TLD2252-2EP [INFINEON]

The TLD2252-2EP is designed to control LEDs with a current up to 120 mA. In typical automotive applications the device is capable of driving 3 red LEDs per chain (total 6 LEDs) with a current up to 100 mA and even above, if not limited by the overall system thermal properties. Practically, the output current is controlled by an external resistor or reference source, independently from load and supply voltage changes.;
TLD2252-2EP
型号: TLD2252-2EP
厂家: Infineon    Infineon
描述:

The TLD2252-2EP is designed to control LEDs with a current up to 120 mA. In typical automotive applications the device is capable of driving 3 red LEDs per chain (total 6 LEDs) with a current up to 100 mA and even above, if not limited by the overall system thermal properties. Practically, the output current is controlled by an external resistor or reference source, independently from load and supply voltage changes.

文件: 总40页 (文件大小:1154K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLD2252-2EP  
LITIX™ Basic+  
Features  
Dual channel device with integrated and protected output stage (current  
source), optimized to drive LEDs as additional low cost current source  
Optimized for low cost combined “stop”/ “tail” function in Rear  
Combination Light (RCL)  
Asymmetric output stages to enhance luminosity control for different  
functions  
High output current (up to 120 mA)  
Very low current consumption in sleep mode  
Very low output leakage when channel is “off”  
Low current consumption during fault  
Independent output currents’ control via low power resistors  
Additional output current demand supported by LITIX™ Companion direct drive  
PWM engine supports digital dimming with very high accuracy  
Intelligent fault management: up to 16 devices can share a common error network with only one external  
resistor  
Reverse polarity protection allows reduction of external components and improves system performance  
at low battery/input voltages  
Overload protection  
Wide temperature range: -40°C < TJ < 150°C  
Output current control via external low power resistor  
Green product (RoHS compliant)  
Potential applications  
Cost effective “stop”/ “tail” function implementation with shared and separated LEDs per function  
Turn indicators  
Position, fog, rear lights and side markers  
Animated light functions like wiping indicators and “welcome/goodbye” functions  
Day Running Light  
Interior lighting functions like ambient lighting (including RGB color control), illumination and dash board  
lighting  
LED indicators for industrial applications and instrumentation  
Datasheet  
www.infineon.com  
Rev. 1.10  
2021-06-15  
1
TLD2252-2EP  
LITIX™ Basic+  
Product validation  
Qualified for Automotive Applications. Product Validation according to AEC-Q100/101.  
Description  
The LITIX™ Basic+ TLD2252-2EP is a dual channel high-side driver IC with integrated output stages. It is  
designed to control LEDs with a current up to 120 mA. In typical automotive applications the device is capable  
of driving 3 red LEDs per chain (total 6 LEDs) with a current up to 100 mA and even above, if not limited by the  
overall system thermal properties. Practically, the output current is controlled by an external resistor or  
reference source, independently from load and supply voltage changes.  
Table 1  
Product summary  
Parameter  
Symbol  
Values  
Operating voltage  
Maximum voltage  
VS(nom)  
5.5 V … 40 V  
40 V  
VS(max)  
VOUT1/2(max)  
Nominal output (load) currents  
IOUT1/2(nom)  
50/100 mA (nominal) when using the automotive  
supply voltage range 8 V - 18 V. Currents up to  
IOUT1/2(max) are possible with low thermal resistance  
RthJA  
Maximum output (load) currents  
Current accuracy at RSET = 10 k  
Current consumption in sleep mode  
IOUT1/2(max)  
KRTx  
60/120 mA depending on RthJA  
300/600 ±3.33%  
0.1 µA  
IS(sleep, typ)  
Maximum current consumption during IS(fault, ERRN)  
fault  
850 µA or less when fault is detected from another  
device (disabled via ERRN) and all channels are  
deactivated (D-pin open)  
Type  
Package  
Marking  
TLD2252-2EP  
PG-TSDSO-14  
TLD2252  
Datasheet  
2
Rev.1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
Table of Contents  
1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2
2.1  
2.2  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin definitions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.1  
3.2  
3.3  
4
4.1  
4.2  
Internal supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Electrical characteristics internal supply and ENx pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5
5.1  
Power stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Reverse battery protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Output configuration via IN_SETx pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
IN_SETx pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Output current adjustment via RSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Output control via IN_SETx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
IN_SETx pins behavior during device fault management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Electrical characteristics power stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Electrical characteristics IN_SETx and PWMI pins for output settings . . . . . . . . . . . . . . . . . . . . . . . . . 20  
5.1.1  
5.1.2  
5.2  
5.2.1  
5.2.2  
5.2.3  
5.2.4  
5.2.5  
5.3  
5.4  
6
6.1  
Load diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Error management via ERRN and D-pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
ERRN pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
D-pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Overtemperature (OT), Open Load (OL) and short OUTx to GND (SC) . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Fault management (D-pin open or connected with a capacitor to GND) . . . . . . . . . . . . . . . . . . . . . 24  
Fault management (D-pin connected to GND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Electrical characteristics: Load diagnosis and Overload management . . . . . . . . . . . . . . . . . . . . . . . . . 30  
6.1.1  
6.1.2  
6.2  
6.2.1  
6.2.2  
6.3  
7
PWM control (Digital dimming) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
PWM unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Direct control of PWMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Electrical characteristics PWM engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
7.1  
7.2  
7.3  
7.4  
8
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
9
10  
Datasheet  
3
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
Block diagram  
1
Block diagram  
11  
VS  
Internal  
supply  
ERRN  
14  
EN/DEN1  
EN/DEN2  
D
9
10  
7
Output  
control  
&
Thermal  
protection  
protection  
OUT2  
OUT1  
12  
13  
IN_SET1  
IN_SET2  
2
3
Current  
reference  
PWMI  
6
5
4
PWM  
PWM_SET  
PWM_RST  
PWMO  
1
engine  
GND  
TLD2252-2EP  
8
Figure 1  
Block diagram  
Datasheet  
4
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
Pin configuration  
2
Pin configuration  
2.1  
Pin assignment  
ERRN  
OUT1  
PWMO  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
IN_SET1  
IN_SET2  
PWM_RST  
PWM_SET  
PWMI  
OUT2  
EP  
VS  
EN2/DEN2  
EN1/DEN1  
GND  
exposed pad (bottom)  
D
8
TLD2252-2EP  
Figure 2  
Pin configuration  
2.2  
Pin definitions and functions  
Pin  
Symbol  
Function  
11  
VS  
Supply voltage; Connected to battery or supply control switch, with EMC  
filter  
8
2
GND  
Ground; Signal ground  
IN_SET1  
Control input for OUT1 channel; Connect to a low power resistor to adjust  
OUT1 output current. Alternatively, a different current reference (i.e. the  
OUT_SET of another LITIX™ Basic+ LED Driver) may be connected  
3
6
IN_SET2  
PWMI  
Control input for OUT2 channel; Connect to a low power resistor to adjust  
OUT2 output current. Alternatively, a different current reference (i.e. the  
OUT_SET of another LITIX™ Basic+ LED Driver) may be connected  
PWM input; Connect to an external PWM controller or a ceramic capacitor  
(when internal PWM engine is intended to be used). If not used, connect to  
GND  
1
4
PWMO  
PWM output; Buffered PWMI logic state. Used to drive additional devices with  
same timing as PWMI. If not used, leave the pin open  
PWM_RST  
PWM duty cycle reset input; Connect to a low power resistor to adjust PWM  
frequency and duty cycle. If the internal PWM engine is not used (direct PWMI  
drive) it should be left open  
5
7
PWM_SET  
D
PWM duty cycle set input; Connect to a low power resistor to adjust PWM  
frequency and duty cycle. If the internal PWM engine is not used (direct PWMI  
drive) it should be left open  
Disable/delay error input; Connect to a capacitor, leave open or connect to  
GND, depending on the required diagnosis management (see Chapter 6 for  
further details)  
Datasheet  
5
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
Pin configuration  
Pin  
14  
9
Symbol  
Function  
ERRN  
ERROR flag I/O; Open drain, active low. Connect to a pull-up resistor  
EN1/DEN1  
Channel 1 output enable and diagnosis control input; Connect to a control  
input (i.e. to VS via a resistor divider or a Zener diode) to enable OUT1 control  
and Diagnosis  
10  
EN2/DEN2  
Channel 2 output enable and diagnosis control input; Connect to a control  
input (i.e. to VS via a resistor divider or a Zener diode) to enable OUT2 control  
and Diagnosis  
13  
12  
OUT1  
OUT2  
EP  
Channel 1 output pin; Connect to the target load  
Channel 2 output pin; Connect to the target load  
Exposed Pad; Connected to GND-pin in application  
Exposed  
Pad  
Datasheet  
6
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
General product characteristics  
3
General product characteristics  
3.1  
Absolute maximum ratings  
Table 2  
Absolute maximum ratings1)  
TJ = -40°C to +150°C; RIN_SETx = 10 kΩ; all voltages with respect to GND, positive current flowing into input and  
I/O pins, positive current flowing out from output pins (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Voltage  
Supply voltage  
EN/DENx voltages  
VS  
-18  
40  
40  
18  
V
V
V
P_4.1.1  
P_4.1.3  
P_4.1.4  
VEN/DENx -18  
EN/DENx voltages related to VS: VEN/DENx(V -40  
VEN/DENx - VS  
S)  
EN/DENx voltages related to  
VEN/DENx(V -18  
40  
V
P_4.1.5  
VOUTx: VEN/DENx - VOUTx  
OUTx)  
Output voltages  
VOUTx  
-1  
40  
40  
V
V
P_4.1.10  
P_4.1.11  
Output voltages related to VS: VS VOUTx(VS) -18  
- VOUTx  
IN_SETx voltages  
PWMI voltage  
PWMO voltage  
PWM_RST voltage  
PWM_SET voltage  
ERRN voltage  
D Voltage  
VIN_SETx -0.3  
6
V
V
V
V
V
V
V
P_4.1.12  
P_4.1.14  
P_4.1.15  
P_4.1.16  
P_4.1.17  
P_4.1.18  
P_4.1.19  
VPWMI  
-0.3  
-0.3  
6
VPWMO  
6
VPWM_RST -0.3  
VPWM_SET -0.3  
6
6
VERRN  
VD  
-0.3  
-0.3  
40  
6
Current  
Output current (Output channel IOUT1  
OUT1)  
0
0
70  
mA  
mA  
P_4.1.24  
P_4.1.25  
Output current (Output channel IOUT2  
130  
OUT2)  
PWMI current  
IPWMI  
-0.5  
-2  
0.5  
2
mA  
mA  
µA  
P_4.1.26  
P_4.1.27  
P_4.1.28  
P_4.1.29  
P_4.1.30  
P_4.1.31  
PWMO current  
IPWMO  
IPWM_RST  
IPWM_SET  
IIN_SETx  
ID  
PWM_RST current  
PWM_SET current  
IN_SETx currents  
D current  
0
300  
300  
300  
0.5  
0
µA  
0
µA  
-0.5  
mA  
Temperature  
Junction temperature  
Storage temperature  
TJ  
-40  
-55  
150  
150  
°C  
°C  
P_4.1.33  
P_4.1.34  
Tstg  
Datasheet  
7
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
General product characteristics  
Table 2  
Absolute maximum ratings1) (cont’d)  
TJ = -40°C to +150°C; RIN_SETx = 10 kΩ; all voltages with respect to GND, positive current flowing into input and  
I/O pins, positive current flowing out from output pins (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
ESD susceptibility  
ESD susceptibility all pins to  
GND  
VESD  
VESD  
-2  
2
kV  
V
HBM2)  
P_4.1.36  
P_4.1.37  
P_4.1.38  
ESD susceptibility all pins to  
GND  
-500  
500  
750  
CDM3)  
CDM3)  
ESD susceptibility Pin 1, 7, 8, 14 VESD1,7,8,1 -750  
V
(corner pins) to GND  
4
1) Not subject to production test, specified by design  
2) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS001 (1.5 k, 100 pF)  
3) ESD susceptibility, Charged Device Model “CDM” according JEDEC JESD22-C101  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
3.2  
Functional range  
Table 3  
Functional range  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
VS(nom) 5.5  
Max.  
Voltage range for normal  
operation  
18  
V
P_4.2.1  
P_4.2.2  
P_4.2.4  
Extended supply voltage for VS(ext)  
functional range  
VSUV(ON)  
40  
V
Junction temperature  
TJ  
-40  
150  
°C  
Note:  
Within the Normal Operation range, the IC operates as described in the circuit description. Within the  
Extended Operation range, parameters deviations are possible. The electrical characteristics are  
specified within the conditions given in the Electrical Characteristics table.  
Datasheet  
8
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
General product characteristics  
3.3  
Thermal resistance  
Note:  
This thermal data was generated in accordance with JEDEC JESD51 standards. For more  
information, go to www.jedec.org.  
Table 4  
Thermal resistance1)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)2)  
Junction to Case  
RthJC  
10  
K/W  
K/W  
P_4.3.1  
P_4.3.3  
1)3)  
Junction to Ambient 1s0p  
board  
RthJA1  
61  
56  
TA = 85°C  
TA = 135°C  
1)4)  
Junction to Ambient 2s2p  
board  
RthJA2  
K/W  
P_4.3.4  
45  
43  
TA = 85°C  
TA = 135°C  
1) Not subject to production test, specified by design  
2) Specified RthJC value is simulated at natural convection on a cold plate setup (all pins and exposed pad are fixed to  
ambient temperature). TA = 85°C. Total power dissipation = 1.5 W  
3) Specified RthJA value is according to Jedec JESD51-3 at natural convection on FR4 1s0p board. The product  
(chip+package) was simulated on a 76.2 × 114.3 × 1.5 mm board with 70 µm Cu, 300 mm2 cooling area. Total power  
dissipation 1.5 W distributed statically and homogenously over all power stages  
4) Specified RthJA value is according to Jedec JESD51-5,-7 at natural convection on FR4 2s2p board; The product  
(chip+package) was simulated on a 76.2 × 114.3 × 1.5 mm board with 2 inner copper layers (2 × 70 µm Cu, 2 × 35 µm  
Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer. Total power  
dissipation 1.5 W distributed statically and homogenously over all power stages  
Datasheet  
9
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
Internal supply  
4
Internal supply  
This chapter describes the internal supply in its main parameters and functionality.  
4.1  
Description  
The internal supply principle is highlighted in the concept diagram of Figure 3.  
If the voltage applied at both the EN/DEN pins are below VENx(th) the device enters sleep mode. In this state all  
internal functions are switched off and the current consumption is reduced to IS(sleep)  
.
As soon as the voltage applied at the supply pin VS is above VSUV(ON) and the voltage applied at one of the  
EN/DEN pins are above VENx(th), after the power-on reset time tPOR, the device is ready to deliver output current  
from the relative output stage. The power on reset time tPOR has to be taken into account also in relevant  
application conditions, i. e. with PWM control from VS or EN/DEN lines.  
Also if PWM control is done via the PWM engine, the conditions VS > VSUV(ON) and VENn > VENx(th) must be fulfilled  
for PWM engine (and, therefore, output) activation.  
VSUV  
-
+
VS  
Internal  
VEN(th)  
Supply  
OUTx  
Control  
-
+
EN/DEN  
OUTx  
Diagnosis  
Control  
+
-
VDE N(th)  
Figure 3  
Internal supply  
Furthermore, as soon as the voltage applied at the supply pin VS is above VSUV(ON) and the voltage applied to  
one of the EN/DENx pins VENx are above VDENx(th), the device is ready to detect and report fault conditions via  
ERRN (error network pin) as described in Chapter 6.  
To program outputs enable and diagnosis enable via EN/DENx pins there are several possibilities, like a  
resistor divider from VS to GND, a Zener diode from EN/DENx to VS and also a logic control pin (e.g. from a  
microcontroller output).  
Datasheet  
10  
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
Internal supply  
VS  
VSU V(th)  
t
t
VEN  
VEN (th)  
tPO R  
IOUT  
100%  
80%  
t
Figure 4  
Power on reset timing diagram  
Datasheet  
11  
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
Internal supply  
4.2  
Electrical characteristics internal supply and ENx pins  
Table 5  
Electrical characteristics: Internal supply and ENx pins  
TJ = -40°C to +150°C; VS =5.5 V to 18 V; RIN_SETx = 10 k; all voltages with respect to GND, positive current flowing  
into input and I/O pins, positive current flowing out from output pins (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
0.1  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Current consumption, sleep IS(sleep)  
2
µA  
V
= 0 V  
P_5.2.1  
ENx  
mode  
TJ < 85°C  
VS = 18 V  
V
OUTx = 3.6 V  
VENx = 5.5 V  
IN_SETx = 0 µA  
Currentconsumption,active IS(active)  
mode (no fault)  
1.5  
3
mA  
P_5.2.3  
I
TJ < 105°C  
VS = 18 V  
V
OUTx = 3.6 V  
IPWM_SET = IPWM_RST  
=
100 µA  
Currentconsumptionduring IS(fault, ERRN)  
fault condition triggered  
from another device sharing  
ERRN bus (all channels  
850  
µA  
VENx = 5.5 V  
TJ < 105°C  
VS = 18 V  
VERRN = 0 V  
VOUTx = 3.6 V  
P_5.2.4  
deactivated)  
D open  
Currentconsumptionduring IS(fault, OUT)  
fault condition (all channels  
deactivated)  
1.25  
mA  
VENx = 5.5 V  
TJ < 105°C  
VS = 18 V  
P_5.2.16  
V
OUT1 = 0 V  
VOUT2  
D open  
Supply thresholds  
Required supply voltage for VSUV(ON)  
output activation  
5.5  
V
VENx = VS  
VOUTx = 3 V  
RIN_SETx = 6.8 kΩ  
P_5.2.5  
P_5.2.6  
P_5.2.8  
IOUTx > 50%  
IOUTx(nom)  
Required supply voltage for VSUV(OFF)  
output deactivation  
4.5  
V
VENx = VS  
VOUTx = 3 V  
R
IN_SETx = 6.8 kΩ  
IOUTx < 50%  
IOUTx(nom)  
1)  
Supply voltage activation  
VSUV(hys)  
200  
mV  
V
> VEN(th)  
ENx  
hysteresis: VSUV(ON) - VSUV(OFF)  
Datasheet  
12  
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
Internal supply  
Table 5  
Electrical characteristics: Internal supply and ENx pins (cont’d)  
TJ = -40°C to +150°C; VS =5.5 V to 18 V; RIN_SETx = 10 k; all voltages with respect to GND, positive current flowing  
into input and I/O pins, positive current flowing out from output pins (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
EN pins  
ENx output enable  
threshold  
VENx(th)  
1.4  
1.65  
1.8  
V
VS = 5.5 V  
VPS = 2 V  
IN_SETx = 6.8 kΩ  
OUTx = 50%  
P_5.2.9  
R
I
IOUTx(nom)  
DENx diagnosis enable  
threshold  
VDENx(th)  
2.4  
2.5  
120  
2.7  
V
VS = 5.5 V  
P_5.2.11  
P_5.2.12  
P_5.2.17  
P_5.2.14  
P_5.2.15  
1)  
DENx diagnosis enable  
hysteresis  
VDENx(hys)  
mV  
µA  
µA  
µA  
R
= 6.8 kΩ  
IN_SETx  
EN/DENx pull-down current IEN/DENx(PD)  
EN/DENx pull-down current IEN/DENx(PD)  
EN/DENx pull-down current IEN/DENx(PD)  
Timing  
15  
35  
150  
1)VS > 8 V  
VEN/DENx = 2.8 V  
1)VS > 8 V  
VEN/DENx = 5.5 V  
1)VS > 8 V  
VEN/DENx = VS  
Power on reset delay time  
tPOR  
25  
µs  
1)VS rising from 0 V P_5.2.13  
to 13.5 V  
V
OUTx = 3.6 V  
IN_SETx = 6.8 kΩ  
OUTx = 80%  
IOUTx(nom)  
R
I
1) Not subjected to production test: specified by design  
Datasheet  
13  
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
Power stages  
5
Power stages  
The two asymmetric output stages are realized as high-side current sources with an output current up to  
60/120mA. During off state the leakage current at the output stages is minimized in order to prevent a slightly  
glowing LED.  
The maximum output current is limited by the power dissipation and used PCB cooling areas.  
For an operating output current control loop, the supply and output voltages have to be considered according  
to the following parameters:  
Required supply voltage for current control VS(CC)  
Voltage drop over through the output stage during current control VPSx(CC)  
Required output voltage for current control VOUTx(CC)  
5.1  
Protection  
The device provides embedded protective functions, which are designed to prevent IC damage under fault  
conditions described in this datasheet. Fault conditions are considered as “outside” normal operating range.  
Protective functions are not designed for continuous nor for repetitive operations.  
5.1.1  
Thermal protection  
A thermal protection circuitry is integrated in the device. It is realized by a temperature monitoring of the  
output stages.  
As soon as the junction temperature exceeds the overtemperature threshold TJSD the output current of both  
channels is disabled and (provided that D-pin is left open or capacitively connected to GND) the IN_SETx pins  
go in a weak pull-down state with a current consumption IIN_SETx(fault). If the junction temperature cools down  
below TJSD - TJ(hys), the IN_SET pins rise again to VIN_SETx(ref) (within an additional time tIN_SETx(del)) and  
consequently, the output currents rise again (see Chapter 6 for a detailed description of fault management).  
Tj  
TjSD  
TjSD(hys)  
t
Over temperature  
disappear  
Over temperature  
occurs  
Figure 5  
Overtemperature shut down auto-restart thresholds  
As long as the device remains into overtemperature condition, ERRN pin remains low.  
Datasheet  
14  
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
Power stages  
5.1.2  
Reverse battery protection  
The device has an integrated reverse battery protection feature. This feature protects the driver IC itself and,  
potentially, also connected LEDs. The output reverse current is limited to IOUTx(REV) by the reverse battery  
protection.  
5.2  
Output configuration via IN_SETx pins  
Outputs current can be defined via IN_SETx and pins.  
5.2.1  
IN_SETx pins  
The IN_SETx pins are multiple function pins for the outputs current definition and inputs control.  
Output currents definition and analog dimming control can be done defining accordingly the IN_SETx  
currents.  
ref/fault selection  
logic  
IN_SET  
IIN_SET  
VIN_SET(ref)  
IIN_SET(fault)  
GND  
Figure 6  
IN_SETx pins block diagram  
5.2.2  
Output current adjustment via RSET  
The output current for the channels can be defined connecting a low power resistor (RSETx) between the  
IN_SETx pins and GND. The dimensioning of the resistors can be done using the formula:  
(5.1)  
IOUTx = k IIN _ SETx = k VIN _ SETx(ref ) / RSETx  
The gain factor kx (defined as the ratio IOUTx/IIN_SETx) is graphically described in Figure 7.  
The current through the RSETx is defined by the resistor itself and the reference voltage VIN_SETx(ref), which is  
applied to the IN_SETx pin when the device is supplied and the channel enabled.  
Datasheet  
15  
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
Power stages  
5.2.3  
Output control via IN_SETx  
The IN_SETx pins can be connected via their RSETx to the open-drain outputs of a microcontroller or to an  
external NMOS transistor as described in Figure 9. This signal can be used to turn off the relative output stages  
of the IC.  
A minimum IN_SETx current of IIN_SETx(ACT) is required to turn on the output stages. This feature is implemented  
to prevent glowing of LEDs caused by leakage currents on the IN_SETn pins, see again Figure 7 for details.  
IOUTx [mA]  
kx = IOUTx / IIN_SETx  
IOUTx  
IIN_SETx(ACT)  
IIN_SETx [µA]  
IIN_SETx  
Figure 7  
IOUTx vs IIN_SETx  
k/k(typ)  
OUT1  
110%  
105%  
100%  
95%  
90%  
16  
33  
66  
100  
167  
200  
IIN_SET1  
[μA]  
k/k(typ)  
OUT2  
110%  
105%  
100%  
95%  
90%  
16  
33  
66  
100  
167  
200  
IIN_SET2  
[μA]  
Figure 8  
Typical output current accuracy IOUT / IIN_SET at TJ = 25°C  
Datasheet  
16  
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
Power stages  
VS  
Supply  
Protection  
LITIX™  
Microcontroller  
Basic+ (*)  
RSET  
OUT  
IN_SET  
OUT  
PWMI  
GND  
(*) The drawing refers to a generic LITIX™ BASIC+ device,  
and does not represent a specific device pinout  
(only the relevant connections for microcontroller IN_SET control are shown)  
Figure 9  
Output control via IN_SET pin and open-drain microcontroller out (simplified diagram)  
5.2.4  
IN_SETx pins behavior during device fault management  
If a fault condition arises on the channel controlled by the IN_SETx pins, once the D-pin reaches the high level  
threshold VD(th), the current of all the IN_SETx pins is reduced to IIN_SETx(fault), in order to minimise the current  
consumption of the whole device under fault condition (detailed description is in the load diagnosis section,  
Chapter 6).  
5.2.5  
Timing diagrams  
In the following diagrams (Figure 10) the influences of input on output deactivation delays are shown.  
IIN_SET x  
t
tON(IN_SET )  
tOFF (IN _SET )  
IOUTx  
100%  
90%  
10%  
t
Figure 10 IN_SET turn on and turn off delay timing diagram  
Datasheet  
17  
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
Power stages  
5.3  
Electrical characteristics power stage  
Table 6  
Electrical characteristics: Power stage  
TJ = -40°C to +150°C; VS =5.5 V to 18 V; RIN_SETx = 10 k; all voltages with respect to GND, positive current flowing  
into input and I/O pins, positive current flowing out from output pins (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Output leakage currents  
IOUTx(leak)  
3
µA  
µA  
µA  
V
= 5.5 V  
P_6.5.1  
ENx  
IIN_SETx = 0 µA  
OUTx = 2.5 V  
V
TJ = 85°C  
1)  
Output leakage currents  
Reverse output currents  
IOUTx(leak)  
7
3
V
= 5.5 V  
P_6.5.59  
P_6.5.2  
ENx  
IIN_SETx = 0 µA  
VOUTx = 2.5 V  
TJ = 150°C  
1)  
IOUTx(rev)  
V
= Vsx  
ENx  
VSx = -18 V  
Output load: LED  
with break down  
voltage < - 0.6 V  
Output current accuracy  
Output current accuracy  
KRT1  
KLT1  
KALL1  
KRT2  
KLT2  
KALL2  
290  
285  
282  
580  
570  
564  
300  
300  
300  
600  
600  
600  
310  
315  
318  
620  
630  
636  
1)TJ = 25°C  
VS = 12.8 V  
P_6.5.16  
P_6.5.17  
V
PS1 = 2 V  
IIN_SET1 = 100 µA  
Output current accuracy  
Output current accuracy  
Output current accuracy  
Output current accuracy  
Output current accuracy  
1)TJ = 25... 150°C  
VS = 8... 18 V  
VPS1 = 2 V  
I
IN_SET1 = 100 µA  
1)TJ = -40... 150 °C P_6.5.18  
VS = 8... 18 V  
V
PS1 = 2 V  
IIN_SET1 = 100 µA  
1)TJ = 25°C  
VS = 12.8 V  
P_6.5.21  
P_6.5.22  
P_6.5.23  
V
PS2 = 2 V  
IIN_SET2 = 66 µA  
1)TJ = 25... 150°C  
VS = 8... 18 V  
V
PS2 = 2 V  
IIN_SET2 = 66 µA  
1)TJ = -40... 150°C  
VS = 8... 18 V  
VPS1 = 2 V  
IIN_SET1 = 66 µA  
Datasheet  
18  
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
Power stages  
Table 6  
Electrical characteristics: Power stage (cont’d)  
TJ = -40°C to +150°C; VS =5.5 V to 18 V; RIN_SETx = 10 k; all voltages with respect to GND, positive current flowing  
into input and I/O pins, positive current flowing out from output pins (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Required voltage drop  
during current control  
VPSx(CC)  
1.0  
V
2)VS = 8... 18 V  
OUTx > 90% of  
x(typ)*IIN_SETx  
2)VS = 8... 18 V  
IN_SETx = 133 µA  
IOUTx > 90% of  
x(typ)*IIN_SETx  
P_6.5.36  
I
K
VPSx(CC) = VS - VOUTx  
Required voltage drop  
during current control  
VPSx(CC) = VS - VOUTx  
VPSx(CC)  
VPSx(CC)  
VPSx(CC)  
0.65  
0.75  
0.85  
5.5  
V
P_6.5.37  
P_6.5.38  
P_6.5.39  
P_6.5.40  
P_6.5.41  
I
K
TJ = -40°C  
Required voltage drop  
during current control  
V
V
V
V
2)VS = 8... 18 V  
I
IN_SETx = 133 µA  
IOUTx > 90% of  
x(typ)*IIN_SETx  
VPSx(CC) = VS - VOUTx  
K
TJ = 25°C  
2)VS = 8... 18V  
Required voltage drop  
during current control  
I
IN_SETx = 133 µA  
IOUTx > 90% of  
x(typ)*IIN_SETx  
VPSx(CC) = VS - VOUTx  
K
TJ = 150°C  
Required supply voltage for VS(CC)  
current control  
VEN = 5.5 V  
V
OUTx = 3 V  
RIN_SETx = 6.8 kΩ  
OUTx > 90% of  
I
Kx*IIN_SETx  
Required output voltage for VOUTx(CC)  
1.4  
VS = 8... 18 V  
current control  
IOUTx > 90% of  
Kx*IIN_SETx  
1)  
Overtemperature shutdown TJSD  
threshold  
150  
175  
10  
190  
°C  
°C  
P_6.5.42  
P_6.5.43  
1)  
Overtemperature hysteresis TJ(hys)  
1) Not subjected to production test: specified by design  
2) In these test conditions, the parameter Kx(typ) represents the typical value of output current accuracy.  
Datasheet  
19  
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
Power stages  
5.4  
Electrical characteristics IN_SETx and PWMI pins for output settings  
Table 7  
Electrical characteristics: IN_SETx and PWMI pins  
TJ = -40°C to +150°C; VS =5.5 V to 18 V; RIN_SETx = 10 k; all voltages with respect to GND, positive current flowing  
into input and I/O pins, positive current flowing out from output pins (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
IN_SETx reference voltage VIN_SETx(ref)  
IN_SETx reference voltage VIN_SETx(ref)  
1.195 1.22  
1.245  
V
V
= 5.5 V  
P_6.6.1  
ENx  
TJ = 25°C  
1)  
1.184 1.22  
1.256  
15  
V
V
= 5.5 V  
P_6.6.17  
P_6.6.2  
ENx  
IN_SETx output activation IIN_SETx(ACT)  
current  
µA  
VENx = 5.5 V  
PSx = 3 V  
IOUTx > 50% of  
x(typ)*IIN_SETx  
V
K
Timing  
IN_SETx turn on time  
tON(IN_SETx)  
20  
10  
µs  
µs  
1)2)VS = 13.5 V  
VPSx = 4 V  
P_6.6.8  
P_6.6.9  
I
IN_SETx rising from 0  
to 180 µA  
OUTx = 90% of  
I
Kx*IIN_SETx  
1)2)VS = 13.5 V  
IN_SETx turn off time  
tOFF(IN_SETx)  
V
PSx = 4 V  
IN_SETx falling from  
180 to 0 µA  
OUTx = 10% of  
Kx*IIN_SETx  
I
I
1) Not subjected to production test: specified by design  
2) Refer to Figure 10  
Datasheet  
20  
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
Load diagnosis  
6
Load diagnosis  
6.1  
Error management via ERRN and D-pins  
Several diagnosis features are integrated in the TLD2252-2EP:  
Open load detection (OL) for any of the output channels OUTx.  
Short circuit OUTx-GND (SC) for any of the output channels OUTx.  
6.1.1  
ERRN pin  
ERRN  
fault  
+
-
Output  
control  
no fault  
VERRN(th)  
IERRN(fault)  
Figure 11 ERRN pin (block diagram)  
The device is able to report a detected failure in one of its driven loads and react to a fault detected by another  
LED driver in the system if a shared error network is implemented (i. e. driving LED chains of the same light  
function). This is possible with the usage of an external pull-up resistor, allowing multiple devices to share the  
open drain diagnosis output pin ERRN. All devices sharing the common error network are capable to detect  
the fault from any of the channels driven by the LITIX™ Basic+ LED drivers and, if desired, to switch multiple  
loads off.  
Datasheet  
21  
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
Load diagnosis  
VS  
Supply  
Protection  
ERRN  
ERRN  
LITIX™  
Basic+ (*)  
LITIX™  
Basic+ (*)  
IN_SET  
IN_SET  
PWMI  
GND  
PWMI  
GND  
OUT  
OUT  
(*) The drawing refers to a generic LITIX™ BASIC+ device,  
and does not represent a specific device pinout  
(only the relevant connections are shown)  
Figure 12 Shared error network principle between LITIX™ Basic+ family devices  
When one of the channels is detected to be under fault conditions (for, at least, a filter time tfault), the open-  
drain ERRN pin sinks a pull-down current IERRN(fault) toward GND. Therefore an active low state can be detected  
at ERRN pin when VERRN < VERRN(fault) and if this condition is reached, provided the proper setup of the delay pin  
D, all the channels are switched off. Similarly, when the fault is removed, ERRN pin is put back in high  
impedance state, and the channels reactivation procedure can be completed once D-pin voltage is below the  
value VD(th), as illustrated in the timing diagrams in this chapter.  
Datasheet  
22  
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
Load diagnosis  
6.1.2  
D-pin  
ID(fault)  
ERRN = H  
D
ERRN = L  
+
-
Ou tput  
control  
ERRN = H  
ERRN = L  
VD(th)  
ID(PD)  
Figure 13 D-pin (block diagram).  
The D-pin is designed for 2 main purposes:  
To react to error conditions in LED arrays according to the implemented fault management policy, in  
systems where multiple LED chains are used for a given light function.  
To extend the channels deactivation delay time of a value tD, adding a small signal capacitor from the D-  
pin to GND. In this way, an unstable or noisy fault condition may be prevented from switching off all the  
channels of a given light function (i.e. driven by several driver ICs sharing the same error network).  
The functionality of the D-pin is shown in the Figure 13 simplified block diagram:  
If one LED within one chain fails in open load condition or one of the device outputs are shorted to GND, the  
respective LED chain is off. Different automotive applications require a complete deactivation of a light  
function, if the desired brightness of the function (LED array) can not be achieved due to an internal error  
condition.  
In normal operative status (no fault) a pull-down current ID(PD) is sunk from the D-pin to GND. If there is a fault  
condition (for, at least, a filter time tfault) in one of the LED channels driven by the IC or in any of the devices  
sharing the same ERRN error network line, a pull-up current ID(fault) is instead sourced from the D-pin. As a  
consequence, if a capacitive or open load is applied at this pin, its voltage starts rising.  
When VD(th) is reached at D-pin, all the channels driven by the device are switched off and if other devices share  
the same ERRN and D-pins nodes, all the devices turn their outputs off.  
Alternatively, if the D-pin is tied to GND, only the channel that has been detected with a fault is safely  
deactivated.  
Datasheet  
23  
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
Load diagnosis  
The capacitor value used at the D-pin, CD, sets the delay times tD(set/reset) according to the following equations:  
ꢁ(ꢀℎ)  
(6.1)  
ꢁ(ꢂꢃ)  
=
ꢁ(ꢇꢈꢉꢊꢀ )  
∙ ꢌꢁ(ꢄꢍ) ꢁ(ꢀℎ)ꢎ  
(6.2)  
ꢁ(ꢋꢃꢂꢃꢀ )  
=
ꢁ(ꢏꢁ)  
6.2  
Overtemperature (OT), Open Load (OL) and short OUTx to GND (SC)  
The behavior of the device during overload conditions that lead to an excess of internal heating up to  
overtemperature condition, is already described in Chapter 5.  
Open load (OL) and OUTx shorted to GND (SC) diagnosis features are also integrated in the TLD2252-2EP.  
An open load condition is detected if the voltage drop over one of the output stages VPSx is below the threshold  
V
PSx(OL) at least for a filter time tfault  
A short to GND condition is detected if the voltage of one output stages VOUTx is below the threshold VOUTx(SC) at  
least for a filter time tfault  
.
.
6.2.1  
Fault management (D-pin open or connected with a capacitor to GND)  
With D-pin open or connected with a capacitor to GND configuration, it is possible to switch off all the channels  
which share a common error network, without the need of an auxiliary microcontroller. For more details refer  
also to the timing diagram of Figure 14, Figure 15 and Figure 16.  
If there is an OL or SC condition on one of the outputs, a pull-up current IOUT(fault) then flows out from the  
affected channel, replacing the configured output current (but limited by the actual load impedance, e.g.  
reduced to zero with an ideal open load). Under these conditions, the ERRN pin starts sinking a current  
IERRN(fault) toward GND and (with proper dimensioning of the external pull-up resistor) reaches a voltage level  
below VERRN(fault)  
.
After tD(set), the voltage VD(th) is reached at D-pin, the PWMO pin is pulled down and the IN_SETx goes in a weak  
pull-down state with a current consumption IIN_SETx(fault) after an additional latency time tIN_SETx(del). The ERRN  
low voltage can also be used as input signal for a microcontroller to perform the desired diagnosis policy.  
The OL and SC error conditions are not latched: as soon as the fault condition is no longer present (at least for  
a filter time tfault) ERRN goes back to high impedance. When its voltage is above VERRN(fault), the D-pin voltage  
starts decreasing and after tD(reset) goes below (VD(th) - VD(th,hys)). Then the IN_SETx voltages go up to VIN_SETx(ref)  
,
again after a time tIN_SETx(del): at this point, the output stages are activated again. The total time between the  
fault removal and the IN_SET reactivation tERR(reset) is extended by an additional latency which depends on the  
external ERRN pin pull-up and filter circuitry.  
Datasheet  
24  
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
Load diagnosis  
VIN_SET  
V
IN _SET (ref)  
t
t
t
tIN _SET (del)  
tIN _SET (del)  
VERRN  
VER R N(fault)  
VD  
VD(th, hys)  
VD( th)  
tD(set)  
tD(rese)t  
tERR(res et)  
tfault  
VOUT  
tfault  
VS  
VS VPS (O L)  
VF  
open load  
occurs  
open load  
disappears  
t
Figure 14 Open load condition timing diagram example (D-pin unconnected or connected to external  
capacitor to GND, VF represents the typical forward voltage of the output load)  
Datasheet  
25  
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
Load diagnosis  
VIN_SET  
V
IN _SET (ref)  
t
t
t
tIN_SET (del)  
tIN_SET (del)  
VERRN  
VER R N(fault)  
VD  
VD(th, hys)  
VD (th)  
tD(set)  
tD(reset)  
tERR(res et)  
tfault  
VOUT  
tfault  
VS  
VF  
VO U T(SC )  
t
short circuit  
occurs  
short circuit  
disappears  
Figure 15 Short circuit to GND condition timing diagram example (D-pin not connected or connected  
to external capacitor to GND, VFxyz represents the forward voltage of the output loads)  
Datasheet  
26  
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
Load diagnosis  
VIN _SE T  
VIN_SE T(ref)  
t
t
t
tIN_SET(del)  
tIN_SET(del)  
VERRN  
VER RN (fault)  
VD  
VD(th)  
tD(set)  
tD(reset)  
Tj  
tERR(reset)  
tfault  
tfault  
TJSD  
TJ SD - TJSD(H YST)  
t
over temp.  
occurs  
over temp.  
disappear  
Figure 16 Overtemperature condition timing diagram example (D-pin not connected or connected to  
external capacitor to GND)  
6.2.2  
Fault management (D-pin connected to GND)  
With D-pin connected to GND configuration, it is possible to deactivate only the channel under fault  
conditions, still sharing ERRN pin in a common error network with other devices of LITIX™ Basic+ family.  
If there is fault condition on one of the outputs, a pull-up current IOUT(fault) flows out from the affected channel,  
replacing the configured output current (but limited by the actual load impedance, e.g. reduced to zero with  
an ideal open load). Under fault conditions the ERRN pin starts sinking a current IERRN(fault) to ground and the  
voltage level on this pin will drop below VERRN(fault) if the external pull-up resistor is properly dimensioned. The  
ERRN low voltage can also be used as input signal for a µC to perform the desired diagnosis policy.  
Datasheet  
27  
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
Load diagnosis  
The fault status is not latched: as soon as the fault condition is no longer present (at least for a filter time tfault),  
ERRN goes back to high impedance and, once its voltage is above VERRN(fault), finally the output stages are  
activated again.  
Examples of open load or short to GND diagnosis with D-pin open or connected to GND are shown in the timing  
diagrams of Figure 17 and Figure 18.  
VIN _SE T  
VIN_SE T(ref)  
t
VERRN  
VER RN (fault)  
t
tfault  
tfault  
VOUT  
VS  
VS – VPS (O L)  
VF  
open load  
occurs  
open load  
disappears  
t
Figure 17 Open load condition timing diagram example (D-pin connected to GND, VF represents the  
forward voltage of the output load)  
Datasheet  
28  
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
Load diagnosis  
VIN_SET  
V
IN_SET (ref)  
t
t
VERRN  
VER R N( fault)  
tfault  
tfault  
VOUT  
V
S
VF  
VO U T(SC )  
t
short circuit  
occurs  
short circuit  
disappears  
Figure 18 Short circuit condition timing diagram example (D-pin connected to GND, VF represents the  
forward voltage of the output load)  
Datasheet  
29  
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
Load diagnosis  
VIN _SE T  
VIN_SE T(ref)  
t
t
VERRN  
VER RN (fault)  
tfault  
tfault  
Tj  
TJSD  
TJ SD - TJSD(H YST)  
t
over temp.  
occurs  
over temp.  
disappear  
Figure 19 Overtemperature condition timing diagram example (D-pin connected to GND)  
6.3  
Electrical characteristics: Load diagnosis and Overload management  
Table 8  
Electrical Characteristics: Fault management  
TJ = -40°C to +150°C; VS =5.5 V to 18 V; RIN_SETx = 10 k; all voltages with respect to GND, positive current flowing  
into input and I/O pins, positive current flowing out from output pins (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
IN_SET fault current  
IIN_SETx(fault)  
10  
µA  
1)VS > 8 V  
VOUTx = 3.6 V  
ERRN = 0 V  
P_7.5.1  
V
VIN_SETx = 1 V  
D open  
V
ENx > VDENx(th,max)  
1)VS > 8 V  
ERRN = 0.8 V  
Fault condition  
ENx > VDENx(th,max)  
ERRN fault current  
IERRN(fault)  
2
mA  
P_7.5.2  
V
V
Datasheet  
30  
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
Load diagnosis  
Table 8  
Electrical Characteristics: Fault management (cont’d)  
TJ = -40°C to +150°C; VS =5.5 V to 18 V; RIN_SETx = 10 k; all voltages with respect to GND, positive current flowing  
into input and I/O pins, positive current flowing out from output pins (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
ERRN input threshold  
OL detection threshold  
SC detection threshold  
Fault detection current  
VERRN(th)  
VPSx(OL)  
VOUTx(SC)  
IOUTx(fault)  
0.8  
2.0  
V
1)VS > 8 V  
P_7.5.3  
P_7.5.5  
P_7.5.6  
P_7.5.7  
0.2  
0.8  
50  
0.4  
V
VS > 8 V  
ENx > VDENx(th, max)  
VS > 8 V  
ENx > VDENx(th, max)  
VS > 8 V  
V
1.35  
180  
V
V
µA  
V
V
OUTx = 0 V  
ENx > VDENx(th, max)  
D-pin  
Threshold voltage for  
function de-activation  
VD(th)  
1.4  
1.7  
2
V
VS > 8 V  
ENx= 5.5 V  
1)VS > 8 V  
P_7.5.8  
P_7.5.9  
V
Threshold hysteresis  
Fault pull-up current  
Pull-down current  
VD(hys)  
100  
mV  
V
V
ENx = 5.5 V  
OUTx = VOUTx(OL)  
ID(fault)  
20  
40  
35  
60  
50  
95  
µA  
µA  
VS > 8 V  
OUTx = VOUTx(OL)  
P_7.5.10  
P_7.5.11  
V
VD = 2 V  
ID(PD)  
VS > 8 V  
VENx = 5.5 V  
VD = 1.4 V  
V
ERRN = 2 V  
VPSx = 3 V  
No fault conditions  
Internal clamp voltage  
VD(CL)  
4
6
V
VS > 8 V  
P_7.5.12  
V
OUTx = VOUTx(OL)  
D-pin open  
Timing  
Fault to ERRN activation  
delay  
tfault  
40  
150  
10  
µs  
µs  
1)VS > 8 V  
P_7.5.19  
P_7.5.20  
V
OUTx rising from  
5 V to VS  
VENx > VDENx(th, max)  
1)VS > 8 V  
Fault appearance/removal tIN_SET(del)  
to IN_SET  
deactivation/activation  
delay  
OUTx open  
D rising from 0 V to  
5 V  
V
ENx > VDENx(th, max)  
1) Not subjected to production test: specified by design.  
Datasheet  
31  
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
PWM control (Digital dimming)  
7
PWM control (Digital dimming)  
Digital dimming via PWM control is commonly practiced to adjust luminous intensity, preventing color shift of  
the LED light source.  
7.1  
PWM unit  
VPWMI(H)  
IPWM_SET  
-
+
R
S
Q
Q
PWMI  
-
+
IPWM_RST  
VPWMI(L)  
PWMO  
PWM_SET  
PWM_RST  
IPWM_SET  
IPWM_RST  
VPWM_RST(ref)  
VPWM_SET(ref)  
Figure 20 PWM unit concept diagram (including PWMO drive and typical external circuitry)  
The PWM unit can be configured connecting a resistor on each of PWM_SET and PWM_RST configuration pins  
and a capacitor to the PWMI pin. This setup (provided that VEN > VEN(th) and VS > VSUV(ON)) enables the internal  
Pulse Width Modulation (PWM) generator to drive the PWMO pin with a digital signal, which represents the  
desired PWM frequency and Duty Cycle (DC).  
With reference to the block diagram of Figure 20 the current flowing through PWM_SET and PWR_RST  
reference pins (IPWM_SET and IPWM_RST) are replicated to charge or discharge the capacitor CPWMI  
The following figure shows the charging and discharging phases defined by the chosen external components,  
according to Figure 21 and the internal PWM unit.  
Datasheet  
32  
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
PWM control (Digital dimming)  
VPWMI  
PWMI OFF DC=0%  
VPWMI_H  
Internal PWM  
VPWMI_L  
PWMI ON DC=100%  
t
PWMO  
t
Figure 21 PWMI operating voltages and timing diagram example  
The PWM typical characteristics can be adjusted using the formulas below.  
RPWM _ SET CPWMI  
CPWMI  
(7.1)  
(7.2)  
(7.3)  
(
)
(
)
)
tPWM (ON )  
=
VPWMI (H ) VPWMI (L)  
=
VPWMI (H ) VPWMI (L)  
IPWM _ SET  
VREF _ SET  
RPWM _ RST CPWMI  
CPWMI  
(
)
(
tPWM (OFF )  
=
VPWMI (H ) VPWMI (L)  
=
VPWMI (H ) VPWMI (L)  
IPWM _ RST  
VREF _ RST  
VREF _ SET / RST  
1
1
fPWMI  
=
=
(
)
tPWMI(ON) + tPWMI(OFF) VPWMI(H ) VPWMI(L) RPWM _ SET + RPWM _ RST CPWMI  
VREF_SET/RST is equal to 1.22 V. See P_8.4.12 and P_8.4.13.  
tPWMI(ON)  
RPWM_ SET  
(7.4)  
DCPWMI  
=
=
tPWMI(ON) +tPWMI(OFF) RPWM_ SET + RPWM_ RST  
From these equations, the proper value CPWMI, RPWM_SET and RPWM_RST can be calculated, according to the  
electrical characteristics defined in Table 9.  
7.2  
Direct control of PWMI  
The PWM engine does not drive directly the internal channels via the PWMO output pin, the PWM control can  
be used to externally synchronize both output channels as well as other devices of the LITIX™ Basic+ family.  
PWMI input can be also controlled by the PWMO output of another device of LITIX™ Basic+ family or,  
alternatively, a push-pull output stage of a microcontroller: the host device decides the digital dimming  
characteristics by applying the proper control cycle in order to set the “on”/”off” timing, according to the  
chosen dimming function.  
Datasheet  
33  
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
PWM control (Digital dimming)  
7.3  
Timing diagrams  
VPWM I  
t
t
tdel(PWM O,H)  
tdel(PWMO,L)  
VPWM O  
VPW  
MI (H,max)  
MI (L,m in)  
VPW  
Figure 22 PWMO delay timing diagram  
7.4  
Electrical characteristics PWM engine  
Table 9  
Electrical characteristics: PWM engine  
TJ = -40°C to +150°C; VS =5.5 V to 18 V; RIN_SETn = 10 kΩ; all voltages with respect to GND, positive current flowing  
into input and I/O pins, positive current flowing out from output pins (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
1.7  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
PWMI low threshold  
PWMI high threshold  
VPWMI(L)  
VPWMI(H)  
VPWMI  
1.5  
2
V
V
V
VS = 8 V to 18 V  
VENX = 5.5 V  
P_8.4.1  
P_8.4.2  
P_8.4.3  
2.5  
2.7  
1.0  
3
VS = 8 V to 18 V  
VENX = 5.5 V  
1)VS = 8 V to 18 V  
VENX = 5.5 V  
PWMI switching threshold  
difference VPWMI(H) - VPWMI(L)  
0.85  
1.15  
V
PSX = 3 V  
PWMO Duty Cycle  
DCPWMO  
9.5  
47  
10  
50  
10.5  
53  
%
%
1)2)VS = 8 V to 18 V P_8.4.9  
I
I
PWM_SET = 270 µA  
PWM_RST = 30 µA  
CPWMI = 110 nF  
PWMO = 50 pF  
1)2)VS = 8 V to 18 V P_8.4.8  
C
PWMO Duty Cycle  
DCPWMO  
I
I
PWM_SET = 55 µA  
PWM_RST = 55 µA  
CPWMI = 110 nF  
PWMO = 50 pF  
C
Datasheet  
34  
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
PWM control (Digital dimming)  
Table 9  
Electrical characteristics: PWM engine (cont’d)  
TJ = -40°C to +150°C; VS =5.5 V to 18 V; RIN_SETn = 10 kΩ; all voltages with respect to GND, positive current flowing  
into input and I/O pins, positive current flowing out from output pins (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
80  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
PWMO Duty Cycle  
DCPWMO  
78  
82  
%
1)2)VS = 8 V to 18 V P_8.4.11  
I
I
PWM_SET = 35 µA  
PWM_RST = 140 µA  
CPWMI = 110 nF  
PWMO = 50 pF  
1)VS = 12.8 V  
PS = 2 V  
IN_SET = 12.2 kΩ  
RPWM_SET = 4.5 kΩ  
C
Combined output current  
accuracy  
IRT1(avg)  
2.86  
3.81  
3
4
3.14  
4.19  
mA  
P_8.4.22  
P_8.4.24  
V
R
IIN_SET1*KRT1*DCPWMO  
R
PWM_RST = 40.5 kΩ  
C
PWMI = 110 nF  
CPWMO = 50 pF  
TJ = 25 °C  
1)VS = 12.8 V  
Combined output current  
accuracy  
IRT2(avg)  
mA  
V
PS = 2 V  
IN_SET = 18.3 kΩ  
RPWM_SET = 4.5 kΩ  
IIN_SET2*KRT2*DCPWMO  
R
R
PWM_RST = 40.5 kΩ  
C
PWMI = 110 nF  
CPWMO = 50 pF  
TJ = 25 °C  
1)  
PWM_SET reference voltage VPWM_SET(ref) 1.184 1.22  
PWM_RST reference voltage VPWM_RST(ref) 1.184 1.22  
1.256  
1.256  
1.6  
V
= 5.5 V  
P_8.4.12  
P_8.4.13  
P_8.4.14  
ENx  
V
1)  
PSx = 3 V  
V
V
= 5.5 V  
ENx  
V
PSx = 3 V  
PWMO OFF pull-up current  
IPWMO(OFF)  
0.75  
-1.6  
-1.6  
mA  
VS = 8 V to 18 V  
V
V
ENx = 5.5 V  
PWMI = 3 V  
VPWMO = 3 V  
No fault conditions  
PWMO ON pull-down current IPWMO(ON)  
PWMO ON pull-down current IPWMO(ON)  
-0.75  
-0.4  
mA  
mA  
VS = 8 V to 18 V  
P_8.4.15  
P_8.4.25  
V
ENx = 5.5 V  
VPWMI = 1.5 V  
PWMO = 1.5 V  
V
No fault conditions  
1)VS = 8 V to 18 V  
V
ENx = 5.5 V  
VPWMI = 1.5 V  
PWMO = 1 V  
No fault conditions  
V
Datasheet  
35  
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
PWM control (Digital dimming)  
Table 9  
Electrical characteristics: PWM engine (cont’d)  
TJ = -40°C to +150°C; VS =5.5 V to 18 V; RIN_SETn = 10 kΩ; all voltages with respect to GND, positive current flowing  
into input and I/O pins, positive current flowing out from output pins (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Timing  
PWMO activation delay time tdel(PWMO,L)  
1
µs  
µs  
ns  
1)3)VS = 8 V to 18 V P_8.4.16  
VENx = 5.5 V  
C
PWMO = 50 pF  
PWMI falling from  
5 V to 0 V  
PWMO = 1.5 V  
V
V
PWMO deactivation delay  
time  
tdel(PWMO,H)  
1
1)3)VS = 8 V to 18 V P_8.4.17  
ENn = 5.5 V  
CPWMO = 50 pF  
PWMI rising from  
0 V to 5 V  
PWMO = 3 V  
V
V
V
PWMO delay time matching tdel(PWMO) -200  
del(PWMO,H) - tdel(PWMO,L)  
200  
1)3)VS = 12.8 V  
TJ = 25°C  
P_8.4.21  
t
1) Not subjected to production test. specified by design  
2) Measured at PWMO output waveform (VPWMO crossing 3 V when rising from VPWMO(L), 2 V when falling from VPWMO(H)  
)
3) Refer to Figure 22.  
Datasheet  
36  
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
Application information  
8
Application information  
Note:  
The following information is given as a hint for the implementation of the device only and shall not  
be regarded as a description or warranty of a certain functionality, condition or quality of the device.  
VTAIL  
VSTOP  
Supply  
Protection  
TLD2252-2EP  
PWMI  
PWM_SET  
PWM_RST  
IN_SET1  
GND  
IN_SET2  
PWMO  
OUT1  
OUT2  
Figure 23 Application diagram example  
Note:  
This is a very simplified example of an application circuit. The function must be verified in the real  
application.  
Datasheet  
37  
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
Package outline  
9
Package outline  
ꢀꢁ  
ꢀꢁ  
ꢆꢃꢊsꢂꢃꢀ  
ꢌꢃꢊsꢂꢃꢀ  
'
ꢂꢃꢀ  
ꢂꢃꢀ  
ꢅ[  
ꢅ[  
&
ꢂꢃꢂꢈ  
&
ꢀꢆ[  
ꢂꢃꢉꢇsꢂꢃꢅꢄ  
6($7,1* &23/$1$5,7<  
3/$1(  
sꢂꢃꢅ  
ꢂꢃꢅ '  
ꢀꢆ[  
ꢅꢁ  
ꢂꢃꢅꢄsꢂꢃꢂꢄ  
ꢂꢃꢅꢄ  
$ꢋ% &  
ꢀꢆ[  
%27720 9,(:  
$
ꢀꢆ  
ꢀꢆ  
ꢂꢃꢀꢄ  
ꢂꢃꢀꢄ  
'
,1'(;  
0$5.,1*  
%
ꢂꢃꢉꢄ  
sꢂꢃꢀ  
$ꢋ%  
ꢀꢁ '2(6 127 ,1&/8'( 3/$67,& 25 0(7$/ 3527586,21 2) ꢂꢃꢀꢄ 0$;ꢃ 3(5 6,'(  
ꢅꢁ '$0%$5 352786,21 6+$// %( 0$;,080 ꢂꢃꢀ00 727$/ ,1 (;&(66 2) /($' :,'7+  
$// ',0(16,216 $5( ,1 81,76 00  
7+( '5$:,1* ,6 ,1 &203/,$1&( :,7+ ,62 ꢀꢅꢈ ꢎ 352-(&7,21 0(7+2' ꢀ >  
@
Figure 24 PG-TSDSO-14  
Green product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
Further information on packages  
https://www.infineon.com/packages  
Datasheet  
38  
Rev. 1.10  
2021-06-15  
TLD2252-2EP  
LITIX™ Basic+  
Revision History  
10  
Revision History  
Revision Date  
Changes  
1.10  
1.00  
2021-06-15 Updated P_5.2.17, P_5.2.14, P_5.2.15  
2019-09-26 Initial datasheet created  
Datasheet  
39  
Rev. 1.10  
2021-06-15  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2021-06-15  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2021 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
a written document signed by  
Document reference  
LITIX™ Basic+ TLD2252-2EP  

相关型号:

TLD225K20A5B

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 20V, 10% +Tol, 10% -Tol, 2.2uF, Through Hole Mount, RADIAL LEADED
CDE

TLD225K20A5T

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 20V, 10% +Tol, 10% -Tol, 2.2uF, Through Hole Mount, RADIAL LEADED
CDE

TLD225K35C5B

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 35V, 10% +Tol, 10% -Tol, 2.2uF, Through Hole Mount, RADIAL LEADED
CDE

TLD225K35C5T

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 35V, 10% +Tol, 10% -Tol, 2.2uF, Through Hole Mount, RADIAL LEADED
CDE

TLD225K35C6B

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 35V, 10% +Tol, 10% -Tol, 2.2uF, Through Hole Mount, RADIAL LEADED
CDE

TLD226K06D0T

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 6.3V, 10% +Tol, 10% -Tol, 22uF, Through Hole Mount, RADIAL LEADED
CDE

TLD226K10E5B

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 10V, 10% +Tol, 10% -Tol, 22uF, Through Hole Mount, RADIAL LEADED
CDE

TLD226K20G0T

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 20V, 10% +Tol, 10% -Tol, 22uF, Through Hole Mount, RADIAL LEADED
CDE

TLD226K25H4B

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 25V, 10% +Tol, 10% -Tol, 22uF, Through Hole Mount, RADIAL LEADED
CDE

TLD227K06K4T

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 6.3V, 10% +Tol, 10% -Tol, 220uF, Through Hole Mount, RADIAL LEADED
CDE

TLD2310EL

3 Channel High Side Current Source
INFINEON

TLD2310EL_15

3 Channel High Side Current Source
INFINEON