TLD6098-1EP [INFINEON]

LITIX™ Power TLD6098-1EP is a DC-DC boost controller with spread spectrum frequency modulation and with built-in diagnosis and protection features especially designed for LED drivers.;
TLD6098-1EP
型号: TLD6098-1EP
厂家: Infineon    Infineon
描述:

LITIX™ Power TLD6098-1EP is a DC-DC boost controller with spread spectrum frequency modulation and with built-in diagnosis and protection features especially designed for LED drivers.

文件: 总48页 (文件大小:1094K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
Features  
Wide input voltage (up to 58 V) and output voltage range  
(up to 70 V)  
Switching frequency range from 100 kHz to 500 kHz and  
synchronization at 2.2 MHz with an external clock source  
EMC optimized device  
Analog adjust input  
Overvoltage, Short to ground, overcurrent, open feedback  
and overtemperature diagnostic output  
Product type Package  
Marking  
PMOS gate driver for dimming and protection with  
enhanced dimming features  
LED current accuracy ±3.5%  
TLD6098-1EP PG-TSDSO-14 TLD6098-1  
Potential applications  
LED driver for: front light module, rear light module, interior light  
Voltage regulator  
VS  
L1  
D1  
RFB  
MP  
CBO  
LED1  
LED2  
IVCC  
IN  
MN  
SWO  
IVCC  
CIVCC  
LED3  
LED4  
LED5  
LED6  
LED7  
LED8  
SWCS  
FPWM/FAULT  
RSWCS  
RFAULT  
FBH  
FBL  
FREQ/SYNC/SPREAD  
RFREQ  
IVCC  
RSETH  
RVFBH  
SET  
VFB  
IVCC  
RSETL  
RVFBL  
RDCH  
DC/PWMI  
COMP  
PWMO  
GND  
RDCL  
CCOMP1  
RCOMP  
CCOMP2  
TLD6098-1EP  
B2G-1ch.vsdx  
Figure 1  
Application diagram  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
Description of TLD6098-1EP  
Description of TLD6098-1EP  
TLD6098-1EP is a multi-topology DC-DC controller designed for LED applications with built-in protection  
features to implement a compact LED driver.  
The output current is regulated by means of peak current control loop. An internal slope compensation is used  
to avoid sub-harmonic oscillation at high duty cycle (e.g. higher than 50%).  
The current accuracy is better than 3.5% (with no analog adjustment applied) over the operating temperature  
range. A rail to rail current sense amplifier provides flexibility on the topology choice needed to supply LED  
string with more than 20 white LED (up to 70 V at output).  
The switching frequency can be adjusted from 100 kHz to 500 kHz using an external resistor. A synchronization  
with an external clock is also possible. The device incorporates even a spread spectrum modulator to achieve  
easy fulfilment of electromagnetic emission standards.  
TLD6098-1EP can drive an external PMOS for dimming and protection.  
For this purpose the device incorporates even a PWM generator controlled by an analog voltage on DC/PWMI  
pin. The generated PWM signal has the duty cycle adjustable from 0 to 100% with 10 bits of resolution and the  
frequency range programmable from 150 Hz to 750 Hz. On the same DC/PWMI pin the digital PWM signal can  
also be used.  
Product validation  
Qualified for automotive applications.  
Product validation according to AEC-Q100.  
Datasheet  
2
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
Table of contents  
Table of contents  
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1
2
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3.1  
3.2  
3.3  
4
4.1  
4.2  
Switching regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Soꢀ start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5
5.1  
5.2  
Linear regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Undervoltage protection for the external switching MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
6
6.1  
Switching frequency setup and synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Switching frequency setup with external resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Synchronization with external clock (low frequency mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Synchronization with external clock (high frequency range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
6.1.1  
6.1.2  
6.1.2.1  
6.2  
6.2.1  
6.3  
7
Analog output adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
7.1  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
8
8.1  
8.2  
8.2.1  
8.3  
Dimming functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Digital PWM dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Embedded PWM engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
8.3.1  
9
9.1  
9.2  
9.2.1  
9.3  
9.3.1  
9.4  
9.4.1  
Protections and fault management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Short to ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Output overvoltage and voltage regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Overvoltage on FBH pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Datasheet  
3
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
Table of contents  
9.5  
Output overcurrent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
9.5.1  
9.6  
9.6.1  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Overtemperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
10  
11  
12  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Datasheet  
4
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
1 Block diagram  
1
Block diagram  
VIVCC  
LDO  
IVCC  
IN  
Power on  
reset  
Internal  
supply  
On/Off logic +  
digital PWM  
dimming  
EN_INT/  
PWM_INT  
DC/PWMI  
Power switch  
gate driver  
SWO  
Embedded  
PWM dimming  
generator +  
fault report  
logic  
VM_INT  
FPWM/FAULT  
Slope comp.  
Clock  
generator  
Switch current  
error amplifier  
DC/DC  
SWCS  
FREQ/SYNC/SPREAD  
switching  
regulator and  
logic  
Thermal  
protection  
Leading edge  
blanking  
V
FBH - VFBL  
Soft start  
Open load and  
short to GND  
Over  
voltage  
VFB  
VFBH  
protection  
VM_INT  
gm1  
VVFB_REF  
COMP  
SET  
FBL  
FBH  
gm2  
x1  
Reference  
current  
V
FBH - VFBL  
generation  
VFBH  
VIVCC  
Dimming  
switch  
gate driver  
PWMO  
V
FBH - VFBL  
EN_INT/  
PWM_INT  
GND  
Block diagram TLD6098-1.vsdx  
Figure 2  
Block diagram  
Datasheet  
5
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
2 Pin configuration  
2
Pin configuration  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
PWMO  
SET  
FBH  
FBL  
VFB  
SWO  
IVCC  
Exposed  
Pad  
COMP  
FPWM/FAULT  
IN  
SWCS  
GND  
DC/PWMI  
8
FREQ/SYNC/SPREAD  
PIN_POS_14.VSDX  
Figure 3  
Table 1  
Pin configuration PG-TSDSO-14  
Pin configuration PG-TSDSO-14  
Name  
Pos.  
Description  
Direction  
PWMO  
1
PMOS driver for dimming and protection  
Connect to gate of external MOSFET  
Output  
Pin must be leꢀ open if external MOSFET is not used  
SET  
2
3
Analog adjustment  
Load current adjustment pin  
Pin must not be leꢀ open  
If analog adjustment is not used, connect to IVCC pin  
Input  
IVCC  
Internal linear voltage regulator  
Used for internal biasing and gate drive  
Bypass with external capacitor  
Pin must not be leꢀ open  
Output  
Input  
COMP  
4
5
Compensation  
Connect R and C network for stability  
FPWM/FAULT  
PWM frequency selector/Fault  
Input/  
Output  
Connect external R to set PWM frequency  
Faults are reported by raising the voltage on this pin  
IN  
6
7
8
Supply  
Supply for internal biasing  
Input  
Input  
Input  
DC/PWMI  
PWM adjustment  
Set duty cycle of PWM engine or digital input for PWM dimming  
FREQ/SYNC/SPREAD  
Frequency selector or synchronization  
Connect external resistor to GND to set switching frequency  
Apply square waveform for synchronization  
(table continues...)  
Datasheet  
6
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
2 Pin configuration  
Table 1  
(continued) Pin configuration PG-TSDSO-14  
Name  
GND  
Pos.  
9
Description  
Ground  
Direction  
SWCS  
10  
Current sense/Power ground  
Input  
Detects peak current through power switch  
Power ground of gate driver of SWO  
SWO  
VFB  
11  
12  
Switch gate driver  
Connect to gate of external switching power n-channel MOSFET  
Output  
Input  
Overvoltage/Voltage loop reference  
Connect to resistive voltage divider to set the maximum voltage  
at output and the short to ground threshold  
FBL  
13  
14  
EP  
Voltage feedback negative  
Inverting input (-)  
Input  
Input  
FBH  
Voltage feedback positive  
Non inverting input (+)  
Exposed pad  
Exposed pad  
Used only for heat dissipation  
Connect to pin 9 (GND)  
Datasheet  
7
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
3 General product characteristics  
3
General product characteristics  
3.1  
Absolute maximum ratings  
Table 2  
Absolute maximum ratings  
TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise  
specified)  
Not subject to production test, specified by design  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
-0.3  
Max.  
60  
Power supply input  
voltage  
VIN  
V
PRQ-31  
Voltage at pin SET  
VSET  
-0.3  
-0.3  
-1  
5.5  
60  
75  
75  
75  
V
V
V
V
V
PRQ-44  
PRQ-32  
PRQ-33  
PRQ-34  
PRQ-35  
Voltage at pin DC/PWMI VDC/PWMI  
Voltage at pin FBH  
Voltage at pin FBL  
VFBH  
VFBL  
-1  
Differential input  
VREF(MAX)  
-75  
VREF(MAX) = VFBH -VFBL  
voltage  
Differential signal (not  
referred to ground)  
Current at pin FBH, FBL IFBH, IFBL  
-7.5  
-0.3  
-0.3  
-0.3  
-0.3  
7.5  
5.5  
0.3  
5.5  
5.5  
mA  
V
VFBH - VFBL = 150 mV  
PRQ-36  
PRQ-37  
PRQ-38  
PRQ-39  
PRQ-40  
Voltage at pin VFB  
Voltage at pin SWCS  
Voltage at pin SWO  
VFB  
VSWCS  
V
VSWO  
V
Voltage at pin FPWM/  
FAULT  
VFPWM/FAULT  
V
Voltage at pin COMP  
VCOMP  
-0.3  
-0.3  
5.5  
5.5  
V
V
PRQ-41  
PRQ-42  
Voltage at pin FREQ/  
SYNC/SPREAD  
VFREQ/SYNC  
Voltage at pin PWMO  
PMOS output voltage  
VPWMO  
VPMOS  
-0.3  
-1  
75  
10  
V
V
PRQ-43  
VPMOS = VFBH - VPWMO  
PRQ-579  
Differential signal (Not  
referred to ground)  
Voltage at pin IVCC  
VIVCC  
-0.3  
5.5  
V
PRQ-45  
Temperature  
Junction temperature TJ  
-40  
-40  
150  
150  
°C  
°C  
PRQ-46  
PRQ-47  
Storage temperature  
Tstg  
ESD susceptibility  
(table continues...)  
Datasheet  
8
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
3 General product characteristics  
Table 2  
(continued) Absolute maximum ratings  
TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise  
specified)  
Not subject to production test, specified by design  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
-2  
Max.  
ESD susceptibility  
VESD_HBM  
2
kV  
kV  
kV  
HBM: ESD  
PRQ-48  
PRQ-49  
PRQ-50  
susceptibility, Human  
Body Model "HBM"  
according to AEC  
Q100-002  
ESD susceptibility  
inner pins  
VESD_CDM  
-0.5  
0.5  
CDM: ESD  
susceptibility, Charged  
Device Model "CDM"  
according to AEC  
Q100-011  
ESD susceptibility  
corner pins  
VESD_CDM_CR  
-0.75  
0.75  
CDM: ESD  
susceptibility, Charged  
Device Model "CDM"  
according to AEC  
Q100-011  
Attention:  
1.  
Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability  
2.  
Integrated protection functions are designed to prevent IC destruction under fault conditions  
described in the datasheet. Fault conditions are considered as "outside" normal operating range.  
Protection functions are not designed for repetitive operation.  
3.2  
Functional range  
Table 3  
Functional range  
TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise  
specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
4.5  
Max.  
58  
1)  
Extended power supply VIN_EXT  
V
PRQ-51  
input voltage range  
Parameter deviations  
possible  
Power supply input  
voltage operating  
range  
VIN_OP  
8
0
36  
70  
V
V
PRQ-52  
Operating voltage at  
pin FBH  
VFBH_OP  
PRQ-581  
(table continues...)  
Datasheet  
9
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
3 General product characteristics  
Table 3  
(continued) Functional range  
TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise  
specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
-0.3  
Max.  
70  
Operating voltage at  
pin FBL  
VFBL_OP  
fSWO  
V
PRQ-53  
PRQ-85  
PRQ-90  
Switching frequency  
adjustment range  
100  
100  
500  
500  
kHz  
kHz  
Synchronization low  
frequency capture  
range  
fFREQ/SYNC/  
SPREAD(LF)  
Synchronization high  
frequency capture  
range  
fFREQ/SYNC/  
SPREAD(HF)  
2
2.4  
MHz  
Hz  
PRQ-132  
PRQ-113  
PWMO frequency range fPWMO  
150  
750  
1) Not subject to production test, specified by design  
Attention: Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics  
table.  
3.3  
Thermal resistance  
Table 4  
Thermal resistance  
Not subject to production test, specified by design  
Parameter  
Symbol  
Values  
Typ.  
20.9  
Unit Note or condition  
P-  
Number  
Min.  
Max.  
1)  
Junction to case  
RthJC  
RthJA  
RthJA  
RthJA  
K/W  
PRQ-54  
PRQ-55  
PRQ-56  
PRQ-57  
Junction to ambient  
Junction to ambient  
Junction to ambient  
57.2  
K/W  
K/W  
K/W  
2) 2s2p  
2) 1s0p + 600 mm2  
2) 1s0p + 300 mm2  
73.2  
85.5  
1) Specified RthJC value is simulated at natural convection on a cold plate setup (all pins and exposed pads  
are fixed to ambient temperature) TA = 25°C dissipates 1 W  
2) Specified RthJA value is according JEDEC 2s2p (JESD 51-7) + (JESD 51-5) and JEDEC 1s0p (JESD 51-3) +  
heatsink area at natural convection on FR4 board. The device was simulated on 76.2 x 114.3 x 1.5 mm  
board. The 2s2p board has 2 outer copper layers (2 x 70 μm Cu) and 2 inner copper layer (2 x 35 μm  
Cu). A thermal via (diameter = 0.3 mm and 25 μm plating) array was applied under the exposed pad and  
connected the top layer and the inner layers to bottom layers of JEDEC PCB. TA = 25°C; IC dissipates 1 W  
Note:  
This thermal data was generated in accordance with JEDEC JESD51 standards. For further  
information visit https://www.jedec.org  
Datasheet  
10  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
4 Switching regulator  
4
Switching regulator  
TLD6098-1EP implements a regulator suitable for Boost-to-ground, Boost-to-battery, Buck-to-battery, SEPIC,  
Flyback and Cuk configurations.  
The device has two distinct control loops:  
A current control loop (always enabled)  
A voltage control loop (optional)  
If the voltage loop is enabled the device regulates the output current as long as the feedback voltage on  
the VFB pin is below the VFB voltage mode ON threshold (VVFB_VM(ON)). The voltage control loop takes over  
and regulates the output voltage once the VFB reference voltage VVFB_REF is reached.  
The controller generates a PWM signal by sensing the inductor peak current and the output of the internal error  
amplifier. The control signal is applied to the internal gate driver connected to SWO pin to drive the external  
n-channel MOSFET  
4.1  
Soꢀ start  
The soꢀ start routine has 2 functionalities:  
Limiting the input current and output overshoot  
Guaranteeing that the system output reaches the target value in a reasonable time even when being  
operated in PWM dimming with low duty cycles  
The first rising edge on DC/PWMI pin or the first cycle of the embedded PWM engine enables the soꢀ start  
routine.  
It is then performed in the following cases:  
At start-up  
Aꢀer an overvoltage on FBH pin  
Aꢀer an overvoltage on VFB pin  
Aꢀer an overtemperature fault  
Aꢀer an undervoltage on IVCC pin  
The soꢀ start is applied aꢀer a short to ground fault and retriggered every tFAULT in case of continuous presence  
of the fault.  
The operation of the soꢀ start is conditioned by the analog output adjustment.  
During the soꢀ start the switching regulator adjusts the PWM signal to make the voltage between FBH and FBL  
evolve from 0 to VREF(100%)in tSS time. The evolution is performed in 15 steps if the analog adjustment is not  
applied, otherwise the intended steady-state is reached before the soꢀ start ends.  
An ON time extension of the PWM dimming pulses is applied to ensure a reasonable power-up time when a low  
duty cycle dimming is applied.  
Datasheet  
11  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
4 Switching regulator  
VIN  
VIN(ON)  
t
t
VDC/PWMI  
V
FBH - VFBL  
VREF  
VPWM_EXT  
t
ON time extension  
SWO  
Gate driver  
enabled  
Gate driver enabled  
t
t
PWMO  
PMOS  
OFF  
PMOS  
OFF  
PMOS  
OFF  
PMOS ON  
PMOS ON  
soft start timing diagram.vsdx  
Figure 4  
Soꢀ start timing diagram (the linear waveform of VVFBH-VVFBL is an example of possible  
scenario)  
The ON time extension is triggered if :  
The applied PWM dimming signal (or the signal generated by the PWM engine) has an ON time shorter than  
tSS during the soꢀ start  
and  
The voltage across FBH and FBL is lower than the reference voltage during PWM extension VPWM_EXT at the  
end of the ON time of the PWM signal  
The ON time extension lasts as long as the voltage across FBH and FBL reaches the VPWM_EXT.  
The VPWM_EXT is limited by the analog output adjustment down to a minimum reference voltage during ON time  
extension VPWM_MIN  
.
For the first 3 steps of the VREF signal, the VPWM_EXT is higher than VREF  
.
If the reference voltage across FBH and FBL adjusted by analog adjustment feature is lower than the VPWM_MIN  
the ON time extension ends aꢀer tSS  
.
Datasheet  
12  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
4 Switching regulator  
VREF  
VPWM_EXT  
VREF(100%)  
VREF  
VPWM_EXT  
VPWM_MIN  
t
tSS  
VREF evolution during soft-start.vsdx  
Figure 5  
VREF and VPWM_EXT waveforms during the soꢀ start routine without analog output  
adjustment  
VREF  
VPWM_EXT  
Soft start steady state  
Adjusted VREF  
VREF  
VPWM_EXT  
VPWM_MIN  
t
tSS  
VREF evolution during soft-start.vsdx  
Figure 6  
VREF and VPWM_EXT waveforms during the soꢀ start routine with analog output  
adjustment  
If the ON time extension ends before tSS elapsed, the ON time extension is retriggered in the following PWM  
cycle, in case the voltage between FBH and FBL is once again lower than VPWM_EXT  
When the ON time extension ends, the remaining part of the soꢀ start is allowed to evolve during the following  
ON time of the PWM dimming signal. In this case the actual duration of soꢀ start could be longer than tSS  
.
Datasheet  
13  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
4 Switching regulator  
4.2  
Electrical characteristics  
Table 5  
Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
Max.  
Regulator  
VFB reference voltage VVFB_REF  
(voltage loop)  
1.568 1.6  
144.75 150  
1.632  
V
PRQ-142  
Current loop reference VREF(100%)  
155.25 mV  
Differential signal (not PRQ-66  
voltage  
referred to ground)  
VREF = VFBH - VFBL  
VSET = 5 V  
1)  
Current loop reference VREF(40%)  
voltage  
54.6  
60  
65.4  
10  
mV  
mV  
PRQ-67  
Differential signal (not  
referred to ground)  
VSET = 940 mV  
Current loop reference VREF(0%)  
Differential signal (not PRQ-68  
voltage  
referred to ground)  
VSET = 100 mV  
1)  
Transconductance  
error amplifier voltage  
loop  
gm1  
0.95  
1.6  
mS  
mS  
PRQ-600  
1)  
Transconductance  
error amplifier current  
loop  
gm2  
PRQ-463  
Switch current limit  
threshold  
VSWCS_TH  
80  
91  
88  
100  
120  
mV  
%
PRQ-69  
PRQ-70  
PRQ-71  
Maximum duty cycle in DMAX  
adjust. freq. mode  
RFREQ/SYNC/  
SPREAD = 27 kΩ  
Maximum duty cycle  
in low frequency sync  
mode  
DMAX(LF)  
%
fSW = 500 kHz  
Maximum duty cycle  
in high frequency sync  
mode  
DMAX(HF)  
80  
2
%
fSW = 2.2 MHz  
PRQ-289  
1)  
1)  
Soꢀ start time  
tSS  
1.8  
2.2  
ms  
V
PRQ-72  
Reference voltage  
VPWM_EXT  
0.8*VRE  
PRQ-588  
during PWM extension  
F1,2  
VPWM_EXT > VPWM_MIN  
1)  
Minimum reference  
voltage during PWM  
extension  
VPWM_MIN  
31.5  
mV  
PRQ-589  
(table continues...)  
Datasheet  
14  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
4 Switching regulator  
Table 5  
(continued) Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
Max.  
800  
Input current at pin  
FBH  
IFBH  
IFBL  
IFBH  
550  
μA  
μA  
μA  
VFBH - VFBL = 0.15 V  
VFBH = 60 V  
PRQ-73  
PRQ-74  
PRQ-75  
Input current at pin  
FBL  
50  
50  
70  
70  
VFBH - VFBL = 0.15 V  
VFBH = 60 V  
Input current at pin  
FBH  
VFBH - VFBL = 0.15 V  
VFBL = 0 V  
Current flows out of  
pin  
Input current at pin  
FBL  
IFBL  
50  
70  
μA  
VFBH - VFBL = 0.15 V  
VFBL = 0 V  
Current flows out of  
pin  
PRQ-76  
1)  
Threshold voltage high VFBH_HSS  
side sensing  
2.55  
2.3  
2.8  
V
V
PRQ-267  
PRQ-268  
VFBH increasing  
1)  
Threshold voltage low VFBH_LSS  
2.1  
side sensing  
VFBH decreasing  
Power supply  
undervoltage  
shutdown  
VIN(OFF)  
2.5  
5
4.5  
5.5  
8
V
VIN decreasing  
VIN increasing  
PRQ-77  
PRQ-78  
PRQ-426  
Power supply  
minimum startup  
voltage  
VIN(ON)  
V
Power supply current IIN  
mA  
VDC/PWMI = 0 V  
consumption  
VSET = VIVCC  
RFREQ/SYNC/SPREAD  
=
33 kΩ  
RFPWM/FAULT = 57 kΩ  
no faults detected  
Gate driver for external switch  
1)  
Gate driver peak  
output current  
ISWO  
1
A
PRQ-79  
VSWO increasing 1 V to  
4 V  
Current flows out of  
pin  
(table continues...)  
Datasheet  
15  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
4 Switching regulator  
Table 5  
(continued) Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
Max.  
1)  
Gate driver peak  
output current  
ISWO  
1
A
PRQ-80  
PRQ-81  
VSWO decreasing 4 V to  
1 V  
1)  
Gate driver output rise tR_SWO  
time  
20  
20  
ns  
CL_SWO = 3.3 nF  
VSWO increasing 1 V to  
4 V  
1)  
Gate driver output fall tF_SWO  
ns  
PRQ-82  
time  
CL_SWO = 3.3 nF  
VSWO decreasing 4 V to  
1 V  
1)  
Gate driver high side  
resistance  
RSWO_HS  
RSWO_LS  
1
1
3
3
Ω
PRQ-83  
ISWO = -10 mA  
1)  
Gate driver low side  
resistance  
Ω
PRQ-196  
ISWO = 10 mA  
1) Not subject to production test, specified by design  
Datasheet  
16  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
5 Linear regulator  
5
Linear regulator  
The device incorporates a linear regulator to generate a 5 V output used to supply the internal gate drivers  
and, through IVCC pin, other auxiliary devices on the PCB (for example a microcontroller and resistor dividers).  
The maximum output current of the linear regulator is limited to the IVCC output current limit IIVCC  
.
If the load on IVCC (gate drivers plus connected devices on PCB) draws more than IIVCC the linear regulator  
output voltage decreases.  
The linear regulator starts to deliver current to IVCC pin when the input voltage VIN goes above the power supply  
minimum start up voltage VIN (ON) for a time longer than IVCC start time tST  
A low ESR capacitor has to be connected from IVCC to ground (CIVCC in the figure) to stabilize the output voltage  
of the linear regulator.  
The ESR of the capacitor CIVCC has to be lower than IVCC buffer capacitor ESR RIVCC(ESR)  
.
VS  
IN  
IVCC  
Voltage  
regulator  
CIVCC  
Clock  
generator  
FREQ/SYNC  
DC/PWMI  
SWO  
Switching  
regulator  
TLD6098-1EP  
Linear regulator on TLD6098-1EP.vsdx  
Figure 7  
Block diagram of the linear regulator  
5.1  
Undervoltage protection for the external switching MOSFET  
During the ON time of the switching PWM signal, the gate driver has to bias the switching NMOS in deep ohmic  
region to avoid the overheating of the MOSFET itself during the conduction time. This is ensured by choosing  
a logic level MOSFET with a maximum threshold voltage lower than IVCC undervoltage switch-off threshold  
VIVCC_TH_D  
.
TLD6098-1EP has an integrated undervoltage reset threshold circuit to disable the gate driver if the VIVCC drops  
below the VIVCC_TH_D. The gate driver is then enabled again when the VIVCC goes above the IVCC undervoltage  
switch-on threshold VIVCC_TH_I  
.
Datasheet  
17  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
5 Linear regulator  
VIN  
VIN(ON)  
VIN(OFF)  
t
t
VIVCC  
VIVCC_TH_I  
VIVCC_TH_D  
VDC/PWMI  
tST  
VDC/PWMI(ON)  
t
t
VSWO  
tSS  
tSS  
Gate driver  
disabled  
Gate driver  
disabled  
Gate driver disabled  
Gate driver enabled  
Gate driver enbled  
VFPWM  
Soft start routine  
VFPWM/FAULT  
t
Timing diagram of linear regulator on TLD6098-1EP.vsdx  
Figure 8  
Thresholds and timing diagram related to the linear regulator  
5.2  
Electrical characteristics  
Table 6  
Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
4.85  
Max.  
5.15  
IVCC output voltage  
VIVCC  
IIVCC  
5
V
8 V ≤ VIN ≤ 36 V; 0.1 mA PRQ-58  
IIVCC ≤ 40 mA  
IVCC output current  
limit  
51  
100  
mA  
8 V < VIN < 13.5 V; VIVCC PRQ-59  
< 4.5 V; Current flows  
out of pin  
IVCC dropout voltage  
IVCC start time  
VIVCC_DV  
tST  
0.5  
V
VIN = 5 V; IIVCC < 20 mA PRQ-60  
1)  
300  
μs  
PRQ-285  
VIN slew rate higher  
than 1 V/10 μs  
1)  
IVCC buffer capacitor  
CIVCC  
1
4.7  
10  
μF  
PRQ-61  
If embedded PWM  
engine is used, 4.7 μF  
has to be chosen as a  
minimum  
(table continues...)  
Datasheet  
18  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
5 Linear regulator  
Table 6  
(continued) Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
Max.  
0.2  
1)  
IVCC buffer capacitor  
RIVCC(ESR)  
Ω
PRQ-62  
ESR  
Maximum value given  
for regulator stability  
IVCC undervoltage  
switch-off threshold  
VIVCC_TH_D  
VIVCC_TH_I  
3.6  
4.0  
4.5  
V
V
VIVCC decreasing  
PRQ-64  
PRQ-65  
IVCC undervoltage  
switch-on threshold  
VIVCC increasing  
1) Not subject to production test, specified by design  
Attention: Select external switching MOSFET with worst case threshold voltage VGS(th) lower than minimum  
VIVCC_TH_D  
Datasheet  
19  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
6 Switching frequency setup and synchronization  
6
Switching frequency setup and synchronization  
The DC-DC switching frequency is adjusted by a resistor placed from FREQ/SYNC/SPREAD pin to ground or by  
providing to this pin a digital clock. The device incorporates also a spread spectrum modulator to reduce the  
design effort to fulfill the EMI compliance.  
By using a resistor, the switching frequency of the regulator is adjusted in the switching frequency adjustment  
range fSWO  
.
If an external clock is provided, the device accepts a digital clock in these two working windows:  
Synchronization low frequency capture range fFREQ/SYNC/SPREAD(LF) (low frequency synchronization mode)  
Synchronization high frequency capture range fFREQ/SYNC/SPREAD(HF) (high frequency synchronization mode)  
Outside these ranges, the device does not recognize a valid clock and then the behavior of the regulator can be  
out of specification.  
TLD6098-1EP  
Spread spectrum  
modulator  
Clock generator  
FREQ/SYNC/SPREAD  
DC/DC  
Gate  
Multiplexer  
switching  
regulator  
SWO  
driver  
Clock frequency  
detector  
Oscillator and Synch block-TLD6098-1EP.vsdx  
Figure 9  
Diagram of switching frequency adjustment and synchronization blocks  
6.1  
Switching frequency setup with external resistor  
The resistor placed on FREQ/SYNC/SPREAD pin adjusts the frequency of the DC-DC and enables or disables the  
spread spectrum modulator.  
The relationship between the biasing resistor and switching frequency with spread spectrum activated is  
1
fSW  
=
(1)  
1 . 11 · 109 · RFREQ/SYNC/SPREAD  
The relationship between the biasing resistor and the switching frequency with the spread spectrum not active  
is  
1
fSW  
=
(2)  
1 . 11 · 1010 · RFREQ/SYNC/SPREAD  
Datasheet  
20  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
6 Switching frequency setup and synchronization  
Figure 10  
Switching frequency versus RFREQ/SYNC/SPREAD  
6.1.1  
Electrical characteristics  
Table 7  
Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
288  
Max.  
378  
Switching frequency  
fSWO_SSM(OFF)  
333  
kHz  
mA  
RFREQ/SYNC/SPREAD  
27 kΩ  
=
PRQ-277  
FREQ/SYNC/SPREAD  
output current  
IFREQ/SYNC/  
SPREAD  
3
VFREQ/SYNC/SPREAD = 0 V PRQ-86  
Current flowing out of  
pin  
FREQ/SYNC/SPREAD  
output voltage  
VFREQ/SYNC/  
SPREAD_SSM(OFF)  
0.72  
0.8  
0.88  
V
RFREQ/SYNC/SPREAD  
27 kΩ  
=
PRQ-87  
6.1.2  
Spread Spectrum  
The spread spectrum modulation technique significantly reduces the electromagnetic harmonics  
emission at the lower frequency range of the spectrum (f < 30 MHz).  
This technique is enabled by changing the switching frequency over the time. The final result is the movement  
over a broad band of the energy associated with the peaks of the electromagnetic harmonics emission.  
The switching frequency is modulated with a triangular shape digitalized in 7 steps equally distributed over the  
entire frequency span (2 times the frequency deviation fDEV).  
Datasheet  
21  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
6 Switching frequency setup and synchronization  
fSWO  
fDEV  
fSW_SSM(ON)  
fDEV  
t
1/fFM  
Spread spectrum modulator characteristic.vsdx  
Figure 11  
Spread spectrum modulator characteristic  
6.1.2.1  
Electrical characteristics  
Table 8  
Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
288  
Max.  
378  
1)  
Average switching  
frequency  
fSWO_SSM(ON)  
333  
kHz  
PRQ-84  
PRQ-88  
PRQ-89  
PRQ-385  
RFREQ/SYNC/SPREAD  
=
2.7 kΩ  
1)  
Modulation frequency fFM  
13.5  
15  
16.5  
kHz  
kHz  
V
1.8 kΩ ≤ RFREQ/SYNC/  
SPREAD ≤ 9 kΩ  
1)  
Frequency deviation  
fDEV  
0.09*fS 0.15*fS  
WO  
WO  
1.8 kΩ ≤ RFREQ/SYNC/  
SPREAD ≤ 9 kΩ  
FREQ/SYNC/SPREAD  
output voltage  
VFREQ/SYNC/  
SPREAD_SSM(ON)  
0.72  
0.8  
0.88  
RFREQ/SYNC/SPREAD =  
2.7 kΩ  
1) Not subject to production test, specified by design  
Datasheet  
22  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
6 Switching frequency setup and synchronization  
6.2  
Synchronization with external clock (low frequency mode)  
The switching frequency is synchronized with an external clock source applied on FREQ/SYNC/SPREAD pin if the  
frequency is in the synchronization low frequency capture range fFREQ/SYNC/SPREAD(LF) and the duty cycle is in the  
synchronization input duty cycle range DCFREQ/SYNC/SPREAD  
.
The device detects the external clock source if the voltage on FREQ/SYNC/SPREAD exceeds the two thresholds:  
The synchronization input high voltage VFREQ/SYNC/SPREAD(H) during the positive pulse,  
The synchronization input low voltage VFREQ/SYNC/SPREAD(L) during the negative pulse.  
VFREQ/SYNC/SPREAD  
t
FREQ/SYNC/SPREAD = 1 / fFREQ/SYNC/SPREAD  
tFREQ/SYNC/SPREAD(H)  
tFREQ/SYNC/SPREAD(ON)  
tFREQ/SYNC/SPREAD  
DCSWO  
=
VFREQ/SYNC/SPREAD(H)  
VFREQ/SYNC/SPREAD(L)  
t
Timing diagram in synchronization mode.vsdx  
Figure 12  
Timing diagram when synchronization mode is enabled  
6.2.1  
Electrical characteristics  
Table 9  
Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
3.0  
Max.  
Synchronization input VFREQ/SYNC/  
high voltage  
V
PRQ-91  
PRQ-92  
PRQ-94  
SPREAD(H)  
Synchronization input VFREQ/SYNC/  
low voltage  
0.8  
60  
V
SPREAD(L)  
1)  
Synchronization input DCFREQ/SYNC/  
40  
%
duty cycle range  
SPREAD  
1) Not subject to production test, specified by design  
6.3  
Synchronization with external clock (high frequency range)  
High switching frequency enables a system cost down due to reduced value for the reactive components.  
The high frequency synchronization is enabled if the input clock is in the synchronization high frequency  
capture range fFREQ/SYNC/SPREAD(HF).  
Voltage threshold levels on FREQ/SYNC/SPREAD pin are the same as in the low frequency synchronization  
mode.  
Datasheet  
23  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
7 Analog output adjustment  
7
Analog output adjustment  
The device adjusts the reference voltage VREF across FBH and FBL pins (thus adjusting the output current) by  
monitoring the analog voltage on SET pin (VSET).  
The SWO NMOS gate driver is disabled if the voltage applied on the SET pin is lower than SET input voltage no  
switching activity VSET(NOSW).  
The SET pin has to be connected to a voltage higher than VSET(100%) (e.g. connecting SET pin to IVCC pin) to  
exclude the output current adjustment feature.  
V
FBH-VFBL  
VREF(100%)  
VREF(40%)  
VREF(0%)  
VSET(NOSW) VSET(0%)  
VSET(40%)  
VSET(100%)  
VSET  
Gate  
driver VREF(0%)  
disabled  
VREF(100%)  
Analog dimming with TLD6098-1EP.vsdx  
Figure 13  
Relationship between VSET and reference voltage VREF  
The SET pin can also be wired to an external thermistor (usually mounted on the LED module) to perform a  
thermal protection.  
7.1  
Electrical characteristics  
Table 10  
Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
2.2  
Unit Note or condition  
P-  
Number  
Min.  
Max.  
1)  
SET input voltage  
100%  
VSET(100%)  
V
PRQ-95  
1)  
SET input voltage 40% VSET(40%)  
940  
100  
mV  
PRQ-429  
PRQ-428  
PRQ-368  
1)  
SET input voltage 0%  
VSET(0%)  
mV  
SET input voltage no  
switching activity  
VSET(NOSW)  
50  
mV  
1) Not subject to production test, specified by design  
Datasheet  
24  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
8 Dimming functions  
8
Dimming functions  
The TLD6098-1EP offers a dimming input for pulse width modulating (PWM) the output current.  
This modulation is beneficial to reduce the average current at output (and then the brightness of the LEDs),  
without showing color shiꢀ on the light produced by the LEDs.  
The output current modulation is operated by the device as function of the voltage on DC/PWMI pin  
A digital clock signal imposes the duty cycle and the frequency  
An analog voltage is translated to a duty cycle and the frequency is adjusted with a resistor on FPWM/  
FAULT pin.  
Different voltage levels on DC/PWMI pin activates different functions, as described below:  
If the voltage is higher than DC/PWMI input voltage high threshold VDC/PWMI(ON) the dimming duty cycle is  
set to 100%  
If the voltage is in between the two digital thresholds (VDC/PWMI(100%) and VDC/PWMI(0%)), the embedded PWM  
dimming function is activated  
If the voltage is lower than DC/PWMI input voltage low threshold VDC/PWMI(OFF) the dimming duty cycle is 0%  
When a dimming function is activated, the PWM signal controls the switching regulator gate driver and the  
PMOS gate driver  
To allow fast transitions of the dimming PMOS even at low output voltage, the positive power supply of the  
PWMO gate driver is connected to FBH pin if its voltage VFBH is higher than VIVCC, otherwise the gate driver is  
supplied by the IVCC pin.  
During the ON state of the PWM dimming, the PMOS is biased with a PWMO output voltage ON state VPWMO,ON  
(minimum VPWMO,ON cannot go below 0 V).  
8.1  
Electrical characteristics  
Table 11  
Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
Max.  
1)  
PWMO peak output  
current  
IPWMO  
2
2
5
mA  
PRQ-102  
VFBH = 14V  
VPWMO increasing  
VPWMO(ON) + 0.5 V to  
VPWMO(ON) + 3.5 V  
CL,PWMO = 3.3 nF  
current flows out  
of pin  
1)  
PWMO peak output  
current  
IPWMO  
5
mA  
PRQ-103  
VFBH = 14V  
VPWMO  
decreasing VPWMO(OFF)  
-
0.5 V to VPWMO(OFF) - 3.5  
V
CL,PWMO = 3.3 nF  
(table continues...)  
Datasheet  
25  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
8 Dimming functions  
Table 11  
(continued) Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
Max.  
1)  
PWMO gate driver  
output rise time  
tR_PWMO  
2
6
6
μs  
PRQ-104  
VFBH = 14V  
VPWMO increasing  
VPWMO(ON) + 0.5 V to  
VPWMO(ON) + 3.5 V  
CL,PWMO = 3.3 nF  
1)  
PWMO gate driver  
output fall time  
tF_PWMO  
2
μs  
PRQ-105  
VFBH = 14 V  
VPWMO decreasing  
VPWMO(OFF) - 0.5 V to  
VPWMO(OFF) - 3.5 V  
CPWMO = 3.3 nF  
1)  
PWMO output voltage VPWMO(ON)  
ON state  
VFBH  
6.5  
-
VFBH - 5 V  
PRQ-106  
PRQ-107  
VFBH > 7.5 V  
1)  
PWMO output voltage VPWMO(OFF)  
VFBH  
V
OFF state  
VFBH = 14 V  
1) Not subject to production test, specified by design  
8.2  
Digital PWM dimming  
The TLD6098-1EP has a dedicated input pin to modulate the average current in a LED string with a digital  
pattern.  
The device recognizes a digital PWM dimming signal on DC/PWMI pin if:  
The minimum voltage on DC/PWMI is lower than VDC/PWMI(OFF)  
The maximum voltage on DC/PWMI is higher than VDC/PWMI(ON)  
The maximum frequency on DC/PWMI is less than 1 kHz  
No faults are detected  
If a valid pattern is recognized and the VDC/PWMI is higher than VDC/PWMI(ON) the NMOS gate driver is enabled and  
the voltage of PWMO pin is VPWMO(ON); else the NMOS gate driver is disabled and the voltage of PWMO pin is  
VPWMO(OFF)  
Datasheet  
26  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
8 Dimming functions  
8.2.1  
Electrical characteristics  
Table 12  
Electrical Characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
4.0  
Max.  
DC/PWMI input voltage VDC/PWMI(ON)  
high threshold  
V
V
PRQ-97  
PRQ-98  
DC/PWMI input voltage VDC/PWMI(OFF)  
0.8  
low threshold  
DC/PWMI input current IDC/PWMI  
DC/PWMI input current IDC/PWMI  
6
200  
1
μA  
μA  
μs  
VDC/PWMI = VIN  
VDC/PWMI = 0.8 V  
PRQ-99  
PRQ-100  
PRQ-101  
DC/PWMI minimum ON tDC/PWMI(ON)  
time  
8.3  
Embedded PWM engine  
The embedded PWM engine helps to reduce the color shiꢀ when a LED string is dimmed down without using  
timer or microcontroller. It generates a pulse width modulation (PWM) adjustable in frequency and duty cycle. A  
possible application is the daytime running light dimmed down to position light without using microcontroller  
or timer.  
The embedded PWM dimming function is enabled if the voltage on DC/PWMI pin is in between DC/PWMI input  
voltage 0% dimming VDC/PWM_0% and DC/PWMI input voltage 100% dimming VDC/PWM_100%.  
This voltage is translated in the duty cycle of the PWM signal with DC/PWMI duty cycle resolution nDC/PWMI  
.
DCPWM  
100%  
0%  
VDC/PWMI(OFF)  
VDC/PWMI(0%)  
VDC/PWMI(100%)  
VDC/PWMI(ON)  
VDC/PWMI  
Digital dimming  
Embedded PWM engine working window  
Digital dimming  
Duty cycle vs PWMI voltage.vsdx  
Figure 14  
Relationship between VDC/PWMI and dimming duty cycle  
If the embedded PWM dimming function is enabled, the behavior of PWMO pin is the following:  
The PWMO voltage switches between PWMO output voltage ON state VPWMO(ON) and PWMO output voltage  
OFF state VPWMO(OFF)  
Datasheet  
27  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
8 Dimming functions  
The PWMO switching frequency depends on the resistor value placed on FPWM/FAULT pin  
The PWM duty cycle is linearly adjusted with the voltage on DC/PWMI pin  
Any faults disables the embedded PWM engine and forces the voltage on PWMO pin to VPWMO(OFF)  
.
The resistor connected on FPWM/FAULT is used to:  
Adjust the frequency of the embedded PWM engine  
Enable two different reactions on FPWM/FAULT pin during the fault report  
Enable or disable the voltage control loop  
If the resistor on FPWM/FAULT pin is in FPWM/FAULT high resistor range RFPWM/FAULT(H) the device has the  
following behavior:  
The frequency of PWM engine is adjusted in fPWMO range  
In case a fault is detected, it is reported on FPWM/FAULT pin with proper duty cycle  
The voltage loop is disabled and the overvoltage is detected with a comparator (detailed information are  
described in Protection and fault management chapter)  
While if resistor on FPWM/FAULT pin is in FPWM/FAULT low resistor range RFPWM/FAULT(L)  
The frequency of PWM engine is adjusted in fPWMO range  
The faults are reported on FPWM/FAULT1,2 pin without a specific indication  
Voltage regulation loop is enabled and concurrent to current regulation loop  
The frequency of embedded PWM generator can be calculated by:  
1
fPWMO_HR  
=
=
(3)  
(4)  
7 . 4 · 108 · RFPWM/FAULT  
for resistor RFPWM/FAULT(H) range  
1
fPWMO_LR  
7 . 4 · 107 · RFPWM/FAULT  
for resistor RFPWM/FAULT(L) range.  
Datasheet  
28  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
8 Dimming functions  
Figure 15  
Relationship between RFPWM/FAULT and the frequency of PWMO  
The table below summarizes the differences between two resistor sets on FPWM/FAULT pin  
Table 13  
Resistor differences on fault pin  
RFPWM/FAULT(H)  
RFPWM/FAULT(L)  
Fault report  
Each fault reported with a dedicated duty The faults are reported by raising the  
cycle on FPWM/FAULT  
Disabled  
voltage on FPWM/FAULT pin until the faulty  
status is removed  
Voltage loop  
Enabled  
Datasheet  
29  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
8 Dimming functions  
8.3.1  
Electrical characteristics  
Table 14  
Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
Max.  
DC/PWMI input voltage VDC/PWMI(0%)  
0% dimming  
0.965  
1
1.035  
V
VIVCC = 5 V  
VIVCC = 5 V  
PRQ-110  
PRQ-111  
PRQ-433  
DC/PWMI input voltage VDC/PWMI(100%) 3.53  
100% dimming  
3.6  
2.5  
3.67  
3.5  
V
DC/PWMI equivalent  
pull down resistor  
RDC/PWMI  
DCPWMO  
1.5  
8
MΩ  
VDC/PWMI = 4 V  
1)  
PWMO duty cycle  
10  
12  
%
VPWMI = 1.26 V  
VIVCC = 5 V  
PRQ-112  
FPWM/FAULT reference VFPWM/  
0.72  
0.8  
0.88  
3
V
PRQ-114  
PRQ-115  
voltage  
FAULT(REF)  
FPWM/FAULT output  
current  
IFPWM/FAULT  
mA  
Hz  
Hz  
bit  
kΩ  
kΩ  
VFPWM/FAULT = 0 V  
PWMO dimming  
frequency  
fPWMO  
315  
315  
345  
345  
10  
375  
375  
RFPWM/FAULT = 3.92 kΩ PRQ-116  
RFPWM/FAULT = 39.2 kΩ PRQ-370  
PWMO dimming  
frequency  
fPWMO  
1)  
DC/PWMI duty cycle  
resolution  
nDC/PWMI  
PRQ-313  
1)  
FPWM/FAULT high  
range resistor  
RFPWM/FAULT(H) 18  
90  
9
PRQ-590  
1)  
FPWM/FAULT low range RFPWM/FAULT(L) 1.8  
PRQ-591  
resistor  
1) Not subject to production test, specified by design  
Datasheet  
30  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
9 Protections and fault management  
9
Protections and fault management  
The fault conditions are identified by checking the status of PWMO, IVCC and FPWM/FAULT pins.  
The device disables the gate driver and reports fault on FPWM/FAULT pin if the following faults are detected:  
Short to ground  
Overvoltage on VFB pin  
Overtemperature  
Overvoltage on FBH pin  
Overcurrent  
The faults are reported by raising the voltage on FPWM/FAULT pin to VFPWM/FAULT(FAULT)  
.
The output waveform of the fault reporting depends on the resistor connected to FPWM/FAULT pin.  
The status of FPWM/FAULT pin can be monitored by a microcontroller. In this case a series resistor (10 kΩ  
minimum) has to be used between FPWM/FAULT and the input pin of the microcontroller.  
The PWMO gate driver biases the PMOS in OFF state to disconnect the load from the DC-DC output during:  
Overvoltage on VFB pin,  
Overvoltage on FBH pin  
Overtemperature  
Overcurrent  
During a short to ground, the PMOS is biased in OFF state during the tS2G and it is biased in ON state every  
tFAULT for a (tSS) to detect if the fault has been removed.  
9.1  
Electrical characteristics  
Table 15  
Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
Max.  
1)  
FPWM/FAULT output  
voltage with fault  
VFPWM/  
FAULT(FAULT)  
4
9
V
PRQ-117  
PRQ-133  
1)  
Fault period  
tFAULT  
10  
11  
ms  
1) Not subject to production test, specify by design  
9.2  
Short to ground  
The short to ground detection feature protects the LED driver from an excess of current during a short circuit.  
This fault is detected if the voltage of VFB pin is lower than short to ground voltage threshold VFB_S2G for a time  
longer than short to ground reaction time tS2G_RT  
.
Aꢀer a fault time with short to ground tS2G a soꢀ start routine is triggered. The fault is released if the voltage on  
VFB pin is higher than (VFB_S2G+VFB_S2G_HYST) at the end of the soꢀ start.  
During soꢀ-start routine, the short to ground detection is disabled and the voltage of FPWM/FAULT pin is kept at  
VFPWM/FAULT(REF)  
.
The reaction to short to ground is:  
1.  
2.  
3.  
The voltage on FPWM/FAULT pin is raised to VFPWM/FAULT(FAULT) for tS2G time  
Aꢀer a tS2G time the soꢀ-start routine is performed  
At the end of soꢀ-start routine, the check on the voltage VVFB is redone  
Datasheet  
31  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
9 Protections and fault management  
If the fault is still present, the procedure is repeated, otherwise the driver restarts.  
This routine is valid whatever resistor used on FPWM/FAULT pin.  
VVFB  
VVFB_S2G_HYS  
VVFB_S2G  
t
tfault  
tfault  
tS2G  
tfault  
tSS  
VPWM/FAULT  
tSS  
tSS  
VFPWM/FAULT(FAULT)  
VFPWM/FAULT(REF)  
t
t
VSWO  
Gate driver  
disabled  
Gate driver  
disabled  
Gate driver  
disabled  
Gate driver enabled  
Gate driver enabled  
S2G - TLD6098-1EP.vsdx  
Figure 16  
Timing diagram during short to ground detection  
A short to ground event simultaneous with an overcurrent event is detected once even the voltage on DC/PWMI  
pin is lower than VDC/PWMI(OFF)  
.
In all the other cases, the short to ground is not detected when the voltage on DC/PWMI pin is lower than  
VDC/PWMI(OFF)  
.
9.2.1  
Electrical characteristics  
Table 16  
Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
7.2  
Max.  
8.8  
1)  
Fault time with short to tS2G  
ground  
8
ms  
PRQ-134  
PRQ-121  
PRQ-119  
PRQ-120  
Short to ground  
reaction time  
tS2G_RT  
4
20  
μs  
Short to ground  
voltage threshold  
VFB_S2G  
93  
100  
5
107  
10  
mV  
mV  
Voltage decreasing  
1)  
Short to ground  
VFB_S2G_HYST  
voltage hysteresis  
1) Not subject to production test, specified by design  
9.3  
Output overvoltage and voltage regulation  
Based on the resistor used on FPWM/FAULT pin the device implements an overvoltage detection with a  
comparator or enabling a voltage regulation by using the internal voltage loop.  
Datasheet  
32  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
9 Protections and fault management  
If the resistor connected to FPWM/FAULT pin is in the RFPWM/FAULT(H) range, the overvoltage comparator is  
enabled with VFB overvoltage threshold VVFB_OV. The fault is detected when the VFB voltage is above this  
threshold.  
The device reacts by:  
raising the VFPWM/FAULT to VFPWM/FAULT(FAULT) for a fault time with overvoltage tOVFB  
disabling the NMOS gate driver for tFAULT  
aꢀer tFAULT the voltage of VFB is rechecked and if it is still higher than (VVFB_OV -VVFB_OV,HYS) the routine is  
repeated, else the device restarts with a soꢀ-start routine.  
VVFB  
VVFB_OV  
VVFB_OV_HIS  
t
t
VFPWM/FAULT  
VFPWM/FAULT(FAULT)  
VFPWM/FAULT(REF)  
tOVFB  
VSWO  
tfault  
tfault  
Gate driver disabled  
tfault  
Gate driver enabled  
Gate driver disabled  
Gate driver enabled  
Gate driver enabled  
t
OVFB-HR TLD6098-1EP.vsdx  
Figure 17  
Timing diagram during overvoltage detection  
The driver works as a voltage regulator with the voltage loop enabled if the resistor connected to FPWM/FAULT  
pin is in the RFPWM/FAULT(L) range.  
The voltage loop is taking over the regulation when the voltage on VFB pin goes higher than VFB_VM(ON). At this  
time the voltage on FPWM/FAULT pin is raised to VFPWM/FAULT(FAULT)  
.
On the other side, the device reports the voltage loop is ineffective when the voltage on VFB pin goes below  
VFB_VM(OFF) by lowering the voltage on FPWM/FAULT pin to VFPWM/FAULT(REF)  
The fault is detected even the voltage on DC/PWMI pin is lower than VDC/PWMI(OFF)  
.
.
Datasheet  
33  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
9 Protections and fault management  
VVFB  
VVFB_REF  
VVFB_VM(ON)  
VVFB_VM(OFF)  
t
t
VFPWM/FAULT  
VFPWM/FAULT(FAULT)  
VFPWM/FAULT(REF)  
VSWO  
Gate driver enabled  
t
OVFB-LR-TLD6098-1EP.vsdx  
Figure 18  
Timing diagram in voltage regulation  
9.3.1  
Electrical characteristics  
Table 17  
Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
Max.  
VFB overvoltage  
threshold  
VVFB_OV  
VVFB_OV_HYS  
IVFB  
1.568 1.6  
1.632  
V
Voltage increasing  
PRQ-118  
PRQ-323  
1)  
VFB overvoltage  
hysteresis  
180  
200  
220  
mV  
VFB input current  
-1  
-0.1  
1.5  
1
μA  
V
VFB = 1.6 V  
PRQ-122  
PRQ-376  
VFB Voltage mode ON VVFB_VM(ON)  
1.45  
1.55  
Voltage increasing  
threshold  
VFB voltage mode OFF VVFB_VM(OFF)  
threshold  
1.3  
3.6  
1.35  
4
1.4  
4.4  
V
Voltage decreasing  
PRQ-377  
PRQ-135  
1)  
Fault time with  
overvoltage  
tOVFB  
ms  
1) Not subject to production test, specified by design  
9.4  
Overvoltage on FBH pin  
The driver has a protection feature to prevent an excess voltage on FBH pin. The report of this fault depends on  
the resistor connected to FPWM/FAULT pin.  
Datasheet  
34  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
9 Protections and fault management  
The device recognizes an overvoltage on FBH pin fault if the VFBH is higher than FBH overvoltage high threshold  
VFBH(H) and the fault is released when it is below the FBH overvoltage low threshold VFBH(L)  
With a resistor on FPWM/FAULT pin in RFPWM/FAULT(H) range the device reacts by:  
.
Disabling the NMOS gate driver  
Raising the voltage of FPWM/FAULT pin to VFPWM/FAULT(FAULT) for tFBH time  
Aꢀer tFAULT period, the device checks if VFBH is still higher than VFBH(L)  
VVFBH  
VVFBH(H)  
VVFBH(L)  
t
tfault  
tFBH  
tfault  
tfault  
VFPWM/FAULT  
VFPWM/FAULT(FAULT)  
VFPWM/FAULT(REF)  
t
t
VSWO  
Gate driver enabled  
Gate driver disabled  
Gate driver enabled  
OV_FBH_HRES_TLD6098-1EP.vsdx  
Figure 19  
Timing diagram during overvoltage on FBH detection with RFPWM/FAULT(H) used on  
FPWM/FAULT pin  
With a resistor on FPWM/FAULT pin in RFPWM/FAULT(L) range the device reacts to the fault by:  
Disabling the NMOS gate driver  
Raising the voltage of FPWM/FAULT pin to VFPWM/FAULT(FAULT)  
Aꢀer tFAULT period, the device checks if the voltage on FBH pin is still higher than VFBH(L)  
Datasheet  
35  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
9 Protections and fault management  
VVFBH  
VVFBH(H)  
VVFBH(L)  
t
tFAULT  
tFAULT  
tFAULT  
VFPWM/FAULT  
VFPWM/FAULT(FAULT)  
VFPWM/FAULT(REF)  
t
t
VSWO  
Gate driver enabled  
Gate driver disabled  
Gate driver enabled  
OV_FBH_LRES_TLD6098-1EP.vsdx  
Figure 20  
Timing diagram during overvoltage on FBH detection with RFPWM/FAULT(L) used on  
FPWM/FAULT pin  
When the fault disappears the device restarts with soꢀ-start routine and lowers the voltage of FPWM/FAULT pin  
to VFPWM/FAULT(REF)  
.
If the fault appears during the soꢀ-start routine, it interrupts the soꢀ-start for a tFAULT time and then the routine  
restarts.  
The fault is detected even when the voltage on DC/PWMI pin is lower than VDC/PWMI(OFF)  
.
9.4.1  
Electrical characteristics  
Table 18  
Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
70  
Max.  
75  
FBH overvoltage upper VFBH(H)  
threshold  
V
VFBH increasing  
PRQ-327  
PRQ-328  
PRQ-329  
FBH overvoltage lower VFBH(L)  
threshold  
65  
6
V
VFBH decreasing  
1)  
Fault time FBH  
tFBH  
5.4  
6.6  
ms  
1) Not subject to production test, specified by design  
Datasheet  
36  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
9 Protections and fault management  
9.5  
Output overcurrent  
An output overcurrent event could damage the load if the current exceed the load specification. The output  
overcurrent detection increases the system reliability by reducing the load average current.  
The output overcurrent is detected when voltage across FBH and FBL is higher than overcurrent detection  
threshold VOC_200%  
.
The device reacts in overcurrent detection time tOC_200% by rising the voltage of PWMO pin to VPWMO(OFF) and  
disabling the NMOS gate driver.  
The protection is released when the voltage across VFBH - VFBL drops below VOC_200% - VOC_HYS. At this time the  
NMOS gate driver is enabled again and the voltage of PWMO pin evolves as demanded by the dimming features.  
A continuously re-triggering of the protection could cause an overheating of the PMOS. Then a timer records  
the period in which the device is in over current state. The fault reporting depends on the resistor used on  
FPWM/FAULT pin.  
With a resistor on FPWM/FAULT pin in RFPWM/FAULT(H) range, the device reacts to an overcurrent by:  
Entering into the overcurrent state  
Disabling the NMOS gate driver and raises the voltage on PWMO pin to VPWMO(OFF)  
As soon as (VFBH - VFBL) < (VOC_200% - VOC_HYS) the NMOS gate driver is enabled again  
PWMO pin is again controlled by the dimming feature  
Exiting from the overcurrent state  
When the cumulative time in which the device is in overcurrent state reaches the overcurrent detection tOC in a  
time window of 8*tFAULT the device:  
Raises the voltage of FPWM/FAULT pin at VFPWM/FAULT(FAULT) for the overcurrent fault time tFBH-FBL and then  
releases the voltage of FPWM/FAULT pin to VFPWM/FAULT(REF) for (tFAULT - tFBH-FBL  
)
Repeats this sequence 8 times  
8*tFAULT time window  
VFBH-FBL  
VOC_200%  
VOC_HYS  
VREF  
t
8*tFAULT  
+
tFAULT  
VFPWM/FAULT  
VFPWM/FAULT(FAULT)  
VFPWM/FAULT(REF)  
tFBH-FBL  
Cumulative time > tOC  
t
t
t
VPWMO  
VPWMO(OFF)  
VPWMO(ON)  
VSWO  
Gate driver enebled  
Gate driver disabled  
Gate driver enabled  
Overcurrent HRES with PMOS.vsdx  
Figure 21  
System behavior with RFPWM/FAULT(H) during overcurrent detection with PMOS as  
dimming/protection element  
Datasheet  
37  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
9 Protections and fault management  
V
FBH-VFBL  
VOC_200%  
VREF  
t
t
VOUT  
VIN  
8*tFAULT  
tFAULT  
tOC tFBH-FBL  
VFPWM/FAULT  
VFPWM/FAULT(FAULT)  
VFPWM/FAULT(REF)  
t
t
VSWO  
Gate driver enabled  
Gate driver disabled  
Gate driver enabled  
Overcurrent HRES without PMOS.vsdx  
Figure 22  
System behavior with RFPWM/FAULT(H) during overcurrent detection without PMOS as  
dimming/protection element  
With a resistor on FPWM/FAULT pin in RFPWM/FAULT(L) range, the device reacts to an overcurrent by:  
Entering into the overcurrent state  
Disabling the NMOS gate driver and raises the voltage on PWMO pin to VPWMO(OFF)  
As soon as (VFBH - VFBL) < (VOC_200% - VOC_HYS) the NMOS gate driver is enabled again  
PWMO pin is again controlled by the dimming feature  
Exiting from the overcurrent state  
When the cumulative time in which the device is in overcurrent state reaches tOC in a time window of 8*tFAULT  
the device:  
Raises the voltage of FPWM/FAULT pin at VFPWM/FAULT(FAULT) for a time 8*tFAULT and then releases it to VFPWM/  
FAULT(REF)  
Datasheet  
38  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
9 Protections and fault management  
8*tFAULT time window  
VFBH-FBL  
VOC_200%  
VOC_HYS  
VREF  
t
8*tFAULT  
+
VFPWM/FAULT  
VFPWM/FAULT(FAULT)  
VFPWM/FAULT(REF)  
Cumulative time > tOC  
t
t
t
VPWMO  
VPWMO(OFF)  
VPWMO(ON)  
VSWO  
Gate driver enebled  
Gate driver disabled  
Gate driver enabled  
Overcurrent LRES with PMOS-TLD6098-1EP.vsdx  
Figure 23  
System behavior with RFPWM/FAULT(L) during overcurrent detection with PMOS as  
dimming/protection element  
V
FBH-VFBL  
VOC_200%  
VREF  
t
t
VOUT  
VIN  
8*tFAULT  
VFPWM/FAULT  
VFPWM/FAULT(FAULT)  
VFPWM/FAULT(REF)  
tOC  
t
t
VSWO  
Gate driver enabled  
Gate driver disabled  
Gate driver enabled  
Overcurrent LRES without PMOS-TLD6098-EP.vsdx  
Figure 24  
System behavior RFPWM/FAULT(L) during overcurrent detection without PMOS as  
dimming/protection element  
Datasheet  
39  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
9 Protections and fault management  
During the overcurrent detection, the tS2G_RT filter time is bypassed. In case of simultaneous short to ground  
detection and overcurrent detection, the device reacts to short to ground failure, cumulating the time in which  
the device is in overcurrent state. When the cumulated time reaches the tOC, in a time window of 8*tFAULT, the  
overcurrent is detected.  
The fault is detected even the voltage on DC/PWMI pin is lower than VDC/PWMI(OFF)  
.
9.5.1  
Electrical characteristics  
Table 19  
Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
280  
Max.  
Overcurrent detection VOC_200%  
threshold  
300  
mV  
mV  
ms  
VFBH- VFBL increasing  
PRQ-531  
PRQ-532  
PRQ-533  
1)  
Overcurrent detection VOC_HYS  
hysteresis  
15  
4
35  
1)  
Overcurrent detection tOC  
3.6  
4.4  
time  
1)  
1)  
Overcurrent fault time tFBH-FBL  
1.8  
2
2.2  
2
ms  
μs  
PRQ-555  
PRQ-538  
Reaction time during  
overcurrent detection  
tOC_200%  
1) Not subject to production test, specified by design  
9.6  
Overtemperature  
Thermal shutdown is an internal feature designed to prevent the device destruction and it is not intended for  
continuous use in normal operation.  
If the junction temperature reaches the overtemperature shutdown TJ(SD), the integrated thermal shutdown  
function turns off the gate drivers and internal linear voltage regulator.  
The junction temperature is checked each tFAULT period, and when it is cooled down to (TJ(SD)-TJ(SD_HYS)) the  
device will automatically restart with a soꢀ-start.  
Datasheet  
40  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
9 Protections and fault management  
TJ  
TJ(SD)  
TJ(SD_HYS)  
t
VFPWM/FAULT  
tfault  
tfault  
tfault  
tfault  
VFPWM/FAULT(FAULT)  
VFPWM/FAULT(REF)  
t
VIVCC  
VIVCC_TH_I  
t
VSWO  
Gate driver  
enabled  
Gate driver enabled  
Gate driver disabled  
Gate driver enabled  
Gate driver disabled  
t
Overtemperatue-TLD6098-1EP.vsdx  
Figure 25  
Timing diagram during overtemperature protection  
9.6.1  
Electrical characteristics  
Table 20  
Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
160  
Max.  
190  
1)  
Overtemperature  
shutdown  
TJ(SD)  
175  
°C  
PRQ-336  
PRQ-337  
1)  
Overtemperature  
TJ(SD_HYS)  
10  
°C  
shutdown hysteresis  
1) Not subject to production test, specified by design  
Datasheet  
41  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
10 Application information  
10  
Application information  
Note:  
The following information is given as a hint for the implementation of the device only and shall not be  
regarded as a description or warranty of a certain functionality, condition or quality of the device  
VS  
L1  
D1  
RFB  
MP  
CBO  
LED1  
LED2  
IVCC  
IN  
MN  
SWO  
IVCC  
CIVCC  
LED3  
LED4  
LED5  
LED6  
LED7  
LED8  
SWCS  
FPWM/FAULT  
RSWCS  
RFAULT  
FBH  
FBL  
FREQ/SYNC/SPREAD  
RFREQ  
IVCC  
RSETH  
RVFBH  
SET  
VFB  
IVCC  
RSETL  
RVFBL  
RDCH  
DC/PWMI  
COMP  
PWMO  
GND  
RDCL  
CCOMP1  
RCOMP  
CCOMP2  
TLD6098-1EP  
B2G-1ch.vsdx  
Figure 26  
Boost to ground application schematic  
Datasheet  
42  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
10 Application information  
LED4  
LED3  
LED2  
LED1  
CBO2  
VS  
L
D
RFB  
MP  
CBO1  
IVCC  
CIVCC  
IN  
MN  
SWO  
IVCC  
SWCS  
FPWM/FAULT  
RSWCS  
RFAULT  
FREQ/SYNC/SPREAD  
RFREQ  
FBH  
FBL  
IVCC  
RSETH  
RVFBH  
SET  
IVCC  
RDCH  
RSETL  
VFB  
RVFBL  
DC/PWMI  
COMP  
RDCL  
PWMO  
GND  
CCOMP1  
RCOMP  
CCOMP2  
TLD6098-1EP  
B2B-1ch.vsdx  
Figure 27  
Boost to battery application schematic  
Datasheet  
43  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
10 Application information  
VS  
CSEPIC  
L1  
D
RFB  
MP  
LED1  
LED2  
IVCC  
IN  
L2  
CBO  
MN  
SWO  
IVCC  
CIVCC  
LED3  
LED4  
LED5  
LED6  
LED7  
LED8  
SWCS  
FPWM/FAULT  
RFAULT  
RSWCS  
FBH  
FREQ/SYNC/SPREAD  
RFREQ  
IVCC  
FBL  
RSETH  
RVFBH  
SET  
VFB  
IVCC  
RSETL  
RVFBL  
RDCH  
DC/PWMI  
COMP  
PWMO  
GND  
RDCL  
CCOMP1  
RCOMP  
CCOMP2  
TLD6098-1EP  
SEPIC-1ch.vsdx  
Figure 28  
SEPIC application schematic  
VS  
C1  
L1  
L2  
CBO  
ROVH  
LED1  
LED2  
IVCC  
CIVCC  
D1  
IN  
MN  
SWO  
IVCC  
IVCC  
Q3  
LED3  
LED4  
LED5  
LED6  
LED7  
LED8  
SWCS  
IVCC  
RCML  
RCMR  
FPWM/FAULT  
RSWCS  
RFAULT  
Q1  
Q2  
MP  
VFB  
ROVL  
FREQ/SYNC/SPREAD  
RPWMO1  
RFREQ  
IVCC  
RSETH  
RPWMO2  
PWMO  
FBL  
MPWM  
SET  
IVCC  
RDCH  
RSETL  
RFB  
FBH  
GND  
DC/PWMI  
COMP  
RDCL  
CCOMP1  
RCOMP  
CCOMP2  
TLD6098-1EP  
Cuk-1ch.vsdx  
Figure 29  
Cuk application schematic  
Datasheet  
44  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
10 Application information  
VS  
L1  
D1  
CBO  
IVCC  
CIVCC  
IN  
SWO  
M1  
IVCC  
RLOAD  
SWCS  
FPWM/FAULT  
RSWCS  
RFAULT  
RVFBH  
FREQ/SYNC/SPREAD  
RFREQ  
VFB  
IVCC  
RSET  
RVFBL  
PWMO  
SET  
IVCC  
FBH  
FBL  
RENABLE  
DC/PWMI  
COMP  
GND  
CCOMP1  
RCOMP  
CCOMP2  
TLD6098-1EP  
B2G_CV-1ch.vsdx  
Figure 30  
Constant output voltage boost converter application schematic  
Datasheet  
45  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
11 Package  
11  
Package  
Figure 31  
Package dimensions PG-TSDSO-14  
Note:  
Green product (RoHS compliant) To meet the world-wide customer requirements for  
environmentally friendly products and to be compliant with government regulations the device is  
available as a green product. Green products are RoHS-Compliant (i.e. Pb-free finish on leads and  
suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
Further information on packages https://www.infineon.com/packages  
Datasheet  
46  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-1EP  
Multitopology single-channel DC-DC controller  
12 Revision history  
12  
Revision history  
Document Date of  
Description of changes  
version  
release  
Rev.1.10  
2021-09-30  
Editorial changes  
New application schematics  
Rev.1.00  
2021-04-16 Initial Datasheet  
Datasheet  
47  
Rev.1.10  
2021-09-30  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
Edition 2021-09-30  
Published by  
IMPORTANT NOTICE  
WARNINGS  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer’s compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer’s products and any use of the product of  
Infineon Technologies in customer’s applications.  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or  
any consequences of the use thereof can reasonably  
be expected to result in personal injury.  
Infineon Technologies AG  
81726 Munich, Germany  
©
2021 Infineon Technologies AG  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Document reference  
IFX-ofx1632148946650  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to such  
application.  

相关型号:

TLD6098-2ES

LITIX™ Power TLD6098-2ES is a dual-channel DC-DC boost controller with spread spectrum frequency modulation and with built-in diagnosis and protection features specially designed for LED drivers.
INFINEON

TLD6S10AH

4600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD6S11AH

4600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD6S12AH

4600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD6S13AH

4600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD6S14AH

4600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD6S15AH

4600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD6S16AH

4600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD6S17AH

4600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD6S18AH

4600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD6S20AH

4600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD6S22AH

4600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC