TLD55411QV [INFINEON]

H-Bridge DC/DC Controller with SPI Interface;
TLD55411QV
型号: TLD55411QV
厂家: Infineon    Infineon
描述:

H-Bridge DC/DC Controller with SPI Interface

文件: 总82页 (文件大小:4341K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Infineon® LITIX™ Power Flex  
H-Bridge DC/DC Controller with SPI  
Interface  
H-Bridge DC/DC Controller for High Power LED Lighting  
TLD5541-1QV  
Data Sheet  
Rev. 1.0, 2016-05-20  
Automotive Power  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Table of Contents  
1
2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3
3.1  
3.2  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
4
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.1  
4.2  
4.3  
5
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Different Power States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Different Possibilities to RESET the device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
5.1  
5.2  
5.3  
6
6.1  
6.2  
6.3  
6.4  
6.4.1  
6.4.2  
6.4.3  
6.5  
6.6  
Regulator Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Regulator Diagram Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Adjustable Soft Start Ramp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Switching Frequency setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Operation of 4 switches H-Bridge architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Boost mode (VIN < VOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Buck mode (VIN > VOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Buck-Boost mode (VIN ~ VOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Fast Output Discharge Operation Mode - Multi Floating Switches Topology . . . . . . . . . . . . . . . . . . . 27  
Flexible current sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Programming Output Voltage (Constant Voltage Regulation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
6.7  
6.8  
7
7.1  
7.2  
Digital Dimming Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
8
Analog Dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
LED current calibration procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
8.1  
8.2  
8.3  
9
9.1  
9.2  
Linear Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
IVCC Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
10  
Protection and Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Overvoltage, Open Load, Short circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Short Circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Open Load Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Input voltage monitoring, protection and power derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Input current Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Output current Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Device Temperature Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
10.1  
10.2  
10.2.1  
10.2.2  
10.2.3  
10.3  
10.4  
10.5  
10.6  
Data Sheet  
2
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Table of Contents  
10.7  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
11  
Infineon FLAT SPECTRUM Featureset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Synchronization Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
EMC optimized schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
11.1  
11.2  
11.3  
11.4  
11.5  
12  
Serial Peripheral Interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
SPI Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Daisy Chain Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
SPI Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
SPI Registers Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Standard Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Register structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
12.1  
12.2  
12.3  
12.4  
12.5  
12.6  
12.6.1  
12.6.2  
13  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
13.1  
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
14  
15  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Data Sheet  
3
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller for High Power LED  
Lighting  
TLD5541-1QV  
1
Overview  
Features  
MOSFET H-Bridge with Single Inductor DC/DC Controller for HIGH  
POWER BUCK-BOOST LED control  
Constant Current and Constant Voltage Regulation  
Wide VIN Range (Device 4.5V to 40V, Power Stage 4.5V to 55V)  
Wide LED forward voltage Range (2V up to 55V)  
Maximum Efficiency in every condition (up to 96%)  
Limp Home Function (Fail Safe Mode)  
PG-VQFN-48-31  
Flexible current sense (Highside or Lowside)  
LED current accuracy+/-3% at Tj=25° and 4% over the whole automotive temperature range  
16bit SPI for diagnostics and control, providing daisy chain capability  
EMC optimized device: Features an auto Spread Spectrum concept to ensure best in class EMC performance  
Provides output current accuracy calibration for improved system accuracy  
Provides improved dynamic behavior (load jump behavior) and adjustable Short to GND threshold  
LED and Input current sense with dedicated monitor Outputs  
Smart power protection features for device and load (open load, short of Load, Overtemperature)  
Switching Frequency Range from 200 kHz to 700 kHz  
Capability to supply Gate Drivers via external Voltage Regulator  
Adjustable Soft Start  
Enhanced Dimming features to adjust average LED current and PWM dimming  
Available in a small thermally enhanced PG-VQFN-48-31 package  
Automotive AEC Qualified  
Description  
The TLD5541-1QV is a synchronous MOSFET H-Bridge DC/DC controller with built in protection features and  
SPI interface. This concept is beneficial for driving high power LEDs with maximum system efficiency and  
minimum number of external components. The TLD5541-1QV offers both analog and digital (PWM) dimming.The  
switching frequency is adjustable in the range of 200 kHz to 700 kHz. It can be synchronized to an external clock  
source. A built in programable Spread Spectrum switching frequency modulation and the forced continuous  
current regulation mode improve the overall EMC behavior. Furthermore the current mode regulation scheme  
provides a stable regulation loop maintained by small external compensation components. The adjustable soft  
start feature limits the current peak as well as voltage overshoot at start-up. The TLD5541-1QV is suitable for use  
in the harsh automotive environment.  
Type  
Package  
Marking  
TLD5541-1QV  
Data Sheet  
PG-VQFN-48-31  
TLD55411QV  
4
Rev.1.0,2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Overview  
Table 1  
Product Summary  
Power Stage input voltage range  
Device Input supply voltage range  
VPOW  
4.5 V … 55 V  
4.5 V … 40 V  
VVIN  
Maximum output voltage (depending by the  
application conditions)  
VOUT(max)  
55 V as LED Driver Boost Mode  
50 V as LED Driver Buck Mode  
50 V as Voltage regulator  
Switching Frequency range,  
fSW  
200 kHz... 700 kHz  
Typical NMOS driver on-state resistance at Tj =  
RDS(ON_PU)  
2.3  
25°C (Gate Pull Up)  
Typical NMOS driver on-state resistance at Tj =  
25°C (Gate Pull Down)  
RDS(ON_PD)  
fSCLK(MAX)  
1.2 Ω  
SPI clock frequency  
5 MHz  
Protective Functions  
Over load protection of external MOSFETs  
Shorted load, open load, output overvoltage protection  
Input overvoltage and undervoltage protection  
Thermal shutdown of device with autorestart behavior  
Electrostatic discharge protection (ESD)  
Diagnostic Functions  
Latched diagnostic information via SPI  
Open load detection in ON-state  
Device Overtemperature shutdown and Temperature Prewarning  
Smart monitoring and advanced functions provide ILED and IIN information  
Limp Home Function  
Limp Home activation via LHI pin  
Applications  
Especially designed for driving high power LEDs in automotive applications  
Automotive Exterior Lighting: full LED headlamp assemblies (Low Beam, High Beam, Matrix Beam, Pixel Light)  
General purpose current/voltage controlled DC/DC LED driver  
Data Sheet  
5
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Block Diagram  
2
Block Diagram  
IVCC  
Internal Supply  
Power  
On Reset  
LDO  
VIN  
IVCC_EXT  
GATE  
DRIVER  
BST1  
SYNC  
FREQ  
Oscillator  
Auto-Spread  
Spectrum  
Generator  
HSGD1  
SWN1  
BUCK  
LOGIC  
Slope Comp.  
IVCC_EXT  
VIN  
EN/INUVLO  
INOVLO  
Voltage  
Protection  
+ Enable  
Thermal Protection  
+ Prewarning  
LSGD1  
PGND1  
PWM  
Generator  
Diagnosis Open Load + Short  
to GND  
IVCC_EXT  
Soft Start  
SOFT_START  
Limp Home Mode  
Digital Dimming  
LSGD2  
LHI  
PGND2  
PWMI  
BOOST  
LOGIC  
Analog Dimming Pin  
SET  
SWN2  
HSGD2  
BST2  
Fast Output  
Discharge  
Operation  
Mode  
Output  
current  
accuracy  
calibration  
SWCS  
Switch Current  
Error Amplifier  
SGND  
VDD  
8 Bit DAC  
Analog  
Dimming  
CSN  
SCLK  
SI  
SPI  
Voltage Loop  
Feedback  
VFB  
SO  
Input  
Current  
Monitor  
LED  
Current  
Monitor  
FBH  
FBL  
Input/diagnosis  
register  
Feedback Error Amplifier  
IIN1 IIN2  
VSS  
AGND  
COMP  
Figure 1  
Block Diagram - TLD5541-1QV  
Data Sheet  
6
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment  
Figure 2  
Pin Configuration - TLD5541-1QV  
Data Sheet  
7
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Pin Configuration  
3.2  
Pin Definitions and Functions  
1)  
Pin  
Symbol  
I/O  
Function  
Power Supply  
1, 12,  
n.c.  
-
Not connected, tie to AGND on the Layout;  
15, 21,  
32, 33,  
45, 48  
44  
31  
47  
VIN  
-
-
I
Power Supply Voltage;  
Supply for internal biasing.  
VDD  
Digital GPIO Supply Voltage;  
Connect to reverse voltage protected 5V or 3.3V supply.  
IVCC_EXT  
PD External LDO input;  
Input to alternatively supply internal Gate Drivers via an external LDO.  
Connect to IVCC pin to use internal LDO to supply gate drivers. Must not  
be left open.  
5, 8  
26  
40  
-
PGND1, 2  
VSS  
-
-
-
-
Power Ground;  
Ground for power potential. Connect externally close to the chip.  
Digital GPIO Ground;  
Ground for GPIO pins  
AGND  
EP  
Analog Ground;  
Ground Reference  
Exposed Pad;  
Connect to external heatspreading Cu area (e.g. inner GND layer of  
multilayer PCB with thermal vias).  
Gate Driver Stages  
2
HSGD1  
O
O
Highside Gate Driver Output 1;  
Drives the top n-channel MOSFET with a voltage equal to VIVCC_EXT  
superimposed on the switch node voltage SWN1. Connect to gate of  
external switching MOSFET.  
11  
HSGD2  
Highside Gate Driver Output 2;  
Drives the top n-channel MOSFET with a voltage equal to VIVCC_EXT  
superimposed on the switch node voltage SWN2. Connect to gate of  
external switching MOSFET.  
6
7
LSGD1  
LSGD2  
O
O
Lowside Gate Driver Output 1;  
Drives the lowside n-channel MOSFET between GND and VIVCC_EXT  
Connect to gate of external switching MOSFET.  
Lowside Gate Driver Output 2;  
Drives the lowside n-channel MOSFET between GND and VIVCC_EXT  
Connect to gate of external switching MOSFET.  
4
9
SWN1  
SWN2  
IO  
IO  
Switch Node 1;  
SWN1 pin swings from a diode voltage drop below ground up to VIN  
Switch Node 2;  
SWN2 pin swings from ground up to a diode voltage drop above VOUT  
Data Sheet  
8
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Pin Configuration  
1)  
Pin  
Symbol  
I/O  
Function  
46  
IVCC  
O
Internal LDO output;  
Used for internal biasing and gate driver supply. Bypass with external  
capacitor close to the pin. Pin must not be left open.  
Inputs and Outputs  
37  
23  
25  
41  
LHI  
I
-
-
I
PD Limp Home Input Pin;  
Used to enter in Limp Home state during Fail Safe condition.  
TEST1  
TEST2  
EN/INUVLO  
Test Pin;  
Used for Infineon end of line test, connect to GND in application  
Test Pin;  
Used for Infineon end of line test, connect to GND in application  
PD Enable/Input Under Voltage Lock Out;  
Used to put the device in a low current consumption mode, with additional  
capability to fix an undervoltage threshold via external components. Pin  
must not be left open.  
35  
34  
FREQ  
SYNC  
I
I
Frequency Select Input;  
Connect external resistor to GND to set frequency.  
PD Synchronization Input;  
Apply external clock signal for synchronization  
24  
13  
PWMI  
FBH  
I
I
PD Control Input; Digital input 5Vor 3.3V.  
Output current Feedback Positive;  
Non inverting Input (+)  
14  
3
FBL  
I
Output current Feedback Negative;  
Inverting Input (-)  
BST1  
IO  
Bootstrap capacitor;  
Used for internal biasing and to drive the Highside Switch HSGD1. Bypass  
to SWN1 with external capacitor close to the pin. Pin must not be left open.  
10  
BST2  
IO  
Bootstrap capacitor;  
Used for internal biasing and to drive the Highside Switch HSGD2. Bypass  
to SWN2 with external capacitor close to the pin. Pin must not be left open.  
17  
18  
SWCS  
SGND  
I
I
Current Sense Input;  
Inductor current measurement - Non Inverting Input (+)  
Current Sense Ground;  
Inductor current sense - Inverting Input (-)  
Route as Differential net with SWCS on the Layout  
42  
IIN1  
I
Input Current Monitor Positive;  
Non Inverting Input (+), connect to VIN if input current monitor is not  
needed  
43  
19  
38  
IIN2  
I
Input Current Monitor Negative;  
Inverting Input (-), connect to VIN if input current monitor is not needed  
COMP  
O
O
Compensation Network Pin;  
Connect R and C network to pin for stability phase margin adjustment  
SOFT_START  
Softstart configuration Pin;  
Connect a capacitor CSOFT_START to GND to fix a soft start ramp default  
time.  
Data Sheet  
9
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Pin Configuration  
1)  
Pin  
Symbol  
I/O  
Function  
36  
INOVLO  
I
Input Overvoltage Protection Pin;  
Define an upper voltage threshold and switches OFF the device in case of  
overvoltages on the VIN supply. Must not be left open.  
20  
VFB  
I
Voltage Loop Feedback Pin;  
VFB is intended to set output protection functions.  
22  
39  
SET  
I
Analog current sense adjustment Pin;  
IINMON  
O
Input current monitor output;  
Monitor pin that produces a voltage that is 20 times the voltage VIN1-IN2  
IINMON will be equal 1V when VIIN1-VIIN2=50mV  
.
16  
IOUTMON  
O
Output current monitor output;  
Monitor pin that produces a voltage that is 200mV + 8 times the voltage  
FBH-FBL. IOUTMON will be equal 1.4V when VFBH-FBL = 150mV.  
V
SPI  
30  
29  
28  
27  
SI  
I
PD Serial data in; Digital input 5V or 3.3V.  
SCLK  
CSN  
SO  
I
PD Serial clock; Digital input 5V or 3.3V.  
I
PU SPI chip select; Digital input 5V or 3.3V. Active LOW  
Serial data out; Digital output, referenced to VDD  
O
1) O: Output, I: Input,  
PD: pull-down circuit integrated,  
PU: pull-up circuit integrated  
Data Sheet  
10  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Table 2  
Absolute Maximum Ratings1)  
Tj = -40°C to +150°C; all voltages with respect to AGND, (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Number  
Min.  
Typ. Max.  
Supply Voltages  
VIN  
Supply Input  
VVIN  
-0.3  
-0.3  
-0.3  
60  
6
V
V
V
P_4.1.1  
P_4.1.2  
P_4.1.3  
VDD  
VVDD  
VIVCC  
Digital supply voltage  
IVCC  
6
Internal Linear Voltage Regulator Output  
voltage  
IVCC_EXT  
VIVCC_EXT -0.3  
6
V
P_4.1.4  
External Linear Voltage Regulator Input  
voltage  
Gate Driver Stages  
LSGD1,2 - PGND1,2  
Lowside Gatedriver voltage  
VLSGD1,2- -0.3  
5.5  
5.5  
60  
V
V
V
V
V
V
V
V
V
P_4.1.54  
P_4.1.55  
P_4.1.6  
P_4.1.7  
P_4.1.8  
P_4.1.9  
P_4.1.10  
P_4.1.11  
P_4.1.28  
PGND  
HSGD1,2 - SWN1,2  
Highside Gatedriver voltage  
VHSGD1,2- -0.3  
SWN1,2  
SWN1, SWN2  
switching node voltage  
VSWN1, 2 -1  
(BST1-SWN1), (BST2-SWN2)  
Boostrap voltage  
VBSTx-  
-0.3  
-0.3  
-0.3  
-0.3  
-0.5  
6
SWNx  
BST1, BST2  
Boostrap voltage related to GND  
VBST1, 2  
65  
SWCS  
VSWCS  
VSGND  
0.3  
0.3  
0.5  
0.3  
Switch Current Sense Input voltage  
SGND  
Switch Current Sense GND voltage  
SWCS-SGND  
Switch Current Sense differential voltage  
VSWCS-  
SGND  
PGND1,2  
VPGND1,2 -0.3  
Power GND voltage  
High voltage Pins  
IIN1, IIN2  
Input Current monitor voltage  
VIIN1, 2  
-0.3  
60  
V
V
P_4.1.12  
P_4.1.13  
IIN1-IIN2  
VIIN1-IIN2 -0.5  
0.5  
Input Current monitor differential voltage  
Data Sheet  
11  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
General Product Characteristics  
Table 2  
Absolute Maximum Ratings1) (cont’d)  
Tj = -40°C to +150°C; all voltages with respect to AGND, (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Number  
Min.  
Typ. Max.  
FBH, FBL  
Feedback Error Amplifier voltage  
VFBH, FBL -0.3  
60  
V
P_4.1.14  
P_4.1.15  
FBH-FBL  
Feedback Error Amplifier differential  
voltage  
VFBH-FBL -0.5  
0.5  
V
EN/INUVLO  
VEN/INUVLO -0.3  
60  
V
P_4.1.16  
Device enable/input undervoltage  
lockout  
Digital (I/O) Pins  
PWMI  
Digital Input voltage  
VPWMI  
VCSN  
VSCLK  
VSI  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
V
V
V
V
V
V
V
P_4.1.17  
P_4.1.18  
P_4.1.19  
P_4.1.20  
P_4.1.21  
P_4.1.22  
P_4.1.58  
CSN  
Voltage at Chip Select pin  
SCLK  
Voltage at Serial Clock pin  
SI  
Voltage at Serial Input pin  
SO  
VSO  
Voltage at Serial Output pin  
SYNC  
VSYNC  
VLHI  
Synchronization Input voltage  
LHI  
Limp Home Input Voltage  
Analog Pins  
VFB  
VVFB  
-0.3  
-0.3  
-0.3  
-0.3  
5.5  
5.5  
5.5  
3.6  
3.6  
3.6  
3.6  
5.5  
V
V
V
V
V
V
V
V
P_4.1.25  
P_4.1.26  
P_4.1.29  
P_4.1.30  
P_4.1.31  
P_4.1.32  
P_4.1.33  
P_4.1.34  
Loop Input voltage  
INOVLO  
Input overvoltage lockout  
VINOVLO  
VSET  
SET  
Analog dimming Input voltage  
COMP  
VCOMP  
Compensation Input voltage  
SOFT_START  
Softstart Voltage  
VSOFT_STA -0.3  
RT  
FREQ  
VFREQ  
-0.3  
-0.3  
Voltage at frequency selection pin  
IINMON  
Voltage at input monitor pin  
VIINMON  
IOUTMON  
VIOUTMON -0.3  
Voltage at output monitor pin  
Temperatures  
Junction Temperature  
Tj  
-40  
150  
°C  
P_4.1.35  
Data Sheet  
12  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
General Product Characteristics  
Table 2  
Absolute Maximum Ratings1) (cont’d)  
Tj = -40°C to +150°C; all voltages with respect to AGND, (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Number  
Min.  
Typ. Max.  
Storage Temperature  
Tstg  
-55  
150  
°C  
P_4.1.36  
ESD Susceptibility  
ESD Resistivity of all Pins  
ESD Resistivity to GND  
ESD Resistivity of corner Pins to GND  
VESD,HBM -2  
VESD,CDM -500  
VESD,CDM_ -750  
corner  
2
kV  
V
HBM2)  
CDM3)  
CDM3)  
P_4.1.37  
P_4.1.38  
P_4.1.39  
500  
750  
V
1) Not subject to production test, specified by design.  
2) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS001 (1.5k , 100 pF)  
3) ESD susceptibility, Charged Device Model “CDM” ESDA STM5.3.1 or ANSI/ESD S.5.3.1  
Note:Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
1. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not  
designed for continuous repetitive operation.  
4.2  
Functional Range  
Table 3  
Functional Range  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Number  
Min.  
Typ. Max.  
1)  
Device Extended Supply Voltage  
Range  
VVIN  
VVIN  
4.5  
40  
V
P_4.2.1  
P_4.2.2  
Device Nominal Supply Voltage  
Range  
8
36  
V
1)  
Power Stage Voltage Range  
Digital Supply Voltage  
Junction Temperature  
VPOW  
VDD  
Tj  
4.5  
3
55  
V
P_4.2.5  
P_4.2.3  
P_4.2.4  
5.5  
150  
V
-40  
°C  
1) Not subject to production test, specified by design.  
Note:Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics table.  
4.3  
Thermal Resistance  
Note:This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go  
to www.jedec.org.  
Data Sheet  
13  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
General Product Characteristics  
Table 4  
Parameter  
Symbol  
Values  
Typ.  
0.9  
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
1) 2)  
Junction to Case  
RthJC  
RthJA  
K/W  
K/W 3) 2s2p  
P_4.3.1  
P_4.3.2  
Junction to Ambient  
25  
1) Not subject to production test, specified by design.  
2) Specified RthJC value is simulated at natural convection on a cold plate setup (all pins and the exposed pad are fixed to  
ambient temperature). Ta=25°C; The IC is dissipating 1W.  
3) Specified RthJA value is according to JEDEC 2s2p (JESD 51-7) + (JESD 51-5) and JEDEC 1s0p (JESD 51-3) + heatsink  
area at natural convection on FR4 board; The device was simulated on a 76.2 x 114.3 x 1.5 mm board. The 2s2p board  
has 2 outer copper layers (2 x 70µm Cu) and 2 inner copper layers (2 x 35µm Cu). A thermal via (diameter = 0.3 mm and  
25 µm plating) array was applied under the exposed pad and connected the first outer layer (top) to the first inner layer and  
second outer layer (bottom) of the JEDEC PCB. Ta=25°C; The IC is dissipating 1W.  
Data Sheet  
14  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Power Supply  
5
Power Supply  
The TLD5541-1QV is supplied by the following pins:  
VIN (main supply voltage)  
VDD (digital supply voltage)  
IVCC_EXT (supply for internal gate driver stages)  
The VIN supply, in combination with the VDD supply, provides internal supply voltages for the analog and digital  
blocks. In situations where VIN voltage drops below VDD voltage, an increased current consumption may be  
observed at the VDD pin.  
The SPI and IO interfaces are supplied by the VDD pin.  
IVCC_EXT is the supply for the low side driver stages. This supply is used also to charge, through external  
schottky diodes, the bootstrap capacitors which provide supply voltages to the high side driver stages. If no  
external voltage is available this pin must be shorted to IVCC, which is the output of an internal 5V LDO.  
The supply pins VIN, VDD and IVCC_EXT have undervoltage detections.  
Undervoltage on VDD supply voltage prevents the activation of the gate driver stages and any SPI communication  
(the SPI registers are reset). Undervoltage on IVCC_EXT or IVCC voltages forces a deactivation of the driver  
stages, thus stopping the switching activity, but has no effect on the SPI register settings.  
Moreover the double function pin EN/INUVLO can be used as an input undervoltage protection by placing a  
resistor divider from VIN to GND (refer to Chapter 10.3).  
If EN/INUVLO undervoltage is detected, it will turn-off the IVCC voltage regulator stop switching ,stop  
communications and reset all the registers.  
Figure 3 shows a basic concept drawing of the supply domains and interactions among pins VIN, VDD and  
IVCC/IVCC_EXT.  
VIN  
VREG (5V)  
R1  
IVCC  
Internal pre-regulated  
EN/INUVLO  
voltage Supply  
Undervoltage  
detection  
R2  
IVCC_EXT  
VREG  
digital  
VREG  
analog  
LS - Drivers  
HS - Drivers  
PGND  
BSTx  
Undervoltage  
detection  
Bandgap  
Reference  
Register  
Banks  
VDD  
SPI & I/O  
LOGIC  
SWNx  
Figure 3  
Power Supply Concept Drawing  
Data Sheet  
15  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Power Supply  
Usage of EN/INUVLO pin in different applications  
The pin EN/INUVLO is a double function pin and can be used to put the device into a low current consumption  
mode. An undervoltage threshold should be fixed by placing an external resistor divider (A) in order to avoid low  
voltage operating conditions. This pin can be driven by a µC-port as shown in (B) .  
A
B
Vin  
Vin  
VIN  
VIN  
R1  
R2  
R1  
R2  
EN/INUVLO  
GND  
EN/INUVLO  
GND  
µC Port  
Figure 4  
Usage of EN/INUVLO pin in different applications  
Data Sheet  
16  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Power Supply  
5.1  
Different Power States  
TLD5541-1QV has the following power states:  
SLEEP state  
IDLE state  
LIMP HOME state  
ACTIVE state  
The transition between the power states is determined according to these variables after a filter time of max. 3  
clock cycles:  
VIN level  
EN/INUVLO level  
IVCC level  
IVCC_EXT level  
VDD level  
LHI level  
DVCCTRL.IDLEbit state  
The state diagram including the possible transitions is shown in Figure 5 .  
The Power-up condition is entered when the supply voltage VVIN exceed its minimum supply voltage threshold  
VVIN(ON)  
.
SLEEP  
When the device is powered it enters the SLEEP state, all outputs are OFF and the SPI registers are reset,  
independently from the supply voltages at the pins VIN , VDD, IVCC, and IVCC_EXT. The current consumption is  
low. Refer to parameters: IVDD(SLEEP), and IVIN(SLEEP)  
.
The transition from SLEEP to ACTIVE state requires a specified time: tACTIVE  
.
IDLE  
In IDLE state, the current consumption of the device can reach the limits given by parameter IVDD (P_5.3.4). The  
internal voltage regulator is working. Not all diagnosis functions are available (refer to Chapter 10 for additional  
informations). In this state there is no switching activity, independently from the supply voltages VIN, VDD, IVCC  
and IVCC_EXT. When VDD is available, the SPI registers are working and SPI communication is possible.  
Limp Home  
The Limp Home state is beneficial to fulfill system safety requirements and provides the possibility to maintain a  
defined current/voltage level on the output via a backup control circuitry. The backup control circuitry turns on  
required loads during a malfunction of the µC. For detailed info, refer to Chapter 8.  
When Limp Home state is entered, SPI registers are reset to their default values and SPI communication is  
possible but only in read mode (SPI registers can be read but cannot be written). In order to regulate the output  
current/voltage, it is necessary that VIN and IVCC_EXT are present and above their undervoltage threshold.  
ACTIVE  
In active state the device will start switching activity to provide power at the output only when PWMI = HIGH. To  
start the Highside gate drivers HSGDx the voltage level VBSTx - VSWNx needs to be above the threshold VBSTx-  
VSWNx_UVth. In ACTIVE state the device current consumption via VIN and VDD is dependent on the external  
MOSFET used and the switching frequency fSW  
.
Data Sheet  
17  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Power Supply  
Power-up  
LHI = LOW  
EN/INUVLO = LOW  
SLEEP  
& EN/INUVLO = HIGH  
EN/INUVLO = LOW  
LHI = HIGH  
& EN/INUVLO = HIGH  
EN/INUVLO = LOW  
LHI = HIGH  
LIMP HOME  
IDLE  
VIN = LOW  
or IVCC = LOW  
VIN = HIGH  
& IVCC = HIGH  
EN/INUVLO = LOW  
or IVCC_EXT = LOW  
or VDD = LOW  
& IVCC_EXT = HIGH  
& VDD = HIGH  
or DVCCTRL.IDLE = HIGH  
& DVCCTRL.IDLE = LOW  
LHI = LOW  
ACTIVE  
LHI = HIGH  
Figure 5  
Simplified State Diagram  
5.2  
Different Possibilities to RESET the device  
There are several reset triggers implemented in the device.  
After any kind of reset, the Transmission Error Flag (TER) is set to HIGH.  
Under Voltage Reset:  
EN/INUVLO: When EN/INUVLO is below VEN/INUVLOth (P_5.3.7), the SPI interface is not working and all the  
registers are reset to their default values. In addition, the device enters SLEEP mode and the current consumption  
is minimized.  
VDD: When VVDD is below VVDD(UV) (P_5.3.6), the SPI interface is not working and all the registers are reset to their  
default values.  
Reset via SPI command:  
There is a command available to RESET all registers to their default values (DVCCTRL.SWRST= HIGH).  
Reset via Limp Home:  
When Limp Home state is detected the registers are reset to the default values.  
Data Sheet  
18  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Power Supply  
5.3  
Electrical Characteristics  
Table 5  
EC Power Supply  
VIN = 8V to 36V, Tj = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Number  
Min.  
Typ. Max.  
Power Supply VIN  
Input Voltage Startup  
VVIN(ON)  
4.7  
4.5  
V
V
VIN increasing;  
P_5.3.1  
V
V
EN/INUVLO = HIGH;  
DD = 5 V;  
IVCC = IVCC_EXT =  
10 mA;  
Input Undervoltage switch OFF VVIN(OFF)  
VIN decreasing;  
P_5.3.14  
V
V
EN/INUVLO = HIGH;  
DD = 5 V;  
IVCC = IVCC_EXT =  
10 mA;  
Device operating current  
IVIN(ACTIVE)  
IVIN(SLEEP)  
4.4  
6
mA  
µA  
1)ACTIVE mode;  
P_5.3.2  
P_5.3.3  
V
PWMI = 0 V;  
VIN Sleep mode supply current  
1.5  
V
EN/INUVLO= 0 V;  
V
CSN = VDD = 5 V;  
VIN = 13.5 V;  
IVCC=VIVCC_EXT= 0 V;  
V
Digital Power Supply VDD  
Digital supply current  
IVDD  
0.5  
1.5  
mA  
µA  
VIN = 13.5 V;  
SCLK = 0 Hz;  
PWMI = 0 V;  
VEN=VCSN= VDD= 5 V;  
P_5.3.4  
P_5.3.5  
f
V
Digital Supply Sleep mode  
current  
IVDD(SLEEP)  
V
V
EN/INUVLO = 0 V;  
CSN = VDD = 5 V;  
VIN = 13.5 V;  
V
IVCC= VIVCC_EXT = 0 V;  
Undervoltage shutdown  
threshold voltage  
VVDD(UV)  
1
3
V
V
CSN = VDD;  
P_5.3.6  
VSI = VSCLK = 0 V;  
SO from LOW to  
HIGH impedance;  
EN/INUVLO Pin characteristics  
Input Undervoltage falling  
Threshold  
VEN/INUVLOth 1.6  
1.75  
90  
1.9  
V
P_5.3.7  
P_5.3.8  
P_5.3.9  
P_5.3.10  
1)  
EN/INUVLO Rising Hysteresis  
VEN/INUVLO(h  
mV  
µA  
µA  
yst)  
EN/INUVLO input Current LOW IEN/INUVLO(LO 0.45  
0.89  
2.2  
1.34  
3.3  
V
V
EN/INUVLO = 0.8 V;  
EN/INUVLO = 2 V;  
W)  
EN/INUVLO input Current HIGH IEN/INUVLO(HI 1.1  
GH)  
Data Sheet  
19  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Power Supply  
Table 5  
EC Power Supply (cont’d)  
VIN = 8V to 36V, Tj = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Number  
Min.  
Typ. Max.  
LHI Pin characteristics  
LOW level  
VLHI(L)  
VLHI(H)  
ILHI(L)  
ILHI(H)  
0
-
0.8  
5.5  
18  
V
P_5.3.16  
P_5.3.17  
P_5.3.18  
P_5.3.19  
HIGH level  
2.0  
6
-
V
L-Input pull-down current  
H-Input pull-down current  
Timings  
12  
30  
μA  
μA  
V
V
LHI = 0.8 V;  
LHI = 2.0 V;  
15  
45  
1)  
SLEEP mode to ACTIVE time  
tACTIVE  
0.7  
ms  
P_5.3.11  
V
IVCC = VIVCC_EXT;  
C
IVCC= 10µF;  
VIN = 13.5 V;  
DD = 5 V;  
V
1) Not subject to production test, specified by design.  
Data Sheet  
20  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Regulator Description  
6
Regulator Description  
The TLD5541-1QV includes all of the functions necessary to provide constant current to the output as usually  
required to drive LEDs. A voltage mode regulation can also be implemented (Refer to Chapter 6.7).  
It is designed to control 4 gate driver outputs in a H-Bridge topology by using only one inductor and 4 external  
MOSFETs. This topology is able to operate in high power BOOST, BUCK-BOOST and BUCK mode applications  
with maximum efficiency.  
The transition between the different regulation modes is done automatically by the device itself, with respect to the  
application boundary conditions.  
The transition phase between modes is seamless.  
6.1  
Regulator Diagram Description  
The TLD5541-1QV includes two analog current control inputs (IIN1, IIN2) to limit the maximum Input current (Block  
A1 and A7 in Figure 6).  
A second analog current control loop (A5, A6) connected to the sensing pins FBL, FBH regulates the output  
current.  
The regulator function is implemented by a pulse width modulated (PWM) current mode controller. The error in the  
output current loop is used to determine the appropriate duty cycle to get a constant output current.  
An external compensation network (RCOMP, CCOMP) is used to adjust the control loop to various application  
boundary conditions.  
The inductor current for the current mode loop is sensed by the RSWCS resistor.  
RSWCS is used also to limit the maximum external switches / inductor current.  
If the Voltage across RSWCS exceeds its overcurrent threshold (VSWCS_buck or VSWCS_boost for buck or boost operation  
respectively) the device reduces the duty cycle in order to bring the switches current below the imposed limit.  
The current mode controller has a built-in slope compensation as well to prevent sub-harmonic oscillations.  
The control loop logic block (LOGIC) provides a PWM signal to four internal gate drivers. The gate drivers  
(HSGD1,2 and LSGD1,2) are used to drive external MOSFETs in an H-Bridge setup .  
The control loop block diagram displayed in Figure 6 shows a typical constant current application. The voltage  
across RFB sets the output current. RIN is used to fix the maximum input current.  
The output current is fixed via the SPI parameter (LEDCURRADIM.ADIMVAL= 11110000B = default at 100%) plus  
an offset trimming (LEDCURRCAL.CALIBVAL= 0000B = default in the middle of the range). Refer to Chapter 8.1  
for more details.  
Data Sheet  
21  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Regulator Description  
RIN  
RFB  
IIN  
IOUT  
VIN  
Rfilter  
M4  
M3  
M1  
M2  
COUT  
HSGD2  
LSGD2  
HSGD1  
LSGD1  
FBH  
FBL  
VOUT  
Cfilter  
LOUT  
+
-
A5  
IIN1  
IIN2  
ISWCSx  
SWCS  
SGND  
BOOST  
+
-
A2  
A1  
A8  
A9  
HSGD1  
HSGD2  
RSWCS  
SLOPE SELECTION  
& Compensation  
LOGIC  
CLK  
LSGD1  
LSGD2  
A3  
BUCK  
A6  
A7  
SET  
Vi_REF  
COMP  
RCOMP  
CCOMP  
VCOMP  
Figure 6  
Regulator Block Diagram - TLD5541-1QV  
Data Sheet  
22  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Regulator Description  
6.2  
Adjustable Soft Start Ramp  
The soft start behavior limits the current through the inductor and the external MOSFET switches during  
initialization (at first turn on and restarting after output fault condition).  
The soft start function gradually increases the current of the inductor (LOUT) over tSOFT_START to minimize potential  
overvoltage at the output. The soft start ramp is defined by a capacitor placed at the SOFT_START pin.  
Selection of the SOFT_START capacitor (CSOFT_START) can be done according to the approximate formula  
described in Equation (1):  
Vss_th_eff  
tSOFT_ START  
=
CSOFT_ START  
(1)  
ISOFT_ START(PU)  
Note:Vss_th_eff is the soft start effectiveness threshold, that depends on load condition. Its value is about 0.7V for  
the buck mode and 1.4V for the boost mode  
The SOFT START pin is also used to define a fault filter time.  
Once an open load or a short on the output is detected, a pull-down current source ISOFT_START_PD (P_6.4.20) is  
activated. This current brings down the VSOFT_START until VSOFT_START_RESET (P_6.4.22) is reached, then the pull-up  
current source ISOFT_START_PU (P_6.4.19) turns on again. If the fault condition hasn’t been removed until  
VSOFT_START_LOFF (P_6.4.21) is reached, the pull-down current source turns back on again, initiating a new cycle.  
This will continue until the fault is removed.  
6.3  
Switching Frequency setup  
The switching frequency can be set from 200 kHz to 700 kHz by an external resistor connected from the FREQ  
pin to GND or by suppliyng a sync signal as specified in chapter Chapter 11.2. Select the switching frequency with  
an external resistor according to the graph in Figure 7 or the following approximate formulas.  
fSW [kHz] = 5375* RFREQ [kΩ]-0.8  
(2)  
RFREQ[kΩ] = 46023* fSW[kHz]1.25  
(3)  
Figure 7  
Switching Frequency fSW versus Frequency Select Resistor to GND RFREQ  
6.4  
Operation of 4 switches H-Bridge architecture  
Inductor LOUT connects in an H-Bridge configuration with 4 external N channel MOSFETs (M1, M2, M3 & M4)  
Data Sheet 23 Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Regulator Description  
Transistor M1 and M3 provides a path between VIN and ground through LOUT in one direction (Driven by top  
and bottom gate drivers HSGD1 and LSGD2).  
Transistor M2 and M4 provides a path between VOUT and ground through LOUT in the other direction (Driven  
by top and bottom gate drivers HSGD2 and LSGD1).  
Nodes SWN1, SWN2, voltage across RSWCS, input and load currents are also monitored by the TLD5541-1QV.  
BOOST  
BUCK-BOOST  
BUCK  
MODE  
MODE  
MODE  
M1  
M2  
M3  
M4  
ON  
PWM  
PWM  
PWM  
PWM  
PWM  
PWM  
OFF  
ON  
OFF  
PWM  
PWM  
Figure 8  
4 switches H-Bridge architecture Transistor Status summary  
VIN  
VOUT  
M1  
M4  
HSGD2  
LSGD2  
HSGD1  
LSGD1  
LOUT  
SWN1  
SWN2  
M2  
M3  
RSWCS  
Figure 9  
4 switches H-Bridge architecture overview  
6.4.1  
Boost mode (VIN < VOUT)  
M1 is always ON, M2 is always OFF  
Every cycle M3 turns ON first and inductor current is sensed (peak current control)  
M3 stays ON until the upper reference threshold is reached across RSWCS (Energizing)  
M3 turns OFF, M4 turns ON until the end of the cycle (Recirculation)  
Switches M3 and M4 alternate, behaving like a typical synchronous boost Regulator (see Figure 10)  
Data Sheet  
24  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Regulator Description  
VIN  
VOUT  
ON  
M1  
M4  
(2) Recirculation  
ILOUT  
HSGD2  
LSGD2  
HSGD1  
LSGD1  
LOUT  
SWN1  
SWN2  
(1) Energizing  
OFF  
M2  
M3  
t
M1  
+
M4  
M1  
+
M4  
M1  
+
M4  
M1+M3  
M1+M3  
M1+M3  
RSWCS  
Figure 10 4 switches H-Bridge architecture in BOOST mode  
Simplified comparison of 4 switches H-Bridge architecture to traditional asynchronous Boost approach.  
M2 is always OFF in this mode (open).  
M1 is always ON in this mode (closed connection of inductor to VIN).  
M4 acts as a synchronous diode, with significantly lower conduction power losses (I2 x RDSON vs. 0.7V x I)  
Note:Diode is source of losses and lower system efficiency!  
LOUT  
LOUT  
D1  
M1 (ON)  
M4  
VIN  
VOUT  
VOUT  
VIN  
M2  
(OFF)  
HSGD2  
LSGD2  
HSGD1  
M3  
M3  
LSGD1  
RSWCS  
RSWCS  
b) standard asynchronous BOOSTER  
a) 4 switch architecture BOOSTER  
Figure 11 4 switches H-Bridge architecture in BOOST mode compared to standard async Booster  
6.4.2  
Buck mode (VIN > VOUT)  
M4 is always ON, M3 is always OFF  
Every cycle M2 turns ON and inductor current is sensed (valley current control)  
M2 stays ON until the lower reference threshold is reached across RSWCS (Recirculation)  
M2 turns OFF, M1 turns ON until the end of the cycle (Energizing)  
Switches M1 and M2 alternate, behaving like a typical synchronous BUCK Regulator (see Figure 12)  
Data Sheet  
25  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Regulator Description  
VIN  
VOUT  
ILOUT  
ON  
M1  
M4  
(3) Energizing  
HSGD2  
LSGD2  
HSGD1  
LSGD1  
LOUT  
SWN1  
SWN2  
(4) Recirculation  
t
OFF  
M1  
+
M4  
M1  
+
M4  
M1  
+
M4  
M2  
M3  
M2+M4  
M2+M4  
M2+M4  
RSWCS  
Figure 12 4 switches H-Bridge architecture in BUCK mode  
Simplified comparison of 4 switches architecture to traditional asynchronous Buck approach.  
M3 is always OFF in this mode (open).  
M4 is always ON in this mode (closed connection inductor to VOUT).  
M2 acts as a synchronous diode, with significantly lower conduction losses (I2 x RDSON vs. 0.7V x I)  
LOUT  
M4  
(ON)  
LOUT  
M1  
M1  
VIN  
VOUT  
VIN  
VOUT  
HSGD1  
LSGD1  
M3  
(OFF)  
HSGD1  
HSGD2  
M2  
LSGD2  
D1  
RSWCS  
b) standard asynchronous BUCK  
a) 4 switch architecture BUCK  
Figure 13 4 switches H-Bridge architecture in BUCK mode compared to standard async BUCK  
6.4.3  
Buck-Boost mode (VIN ~ VOUT)  
When VIN is close to VOUT the controller is in Buck-Boost operation.  
All switches are switching in buck-boost operation. The direct energy transfer from the Input to the output  
(M1+M4 = ON) is beneficial to reduce ripple current and improves the energy efficiency of the Buck-Boost  
control scheme.  
The two buck boost waveforms and switching behaviors are displayed in Figure 14 below.  
Data Sheet  
26  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Regulator Description  
VIN VOUT  
ILOUT  
VIN  
VOUT  
M1  
M4  
(2) Direct Transfer  
HSGD2  
LSGD2  
HSGD1  
LSGD1  
(4) Direct Transfer  
M1  
+
M3  
M1  
+
M4  
M1  
+
M4  
M1  
+
M3  
M1  
+
M4  
M1  
+
M4  
M1  
+
M3  
M1  
+
M4  
M1  
+
M4  
t
SWN1  
SWN2  
LOUT  
(3) Recirculation  
(1) Energizing  
VIN VOUT  
ILOUT  
M2  
M3  
RSWCS  
M2  
+
M1  
+
M1  
+
M2  
+
M1  
+
M1  
+
M2  
+
M1  
+
M1  
+
t
M4  
M4  
M4  
M4  
M4  
M4  
M4  
M4  
M4  
Figure 14 4 switches H-Bridge architecture in BUCK-BOOST mode  
6.5  
Fast Output Discharge Operation Mode - Multi Floating Switches Topology  
Multiple light functions can be driven by a single DC/DC converter adopting a Multi Floating Switch (MFS)  
topology. In a MFS topology, each LED Function is connected in series and can be independently turned off via a  
bypass switch. Because of the series connections, all the functions are driven with the same current . Different  
brightness can be achieved with individual PWM duty cycles.  
In order to drive different LED functions in this topology, a Buck Boost converter is probably needed. A single stage  
buck boost topology has high efficiency buts requires several µF of output capacitance (COUT). The extra voltage  
present on this capacitor, when shorting one function to turn it off, may create a current spike in the LEDs that  
have to remain on.  
The TLD5541-1QV has a dedicated state machine which controls a fast discharge of the output cap to a desired  
fraction of the initial output voltage. This Fast Output Discharge feature (F.D.), if carefully configured, limits the  
current spike during load jump events preventing LED damage.  
An Example of the Multi Floating Switch topology architecture and operation are shown in Figure 15  
INITIAL CONDITION  
FAST DISCHARGE  
FINAL CONDITION  
Vout  
Disharging  
Vout  
Initial  
Vout  
Final  
COUT  
CIN  
COUT  
C
I
Disch  
OUT  
VBAT  
DC/DC  
LITIX FLEX  
DC/DC  
LITIX FLEX  
DC/DC  
LITIX FLEX  
F1  
OFF  
F1  
OFF  
To VFB  
To VFB  
To VFB  
F1  
ON  
External MOSFET  
Control via µC  
External MOSFET  
Control via µC  
External MOSFET  
Control via µC  
(A)  
(B)  
(C)  
F2  
OFF  
F2  
ON  
F2  
ON  
External MOSFET  
Control via µC  
External MOSFET  
Control via µC  
External MOSFET  
Control via µC  
Figure 15 Multi Floating Switch topology: operation sequence on 2 Functions: (F1+F2) to (F2)  
Data Sheet  
27  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Regulator Description  
The F.D. operation consists of discharging the capacitor COUT to the final load voltage (Figure 15-B) before the  
bypass switch closure. During this fast discharge phase, all the LEDs are off. The external Microcontroller  
Software has to take care of the synchronization between the TLD5541-1QV F.D. operation and the bypass  
Switches activation.  
The discharged energy from COUT is recovered back to the Input capacitor CIN which could cause a small  
overshoot on the CIN itself. This feature allows high efficiency designs also when PWM operation with repetitive  
Load Jumps is needed.  
The F.D. feature is needed when a negative VOUT step is performed, so when one or more LED functions are  
switched off. If additional LED functions are turned on, increasing the output voltage, the F.D. does not have to be  
used. In MFS topologies, a short interruption of the current is observed during the Load Transitions (either positive  
or negative) in all the functions, until VOUT is stable and the device control loop is able to provide the target output  
current.  
We will refer to any Voltage-Current or Load configuration just before the Load Jump as "Initial" (Figure 15-A),  
while we will refer to any value after the system is in the new Load configuration as "Final" (Figure 15-C).  
Set the Target Cout discharge voltage  
The Target output voltage (VOUTFinal) of an F.D. operation is communicated to the TLD5541-1QV as a fraction of  
the VOUT at the beginning of the Jump (VOUTInitial), and not as an absolute Value.  
In order to quickly discharge the output Capacitor to a desired Ratio of the initial voltage, two SPI commands have  
to be sent to the TLD5541-1QV register MFSSETUP1.  
The first is to write in the MFSSETUP1.LEDCHAIN the Ratio Denominator  
The second is to write in the MFSSETUP1 register the Ratio Numerator and the Start Of Multi Floating Switch,  
respectively in the LEDCHAIN and SOMFS bitfields  
After the second command, as soon as the Chip select is raised the F.D. begins. The final output voltage of the  
F.D. operation, after a MFS routine is correctly performed, will be approximately:  
RatioNumerator  
(4)  
VOUTFinal  
=
VOUTInitial  
RatioDenominator  
The MFSSETUP1.LEDCHAIN registers sets both the LED Ratio during F.D and the short circuit threshold. For this  
reason both the correct VOUT Ratio and correct short circuit protection voltage have to be set according to the LED  
Load. See Table 10 for reference.  
To have the correct short circuit protection on a F.D. operation, the first LEDCHAIN value sent via SPI (Ratio  
Denominator), should also guarantee an adequate short circuit detection for the Initial Load. The second  
LEDCHAIN value (Ratio Numerator + SOMFS) should guarantee correct Short circuit detection for the Final Load.  
For more information about short circuit protection, see Chapter 10.2.1.  
Example:  
If the VFB voltage divider for the Short circuit detection is set like in Table 10.  
In order to jump from 6LED(18V) to 2LEDs (6V), the Ratio is 1/3 of initial voltage.  
So the 2 SPI commands that have to be sent are:  
Spi command 1: set MFSSETUP1 to 0x06 (Ratio Denominator = 6, VShort_LED = 16.8V)  
Spi command 2: set MFSSETUP1 to 0x12 (Ratio Numerator+SOMFS = 0x02+0x10, VShort_LED= 4.6V )  
Preparation time tprep  
:
The TLD5541-1QV enables the user to set a delay between the beginning of the Load Jump and the moment in  
which the switching activity will restart to provide output current. This delay is needed to safely close the bypass  
Data Sheet  
28  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Regulator Description  
switches (to short the LEDs) for the new Light configuration, after the Final VOUT is reached and before the normal  
switching activity would again raise the output voltage. See Figure 16.  
The Preparation time has to be sufficient for the capacitors COUT and CCOMP to be discharged to the desired value.  
The COUT discharge time depends heavily on: IDISCH, COUT size, VOUT Initial, VOUTFinal and VIN, so all those values  
have to be considered when setting the preparation time. In order to set a preparation time on the TLD5541-1QV,  
a SPI command has to be sent to the register MFSSETUP2.MFSDLY).  
The Equation (5) below describes the relationship between the switching frequency fSW and the  
MFSSETUP2.MFSDLY register value.  
1
(5)  
tprep  
=
[2 + (MFSDLY )dec  
]
fSW  
For SPI command details refer to Chapter 12.6.  
Fast Discharge Phase  
After programming the desired output voltage Ratio via SPI , the right Preparation Time and activating the state  
machine (MFSSETUP1.SOMFS= HIGH) the TLD5541-1QV inverts the inductor current IL and keeps it at the switch  
current limit ISwLim until the VOUT reaches the desired target.  
VSWCS _ boost  
(6)  
ISwLim  
=
RSWCS  
Figure 16 displays the relation of inductor current IL and the output voltage VOUT during a fast output discharge  
operation mode.  
Data Sheet  
29  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Regulator Description  
External  
Mosfet  
Closure  
I F1  
I F2  
No current at the Load  
during F.O.D.  
EOMFS  
LED N. FINAL  
+ SOMF  
LED N. INITIAL  
TPREP  
SPI COMMANDS  
SPI CSN  
Break  
Low  
IL  
TPREP  
TDISCHARGE  
ISwLim  
VOUT  
VINITIAL  
VFINAL  
Current  
Recovery  
Normal Switching  
activity F1 on  
Fast Output Discharge  
Normal Switching  
activity F1+F2 on  
Figure 16 Fast Output Discharge timing diagram  
If the discharge current limit ISwLim needs to be reduced, the MFSSETUP1.ILIM_HALF_MFSbit can be used to cut  
it in half (only during the F.D. phase and not in normal operation), see SPI Chapter for further details Chapter 12.6.  
Setting the EA_IOUT_MFS bit will reduce (only during the F.D. phase) the saturation current of the error amplifier  
A6 that discharges the Comp capacitor.  
Once VOUT reaches the desired target, the current recovery phase brings IL from a negative value back to 0 A.  
When the current recovery phase has ended, an internal SPI flag (MFSSETUP1.EOMFS) is set to HIGH and the  
device stays in “Brake-Low condition” (both Lowside gatedrivers = ON) until the programmed preparation time  
(MFSSETUP2.MFSDLY) expires and the TLD5541-1QV starts automatically switching again. Figure 16 displays  
one Fast Output Discharge cycle.  
The effective Cout discharge current is smaller than the Inductor current and it depends on the application  
condition, see Equation (7).  
2
V
V
V
i
i
o
(7)  
IDISCH  
=
IswLim  
V +V  
2LfSW V +V  
o
i
i
o
Sequence of operations to perform a Fast Output Discharge  
In order to perform a F.D operation, the user has to :  
Set via SPI an adequate Preparation Time  
Send via SPI to MFSSETUP1.LEDCHAINthe Ratio Denominator.  
Send via SPI to MFSSETUP1.LEDCHAINthe Ration Numerator + SOMFS  
Adjust the Floating switches to the new configuration  
Data Sheet  
30  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Regulator Description  
6.6  
Flexible current sense  
The flexible current sense implementation enables highside and lowside current sensing.  
The Figure 17 displays the application examples for the highside and lowside current sense concept.  
VIN  
VIN  
Highside  
Sensing  
Lowside  
Sensing  
FBH  
FBL  
FBH  
FBL  
Figure 17 Highside and lowside current sensing - TLD5541-1QV  
Data Sheet  
31  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Regulator Description  
6.7  
Programming Output Voltage (Constant Voltage Regulation)  
For a voltage regulator, the output voltage can be set by selecting the values RFB1, RFB2 and RFB3 according to the  
following Equation (8):  
VFBH FBL  
VFBH FBL  
VOUT = IFBH  
+
RFB1  
+
IFBL RFB 3 + VFBH FBL  
(8)  
RFB 2  
RFB 2  
After the output voltage is fixed via the resistor divider, the value can be changed via the Analog Dimming bits  
ADIMVAL.  
If Analog dimming is performed, due to the variations on the IFBL (IFBL_HSS (P_6.4.9) and IFBL_LSS (P_6.4.40))  
current on the entire voltage spanning, a non linearity on the output voltage may be observed. To minimize this  
effect RFBx resistors should be properly dimensioned.  
VOUT  
RFB1  
IFBH  
FBH  
RFB2  
IFBL  
FBL  
RFB3  
Figure 18 Programming Output Voltage (Constant Voltage Regulation)  
Data Sheet  
32  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Regulator Description  
6.8  
Electrical Characteristics  
Table 6  
EC Regulator  
VIN = 8V to 36V, Tj = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
Regulator:  
V
(FBH-FBL) threshold  
V(FBH-FBL) 145.5 150  
154.5 mV  
Tj = 25 °C;  
P_6.4.1  
ADIM.ADIMVAL=  
11110000B;  
V
V
(FBH-FBL) threshold  
V(FBH-FBL) 144  
150  
15  
156  
18  
mV  
mV  
ADIM.ADIMVAL= P_6.4.2  
11110000B;  
(FBH-FBL) threshold @ analog  
V(FBH-  
12  
ADIM.ADIMVAL= P_6.4.5  
00011000B;  
dimming 10%  
FBL)_10  
CalibrationProcedure  
not performed  
FBH Bias current @ highside  
sensing setup  
IFBH_HSS  
IFBL_HSS  
IFBH_LSS  
IFBL_LSS  
65  
17  
-7.5  
-45  
-
110  
30  
155  
43  
-2.5  
-20  
-
µA  
µA  
µA  
µA  
V
1)VFBL = 7 V;  
FBH - FBL = 150 mV;  
1)VFBL = 7 V;  
FBH - FBL = 150 mV;  
1)VFBL = 0 V;  
FBH - FBL = 150 mV;  
1)VFBL = 0 V;  
FBH - FBL = 150 mV;  
P_6.4.8  
P_6.4.9  
P_6.4.39  
P_6.4.40  
P_6.9.1  
P_6.9.2  
P_6.4.10  
V
FBL Bias current @ highside  
sensing setup  
V
FBH Bias current @ lowside  
sensing setup  
-4  
V
FBL Bias current @ lowside  
sensing setup  
-30  
2
V
FBH-FBL High Side sensing  
entry threshold  
VFBH_HSS_i  
1)VFBH1 increasing;  
nc  
FBH-FBL High Side sensing exit VFBH_HSS_  
threshold  
-
1.75  
-
V
1)VFBH decreasing;  
dec  
1)  
OUT Current sense Amplifier gm IFBxgm  
890  
1.4  
91  
µS  
V
Output Monitor Voltage  
VIOUTMON 1.33  
DBOOST_M 89  
AX  
1.47  
93  
VFBH - FBL = 150 mV; P_6.4.11  
Maximum BOOST Duty Cycle  
%
fsw=300kHZ;  
P_6.4.12  
Input Current Sense threshold  
VIIN1-IIN2  
VIIN1-IIN2  
46  
50  
54  
mV  
P_6.4.13  
1)  
Input Current sense Amplifier gm IIN_gm  
2.12  
1
mS  
V
P_6.4.14  
P_6.4.15  
Input current Monitor Voltage  
VIINMON  
0.95  
1.05  
1)VIIN1 - IIN2 = 50 mV;  
VIIN1 = VVIN(ON) to  
55 V;  
1)  
Switch Peak Over Current  
Threshold - BOOST  
VSWCS_boo 40  
50  
60  
mV  
mV  
P_10.8.1  
5
st  
1)  
Switch Peak Over Current  
Threshold - BUCK  
VSWCS_buck -60  
-50  
-40  
P_10.8.1  
6
Soft Start  
Soft Start pull up current  
ISoft_Start_P 22  
26  
33  
32  
µA  
V
Soft_Start = 1 V;  
P_6.4.19  
U
Data Sheet  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Regulator Description  
Table 6  
EC Regulator (cont’d)  
VIN = 8V to 36V, Tj = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
2.6  
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
Soft Start pull down current  
ISoft_Start_P 2.2  
3.2  
µA  
V
Soft_Start = 1 V;  
P_6.4.20  
P_6.4.21  
P_6.4.22  
P_6.9.3  
D
Soft Start Latch-OFF Threshold VSoft_Start_L 1.65  
1.75  
0.2  
2
1.85  
0.3  
V
OFF  
Soft Start Reset Threshold  
VSoft_Start_ 0.1  
V
RESET  
Soft Start Voltage during  
regulation  
VSoft_Start_r 1.9  
2.1  
V
1)No Faults  
eg  
Oscillator  
Switching Frequency  
fSW  
285  
300  
315  
kHz Tj = 25 °C;  
P_6.4.23  
R
FREQ= 37.4 k;  
SYNC Frequency  
fSYNC  
200  
2
700  
kHz  
V
P_6.4.24  
P_6.4.25  
SYNC  
VSYNC,ON  
Turn On Threshold  
SYNC  
Turn Off Threshold  
VSYNC,OFF  
ISYNC,H  
0.8  
45  
18  
V
P_6.4.26  
P_6.4.62  
P_6.4.63  
SYNC  
High Input Current  
15  
6
30  
12  
µA  
µA  
V
SYNC = 2.0 V;  
SYNC = 0.8 V;  
SYNC  
ISYNC,L  
V
Low Input Current  
Gate Driver for external Switch  
Gate Driver undervoltage  
threshold VBSTx-VSWNx_UVth VSWNx_UVth  
VBSTx  
-
3.4  
4
V
V
BSTx - VSWNx  
P_6.4.64  
P_6.4.28  
P_6.4.29  
P_6.4.30  
P_6.4.31  
P_6.4.32  
decreasing;  
BSTx - VSWNx = 5 V;  
source = 100 mA;  
BSTx - VSWNx = 5 V;  
sink = 100 mA;  
IVCC_EXT = 5 V;  
source = 100 mA;  
IVCC_EXT = 5 V;  
sink = 100 mA;  
HSGDx NMOS driver on-state  
resistance (Gate Pull Up)  
RDS(ON_PU) 1.4  
2.3  
1.2  
2.3  
1.2  
3.7  
2.2  
3.7  
1.8  
V
I
HS  
HSGDx NMOS driver on-state  
resistance (Gate Pull Down)  
RDS(ON_PD) 0.6  
V
I
HS  
LSGDx NMOS driver on-state  
resistance (Gate Pull Up)  
RDS(ON_PU) 1.4  
V
I
LS  
LSGDx NMOS driver on-state  
resistance (Gate Pull Down)  
RDS(ON_PD) 0.4  
V
I
1)  
LS  
HSGDx Gate Driver peak  
sourcing current  
IHSGDx_SRC 380  
mA  
VHSGDx - VSWNx = 1 V  
to 4 V;  
V
BSTx - VSWNx= 5 V  
1)  
HSGDx Gate Driver peak sinking IHSGDx_SNK 410  
current  
mA  
mA  
P_6.4.33  
P_6.4.34  
VHSGDx - VSWNx = 4 V  
to 1 V;  
V
1)  
BSTx - VSWNx= 5 V  
LSGDx Gate Driver peak  
sourcing current  
ILSGDx_SRC 370  
VLSGDx = 1 V to 4 V;  
IVCC_EXT = 5 V;  
V
Data Sheet  
34  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Regulator Description  
Table 6  
EC Regulator (cont’d)  
VIN = 8V to 36V, Tj = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
1)  
LSGDx Gate Driver peak sinking ILSGDx_SNK 550  
current  
mA  
P_6.4.35  
VLSGDx = 4 V to 1 V;  
V
IVCC_EXT = 5 V;  
1)  
LSGDx OFF to HSGD ON delay tLSOFF-  
15  
35  
30  
60  
40  
75  
ns  
ns  
P_6.4.36  
P_6.4.37  
HSON_delay  
1)  
HSGDx OFF to LSGD ON delay tHSOFF-  
LSON_delay  
1) Not subject to production test, specified by design  
Data Sheet  
35  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Digital Dimming Function  
7
Digital Dimming Function  
To change brightness of LED loads without affecting the lighting-color of the LED a digital Dimming function via  
PWM (Pulse Width Modulation) is often required.  
7.1  
Description  
PWM dimming is commonly practiced to prevent color shift in the LED light source.  
Via Parallel Interface  
The PWMI pin detects a pulse width modulated (PWM) signal that disable the gate drivers from delivering output  
current.  
µC  
PWM  
Digital dimming  
PWMI  
+3.3V or +5V  
VDD  
CSN  
SI  
SPI  
SO  
SCLK  
VSS AGND  
Figure 19 Digital Dimming Overview  
Data Sheet  
36  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Digital Dimming Function  
tACTIVE  
VEN/INUVLO  
VEN/INUVLOth  
t
t
VIVCC_EXT_RTH,d  
+VIVCCX_HYST  
tPWMI,H  
TPWMI  
VPWMI  
VPWMI,ON  
VPWMI,OFF  
t
Switching  
activity  
t
t
ILED  
VIOUTMON  
200mV  
t
Softstart  
Normal  
Gate ON  
Diag ON  
Normal  
Gate ON  
Dim  
Normal  
Gate ON  
Diag ON  
Dim  
Dim  
Power ON  
Gate OFF  
Diag OFF  
Gate OFF  
Diag OFF  
Gate OFF  
Diag OFF  
Diagnosis ON  
Figure 20 Timing Diagram LED Dimming and Start up behavior example ( VVDD and VVIN stable in the  
functional range and not during startup)  
Note:In Register REGUSETMON.REGUMODFB the regulation mode can be read. During PWMI = LOW the SPI will  
always deliver the Regulation mode which was present at PWMI = HIGH as actual regulation mode, instead  
of “no Regulation”.  
Data Sheet  
37  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Digital Dimming Function  
7.2  
Electrical Characteristics  
Table 7  
EC Digital Dimming  
VIN = 8V to 36V, Tj = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition Number  
Min.  
Max.  
PWMI Input:  
PWMI  
Turn On Threshold  
VPWMI,ON  
VPWMI,OFF  
IPWMI,H  
2
V
P_7.2.1  
P_7.2.2  
P_7.2.4  
P_7.2.5  
PWMI  
Turn Off Threshold  
0.8  
45  
18  
V
PWMI  
High Input Current  
15  
6
30  
12  
µA  
µA  
V
V
PWMI = 2.0 V;  
PWMI = 0.8 V;  
PWMI  
IPWMI,L  
Low Input Current  
Data Sheet  
38  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Analog Dimming  
8
Analog Dimming  
The analog dimming feature allows further control of the output current. This approach is used to:  
Reduce the default current in a narrow range to adjust to different binning classes of the used LEDs.  
Adjust the load current to enable the usage of one hardware for several LED types where different current  
levels are required.  
Reduce the current at high temperatures (protect LEDs from overtemperature).  
Reduce the current at low input voltages (for example, cranking-pulse breakdown of the supply or power  
derating).  
8.1  
Description  
The analog dimming feature is adjusting the average load current level via the control of the feedback error  
Amplifier voltage (VFBH-FBL).  
The current adjustment is done via a 8BIT SPI parameter (LEDCURRADIM.ADIMVAL). Refer to Figure 21.  
VFBH-FBL  
150mV  
Bitcode  
b´11110000  
8 BIT SPI adjustment  
0
Figure 21 Analog Dimming Overview  
Analog dimming adjustment during Limp Home state:  
To enter in Limp Home state the LHI pin must be HIGH.  
Note: If the PWMI and the EN/INUVLO are not set to HIGH, it is not possible to enable switching, even during  
Limp Home state.  
In Limp Home state the analog dimming control is done via the SET pin. A Resistor divider between  
IVCC/IVCC_EXT, SET and GND is used to fix a default load current/voltage value (refer to Figure 22 below).  
Data Sheet  
39  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Analog Dimming  
CIN  
> VIN(PO)  
> VIVCC_EXT_RTH,d  
IVCC  
CIVCC  
IVCC_ext  
VIN  
IVCC  
EN/INUVLO  
Current  
Regulation  
D2  
D1  
default output  
current/voltage  
adjustment  
BST1  
BST2  
SET  
RFB  
COUT  
CBST1 CBST2  
M1  
M2  
M4  
HSGD1  
SWN1  
LOUT  
LIMPHOME  
FAIL SAFE Circuit  
M3  
LHI  
HIGH  
LSGD1  
SWCS  
Load  
PWMI_LH  
FAIL SAFE Circuit  
SGND  
PGND1  
PGND2  
Set HIGH to  
activate output  
PWMI  
LSGD2  
SWN2  
HSGD2  
VFB  
CSN  
SI  
SO  
SPI Writing  
disabled during  
Limp Home state  
FBH  
FBL  
SCLK  
VSS AGND  
Figure 22 Limp Home state schematic overview  
Using the SET pin to adjust the output current:  
The SET pin is ignored if the device is not in Limp Home state.  
For the calculation of the output current IOUT the following Equation (9) is used:  
VFBH VFBL  
IOUT  
=
(9)  
RFB  
A decrease of the average output current can be achieved by controlling the voltage at the SET pin (VSET) between  
0.2V and 1.4V. The mathematical relation is given in the Equation (10) below:  
V SET 200 mV  
I OUT  
=
(10)  
R FB 8  
If VSET is 200mV (typ.) the LED current is only determined by the internal offset voltages of the comparators.  
To assure the switching activity is stopped and IOUT=0, VSET has to be <100mV, see Figure 23  
Data Sheet  
40  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Analog Dimming  
VFBH-FBL  
150mV  
100mV  
0mV  
VSET  
200mV  
1.4V 1.5V  
Analog Dimming  
Disabled  
Analog Dimming Enabled  
Figure 23 Analog Dimming Overview  
8.2  
LED current calibration procedure  
The LED current calibration procedure improves the accuracy during analog dimming. In order to be most  
effective, this routine has to be performed in the application, when the TLD5541-1QV temperature and the output  
voltage are the ones in which the driver has to be accurate. The optimum should be to re-calibrate the output  
periodically every time the application has for a sufficent long time PWMI=LOW.  
Current calibration procedure:  
Power the Load with a low analog dimming value (for example 10%)  
Set PWMI=LOW and disconnect the Load at the same time (to avoid Vout drifts from operating conditions)  
Quickly µC enables the calibration routine: DVCCTRL.ENCAL= HIGH  
Quickly µC starts the calibration: LEDCURRCAL.SOCAL= HIGH  
Waiting time (needed to internally perform the calibration routine) -> aprox. 200µs  
TLD5541-1QV will set the FLAG: LEDCURRCAL.EOCAL= HIGH, when calibration routine has finished  
Reconnect the load  
The Output current is automatically adjusted to a low offset and more accurate analog dimming value  
Once the Calibration routine is correctly performed , the output current accuracy with analog dimming = 10%  
(LEDCURRADIM.ADIMVAL=24) is 10%.  
The Calibration routine is not affecting the accuracy at 100% analog dimming.  
The ENCAL Bits affect both device operation and CALIBVAL reading result:  
ENCAL = HIGH: the calibration result coming from the routine is used by internal circuitry and can be read back  
from CALIBVAL  
ENCAL = LOW: SPI value written in CALIBVAL is used by internal circuitry and can be read back; calibration  
routine start is inhibited  
As a result, μC can use a stored result from a previously performed calibration to directly impose the desired value  
without waiting for a new routine to finish.  
Data Sheet  
41  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Analog Dimming  
OUT H-Bridge  
Vint_supply  
FBH  
+
V_sense_in  
FBL  
RFB  
VFBH-FBL  
IOUT_sense  
V_sense_out  
-
+
Latch  
IDC_offset  
ADC out  
-
to LED  
Load  
IIN_feedback  
ADC CLK  
+
-
EA  
ADC Latch  
8 bit resolution  
4 bit calibration  
DAC  
COMP  
Vref_int  
2Bit Monitoring  
Logic  
ADC CLK  
Figure 24 LED current Accuracy Calibration Overview  
8.3  
Electrical Characteristics  
Table 8  
EC Analog Dimming  
VIN = 8V to 36V, Tj = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit  
Note /  
Number  
Test Condition  
Min.  
Typ. Max.  
Source current on SET Pin  
ISET_source  
1
µA  
1)VSET = 0.2 V to  
P_8.3.4  
1.4V;  
1) Specified by design: not subject to production test.  
Data Sheet  
42  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Linear Regulator  
9
Linear Regulator  
The TLD5541-1QV features an integrated voltage regulator for the supply of the internal gate driver stages.  
Furthermore an external voltage regulator can be connected to the IVCC_EXT pin to achieve an alternative gate  
driver supply if required.  
9.1  
IVCC Description  
When the IVCC pin is connected to the IVCC_EXT pin, the internal linear voltage regulator supplies the internal  
gate drivers with a typical voltage of 5V and current up to ILIM (P_9.2.2). An external output capacitor with low ESR  
is required on pin IVCC for stability and buffering transient load currents. During normal operation the external  
MOSFET switches will draw transient currents from the linear regulator and its output capacitor (Figure 25,  
drawing A). Proper sizing of the output capacitor must be considered to supply sufficient peak current to the gate  
of the external MOSFET switches. A minimum capacitance value is given in parameter CIVCC (P_9.2.4).  
Alternative IVCC_EXT Supply Concept:  
The IVCC_EXT pin can be used for an external voltage supply to alternatively supply the MOSFET Gate drivers.  
This concept is beneficial in the high input voltage range to avoid power losses in the IC (Figure 25, drawing B).  
Integrated undervoltage protection for the external switching MOSFET:  
An integrated undervoltage reset threshold circuit monitors the linear regulator output voltage. This undervoltage  
reset threshold circuit will turn OFF the gate drivers in case the IVCC or IVCC_EXT voltage falls below their  
undervoltage Reset switch OFF Thresholds VIVCC_RTH,d (P_9.2.9) and VIVCC_EXT_RTH,d (P_9.2.5).  
In Limp Home state the Undervoltage Reset switch OFF threshold for the IVCC has no impact on the switching  
activity.  
The Undervoltage Reset threshold for the IVCC and the IVCC_EXT pins help to protect the external switches from  
excessive power dissipation by ensuring the gate drive voltage is sufficient to enhance the gate of the external  
logic level N-channel MOSFETs.  
A
B
IVCC  
Power  
IVCC  
Internal  
VREG  
Internal  
VREG  
VIN  
VIN  
Power  
On Reset  
On Reset  
External  
VREG  
IVCC_EXT  
IVCC_EXT  
Gate Drivers  
Gate Drivers  
Figure 25 Voltage Regulator Configurations  
Data Sheet  
43  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Linear Regulator  
9.2  
Electrical Characteristics  
Table 9  
EC Line Regulator  
VIN = 8V to 36V, Tj = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition Number  
Min.  
Max.  
IVCC  
Output Voltage  
VIVCC  
4.8  
70  
5
5.2  
V
VIN= 13.5 V;  
0.1mA IIVCC 50mA;  
1)  
P_9.2.1  
P_9.2.2  
P_9.2.3  
Output Current Limitation ILIM  
90  
200  
110  
350  
mA  
mV  
V
IVCC = 4 V;  
VIN = 5 V;  
IVCC = 10 mA;  
Drop out Voltage (VIN -  
VIVCC  
VDR  
)
I
1) 2)  
IVCC Buffer Capacitor  
CIVCC  
10  
µF  
V
P_9.2.4  
P_9.2.5  
3)  
IVCC_EXT Undervoltage VIVCC_EXT_ 3.7  
3.9  
4.1  
Reset switch OFF  
V
IVCC_EXT decreasing;  
RTH,d  
Threshold  
3)  
IVCC Undervoltage  
Reset switch OFF  
Threshold  
VIVCC_RTH, 3.7  
3.9  
4.1  
V
V
P_9.2.9  
P_9.2.6  
V
IVCC decreasing;  
d
IVCC and IVCC_EXT  
Undervoltage Hysterisis  
VIVCCX_HY 0.3  
0.33  
0.36  
V
V
IVCC increasing;  
IVCC_EXT increasing  
ST  
1) Not subject to production test, specified by design  
2) Minimum value given is needed for regulator stability; application might need higher capacitance than the minimum. Use  
capacitors with LOW ESR.  
3) Selection of external switching MOSFET is crucial. VIVCC_EXT_RTH,d and VIVCC_RTH,d min. as worst case VGS must be  
considered.  
Data Sheet  
44  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Protection and Diagnostic Functions  
10  
Protection and Diagnostic Functions  
10.1  
Description  
The TLD5541-1QV has integrated circuits to diagnose and protect against overvoltage, open load, short circuits  
of the load and overtemperature faults. Furthermore, the device provides a 2 Bit information of ILED, IIN by the SPI  
to the µC.  
In IDLE state, only the Over temperature Shut Down, Over Temperature Warning, IVCC or IVCC_EXT  
Undervoltage Monitor, VDD or VEN/INUVLO Undervoltage Monitor are reported according to specifications.  
In Figure 26 a summary of the protection, diagnostic and monitor functions is displayed.  
Protection and Diagnostic  
SPI STD  
Diagnosis  
Overvoltages  
SPI  
Open Load  
SPI  
No output current  
OR  
Short at the Load  
SPI  
SPI  
Linear Regulators  
OFF  
(only IVCC disabled  
Device  
Overtemperature  
OR  
in case of  
Input  
overtemperature)  
Undervoltage  
Monitoring  
2BIT data  
2BIT data  
2BIT data  
IOUT  
Read-back via  
SPI  
IIN  
Mode Indication  
IOUT  
IOUTMON  
IINMON  
KILIS Factor 8  
KILIS Factor 20  
IIN  
Figure 26 Protection, Diagnostic and Monitoring Overview - TLD5541-1QV  
Note: A device Overtemperature event overrules all other fault events!  
Data Sheet  
45  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Protection and Diagnostic Functions  
10.2  
Overvoltage, Open Load, Short circuit protection  
The VFB pin measures the voltage on the application output and in accordance with the populated resistor divider,  
short to ground, open load and overvoltage thresholds are set. Refer to Figure 28 and Figure 27 for more details.  
VFB  
Overvoltage  
VFB_OVTH = fixed  
Open LOAD  
VFB_OL,rise = fixed  
Normal Operation  
VFB_S2G = adjustable  
Short  
Circuit  
e.g. 50V  
VOUT  
Threshold can be  
adjusted via SPI  
Figure 27 Definition of Protection Ranges  
VIN  
CIVCC  
IVCC  
D2  
D1  
VOUT  
RFB  
BST1  
BST2  
CBST1 CBST2  
M1  
M2  
M4  
VVFB_OVTH  
VVFB_OL,rise  
RVFBH  
COUT  
HSGD1  
SWN1  
LOUT  
M3  
LSGD1  
SWCS  
RVFBL  
VVFB_S2G  
RSWCS  
SGND  
PGND  
LSGD2  
SWN2  
HSGD2  
VFB  
FBH  
FBL  
Figure 28 VFB Protection Pin - Overview  
10.2.1  
Short Circuit protection  
The device detects a short circuit if this condition is verified:  
The pin VFB falls below the threshold voltage VVFB_S2G for at least 8 clock cycles  
Data Sheet  
46  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Protection and Diagnostic Functions  
After a short circuit detection, the SPI flag (SHRTLED) in the STD diagnosis register is set to HIGH and the gate  
drivers stop delivering output current (Break-Low condition, both LS MOSFETs ON). The Device will auto restart  
with the soft start routine described in Chapter 6.2. The dedicated diagnosis flag (SHRTLED) will be cleared after  
the next reading cycle of the STD diagnosis.  
A voltage divider between VOUT, VFB pin and AGND is used to adjust the application short circuit thresholds  
following Equation (12).  
RVFBH + RVFBL  
Vshort  
= VVFB  
(11)  
_ led  
_ S 2 G  
RVFBL  
The short circuit threshold voltage VVFB_S2G (P_10.8.1) is set by 4-Bits in the SPI register MFSSETUP1.LEDCHAIN  
as shown in Table 10.  
The configurable short circuit threshold is especially useful in 2 types of applications:  
1) Multifloat switch applications:  
Multifloat switch applications are applications with a series connection of LEDs and parallel Transistors to switch  
ON and OFF single (or multiple) LEDs in a string. The built in feature “fast output discharge operation mode”  
enables such applications but the short circuit threshold has to be adjusted in accordance to the LED changes.  
This sincronization is needed to avoid wrong short circuit detection during load step variations.  
For this reason the register MFSSETUP1.LEDCHAINselects the short circuit threshold register but is also related  
to the “fast dynamic behavior feature”. For more Info on the “fast output discharge operation mode” please refer  
to Chapter 6.5.  
2) Standard applications which require a large output voltage range:  
The adjustable short circuit threshold VVFB_S2G enables applications with a large VOUT operation range.  
The Table 10 below displays the relationship between the bitcode and the short circuit threshold voltage VVFB_S2G  
based on an example.  
Assume that each LED has a typical VF=3.3V. By choosing a resistor divider RVFBH = 1MOhm, RVFBL = 41kOhm,  
the application short circuit voltage Vshort_led, will change according to the LEDCHAIN value as shown in Table 10.  
The application overvoltage protection is instead not dependent by LEDCHAIN and, based on the Equation (12)  
for this particular resistor divider is fixed to 59.3V.  
Table 10  
Adjustable Short Circuit threshold overview  
nled  
VOUT  
VOUT_OVLO k = RVFBL  
/
Vopen_led  
Vshort_led (V)  
VVFB1,2_S2G(V) Default  
LEDCHAIN  
(RVFBH + RVFBL  
)
(VFB1,2_S2G / k)  
Condition  
1
3.3  
59.3  
59.3  
59.3  
59.3  
59.3  
59.3  
59.3  
59.3  
59.3  
59.3  
59.3  
59.3  
59.3  
0.025  
54.4  
54.4  
54.4  
54.4  
54.4  
54.4  
54.4  
54.4  
54.4  
54.4  
54.4  
54.4  
54.4  
1.5  
0.038  
0.113  
0.188  
0.263  
0.338  
0.413  
0.488  
0.563  
0.638  
0.713  
0.788  
0.863  
0.938  
2
6.6  
0.025  
4.6  
3
9.9  
0.025  
7.6  
4
13.2  
16.5  
19.8  
23.1  
26.4  
29.7  
33.0  
36.3  
39.6  
42.9  
0.025  
10.7  
5
0.025  
13.7  
6
0.025  
16.8  
7
0.025  
19.8  
8
0.025  
22.8  
default  
9
0.025  
25.9  
10  
11  
12  
13  
0.025  
28.9  
0.025  
32.0  
0.025  
35.0  
0.025  
38.1  
Data Sheet  
47  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Protection and Diagnostic Functions  
Table 10  
Adjustable Short Circuit threshold overview  
nled  
LEDCHAIN  
VOUT  
VOUT_OVLO k = RVFBL  
/
Vopen_led  
V
short_led (V)  
V
VFB1,2_S2G(V) Default  
Condition  
(RVFBH + RVFBL  
)
(VFB1,2_S2G / k)  
14  
15  
16  
46.2  
49.5  
52.8  
59.3  
59.3  
59.3  
0.025  
54.4  
54.4  
54.4  
41.1  
1.013  
1.088  
1.163  
0.025  
44.2  
0.025  
47.2  
During Limp Home state the short circuit threshold VVFB_S2G is fixed at the default value (VVFB_S2G / VVFB_OVTH),  
approx. 1/3 of the fixed overvoltage protection circuit in the application. There is no relationship between the  
analog dimming feature at VSET pin and the VVFB_S2G threshold. The customer must take care by adjusting the  
default voltage at SET pin to program the VOUT be higher than the default short circuit threshold.  
During start-up the TLD5541-1QV ignores the detection of a short circuit or an open load until the soft-start  
capacitor reaches 1.75V. To prevent false tripping after startup, a large enough soft-start capacitor must be used  
to allow the output to get up to approximately 50% of the final value.  
Note:If the short circuit condition disappears, the device will re-start with the soft start routine as described in  
Chapter 6.2.  
10.2.2  
Overvoltage Protection  
A voltage divider between VOUT, VFB pin and AGND is used to adjust the Overvoltage protection threshold (refer  
to Figure 28).  
To fix the overvoltage protection threshold the following Equation (12) is used:  
RVFBH + RVFBL  
VOUT _ OV _ protected =VVFB _ OVTH  
(12)  
RVFBL  
If VVFB gets higher than its overvoltage threshold VVFB_OVTH , the SPI flag (OUTOV) in the STD diagnosis set to  
HIGH and the gate drivers stop switching for output regulation (Break-Low condition both LS MOSFETs ON).  
When VVFB_OVTH- VVFB_OVTH,HYS threshold is reached the device will auto restart. The dedicated diagnosis flag  
(OUTOV) will be cleared after the next reading cycle of the STD diagnosis.  
If the SWTMOD.OUTOVLATbit is set to HIGH the overvoltage protection is changed into latched behavior and the  
µC has to set the DVCCTRL.CLRLATbit to reset the OUTOV flag and restart the switching activities.  
10.2.3  
Open Load Protection  
To reliably detect an open load event, two conditions will be observed:  
1) Voltage threshold: VVFB>VVFB_OL,rise  
2) output information: V(FBH-FBL)<VFBH_FBL_OL  
After an open load error, the SPI flag (OL) in the STD diagnosis is set to HIGH and the gate drivers stop switching  
(Break-Low condition). The Device will auto restart with a soft start routine. The dedicated diagnosis flag (OL) will  
be cleared after the next reading cycle of the STD diagnosis.  
After an Open Load error the TLD5541-1QV is autorestarting the output control accordingly to the implemented  
Softstart routine. An Open Load error causes an increase of the output voltage as well. An Overvoltage condition  
could be reported in combination with an Open Load error (in general, multiple error detection may happen if more  
error detection thresholds are reached during the autorestart funcion, as possible consequence of reactive  
behavior at the output node during open load).  
The COMP capacitor is discharged during an Open Load condition to prevent spikes if load reconnects. This  
measure could artificially generate Short Circuit detections after open loads events.  
Data Sheet  
48  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Protection and Diagnostic Functions  
10.3  
Input voltage monitoring, protection and power derating  
Input overvoltage and undervoltage shutdown levels can both be defined through an external resistor divider, as  
shown in Figure 29.  
Both INOVLO and EN/INUVLO pin voltages are internally compared to their respective thresholds by means of  
hysteretic comparators.  
Neglecting the hysteresis, the following equations hold:  
R1  
UV th = 1 +  
EN / INUVLO  
(13)  
(14)  
th  
th  
R2 + R3  
R 1 + R 2  
OV  
PIN  
=
1 +  
INOVLO  
th  
R 3  
VOUT IOUT  
=
(15)  
η
VOUT IOUT  
I IN  
(16)  
(17)  
(18)  
VIN _ boundary  
=
η
V IN 1IN 2  
I IN  
=
R IN  
VFBH FBL  
IOUT  
=
RFB  
Figure 29 Input Voltage Protection  
Data Sheet  
49  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Protection and Diagnostic Functions  
10.4  
Input current Monitoring  
The input current can be monitored through an analog output pin and an SPI routine.  
The IINMON pin provides a linear indication of the current flowing through the input. The following Equation (19)  
is applicable:  
VIINMON = I IN RIN 20  
(19)  
Note:If the RIN value is choosen in a way that the current limitiation is much bigger than the nominal input current  
during the application the current measurement becomes inaccurate. Best results for an accurate current  
measurement via the VIINMON pin is to set the current limit only slightly above the specific application related  
nominal input current.  
Purpose of the input current monitoring routine is to verify if the system is in current limitation.  
The output of the Input Current Sense is compared to the internal precise reference voltage.  
The comparator works like a 2 bit window ADC referred to the internal precise reference voltage.  
To execute the current monitor routine the CURRMON.SOMON bit has to be set HIGH and the result is ready  
when CURRMON.EOMON is read HIGH.  
The result of the input monitor routine is reported on the CURRMON.INCURR bit.  
Figure 30 Input Current Monitoring General Overview  
10.5  
Output current Monitoring  
The output current can be monitored through an analog output pin and an SPI routine.  
The IOUTMON pin provides a linear indication of the current flowing through the LEDs. The following  
Equation (20) is applicable:  
(20)  
VIOUTMON = 200 mV + IOUT RFB 8  
Purpose of the SPI current monitor routine is to verify if the system is in loop.  
The output of the Led Current Sense is compared to the output of the Analog Dimming DAC  
The comparator works like a 2 bit window ADC around 8 bit DAC output  
To execute the current monitor routine the CURRMON.SOMON bit has to be set HIGH and the result is ready  
when CURRMON.EOMON is read HIGH.  
Data Sheet  
50  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Protection and Diagnostic Functions  
When CURRMON.SOMON bit is set to HIGH both input and output current monitor routines are executed in  
parallel.  
The result of the monitor routine is reported on the CURRMON.LEDCURR bit.  
OUT H-Bridge  
ADC out  
2Bit Monitoring  
IOUTMON  
Vint_supply  
11b  
10b  
00b 01b  
FBH  
feedback  
Logic  
+
V_sense_in  
VFBH-FBL  
RFB  
IOUT_sense  
-
FBL  
ADC CLK  
V_sense_out  
+
Latch  
IDC_offset  
ADC in  
ADC out  
-
to LED  
Load  
IIN_feedback  
ADC CLK  
+
-
ADC Latch  
EA  
8 bit resolution  
4 bit calibration  
DAC  
COMP  
Vref_int  
Figure 31 Output Current Monitoring General Overview  
Data Sheet  
51  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Protection and Diagnostic Functions  
10.6  
Device Temperature Monitoring  
A temperature sensor is integrated on the chip. The temperature monitoring circuit compares the measured  
temperature to the warning and shutdown thresholds. If the internal temperature sensor reaches the warning  
temperature, the temperature warning bit TWis set to HIGH. This bit is not latched (i.e. if the temperature falls  
below the warning threshold (with hysteresis), the TWbit is reset to LOW again).  
If the internal temperature sensor reaches the shut-down temperature, the Gate Drivers plus the IVCC regulator  
are shut down as described in Figure 32 and the temperature shut-down bit: TSDis set to HIGH. The TSDbit is  
latched while the Gate Drivers plus the IVCC regulator have an auto restart behavior.  
Note:The Device will start up with a soft start routine after a TSD condition disappear.  
Tj  
TjSD,hyst  
TjSD  
TjW  
TjSD_exit  
TjW_exit  
TjW,Hyst  
t
xSGDx  
Gate Drivers  
autorestart  
Operating  
OFF  
t
IVCC  
5V  
IVCC  
autorestart  
OFF  
t
TW bit  
1
NO ERROR  
NO ERROR  
TW bit is reset automatically  
0
t
t
TSD error bit  
1
0
TSD error bit latched until next reset or CLRLAT  
Figure 32 Device Overtemperature Protection Behavior  
Data Sheet  
52  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Protection and Diagnostic Functions  
10.7  
Electrical Characteristics  
Table 11  
EC Protection and Diagnosis  
VIN = 8V to 36V, Tj = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Number  
Min.  
Max.  
Short Circuit Protection  
Short to GND  
threshold  
VVFB_S2G  
0.53  
0.563  
0.59  
V
V
VFB decreasing;  
P_10.8.1  
MFSSETUP1.LEDCHAIN  
= 1000B  
Temperature Protection:  
1)  
Thermal Warning  
junction  
Tj,W  
125  
140  
155  
°C  
P_10.8.2  
temperature  
1)  
1)  
1)  
Temperature  
warning Hysteresis  
Tj,W,hyst  
10  
°C  
°C  
°C  
P_10.8.3  
P_10.8.4  
P_10.8.5  
Over Temperature Tj,SD  
Shutdown  
160  
175  
10  
190  
Over Temperature Tj,SD,hyst  
Shutdown  
Hysteresis  
Overvoltage Protection:  
VFB Over Voltage VVFB_OVTH  
Feedback  
Threshold  
1.42  
1.46  
40  
1.50  
58  
V
P_10.8.6  
P_10.8.7  
Output Over  
VVFB_OVTH,HY 25  
mV  
Output Voltage  
decreasing;  
Voltage Feedback  
Hysteresis  
S
Open Load and Open Feedback Diagnostics  
Open Load rising  
Threshold  
VVFB_OL,rise  
1.29  
1.34  
1.39  
22.5  
V
V
V
FBH-FBL = 0 V;  
FB = 1.4 V;  
P_10.8.9  
Open Load  
VFBH_FBL_OL  
15  
mV  
P_10.8.10  
reference Voltage  
VFBH-FBL  
Open Load falling VVFB_OL,fall  
Threshold  
1.23  
1.9  
1.28  
1.33  
V
V
FBH-FBL = 0 V;  
P_10.8.11  
Input Overvoltage protection  
Input Overvoltage VINOVLOth  
rising Threshold  
2
2.1  
62  
V
P_10.8.12  
P_10.8.13  
Input Overvoltage VINOVLO(hyst) 18  
40  
mV  
Threshold  
Hysteresis  
1) Specified by design; not subject to production test.  
Data Sheet  
53  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Protection and Diagnostic Functions  
Note:Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
Data Sheet  
54  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Infineon FLAT SPECTRUM Featureset  
11  
Infineon FLAT SPECTRUM Featureset  
11.1  
Description  
The Infineon FLAT SPECTRUM feature set has the target to minimize external additional filter circuits. The goal  
is to provide several beneficial concepts to provide easy adjustments for EMC improvements after the layout is  
already done and the HW designed.  
11.2  
Synchronization Function  
The TLD5541-1QV features a SYNC input pin which can be used by a µC pin to define an oscillator switching  
frequency. The µC is responsible to synchronize with various devices by applying appropriate SYNC signals to  
the dedicated DC/DC devices in the system. Refer to Figure 33  
Note: The Synchronization function can not be used when the Spread Spectrum is active.  
H-Bridge DCDC  
MASTER  
BUCK-  
BOOST  
SYNC  
GATE  
LOGIC  
CONTROL  
e.g. 400kHz  
Phaseshift A  
H-Bridge DCDC  
Slave  
BUCK-  
BOOST  
GATE  
SYNC1  
SYNC2  
defined phase shift between  
Outputs of different devices  
SYNC  
µC  
LOGIC  
INPUT  
e.g. 400kHz  
Phaseshift B  
CONTROL  
Figure 33 Synchronization Overview  
Data Sheet  
55  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Infineon FLAT SPECTRUM Featureset  
11.3  
Spread Spectrum  
The Spread Spectrum modulation technique significantly improves the lower frequency range of the spectrum  
(f<30MHz).  
By using the spread spectrum technique, it is possible to optimize the input filter only for the peak limits, and also  
pass the average limits (average emission limits are -20dB lower than the peak emission limits). By using spread  
spectrum, the need for low ESR input capacitors is relaxed because the input capacitor series resistor is important  
for the low frequency filter characteristic. This can be an economic benefit if there is a strong requirement for  
average limits.  
The TLD5541-1QV features a built in Spread Spectrum function which can be enabled (SWTMOD.ENSPREAD) and  
adjusted via the SPI interface. Dedicated SPI-Bits are used to adjust the modulation frequency fFM, (P_11.6.3) and  
(P_11.6.4) (SWTMOD.FMSPREAD) and the deviation frequency fdev  
,
(P_11.6.1) and (P_11.6.2)  
(SWTMOD.FDEVSPREAD) accordingly to specific application needs. Refer to Figure 34 for more details.  
The following adjustments can be programmed when SWTMOD.ENSPREAD= HIGH:  
SWTMOD.FMSPREAD= LOW: 12kHz  
SWTMOD.FMSPREAD= HIGH: 18kHz  
SWTMOD.FDEVSPREAD= HIGH: ±8% of fSW  
SWTMOD.FDEVSPREAD= LOW: ±16% of fSW  
Note: The Spread Spectrum function can not be used when the synchronization pin is used.  
fSW  
fdev  
t
1
f
FM  
Figure 34 Spread Spectrum Overview  
Data Sheet  
56  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Infineon FLAT SPECTRUM Featureset  
11.4  
EMC optimized schematic  
Figure 35 below displays the Application circuit with additional external components for improved EMC behavior.  
LPI  
CIN2  
VIN  
RIIN  
DVS  
Alternative  
external  
VREG supply  
CPI1 CPI2  
CPI3 CPI4  
IVCC_EXT  
IVCC  
CIVCC  
VIN  
IIN2  
CIN1  
D1  
D2  
LPO  
RFB  
Rfilter  
Cfilter  
RM4  
BST1  
BST2  
COUT  
DHSG1  
RM1  
CBST2  
R1  
R2  
R3  
M4  
IIN1  
EN/INUVLO  
M1  
RVFBH  
CBST1  
HSGD1  
SWN1  
CM1  
RM2  
CM4  
RM3  
CM3  
RHSG1  
CPO1 CPO2  
CPO3 CPO4  
LOUT  
RHSG2  
M3  
RVFBL  
DLSG1  
INOVLO  
COMP  
M2  
CCOMP  
RCOMP  
LSGD1  
SWCS  
CM2  
RLSG1  
CSOFT_START  
RFREQ  
DLSG2  
RLSG2  
DHSG2  
SOFT_START  
FREQ  
RSWCS  
4LED in  
series /  
1A  
SGND  
PGND1  
PGND2  
µC SYNC signal  
Digital dimminig  
SYNC  
PWMI  
LSGD2  
IINMON  
IOUTMON  
Advanced monitoring via µC  
+3.3V or +5V  
SWN2  
HSGD2  
VFB  
VDD  
CSN  
SI  
SO  
SCLK  
FBH  
FBL  
CFBH-FBL  
CFBH  
Spread Spectrum ON /OFF via SPI  
VSS AGND  
CFBL  
RSPI  
Figure 35 Application Drawing Including Additional Components for an Improved EMC Behavior  
Note:The following information is given as a hint for the implementation of the device only and shall not be  
regarded as a description or warranty of a certain functionality, condition or quality of the device.  
Data Sheet  
57  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Infineon FLAT SPECTRUM Featureset  
11.5  
Electrical Characteristics  
Table 12  
EC Spread Spectrum  
VIN = 8V to 36V, Tj = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
Spread Spectrum Parameters  
1)  
Frequency Deviation  
fdev  
fdev  
fFM  
fFM  
±8  
%
P_11.6.1  
P_11.6.2  
P_11.6.3  
P_11.6.4  
SWTMOD.FDEVSP  
READ= HIGH;  
1)  
Frequency Deviation  
Frequency Modulation  
Frequency Modulation  
±16  
12  
%
SWTMOD.FDEVSP  
READ= LOW;  
1)  
kHz  
kHz  
SWTMOD.FMSPRE  
AD= LOW;  
1)  
18  
SWTMOD.FMSPRE  
AD= HIGH;  
1) Specified by design; not subject to production test.  
Data Sheet  
58  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Serial Peripheral Interface (SPI)  
12  
Serial Peripheral Interface (SPI)  
The serial peripheral interface (SPI) is a full duplex synchronous serial slave interface, which uses four lines: SO,  
SI, SCLK and CSN. Data is transferred by the lines SI and SO at the rate given by SCLK. The falling edge of CSN  
indicates the beginning of an access. Data is sampled in on line SI at the falling edge of SCLK and shifted out on  
line SO at the rising edge of SCLK. Each access must be terminated by a rising edge of CSN. A modulo 8/16  
counter ensures that data is taken only when a multiple of 8 bit has been transferred after the first 16 bits.  
Otherwise, a TER(i.e. Transmission Error) bit is asserted. In this way the interface provides daisy chain capability  
with 16 bit as well as with 8 bit SPI devices.  
MSB  
MSB  
14  
14  
13  
13  
12  
12  
11  
11  
10  
10  
9
9
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
LSB  
LSB  
SO  
SI  
CSN  
SCLK  
time  
SPI_16bit.emf  
Figure 12-1 Serial Peripheral Interface  
12.1  
SPI Signal Description  
CSN - Chip Select  
The system microcontroller selects the TLD5541-1QV by means of the CSN pin. Whenever the pin is in LOW  
state, data transfer can take place. When CSN is in HIGH state, any signals at the SCLK and SI pins are ignored  
and SO is forced into a high impedance state.  
CSN HIGH to LOW Transition  
The requested information is transferred into the shift register.  
SO changes from high impedance state to HIGH or LOW state depending on the signal level at pin SI.  
If the device is in SLEEP mode, the SO pin remains in high impedance state and no SPI transmission will  
occur.  
TERFlag will set the Bit number 10 in the STD diagnosis Frame. This Bit is set to HIGH after an undervoltage  
contition, reset via SPI command, on Limp Home state entering or after an incorrect SPI transmission. TER  
Flag can be read also direcly on the SO line between the falling edge of the CSN and the first rising edge of  
the SCLK according to the Figure 12-2.  
Data Sheet  
59  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Serial Peripheral Interface (SPI)  
STDDIAG.TER  
SI  
SO  
OR  
1
0
SO  
S
SI  
SPI  
CSN  
SCLK  
S
SPI_16bitTER .emf  
Figure 12-2 Combinatorial Logic for TER bit  
CSN LOW to HIGH Transition  
Command decoding is only done, when after the falling edge of CSN exactly a multiple (0,1, 2, 3, …) of eight  
SCLK signals have been detected after the first 16 SCLK pulses. In case of faulty transmission, the  
transmission error bit (TER) is set and the command is ignored.  
Data from shift register is transferred into the addressed register.  
SCLK - Serial Clock  
This input pin clocks the internal shift register. The serial input (SI) transfers data into the shift register on the falling  
edge of SCLK while the serial output (SO) shifts diagnostic information out on the rising edge of the serial clock.  
It is essential that the SCLK pin is in LOW state whenever chip select CSN makes any transition, otherwise the  
command may be not accepted.  
SI - Serial Input  
Serial input data bits are shift-in at this pin, the most significant bit first. SI information is read on the falling edge  
of SCLK. The input data consists of two parts, control bits followed by data bits. Please refer to Chapter 12.5 for  
further information.  
SO Serial Output  
Data is shifted out serially at this pin, the most significant bit first. SO is in high impedance state until the CSN pin  
goes to LOW state. New data will appear at the SO pin following the rising edge of SCLK.  
Please refer to Chapter 12.5 for further information.  
12.2  
Daisy Chain Capability  
The SPI of the TLD5541-1QV provides daisy chain capability. In this configuration several devices are activated  
by the same CSN signal MCSN. The SI line of one device is connected with the SO line of another device (see  
Figure 12-3), in order to build a chain. The end of the chain is connected to the output and input of the master  
device, MO and MI respectively. The master device provides the master clock MCLK which is connected to the  
SCLK line of each device in the chain.  
Data Sheet  
60  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Serial Peripheral Interface (SPI)  
device 1  
SPI  
device 2  
SPI  
device 3  
SPI  
SI  
SO SI  
SO SI  
SO  
MO  
MI  
MCSN  
MCLK  
SPI_DaisyChain_1.emf  
Figure 12-3 Daisy Chain Configuration  
In the SPI block of each device, there is one shift register where each bit from the SI line is shifted in with each  
SCLK. The bit shifted out occurs at the SO pin. After sixteen SCLK cycles, the data transfer for one device is  
finished. In single chip configuration, the CSN line must turn HIGH to make the device acknowledge the transferred  
data. In daisy chain configuration, the data shifted out at device 1 has been shifted in to device 2. When using  
three devices in daisy chain, several multiples of 8 bits have to be shifted through the devices (depending on how  
many devices with 8 bit SPI and how many with 16 bit SPI). After that, the MCSN line must turn HIGH (see  
Figure 12-4).  
SO device 3  
SI device 3  
SO device 2  
SI device 2  
SO device 1  
SI device 1  
MI  
MO  
MCSN  
MCLK  
SPI_DaisyChain_2.emf  
Figure 12-4 Data Transfer in Daisy Chain Configuration  
Data Sheet  
61  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Serial Peripheral Interface (SPI)  
12.3  
Timing Diagrams  
tCS(lead)  
tCS(lag)  
tCS(td)  
tSCLK(P )  
0.7VDD  
0.2VDD  
CSN  
tSCLK (H)  
tSCLK (L)  
0.7VDD  
0.2VDD  
SCLK  
SI  
tSI (s u)  
tSI (h)  
0.7VDD  
0.2VDD  
tSO(en)  
tSO(v )  
tSO (dis)  
0.7V  
cc  
SO  
0.2V  
cc  
SPI_Timings.emf  
Figure 12-5 Timing Diagram SPI Access  
Data Sheet  
62  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Serial Peripheral Interface (SPI)  
12.4  
Electrical Characteristics  
VIN = 8V to 36V, Tj = -40°C to +150°C, all voltages with respect to ground; (unless otherwise specified)  
Table 12-1 EC Serial Peripheral Interface (SPI)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
Input Characteristics (CSN, SCLK, SI) - LOW level of pin  
CSN  
SCLK  
SI  
VCSN(L)  
VSCLK(L)  
VSI(L)  
0
0
0
0.8  
0.8  
0.8  
V
V
V
P_12.4.1  
P_12.4.2  
P_12.4.3  
Input Characteristics (CSN, SCLK, SI) - HIGH level of pin  
CSN  
SCLK  
SI  
VCSN(H)  
VSCLK(H)  
VSI(H)  
2
VDD  
VDD  
VDD  
94  
V
P_12.4.4  
P_12.4.5  
P_12.4.6  
P_12.4.7  
2
V
2
V
L-input pull-up current at CSN pin -ICSN(L)  
H-input pull-up current at CSN pin -ICSN(H)  
L-Input Pull-Down Current at Pin  
31  
63  
μA  
V
V
DD = 5 V;  
CSN = 0.8 V;  
22  
45  
67  
μA  
V
V
DD = 5 V;  
CSN = 2 V;  
P_12.4.8  
SCLK  
ISCLK(L)  
ISI(L)  
6
6
12  
12  
18  
18  
μA  
μA  
V
SCLK = 0.8 V;  
P_12.4.9  
SI  
VSI = 0.8 V;  
P_12.4.10  
H-Input Pull-Down Current at Pin  
SCLK  
ISCLK(H)  
ISI(H)  
15  
15  
30  
30  
45  
45  
μA  
μA  
V
SCLK = 2 V;  
P_12.4.11  
P_12.4.12  
SI  
VSI = 2 V;  
Output Characteristics (SO)  
L level output voltage  
H level output voltage  
VSO(L)  
VSO(H)  
0
0.4  
V
V
I
I
SO = -2 mA;  
SO = 2 mA;  
P_12.4.13  
P_12.4.14  
VDD  
-
VDD  
0.4 V  
V
DD = 5 V;  
Output tristate leakage current  
Output tristate leakage current  
Timings  
ISO(OFF)  
ISO(OFF)  
-1  
1
1
μA  
μA  
V
V
CSN = VDD;  
SO = 0 V;  
P_12.4.15  
P_12.4.16  
-1  
V
V
CSN = VDD;  
SO = VDD;  
1)  
Enable lead time (falling CSN to  
rising SCLK)  
tCSN(lead) 200  
ns  
ns  
ns  
ns  
P_12.4.17  
P_12.4.18  
P_12.4.19  
P_12.4.20  
V
1)  
DD = 4.5 V;  
DD = 4.5 V;  
DD = 4.5 V;  
DD = 4.5 V;  
Enable lag time (falling SCLK to  
rising CSN)  
tCSN(lag)  
200  
250  
V
1)  
Transfer delay time (rising CSN to tCSN(td)  
falling CSN)  
V
1)  
Output enable time (falling CSN to tSO(en)  
SO valid)  
200  
V
CL = 20 pF at SO  
pin;  
Data Sheet  
63  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Serial Peripheral Interface (SPI)  
Table 12-1 EC Serial Peripheral Interface (SPI) (cont’d)  
Parameter Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
1)  
Output disable time (rising CSN to tSO(dis)  
200  
ns  
P_12.4.21  
SO tristate)  
V
DD = 4.5 V;  
CL = 20 pF at SO  
pin;  
1)  
Serial clock frequency  
Serial clock period  
fSCLK  
5
MHz  
ns  
P_12.4.22  
P_12.4.24  
P_12.4.25  
P_12.4.26  
P_12.4.27  
P_12.4.28  
P_12.4.29  
V
1)  
DD = 4.5 V;  
DD = 4.5 V;  
DD = 4.5 V;  
DD = 4.5 V;  
DD = 4.5 V;  
DD = 4.5 V;  
DD = 4.5 V;  
tSCLK(P)  
tSCLK(H)  
tSCLK(L)  
200  
75  
75  
20  
20  
V
1)  
Serial clock HIGH time  
Serial clock LOW time  
ns  
V
1)  
ns  
V
1)  
Data setup time (required time SI to tSI(su)  
falling SCLK)  
ns  
V
1)  
Data hold time (falling SCLK to SI) tSI(h)  
ns  
V
1)  
Output data valid time with  
capacitive load  
tSO(v)  
100  
ns  
V
CL = 20 pF;  
1) Not subject to production test, specified by design  
Data Sheet  
64  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Serial Peripheral Interface (SPI)  
12.5  
SPI Protocol  
The relationship between SI and SO content during SPI communication is shown in Figure 12-6. The SI line  
represents the frame sent from the µC and the SO line is the answer provided by the TLD5541-1QV. The first SO  
response is the response from the previous command.  
SI  
frame A  
frame B  
frame C  
(previous  
response)  
response to  
frame A  
response to  
frame B  
SO  
SPI_SI2SO.emf  
Figure 12-6 Relationship between SI and SO during SPI communication  
The SPI protocol will provide the answer to a command frame only with the next transmission triggered by the µC.  
Although the biggest majority of commands and frames implemented in TLD5541-1QV can be decoded without  
the knowledge of what happened before, it is advisable to consider what the µC sent in the previous transmission  
to decode TLD5541-1QV response frame completely.  
More in detail, the sequence of commands to “read” and “write” the content of a register will look as follows:  
SI  
write register A  
read register A  
(new command)  
(previous  
response)  
Standard  
diagnostic  
register A  
content  
SO  
SPI_RWseq.emf  
Figure 12-7 Register content sent back to µC  
There are 3 special situations where the frame sent back to the µC doesn't depend on the previously received  
frame:  
in case an error in transmission happened during the previous frame (for instance, the clock pulses were not  
multiple of 8 with a minimum of 16 bits), shown in Figure 12-8  
when TLD5541-1QV logic supply comes out of an Undervoltage reset condition (VDD<VDD(UV) as shown in  
Figure 12-9 or EN/INUVLO < VEN/INUVLOth  
)
in case of a read or write command for a “not used” or “reserved” register (in this case TLD5541-1QV answers  
with Standard Diagnosis at the next SPI transmission)  
Data Sheet  
65  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Serial Peripheral Interface (SPI)  
frame A  
(error in trans .)  
(new  
command)  
SI  
(previous  
response)  
Standard diag +  
TER  
SO  
SPI_SO_TER.emf  
Figure 12-8 TLD5541-1QV response after a error in transmission  
VDD VDD(PO)  
SI  
frame A  
frame B  
frame C  
Standard diag + TER  
SO  
(SO = „Z“)  
response to frame B  
SPI _SO_POR.emf  
Figure 12-9 TLD5541-1QV response after coming out of Power-On reset at VDD  
Data Sheet  
66  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Serial Peripheral Interface (SPI)  
12.6  
SPI Registers Overview  
15 14  
Frame W/R RB ADDR  
Write Register in bank 0  
ADDR  
Read Register in bank 0  
ADDR  
Read Standard Diagnosis  
13  
12 11 10  
9
8
7
6
5
4
3
2
1
0
Data  
SI  
SI  
SI  
1
0
Data  
0
0
x
x
x
x
x
x
x
x
x
x
x
x
x
0
1
0
x
x
x
x
x
x
x
x
Reading a register needs two SPI frames. In the first frame the read command is sent. In the second frame the  
output at SPI signal SO will contain the requested information. The MSB will be HIGH (while in case of standard  
diagnosis is LOW). A new command can be executed in the second frame.  
12.6.1  
Standard Diagnosis  
The Standard Diagnosis reports several diagnostic informations and the status of the device and the utility  
routines.  
The bits UVLORST, TER, VINOVLO, OUTOV, IVCCUVLO, OL and SHRTLED are latched and automatically  
cleared after a STD diagnosis reading (default condition if OUTOVLT is not set).  
A CLRLAT command resets the diagnostic Latched Flags and Latched protections for the OUTOV, TSD bits,  
restarting the switching activity if this was halted due the previously mentioned faults.  
Note that the OUTOV has latched behavior only when SWTMOD.OUTOVLAT=1, see Chapter 10.2.2 for further  
details.  
The TSD bit is always latched and clearable only via explicit CLRLAT command.  
The STD bits which are real time status monitors or mirror of internal registers are not cleared after a STD  
diagnosis reading or via explicit CLRLAT command:  
The STATE bits and TW are real time status flags.  
The bits EOMON, EOMFS and EOCAL are mirror of internal register.  
The SWRST_BSTUV bit is the logic OR of :  
latched SWRST flag after a DVCSTRL.SWRST command (clearable via STD Diagnosis reading )  
real time monitor of gate driver undervolage (VBSTx-VSWNx_UVth)  
In standard operating condition (active state, no Limp Home), if no special routines have been executed and no  
faults have been detected, the readout of the STD should be 1000H.  
15  
14  
13  
12 11 10  
9
8
7
6
5
4
3
2
1
0
0
SWRST UVLO STATE TER EO  
EOM EOC VINO OUTOV IVCCU OL SHRTL TSD TW  
_BSTUV RST MON FS  
AL  
VLO  
VLO  
ED  
Data Sheet  
67  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Serial Peripheral Interface (SPI)  
Field  
Bits  
Type  
Description  
SWRST OR VBSTx-VSWNx_UVth Monitor  
SWRST_BSTUV 14  
r
0B  
1B  
, no SWRST or undervoltage on the Gate Drivers occured  
, there was at least one SWRST since last readout OR an  
undervoltage condition at the gate drivers is occurring  
UVLORST  
STATE  
13  
r
r
VDD OR VEN/INUVLO Undervoltage Monitor  
0B  
1B  
, there was no VDD OR VEN/INUVLO undervoltage since last readout  
, there was at least one VDD undervoltage OR VEN/INUVLO  
undervoltage condition since last readout  
12:11  
Operative State Monitor  
00B , (reserved)  
01B , Limp Home Mode  
10B , Active Mode  
11B , Idle Mode  
TER  
10  
9
r
r
Transmission Error  
0B  
, Previous transmission was successful  
(modulo 16 + n*8 clocks received, where n = 0, 1, 2...)  
, Previous transmission failed or first transmission after reset  
1B  
EOMON  
End of LED/Input Current Monitor Routine Bit  
0B  
, Current monitoring routine not completed, not successfully  
performed or never run.  
1B  
, Current Monitor routine successfully performed (is reset to 0B  
when SOMON is set to 1B)  
EOMFS  
EOCAL  
8
7
6
r
r
r
End of MFS Routine Bit  
0B  
, MFS routine not completed, not successfully performed or  
never run.  
1B  
, MFS routine successfully performed (is reset to 0B when  
SOMOFS is set to 1B)  
End of Calibration Routine  
0B  
, Calibration routine not completed, not successfully performed  
or never run.  
1B  
, Calibration routine successfully performed (is reset to 0B when  
SOCAL is set to 1B)  
VINOVLO  
VINOVLO Voltage Monitor  
0B  
1B  
, VINOVLO below VINOVLOth threshold since last readout  
, There was at least one VINOVLO overvoltage condition since last  
readout  
OUTOV  
5
4
r
r
Output overvoltage Monitor  
0B  
1B  
, Output overvoltage not detected since last readout  
, Output overvoltage was detected since last readout  
IVCCUVLO  
IVCC or IVCC_EXT Undervoltage Lockout Monitor  
0B  
, IVCC and IVCC_EXT above VIVCC_RTH,d or VIVCC_EXT_RTH,d  
threshold since last readout  
1B  
, Undervoltage on IVCC or IVCC_EXT occurred since last  
readout  
Data Sheet  
68  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Serial Peripheral Interface (SPI)  
Field  
Bits  
Type  
Description  
Open Load in ON state Diagnosis  
OL  
3
r
0B  
1B  
, Open Load condition not detected since last readout  
, Open Load condition detected since last readout  
SHRTLED  
TSD  
2
1
0
r
r
r
Shorted LED Diagnosis  
0B  
1B  
, Short circuit condition not detected since last readout  
, Short circuit condition detected since last readout  
Over Temperature Shutdown  
0B  
1B  
, Tj below temperature shutdown threshold  
, Overtemperature condition detected since last readout  
TW  
Over Temperature Warning  
0B  
1B  
, Tj below temperature warning threshold  
, Tj exceeds temperature warning threshold  
Data Sheet  
69  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Serial Peripheral Interface (SPI)  
12.6.2  
Register structure  
Table 12-3 describes in detail the available registers with their bit-fields function, size and position  
Table 12-2 shows register addresses and summarize bit-field position inside each register  
Table 12-2 Register Bank 0  
Bit  
15 14 13 12 11 10 9 8  
W/ R ADDR  
7
6
5
4
3
2
1
0
Name  
Data  
R
B
LEDCURR W/ 0  
ADIM  
LEDCURR W/ 0  
CAL  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
0 0 ADIMVAL  
R
1 1 x  
0 1 x  
1 0 x  
x
x
x
SOCAL EOCAL CALIBVAL  
R
SWTMOD W/ 0  
R
x
x
OUTOV x  
LAT  
ENSP FMSP FDEVS  
READ READ PREAD  
DVCCTRL W/ 0  
R
ENCAL CLRL SWR IDLE  
AT  
ST  
MFSSETU W/ 0  
0 1 EA_IO ILIM_ SOMF EOMFS LEDCHAIN  
UT_M HALF S  
P1  
R
FS  
_MFS  
MFSSETU W/ 0  
P2  
CURRMO W/ 0  
0
0
0
0
0
0
1
1
1
0
1
1
1 0 MFSDLY  
R
0 0 x  
1 1 x  
x
SOMO EOMO INCURR  
LEDCURR  
x
N
R
N
N
REGUSET W/ 0  
MON  
x
x
REGUMODFB  
R
A write to a non existing address is ignored, a read to a non existing register is ignored and the STD Diagnosis  
Frame is send out.  
Table 12-3 Register description  
Register name  
Field  
Bits Type Purpose  
7:0 r/w LED Current Configuration Register  
LEDCURRADIM  
ADIMVAL  
00000000B, analog dimming @ 0% of LED current fixed via  
RFB  
11110000B, (default) analog dimming @ 100% of LED  
current fixed via RFB  
Data Sheet  
70  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Serial Peripheral Interface (SPI)  
Table 12-3 Register description (cont’d)  
Register name  
Field  
Bits Type Purpose  
3:0 r/w  
LEDCURRCAL  
CALIBVAL  
LED Current Accuracy Trimming Configuration Register  
LED current calibration value definition, the first bit is the  
calibration sign:  
0000B, (default) Initial state in the middle of the range  
0111B, maximum calibration value positive  
1111B, maximum calibration value negative  
EOCAL  
4
r
End of calibration routine signalling bit:  
0B  
, (default) calibration routine not completed, not  
successfully performed or never run.  
, calibration successfully performed (is reset to 0B  
when SOCALis set to 1B)  
1B  
SOCAL  
5
0
r/w  
r/w  
Start of calibration routine signalling bit:  
0B  
1B  
, (default) no calibration routine started  
, calibration routine start (autoclear)  
SWTMOD  
FDEVSPREAD  
Switching Mode Configuration Register  
Deviation Frequency fDEV definition:  
0B  
1B  
, (default) ±16% of fSW  
, ±8% of fSW  
FMSPREAD  
ENSPREAD  
OUTOVLAT  
1
2
4
r/w  
r/w  
r/w  
Frequency Modulation Frequency fFM definition:  
0B  
, (default) 12kHz  
1B  
, 18kHz  
Enable Spread Spectrum feature:  
0B  
1B  
, (default) Spread Spectrum modulation disabled  
, Spread Spectrum modulation enabled  
Output latch after overvoltage error enable Bit  
0B  
, (default) gate driver outputs are autorestarting after  
an overvoltage event  
1B  
, gate drivers are latched in brake low condition and bit  
is latched after an overvoltage event  
DVCCTRL  
IDLE  
0
r/w  
Device Control Register  
IDLE mode configuration bit:  
0B  
1B  
, ACTIVE mode (default)  
, IDLE mode  
SWRST  
CLRLAT  
ENCAL  
1
2
3
r/w  
r/w  
r/w  
Software reset bit:  
0B  
1B  
, (default) normal operation  
, execute reset command  
Clear Latch bit:  
0B  
1B  
, (default) normal operation  
, execute CLRLAT command  
Enable automatic output current calibration bit:  
0B  
1B  
, (default) DAC takes CALIBVAL from SPI registers  
, DAC takes CALIBVAL from last completed automatic  
calibration procedure; SOCAL Bit can be set.  
Data Sheet  
71  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Serial Peripheral Interface (SPI)  
Table 12-3 Register description (cont’d)  
Register name  
Field  
Bits Type Purpose  
MFSSETUP1  
LEDCHAIN  
3:0 r/w  
Multifloat Switch and LED Count configuration Register  
Number of LEDs in series informations bits: change the  
V
VFB1,2_S2G threshold and set the MFS jump Initial/Final LED  
number  
0001B, 1 LED  
0010B, 2 LEDs  
0011B, 3 LEDs  
0100B, 4 LEDs  
0101B, 5 LEDs  
0110B, 6 LEDs  
0111B, 7 LEDs  
1000B, (default) 8 LEDs  
1001B, 9 LEDs  
1010B, 10 LEDs  
1011B, 11 LEDs  
1100B, 12 LEDs  
1101B, 13 LEDs  
1110B, 14 LEDs  
1111B, 15 LEDs  
0000B, 16 LEDs  
EOMFS  
4
r
End of MFS routine bit:  
0B  
, (default) MFS routine not completed, not successful  
performed or never run.  
1B  
, MFS routine successfully performed (is reset to 0B  
when SOMFSis set to 1B).  
SOMFS  
5
6
r/w  
r/w  
Start of MFS routine bit:  
0B  
1B  
, (default) MFS routine not activated  
, MFS routine activated  
ILIM_HALF  
Adjust Current Limit (Switch Peak Over Current Threshold)  
during MFS operation:  
0B  
1B  
, (default) Switch Peak Over Current Threshold 100%  
, Switch Peak Over Current Threshold 50%  
EA_IOUT_MFS  
MFSDLY  
7
r/w  
Bit to decrease the saturation current of the error amplifier  
(A6) in current mode control loop only during MFS routine:  
0B  
1B  
, (default) inactive  
, active: error amplifier current reduced to 20%  
MFSSETUP2  
7:0 r/w  
Multifloatswitch configuration register 2 (delay time  
programming)  
00000000B, smallest delay time in respect to fSW  
11111111B, largest delay time in respect to fSW  
10000000B, (default) delay time in respect to fSW  
Data Sheet  
72  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Serial Peripheral Interface (SPI)  
Table 12-3 Register description (cont’d)  
Register name  
Field  
Bits Type Purpose  
CURRMON  
LEDCURR  
1:0  
r
Current Monitor Register  
Status of the LED Current bits:  
00B , (default) LED current between Target and +25%  
01B , LED current above +25% of Target  
10B , LED current between Target and -25%  
11B , LED current below -25% of Target  
INCURR  
EOMON  
3:2  
r
r
Status of the Input Current bits:  
00B , (default) Input current between 75% and 90% of Limit  
01B , Input current between 90% and the Limit  
10B , Input current between 60% and 75% of Limit  
11B , Input current below 60% of Limit  
4
End of LED/Input Current Monitoring bit:  
0B  
, (default) Current monitoring routine not completed,  
not successfully performed or never run.  
1B  
, Current Monitor routine successfully performed (is  
reset to 0B when SOMONis set to 1B)  
SOMON  
5
r/w  
r
Start of LED/Input Current Monitoring bit:  
0B  
1B  
, (default) Current monitor routine not started  
, Start of the current monitor routine  
REGUSETMON  
REGUMODFB  
3:2  
Regulation Setup And Monitor Register  
Feedback of Regulation Mode bits:  
01B , (default) Buck  
10B , Boost  
11B , Buck-Boost  
Data Sheet  
73  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Application Information  
13  
Application Information  
Note:The following information is given as a hint for the implementation of the device only and shall not be  
regarded as a description or warranty of a certain functionality, condition or quality of the device.  
Figure 36 Application Drawing - TLD5541-1QV as current regulator  
Table 13  
BOM - TLD5541-1QV as current regulator (IOUT = 1 A, fSW = 300 kHz)  
Manufacturer Part Number  
Reference Designator Value  
Type  
Quantity  
D1, D2  
CIN1  
Schottky Diode  
TBD  
TBD  
Diode  
2
1
5
1
1
1
5
2
1
2
1
1
1
1
1
1 µF, 100 V  
4.7 µF, 100 V  
470 nF, 100 V  
22 nF, 16 V  
22 nF, 16 V  
4.7 µF, 100 V  
100 nF, 100 V  
10 µF, 16 V  
100 nF, 16 V  
--  
EPCOS  
EPCOS  
EPCOS  
EPCOS  
EPCOS  
EPCOS  
EPCOS  
EPCOS  
EPCOS  
Infineon  
Coilcraft  
Panasonic  
Panasonic  
Panasonic  
X7R  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
IC  
CIN2  
X7R  
Cfilter  
X7R  
CCOMP  
CSOFT_START  
COUT1  
X7R  
X7R  
X7R  
COUT2 , COUT3  
X7R  
CIVCC  
X7R  
CBST1 , CBST2  
X7R  
IC1  
LOUT  
Rfilter  
RFB  
RIN  
TLD5541-1QV  
10 µH  
XAL1010-103MEC Inductor  
50 , 1%  
TBD  
TBD  
TBD  
Resistor  
Resistor  
Resistor  
0.150 , 1%  
0.003 , 1%  
Data Sheet  
74  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Application Information  
Table 13  
Reference Designator Value  
R1; R2; R3; RPD; REN; xx k, 1%  
BOM - TLD5541-1QV as current regulator (IOUT = 1 A, fSW = 300 kHz)  
Manufacturer Part Number  
Type  
Quantity  
Panasonic  
TBD  
Resistor  
13  
RPWMI; RSense1; RSense2  
;
RSYNC; RSCLK; RSI; RSO;  
RCSN  
R
VFBL, RVFBH  
1.5 k, 56 k, 1% Panasonic  
TBD  
Resistor  
Resistor  
Resistor  
Resistor  
Transistor  
2
1
1
1
2
RCOMP  
0 , 1%  
Panasonic  
Panasonic  
Panasonic  
Infineon  
TBD  
RFREQ  
37.4 k, 1%  
0.005 , 1%  
TBD  
RSWCS  
ERJB1CFR05U  
IPG20N10S4L-35  
M1 , M2 , M3 , M4  
Dual MOSFET :  
100 V/35 mN-ch  
Figure 37 Application Drawing - TLD5541-1QV as voltage regulator  
Table 14  
BOM - TLD5541-1QV as voltage regulator  
Manufacturer Part Number  
Reference Designator Value  
Type  
Quantity  
D1, D2  
CIN1  
Schottky Diode  
TBD  
TBD  
X7R  
X7R  
X7R  
X7R  
X7R  
X7R  
Diode  
2
1
5
1
1
1
5
1 µF, 100 V  
4.7 µF, 100 V  
470 nF, 100 V  
22 nF, 16 V  
22 nF, 16 V  
4.7 µF, 100 V  
EPCOS  
EPCOS  
EPCOS  
EPCOS  
EPCOS  
EPCOS  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
CIN2  
Cfilter  
CCOMP  
CSOFT_START  
COUT1  
Data Sheet  
75  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Application Information  
Table 14  
Reference Designator Value  
OUT2 , COUT3 100 nF, 100 V  
CIVCC  
BST1 , CBST2  
BOM - TLD5541-1QV as voltage regulator  
Manufacturer Part Number  
Type  
Quantity  
C
EPCOS  
X7R  
Capacitor  
Capacitor  
Capacitor  
IC  
2
10 µF, 16 V  
100 nF, 16 V  
--  
EPCOS  
X7R  
1
C
EPCOS  
X7R  
2
IC1  
Infineon  
TLD5541-1QV  
1
LOUT  
Rfilter  
10 µH  
Coilcraft  
XAL1010-103MEC Inductor  
1
50 , 1%  
xx , 1%  
0.003 , 1%  
xx k, 1%  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
TBD  
TBD  
TBD  
TBD  
Resistor  
Resistor  
Resistor  
Resistor  
1
RFB1 , RFB2 , RFB3  
3
RIN  
1
R1; R2; R3; RPD; REN;  
13  
RPWMI; RSense1; RSense2  
;
RSYNC; RSCLK; RSI; RSO;  
RCSN  
R
VFBL, RVFBH  
1.5 k, 56 k, 1% Panasonic  
TBD  
Resistor  
Resistor  
Resistor  
Resistor  
Transistor  
2
1
1
1
2
RCOMP  
0 , 1%  
Panasonic  
Panasonic  
Panasonic  
Infineon  
TBD  
RFREQ  
37.4 k, 1%  
0.005 , 1%  
TBD  
RSWCS  
ERJB1CFR05U  
IPG20N10S4L-35  
M1, M2, M3, M4  
Dual MOSFET :  
100 V/35 mN-ch  
Data Sheet  
76  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Application Information  
13.1  
Further Application Information  
Typical Performance Characteristics of Device  
TJꢁ=ꢁ25°C,ꢁVIN=12Vꢁunlessꢁotherwiseꢁspecified  
IVCCꢁDropoutꢁvsꢁCurrentꢁ  
IVCCꢁVoltageꢁvsꢁTemperature  
5,20  
5,15  
5,10  
5,05  
5,00  
4,95  
4,90  
4,85  
4,80  
2,5  
2
IIVCC=10mA  
Tj=ꢀ40°C  
1,5  
Tj=150°C  
Tj=25°C  
1
0,5  
0
0
10  
20  
30  
40  
50  
ꢀ40  
10  
60  
110  
LDOꢁcurrentꢁ[mA]  
Temperatureꢁ[°C]  
IVCCꢁLoadꢁregulationꢁ  
V(FBHꢀFBL)ꢁThresholdꢁvsꢁVFBH  
5,2  
5,15  
5,1  
154  
153  
152  
151  
150  
149  
148  
147  
146  
AnalogꢁDim.ꢁ=ꢁ100%  
5,05  
5
4,95  
4,9  
4,85  
4,8  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
60  
IIVCC[mA]  
VFBHꢁ[V]  
V(FBHꢀFBL)ꢁThresholdꢁvsꢁTemp  
IOUTMONꢁVoltageꢁvsꢁTemp  
1,44  
1,43  
1,42  
1,41  
1,4  
154  
153  
152  
151  
150  
149  
148  
147  
146  
AnalogꢁDim.=100%,ꢁFBH=0,15V  
AnalogꢁDim.=100%,ꢁFBH=12V  
AnalogꢁDim.=100%,ꢁFBH=60V  
V(FBHꢀFBL) =ꢁꢁ150mV  
1,39  
1,38  
1,37  
1,36  
ꢀ40  
10  
60  
110  
ꢀ40  
10  
60  
110  
Temperatureꢁ[°C]  
Temperatureꢁ[°C]  
Figure 38 Characterization Diagrams 2  
Data Sheet  
77  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Application Information  
TJꢁ=ꢁ25°C,ꢁVIN=12Vꢁunlessꢁotherwiseꢁspecified  
IOUTMONꢁVoltageꢁvsꢁV(FBHꢀFBL)  
V(IIN1ꢀIIN2)ꢁThresholdꢁvsꢁTemp  
1,4  
1,2  
1
53  
52  
51  
50  
49  
48  
47  
VIIN1=8V  
VIIN1=13.5V  
VIIN1=55V  
0,8  
0,6  
0,4  
0,2  
0
0
20  
40  
60  
80  
100  
120  
140  
ꢀ40  
10  
60  
110  
V(FBHꢀFBL) [mV]  
Temperatureꢁ[°C]  
IINMONꢁVoltageꢁvsꢁTemp  
IFBH ,ꢁIFBL vsꢁVFBH  
120  
100  
80  
1,04  
1,03  
1,02  
1,01  
1
I_FBLꢁ[uA]  
I_FBHꢁ[uA]  
V(IIN1ꢀIIN2)ꢁ=ꢁ50mV  
V(FBHꢀFBL) =ꢁꢁ150mV  
60  
40  
20  
0,99  
0,98  
0,97  
0,96  
0
ꢀ20  
ꢀ40  
0
5
10 15 20 25 30 35 40 45 50 55 60  
ꢀ40  
10  
60  
110  
VFBHꢁ[V]  
Temperatureꢁ[°C]  
OscillatorꢁFrequencyꢁvsꢁTemp  
V(BSTxꢀSWNx)ꢁvsꢁTemp  
800  
700  
600  
500  
400  
300  
200  
100  
4
3,9  
3,8  
3,7  
3,6  
3,5  
3,4  
3,3  
3,2  
3,1  
R_FREQ=61.9ꢁkOhm  
R_FREQ=37.4ꢁkOhm  
R_FREQ=12.7ꢁkOhm  
VBSTxꢀVSWNx_decꢁ[V]  
VBSTxꢀVSWNx_incꢁ[V]  
ꢀ40  
10  
60  
110  
ꢀ40  
10  
60  
110  
Temperatureꢁ[°C]  
Temperatureꢁ[°C]  
Figure 39 Characterization Diagrams 3  
Data Sheet  
78  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Application Information  
TJꢁ=ꢁ25°C,ꢁVIN=12Vꢁunlessꢁotherwiseꢁspecified  
LSGDxꢁonꢀstateꢁresistanceꢁvsꢁTemp  
HSGDxꢁonꢁresistanceꢁvsꢁTemp  
4,5  
4
4,5  
4
HSGDx_Pullꢀup  
3,5  
3
3,5  
3
HSGDx_Pullꢀdown  
LSGDx_PullꢀUp  
2,5  
2
2,5  
2
LSGDx_Pullꢀdown  
1,5  
1
1,5  
1
0,5  
0
0,5  
0
ꢀ40  
10  
60  
110  
ꢀ40  
10  
60  
110  
Temperatureꢁ[°C]  
Temperatureꢁ[°C]  
VCOMP VoltageꢁvsꢁDutyꢁCycle  
V(SWCSꢀSGND) TresholdꢁvsꢁTemp  
120  
100  
80  
60  
40  
20  
0
60  
40  
Boost  
Buck  
DC_Buckꢁ[%]  
DC_Boostꢁ[%]  
V(SWCSꢀSGND) =0  
20  
0
ꢀ20  
ꢀ40  
ꢀ60  
0,6  
0,8  
1
1,2  
1,4  
1,6  
ꢀ40  
10  
60  
110  
VCOMPꢁ[V]  
Temperatureꢁ[°C]  
Figure 40 Characterization Diagrams 3  
For further information you may contact http://www.infineon.com/  
Data Sheet  
79  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Package Outlines  
14  
Package Outlines  
0ꢀ9 MAXꢀ  
11 x 0ꢀ5 = 5ꢀ5  
(0ꢀ65)  
0ꢀ1  
7
A
0ꢀ5  
0ꢀ26  
0ꢀ03  
6ꢀ8  
0ꢀ1  
+0ꢀ031)  
2)  
37  
B
0ꢀ05  
36  
25  
0ꢀ13  
24  
48x  
0ꢀ08  
48  
13  
1
12  
Index Marking  
48x  
0ꢀ1  
0ꢀ4 x 45°  
0ꢀ05  
Index Marking  
0ꢀ23  
(0ꢀ35)  
M
A B C  
(0ꢀ2)  
(5ꢀ2)  
(6)  
C
0ꢀ05 MAXꢀ  
1) Vertical burr 0ꢀ03 maxꢀ, all sides  
2) These four metal areas have exposed diepad potential  
PG-VQFN-48-29, -31-PO V05  
Figure 41 PG-VQFN-48-31 (with LTI)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with  
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb  
free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further information on alternative packages, please visit our website:  
http://www.infineon.com/packages.  
Dimensions in mm  
Data Sheet  
80  
Rev. 1.0, 2016-05-20  
H-Bridge DC/DC Controller with SPI Interface  
TLD5541-1QV  
Revision History  
15  
Revision History  
Revision  
Date  
Changes  
Released Datasheet  
Rev. 1.0  
2016-05-20  
Data Sheet  
81  
Rev. 1.0, 2016-05-20  
Edition 2016-05-20  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2016 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  

相关型号:

TLD55411QVXUMA1

LED Driver, 4-Segment, PQCC48, VQFN-48
INFINEON

TLD5S10AH

3600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD5S11AH

3600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD5S12AH

3600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD5S13AH

3600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD5S14AH

3600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD5S15AH

3600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD5S16AH

3600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD5S17AH

3600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD5S18AH

3600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD5S20AH

3600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC