.839  
0.996  
-
-
-
1.208  
1.057  
1.201  
V
V
V
Data Rising Threshold  
Data Falling Threshold  
Clock Rising Threshold  
Clock Falling  
Threshold  
0.836  
1.057  
V
Final Datasheet  
17 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Electrical Specifications  
Parameter  
Data pulldown  
resistance  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
5
-
13  
SMALERT# pulldown  
resistance  
5
-
20  
-1  
-
-
-
1
4
µA  
pF  
Input Leakage  
See Note 11  
Pin Capacitance  
Note: .  
11. Guaranteed by design and not tested in production  
12. Cold temperature performance is guaranteed via correlation using statistical quality control. Not tested in  
production  
13. FOVP, ROVP and RUVP threshold accuracies for VOUT_SCALE_LOOP 1:2 are based on the use of an output  
divider as specified in section 13.3  
14. Guaranteed by Bench Characterization at Room Temperature and not tested in production  
15. Actual output voltage resolution is limited by internal DAC  
Final Datasheet  
18 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Pin Strap Resistors Application Information  
8
P27 Strap Res2st8rs App52cat287 I7f8r6at287  
The TDA38740/725 devices allow pinstrapping functionality to boot up the part with parameters set by resistor  
from pin to ground. The pin functionality can be enabled by writ270 ꢉꢄꢀ t8 t1e re02sters  
ilim_docp_override_pin(0x5E[0]),  
vboot_override_pin(0x5E[3]),  
ilim_aocp_override_pin(0x5E[1]),  
ton_override_pin(0x5E[4]),  
lcf_zero_override_pin(0x5E[2]),  
fccm_override_pin(0x5E[5]),  
fovp_override_pin(0x5E[6]), rovp_override_pin(0x5E[7]). The pinstrapping functionality is disabled on  
TDA38740/725-0000 parts and these parameters are set by PMBus commands. The TDA38740/725-0000 parts have  
VOUT_COMMAND set to 0V and there will not be any output until the output is set to desired value. The  
pinstrapping functionality is enabled on TDA38740/725-0020 parts. Refer to Section 1 for custom part number  
information for Pin configurable and Register configurable parts.  
The tables and descriptions below detail different parameters that can be set using pin strap resistor.  
Table 7  
MODE/TON Table  
Bin  
0
MODE/TON ꢆ4Ωꢅ  
SHORT  
2.49  
Freq (kHz)  
600  
MODE  
1
2
1000  
1400  
2000  
1200  
1400  
1800  
2000  
400  
FCCM  
3.24  
3
4.02  
4
4.87  
5
5.76  
6
6.81  
7
7.87  
DEM  
8
9.09  
9
10.5  
600  
10  
11  
12  
13  
14  
15  
12.1  
800  
14  
1000  
400  
15.8  
17.8  
1800  
1200  
800  
FCCM  
20  
FLOAT  
When operating in the pin strap resistor mode the switching frequency and the mode can be set by connecting a  
resistor from MODE/TON pin to GND per table above. Switching frequency can be selected from 400kHz to 2000kHz  
in steps of 200kHz except the 1600kHz. Mode can be selected between Forced Continous Conduction Mode (FCCM)  
and Diode Emulation Mode (DEM).  
Final Datasheet  
19 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Pin Strap Resistors Application Information  
Table 8  
TDA38740/725 Boot Up Voltage and OVP Limits Table for VOUT_SCALE_LOOP 1:1.  
VBT ꢆ4Ωꢅ  
BOOT-Up Voltage (V)  
Relative OVP/UVP (mV)  
Fixed OVP (V)  
FLOAT  
150  
127  
105  
88.7  
75  
61.9  
51.1  
43.2  
36.5  
30.1  
21  
2.5  
1.8  
1.65  
1.5  
1.35  
1.25  
1.2  
1.1  
1.05  
1
0.90  
0.8  
0.7  
0.6  
0.5  
0.4  
300  
300  
300  
300  
250  
250  
200  
200  
200  
200  
200  
200  
150  
150  
150  
150  
2.85  
2.2  
2.2  
2.2  
1.8  
1.8  
1.5  
1.35  
1.35  
1.35  
1.2  
1.2  
1.2  
1
14  
9.53  
5.62  
SHORT  
1
0.8  
Table 9  
TDA38740/725 Boot Up Voltage and OVP Limits Table for VOUT_SCALE_LOOP 1:2  
VBT ꢆ4Ωꢅ  
BOOT-Up Voltage (V)  
Relative OVP/UVP (mV)  
Fixed OVP (V)  
FLOAT  
150  
127  
105  
88.7  
75  
61.9  
51.1  
43.2  
36.5  
30.1  
21  
5.0  
3.6  
3.3  
3.0  
2.7  
2.5  
2.4  
2.2  
2.1  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
300  
300  
300  
300  
300  
300  
300  
300  
300  
300  
300  
300  
300  
200  
200  
200  
5.7  
4.4  
4.4  
3.6  
3.6  
3.0  
3.0  
2.7  
2.7  
2.7  
2.4  
2.4  
2.0  
1.6  
1.6  
1.6  
14  
9.53  
5.62  
SHORT  
When operating in the pin strap resistor mode, the output voltage can be selected by connecting a resistor from  
the VBT pin to GND per the table above.  
When setting the output voltage using VOUT_COMMAND, the VOUT_SCALE_LOOP 1:1 should be used for  
obtaining outputs in the range of 0.25 V to 2.56 V. For obtaining output voltages between 2.56 V to 5.12 V, the  
VOUT_SCALE_LOOP 1:2 should be used. When operating in VOUT_SCALE_LOOP 1:1 mode the full output voltage  
should be fed back to the VOSENP pin as shown in Figure 3. When operating in VOUT_SCALE_LOOP 1:2, half of  
the output voltage is fed back to the VOSENP Pin by using a resistor divider as shown in Figure 4. The VBT pin can  
be used to set the output voltages in the range of 0.4 V to 2.5 V in VOUT_SCALE_LOOP 1:1 and from 0.8 V to 5 V in  
VOUT_SCALE_LOOP 1:2.  
Final Datasheet  
20 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Pin Strap Resistors Application Information  
Table 10 TDA38740 OCP and Internal Phase margin Zero selection  
RILIMꢆ4Ωꢅ  
Typical OCP(A)  
Internal Loop-Compensation-  
Filter-Zero Register (LCF)  
Default LCF zero capacitor  
value (pF), Note 16  
SHORT  
3.32  
6.98  
11  
15  
60  
20  
10  
15  
20  
25  
30  
40  
50  
25  
60  
40  
50  
10  
30  
LCF 0  
LCF 4  
LCF 2  
LCF 0  
LCF 1  
LCF 1  
LCF 2  
LCF 2  
LCF 3  
LCF 4  
LCF 1  
LCF 3  
LCF 2  
LCF 3  
LCF 1  
LCF 3  
1
8
4
1
2
2
4
4
6
8
2
6
4
6
2
6
15.4  
20.8  
26.1  
31.6  
43.2  
51.1  
64.9  
78.7  
95.3  
113  
133  
FLOAT  
Table 11 TDA38725 OCP and Internal Phase margin Zero selection  
RILIMꢆ4Ωꢅ  
Typical OCP(A)  
Internal Loop-Compensation-  
Filter-Zero Register (LCF)  
Default LCF zero capacitor  
value (pF), Note 16  
SHORT  
3.32  
6.98  
11  
15  
15  
20  
10  
15  
20  
25  
10  
15  
20  
25  
10  
15  
20  
10  
25  
LCF 0  
LCF 4  
LCF 2  
LCF 0  
LCF 1  
LCF 1  
LCF 2  
LCF 2  
LCF 3  
LCF 4  
LCF 1  
LCF 3  
LCF 2  
LCF 3  
LCF 1  
LCF 3  
1
8
4
1
2
2
4
4
6
8
2
6
4
6
2
6
15.4  
20.8  
26.1  
31.6  
43.2  
51.1  
64.9  
78.7  
95.3  
113  
133  
FLOAT  
Final Datasheet  
21 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Pin Strap Resistors Application Information  
When operating in the pin strap resistor mode, the OCP limit can be selected by connecting a resistor from the  
ILIM pin to GND per the table above. The Internal Loop-compensation-filter zero can also be set by configuration  
register 0x64[14:12] through PMBus.  
Table 12 SM_ADDR/PROG Pin with the consecutive images starting from Config 0 at location 0  
Resistor to GND  
PROG pin  
SM_ADDR pin : Offset from the Programmability Access  
(k)  
base Address  
for Multi-image config file  
SHORT  
5.62  
9.53  
14  
CONFIG0  
CONFIG1  
CONFIG2  
CONFIG3  
CONFIG4  
CONFIG5  
CONFIG6  
CONFIG7  
CONFIG8  
CONFIG9  
CONFIG10  
CONFIG11  
CONFIG12  
CONFIG13  
CONFIG14  
CONFIG15  
0
1
2
3
21  
4
30.1  
36.5  
43.2  
51.1  
61.9  
75  
5
6
Please refer to section 13.2  
for single image and multi-  
image programming details  
7
8
9
10  
11  
12  
13  
14  
15  
88.7  
105  
127  
150  
FLOAT  
A resistor to ground on this pin sets both a fixed I2C slave address offset and selects a configuration from the 16  
possible config files in the OTP during power-up. As shown in Table above, the SM_ADDR pin selects an offset  
based on the resistor connected to the SM_ADDR/PROG pin. The PROG functionality is used to select one of the 16  
images to load from the OTP. The pin programming limits the offset adjust capability via the pin to a maximum of  
4 as per the programming capability available to the customer. For any application which needs more than 5  
images or greater than 4h offsets to base address, please contact Infineon. For more information please refer to  
Section 13.2.  
Note:  
16. The default LCF value can be changed using Registers 0x64[14:12], 0x62[2:0], 0x62[6:4], 0x62[10:8], 0x62[14:12]  
for LCF 0, LCF 1, LCF 2, LCF 3, LCF 4 respectively  
Final Datasheet  
22 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Typical Efficiency and Power Loss Curves  
9
Typ2ca5 Eff2c2e7cy a7d P8wer L8ss Curves  
9.1  
PV27 = V27 = ꢂꢃ V, V8ut = ꢂ.ꢃV, Fsw = ꢇꢁꢁ4Hz  
The test for efficiency was done at 0 LFM and the driver losses are included in the efficiency numbers. Solid lines  
indicate efficiency and dashed lines show power loss at 600 kHz.  
Table 13 Inductors for PVin=Vin=12 V, Fs = 600 kHz  
Vout (V)  
1.2  
Lout (nH)  
150  
P/N  
Size (mm)  
10 x 6.4 x 12  
10 x 7 x 10  
DCR (m)  
0.125  
L101247A-100L  
L101158A-R47MHF  
470  
0.81  
3.3  
Efficiency and Power Loss vs Iout  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
6
5
4
3
2
1
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
Iout (A)  
1.2V Efficiency 600KHz Int LDO (%)  
1.2V Power Loss 600KHz Int LDO (W)  
Figure 5  
Typical efficiency and power loss curves, PVin = Vin = 12 V, Vout = 1.2 V, Fsw = 600 kHz  
Final Datasheet  
23 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Typical Efficiency and Power Loss Curves  
Efficiency and Power Loss wrt Iout  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
9
8
7
6
5
4
3
2
1
0
0
5
10  
15  
20  
25  
30  
35  
40  
Iout (A)  
3.3V Efficiency 600KHz Int LDO (%)  
3.3V Power Loss 600KHz Int LDO (W)  
Figure 6  
Typical efficiency and power loss curves, PVin = Vin = 12 V, Vout = 3.3 V, Fsw = 600 kHz  
9.2  
PV27 = V27 = ꢂꢃ V, Fsw = ꢈꢁꢁ 4Hz  
The test for efficiency was done at 0 LFM and the driver losses are included in the efficiency numbers. Solid line  
indicate Efficiency and dashed lines are showing power loss at 800 kHz.  
Table 14 Inductors for PVin=Vin=12 V, Fsw = 800 kHz  
Vout (V)  
1.2  
Lout (nH)  
150  
P/N  
Size (mm)  
10 x 6.4 x 12  
10 x 7 x 10  
DCR (m)  
0.125  
L101247A-150L  
L101158A-R47MHF  
3.3  
470  
0.81  
Final Datasheet  
24 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Typical Efficiency and Power Loss Curves  
Efficiency and Power Loss vs Iout  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
6
5
4
3
2
1
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
Iout (A)  
1.2V Efficiency 800KHz Int LDO (%)  
1.2V Power Loss 800KHz Int LDO (W)  
Figure 7  
Typical efficiency and power loss curves, PVin = Vin = 12 V, Vout = 1.2 V, Fsw = 800 kHz  
Efficiency and Power Loss wrt Iout  
98  
9
8
7
6
5
4
3
2
1
0
96  
94  
92  
90  
88  
86  
84  
82  
80  
0
5
10  
15  
20  
25  
30  
35  
40  
Iout (A)  
3.3V Efficiency 800KHz Int LDO (%)  
3.3V Power Loss 800KHz Int LDO (W)  
Figure 8  
Typical efficiency and power loss curves, PVin = Vin = 12 V, Vout = 3.3 V, Fsw = 800 kHz  
9.3  
PV27 = V27 = ꢂꢃ V, Fsw = ꢂꢁꢁꢁ 4Hz  
The test for efficiency was done at 0 LFM and the driver losses are included in the efficiency numbers. Solid lines  
indicate efficiency and dashed lines show power loss at 1000 kHz.  
Table 15 Inductors for PVin=Vin=12 V, Fsw = 1000 kHz  
Vout (V)  
Lout (nH)  
P/N  
Size (mm)  
DCR (m)  
Final Datasheet  
25 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Typical Efficiency and Power Loss Curves  
1.2  
3.3  
150  
470  
L101247A-150L  
0.125  
0.81  
10 x 6.4 x 12  
10 x 7 x 10  
L101158A-R47MHF  
Efficiency and Power Loss vs Iout  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
7
6
5
4
3
2
1
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
Iout (A)  
1.2V Efficiency 1000KHz Int LDO (%)  
1.2V Power Loss 1000KHz Int LDO (W)  
Figure 9  
Typical efficiency and power loss curves, PVin = Vin = 12 V, Vout =1.2 V, Fsw = 1000 kHz  
Efficiency and Power Loss wrt Iout  
98  
9
96  
94  
92  
90  
88  
86  
84  
82  
80  
8
7
6
5
4
3
2
1
0
0
5
10  
15  
20  
25  
30  
35  
40  
Iout (A)  
3.3V Efficiency 1000KHz Int LDO (%)  
3.3V Power Loss 1000KHz Int LDO (W)  
Figure 10 Typical efficiency and power loss curves, PVin = Vin = 12 V, Vout =3.3 V, Fsw = 1000 kHz  
Final Datasheet  
26 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Thermal De-rating curves  
10  
T1er6a5 De-rat270 curves  
Measurement is done on Evaluation board DB356. The PCB is an 8-layer board with 2 oz Copper for top and  
bottom layers and 2 oz Copper for the inner layers, FR4 material, size 5.25ꢊx4.1ꢊ.  
Figure 11 Thermal de-rating curves, PVin = 12 V, Vout = 1.2 V, fsw = 800 kHz, VCC = Internal LDO  
Final Datasheet  
27 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Thermal De-rating curves  
Figure 12 Thermal de-rating curves, PVin = 12 V, Vout= 3.3 V, fsw = 800 kHz, VCC = Internal LDO  
Final Datasheet  
28 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
RDS(on) of MOSFET Over Temperature  
11  
RDS(on) 8f MOSFET Over Te6perature  
Synchronous FET RDS(on) Variation with Temperature  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
Vcc = 5 V  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
Temperature (°C)  
Control FET RDS(on) Variation with Temperature  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
Vcc = 5 V  
0.5  
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
Temperature(°C)  
Figure 13 RDS(on) of MOSFETs over Junction Temperature  
Final Datasheet  
29 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Typical operating characteristics (-40 C ≤ T3 ≤ +ꢂꢃꢄ Cꢅ  
12  
Typ2ca5 8perat270 c1aracter2st2cs ꢆ-ꢀꢁ °C ≤ T3 ≤ +ꢂꢃꢄ °Cꢅ  
PGOOD Rising and Falling Thresholds  
Figure 14 Typical operating characteristics (set 1 of 2)  
Final Datasheet  
30 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Typical operating characteristics (-ꢀꢁ C ≤ T3 ≤ +ꢂꢃꢄ Cꢅ  
FOVP Thresholds  
RUVP Thresholds  
ROVP Thresholds  
Analog OCP Thresholds  
Figure 15 Typical operating characteristics (set 2 of 2)  
Final Datasheet  
31 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
General Description  
13  
Ge7era5 Descr2pt287  
The TDA38740/725 is an easy-to-use, fully integrated, and highly efficient dc-dc regulator optimized to convert a  
12 V input supply to a voltage level required by high performance microprocessors, DDR memory, housekeeping  
supplies, base stations, etc. T1e 87b8ard PWM c87tr855er a7d O9t2MOS™ FETs w2t1 27te0rated b88tstra9 d28de  
make TDA38740/725 a small footprint solution, providing highly efficient power delivery. Using a fast Constant On-  
Time (COT) control scheme simplifies design efforts and achieves fast control response. The device configuration  
ca7 be eas25y def27ed us270 I7f27e87ꢀs XDP Designer GUI and is stored in the on-chip memory.  
13.1  
PMBUS Operat270 M8de  
The TDA38740/725 can be used in PMBUS mode. In PMBUS mode, the output voltage is controlled by the PMBUS  
VOUT_COMMAND command. The VOUT_MODE resolution can be set to 0.625 mV/lsb, 0.977 mV/lsb, 1.953 mV/lsb,  
or 3.906 mV/lsb. The output DAC resolution is 1.25 mV/lsb. The resolution is user-programmable via a  
configuration file.  
See Table 18 for  
a full list of all supported PMBUS commands. Please refer to App Note  
AN_2203_PL12_2204_184108 for more details.  
13.2  
Mu5t2p5e T26e Pr80ra66270 Me68ry ꢆMTPꢅ  
The multiple time programming memory (MTP) stores the device configuration. At power-up, MTP contents are  
transferred to operating registers for access during device operation. MTP allows customization during both  
design and high-volume manufacturing. MTP integrity is verified by Cyclic Redundancy Check (CRC) validation on  
each power up. The controller will not start up in the event of a CRC error.  
The TDA38740/725 allows up to 5 unique configurations, to configure basic device parameters such as frequency,  
fault operation characteristics, and boot voltage. This represents a significant size and component saving  
compared to traditional analog methods. In addition, the TDA38740/725 also allows loading of multi-image (up to  
5 consecutive) configuration files and automatic selection of a unique file after power-up based on the resistor  
value at the SM-ADDR/PROG pin and the pointer (0x00[13:8]). There are registers available in the CNFG section of  
the register map which allow the user the capability to set the starting point for a multi-image (register  
0x0000[13:8]) and number of images as part of the multi-image config file (register 0x0000[3:0]).  
TDA38740/725 can be programmed successfully for an application up to 16 times for a single image config file.  
This should be done during offline programming or by using Infineon programming solution. Additonally, the  
TDA38740 also allows loading a maximum of 5 config files for the multi-image designs. For any application which  
needs multi-image configuration, Infineon will establish custom part numbers and will program at an Infineon  
production facility. After soldering parts with a 5-image multi-image, it may be programmed two more times with  
a single image.  
The user still has access to all the possible I2C slave addresses. The user has to use the registers to do this. This  
requires the address offset capability of the SM_ADDR/PROG pin to be disabled by setting the bit 0x42[6] to 1. Thus,  
the base address register 0x40[14:8] for I2C and 0x40[6:0] for PMBus will represent the effective slave address for  
the device. In this case the SM_ADDR/PROG effectively becomes just the PROG pin used for selecting the correct  
config file for an application. For example, for an effective 7-bit I2C address of 14h the register 0x40[14:8] should  
be set to 14h. The second method for choosing the effective slave address is using the base address in register  
0x40 and adding the offset selected by the SM_ADDR/PROG pin. The pin configuration limits the offset capability  
available for an application, as shown in Table 12.  
13.3  
V85ta0e Se7se  
An error voltage is generated from the difference between the target voltage, defined by the output voltage and  
load line (if implemented), and the differentially sensed output voltage (remote sense). The error voltage is  
Final Datasheet  
32 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
General Description  
digitized by a high-speed, high-precision ADC. An anti-alias filter provides the necessary high frequency noise  
rejection.  
The gain and offset of the voltage sense circuitry for each loop is factory trimmed to deliver the required accuracy.  
In order to achieve tight regulation in vout_scale_loop of 1:2 where a resistor divider is used to feedback the  
output voltage, connect a 31 4Ω resistor R3 in parallel to the top resistor R1 of the divider as shown in Figure 4.  
This will compensate for the error caused by impedance of the Analog front end (AFE) circuit. The recommended  
value for R1 and R2 is 499 Ohms and the recommended tolerance for R1, R2 and R3 is 1%.  
13.4  
IꢃC & PMBus I7terface  
An I2C or PMBus interface is used to communicate with the TDA38740/725. This two-wire serial interface consists  
of clock and data signals, and operates as fast as 1 MHz. The bus provides read & write access to the internal  
registers for configuration, and for monitoring of operating parameters. The bus is also used to program on-chip  
non-volatile memory (MTP) to store operating parameters.  
To ensure operation with multiple devices on the bus, a base address for TDA38740/25 is programmed into the  
MTP. The unique slave address for the device is a combination of the base address in the device register plus the  
offset generated by the SM_ADDR/PROG pin (depending on the resistor value connected to the pin). Alternatively,  
the same thing is achieved by programming the effective I2C address into the base address register and disable  
the SM_ADDR/PROG pin offset functionality via bit 0x42[6] in the USER section.  
To protect customer configuration and information, the I2C and PMBus interface can be configured for either  
limited access or locked with a 16-bit software password. Limited access includes both write and read protection  
options. In addition, there is a telemetry-only mode which only allows reads from the telemetry registers.  
Refer to the PMBus Command Codes in Table 18 for more information. One can access the non-PMBus registers  
(I2C register) via the MFR_REG_ACCESS(D0h) PMBus Command. Through the PMBus, it is possible to access  
configuration registers and the PMBus registers in the device. It has a 7-bit register to set the base PMBus address  
0x40[6:0] of the device. Setting this address to zero disables the PMBus interface. The recommended addresses  
are 0x40-0x47 and 0x70-0x77. If the I2C base address, 0x40[14:8], register is set to 0, the device is forced into test  
mode. Reserved addresses should be avoided: (0x00 to 0x07), 0x08, 0x0c, 0x28, 0x37, 0x61, (0x78 to 0x7F). All  
registers at this address are protected by the i2c_pmb_addr_lock register 0xD4[2]. Please refer to the App note  
AN_2204_PL12_2204_183614 for more information on the register map.  
13.5  
I7f27e87 XDP Des207er GUI  
The Infineon XDP Designer GUI provides the designer with a comprehensive design environment that includes  
input settings, output settings, telemetry and PMBus interface. With these tools, a designer can monitor and set  
system configuration settings for fault thresholds and output behavior in real time. The XDP Designer GUI allows  
real-time design monitoring of key parameters such as output current and power, input current and power,  
efficiency, temperature, and faults. Figure 16 shows the GUI home screen with the available parameter windows.  
Final Datasheet  
33 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
General Description  
Figure 16 XDP Designer GUI home screen.  
13.6  
Pr80ra66270  
Once a design is complete, the XDP Designer GUI produces a complete configuration file. These configurations  
files can be saved and loaded. Infineon does not recommend loading a new config file and programming the  
device while the device is operating to produce an output voltage. Please refer to the programming guide  
AN_2204_PL12_2204_185449 for more details.  
13.7  
Rea5-t26e M872t8r270  
The TDA38740/725 can be accessed through the use of PMBus Command codes (described in Table 18) to read  
the real-time status of the power supply (dc-dc converter) including input and output voltages, input and output  
currents, input and output power and temperature.  
Final Datasheet  
34 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Theory of Operation  
14  
T1e8ry 8f Operat287  
14.1  
Dev2ce P8wer-O7 a7d I72t2a52zat287  
TDA38740/725 is ready to communicate as soon as Vcc is above the threshold of 3.7 V. The device starts  
switching once the Enable signal is pulled high. Based on whether Vcc is supplied externally or an internal LDO is  
used, the recommended power-up sequences are shown in Figure 17.  
Device Startup with Internal LDO  
Pre-Bias  
PVIN  
Int. LDO  
Enable  
Device Startup with External Vcc (Case 1)  
Device Startup with External Vcc (Case 2)  
Pre-Bias  
Pre-Bias  
PVIN  
Ext. Vcc  
PVIN  
Ext. Vcc  
Enable  
Enable  
Figure 17 Device power-on sequence.  
14.2  
Pre-b2as start-up  
The TDA38740/725 is able to start up into a pre-charged output without causing oscillations and disturbances of  
the output voltage upto 0.5 V prebias level.  
Prebias operation requirements are:  
The Startup sequence should follow the sequencing shown in Figure 17  
T1e ꢋpower down analog circuit w1e7 t1e 8ut9ut 2s 78t e7ab5edꢊ feature should be disabled (set register  
0x6C value to 0xF240)  
For any application needs with prebias level > 0.5 V please contact Infineon.  
14.3  
I7ter7a5 L8w-Dr8put ꢆLDOꢅ Re0u5at8r  
The TDA38740/725 has an integrated low-dropout LDO regulator to provide the bias voltage for internal circuitry.  
VIN pin is the input for the LDO. When the VCC voltage rises above the VCC_UVLO_Start threshold and the EN  
voltage is above the Enable_UVLO_Start threshold, the soft-start sequence starts. When using the internal LDO for  
single rail operation, the VIN pin should be connected to the PVIN pin. To save power losses on the LDO, an external  
Final Datasheet  
35 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Theory of Operation  
bias voltage can be used by connecting the VIN pin to the VCC/LDO pin. Figure 18 illustrates the possible  
configurations of VCC/LDO and VIN pins.  
PVin  
Ext Vcc  
PVin  
4.7uF  
VIN  
VCC  
PVin  
VIN  
VCC  
PVin  
TDA38740  
PGND  
2.2uF ~10uF  
TDA38740  
PGND  
10uF  
Single rail operation with the internal LDO  
Use an external Vcc  
Figure 18 Configuration of using the internal LDO or an external VCC.  
14.4  
Fast C87sta7t ON-T26e C87tr85  
The TDA38740/725 features a proprietary Fast Constant On-Time (COT) Control, which can provide fast load  
transient response, good output regulation and minimize design effort. Fast COT control compares the output  
voltage, Vo, to a floor voltage combined with an internal ramp signal. When Vout drops below that signal, a PWM  
signal is initiated to turn on the high-side FET for a fixed on-time. The floor voltage is generated from an internal  
compensated error amplifier, which compares Vout with a reference voltage. Compared to traditional COT  
control, Fast COT control significantly improves Vout regulation.  
14.5  
EN ꢆE7ab5eꢅ P27  
The EN pin controls the on/off state of the TDA38740/725. When the VCC/LDO voltage rises above the  
VCC_UVLO_Start threshold, the soft-start sequence starts. The EN pin voltage needs to be toggled when the VCC  
voltage drops below VCC_UVLO_Stop and rises above the VCC_UVLO_Start threshold to start the soft-start  
sequence.  
The EN pin can be configured in four ways. Three of them are as shown in Figure 19. Configuration one is an  
external logic signal. The second and third possible configurations derive the enable signal from the PVin voltage  
by a resistive divider, REN1 and REN2 or tie EN to Pvin. The fourth configuration is control via PMBus register  
0x204[7:0] using the PMBus lines. TDA38740/725 utilizes the PMBus ON_OFF_CONFIG command in combination  
with the OPERATION command, register 0x202[7:0], to control the soft enable. Using this, a preference between  
hardware or software enable may be established. More information is available in the PMBUs app note  
AN_2203_PL12_2204_184108.  
The EN pin should not be left floating. T1ere 2s a7 27ter7a5 9u55 d8w7 res2st8r 8f ꢂMΩ fr86 EN t8 GND 927. A pull-  
down resistor in the range of tens of kilohms is recommended.  
Final Datasheet  
36 of 66  
V2.6  
2022-11-16  
 
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Theory of Operation  
PVin  
PVin  
PVin  
Vin  
Vin  
PVin  
PVin  
REN1  
Vcc  
Vcc  
PVin  
Vin  
En  
En  
Vcc  
TDA38740  
TDA38740  
En  
TDA38740  
REN2  
ꢂꢃꢄ  
EN = an external logic signal  
EN = ꢁ  
× ꢆꢇ  
ꢂꢃꢄ  
EN = PVin  
Configuration 3  
ꢈꢉ  
+ꢁ  
ꢂꢃꢅ  
Configuration 1  
Configuration 2  
Figure 19 Enable Configurations  
14.6  
Sw2tc1270 Freque7cy a7d FCCM/DEM Operat287  
The TDA38740/725 offers two operation modes: Forced Continuous Conduction (FCCM) and Diode Emulation  
Mode (DEM). With FCCM, the TDA38740/725 always operates as a synchronous buck converter with a pseudo  
constant switching frequency and therefore achieves small output voltage ripple. In DEM, the synchronous FET is  
turned off when the inductor current is close to zero, which reduces the switching frequency and improves  
efficiency at light load. At heavy load, both FCCM and DEM operate in the same way. The operation mode can be  
selected by bit 0x5C [1] in the configuration register, value 1 for this bit programs the device to operate in FCCM  
mode and 0 for DEM. It should be noted that the selection of the operation mode cannot be changed on the fly. To  
load a new configuration, EN or VCC voltage must be cycled.  
The TDA38740/725 offers eight programmable switching frequencies, fsw, from 400 kHz to 2 MHz excluding 1600  
kHz, by editing the PMBus register, 0x266[15:0], using the PMBus lines. Alternatively, switching frequency and  
mode can be selected using eight resistor selectable options at Ton/Mode pin. The selected Ton/mode bin is  
loaded to the IC during the power up and cannot be changed on the fly. To change the switching frequency and  
mode, users must cycle the EN signal or VCC voltage. To use the pin functionality, the ton_override_pin bit (0x5e  
[4]) and fccm_override_pin bit (0x5e [5]) should be set to 0. Based on the selected fsw, the TDA38740/725 generates  
the corresponding on-time of the Control FET for a given PVin and Vo, as shown by the formula below.  
ꢌ  
ꢋꢉ  
=
×
ꢆꢇ  
ꢏꢐ  
ꢈꢉ  
Where fsw is the desired switching frequency. During operation, the TDA38740/725 monitors PVin and Vo, and can  
automatically adjust the on-time to maintain the pre-selected fsw. With the increase of the load, the switching  
frequency can increase to compensate for the power losses. Therefore, the TDA38740/725 has a pseudo constant  
switching frequency.  
Using the FREQUENCY_SWITCH PMBus command, the switching frequency may be programmed between 400  
kHz and 2 MHz in steps of 200 kHz except 1600 kHz.  
14.7  
S8ft Start  
The soft-start functionality is based on the PMBus TON_RISE command. As shown in the waveform below, when  
the TON_RISE is set to 50 ms, the output voltage rises from zero to set value in 50 ms.  
Final Datasheet  
37 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Theory of Operation  
Figure 20 Vo=5V, Ch1=Vout, Ch3=Switching node, Ch4=Enable Signal  
After the EN pin is enabled, the TON_DELAY command is executed before the TON_RISE command. Hence, the  
output will not begin to rise until the specified delay is completed. In the above example, the delay is also set to  
50 ms.  
14.8  
L8ad-527e  
The TDA38740/725 offers a digital load line which can be set via configuration registers, without any need for  
external components. The 58ad 527e ca7 be 9r80ra66ed fr86 ꢄ t8 ꢂꢄ 6Ω at a res85ut287 8f ꢂꢌ.ꢆꢇ µΩ using the  
VOUT_DROOP command 0x250[15:0]. The range and resolution of the VOUT_DROOP may be increased by using  
the bit loadline_range_sel 0x6a [6] to ꢄ t8 ꢆꢄ 6Ω at a res85ut287 8f ꢂꢄꢄ µΩ. In addition to this, the bandwidth of  
the digital load line is also programmable from 30 kHz to 500 kHz in steps of 30 kHz by using 4 bits of register 0x6a  
[3:0].  
14.9  
Output V85ta0e D2ffere7t2a5 Se7s270  
The TDA38740/725 VOSENP and VOSENM pins are connected across the output capacitors near the load to provide  
true differential remote voltage sensing with high common-mode rejection. Fast COT control compares the output  
voltage to a floor voltage combined with an internal ramp signal. When Vout drops below that signal, a PWM signal  
is initiated to turn on the high-side FET for a fixed on-time. The floor voltage is generated from an internal  
compensated error amplifier, which compares the Vout with a reference voltage. As shown in Figure 21, the output  
sense pins VOSENP and VOSENM are connected across the output capacitors.  
Final Datasheet  
38 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Theory of Operation  
Figure 21 Output voltage sensing connections  
14.10  
Output Curre7t Se7s270  
Current sensing for both telemetry and over current protection is done by sensing the voltage across the sync FET  
RDS(on). This method increases t1e c87verterꢀs eff2c2e7cy, reduces c8st by e52627at270 a curre7t se7se res2st8r a7d  
minimizes any sensitivity to layout related noise issues. A novel scheme allows reconstruction of the inductor  
current from the voltage sensed across the Sync FET RDS(on).  
Final Datasheet  
39 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Faults and Protections  
15  
Fau5ts a7d Pr8tect287s  
15.1  
Over Curre7t Pr8tect287 ꢆOCPꢅ  
The TDA38740/725 has two levels of OCP protection: Analog OCP (AOCP) and Digital OCP (DOCP). The AOCP  
current limit is based on valley inductor current, whereas the DOCP is based on average current information. AOCP  
is a fast fault response, and should be set to a value that prevents failure of the device.  
A novel scheme allows reconstruction of the inductor current from the voltage sensed across the Sync FET RDS(on).  
It should be noted here that it is this reconstructed average inductor current that is digitized by the ADC and used  
for output current reporting.  
The over current (OC) fault protection circuit also uses the voltage sensed across the RDS(on) of the Synchronous  
MOSFET; however, the protection mechanism relies on a fast comparator to compare the sensed signal to the over  
current threshold and does not depend on the ADC or reported current. The current limit scheme uses an internal  
temperature compensated current source that has the same temperature coefficient as the RDS(on) of the  
Synchronous MOSFET. As a result, the over current trip threshold remains almost constant over temperature.  
The TDA38740/725 AOCP can be accessed via three bits in the register map (aocp_thresh_sel [0:2]). The digital OCP  
(DOCP) is availble via the PMBus register IOUT_OC_FAULT_LIMIT, and the response is decided by  
IOUT_OC_FAULT_RESPONSE. Available responses are shutdown, retry 6 times and latch off, or retry indefinitely.  
The indication of the fault is available in STATUS_IOUT register in PMBus.  
AOCP shall be enabled during soft-start and normal operation including FCCM and DEM modes. When AOCP is  
crossed, the low side MOSFET will continue to stay on for the remaining cycle and the following high side pulse  
will be ignored to allow inductor relaxation (pulse skipping). If an AOCP condition is detected on the rising edge  
of a PWM pulse, the high side will still be blocked from turning on and the pulse will be skipped.  
The high side will continue to be ignored if the current remains above the AOCP threshold. A 10-count counter is  
implemented to count 10 AOCP events, then a signal is sent to the digital block to perform the programmed  
response when the Digital OCP is triggered from the Analog OCP. The counter is reset after 3 consecutive non-OCP  
events. The count occurs at the valley of the current. Note that COT switching frequency will decrease when  
skipping pulses. Figure 22 is an example AOCP response.  
The TDA38740/725 also offers cycle-by-cycle AOCP response with a choice of eight selectable current limits, which  
is set by the resistance at ILIM pin. The selected OCP limit bank is loaded to the IC during the power up and cannot  
be changed on the fly. To change the OCP limit, users must cycle the EN signal or VCC voltage. Cycle-by-cycle OCP  
response allows the TDA38740/725 to fulfill a brief high current demand, such as a high inrush current during start-  
up. The output slew rate and the output capacitance will affect the AOCP during startup. At higher output voltages,  
a higher output slew rate or a higher output capacitance can false trigger AOCP at startup. The TON_RISE time  
should be increased or output capacitance should be reduced to avoid false triggering of AOCP.  
The AOCP is activated when EN voltage is above its threshold. During AOCP events, the valley of the inductor  
current is regulated around the AOCP limit. But during the first switching cycle when the AOCP is tripped, the valley  
of the inductor current can drop slightly below the AOCP limit. It should be noted that AOCP events do not pull the  
PGOOD signal low unless the output voltage eventually drops below the Under Voltage Protection (UVP) threshold  
and triggers UVP.  
The OCP limits are thermally compensated. The corresponding output dc current can be calculated as follows:  
∆ꢛꢗ  
ꢋꢒꢓ_ꢔꢕꢖ = ꢑꢗꢘꢙ  
Where: Iout_OCP = Output dc current when AOCP is tripped. ILIM = AOCP limit, which is the valley of inductor current.  
ΔiL = Peak-peak inductor ripple current.  
Final Datasheet  
40 of 66  
V2.6  
2022-11-16  
 
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Faults and Protections  
To avoid the inductor saturation during AOCP events, the following criterion is recommended for the inductor  
saturation current rating.  
ꢏꢝꢓ ꢞ ꢑꢗꢘꢙ_ꢟꢝꢠ ꢚ ∆ꢛꢗ  
Where: Isat is the inductor saturation current and ILIM_max is the maximum spec of the AOCP limit.  
AOCP Tripped  
Current  
Limit  
Inductor  
Current  
UVP  
shutdown  
Pulse  
skipped  
HDrv  
LDrv  
PGood  
UVP  
Threshold  
Vo  
PGood Turn-off  
Threshold  
Figure 22 AOCP response timing diagram.  
15.2  
Output U7der V85ta0e Pr8tect287 ꢆUVPꢅ  
The TDA38740/725 UVP response is a relative limit configurable from 50 mV to 400 mV in steps of 50 mV using the  
register bits relative_uvp_thresh[2:0] in configuration register 0x5e. The limit is programmed by  
VOUT_UV_FAULT_LIMIT PMBus command, and the response is programmed via the VOUT_UV_FAULT_RESPONSE  
command. Possible responses are ignore, shutdown, and retry indefinitely.  
When using the VBT pin to set the output voltage, the VOUT_COMMAND value should be same as the VBT pinstrap  
setting to avoid improper UVP triggering.  
When the UVP fault is triggered, a flag is raised and the part is tri-stated until the flag is cleared using the PMBus  
CLEAR_FAULTS command. The part is started again by either cycling the Vcc or the EN signal to the part. The  
shutdown response entails tri-stating both the MOSFETs and discharging the output either via a bleed resistor at  
the output or through the body diode of the low side FET.  
If the response is set to retry, a user defined timer (1 ms to 8 ms in steps of 1 ms) is started as soon as the UVP fault  
is triggered and the output is tri-stated. At the end of the timer the output is checked against a fixed level of 250  
Final Datasheet  
41 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Faults and Protections  
mV. If the output is below this voltage, the start-up sequence is initiated. Otherwise, the timer is reset and the  
output tri-state continues (both the MOSFET's are tri-stated).  
There are options for UVP protection to be lifted during voltage transitions (Vboot, Vout transition up and/or  
down) using the register bits blank_uv_sel[1:0] in configuration register 0x60. The options for this register are  
outlined in Table 16.  
Table 16 Optional UVP blanking via register blank_uv_sel (0x60[11:10]).  
sel  
3
Description  
blank UV faults during Vout transition up or down (including Vboot)  
blank UV faults during Vout transition up (including Vboot)  
blank UV faults during Vboot  
2
1
0
no UV fault blanking  
15.3  
Over V85ta0e Pr8tect287 ꢆOVPꢅ  
The OVP response is divided into two parts: Fixed OVP (FOVP) and Relative OVP (ROVP). The Fixed OVP is typically  
used for start-up, all DVIDs, and when EN is low. ROVP covers all other situations during operation. Figure 23  
depicts an example of when FOVP and ROVP are utilized.  
When using the VBT pin to set the output voltage, the VOUT_COMMAND value should be the same as the VBT  
pinstrap setting to avoid improper ROVP triggering.  
The FOVP has 8 distinct levels (0.8 V, 1 V, 1.2 V, 1.35 V, 1.5 V, 1.8 V, 2.2 V, and 2.85 V in VOUT_SCALE_LOOP 1:1 and  
the levels are doubled in VOUT_SCALE_LOOP 1:2). FOVP is programmable via the configuration fixed_ovp_thresh  
[2:0] in configuration register 0x60. The response to an OVP event is programmed via the  
VOUT_OV_FAULT_RESPONSE command. OVP can have four responses: ignore, shutdown, and retry n (max 6)  
times after n (defined by PMBus) sec before latching and retry foreever. The threshold for ROVP is relative to the  
programmed output voltage, and can be set from 50 mV to 400 mV in steps of 50 mV. The OVP fault can also be  
blanked by using the bits [13:12] of register 0x60 in common regmap space. Please refer to Table 17 for more  
details. The threshold for ROVP is relative to the programmed output voltage, and can be set from 50 mV to 400  
mV in steps of 50 mV using the I2C register relative_ovp_thresh [2:0] (0x5e [14:12]). The PMBUs commands could  
be over-ridden by using the relative_ovp_thresh_en (0x5e [15]) bit to over-ride the PMBUs commands.  
Table 17  
sel  
Optional OVP blanking via blank_ov_sel(0x60[13:12])  
Description  
3
2
1
0
blank OV faults during DVID up or down (including Vboot)  
blank OV faults during DVID up (including Vboot)  
blank OV faults during Vboot  
no OV fault blanking  
When the output triggers an FOVP event the OVP flag is set, low side switch is turned ON and high side switch is  
turned OFF. The low side switch is turned ON till the output voltage is dragged down to the set FOVP threshold.  
After that the output voltage walks down to zero with its natural decay.  
When the output triggers an ROVP event, the Vout set point is moved to 0 V at a controlled slew rate of 30 mV/uS  
and the OVP flag is set. Next the low side switch is turned ON and the high side is turned off. This allows the output  
to discharge until Vout set point reaches zero or Vout catches up with the VID set point at which point the low side  
and high side switched turn ON and OFF as required to maintain the output at the VID set point. How fast the  
output voltage discharges during this event is determined by the output voltage, output capacitance and output  
Final Datasheet  
42 of 66  
V2.6  
2022-11-16  
 
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Faults and Protections  
inductor. This determines if the output voltage is discharged to zero by the end of the controlled Vout ramp down.  
At the end of the ramp, if the output is not already at zero, the output voltage will discharge to zero with its natural  
decay.  
FOVP  
ROVP  
VID  
VID LEVEL  
ROVP(Programmable)  
FOVP (Programmable)  
RUVP (Programmable)  
Time  
Figure 23 OVP example diagram. Note the situations in which FOVP takes over from ROVP.  
15.4  
Over Te6perature Pr8tect287 ꢆOTPꢅ  
The temperature is measured by a thermal sensor in the controller die. Temperature protection is programmable  
via the OT_FAULT_LIMIT, OT_WARN_LIMIT, and OT_FAULT_RESPONSE PMBus registers. The TDA38740/725  
supports three responses: ignore, shutdown, and retry idefinitely. The fault is non-latching.  
An OTP event is triggered when the device temperature reaches the OT_FAULT_LIMIT. The switching output is tri-  
stated and the output discharges, while staying biased with the internal LDO on. With the output off, the device  
cools until reaching the OTP_WARN_LIMIT, and if set to retry, the device will hiccup with the potential for pre-  
biased startup.  
15.5  
B88t U7der V85ta0e L8c48ut ꢆUVLOꢅ  
The voltage from the BOOT pin to PHASE pin is monitored on the TDA38740/725. If the Boot UVLO lower threshold  
violation is detected within the PWM cycle, the event is counted and a fault is asserted after 10 violations. After 3  
consecutive cycles without a BOOT UVLO event (above the lower threshold during the PWM cycle), the counter  
resets. To clear the fault Vcc or EN has to be cycled. The Boot UVLO fault is in the fail_code_sticky register.  
15.6  
M2726u6 O7 - T26e a7d M2726u6 Off - T26e  
The minimum on-time refers to the shortest time for the Control MOSFET to be reliably turned on. The minimum  
off-time refers to the minimum time duration in which the Synchronous FET stays on before a new PWM pulse is  
generated. The minimum off-time is needed for TDA38740/725 to charge the bootstrap capacitor, and to sense the  
current of the Synchronous MOSFET for OCP.  
For applications requiring a small duty cycle, it is important that the selected switching frequency results in an on-  
time larger than the maximum spec of the minimum on-time in the Section 7. Otherwise, the resulting switching  
Final Datasheet  
43 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Faults and Protections  
frequency may be lower than the desired target. The following formula can be used to check for the minimum on-  
time requirement.  
ꢌ  
> max ꢢꢣꢤꢥ ꢦꢎ ꢋꢉ ꢨiꢩ  
ꢡꢎ × ꢇ  
ꢏꢐ  
ꢈꢉ  
Where fsw is the desired switching frequency. k is the variation of the switching frequency. As a rule of thumb,  
select k = 1.25 to ensure design margin.  
For applications requiring a high duty cycle, it is important to make sure a proper switching frequency is selected  
so that the resulting off-time is longer than the maximum spec of the minimum off-time in the Section 7 which can  
be calculated as shown below.  
ꢌ  
ꢈꢉ  
> max ꢢꢣꢤꢥ ꢦꢎ ꢋꢫꢫ ꢨiꢩ  
ꢏꢐ × ꢇ  
ꢈꢉ  
Where fsw is the desired switching frequency. k is the variation of the switching frequency. As a rule of thumb,  
select k = 1.25 to ensure the design margin.  
The resulting maximum duty cycle is therefore determined by the selected on-time and minimum off-time.  
ꢋꢉ  
ꢟꢝꢠ  
=
ꢋꢉ  
ꢋꢫꢫꢧꢨiꢩꢪ  
15.7  
H201-S2de S18rt ꢆHSSꢅ Detect287  
The TDA38740/725 offers high-side FET short detection. The phase pin is monitored when the low-side FET is  
active. HSS monitoring happens both at start-up and during normal operation. In an HSS event, if the HSS  
threshold is reached, the PGOOD pin is de-asserted. Once the HSS threshold is reached, the low-side FET is turned  
on and the switching stops. There is no current reporting during this time. The fault is sticky and only clears when  
either the VCC or EN signal is cycled.  
Final Datasheet  
44 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Faults Communication  
16  
Fau5ts C866u72cat287  
TDA38740/725 supports the the following FAULTs OCP, OVP, UVP and OTP via telemetry.  
16.1  
PMBUS S5ave Address270  
The TDA38740/725 supports PMBus through the use of exclusive addressing. By using a 7-bit address, the user  
can configure the device to any one of 127 different PMBus addresses. Once the address of the TDA38740/725 is  
set, it can be locked to protect it from being overwritten. Optionally, a resistor can be tied to the SM_ADDR/PROG  
pin to generate an offset as shown in Figure 24 .  
Setting a base 7-bit PMBus address of 40h with a resistor offset of +15 sets the 7-bit PMBus address to 4Fh.  
SM_ADDR/PROG  
R1  
Figure 24 SM-ADDR/PROG Pin Components  
16.2  
Rea5-T26e Te5e6etry  
TDA38740/725 provides real-time accurate measurement of input voltage, output voltage, output current,  
temperature, output power, and input power over the PMBus interface. Output voltage is calculated based upon  
the output voltage setting and the result is reported through the PMBus.  
16.3  
SMBUS/PMBUS PROTOCOLS  
To access TDA38740 and TDA38725 configuration and monitoring registers, 4 different protocols are required:  
the SMBus Read/Write Byte/Word protocol with/without PEC (for status and monitoring)  
the SMBus Send Byte protocol with/without PEC (for CLEAR_FAULTS only)  
the SMBus Block Read protocol for accessing Model and Revision information  
the SMBus Process call (for accessing Configuration Registers)  
In addition, the TDA38740/725 supports:  
Alert Response Address (ARA)  
Bus timeout  
Group Command for writing to many VRs with one command  
Final Datasheet  
45 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Faults Communication  
S: Start Condition  
8
1
S
7
Slave  
Address  
1
1
8
1
8
1
1
1
P
A: Acknowledge (0')  
N: Not Acknowledge (1')  
Sr: Repeated Start Condition  
P: Stop Condition  
Command  
Code  
A*  
BYTE  
A
A
Data Byte  
A
PEC*  
W
1
S
1
R: Read (1')  
7
Slave  
Address  
1
8
8
1
Command  
Code  
Data Byte  
Low  
W: Write (0')  
WORD  
A
A
A
W
PEC: Packet Error Checking  
*: Present if PEC is enabled  
: Master to Slave  
1
8
1
1
P
8
Data Byte  
High  
A*  
PEC*  
A
: Slave to Master  
Figure 25 SMBus Write Byte/Word  
1
1
P
1
S
1
1
8
1
1
7
Slave  
Address  
1
1
8
1
7
Slave  
Address  
8
Command  
Code  
Data Byte  
A*  
A
A
R
A
PEC*  
N
Sr  
BYTE  
W
1
S
7
Slave  
Address  
1
1
8
1
1
7
Slave  
Address  
1
R
1
8
1
Command  
Code  
Data Byte  
Low  
A
A
Sr  
A
A
WORD  
W
1
1
8
1
8
Data Byte  
High  
A*  
PEC*  
N
P
Figure 26 SMBus Read Byte/Word  
1
S
7
Slave  
Address  
1
1
8
1
8
1
1
P
Command  
Code  
PEC*  
A
A*  
A
W
Figure 27 SMBus Send Byte  
1
S
7
Slave  
Address  
1
1
8
1
Command  
Code  
W
A
A
1
7
Slave  
Address  
1
R
1
8
8
8
1
1
1
1
Byte Count =1  
Data Byte  
A*  
A
A
PEC*  
N
P
Sr  
Figure 28 SMBus Block Read with Byte Count=1  
Figure 29 MFR specific command to Write an MFR Register  
Final Datasheet  
46 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Faults Communication  
PMBus  
Address  
Command  
D0h  
Register  
Address  
S
W
A
A
A
...  
PMBus  
Address  
Address+1  
Data Byte  
Data Byte  
PEC*  
Sr  
R
A
A
A*  
N
P
Figure 30 SMBus Custom Process Call to Read an MFR Register  
1
S
7
Slave  
Address 1  
1
1
8
1
8
Low  
Data Byte  
1
8
High  
Data Byte  
1
8
1
Command  
Code 1  
A*  
A
A
A
W
A
PEC1*  
1 or more bytes  
7
Slave  
Address 2  
1
1
1
8
1
8
Low  
Data Byte  
1
8
High  
Data Byte  
1
8
1
Command  
Code 2  
A
A*  
A
A
A
Sr  
W
PEC2*  
1 or more bytes  
1
7
1
1
1
8
1
8
1
8
1
8
1
Low  
Data Byte  
Slave  
Address n  
Command  
Code n  
High  
Data Byte  
A
A
A
P
Sr  
W
A
A
PECn*  
1 or more bytes  
Figure 31 Group Command  
Table 18 PMBus Commands Supported  
I2C  
Register  
Address  
PMBus  
COMMAND  
CODE  
PMBus  
PROTOCOL  
COMMAND  
DESCRIPTION  
0x200  
PAGE  
Read/Write Byte  
Read/Write Byte  
00h  
Allows access of each loop via paging.  
Enables or disables the output and controls  
margining. Ignores OVP on Margin High, UVP on  
Margin Low.  
0x202  
OPERATION  
01h  
Configures the combination of CONTROL pin and  
OPERATION commands needed to turn the unit  
on and off.  
0x204  
0x206  
0x20A  
ON_OFF_CONFIG  
CLEAR FAULTS  
Read/Write Byte  
Send Byte  
02h  
03h  
05h  
Clears contents of Fault registers  
Set the PAGE within a device, send a command,  
and send the data for the command in one  
packet.  
PAGE_PLUS_WRITE  
Write Block  
Set the PAGE within a device, send a command,  
and read the returned data by the command in  
one packet  
Block Write/ Block  
Read Process Call  
0x20C  
PAGE_PLUS_READ  
06h  
Protects from overwriting the configuration files  
and modes accidentally  
0x220  
0x222  
WRITE_PROTECT  
Read/Write Byte  
Sen Byte  
10h  
11h  
Instructs the device to copy the entire contents of  
the configuration registers to the NVM  
STORE_DEFAULT_ALL  
0x224  
0x22A  
0x22C  
RESTORE_DEFAULT_ALL  
STORE_USER_ALL  
Send Byte  
Send Byte  
Send Byte  
12h  
15h  
16h  
Reloads the OTP  
Stores the user OTP section  
Reloads the user OTP section  
RESTORE_USER_ALL  
Final Datasheet  
47 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Faults Communication  
I2C  
Register  
Address  
PMBus  
COMMAND  
CODE  
PMBus  
PROTOCOL  
COMMAND  
DESCRIPTION  
Returns 1010xxxx to indicate Packet Error  
Checking is supported. Maximum bus speed is 400  
kHz  
0x232  
0x236  
0x240  
CAPABILITY  
Read Byte  
19h  
1Bh  
20h  
Set to prevent warning or fault conditions from  
asserting the SMBALERT# signal. Write command  
code for STATUS register to be masked in the low  
byte, the bit to be masked in the High byte.  
Block Write/ Block  
Read Process Call  
SMBALERT_MASK  
VOUT_MODE  
Sets the format for VOUT related commands.  
Linear mode, -8, -9, -10, -11 and -12 exponents  
supported.  
Read/Write Byte  
Read/Write Word  
Sets the voltage to which the device should set  
the output. Format according to VOUT_MODE.  
Resolution is 5 mV when the IC Vout is configured  
with a load line. Resolution is 5 mV or 0.625 mV  
when the IC is configured without a load line.  
0x242  
VOUT_COMMAND  
21h  
Sets an upper limit on the output voltage the unit  
can command. Format according to VOUT_MODE.  
0x248  
0x24A  
VOUT_MAX  
Read/Write Word  
Read/Write Word  
24h  
25h  
Sets the margin high voltage when commanded  
by OPERATION. Must be in format determined by  
VOUT_MODE.  
VOUT_MARGIN_HIGH  
Sets the margin low voltage when commanded by  
OPERATION. Must be in format determined by  
VOUT_MODE.  
0x24C  
VOUT_MARGIN_LOW  
Read/Write Word  
26h  
Sets the rate at which the output changes voltage  
due to VOUT_COMMAND or OPERATION  
commands.  
0x24E  
0x250  
0x252  
VOUT_TRANSITION_RATE  
VOUT_DROOP  
Read/Write Word  
Read/Write Word  
Read/Write Word  
27h  
28h  
29h  
Allows the user to set the load-line value in  
res85ut287 8f ꢆ/ꢅꢆꢍ Ω. Ex987e7t 2s ꢂ  
Used to account for any external attenuation  
network on VOUT sense feedback and provide  
correct VOUT reporting.  
VOUT_SCALE_LOOP  
Sets a lower limit on the commanded output  
voltage. Format according to VOUT_MODE  
0x256  
0x266  
0x26A  
VOUT_MIN  
FREQUENCY_SWITCH  
VIN_ON  
Read/Write Word  
Read/Write Word  
Read/Write Word  
2Bh  
33h  
35h  
Sets the switching frequency in kHz per table  
found in user note UN0047. Exp = 0, 1  
Sets the value of the input voltage at which the  
unit should begin power conversion. Exp = -1.  
Sets the value of the input voltage at which the  
unit, once operation has started, should stop  
power conversion. Exp = -1.  
0x26C  
VIN_OFF  
Read/Write Word  
36h  
0x270  
0x272  
IOUT_CAL_GAIN  
Read/Write Word  
Read/Write Word  
38h  
39h  
Used t8 ca52brate t1e 8ut9ut curre7tꢀs 0a27  
Used to null out any offsets in the output current  
sensing circuitry. Exp = 2.  
IOUT_CAL_OFFSET  
Returns the value of the output voltage,  
measured at the sense or output pins, that causes  
an output over voltage fault.  
VOUT_OV_FAULT_  
LIMIT  
0x280  
Read Only  
40h  
Final Datasheet  
48 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Faults Communication  
I2C  
Register  
Address  
PMBus  
COMMAND  
CODE  
PMBus  
PROTOCOL  
COMMAND  
DESCRIPTION  
Instructs the device on what action to take in  
response to an output over voltage fault. Only  
shutdown and ignore are supported.  
VOUT_OV_FAULT_  
RESPONSE  
0x282  
0x288  
0x28A  
Read/Write Byte  
Read Only  
41h  
44h  
45h  
Returns the value of the output voltage,  
measured at the sense or output pins, that causes  
an output under voltage fault.  
VOUT_UV_FAULT_  
LIMIT  
Instructs the device on what action to take in  
response to an output under voltage fault.  
Only shutdown and ignore are supported.  
VOUT_UV_FAULT_  
RESPONSE  
Read/Write Byte  
Sets the value of the output current, in amperes,  
that causes the over current detector to indicate  
an over current fault condition. Set by writing this  
command in Linear format with a -1 exponent.  
IOUT_OC_FAULT_  
LIMIT  
0x28C  
0x28E  
Read/Write Word  
Read/Write Byte  
46h  
47h  
Instructs the device on what action to take in  
response to an output over current fault.  
Only C0h (shutdown immediately), F8h (hiccup  
forever), and D8 (hiccup 3 times) are supported.  
IOUT_OC_FAULT_  
RESPONSE  
Sets the temperature, in degrees Celsius, of the  
unit at which it should indicate an over  
temperature fault. Exp = 0.  
0x29E  
0x2A0  
OT_FAULT_LIMIT  
Read/Write Word  
Read/Write Byte  
4Fh  
50h  
Instructs the device on what action to take in  
response to an over temperature fault. Only  
shutdown and ignore are supported.  
OT_FAULT_RESPONSE  
Sets the temperature, in degrees Celsius, of the  
unit at which it should indicate an over  
temperature Warning alarm. Exp = 0.  
0x2A2  
0x2AA  
0x2AC  
OT_WARN_LIMIT  
VIN_OV_FAULT_LIMIT  
VIN_OV_FAULT_RESPONSE  
Read/Write Word  
Read/Write Word  
Read/Write Byte  
51h  
55h  
56h  
Sets the value of the input voltage that causes an  
input over voltage fault. Exp = -4.  
Instructs the device on what action to take in  
response to an input over voltage fault. Only  
shutdown and ignore are supported.  
Sets the output voltage at which an optional  
POWER_GOOD signal should be asserted. Format  
according to VOUT_MODE. See Note 17  
0x2BC  
0x2BE  
POWER_GOOD_ON  
POWER_GOOD_OFF  
Read/Write Word  
Read/Write Word  
5Eh  
5Fh  
Sets the output voltage at which an optional  
POWER_GOOD signal should be negated. Format  
according to VOUT_MODE. See Note 17  
Sets the time, in milliseconds, from when a start  
condition is received (as programmed by the  
ON_OFF_CONFIG command) until the output  
voltage starts to rise. Exp = 0.  
0x2C0  
0x2C2  
0x2C8  
TON_DELAY  
TON_RISE  
Read/Write Word  
Read/Write Word  
Read/Write Word  
60h  
61h  
64h  
Sets the time, in milliseconds, from when the  
output starts to rise until the voltage has entered  
the regulation band. Exp = 0.  
Sets the time (in ms) from when a stop condition  
is received (as programmed by the  
ON_OFF_CONFIG command) until the unit stops  
transferring energy to the output. Exp = 0.  
TOFF_DELAY  
Final Datasheet  
49 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Faults Communication  
I2C  
Register  
Address  
PMBus  
COMMAND  
CODE  
PMBus  
PROTOCOL  
COMMAND  
DESCRIPTION  
Sets the time, in milliseconds, from the end of the  
turn-off delay time until the voltage is  
commanded to zero. Exp = 0.  
0x2CA  
0x2F0  
TOFF_FALL  
Read/Write Word  
Read/Write Byte  
65h  
Returns 1 byte where the bit meanings are:  
Bit <7> Reserved  
Bit <6> Output off (due to fault or enable)  
Bit <5> Output over-voltage fault  
Bit <4> Output over current fault  
Bit <3> Input Under voltage fault  
Bit <2> Temperature fault  
STATUS_BYTE  
78h  
Bit <1> Communication/Memory/Logic fault  
Bit <0>: None of the Above  
Returns 2 bytes where the Low byte is the same as  
the STATUS_BYTE data. The High byte has bit  
meanings are:  
Bit <7> Output high or low fault  
Bit <6> Output over current fault  
Bit <5> Input voltage or current fault.  
Bit <4> MFR_SPECIFIC  
0x2F2  
STATUS_WORD  
Read/Write Word  
79h  
Bit <3> POWR GOOD#  
Bit <2:0> Not Supported  
Bit <7> Output over voltage Fault  
Bit <6> Not Supported  
Bit <5> Not Supported  
0x2F4  
0x2F6  
STATUS_VOUT  
STATUS_IOUT  
Read/Write Byte  
Read/Write Byte  
7Ah  
7Bh  
Bit <4> Output under voltage Fault  
Bit <3> VOUT_MAX Warning  
Bit <2:0> Not Supported  
Bit <7> Output Over current Fault  
Bit <6> Not Supported  
Bit <5> Output Overcurent Warning  
Bit <4:0> Not Supported  
Bit <7> Input over voltage Fault  
Bit <6:0> Not Supported  
0x2F8  
0x2FA  
STATUS_INPUT  
Read/Write Byte  
Read/Write Byte  
7Ch  
7Dh  
Bit <7> Over Temperature Fault  
Bit <6> Over Temperature Warning  
Bit <5:0> Reserved  
STATUS_TEMPERATURE  
Returns 1 byte where the bit meanings are:  
Bit <7> Invalid or unsupported command  
Bit <6> Invalid or unsupported data  
Bit <5> PEC fault  
0x2FC  
STATUS_CML  
Read/Write Byte  
7Eh  
Bit <4:2> Reserved  
Bit <1> Other communication fault not listed here  
Final Datasheet  
50 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Faults Communication  
I2C  
Register  
Address  
PMBus  
COMMAND  
CODE  
PMBus  
PROTOCOL  
COMMAND  
DESCRIPTION  
Bit <0> Reserved  
0x310  
0x312  
READ_VIN  
READ_IIN  
Read Word  
Read Word  
88h  
89h  
Returns the input voltage in Volts  
Returns the input current in Amperes  
Returns the output voltage in the format set by  
VOUT_MODE  
0x316  
0x318  
0x31A  
READ_VOUT  
READ_IOUT  
Read Word  
Read Word  
Read Word  
8Bh  
8Ch  
8Dh  
Returns the output current in Amperes  
Returns the addressed loop NTC temperature in  
degrees Celsius  
READ_TEMPERATURE_1  
0x32C  
0x32E  
READ_POUT  
READ_PIN  
Read Word  
Read Word  
96h  
97h  
Returns the output power in Watts  
Returns the input power in Watts  
Reports PMBus Part I rev 1.1 & PMBUs  
Part II rev 1.2  
0x330  
PMBUS_REVISION  
Read Byte  
98h  
The MFR_ID is set to IR (ASCII 52 49) unless  
programmed differently in the USER registers of  
the controller.  
Block Read/Write  
Byte count = 2  
0x332  
MFR_ID  
99h  
The MFR_MODEL is the same as the device ID if  
the USER register for Manufacturer model is  
00. Otherwise MFR_Model command returns the  
value in the USER register for MFR_MODEL.  
Block Read,  
Byte count = 1  
0x334  
0x336  
MFR_MODEL  
9Ah  
9Bh  
The MFR_REVISION is the same as the device  
revision if the USER register for Manufacturer  
revision is 00. Otherwise MFR_REVISION  
command returns the value in the USER register  
for MFR_REVISION.  
Block Read,  
Byte count = 2  
MFR_REVISION  
Returns a 1-byte code with the following values:  
84h = TDA38740  
0x35A  
0x35C  
0x3A0  
IC_DEVICE_ID  
Block Read  
Block Read  
ADh  
AEh  
D0h  
C1h  
IC_DEVICE_REV  
The IC revision that is stored inside the IC  
MFR_READ/WRITE_  
REG  
Custom MFR  
protocol  
Read/Write I2C registers  
0x382  
0x384  
MFR_VENDOR_INFO_1  
MFR_VENDOR_INFO_2  
Read Word  
Returns the product id and silicon revision  
Available for vendor use. Default 0x0  
Read/ write Wod  
Note:  
17. PGOOD_ON and PGOOD_OFF thresholds are asserted at half of the programmed value when  
VOUT_SCALE_LOOP is set to 1:2 mode. The threshold values should be set to twice of the desired PGOOD levels.  
16.4  
ꢂꢂ-BIT L27ear Data F8r6at  
Monitored parameters use the Linear Data Format encoding into 1 Word (2 bytes), where:  
Value =Y *2N  
N8te N a7d Y are ꢋs207edꢊ va5ues. If VOUT 2s set t8 527ear f8r6at ꢎby VOUT_MODEꢏ, t1e7 N 2s set by t1e VOUT_MODE  
command and only Y is returned in the data-field as a 16-bit unsigned number.  
Final Datasheet  
51 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Faults Communication  
Databyte Low  
Databyte High  
7 6 5 4 3 2 1 0  
7 6 5 4 3 2 1 0  
N
Y
Figure 32 11-Bit Linear Data Format  
16.5  
ꢂꢇ-BIT L27ear Data F8r6at  
This format is only used for VOUT related commands (READ_VOUT, VOUT_COMMAND, VOUT_MARGIN_HIGH,  
VOUT_MARGIN_LOW, POWER_GOOD_ON, and POWER_GOOD_LOW):  
Value =Y *2N  
N8te N a7d Y are ꢋs207edꢊ va5ues. If VOUT is set to linear format (by VOUT_MODE), then N is set by the  
VOUT_MODE command and only Y is returned in the data-field as a 16-bit unsigned number.  
Figure 33 16-BIT Linear Data Format  
Final Datasheet  
52 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Design example  
17  
Des207 exa6p5e  
In this section, an example is used to explain how to design a buck regulator with the TDA38740/725. The  
application circuit is shown in Figure 3. The design specifications are given below.  
PVin = 12 V (±10%)  
Vo = 1.0 V  
Io = 40 A  
Vo ripple voltage = ±1% of Vo  
Load transient response = ± 3% of Vo with a step load current = 9 A and slew rate = 30 A/µs  
17.1  
E7ab5270 t1e TDAꢉꢈꢊꢀꢁ/ꢊꢃꢄ  
The TDA38740/725 has a precise Enable threshold voltage, the Enable feedback resistor, REN1 and REN2, can be  
calculated as follows.  
ꢮꢯꢰ  
ꢆꢇ  
×
ꢮꢯꢧꢨꢲꢳꢪ  
ꢈꢉꢧꢨiꢩꢪ  
ꢮꢯꢱ ꢚ ꢭꢮꢯꢰ  
ꢮꢯꢧꢨꢲꢳꢪ  
ꢈꢉꢧꢨiꢩꢪ ꢮꢯꢧꢨꢲꢳꢪ  
ꢮꢯꢰ ꢞ ꢭꢮꢯꢱ  
×
Where VEN(max) is the maximum spec of the En-start-threshold as defined in the Absolute Maximum Ratings table.  
For PVin (min) =10.8 V, select REN1=49.9 kand REN2 > 3.4 k. REN2 suggested = 7.5 kΩ  
17.2  
Pr80ra66270 t1e Sw2tc1270 Freque7cy a7d Operat287 M8de  
The TDA38740/725 has very good efficiency performance and is suitable for high switching frequency operation.  
In this case, 800 kHz is selected to achieve a good compromise between the efficiency, passive component size  
and dynamic response. In addition, FCCM operation is selected to ensure a small output ripple voltage over the  
entire load range. The switching frequency and FCCM operation can be selected via register bits.  
17.3  
Se5ect270 I7put Capac2t8rs  
Without input capacitors, the pulse current of Control MOSFET is directly from the input supply power. Due to the  
impedance on the cable, the pulse current can cause disturbance on the input voltage and potential EMI issues.  
The input capacitors filter the pulse current, resulting in almost constant current from the input supply. The input  
capacitors should be selected to tolerate the input pulse current, and to reduce the input voltage ripple. The RMS  
value of the input ripple current can be expressed by:  
ꢁꢙꢴ = ꢑ × ꢬ × ꢧꢍ − ꢬꢪ  
ꢬ =  
ꢆꢇ  
ꢈꢉ  
Where IRMS is the RMS value of the input capacitor current. Io is the output current and D is the Duty Cycle. For Io =  
40 A and D(max) = 0.09, the resulting RMS current flowing into the input capacitor is Irms = 11.6 A.  
To meet the requirement of the input ripple voltage, the minimum input capacitance can be calculated as follows.  
× ꢧꢍ − ꢬꢪ × ꢬ  
ꢈꢉꢧꢨiꢩꢪ  
>
ꢏꢐ  
× ꢧ∆ꢆꢇ − ꢶꢷꢭ × ꢑ× ꢍ − ꢬ ꢪ  
ꢈꢉ  
Final Datasheet  
53 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Design example  
W1ere ∆PVin is the maximum allowable peak-to-peak input ripple voltage, and ESR is the equivalent series resistor  
of the input capacitors. Ceramic capacitors are recommended due to low ESR, ESL and high RMS current  
capability. For Io = 40 A, fsw = ꢐꢄꢄ 4Hz, ESR = ꢇ 6Ω, a7d ∆PVin = 240 mV, Cin(min) > 32 µF. To account for the de-rating  
of ceramic capacitors under a bias voltage, 8 x 22 µF/0805/25 V MLCC and 1 x 4.7uF/25 V MLCC are used for the  
input capacitors. In addition, a bulk capacitor is recommended if the input supply is not located close to the  
voltage regulator.  
17.4  
I7duct8r Se5ect287  
The inductor is selected based on output power, operating frequency and efficiency requirements. A low inductor  
value results in a large ripple current, lower efficiency and high output noise, but helps with size reduction and  
transient load response. Generally, the desired peak-to-9ea4 r2995e curre7t 27 t1e 27duct8r ꢎ∆2ꢏ 2s f8u7d betwee7  
20% and 50% of the output current.  
The inductor saturation current must be higher than the maximum spec of the OCP limit plus the peak-to-peak  
inductor ripple current. For some core material, inductor saturation current may decrease as the increase of  
temperature. So it is important to check the inductor saturation current at the maximum operating temperature.  
The inductor value for the desired operating ripple current can be determined using the following relation:  
ꢟꢈꢉ  
ꢸ = ꢧꢆꢈꢉꢧꢨꢲꢳꢪ − ꢇ ꢪ ×  
∆ꢛꢗꢧꢨꢲꢳꢪ × ꢹ  
ꢏꢐ  
ꢟꢈꢉ  
=
ꢆꢇ  
ꢈꢉꢧꢨꢲꢳꢪ  
ꢏꢝꢓ ꢞ ꢺꢵꢟꢝꢠ ꢚ ∆ꢛꢗꢧꢨꢲꢳꢪ  
Where: PVin(max) = Maximum input voltage; ∆2Lmax = Maximum peak-to-peak inductor ripple current; OCPmax  
=
maximum spec of the OCP limit as defined in Section 15.1, and Isat = inductor saturation current. In this case, select  
inductor L =150 nH to achieve ∆2Lmax = 25% of Iomax. The Isat should be no less than 52 A.  
17.5  
Output Capac2t8r Se5ect287  
The output capacitor selection is mainly determined by the output voltage ripple and transient requirements.  
To satisfy the Vo ripple requirement, Co should satisfy the following criterion.  
∆ꢛꢗꢟꢝꢠ  
>  
8 × ∆ꢇ × ꢎ  
ꢋꢻ  
ꢏꢐ  
W1ere ∆Vor is the desired peak-to-peak output ripple voltage. For ∆2Lmax= ꢃ.ꢆ A, ∆Vor =20 mV, fsw = 800 kHz, Co must  
be larger than 59 µF. The ESR and ESL of the output capacitors, as well as the parasitic resistance or inductance  
due to PCB layout, can also contribute to the output voltage ripple. It is suggested to use Multi-Layer Ceramic  
Capacitor (MLCC) for their low ESR, ESL and small size.  
To meet the transient response requirements, the output capacitors should also meet the following criterion.  
ꢸ × ∆ꢑꢧꢨꢲꢳꢪ  
>  
ꢜ × ∆ꢋꢗ × ꢇ  
W1ere ∆VOL is the allowable Vo dev2at287 dur270 t1e 58ad tra7s2e7t. ∆Io(max) is the maximum step load current. Please  
note that the impact of ESL, ESR, control loop response, transient load slew rate, and PWM latency is not  
considered in the calculation shown above. Extra capacitance is usually needed to meet the transient  
requirements. As a rule of thumb, we can triple the Co that is calculated above as a starting point, and then  
optimize the design based on the bench measurement. In this case, to meet the transient load requirement (i.e.  
Final Datasheet  
54 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Design example  
∆VOL= 30 mV, ∆Io(max) = 9 A), select Co = ~600 µF. For more accurate estimation of Co, simulation tool should be used  
to aid the design.  
17.6  
B88tstrap Capac2t8r  
For most applications, a 0.1 µF ceramic capacitor is recommended for bootstrap capacitor placed between PHASE  
and BOOT Pin. For applications requiring PVin equa5 t8 8r ab8ve ꢂꢈ V, a s6a55 res2st8r 8f ꢂ~ꢅ Ω s18u5d be used 27  
series with the BOOT pin to ensure the maximum SW node spike voltage does not exceed 20 V.  
17.7  
VI a7d VCC/LDO bypass Capac2t8r  
Please see the recommendation in 13.4 on the internal LDO. A 10 µF MLCC is selected for the VCC/LDO bypass  
capacitor and a 4.7 µF MLCC is selected for the VIN bypass capacitor.  
17.8  
Des207 Rec866e7dat287s  
Listed below are the design recommendations for proper device operation:  
A 100 Ohm minimum load resistor should be connected across the output  
Add a 0.1 uF and 1 uF ceramic cap across PVIN and PGND  
Add 0.1 uF and 2.2 uF across VDRV to PGND.  
The internal LDO should not be used to power external devices  
Final Datasheet  
55 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Layout Recommendations  
18  
Lay8ut Rec866e7dat287s  
PCB layout is very important when designing high frequency switching converters. Layout will affect noise pickup  
and can cause a good design to perform with less than expected results. Following design guidelines are  
recommended to achieve the best performance.  
Bypass capacitors, including input/output capacitors, VIN, VCC and VDRV bypass capacitors, should be placed  
near the corresponding pins as close as possible.  
Place bypass capacitors from TDA38740/725 power input (Drain of Control MOSFET) to PGND (Source of  
Synchronous MOSFET) to reduce noise and ringing in the system. The output capacitors should be terminated  
to a ground plane that is away from the input PGND to mitigate the switching spikes on the Vo. The bypass  
capacitor shared by VCC and VDRV should be terminated to PGND.  
Place a boot strap capacitor near the TDA38740/725 BOOT and PHASE pin as close as possible to minimize the  
loop inductance.  
SW node copper should only be routed on the top layer to minimize the impact of switching noises  
Connect AGND pin to the PGND pad through a single point connection. On the TDA38740/725 demo board,  
AGND pin is connected to the exposed PGND pad with a copper trace.  
Via holes can be placed on PVin and PGND pads to aid thermal dissipation.  
Wide copper polygons are desired for PVin and PGND connections in favor of power losses reduction and  
thermal dissipation. Sufficient via holes should be used to connect power traces between different layers.  
Output voltage sensing in TDA38740/725 is done differentially using the VOSENP and VOSENM pins.  
o
A pair of PCB traces with at least 15 mil trace width, running close to each other and away from  
any noise sources such as inductor and SW nodes, should be used to implement Kelvin sensing of  
the voltage across a high-frequency bypass capacitor of 0.1 µF or higher.  
o
o
The ground connection of the remote sensing signal must be terminated at VOSENM pin.  
The Vo connection of the remote sensing signal must be connected to the feedback resistor divider  
with the lower feedback resistor terminated at VOSENM pin for output voltages greater than 2.5 V.  
o
o
Shield the pair of remote sensing lines with ground planes above and below.  
Do NOT connect VOSENM pin and AGND pin in this configuration  
The EN pin and configuration pins including SM_ADDRS/PROG, VBT, MODE/TON, and ILIM should be  
terminated to a quiet ground. On the TDA38740/725 standard demo board, they are terminated to the PGND  
copper plane away from the power current flow. Alternatively, they can be terminated to a dedicated AGND  
PCB trace.  
Final Datasheet  
56 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Layout Recommendations  
18.1  
PCB Meta5 a7d C86p87e7t P5ace6e7t  
Evaluation has shown that the best overall performance is achieved using the substrate/PCB layout as shown in  
the following figures. PQFN devices should be placed to an accuracy of 0.050 mm on both X and Y axes. Self-  
centering behavior is highly dependent on solders and processes, and experiments should be run to confirm the  
limits of self-centering on specific processes.  
F8r furt1er 27f8r6at287, 95ease refer t8 ꢋSu9IRBuc4™ Mu5t2-Chip Module (MCM) Power Quad Flat No-Lead (PQFN)  
B8ard M8u7t270 A9952cat287 N8te.ꢊ ꢎANꢂꢂꢇꢅꢏ  
Figure 34  
PCB metal pad sizing and spacing (all dimensions in mm)  
18.2  
S85der Res2st  
Infineon recommends that larger Power or Land Area pads are Solder Mask Defined (SMD.) This allows the  
underlying copper traces to be as large as possible, which helps in terms of current carrying capability and  
device cooling capability. When using SMD pads, the underlying copper traces should be at least 0.05 mm larger  
(on each edge) than the Solder Mask window, in order to accommodate any layer to layer misalignment. (i.e. 0.1  
mm in X & Y.) When using NSMD pads, the Solder Resist Window should be larger than the Copper Pad by at least  
Final Datasheet  
57 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Layout Recommendations  
0.025 mm on each edge, (i.e. 0.05 mm in X&Y,) in order to accommodate any layer to layer misalignment. Ensure  
that the solder resist in-between the smaller signal lead areas is at least 0.15 mm wide, due to the high x/y aspect  
ratio of the solder mask strip.  
Figure 35  
Solder resist  
18.3  
Ste7c25 Des207  
Stencils for PQFN packages can be used with thicknesses of 0.100-0.250 mm (0.004-ꢄ.ꢄꢂꢄꢊꢏ. Ste7c25s t1277er  
than 0.100 mm are unsuitable because they deposit insufficient solder paste to make good solder joints with  
the ground pad; high reductions sometimes create similar problems. Stencils in the range of 0.125 mm-0.200  
mm (0.005-ꢄ.ꢄꢄꢐꢊꢏ, w2t1 su2tab5e reduct287s, 02ve t1e best resu5ts.  
A recommended stencil design is shown in Figure 36. This design is f8r a ste7c25 t12c47ess 8f ꢄ.ꢂꢅꢃ 66 ꢎꢄ.ꢄꢄꢆꢊꢏ.  
The reduction should be adjusted for stencils of other thicknesses.  
Final Datasheet  
58 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Layout Recommendations  
Figure 36  
Stencil pad size and spacing (all dimensions in mm)  
Final Datasheet  
59 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Package  
19  
Pac4a0e  
19.1  
Mar4270 I7f8r6at287  
Figure 37 Package Marking  
19.2  
D26e7s287s  
Figure 38 Package view  
Final Datasheet  
60 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Package  
Figure 39 Package Dimensions in mm  
Final Datasheet  
61 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Package  
Figure 40 Package Dimensions Pad Layout  
Final Datasheet  
62 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
19.3  
Tape a7d Ree5 I7f8r6at287  
Figure 41 Pin 1 Orientation in Tape & Reel  
Final Datasheet  
63 of 66  
V2.6  
2022-11-16  
TDA38740/25 OptiMOS iPOL  
40/25A Single-voltage Synchronous Buck Regulator with PMBus  
Environmental Qualifications  
20  
E7v2r876e7ta5 Qua52f2cat287s  
Table 19  
Qualification Level  
Industrial  
JEDEC Level 2 @ 260°C  
Moisture Sensitivity  
5 x 6 mm QFN Package  
Human Body Model  
ANSI/ESDA/JEDEC JS-001, Class 2 (2000V to < 4000V)  
ESD  
Charged Device Model  
ANSI/ESDA/JEDEC JS-002, Class C3 ꢎꢑ 1000V)  
This product follows EU Directive 2015/863/EU amending  
annex II to EU Directive 2011/65/EU(RoHS) and contains Pb  
RoHS2 Compliant  
according RoHS exemption 7a,Lead in high melting  
temperature type solders  
Final Datasheet  
64 of 66  
V2.6  
2022-11-16  
PointꢀofꢀLoad  
TDA38740/725  
RevisionꢀHistory  
TDA38740/725  
Revision:ꢀ2022-11-21,ꢀRev.ꢀ2.6  
Previous Revision  
Revision Date  
Subjects (major changes since last revision)  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2022-04-08  
Release of final version  
2022-04-13  
2022-05-13  
2022-08-12  
2022-08-19  
2022-10-21  
Updated the Abs max table with VIN-PH voltage  
Final datasheet revision - updated block diagram and EC table  
Updated Multiple time programmable section  
corrected the number of MTP writes on page 1  
Added the setpoint accuracy data to table 6, updated the Pgood pull up resistor to 4.7k,  
updated the absolute max ratings (table 3) to align with 741 DS, Updated MTP capability  
of the device in section 13.2,Added description for pinstrapping in section 8  
2.6  
2022-11-21  
Updated Prebias section, Programming Section, Absolute max ratings table, Electrical  
Characteristics Table, Updated page number formatting  
Trademarks  
Allꢀreferencedꢀproductꢀorꢀserviceꢀnamesꢀandꢀtrademarksꢀareꢀtheꢀpropertyꢀofꢀtheirꢀrespectiveꢀowners.  
WeꢀListenꢀtoꢀYourꢀComments  
Anyꢀinformationꢀwithinꢀthisꢀdocumentꢀthatꢀyouꢀfeelꢀisꢀwrong,ꢀunclearꢀorꢀmissingꢀatꢀall?ꢀYourꢀfeedbackꢀwillꢀhelpꢀusꢀtoꢀcontinuously  
improveꢀtheꢀqualityꢀofꢀthisꢀdocument.ꢀPleaseꢀsendꢀyourꢀproposalꢀ(includingꢀaꢀreferenceꢀtoꢀthisꢀdocument)ꢀto:  
erratum@infineon.com  
Publishedꢀby  
InfineonꢀTechnologiesꢀAG  
81726ꢀMünchen,ꢀGermany  
©ꢀ2022ꢀInfineonꢀTechnologiesꢀAG  
AllꢀRightsꢀReserved.  
LegalꢀDisclaimer  
Theꢀinformationꢀgivenꢀinꢀthisꢀdocumentꢀshallꢀinꢀnoꢀeventꢀbeꢀregardedꢀasꢀaꢀguaranteeꢀofꢀconditionsꢀorꢀcharacteristicsꢀ  
(“Beschaffenheitsgarantie”)ꢀ.  
Withꢀrespectꢀtoꢀanyꢀexamples,ꢀhintsꢀorꢀanyꢀtypicalꢀvaluesꢀstatedꢀhereinꢀand/orꢀanyꢀinformationꢀregardingꢀtheꢀapplicationꢀofꢀthe  
product,ꢀInfineonꢀTechnologiesꢀherebyꢀdisclaimsꢀanyꢀandꢀallꢀwarrantiesꢀandꢀliabilitiesꢀofꢀanyꢀkind,ꢀincludingꢀwithoutꢀlimitation  
warrantiesꢀofꢀnon-infringementꢀofꢀintellectualꢀpropertyꢀrightsꢀofꢀanyꢀthirdꢀparty.  
Inꢀaddition,ꢀanyꢀinformationꢀgivenꢀinꢀthisꢀdocumentꢀisꢀsubjectꢀtoꢀcustomer’sꢀcomplianceꢀwithꢀitsꢀobligationsꢀstatedꢀinꢀthis  
documentꢀandꢀanyꢀapplicableꢀlegalꢀrequirements,ꢀnormsꢀandꢀstandardsꢀconcerningꢀcustomer’sꢀproductsꢀandꢀanyꢀuseꢀofꢀthe  
productꢀofꢀInfineonꢀTechnologiesꢀinꢀcustomer’sꢀapplications.  
Theꢀdataꢀcontainedꢀinꢀthisꢀdocumentꢀisꢀexclusivelyꢀintendedꢀforꢀtechnicallyꢀtrainedꢀstaff.ꢀItꢀisꢀtheꢀresponsibilityꢀofꢀcustomer’s  
technicalꢀdepartmentsꢀtoꢀevaluateꢀtheꢀsuitabilityꢀofꢀtheꢀproductꢀforꢀtheꢀintendedꢀapplicationꢀandꢀtheꢀcompletenessꢀofꢀtheꢀproduct  
informationꢀgivenꢀinꢀthisꢀdocumentꢀwithꢀrespectꢀtoꢀsuchꢀapplication.  
Information  
Forꢀfurtherꢀinformationꢀonꢀtechnology,ꢀdeliveryꢀtermsꢀandꢀconditionsꢀandꢀpricesꢀpleaseꢀcontactꢀyourꢀnearestꢀInfineon  
TechnologiesꢀOfficeꢀ(www.infineon.com).  
Warnings  
Dueꢀtoꢀtechnicalꢀrequirements,ꢀcomponentsꢀmayꢀcontainꢀdangerousꢀsubstances.ꢀForꢀinformationꢀonꢀtheꢀtypesꢀinꢀquestion,  
pleaseꢀcontactꢀtheꢀnearestꢀInfineonꢀTechnologiesꢀOffice.  
TheꢀInfineonꢀTechnologiesꢀcomponentꢀdescribedꢀinꢀthisꢀDataꢀSheetꢀmayꢀbeꢀusedꢀinꢀlife-supportꢀdevicesꢀorꢀsystemsꢀand/or  
automotive,ꢀaviationꢀandꢀaerospaceꢀapplicationsꢀorꢀsystemsꢀonlyꢀwithꢀtheꢀexpressꢀwrittenꢀapprovalꢀofꢀInfineonꢀTechnologies,ꢀifꢀa  
failureꢀofꢀsuchꢀcomponentsꢀcanꢀreasonablyꢀbeꢀexpectedꢀtoꢀcauseꢀtheꢀfailureꢀofꢀthatꢀlife-support,ꢀautomotive,ꢀaviationꢀand  
aerospaceꢀdeviceꢀorꢀsystemꢀorꢀtoꢀaffectꢀtheꢀsafetyꢀorꢀeffectivenessꢀofꢀthatꢀdeviceꢀorꢀsystem.ꢀLifeꢀsupportꢀdevicesꢀorꢀsystemsꢀare  
intendedꢀtoꢀbeꢀimplantedꢀinꢀtheꢀhumanꢀbodyꢀorꢀtoꢀsupportꢀand/orꢀmaintainꢀandꢀsustainꢀand/orꢀprotectꢀhumanꢀlife.ꢀIfꢀtheyꢀfail,ꢀitꢀis  
reasonableꢀtoꢀassumeꢀthatꢀtheꢀhealthꢀofꢀtheꢀuserꢀorꢀotherꢀpersonsꢀmayꢀbeꢀendangered.  
65  
Rev.ꢀ2.6,ꢀꢀ2022-11-21  

相关型号:

TDA38740-0000

带 PMBus 接口的 40 A OptiMOS™ IPOL 单电压同步降压调节器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TDA38827

OptiMOS™ IPOL 25A 单输出高效降压稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TDA39

Barrier Strip Terminal Block, 10A, 1 Deck(s)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ADAM-TECH

TDA3950A

CHROMA PROCESSOR FOR USE IN PAL COLOR TV RECEIVERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TDA3LA

适用于 ADAS 应用且具有视觉加速功能的低功耗 SoC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TDA3LABBABFQ1

适用于 ADAS 应用且具有视觉加速功能的低功耗 SoC | ABF | 367 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TDA3LABBABFRQ1

适用于 ADAS 应用且具有视觉加速功能的低功耗 SoC | ABF | 367 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TDA3LADBABFQ1

适用于 ADAS 应用且具有视觉加速功能的低功耗 SoC | ABF | 367 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TDA3LADBABFRQ1

适用于 ADAS 应用且具有视觉加速功能的低功耗 SoC | ABF | 367 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TDA3LADBJFABFQ1

适用于 ADAS 应用且具有视觉加速功能的低功耗 SoC | ABF | 367 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TDA3LADBJFABFRQ1

适用于 ADAS 应用且具有视觉加速功能的低功耗 SoC | ABF | 367 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TDA3LAXABFQ1

TDA3x SoC for Advanced Driver Assistance Systems (ADAS) 15mm Package (ABF) Silicon Revision 2.0

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI