TLD7002-16ES [INFINEON]

The TLD7002-16ES is a 16 channel device with integrated and protected output stages. It is designed to control LEDs with a current up to 76.5 mA as linear current sink (LCS). The power stages can be configured in parallel for higher load currents. Each individual power output stage is configured to a 6-bit current set value stored in the OTP. 16 independent and individual PWM configurations can be set. A high-speed lighting interface is used for device OTP programming, configuration, control and diagnostic feedback.;
TLD7002-16ES
型号: TLD7002-16ES
厂家: Infineon    Infineon
描述:

The TLD7002-16ES is a 16 channel device with integrated and protected output stages. It is designed to control LEDs with a current up to 76.5 mA as linear current sink (LCS). The power stages can be configured in parallel for higher load currents. Each individual power output stage is configured to a 6-bit current set value stored in the OTP. 16 independent and individual PWM configurations can be set. A high-speed lighting interface is used for device OTP programming, configuration, control and diagnostic feedback.

文件: 总82页 (文件大小:3105K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLD7002-16ES  
Datasheet  
LITIX Pixel Rear  
Multi-channel LED driver  
Features  
• 16 channel device with integrated and protected output stages, optimized to drive LEDs  
• High regulated output current up to 76.5 mA per channel  
• Parallel output operation for higher load currents  
• 16 independent 6-bit configurable global output current configurations ranging from 5.625 mA to  
76.5 mA  
• 16 independent 14-bit PWM engines from 100 Hz up to 2 kHz  
• Configurable thermal derating  
• Configurable LED Open, Short and Single-LED-Short thresholds  
• Digital feedback of external two voltage measurements (NTC/PTC)  
• Integrated HSLI transceiver, CAN-FD physical-layer compatible up to 2 MBit/s  
• Developed according to ISO26262 with process complying to ASIL-B  
Potential applications  
• Open-drain LED driver with high-speed lighting interface (HSLI - UARToverCAN)  
• Automotive rear light functions such as tail, stop and sequential (dynamic) turn indicator  
• Animated light functions like “welcome/goodbye” functions  
• Interior lighting functions for ambient lighting (RGB color control), illumination and dash board  
lighting  
• LED panels for industrial applications and instrumentation  
Product validation  
Qualified for automotive applications. Product validation according to AEC-Q100.  
Description  
The TLD7002-16ES is a 16 channel device with integrated and protected output stages. It is designed to control LEDs with a  
current up to 76.5 mA as linear current sink (LCS). The power stages can be configured in parallel for higher load currents.  
Each individual power output stage is configured to a 6-bit current set value stored in the OTP. 16 independent and individual  
PWM configurations can be set. A high-speed lighting interface is used for device OTP programming, configuration, control and  
diagnostic feedback.  
VS  
TLS41xx  
VLED  
VLED  
SW  
PGND  
FB  
VS  
EN  
VS  
VLED  
FREQ  
AGND  
VDD  
VDD  
1 to 16  
GPIN0  
GPIN1  
TLD7002-16  
VCC1  
OUT0  
OUT1  
...  
OUT14  
OUT15  
FS_PWM  
VS  
LIN BUS  
VDD  
HSLIH  
HSLIL  
Micro  
CSN  
CLK  
SDI  
CSN  
CLK  
SDO  
SDI  
controller  
SDO  
GND  
VLED  
VDD  
LIN  
TxD LIN  
RxD LIN  
TxD LIN  
RxD LIN  
VS  
VLED  
TxD CAN  
RxD CAN  
TxD UART  
RxD UART GND  
SBC  
TLE9262  
VDD  
CANH  
1 to 16  
HSLIH  
HSLIL  
CAN  
GPIN0  
GPIN1  
TLD7002-16  
OUT0  
CANL  
OUT1  
GND  
...  
HSLIH  
HSLIL  
OUT14  
OUT15  
BCM or LCU  
GND  
Light Module  
HSLIH HSLIL  
Datasheet  
www.infineon.com  
Please read the sections "Important notice" and "Warnings" at the end of this document  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
Description  
Parameter  
Symbol  
VS(OP)  
Values  
Power supply operating voltage  
Maximum output voltage  
6.0 V ... 20 V  
35 V  
VOUT_max  
IL_NOM  
AIOUT,25  
Vdr_min  
Nominal load current (Linear current sink)  
Output current accuracy TJ = 25°C  
Minimum dropout voltage  
75 mA, VLED = 5 V  
5ꢀ  
600 mV at 50 mA  
Further features include the following:  
• Configurable thermal derating to protect the LED load at high ambient temperature conditions  
• Configurable LED Open, Short and Single-LED-Short thresholds for LED fault detection  
• Digital feedback of external NTC/PTC temperature measurement and up to two separate LED forward voltage measurements  
• High-speed lighting interface for LED control  
• Integrated HSLI transceiver, CAN-FD physical-layer compatible and electrical characteristics compliant to ISO11898-2:2016  
• Protocol based on UART with baud rate up to 2 MBit/s  
• Integrated transceiver with very low electromagnetic emission (EME) allows the use without additional common mode choke  
• Developed according to ISO26262 with process complying to ASIL-B  
• Optimized for Electromagnetic Compatibility (EMC)  
• Optimized for high immunity against Electromagnetic Interference (EMI)  
• Green Product (RoHS compliant)  
• AEC Qualified  
Safety relevant features  
• Configurable VFWD monitoring  
• Programmable output current monitoring  
• PWM duty cycle monitoring  
• HSLI bus watchdog  
• GPINn PWM warning  
• Integrated load diagnostic features for open load, short circuit, single LED short, short between two adjacent strings detection.  
• Programmable safe state in case of loss of communication  
• Internal over temperature sensor  
• Internal clock monitoring  
• Individual fault and status flags readable via HSLI  
• Configurable fault management and common open-drain output error pin ERRN  
Type  
Package  
Marking  
TLD7002-16ES  
PG-TSDSO-24  
TLD7002-16  
Datasheet  
2
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
Table of contents  
Table of contents  
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1
1.1  
1.2  
Block diagram and terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
2
2.1  
2.2  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.1  
3.2  
3.3  
4
Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Power mode states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Idle mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Init mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Fail-off mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Fail-safe mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Active mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
OTP mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
OTP programming mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
OTP programming emulation mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Electrical characteristics power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
4.10  
5
General Purpose Input (GPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Overview and features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Digital Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Direct drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Output enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Analog input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
GPIN PWM decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
6
6.1  
6.2  
6.3  
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Current sink operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
HSLI configurable output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
PWM Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
PWM function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
PWM frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
PWM duty cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
6.4  
6.4.1  
6.4.2  
6.4.3  
Datasheet  
3
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
Table of contents  
6.4.4  
6.4.5  
6.5  
6.6  
6.7  
PWM duty cycle configuration - linear or power-law relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
PWM phase shif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Power shif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Parallel output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Thermal overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Thermal derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Thermal derating with integrated temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Thermal derating with GPIN0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Thermal overload retry strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Normal and fast switching mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
6.8  
6.8.1  
6.8.2  
6.9  
6.10  
6.11  
7
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
Load Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
VFWD measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
VGPIN measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
VLED measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
VS measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Minimum VOUT measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Voltage regulator feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Open load detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Single LED Short (SLS) detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
OUT_SHORT_WRN, CUR_WRN, DC_WRN, VFWD_WRN warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Diagnostic group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Configurable fault management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Load fault reconfirmation cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Diagnostic enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Diagnostic sample delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Load diagnostic debouncing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
ERRN reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
ERRN report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
ERRn reporting sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
HSLI diagnostic flag handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
7.8  
7.9  
7.10  
7.11  
7.12  
7.13  
7.14  
7.15  
7.16  
7.17  
7.18  
7.19  
7.20  
7.21  
8
8.1  
8.2  
OTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
9
9.1  
9.1.1  
9.1.2  
9.1.3  
Communication interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Protocol layer - High Speed Lighting Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Frame structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Datasheet  
4
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
Table of contents  
9.1.4  
HSLI interframe delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
9.1.5  
9.1.6  
9.1.7  
9.1.8  
9.1.9  
9.1.10  
9.1.11  
Slave response bus idle time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
UART byte field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
HSLI baud rate auto detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
HSLI bit timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
HSLI watchdog timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Master Frame Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
DC_SYNC - broadcast duty cycle update synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
DC_UPDATE - update duty cycle shadow register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
READ_OST - request diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
HWCR frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
PM_CHANGE - power mode change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
WRITE_REG - Write register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
READ_REG - Read register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
SYNC_BREAK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Handling of invalid frame requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
CRC overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Byte Field Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
MASTER_REQ_ADDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
DutyCycleOUTn byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
MRC_DLC_FUN byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
StartADDR byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
Data Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Power Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Output Status Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Channel status Byte – OUTn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
RESET diagnostic words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
ACK byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Physical layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
CAN-FD compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Transceiver block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
9.1.11.1  
9.1.11.2  
9.1.11.3  
9.1.11.4  
9.1.11.5  
9.1.11.6  
9.1.11.7  
9.1.11.8  
9.1.11.9  
9.1.11.10  
9.1.11.11  
9.1.11.12  
9.1.11.12.1  
9.1.11.12.2  
9.1.11.12.3  
9.1.11.12.4  
9.1.11.12.5  
9.1.11.12.6  
9.1.11.12.7  
9.1.11.12.8  
9.1.11.12.9  
9.1.11.12.10  
9.2  
9.2.1  
9.2.2  
9.2.3  
10  
11  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
Datasheet  
5
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
1 Block diagram and terms  
1
Block diagram and terms  
1.1  
Block diagram  
Figure 1  
Block diagram of TLD7002-16ES  
1.2  
Terms  
Figure 2 shows all terms used in this datasheet, with associated convention for positive values.  
IVS  
IVDD  
VS  
VDD  
IGPIN  
VS  
GPINn  
VDD  
VGPIN  
IVLED  
VLED  
IHSLIH  
HSLIH  
HSLIL  
I OUTn  
I ERRN  
OUTn  
ERRN  
VLED  
IHSLIL  
VHSLIH  
VHSLIL  
VOUTn  
VERRN  
GND  
IGND  
Figure 2  
Terms and definitions  
OUTn: n denotes the channel number from 0 to 15  
GPINn: n denotes the GPIN number from 0 to 1  
Datasheet  
6
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
2 Pin configuration  
2
Pin configuration  
2.1  
Pin configuration  
Figure 3  
Pin configuration  
2.2  
Pin description  
Table 1  
Pin description  
Pin  
Symbol  
Function  
21  
VS  
Power supply voltage  
Supply for internal biasing and can be used for differential forward voltage  
measurement of the LED load  
1
VDD  
Digital GPIN supply voltage output  
Can be used as voltage reference for NTC/PTC thermistors and acts as HSLI bus  
voltage reference, thus as supply for the transceiver  
22  
-
GND  
EP  
Ground  
Ground potential. Connect externally close to the chip  
Exposed pad  
Connect to external heat spreading Cu area, either electrical GND or floating  
potential. Recommendation is to use the GND layer of a PCB with thermal vias,  
The exposed pad is not replacing the electrical GND pin  
5...20  
20  
OUT0...OUT15  
ERRN  
Output channel  
Open drain linear current sink. Connect to the target load  
ERROR flag I/O  
Open drain active low error flag. Connect to a pull-up resistor  
(table continues...)  
Datasheet  
7
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
2 Pin configuration  
Table 1  
(continued) Pin description  
Symbol Function  
Pin  
2,3  
GPIN0, GPIN1  
General purpose input  
Can be used for voltage measurement or as function activation input source  
4
VLED  
Analog input  
Can be used for differential forward voltage measurement of the LED load  
24  
23  
HSLIH  
High-speed lighting interface high level I/O  
“high” in “dominant” state  
HSLIL  
High-speed lighting interface low level I/O  
“low” in “dominant” state  
Note:  
Unused output pins (OUTn) shall be lef open with duty cycle set to 0.  
Datasheet  
8
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
3 General product characteristics  
3
General product characteristics  
3.1  
Absolute maximum ratings  
Table 2  
Absolute maximum ratings  
TJ = -40°C to +150°C; all voltages with respect to ground, positive currents flowing as described in Figure 2 (unless  
otherwise specified).  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-  
Number  
Min.  
Max.  
Supply pins  
Power supply voltage VS  
-0.3  
28  
V
V
PRQ-362  
PRQ-686  
Power supply load  
dump voltage  
VS(LD)  
35  
suppressed Load  
Dump acc. to  
ISO16750-2 (2010). Ri =  
2 Ω  
Digital supply voltage VDD  
Digital supply current IDD  
-0.3  
0
5.5  
10  
V
PRQ-363  
PRQ-364  
mA  
Not subject to  
production test -  
specified by design  
Output pins  
Power output voltage VOUT  
Power output current IOUT  
-0.3  
0
35  
85  
V
PRQ-365  
PRQ-366  
mA  
Not subject to  
production test -  
specified by design  
GPIN/VLED pins  
Voltage at pin GPIN0,  
GPIN1  
VGPIN  
IGPIN  
-0.3  
0
VDD  
2
V
PRQ-367  
PRQ-368  
Current at pin GPIN0,  
GPIN1  
mA  
Not subject to  
production test -  
specified by design  
Voltage at pin VLED  
VLED  
-0.3  
-27  
35  
35  
V
V
PRQ-369  
PRQ-756  
HSLI pins  
Voltage at pin HSLIL,  
HSLIH  
VHSLI  
Temperatures  
Junction temperature TJ  
-40  
150  
°C  
Not subject to  
production test -  
specified by design  
PRQ-370  
(table continues...)  
Datasheet  
9
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
3 General product characteristics  
Table 2  
(continued) Absolute maximum ratings  
TJ = -40°C to +150°C; all voltages with respect to ground, positive currents flowing as described in Figure 2 (unless  
otherwise specified).  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-  
Number  
Min.  
Max.  
ESD susceptibility  
ESD susceptibility all  
pins (HBM)  
VESD(HBM)  
-2  
-8  
2
8
kV  
ESD susceptibility,  
Human Body Model  
“HBM” according to  
AEC Q100-002;  
Not subject to  
production test -  
specified by design  
PRQ-540  
PRQ-665  
PRQ-542  
PRQ-543  
ESD susceptibility  
HSLIH, HSLIL vs GND  
(HBM)  
VESD(HBM)  
kV  
ESD susceptibility,  
Human Body Model  
“HBM” according to  
AEC Q100-002;  
Not subject to  
production test -  
specified by design  
ESD susceptibility all  
pins (CDM)  
VESD(CDM)  
-500  
-750  
500  
750  
V
ESD susceptibility,  
Charged Device Model  
“CDM” according to  
AEC Q100-011;  
Not subject to  
production test -  
specified by design  
ESD susceptibility  
corner pins (CDM)  
VESD(CDM)_CR  
V
ESD susceptibility,  
Charged Device Model  
“CDM” according to  
AEC Q100-011;  
Not subject to  
production test -  
specified by design  
Notes:  
1.  
Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
2.  
Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not  
designed for continuous repetitive operation.  
Datasheet  
10  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
3 General product characteristics  
3.2  
Functional range  
Table 3  
Functional range  
TJ = -40°C to +150°C, all voltages with respect to ground, positive currents flowing as described in Figure 2 (unless  
otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-  
Number  
Min.  
Max.  
Supply pins  
Power supply voltage VSOP  
6
6
9
20  
V
V
PRQ-373  
PRQ-763  
operating range  
Extended power  
supply voltage  
operating range  
VSOPEXT  
9
5
29  
t ≤ 1 min with  
parameter deviations  
Digital supply output  
voltage  
VDD  
4.5  
5.5  
V
PRQ-372  
VS capacitor range  
VDD capacitor range  
VLED capacitor range  
Temperatures  
CVS  
100  
4700  
470  
nF  
nF  
nF  
X7R  
PRQ-374  
PRQ-375  
PRQ-376  
CVDD  
CVLED  
13000  
470  
X7R  
Junction temperature TJ  
Output stage  
-40  
150  
°C  
PRQ-377  
VLED operating range VLED(OP)  
2
9
20  
20  
V
V
PRQ-660  
PRQ-378  
Output voltage  
operating range  
VOUT(OP)  
0.6  
Output current per  
channel  
IOUT  
0
76.5  
mA  
Code 0x00 = 5.625  
mA, Code 0x3F = 76.5  
mA;  
PRQ-379  
OUT.DC = 0 ꢀ results  
into 0 mA and power  
stage is off.  
Output capacitor range COUT  
0
0
100  
2
nF  
PRQ-380  
Output inductance  
range  
LOUT  
μH  
10 nF < COUT ≤ 100 nF PRQ-381  
Output inductance  
range  
LOUT  
0
1
µH  
COUT < 10 nF PRQ-382  
Datasheet  
11  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
3 General product characteristics  
3.3  
Thermal resistance  
Table 4  
Parameter  
Thermal resistance  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-  
Number  
Min.  
Max.  
Thermal resistance  
junction to top  
Ψ
3
5
5
K/W  
Not subject to  
production test -  
specified by design.  
PRQ-618  
JTOP  
Thermal resistance  
junction to soldering  
point  
RthJSP  
3
K/W  
K/W  
simulated at exposed PRQ-619  
pad;  
Not subject to  
production test -  
specified by design.  
Thermal resistance  
junction to ambient  
RthJA  
28  
30  
Not subject to  
production test -  
specified by design.  
PRQ-383  
Note:  
Specified Rth values are according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; the  
product (chip + package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers  
(2 x 70 µm Cu, 2 x 35 µm Cu). Where applicable a thermal via array under the exposed pad contacted  
the first inner copper layer. Simulation done at TAMB = 85°C with all channels on, PDISSIPATION = 2 W and a  
homogeneous temperature distribution across the device.  
Datasheet  
12  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
4 Power supply  
4
Power supply  
The device is supplied by VS, which is used for the internal logic and the supply for the power output stages.  
Moreover, the high-speed lighting bus bias voltage VDD is generated internally from VS and available on the VDD pin.  
VS has an undervoltage detection circuit, which prevents the activation of the power output stages and diagnosis in  
case the applied voltage is below the undervoltage threshold.  
4.1  
Power mode states  
The device has the following operation modes:  
Idle (unsupplied and reset)  
Init mode  
Active mode  
OTP mode with substates for programming or emulation  
Fail-safe mode  
Fail-off mode  
The state diagram including the possible transitions is shown below. The behavior of the device as well as some  
parameters may change depending on the operation mode of the device.  
The state diagrams are shown in Figure 4 and Figure 5.  
Note: ADC readings, and all the diagnostic related to it, are available only in ACTIVE, FAIL-SAFE and OTP modes.  
idle  
fail-off  
VS < VS(UV)_fall  
VS > VS(UV)_rise  
2)  
internal fault  
init  
HSLI(enter_init_mode)  
OR 6xHSLI(sync_break)  
(Timeout watchdog  
OR HSLI(enter_fail-safe))  
AND BISTs are pass  
HSLI(enter_init_mode)  
(HSLI(DC_UPDATE)  
OR GPINn=“high“)  
AND BISTs are pass  
AND (OTP locked  
OR valid OTP emulation)  
AND (VDD>VDD_UV(rise) AND  
1)  
OR internal fault  
3)  
OR VERRN < VERRN,th  
OR VDD VDD(UV)_fall  
AND (OTP locked  
3)  
OR load fault  
OR valid OTP emulation)  
AND (VDD>VDD_UV(rise) AND  
1)  
OR internal fault  
OR 6xHSLI(sync_break)  
OR VDD VDD(UV)_fall  
VS>VSOP(MIN)  
)
VS>VSOP(MIN)  
)
Timeout watchdog (WTD)  
OR HSLI(enter_fail-safe)  
OR (WTD disabled AND GPINn_WRN)  
active  
fail-safe  
HSLI(DC_UPDATE)  
OR GPINn_WRN cleared  
1) HSLI or ERRN is operational  
2) HSLI or ERRN is not operational  
3) see chapter "Configurable fault management"  
Figure 4  
Power supply operation modes  
Datasheet  
13  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
4 Power supply  
idle  
fail-off  
VS < VS(UV)_fall  
VS > VS(UV)_rise  
1)  
internal fault  
HSLI(Enter_OTP_mode)  
init  
6xHSLI(sync_break)  
OR HSLI(Enter_init_mode)  
OTP  
HSLI(WR_REG:write_OTP) AND  
GPIN0 = “high“  
HSLI(WR_REG:emu_OTP) AND  
GPIN0 = “high“  
OTP PRG  
EMU  
OTP PRG  
HSLI(Enter_init_mode) OR 6xHSLI(sync_break)  
1) HSLI or ERRn is not operational  
Figure 5  
Power supply operation modes for OTP programming and emulation  
4.2  
Idle mode  
In the idle mode  
all output channels are switched OFF and  
the device is reset including configuration and fault registers and  
the HSLIH and HSLIL bus interface pins are floating.  
The device enters into Idle mode if the power supply voltage VS < VS(UV)_fall OR internal fault via ꢀail-off mode occurred.  
4.3  
Init mode  
The following functions are available in init mode:  
Sending and receiving HSLI frames if VDD > VDD(UV)_rise  
VDD output voltage is available  
BIST safety mechanism are executed  
Power output stages are commanded to off, means the DC = 0ꢀ.  
The device enters into init mode in tIDLE2INIT if:  
VS > VS(UV)_rise  
OR in tINIT if:  
Datasheet  
14  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
4 Power supply  
the device is in active mode AND  
an internal fault occurred and HSLI or ERRn is operational OR  
VDD < VDD(UV)_fall  
OR  
PM_CHANGE(enter_init_mode) frame is received via the HSLI bus  
OR  
6 times sync_break is received via the HSLI bus as described in Chapter 9.1.11.9 to reset the device  
OR  
the device is in active mode AND a load fault has been detected  
OR  
the device is in active mode AND ERRN is active when VERRN < VERRN,th  
.
4.4  
Fail-off mode  
In the ꢀail-off mode the device is reset, all output channels are switched OFF and the HSLIH and HSLIL bus  
interface pins are floating.  
The device enters into ꢀail-off mode in tFAIL_OFF in case of an internal fault when HSLI or ERRN is not operational.  
4.5  
Fail-safe mode  
In fail-safe mode each output stage enters the desired safe state either ON or OFF.  
The device enters into fail-safe mode in tACTIVE2FAILSAFE  
if the device is in active mode and the timeout watchdog is triggered OR  
if the device is in init mode and the timeout watchdog is triggered OR  
if the device received an PM_CHANGE(enter_fail-safe) via the HSLI bus OR  
if the GPIN warning occurs and the watchdog timeout is disabled.  
The device exits the fail-safe mode into init mode in tFAILSAFE2INIT if  
the device received a valid PM_CHANGE(enter_init_mode) frame via the HSLI OR  
a 6 consecutive HSLI sync break frames trigger a device reset.  
The device exits the fail-safe mode into active mode in tFAILSAFE2ACTIVE if  
the device received a valid DC_UPDATE frame via the HSLI OR  
GPIN warning cleared via HSLI HWCR frame  
The safe state is set on the FAIL-SAFE MODE OTP register.  
If the device reaches the fail-safe state, the duty cycle values and the output current of all and only the outputs  
enabled in fail-safe state will be updated with the content of the OTP registers (OTP failsafe/GPIN0 DC register and  
OTP ISET register).  
4.6  
Active mode  
The device enters into active mode within tINIT2ACTIVE if:  
the device is in init OR fail-safe mode AND  
BISTs are pass in init mode AND  
OTP is configured and locked OR OTP emulation is valid AND  
the device received a valid DC_UPDATE command via the HSLI bus OR an activation request via GPINn AND  
VDD>VDD_UV(rise) AND VS>VSOP(MIN)  
Datasheet  
15  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
4 Power supply  
Valid commands means no CRC-3 for master request, CRC-8 error and no frame structure error occurred.  
4.7  
OTP mode  
In this mode the LCU can program or emulate the OTP configuration.  
Following functions are available in OTP mode:  
Sending and receiving HSLI frames if VDD > VDD(UV)_rise  
VDD output voltage is available  
internal fault monitoring  
The device enters into OTP mode in tINIT2OTP if:  
the device is in init mode AND  
the device received a valid enter_OTP_mode frame via the HSLI bus  
4.8  
OTP programming mode  
The following functions are available in OTP programming mode:  
sending and receiving HSLI frames if VDD > VDD(UV)_rise  
VDD output voltage is available  
internal fault monitoring  
The device enters into OTP programming mode in tOTP2PRG if:  
the device is in OTP mode AND  
the device received a WRITE_REG(write_OTP) via the HSLI bus AND  
GPIN0 is set to “high.  
In this programing mode the LCU can program the OTP configuration register and store them permanently in the OTP.  
In order to program the OTP, supply voltage on VS pin must remain within the VS_PROG voltage range during the  
entire programming procedure. The OTP is locked and secured if the LCU successfully writes all the OTP registers and  
the correct CRC protection word.  
Note:  
In case GPIN0=LOW and a valid passphrase is sent, the device remains in OTP mode. A HSLI power mode  
change frame is required to move the device to init mode.  
4.9  
OTP programming emulation mode  
The following functions are available in OTP programming emulation mode:  
sending and receiving HSLI frames if VDD > VDD(UV)_rise  
VDD output voltage is available  
internal fault monitoring  
The device enters into OTP programming emulation mode in tOTP2PRG if:  
the device is in OTP mode AND  
the device received a WRITE_REG(emu_OTP) via the HSLI bus AND  
GPIN0 is set as digital input and a “high” voltage level applied.  
In this emulation mode the LCU can program a volatile copy of the OTP.  
Datasheet  
16  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
4 Power supply  
This volatile copy is not stored in the OTP. The device generates a CRC protection word for the volatile copy of the OTP  
and this is compared to the CRC protection word received from the LCU. The OTP volatile copy is used until the next  
power-up sequence in case the LCU CRC protection word matches to the OTP emulation checksum.  
Note:  
In case GPIN0=LOW and a valid passphrase is sent, the device remains in OTP mode. A HSLI power mode  
change frame is required to move the device to init mode.  
4.10  
Electrical characteristics power supply  
Table 5  
Electrical characteristics  
VS = 6 V to 20 V, TJ = -40°C to +150°C, all voltages with respect to ground, positive currents flowing as described  
in Figure 2 (unless otherwise specified). Typical values: VS = 9 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-  
Number  
Min.  
Max.  
Power supply  
Power supply  
VS(UV)_rise  
2.8  
3.75  
4.5  
V
PRQ-387  
PRQ-388  
PRQ-667  
undervoltage  
shutdown rising edge  
Power supply  
undervoltage  
shutdown falling edge  
VS(UV)_fall  
1.85  
2.5  
2.9  
8
V
Power supply current IVS(INIT)  
consumption in init  
mode  
mA  
no bus  
communication;  
no load on VDD;  
init mode;  
LP_INIT='0';  
ERRN disabled  
Power supply current IVS(INIT)  
consumption in init  
mode LP_INIT  
-
3.2  
3.5  
mA  
no bus  
PRQ-879  
communication;  
no load on VDD;  
init mode;  
LP_INIT='1';  
VS > 8 V;  
fPWM configured to 300  
Hz;  
GPIN0 configured as  
analog input;  
GPIN1 configured as  
digital input;  
TJ ≤ 85°C;  
ERRN disabled;  
Not subject to  
production test -  
specified by design  
(table continues...)  
Datasheet  
17  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
4 Power supply  
Table 5  
(continued) Electrical characteristics  
VS = 6 V to 20 V, TJ = -40°C to +150°C, all voltages with respect to ground, positive currents flowing as described  
in Figure 2 (unless otherwise specified). Typical values: VS = 9 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-  
Number  
Min.  
Max.  
20  
Power supply current IVS(ACTIVE)  
consumption in active  
mode  
-
15  
mA  
no bus  
PRQ-389  
communication; all  
output channels ON;  
active mode;  
no load on VDD  
Power supply current IVS(ACTIVE)  
consumption in  
active mode with  
communication  
-
30  
mA  
active mode,  
PRQ-691  
HSLI communication,  
DC_UPDATE and  
DC_SYNC frame sent  
with 100 fps at 1  
Mbit/s,  
all output channels  
on;  
no load on VDD;  
Not subject to  
production test -  
specified by design  
Power supply current IVS(PRG)  
consumption in  
40  
15  
70  
20  
mA  
mA  
OTP programming  
mode;  
OTP programming  
emulation mode;  
PRQ-390  
PRQ-392  
programming modes  
no load on VDD;  
Power supply current IVS(Failsafe)  
consumption in fail-  
safe mode  
no bus  
communication;  
Fail-safe mode;  
no load on VDD  
Internal voltage regulator and oscillator  
VDD output voltage  
VVDD  
4.9  
5
5.1  
V
no communication;  
0 < IVDD ≤ 10 mA;  
init mode;  
PRQ-393  
active mode;  
fail-safe mode;  
OTP mode;  
OTP programming  
mode;  
OTP programming  
emulation mode;  
(table continues...)  
Datasheet  
18  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
4 Power supply  
Table 5  
(continued) Electrical characteristics  
VS = 6 V to 20 V, TJ = -40°C to +150°C, all voltages with respect to ground, positive currents flowing as described  
in Figure 2 (unless otherwise specified). Typical values: VS = 9 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-  
Number  
Min.  
3.8  
Max.  
4.5  
VDD undervoltage  
shutdown falling edge  
VDD(UV)_fall  
VDD(UV)_rising  
afOSC  
4.25  
V
PRQ-693  
PRQ-730  
VDD undervoltage  
shutdown rising edge  
4.5  
-1  
4.75  
-
4.9  
1
V
Absolute oscillator  
frequency accuracy  
-20°C ≤ TJ < 125°C, not PRQ-726  
subject to production  
test;  
afOSC = fOSCmax-fOSCmin  
fOSCaverage  
/
Timings  
Idle to Init delay  
Init to Active delay  
tIDLE2INIT  
-
-
5
ms  
µs  
CVDD ≤ 4.7 µF  
PRQ-668  
PRQ-394  
tINIT2ACTIVE  
250  
GPIN is processed  
afer HSLI  
communication is  
finished;  
Not subject to  
production test -  
specified by design  
Init mode delay  
Fail-off mode delay  
Init to OTP delay  
tINIT  
-
-
250 + 2 µs  
Not subject to  
production test -  
specified by design  
PRQ-694  
PRQ-765  
PRQ-728  
PRQ-395  
(1/fPWM  
)
tꢀail_off  
tINIT2OTP  
tOTP2PRG  
-
-
250  
µs  
Not subject to  
production test -  
specified by design  
1
1
ms  
ms  
Not subject to  
production test -  
specified by design  
OTP to programming  
delay  
transition to OTP  
programming mode;  
transition to  
OTP programming  
emulation mode;  
Not subject to  
production test -  
specified by design  
(table continues...)  
Datasheet  
19  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
4 Power supply  
Table 5  
(continued) Electrical characteristics  
VS = 6 V to 20 V, TJ = -40°C to +150°C, all voltages with respect to ground, positive currents flowing as described  
in Figure 2 (unless otherwise specified). Typical values: VS = 9 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-  
Number  
Min.  
Max.  
Active to fail-safe delay tACTVE2FAILSAFE  
4
ms  
IOUT ≥ 90ꢀ of desired PRQ-397  
output current afer  
watchdog timeout  
triggered;  
fPWM ≥ 300 Hz;  
Not subject to  
production test -  
specified by design  
Fail-safe to init delay  
tFAILSAFE2INIT  
250 + 2 µs  
Not subject to  
production test -  
specified by design  
PRQ-398  
PRQ-855  
(1/fPWM  
)
Fail-safe to active delay tFAILSAFE2ACTIVE  
250  
µs  
Not subject to  
production test -  
specified by design  
Datasheet  
20  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
5 General Purpose Input (GPI)  
5
General Purpose Input (GPI)  
Overview and features  
5.1  
The device provides two general purpose input pins GPIN0 and GPIN1. The GPINs can be used as  
digital input for direct drive feature to operate the device without the HSLI interface  
analog inputs connected to the internal ADC multiplexer for external NTC/PTC measurements  
Accepted input signals for the direct drive feature can be either static voltage level or PWM decoded duty cycle  
5.2  
Digital Input  
The GPINn pins integrate an internal pull-down function when set as digital input, where the pull-down current is  
defined by IPD  
.
The digital input is set by default on GPIN0 and disabled on GPIN1. If the GPINn is used as analog input, the pull-down  
current is disabled as described in Chapter 5.5.  
If GPINn is set as digital input it can be used to move the device in active mode. This is valid also if no outputs  
are mapped to GPINn. An activation request is either a static input high voltage level (Vih) or a PWM input high duty  
cycle (dc_hi) with GPINn set as digital input.  
5.3  
Direct drive  
The direct drive function can be used to operate the device without the HSLI interface. A valid PWM signal on GPIN  
overwrites the HSLI request. One or both inputs drive one to all power output channels defined with a GPINn to OUTn  
mapping stored in the OTP.  
GPIN0OUTn MAP - Group0  
GPIN1OUTn MAP - Group1  
0b aaaa aaaa aaaa aaaa  
0b bbbb bbbb bbbb bbbb  
Definition for a,b  
"0" ... input is not mapped to the corresponding power output stage  
"1" ... input is mapped to the corresponding power output stage  
Each GPIN is mapped to one set of 16 duty cycle configuration with a resolution of 8-bit. The configuration is stored in  
the OTP. The GPIN0 duty cycle configuration shares the fail-safe duty cycle configuration.  
In case two GPINs are mapped to the same OUTn both GPINs demands are combined by a logical OR.  
A GPIN1 ON demand has higher priority than a GPIN0 ON demand to resolve the duty cycle configuration conflict.  
Application example:  
GPIN1 is used to active a stop light function, where OUTn is configured to 100ꢀ duty cycle  
GPIN0 is used to active a tail light function, where OUTn is configured to 6ꢀ duty cycle  
Table 6  
Application example  
GPIN0 (tail light)  
GPIN1 (stop light)  
Output duty cycle  
Low  
Low  
Low  
High  
Low  
0ꢀ  
100ꢀ  
6ꢀ  
High  
(table continues...)  
Datasheet  
21  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
5 General Purpose Input (GPI)  
Table 6  
(continued) Application example  
GPIN0 (tail light)  
GPIN1 (stop light)  
Output duty cycle  
High  
High  
100ꢀ  
The device resolves duty cycle request conflicts between GPIN activation and HSLI activation according to following  
table:  
Table 7  
GPIN priority configuration  
Output  
mapped to  
GPIN  
GPIN  
GPINn_WRN  
HSLI_WDT  
Priority configuration  
no  
not triggered HSLI  
no  
triggered  
disabled  
Fail-safe (OTP)  
HSLI  
no  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
static low  
static low  
static low  
static high  
PWM low  
PWM low  
PWM low  
PWM high  
not triggered HSLI  
triggered  
disabled  
Fail-safe (OTP)  
GPIN, output OFF  
GPIN, output ON  
no  
no  
no  
no  
not triggered HSLI  
triggered  
disabled  
Fail-safe (OTP)  
GPIN, output OFF  
GPIN, output ON  
PWM low/high yes  
PWM low/high yes  
PWM low/high yes  
not triggered HSLI  
triggered  
disabled  
Fail-safe (OTP)  
Fail-safe (OTP)  
Note: In case of a transition from GPIN control back to HSLI control a DC_SYNC frame is needed to synchronize to the last  
configured duty cycle.  
5.4  
Output enable  
The GPIN0 enables or disables all power output stages if the ouput enable (OE) feature is configured via the OTP.  
The output power stages are enabled if the GPIN0="high", disabled if the GPIN0="low".  
A "high" state is when VGPIN0 ≥ VIH OR as in case of a PWM encoding as described in Chapter 5.6.  
A "low" state is when VGPIN0 ≤ VIL OR as in case of a PWM encoding as described in Chapter 5.6.  
The output enable function is not effective for  
OUT15, when used as ERRn  
OUT0, when used as DCDC feedback channel.  
5.5  
Analog input  
The GPINs can be configured with the OTP as analog input pins for external voltage measurements, (e.g. for external  
NTC/PTC temperature measurements).  
The pull-down function is disabled in case the GPINn is configured as analog input pin.  
Datasheet  
22  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
5 General Purpose Input (GPI)  
The GPIN ADC measurement is described in Chapter 7.3.  
5.6  
GPIN PWM decoding  
The GPINs can decode an input PWM signal with a frequency of fPWM_GPINn where  
a duty cycle dcLO is detected as OFF activation OR  
a duty cycle dcHI is detected as ON activation OR  
a duty cycle outbound of dcLO OR dcHI is detected as fault and reported via the HSLI interface or ERRn.  
The GPIN decoding can be enabled or disabled via the OTP configuration for each GPINn.  
In case of active mode the GPIN warning flag (GPINn_WRN) is reported via the HSLI output status byte OR activating  
ERRN with a PWM.DC = 100ꢀ.  
In case of fail-safe mode the fault state is reported by activating ERRN with a PWM.DC = 100ꢀ.  
A GPIN warning on ERRN is reported, when fault management configuration is set to "0" - no state change.  
Note:  
Note:  
The device interprets an immediate warning recovery as OFF activation. At least two GPIN PWM periods are  
required to detect an ON activation afeꢀ a GPIN warning.  
The GPIN_WRN flag is cleared with an explicit HWCR frame from LCU.  
If both GPINs are used for direct control and GPIN decoding enabled a phase shif between 10 µs and 1/fPWM  
and same frequency are required.  
If the phase shif constraint is not granted, a GPIN short (GPIN_SHORT) is detected by the device and  
reported in the output status byte FAULT bit.  
Figure 6  
GPIN PWM decoding scheme  
5.7  
Electrical characteristics  
Table 8  
Electrical characteristics  
VS = 6 V to 20 V, TJ = -40°C to +150°C, all voltages with respect to ground, positive currents flowing as described  
in Figure 2 (unless otherwise specified). Typical values: VS = 9 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-  
Number  
Min.  
Max.  
GPINn  
Input low voltage  
Input high voltage  
VIL  
0
0.8  
5.5  
V
V
PRQ-407  
VIH  
2.0  
Internally clamped to PRQ-408  
5.5 V if the input  
current is ≤ IGPINn  
(table continues...)  
Datasheet  
23  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
5 General Purpose Input (GPI)  
Table 8  
(continued) Electrical characteristics  
VS = 6 V to 20 V, TJ = -40°C to +150°C, all voltages with respect to ground, positive currents flowing as described  
in Figure 2 (unless otherwise specified). Typical values: VS = 9 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-  
Number  
Min.  
Max.  
Analog input voltage  
range  
VAIN  
IPD  
0
3
VDD+0.3  
V
PRQ-409  
PRQ-411  
PRQ-412  
Input pull-down  
current  
10  
25  
10  
µA  
µA  
VGPIN = 5 V  
Input leakage current IIL  
-10  
VGPIN = 5 V;  
configured as analog  
input  
PWM decoding  
GPINn PWM decode  
frequency  
fPWM_GPINn  
25.5  
12.5  
62.5  
2000  
37.5  
87.5  
Hz  
Not subject to  
production test -  
specified by design  
PRQ-670  
PRQ-671  
PRQ-672  
Input low duty cycle  
Input high duty cycle  
dcLO  
dcHI  
25  
75  
Not subject to  
production test -  
specified by design  
Not subject to  
production test -  
specified by design  
Datasheet  
24  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
6 Power Stage  
6
Power Stage  
6.1  
Features  
16 output power stages  
one master PWM frequency ranging from 100 Hz to 2 kHz for LED dimming  
16 individual configurable edge-aligned PWM engines with 14-bit duty cycle resolution  
one configurable 5-bit phase shif function for improved EME and supply stabilization  
parallel output operation  
integrated thermal overload protection  
thermal protection by derating of the output current  
16 independent 6-bit configurable global output current configuration ranging from 5.625 mA to 76.5 mA  
6.2  
Current sink operation  
The output stage sinks an individual configurable 6-bit output current IOUT where the desired output current is  
configurable via the OTP or via HSLI in runtime.  
The following table is related to the configurable output current configurations:  
Table 9  
Output current configurations  
IOUT step  
IOUT [mA]  
IOUT step  
16  
IOUT [mA]  
IOUT step  
32  
IOUT [mA]  
41.625  
42.75  
43.875  
45  
IOUT step  
48  
IOUT [mA]  
59.625  
60.75  
61.875  
63  
0
5.625  
6.75  
23.625  
24.75  
25.875  
27  
1
17  
33  
49  
2
7.875  
9
18  
34  
50  
3
19  
35  
51  
4
10.125  
11.25  
12.375  
13.5  
20  
28.125  
29.25  
30.375  
31.5  
36  
46.125  
47.25  
48.375  
49.5  
52  
64.125  
65.25  
66.375  
67.5  
5
21  
37  
53  
6
22  
38  
54  
7
23  
39  
55  
8
14.625  
15.75  
16.875  
18  
24  
32.625  
33.75  
34.875  
36  
40  
50.625  
51.75  
52.875  
54  
56  
68.625  
69.75  
70.875  
72  
9
25  
41  
57  
10  
11  
12  
13  
14  
15  
26  
42  
58  
27  
43  
59  
19.125  
20.25  
21.375  
22.5  
28  
37.125  
38.25  
39.375  
40.5  
44  
55.125  
56.25  
57.375  
58.5  
60  
73.125  
74.25  
75.375  
76.5  
29  
45  
61  
30  
46  
62  
31  
47  
63  
6.3  
HSLI configurable output current  
The 6-bit output current IOUT can be configured also runtime via the HSLI in init mode, OTP programming emulation  
mode and active mode.  
Datasheet  
25  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
6 Power Stage  
6.4  
PWM Generator  
PWM function  
6.4.1  
The device operates each power output stage with a PWM function containing  
one configurable duty cycle per channel  
one global PWM frequency and  
one global PWM phase shif  
The device sinks current on HSLI request or GPIN request on each output channel in ≤tON time.  
This delay depends on the PWM frequency and on the phase shif according to the following approximate formula:  
tON=1/fPWM+n*tPHS  
6.4.2  
PWM frequency  
The PWM engine operates with one master PWM frequency setting fPWM stored in the OTP. The configuration steps  
should cover multiples of 50 Hz and 60 Hz in the range from 100 Hz to 2 kHz according to following table:  
Table 10  
Configuration example  
Step  
Frequency [Hz]  
Step  
8
Frequency [Hz]  
0
1
2
3
4
5
6
7
99.90  
662.08  
723.38  
781.25  
899.50  
1199.00  
1502.40  
1799.00  
1997.00  
200.32  
239.65  
300.48  
359.78  
399.89  
539.03  
600.96  
9
10  
11  
12  
13  
14  
15  
6.4.3  
PWM duty cycle  
The PWM engine provides 16 individual configurable edge-aligned PWM duty cycle settings configurable  
via the OTP in fail-safe mode OR  
the HSLI interface in active mode  
GPINn direct control as described in Chapter 5.3  
The updated duty cycle values are applied to the power stages synchronous to the internal PWM period. e.g. the  
power output duty cycle change is seen latest afer one PWM period (1/fPWM) independently if the change was  
triggered by the HSLI, fail-safe mode or GPINn control.  
6.4.4  
PWM duty cycle configuration - linear or power-law relation  
The duty cycle setting can be configured as  
non-linear 8-bit duty cycle configuration by using the DC_UPDATE frame and DLC=0x4, which is related to the  
8-bit configuration with a power law relation to the 14-bit resolution OR  
linear 14-bit duty cycle configuration by using the DC_UPDATE frame and DLC=0x6.  
The applied power law is defined as:  
Datasheet  
26  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
6 Power Stage  
DC_14bit = 16383 * (DC_8bit/255)1/gamma, where gamma is set to 0.4545 and the result is round up away from 0. The  
graphical representation is shown in Figure 7.  
DC_14bit ... duty cycle in 14-bit representation  
DC_8bit ... duty cycle in 8-bit representation  
Figure 7  
Power law - 8-bit to 14-bit  
6.4.5  
PWM phase shif  
The PWM generator provides one global 5-bit PWM phase shif configuration stored in the OTP.  
The phase shif can be enabled or disabled for each power output stage via the OTP.  
In case the phase shif is enabled, OUTn turns on with a delay of tPHS=n * nPSH*1/fPWM, where n=0 to 15.  
In case the phase shif is disabled, OUTn turns on simultaneously with OUTn-1. Both cases are shown in following  
Figure 8.  
The 5-bit phase-shif configuration is related to the 14-bit duty cycle reference from bits 9:5 as shown in table below.  
This results into a phase shif range of nPSH referred to the PWM period.  
Table 11  
bit  
Duty cycle to phase shif bit weight relation  
Duty cycle  
(14-bit)  
Phase shif  
(5-bit)  
bit  
Duty cycle  
(14-bit)  
Phase shif  
(5-bit)  
13  
12  
11  
10  
09  
08  
07  
x
x
x
x
x
x
x
06  
05  
04  
03  
02  
01  
00  
x
x
x
x
x
x
x
x
x
x
x
x
Datasheet  
27  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
6 Power Stage  
Figure 8  
Timing diagram and parameter for PWM pulse  
6.5  
Power shif  
The device can limit the internal power dissipation by balancing one load current branch with two power stages and  
an external resistance.  
The primary output channel OUTn and secondary output channel OUTn+1 provide the output current IOUT = IOUTn  
IOUTn+1, where IOUTn+1 linearly increases until VOUTPS_HI threshold is reached. If VOUTn > VOUTPS_HI then IOUT = IOUTn+1  
5.625 mA and IOUTn = 5.625 mA. The sum of IOUTn and IOUTn+1 remains constant while VOUTn rises.  
+
-
The external resistance is connected to the secondary output channel.  
The primary and secondary output channels are defined according to following table:  
Table 12  
Primary and secondary output channels  
Primary  
OUT0  
Secondary  
OUT1  
OUT2  
OUT3  
OUT8  
OUT9  
OUT10  
OUT11  
The power shif threshold VOUTPS_HI is programmable by a 2-bit OTP register with 4 options as shown below with an  
accuracy of a aVOUT_PS per configuration step.  
Table 13  
VOUTPS_HI configuration steps  
Configuration step  
VOUTPS_HI  
2 V  
0
1
2
3
3 V  
6 V  
10 V  
The power shif needs to be enabled via the OTP configuration.  
Datasheet  
28  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
6 Power Stage  
VLED  
OUTn  
OUTn+1  
Power Shift  
Control  
GND  
Figure 9  
Power shif principle  
In case the thermal derating feature is enabled, the power shif feature is not available.  
The target output current, which is the sum of the primary and the secondary channels, shall be set in the primary  
channel OTP current register.  
The secondary channel OTP current register shall be set to the minimum value.  
6.6  
Parallel output configuration  
Up to all output stages can be used in parallel to achieve a higher output current without any dedicated configuration  
needs.  
6.7  
Thermal overload  
The output stage integrates an individual thermal overload protection.  
The output stage turns off if the junction temperature exceeds TJ(ABS) with a hysteresis of THYS(ABS) and reports the  
thermal overload event in a fault register.  
The LCU can poll the OVLD flag in the output status byte or by reading the channel status byte OUTn with the  
READ_OST command. The OVLD flag is cleared afer the fault has been acknowledged with an explicit HWCR  
frame from the LCU.  
6.8  
Thermal derating  
6.8.1  
Thermal derating with integrated temperature sensor  
The output stage provides a configurable thermal derating (thermal foldback) of the output current based on the  
integrated device temperature measurement. Each output stage starts to decrease the current linearly when TJ ≥  
TJstart until TJstop is reached, where  
IOUTDER  
=
IOUT TJ TJstart × kDER  
(1)  
Datasheet  
29  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
6 Power Stage  
IOUT 5 . 625mA  
kDER  
=
(2)  
TJDER  
TJstart = TJstop - TJDER, where TJDER is configured globally and is stored in the OTP.  
TJDER is programmable by a 3-bit register with 5 options as shown below with an accuracy of aTJDER for each step:  
Table 14  
Thermal derating configuration  
TJDER step  
TJDER temperature  
0
1
2
3
4
20°C  
30°C  
40°C  
50°C  
60°C  
The thermal derating function can be enabled or disabled via the OTP configuration.  
In case the thermal derating feature is enable, the power shif feature is not available.  
IOUT  
TJstop-TJDER(4)  
TJstop-TJDER(0)  
TJDER  
TJ  
TJ  
TJstart  
stop TJ(ABS)  
Figure 10  
Thermal derating  
Thermal derating it is an integrated protection feature intended to avoid a light off condition at high junction  
temperature.  
The output current is reduced applying discrete current steps, with magnitude depending on the thermal derating  
configuration.  
Optical performance and perceived light variation during derating has to be tested in the final application.  
The device provide the value of the internal temperature sensor in the DTS status register.  
The sensor is not reading the peak junction temperature but an average die temperature.  
6.8.2  
Thermal derating with GPIN0  
The output stage provides a configurable derating of the output current based on the voltage on GPIN0. Each output  
stage starts to decrease the current linearly when VGPIN0 VDER_start until VDER_stop is reached, where  
Datasheet  
30  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
6 Power Stage  
I
= I  
V  
VDER_START × k  
OUTDER  
OUT  
GPIN0  
DER  
(3)  
k
= I  
5 . 625 mA / VDER_STOP/VDER_START  
DER  
OUT  
VDER_start and VDER_stop are configured globally and stored in the OTP.  
The GPIN0 derating function can be enabled or disabled via the OTP configuration.  
In case the GPIN0 derating feature is enable, the power shif feature is not available.  
IOUT  
VDER_STOP  
VGPIN  
VDER_START  
Figure 11  
GPIN0 output current derating feature  
6.9  
Thermal overload retry strategy  
The output stage contains a configurable retry strategy for the thermal overload fault event. The retry strategy  
consists of two options, 1) latch off and 2) retry mode.  
1.  
2.  
Latch OFF( default configuration): The output stage remains off afer a thermal overload event. The output  
stage remains off until HWCR.RESET_OVERLOAD is applied AND TJ is lower than TJ(ABS) - THYS(ABS)  
Retry Mode: The output stage turns on afer a thermal overload event if TJ is lower than TJ(ABS) - THYS(ABS). The  
device needs a DC_SYNC or GPINn = "high" condition to restart when TJ is lower than TJ(ABS) - THYS(ABS) afer a  
thermal overload event.  
.
The retry behavior can be configured for each individual output stage via the HSLI interface.  
In both retry strategy options, the thermal overload flag OVLD has to be cleared with a HWCR.RESET_OVERLOAD  
except during the reconfirmation cycle when fault management configuration is set to 1, where it is cleared  
automatically  
6.10  
Normal and fast switching mode  
The power output stage provides an individual configurable normal and fast switching mode (slew rate) where the  
turn-on and turn-off timings are defined in PWM output timing and the timing definition is shown in Figure 12.  
The normal switching mode is the default configuration and can be changed to fast-mode with the HSLI interface.  
Datasheet  
31  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
6 Power Stage  
PWM.OUTn  
t
tON_fast/normal  
tOUTnPW  
IOUT  
90ꢀ of IOUT  
(dI/dt)ON  
(dI/dt)OFF  
tOFF_fast/normal  
10ꢀ of IOUT  
t
Figure 12  
Output stage timing definition  
6.11  
Electrical characteristics  
Table 15  
Electrical Characteristics  
VS = 6 V to 20 V, TJ = -40°C to +150°C, all voltages with respect to ground, positive currents flowing as described  
in Figure 2 (unless otherwise specified). Typical values: VS = 9 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-  
Number  
Min.  
Max.  
Leakage currents  
Output leakage current IOUT_LEAK  
-
-
3
7
µA  
µA  
TJ = 85°C,  
VOUT ≤ 20 V,  
idle mode  
PRQ-428  
PRQ-429  
Output leakage current IOUT_LEAK  
TJ ≤ 150°C,  
VOUT ≤ 20 V,  
idle mode  
Output current accuracy and drop-out voltage  
Output current  
accuracy  
AIOUT,25  
-5  
5
TJ ≥ 25°C full scale  
PRQ-430  
PRQ-431  
range, where 10.125  
mA (code 0x4) ≤ IOUT  
< 76.5 mA (code 0x3F)  
Output current  
accuracy  
AIOUT  
-10  
10  
-40°C ≤ TJ < 150°C  
full scale range, where  
5.625 mA (code 0x00)  
IOUT < 76.5 mA (code  
0x3F)  
Output current ripple ΔIOUT  
-1.8  
1.8  
mA  
IOUTn_tPWMn-1  
-
PRQ-436  
IOUTn_tPWMn, output  
current difference  
between two  
consecutive periods  
(table continues...)  
Datasheet  
32  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
6 Power Stage  
Table 15  
(continued) Electrical Characteristics  
VS = 6 V to 20 V, TJ = -40°C to +150°C, all voltages with respect to ground, positive currents flowing as described  
in Figure 2 (unless otherwise specified). Typical values: VS = 9 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-  
Number  
Min.  
Max.  
Output current  
channel matching  
IOUTn, OUTn+1  
I
-5  
5
(IOUTn - Iaverage) /  
Iaverage,  
PRQ-434  
10.125 mA (code 0x4) ≤  
IOUT ≤ 76.5 mA (code  
0x3F)  
Drop out voltage  
VDR,1  
600  
850  
0.1  
mV  
mV  
V
TJ ≤ 105°C, one  
PRQ-435  
PRQ-604  
channel active, IOUT  
90ꢀ of 76.5 mA (code  
0x3F)  
Drop out voltage - all  
channels active  
VDR,all  
TJ < 105°C, all  
channels active, IOUT  
90ꢀ of 76.5 mA (code  
0x3F)  
Power shif threshold aVOUT_PS  
voltage accuracy  
-0.1  
two adjacent channels PRQ-689  
OUTn and OUTn+1 are  
configured for power  
shif operation, where  
n=0,2,8,10  
PWM engine  
Number of PWM  
channels  
nPWM  
fPWM  
16  
99  
PRQ-437  
PRQ-438  
PWM frequency  
2020  
Hz  
Not subject to  
production test -  
specified by design  
Duty cycle resolution  
PWM frequency drif  
nDC  
14  
-1  
5
-
Bit  
Not subject to  
production test -  
specified by design  
PRQ-440  
fDRIFT  
1
-20°C ≤ TJ < 125°C, not PRQ-441  
subject to production  
test  
PWM phase shif  
resolution  
nPWM_PH,Res  
Bit  
Not subject to  
production test -  
specified by design  
PRQ-442  
PWM phase shif  
nPSH  
0
6.05  
Not subject to  
PRQ-688  
production test -  
specified by design  
(table continues...)  
Datasheet  
33  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
6 Power Stage  
Table 15  
(continued) Electrical Characteristics  
VS = 6 V to 20 V, TJ = -40°C to +150°C, all voltages with respect to ground, positive currents flowing as described  
in Figure 2 (unless otherwise specified). Typical values: VS = 9 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-  
Number  
Min.  
Max.  
PWM output timing  
PWM turn on time  
(fast)  
tONfast  
300  
900  
ns  
fast switching mode; PRQ-443  
IOUT=90ꢀ of 50.625 mA  
(code 0x28);  
see Figure 12  
PWM turn on time  
(normal)  
tONnormal  
15  
20  
25  
4
µs  
normal switching  
mode, IOUT=90ꢀ of  
76.5 mA (code 0x3F),  
PRQ-444  
see Figure 12  
Current rise slew rate  
(normal)  
dI/dtON  
2.4  
mA/µs normal switching  
mode,  
PRQ-698  
IOUT rising from 10ꢀ to  
90ꢀ of 76.5 mA (code  
0x3F),  
see Figure 12  
Current falling slew  
rate (normal)  
dI/dtOFF  
-4  
-2.4  
mA/µs normal switching  
mode,  
PRQ-699  
IOUT falling from 90ꢀ  
to 10ꢀ of 76.5 mA  
(code 0x3F),  
see Figure 12  
PWM turn off time  
tOFFfast  
tOFFnormal  
tON  
300  
20  
-
900  
25  
5
ns  
µs  
ms  
fast switching mode; PRQ-445  
IOUT=10ꢀ of 50.625 mA  
(code 0x28);  
(fast)  
see Figure 12  
PWM turn off time  
(normal)  
15  
-
normal switching  
mode; IOUT=10ꢀ of  
76.5 mA (code 0x3F);  
PRQ-446  
see Figure 12  
Turn-on time  
IOUT > 90ꢀ of  
PRQ-679  
desired output current  
afer DC_SYNC frame  
at fPWM ≥ 300 Hz and  
tPHS < 100 µs  
(table continues...)  
Datasheet  
34  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
6 Power Stage  
Table 15  
(continued) Electrical Characteristics  
VS = 6 V to 20 V, TJ = -40°C to +150°C, all voltages with respect to ground, positive currents flowing as described  
in Figure 2 (unless otherwise specified). Typical values: VS = 9 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-  
Number  
Min.  
Max.  
Turn-on time (GPIN)  
tON  
5
ms  
IOUT > 90ꢀ of desired PRQ-834  
output current afer  
GPIN="high" at fPWM  
300 Hz and tPHS < 100  
µs;  
GPIN encoding  
enabled;  
GPIN is processed  
afer HSLI  
communication is  
finished  
Protection  
Thermal current  
derating accuracy  
aTJDER  
-5  
5
K
Not subject to  
production test -  
specified by design  
PRQ-451  
PRQ-452  
PRQ-449  
PRQ-450  
Thermal current  
derating stop  
temperature  
TJSTOP  
TJ(ABS)  
THYS(ABS)  
155  
150  
5
165  
175  
10  
175  
200  
15  
°C  
°C  
K
specified by design  
- not subject to  
production test  
Thermal shutdown  
temperature  
Not subject to  
production test -  
specified by design  
Thermal shutdown  
hysteresis  
specified by design  
Datasheet  
35  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
7 Load Diagnostic  
7
Load Diagnostic  
Features  
7.1  
Several load diagnostic features are integrated in the device for all of the output channels OUTn:  
Open load detection (OL)  
Forward voltage warning to detect short to supply  
Single LED Short detection (SLS)  
Short between two adjacent output channels  
Digital feedback of VS, GPINn, VLED, min(VOUTn) and VFWDn  
ERRn feedback, if enabled  
Configurable fault management, reporting, latching or retry behavior  
7.2  
VFWD measurement  
The device provides an analog to digital conversion of VFWD voltage with a resolution of nVRES,Hi, accessible with the  
HSLI interface when OUTn pulse width (tOUTnPW ) fulfills:  
tOUTnPW > tdiag_dly + tDIAG_ON in case phase shif is enabled OR  
tOUTnPW > tdiag_dly + N * tDIAG_ON in case phase shif is disabled, where N is equal to the number of  
preceding channels with phase shif disabled.  
VFWD is defined as VLED-VOUT or VS-VOUT depending on the load configuration stored in the OTP. All 16 VFWD voltage  
measurements are sampled sequentially starting from OUT0 to OUT15. One channel starts sampling afer tdiag_dly and  
the result is available afer tDIAG_ON as shown in the Figure 13.  
In case of phase shif disabled between two adjacent channels, the tdiag_dly is skipped.  
The phase shif shall be set to tphs > tdiag_dly + 2*tDIAG_ON for proper supplies and output voltages sampling.  
The conversion is done once per PWM period and continuously updated. New data is signaled with a dedicated VALID  
flag which is reset afer reading completion.  
Figure 13  
Timing diagram for ON-state diagnostics synchronized to the PWM  
7.3  
VGPIN measurement  
The device provides an analog to digital conversion of VGPIN voltage with a resolution of nVRES,Lo, accessible with the  
HSLI interface. The device samples the VGPIn and stores the result in a VGPIN register. New data is signaled with a  
dedicated VALID flag which is reset afer reading completion.  
Note: The sampling period depends on the phase-shif configuration according to following table.  
Datasheet  
36  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
7 Load Diagnostic  
Table 16  
Sample period relation to phase shif configuration  
> 4 output channels enable phase shif  
≤ 4 output channels enable phase shif  
sampling requires one PWM period  
sampling requires up to 4 PWM periods  
7.4  
VLED measurement  
The device provides an analog to digital conversion of VLED voltage with a resolution of nVRES,Hi, accessible with the  
HSLI interface. The device samples the VLED and stores the result in a VLED register. New data is signaled with a  
dedicated VALID flag, which is reset afer reading completion.  
Note: The sampling period depends on the phase-shif configuration according to following table.  
Table 17  
Sample period relation to phase shif configuration  
> 4 output channels enable phase shif  
≤ 4 output channels enable phase shif  
sampling requires one PWM period  
sampling requires up to 4 PWM periods  
7.5  
VS measurement  
The device provides an analog to digital conversion of VS voltage measurement with a resolution of nVRES,Hi, accessible  
with the HSLI interface. The device samples the VS and stores the result in a VS result register. New data is signaled  
with a dedicated VALID flag, which is reset afer reading completion.  
Note: The sampling period depends on the phase-shif configuration according to following table.  
Table 18  
Sample period relation to phase shif configuration  
> 4 output channels enable phase shif  
≤ 4 output channels enable phase shif  
sampling requires one PWM period  
sampling requires up to 4 PWM periods  
7.6  
Minimum VOUT measurement  
The device provides an analog to digital conversion of the minimum of its 16 VOUT voltage measurements with a  
resolution of nVRES,Hi, accessible with the HSLI interface. The device samples the min(VOUTn) once per PWM period and  
stores the result in a result register. New data is signaled with a dedicated VALID flag, which is reset afer reading  
completion.  
OUT0 can be masked out from the minimum calculation via an OTP configuration bit. This allows to use OUT0 as  
feedback current sink to an external DC-DC to its adjustable voltage input pin.  
OUT15 is masked out from the minimum calculation when used as ERRN pin.  
7.7  
Voltage regulator feedback  
The LCU can use OUT0 to control a current to a feedback network of an external voltage regulator. This feature can  
be enabled via an OTP configuration bit. In case output channel is configured as feedback path following diagnostic  
mechanism are masked out  
exclusion from min(VOUT) measurement  
open load detection  
Forward voltage warning (VFWD_WRN)  
Datasheet  
37  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
7 Load Diagnostic  
Additionally the VFWD measurement register for output channel holds the output voltage VOUT instead of the  
forward voltage VFWD to directly provide the feedback voltage.  
7.8  
Open load detection  
The device detects an open load fault if  
output stage is in ON-state AND  
VOUTn VOUT,OL_th for more than ndebounce consecutive PWM periods AND  
VS VDEN_threshold for VS related diagnostic AND  
VLED VDEN_threshold for VLED related diagnostic.  
The open load (OL) is reported in the channel status byte OUTn and, if it is enabled, via ERRN. The OL flag is cleared  
afer the fault has been acknowledged with an explicit HWCR frame from the LCU.  
7.9  
Single LED Short (SLS) detection  
The device provides a single LED short (SLS) detection based on the VFWD conversion result.  
A SLS is detected if  
0 ≤ VFWDn VSLSth_m for more than ndebounce consecutive PWM periods, where m=0,1 which denotes the diagnostic  
group AND  
OUTn pulse width as specified for VFWD measurement AND  
VS VDEN_threshold for VS related diagnostic AND  
VLED VDEN_threshold for VLED related diagnostic.  
The two default SLS threshold voltages VSLSth_m are configured via the OTP and can be changed in active mode via the  
HSLI with 256 steps from 0V to 20.067 V.  
The device reports the SLS event in a channel status byte OUTn and, if enabled, via ERRN. The SLS flag is cleared afer  
the fault has been acknowledged with an explicit HWCR frame from the LCU.  
7.10  
OUT_SHORT_WRN, CUR_WRN, DC_WRN, VFWD_WRN warnings  
The device reports a violation of the forward voltage (VFWD_WRN), based on the VFWD measurement, in the output  
status byte and channel status byte OUTn and, if it is enabled, via ERRN. The VFWD warning (VFWD_WRN) thresholds  
are stored in the OTP. The loads can use two different sensing pins for the anode voltage: VS and VLED. The sensing  
input to be used is selected in the diagnostic group OTP register. If the forward voltage is too low for more than  
ndebounce, then the VFWD_WRN.OUTn is set on the HSLI channel status byte OUTn. If at least one VFWD_WRN.OUTn  
bit is set, the VFWD_WRN bit is set in the output status byte. The VFWD_WRN flag is cleared with an explicit HWCR  
frame from the LCU.  
The OUT_SHORT_WRN flag indicates a possible short between adjacent outputs. The fail is reported in the channel  
status byte OUTn and, if enabled, via ERRN. If at least one OUT_SHORT_WRN.OUTn bit is set, the OUT_SHORT_WRN  
bit is set in the output status byte. The OUT_SHORT_WRN can be enabled individually for each output via OTP. The  
OUT_SHORT_WRN is a safety feature. Detailed operational conditions are presented in the safety manual.  
The current warning mechanism monitors the regulated current on each power output channel in ON state condition  
if ton is above 100 µs. The channels that are OFF are not monitored. The current warning flag CUR_WRN is reported  
in case the measured current is lower than 15 mA (max) of the set OTP current value for more than n_debounce  
consecutive periods.  
Further information on the current warning settings can be found in the user manual.  
In case the OTP current value is set equal or below 14.625 mA (IOUT step=08) the output status byte can report an  
unintended current warning flag. It is recommended to set an OTP current value higher of equal than 15.75 mA  
(IOUT step = 09) to avoid unintended current warning flags.  
Datasheet  
38  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
7 Load Diagnostic  
The CUR_WRN is reported in the channel status byte OUTn and, if enabled, via ERRN. If at least one CUR_WRN.OUTn  
bit is set, the CUR_WRN bit is set in the output status byte. The CUR_WRN flag is cleared afer the warning has been  
acknowledged with an explicit HWCR frame from the LCU. An additional OTP parameter disables the report of the  
current warning on the ERRN output. This can be used to avoid warnings on applications where thermal derating or  
power offload is applied.  
The duty cycle warning (DC_WRN) compares the duty cycle for each power output channel witht the target stored  
in the OTP, when controlled via GPIN, or the one set with a DC_UPDATE command. It reports a deviation of the  
duty cycle bigger than 20ꢀ for more than ndebounce consecutive periods. The DC_WRN.OUTn is reported on the  
channel status byte OUTn and, if enabled, via ERRN. If at least one DC_WRN.OUTn bit is set, the DC_WRN bit is set  
in the output status byte. The DC_WRN flag is cleared afer the warning has been acknowledged with an explicit  
HWCR frame from the LCU. In case of DC_UPDATE with DLC=0x4 (8-bit format) is applied, the output status byte can  
report an unintended DC_WRN due to the power-law relation. It is recommended to ignore a DC_WRN when using  
DC_UPDATE with DLC=0x4 and to use DC_UPDATE with DLC=0x6 if the DC_WRN safety mechanism is needed.  
7.11  
Diagnostic group  
Each output stage is assigned to a diagnostic group to select the anode voltage reference and SLS reference voltage.  
OUTnDIAG group  
0b aaaa aaaa aaaa aaaa  
Definition for a  
"0" ... output is mapped to group 0, VS is taken as LED load anode voltage  
"1" ... output is mapped to group 1, VLED is taken as LED load anode voltage  
7.12  
Configurable fault management  
The device provides configuration options to define the output behavior on detected LED load faults (OL, SLS, OVLD)  
and ERRn reaction. The fault management configuration can be set in OTP according to the following table:  
Table 19  
Fault management  
Fault management configuration  
Device power mode state change  
no state change  
0 (default)  
1
change to init mode (power stages are turned off)  
The fault management configuration is valid in active mode only.  
If the Fault management is set to 1, and a load fault (OL, SLS, OVLD) or ERRn is recognized, the device will move  
to INIT switching off all the outputs and it is ready to perform a reconfirmation cycle. Load warnings (CUR_WRN,  
DC_WRN, VFWD_WRN, OUT_SHORT_WRN) do not trigger an INIT transition unless the ERRn is enabled in OTP. In this  
last case, the INIT transition happens due to the ERRn reaction. If Fault Management is set to 0, the outputs are not  
turned off in case of OL, SLS and ERRn, and the device does not moves to INIT. The LCU can take care of disabling the  
failing output based on the application diagnostic strategy.  
7.13  
Load fault reconfirmation cycle  
A load fault reconfirmation cycle consist of a wait time followed by a re-activation of the failing output. This in  
order to check if the fault condition persist, while keeping the rest of the outputs off. This allows reduced current  
consumption during fault. A reconfirmation cycle consist on 2 phases  
An INIT phase where all the channels are switched OFF  
An ACTIVE phase where the failing output can be turned ON  
A reconfirmation cycle is performed if  
Datasheet  
39  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
7 Load Diagnostic  
fault management configuration is set to "1" AND  
a load fault is detected in the previous ACTIVE phase  
The reconfirmation cycle starts afer a fault detection by moving the device in the INIT phase with outputs OFF. The  
INIT phase persist for at least treconf time.  
In case of HSLI control, the ACTIVE phase is trigger by a DC_UPDATE command with a delay of treconf. The DC_UPDATE  
command will also clear the fault flags to allow the reconfirmation procedure. Once in ACTIVE phase, a DC_SYNC  
command is needed to turn on only the failing output for ((2 + ndebounce) x PWM period) time.  
In case of direct control via GPIN, the ACTIVE phase is trigger by a GPIN HIGH with a delay of treconf. The fault flags (OL,  
SLS, OVLD) are cleared automatically at the beginning of the treconf. Once in ACTIVE phase only the failing output is  
turned on for ((2 + ndebounce) x PWM period) time in order to reconfirm the load fault. In case the failure is reconfirmed,  
the device moves to the INIT phase again. If the fault condition is not detected during ACTIVE ON, for more than  
(ndebounce x PWM period) time, the device will enable also the other outputs  
The status of the reconfirmation cycle can be checked via HSLI in the reconfirmation status register.  
Note: In an HSLI application (no GPINn activations requests), the load fault shall be read with a READ_OST frame  
before the DC_UPDATE frame.  
Open load on OUT1  
ACTIVE ON  
ACTIVE ON  
OUT1  
OUTn  
ERRn  
OL FLAG  
RECON_FLAG  
RECONFIRMATION CYCLE  
HSLI commands  
DC_SYNC  
DC_SYNC  
READ_OST  
DC_UPDATE  
DC_UPDATE  
DC_SYNC  
Device Status  
ACTIVE  
2+nDebounce PWM  
ACTIVE  
INIT  
treconf  
ACTIVE  
INIT  
treconf  
1+nDebounce PWM  
2+nDebounce PWM  
Normal  
Operation  
OUT1 Open Load  
OUTn Normal Operation  
Normal  
Operation  
Application  
Status  
Figure 14  
Load fault reconfirmation cycle with HSLI  
Datasheet  
40  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
7 Load Diagnostic  
Open load on OUT1  
ACTIVE ON  
ACTIVE ON  
OUT1  
OUTn  
ERRn  
OL FLAG  
RECON_FLAG  
GPIN  
RECONFIRMATION CYCLE  
Device Status  
ACTIVE  
INIT  
ACTIVE  
INIT  
ACTIVE  
treconf  
2+nDebounce PWM  
treconf  
2+nDebounce PWM  
1+nDebounce PWM  
Normal  
Operation  
OUT1 Open Load  
OUTn Normal Operation  
Normal  
Operation  
Application  
Status  
Figure 15  
Load fault reconfirmation cycle with GPIN  
7.14  
Diagnostic enable  
An unintended LED open or SLS fault can be detected on OUTn in low supply condition on VS or VLED depending on  
the Diagnostic group configuration.  
The device provides one diagnostic enable threshold related to VS and one diagnostic enable threshold related to  
VLED according to following table:  
Table 20  
Diagnostic enable threshold  
VDEN_threshold [V] Code VDEN_threshold [V] Code  
Code  
VDEN_threshold [V] Code  
VDEN_threshold [V]  
15.050  
0
1
2
3
4
5
6
7
0
8
5.017  
5.644  
6.271  
6.898  
7.525  
8.152  
8.779  
9.406  
16  
17  
18  
19  
20  
21  
22  
23  
10.034  
10.661  
11.288  
11.915  
12.542  
13.169  
13.796  
14.423  
24  
25  
26  
27  
28  
29  
30  
31  
0.627  
1.254  
1.881  
2.508  
3.135  
3.763  
4.390  
9
15.677  
10  
11  
12  
13  
14  
15  
16.305  
16.932  
17.559  
18.186  
18.813  
19.440  
Both diagnostic enable thresholds are stored in the OTP.  
Load diagnostic is only available for active-ON channel (duty cycle DC>0ꢀ). Set DC=0ꢀ on unused output will prevent  
from receiving spurious warnings. Exception is OUT_SHORT_WRN which is also available with DC=0ꢀ, but it can be  
disabled via OTP.  
If the device is in ACTIVE, FAIL-SAFE or OTP modes and VS or VLED are below their respective VDEN_THRESHOLD, the  
device reports an VLED_VS_UV in the output status byte.  
Datasheet  
41  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
7 Load Diagnostic  
The VLED_VS_UV flag is cleared with an explicit HWCR frame from LCU.  
7.15  
Diagnostic sample delay  
The device provides a configurable diagnostic sample delay tdiag_dly according to following table:  
Table 21  
Diagnostic sample delay  
Code  
tdiag_dly [µs]  
0
1
2
3
4
5
6
7
8
16  
24  
48  
96  
192  
300  
600  
The diagnostic sample delay is stored in the OTP.  
7.16  
Load diagnostic debouncing  
The device provides a configurable load diagnostic debouncing counter ndebounce according to following table:  
Table 22  
Diagnostic sample delay  
Code  
ndebounce  
0
1
2
3
reserved  
2 (default)  
4
6
The load diagnostic debouncing counter ndebounce is configurable via the OTP.  
7.17  
ERRN reaction  
With the use of an external pull-up resistor multiple devices can share the open drain diagnosis line as shown in  
Figure 16.  
The device detects an ERRN condition when VERRN VERRN,th and VS OR VLED is above the related VDEN_threshold.  
Datasheet  
42  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
7 Load Diagnostic  
Figure 16  
Shared error network principle  
7.18  
ERRN report  
The device is able to report a detected load fault with the ERRN pin.  
The open-drain ERRN pin sinks a pull-down current IERRN in ≤ tERRN when  
the device is in init OR fail-safe mode OR active mode AND  
a load fault OR internal fault OR warning has been detected AND  
the ERRN is enabled via the OTP  
Following diagnostic is disabled on OUT15, when it is used as ERRN feedback:  
min(VOUT) measurement  
open load detection  
single led short detection  
VFWD warning  
PWM duty cycle monitoring only for channel 15  
current monitor  
short between adjacent channels  
7.19  
ERRn reporting sources  
The ERRn reports following faults:  
Table 23  
List of fault sources for the ERRn reporting  
Fault source group  
Fault  
Fault  
Short description  
Long description  
Load faults  
Warnings  
OVLD  
SLS  
OL  
thermal overload  
Single LED Short  
open load  
CUR_WRN  
current too low  
DC_WRN  
duty cycle out of range  
forward voltage out of range  
short to adjacent channel  
GPINn warning  
VFWD_WRN  
OUT_SHORT_WRN  
GPINn_WRN  
(table continues...)  
Datasheet  
43  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
7 Load Diagnostic  
Table 23  
(continued) List of fault sources for the ERRn reporting  
Fault source group  
Fault  
Fault  
Short description  
Long description  
Internal faults  
UV&OV  
IREF  
OTP_CHECKSUM  
BIST_FAIL  
GPIN_SHORT  
under/overvoltage of internal supply  
reference current out of range  
OTP checksum error  
BIST failed  
GPIN short  
7.20  
HSLI diagnostic flag handling  
Application shall take care to clear the diagnostic flags during operation in order to allow new fault events detection.  
List of Output status and READ_OST flags and the relation with HWCR frame  
Output status/READ_OST fields  
Clearable by HWCR  
Need HWCR to restart the output if the failure  
disappears  
OL  
YES  
NO  
SLS  
YES  
NO  
OVLD  
YES  
Based on thermal overload retry strategy  
OUT_SHORT_WRN  
DC_WRN  
YES  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
YES  
YES  
YES  
YES  
CUR_WRN  
YES  
VFWD_WRN  
OUT_STAT  
YES  
NO (since not latched)  
VLED_VS_UV  
GPIN_WRN  
YES  
YES  
FAULT Internal supply UV/OV  
OTP checksum warning  
Internal BIST error  
NO (since not latched)  
YES  
YES  
YES  
Internal reference current  
warning  
GPIN short  
YES  
YES  
The FAULT Flag forces the device in INIT or FAIL OFF based on fault type so it may need HWCR or 6 consecutive HSLI  
sync break frames to move the device in to an active condition.  
When HSLI is not available to provide an HWCR (e.g. GPIN direct drive application), special care has to be taken in  
order to reduce FAULT events.  
A diode and a 470nF capacitor applied on VS reduce the risk of internal faults due to transient on the VS supply pin.  
Datasheet  
44  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
7 Load Diagnostic  
7.21  
Electrical characteristics  
Table 24  
Electrical Characteristics  
VS = 6 V to 20 V, TJ = -40°C to +150°C, all voltages with respect to ground, positive currents flowing as described  
in Figure 2 (unless otherwise specified). Typical values: VS = 9 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-  
Number  
Min.  
300  
Max.  
500  
Open load detection  
threshold  
VOUT,OL_th  
400  
mV  
Not subject to  
production test -  
specified by design  
PRQ-731  
Voltage measurement  
Voltage high-range  
nVRES,Hi  
nVRES,Lo  
10  
10  
Bit  
Bit  
full scale 20.034 V; VS, PRQ-471  
VLED, VOUT < 19.75 V  
conversion resolution  
Voltage low-range  
conversion resolution  
full scale 5.496 V; VGPIN PRQ-685  
< 5V  
ADC Differential  
DNL  
INL  
-1  
-2  
2
2
LSB  
LSB  
PRQ-476  
PRQ-477  
nonlinearity  
ADC Integral  
nonlinearity  
ADC offset  
VADCoffset  
eADCgain  
-4  
-1  
3
1
LSB  
PRQ-709  
PRQ-710  
ADC gain error  
ERRN fault feedback  
ERRn fault current  
IERRn  
4
2
mA  
V
VERRn ≥ 0.8 V  
PRQ-700  
PRQ-701  
ERRn input threshold VERRn,th  
0.8  
Timing  
Diagnostic on sample tDIAG_ON  
-
20  
µs  
Not subject to  
production test -  
specified by design  
PRQ-687  
PRQ-875  
PRQ-708  
time  
Reconfirmation delay  
time  
treconf  
80  
-
120  
ms  
ms  
Not subject to  
production test -  
specified by design  
ERRN activation delay tERRn  
2*tPWM  
Not subject to  
production test -  
specified by design  
Datasheet  
45  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
8 OTP  
8
OTP  
Features  
8.1  
The device contains a one-time programmable memory (OTP) to store the device configuration and provides  
following features:  
Programming mode for bus-ID and configuration section  
Emulation modes  
CRC checksum to verify consistency  
It can be programmed during end of line production step at customer site.  
8.2  
Electrical characteristics  
Table 25  
Electrical Characteristics  
VS = 6 V to 20 V, TJ = -40°C to +150°C, all voltages with respect to ground, positive currents flowing as described  
in Figure 2 (unless otherwise specified). Typical values: VS = 9 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-  
Number  
Min.  
Max.  
Programming cycles  
NPRG  
1
One time  
programmable  
memory (OTP)  
PRQ-494  
OTP programming  
voltage supply  
VS_PRG  
tPRG  
15.5  
17.5  
20  
64  
V
PRQ-495  
PRQ-496  
OTP programming  
cycle time  
ms  
500 µs per 16 bit  
cycle time; not subject  
to production test -  
specified by design  
Datasheet  
46  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
9 Communication interface  
9
Communication interface  
The device provides a UART-based protocol HSLI, where the LCU can write and read registers to and from each device  
sharing the same bus.  
The device provides the OTP programming and OTP emulation functions via the HSLI interface.  
9.1  
Protocol layer - High Speed Lighting Interface  
General description  
9.1.1  
The High-speed Lighting Interface (HSLI) is a digital interface for high performance automotive applications. The  
interface data link layer is based on a standard universal asynchronous receiver transmitter (UART) bit stream. The  
protocol is designed to support direct device-to-µC connections as well as CAN-FD transceivers to implement a robust  
connection scheme for remote control applications. Thanks to the lean protocol implementation, high update rates  
can be achieved despite limited bandwidth especially with remote interfaces.  
9.1.2  
Main features  
The HSLI is a cost efficient interface for high performance automotive applications. HSLI can be used as highly flexible  
interface for transferring data.  
Single master, multiple slave concept  
Synchronization of single or multiple slaves  
Supports bus configurations with up to 31 addressable slaves and 1 broadcast address  
Bidirectional communication  
Auto-bit rate detection within the range from 200 kbit/s up to 2 Mbit/s when LP_INIT='0' or up to 500 kbit/s when  
LP_INIT='1'.  
9.1.3  
Frame structure  
The frame consists of a number of bytes:  
one sync byte  
one master request  
followed by 0 to n master data bytes  
and 0 to n slave data bytes  
The structure of a full communication frame is shown below:  
Figure 17  
Structure of a frame  
9.1.4  
HSLI interframe delay  
The HSLI aborts processing the communication when no dominant ("0") bus communication occurred longer than  
the interfame delay tframedly. The master needs to wait longer than tframedly between two consecutive frames.  
The interframe delay is configurable via the OTP according to following table:  
Datasheet  
47  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
9 Communication interface  
Table 26  
HSLI interframe delay  
Step  
tframedly  
50 µs  
0
1
100 µs  
250 µs  
500 µs  
1 ms  
2
3
4 (default)  
5
2.5 ms  
The device starts counting the interframe delay from the last received dominant bit and not at the end of the byte  
transmitted.  
In case of a 0xFF byte transmission the counting starts from the start bit.  
9.1.5  
Slave response bus idle time  
The slave responds to a valid master request within tbus_idle when requested by the master.  
9.1.6  
UART byte field  
The next figure shows the standard UART byte field. This structure is the basis for data transfer between slave and  
master. The LSB of the data is transmitted first and the MSB last. The start bit is encoded as a low and the stop bit is  
encoded as a high bit.  
Figure 18  
UART byte field  
9.1.7  
HSLI baud rate auto detection  
The HSLI supports Baud rates in the range of nBaud. The Baud rate configuration is automatically detected based on  
the master request.  
9.1.8  
HSLI bit timing  
The HSLI uses a variable oversampling for the RX signal within 16 quanta with a configurable bit sample timing stored  
in the OTP.  
Table 27  
HSLI bit timing  
Step  
nBST  
0 (default)  
7,8,9  
1
2
3
8,9,10  
9,10,11  
10,11,12  
Datasheet  
48  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
9 Communication interface  
9.1.9  
HSLI watchdog timeout  
The watchdog is used to monitor the HSLI bus activity and to trigger a state change to fail-safe mode in case of a  
communication timeout.  
The watchdog recognizes a successful watchdog trigger when receiving a valid HSLI command within less than tWD  
atWD_Tol since the previous successful watchdog trigger as shown in the following figure.  
open window  
typ. watchdog timer period tWD (WD_TIMER)  
tWD  
safe trigger area  
tWD - atWD_Tol  
tWD + atWD_Tol  
t
Figure 19  
Watchdog timeout trigger definition  
The watchdog timer period tWD (WD_TIMER) can be configured via the OTP according to following table:  
Table 28  
WD_TIMER configuration  
tWD [ms] , where LP_INIT = '0' tWD [ms] , where LP_INIT = '1' AND device is in init mode  
WD_TIMER  
0
1
2
3
4
5
6
7
disabled  
disabled  
60  
20  
50  
150  
100  
300  
200  
600  
500  
1500  
1000  
3000  
2000 (default)  
6000 (default)  
Datasheet  
49  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
9 Communication interface  
9.1.10  
Electrical characteristics  
Table 29  
Electrical Characteristics  
VS = 6 V to 20 V, TJ = -40°C to +150°C, all voltages with respect to ground, positive currents flowing as described  
in Figure 2 (unless otherwise specified). Typical values: VS = 9 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-  
Number  
Min.  
0.2  
Max.  
Baud rate  
nBAUD  
-
-
2
MBaud LP_INIT = '0';  
PRQ-737  
Not subject to  
production test -  
specified by design  
Baud rate LP_INIT  
nBAUD  
0.1  
0.1  
0.5  
15  
MBaud init mode;  
LP_INIT = '1';  
PRQ-880  
Not subject to  
production test -  
specified by design  
Slave response bus idle tbus_idle  
time  
-
µs  
active mode, OTP  
programming and  
emulation modes, fail-  
safe mode;  
PRQ-738  
not subject to  
production test -  
specified by design  
Slave response bus idle tbus_idle  
1
100  
10  
µs  
init mode;  
not subject to  
production test -  
specified by design  
PRQ-781  
PRQ-820  
time in init mode  
Timeout watchdog  
tolerance  
atWD_Tol  
-10  
Not subject to  
production test -  
specified by design  
9.1.11  
Master Frame Types  
Overview  
9.1.11.1  
The frame type describes the different configuration of frames. Some of the frame types are only for specific purpose,  
which will be defined in the following subsections. The master request frames are issued by the LCU and provide  
address information for the connected slave. The slave will receive every master request frame and compare the  
address information to its reference address stored in the OTP. If the address issued by the master matches the slave  
reference address, the slave takes action according the master request frame; otherwise the entire frame will be  
ignored.  
When setting up a network it has to be taken care that all slaves connected to the network are assigned a unique  
address to avoid bus collisions. One particular slave address is used to implement a broadcast synchronization  
feature, which will cause all connected slaves to change their duty cycle output control configuration at the same  
point in time.  
The data transfer from the LCU to the slave is organized in dedicated master request frames, namely  
Datasheet  
50  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
9 Communication interface  
Broadcast duty cycle update synchronization - DC_SYNC  
Update duty cycle shadow register - DC_UPDATE  
Power mode change - PM_CHANGE  
Hardware control - HWCR  
Read diagnostics - READ_OST  
Write register content - WRITE_REG  
Read register content - READ_REG  
Sync break reset - SYNC_BREAK  
The following sequence diagram shows the write and read register frame sequence for two nodes.  
Figure 20  
Table 30  
Sequence diagram - write and read registers  
Master frame overview table  
SYNC ADDR MRC  
ESS  
DLC  
FUN  
DATA_0 ... Ouptut  
ACK Byte  
DATA_n  
Status  
Byte  
0x55  
0x55  
0x55  
0x0  
0x1  
0x2  
x
x
x
x
x
x
0x0 0 words 0x0  
Broadcast duty  
cycle  
not applicable for broadcast command  
synchronization  
0x1 1 word  
0x1  
Duty cycle  
shadow register  
update  
data by the Diagnostic CRC-3, MODE, RC,  
master  
feedback  
(slave)  
TER (slave)  
0x2 2 words 0x2  
Request  
diagnostics  
data by the Diagnostic CRC-3, MODE, RC,  
slave  
feedback  
(slave)  
TER (slave)  
(table continues...)  
Datasheet  
51  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
9 Communication interface  
Table 30  
(continued) Master frame overview table  
SYNC ADDR MRC  
ESS  
DLC  
FUN  
DATA_0 ... Ouptut  
ACK Byte  
DATA_n  
Status  
Byte  
0x55  
0x55  
0x55  
...  
0x3  
0x4  
0x5  
...  
x
x
x
x
x
x
0x3 4 words 0x3  
0x4 8 words 0x4  
0x5 12 words 0x5  
Hardware control data by the Diagnostic CRC-3, MODE, RC,  
master  
feedback  
(slave)  
TER (slave)  
Write register  
Read register  
data by the Diagnostic CRC-3, MODE, RC,  
master  
feedback  
(slave)  
TER (slave)  
data by the Diagnostic CRC-3, MODE, RC,  
slave  
feedback  
(slave)  
TER (slave)  
... ... 0x6 16 words 0x6  
Power mode  
change  
data by the Diagnostic CRC-3, MODE, RC,  
master  
feedback  
(slave)  
TER (slave)  
0x55  
0x1F  
x
x
0x7 32 words 0x7  
reserved  
9.1.11.2  
DC_SYNC - broadcast duty cycle update synchronization  
Some applications require a synchronous change of the output duty cycle configuration of all connected slaves on the  
bus.  
The protocol provides a broadcast duty cycle update synchronization command (DC_SYNC) to trigger a synchronous  
sampling event at multiple slaves. The sampling event can trigger the duty cycle update process, where the duty  
cycle data from the shadow register is transferred to the hardware control register synchronized to the start of the  
next PWM period. An updated output channel completes the actual PWM pulse before changing to the new duty cycle  
configuration to avoid glitches on the output.  
The frame description is shown in Figure 21.  
The DC_SYNC frame requires following field configurations:  
Address[4:0] = 0x00  
DLC[5:3] = 0x0  
FUN[2:0] = 0x0  
There is no response from the slave to the master given in case of the broadcast duty cycle update synchronization  
frame.  
The CRC [7:5] is calculated as described in Chapter 9.1.11.11.  
Datasheet  
52  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
9 Communication interface  
Figure 21  
Broadcast synchronization frame  
9.1.11.3  
DC_UPDATE - update duty cycle shadow register  
The purpose of the master request frame update duty cycle is to refresh the duty cycle for each channel within one  
master request. The data transfer to the slave is organized in dedicated write frame, containing  
the sync byte, provided by the master,  
the address byte, provided by the master,  
the MRC_DLC_FUN byte, provided by the master,  
the DutyCycleOUTn bytes representing the desired duty cycle, DLC times words provided by the master,  
the safety byte (CRC-8), provided by the master,  
the output status bytes, provided by the slave and the  
Acknowledge byte (ACK) provided by the slave.  
The DC_UPDATE frame requires following field configurations to update the duty cycle:  
DLC[5:3] = 0x4 for 8 words respectively 16 bytes for 8-bit duty cycle configuration OR  
DLC[5:3] = 0x6 for 16 words respectively 32 bytes for 14-bit duty cycle configuration  
FUN[2:0] = 0x1  
The slave ignores and discards frames in case of an unexpected DLC or FUN data as described in Chapter 9.1.11.10. In  
addition a broadcast frame with DLC[5:3] = 0x0 is ignored.  
The DC_UPDATE frame requires following field configurations to retrieve diagnostics only:  
DLC[5:3] = 0x0 for output status bytes only  
FUN[2:0] = 0x1  
The slave response bytes "output status byte and acknowledge byte" are skipped in case the frame is sent to the  
broadcast address. Consequently there is no response from the slave to the master provided.  
The DC_UPDATE frame is shown in Figure 22.  
The master request CRC[7:5] is calculated as described in CRC-3 for master requests.  
The safety byte CRC[7:0] is calculated as described in CRC-8 for safety byte.  
Datasheet  
53  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
9 Communication interface  
The slave response CRC[7:5] is calculated as described in CRC-3 for slave response.  
175  
174  
173  
172  
171  
170  
169  
168  
0
1
0
1
0
1
0
1
SYNC  
167  
166  
165  
164  
163  
162  
161  
160  
Master request  
Slave address  
CRC[7:5]  
Address[4:0]  
159  
158  
157  
156  
155  
154  
153  
152  
MRC, DLC and FUN  
MRC[7:6]  
DLC[5:3]  
FUN[2:0]  
145  
151  
150  
149  
148  
147  
146  
144  
DutyCycleOUT0[7:0]  
Data #1  
...  
...  
31  
23  
15  
30  
22  
14  
29  
21  
13  
28  
27  
26  
18  
10  
25  
17  
24  
16  
DutyCycleOUT15[7:0]  
Data #16  
20  
19  
11  
CRC[7:0]  
Safety Byte  
12  
9
8
VLED  
VS  
OUT  
SHORT  
WRN  
GPINn  
WRN  
DC  
CUR  
VFWD  
WRN  
FAULT  
OVLD  
Output Status Byte  
ACK  
WRN  
WRN  
UV  
7
6
5
4
3
2
1
0
CRC[7:5]  
RC[2:1]  
TER  
MODE[4:3]  
Figure 22  
Update duty cycle (DC_UPDATE) for DLC = 0x04  
Datasheet  
54  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
9 Communication interface  
303  
302  
301  
300  
299  
298  
297  
296  
0
1
0
1
0
1
0
1
SYNC  
295  
294  
293  
292  
291  
290  
289  
288  
Master request  
Slave address  
CRC[7:5]  
Address[4:0]  
287  
286  
278  
285  
284  
283  
282  
281  
280  
MRC, DLC and FUN  
MRC[7:6]  
DLC[5:3]  
FUN[2:0]  
273  
279  
271  
277  
269  
276  
275  
274  
272  
264  
RES  
DutyCycleOUT0[13:8]  
Data #1 (Word)  
270  
268  
267  
266  
265  
DutyCycleOUT0[7:0]  
...  
...  
39  
31  
23  
15  
38  
30  
22  
14  
37  
29  
21  
13  
36  
28  
35  
34  
33  
25  
17  
32  
24  
16  
DutyCycleOUT15[13:8]  
RES  
Data #16 (Word)  
27  
26  
18  
10  
DutyCycleOUT15[7:0]  
20  
19  
CRC[7:0]  
Safety Byte  
12  
11  
9
8
VLED  
VS  
OUT  
SHORT  
WRN  
GPINn  
WRN  
DC  
CUR  
VFWD  
WRN  
FAULT  
OVLD  
Output Status Byte  
ACK  
WRN  
WRN  
UV  
7
6
5
4
3
2
1
0
CRC[7:5]  
RC[2:1]  
TER  
MODE[4:3]  
Figure 23  
Update duty cycle (DC_UPDATE) for DLC = 0x06  
Datasheet  
55  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
9 Communication interface  
9.1.11.4  
READ_OST - request diagnostic  
The purpose of this frame is to retrieve the output power stage status (Channel status Byte OUTn) within one master  
request. The data transfer to the slave is organized in a dedicated write frame containing  
the sync byte, provided by the master,  
the address byte, provided by the master,  
the function (FUN = 0x2) and data length code (DLC = 0x4) information, provided by the master,  
data bytes representing the output stage status, provided by the slave, and the  
safety byte (CRC-8), provided by the slave.  
The READ_OST byte frame is shown in Figure 24 and requires following fields to read the Channel Status OUT:  
DLC[5:3] = 0x4 for 8 words respectively 16 bytes  
FUN[2:0] = 0x2  
The slave ignores and discards frames in case of an unexpected DLC or FUN data as described in Chapter 9.1.11.10.  
The master request CRC[7:5] is calculated as described in CRC-3 for master requests.  
The safety byte CRC[7:0] is calculated as described in CRC-8 for safety byte.  
The slave response CRC[7:5] is calculated as described in CRC-3 for slave response.  
Datasheet  
56  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
9 Communication interface  
167  
166  
165  
164  
163  
162  
161  
160  
0
1
0
1
0
1
0
1
SYNC  
159  
158  
157  
149  
156  
155  
147  
139  
154  
153  
152  
144  
136  
Master request  
Slave address  
CRC[7:5]  
150  
Address[4:0]  
146  
151  
148  
145  
MRC[7:6]  
DLC[5:3]  
MRC, DLC and FUN  
FUN[2:0]  
137  
143  
OL  
142  
SLS  
141  
140  
138  
OUT  
DC  
WRN  
CUR  
WRN  
VFWD  
WRN  
OUT  
STAT  
Channel Status Byte  
OUT0  
SHORT  
OVLD  
WRN  
...  
...  
31  
30  
29  
28  
27  
26  
25  
24  
OUT  
Channel Status Byte  
OUT15  
DC  
WRN  
CUR  
WRN  
VFWD  
WRN  
OUT  
STAT  
SHORT  
OL  
SLS  
OVLD  
WRN  
23  
22  
21  
20  
19  
18  
17  
16  
Safety Byte  
CRC[7:0]  
15  
14  
13  
12  
11  
10  
9
8
VLED  
VS  
OUT  
SHORT  
WRN  
GPINn  
WRN  
DC  
CUR  
VFWD  
WRN  
Output Status Byte  
ACK  
OVLD  
FAULT  
WRN  
WRN  
UV  
7
6
5
4
3
2
1
0
CRC[7:5]  
RC[2:1]  
TER  
MODE[4:3]  
Figure 24  
Request diagnostic frame  
Datasheet  
57  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
9 Communication interface  
9.1.11.5  
HWCR frame  
The purpose of the hardware control frame is to clear the diagnostic flags. The data transfer to the slave is organized  
in dedicated write frame, containing  
the sync byte, provided by the master  
the address byte, provided by the master  
the MRC_DLC_FUN byte, provided by the master  
the RESET diagnostic words (RESET_OVERLOAD, RESET_OPENLOAD, RESET_SLS, RESET_STATUS), provided by  
the master  
the safety byte (CRC-8), provided by the master  
the output status byte, provided by the slave and the  
Acknowledge byte (ACK) provided by the slave.  
The HWCR frame requires following field configurations:  
DLC[5:3] = 0x3 for 4 words respectively 8 bytes for the reset diagnostic words  
FUN[2:0] = 0x3  
The slave response bytes "output status byte and acknowledge byte" are skipped in case the frame is sent to the  
broadcast address. Consequently there is no response from the slave to the master provided.  
The slave ignores and discards frames in case of an unexpected DLC or FUN data as described in Chapter 9.1.11.10.  
The HWCR frame requires following field configurations to retrieve diagnostics only:  
DLC[5:3] = 0x0 for output status bytes only  
FUN[2:0] = 0x3  
The HWCR frame is shown in Figure 25.  
Datasheet  
58  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
9 Communication interface  
Figure 25  
Hardware control frame  
Datasheet  
59  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
9 Communication interface  
9.1.11.6  
PM_CHANGE - power mode change  
The purpose of the master request frame power mode change is to initiated a transition to the commanded power  
state. The data transfer to the slave is organized in dedicated write frame, containing  
the sync byte, provided by the master,  
the address byte, provided by the master,  
the MRC_DLC_FUN byte, provided by the master,  
the power mode provided by the master,  
the safety byte (CRC-8), provided by the master,  
the output status byte, provided by the slave and the  
Acknowledge byte (ACK) provided by the slave.  
The slave response bytes "output status byte and acknowledge byte" are skipped in case the power mode change is  
sent to the broadcast address. Consequently there is no response from the slave to the master given in case of the  
broadcast address contains the power mode change frame.  
The PM_CHANGE frame requires following field configurations to perform the power mode change:  
DLC[5:3] = 0x1 for 1 word respectively 2 bytes  
FUN[2:0] = 0x6  
The slave ignores and discards frames in case of an unexpected DLC or FUN data as described in Chapter 9.1.11.10.  
The master request CRC[7:5] is calculated as described in CRC-3 for master requests.  
The safety byte CRC[7:0] is calculated as described in CRC-8 for safety byte.  
The slave response CRC[7:5] is calculated as described in CRC-3 for slave response.  
Datasheet  
60  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
9 Communication interface  
Figure 26  
Power mode change frame  
Datasheet  
61  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
9 Communication interface  
9.1.11.7  
WRITE_REG - Write register  
The purpose of the master request frame write register (WRITE_REG) is to access the devices 16-bit registers.  
The data transfer to the slave is organized in dedicated write frame, containing  
the sync byte, provided by the master,  
the address byte, provided by the master,  
the MRC_DLC_FUN byte, provided by the master,  
the start address, provided by the master,  
the data words representing the register content, DLC times provided by the master,  
the safety byte (CRC-8), provided by the master,  
the output status bytes, provided by the slave and the  
Acknowledge byte (ACK) provided by the slave.  
The WRITE_REG frame requires following field configurations:  
DLC[5:3] = n > 0, for the number of words  
FUN[2:0] = 0x4  
The WRITE_REG frame is shown in Figure 27.  
The write register can access consecutive register depending on the start address and DLC.  
The master request CRC[7:5] is calculated as described in CRC-3 for master requests.  
The safety byte CRC[7:0] is calculated as described in CRC-8 for safety byte.  
The slave response CRC[7:5] is calculated as described in CRC-3 for slave response.  
Accessing an invalid address, a DLC or FUN error leads to an invalid frame. Consequently the slave reacts as described  
in Chapter 9.1.11.10.  
In case the address byte is 0 (broadcast address), the device does not provide the output status byte and  
acknowledge byte.  
Datasheet  
62  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
9 Communication interface  
single register write access n = 1  
71  
70  
69  
68  
67  
66  
65  
64  
0
1
0
1
0
1
0
1
SYNC  
63  
62  
61  
60  
59  
58  
57  
56  
Master request  
Slave address  
CRC[7:5]  
54  
Address[4:0]  
50  
55  
47  
53  
45  
52  
51  
43  
49  
48  
40  
MRC[7:6]  
DLC[5:3]  
FUN[2:0]  
41  
MRC, DLC and FUN  
Start Address  
46  
44  
42  
StartADDR[7:0]  
39  
31  
38  
30  
37  
29  
36  
35  
34  
26  
33  
25  
32  
24  
Data[15:8]  
Data #1  
28  
27  
Data[7:0]  
23  
15  
22  
14  
21  
13  
20  
19  
18  
10  
17  
16  
CRC[7:0]  
Safety Byte  
Output Status Byte  
ACK  
12  
11  
9
8
VLED  
VS  
UV  
OUT  
SHORT  
WRN  
GPINn  
WRN  
DC  
WRN  
CUR  
WRN  
VFWD  
WRN  
FAULT  
OVLD  
7
6
5
4
3
2
1
0
CRC[7:5]  
MODE[4:3]  
RC[2:1]  
TER  
Figure 27  
Master request frame - write single register  
Datasheet  
63  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
9 Communication interface  
9.1.11.8  
READ_REG - Read register  
The purpose of the master request frame read register is to access the devices 16-bit registers.  
The data transfer is organized in dedicated frame, containing  
the sync byte, provided by the master  
the address byte, provided by the master  
the MRC_DLC_FUN byte, provided by the master,  
the start address,  
the data words, DLC times words provided by the slave,  
the safety byte (CRC-8), provided by the slave  
the output status bytes, provided by the slave and the  
Acknowledge byte (ACK) provided by the slave.  
The READ_REG frame requires following field configurations:  
DLC[5:3] = n > 0, for the number of words  
FUN[2:0] = 0x5  
The READ_REG frame is shown in Figure 28.  
The read register can access consecutive register depending on the start address and DLC.  
Accessing an invalid address, a DLC or FUN error leads to an invalid frame. Consequently the slave reacts as described  
in Chapter 9.1.11.10.  
Datasheet  
64  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
9 Communication interface  
Figure 28  
Read single register frame  
Datasheet  
65  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
9 Communication interface  
9.1.11.9  
SYNC_BREAK  
The LCU can initiate a sync break to reset the protocol handler.  
The device detects a sync break if the HSLI bus is dominant ≥ tSYNC_BREAK and then recessive again.  
Every received sync break reset signal is counted by the device. The sync break counter is reset on a valid HSLI  
communication frame.  
tSYNC_BREAK can be configured by the OTP according to table below.  
Table 31  
tSYNC_BREAK configuration  
Step  
tSYNC_BREAK  
100 µs  
250 µs  
750 µs  
1 ms  
0
1
2
3 (default)  
If the sync break is detected a reset of the protocol handler is initiated where,  
master rolling counter (MRC) and slave rolling counter (RC) is reset to its default value (0) and  
all pending transmissions are interrupted.  
If the sync break counter is equal to 6 the slave performs a reset of the devices and enters init mode afer tIDLE2INIT  
time. This reset mechanism is available in init mode, active mode, fail-safe mode and OTP mode  
9.1.11.10 Handling of invalid frame requests  
The slave can receive invalid request frames from the LCU master. Potential root causes for invalid frames can be  
- Programming error at the LCU  
- Distorted communication  
- Loss of synchronization between slave and LCU causing the interpretation of a data frame as slave request frame.  
Following mechanisms are integrated to avoid, detect and report invalid master request frames:  
In case of a valid frame but a CRC-8 error occurred, the slave reports an invalid received frame with ACK.TER = '1'  
as described.  
In case of an invalid frame or syntax error the slave ignores and discards the received frame.  
In case of a CRC-8 error the slave reports an invalid received frame with ACK.TER = '1' . The received frame is discarded  
and the communication watchdog is not served.  
In case of an invalid frame error the slave ignores and discards the received frame and the time out watchdog is not  
served. No feedback is given to the LCU to prevent further potential bus collision or loss of data frames.  
An invalid frame is considered if  
stop bit is low  
unrecognized sync byte  
unspecified register in REG_WRITE or REG_READ frames  
unspecified DLC and FUN combination  
wrong master rolling counter MRC  
CRC-3 for master request error  
Datasheet  
66  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
9 Communication interface  
9.1.11.11 CRC overview  
The CRC-3 for master request (CRC[7:5]) in the master request is calculated over the Address[4:0], MRC[7:6], DLC[5:3]  
and FUN[2:0]. The generator polynom is x3 + x + 1 and the seed is 0x5.  
The CRC-3 for slave response (CRC[7:5]) in the slave response is calculated over the output status byte, MODE[4:3],  
RC[2:1] and TER. The generator polynom is x3 + x + 1 and the seed is 0x5.  
The CRC-8 for the safety byte (CRC[7:0]) for the safety byte is defined with the generator polynom according to  
CRC-8-AUTOSAR and SAE J1850: 0x8e = x^8 +x^4 +x^3 +x^2 +1 and the seed is 0xFF.  
The CRC-8 is used in following frames and calculated over dedicated bytes or words :  
Frame  
Words  
DC_UPDATE  
PM_CHANGE  
WRITE_REG  
READ_REG  
DutyDycleOUT0 to DutyCycleOUT15  
PowerMode and 0x00  
StartADDR + Data * DLC  
StartADDR + Data * DLC  
9.1.11.12 Byte Field Description  
9.1.11.12. MASTER_REQ_ADDR  
1
The master request address byte comprises the slave address information and a CRC[7:5] bit field to secure the data  
transmission as shown in Figure 29.  
Table 32  
Master request byte overview  
Bits Type Description  
Field  
Address  
[4:0]  
w
Slave Address  
CRC  
[7:5]  
w
Cyclic Redundancy Check  
The composition of a master request field is shown above. Bits Address[4:0] represent the slave address information  
and the broadcast address as shown in table below. To avoid an incorrect arbitration of the bus in case of  
disturbances, the master request frame includes 3-bit CRC[7:5] as described in CRC-3 for master requests.  
Table 33  
Slave address overview  
Function  
Slave Address  
A4  
0
A3  
A2  
A1  
A0  
0
0
0
0
Broadcast  
N
Slave n [1..31]  
Figure 29  
Master request byte to address the slaves  
Datasheet  
67  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
9 Communication interface  
9.1.11.12. DutyCycleOUTn byte  
2
The DutyCycleOUTn byte comprises the desired output PWM duty cycle in a compact 8-bit format as shown in  
DutyCycleOUTn byte. The device converts the 8-bit format to the 14-bit internal hardware duty cycle setting. The  
relation between the compact 8-bit and the 14-bit representation follows a power law as described in Figure 7 and  
Chapter 6.4.4.  
Figure 30  
Table 34  
Duty cycle update byte  
Output conversion result byte overview  
Bits Type Description  
Field  
DutyCycleOUTn  
[7:0]  
w
Desired PWM Duty Cycle for OUTn (n=0..15)  
Figure 31  
Table 35  
Duty cycle update word  
Output conversion result byte overview  
Field  
Bits  
Type Description  
DutyCycleOUTn  
[13:0] w Desired PWM Duty Cycle for OUTn (n=0..15)  
9.1.11.12. MRC_DLC_FUN byte  
3
The MRC_DLC_FUN byte comprises the master issued rolling counter, the data length code and the desired function  
as shown in Figure 32.  
The composition of a function request and data length code byte is shown in the table below.  
Datasheet  
68  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
9 Communication interface  
Table 36  
Master request byte overview  
Bits Type Description  
Field  
MRC  
[7:6]  
w
Rolling Counter, 2 bit counter value, master needs to increment in every  
data transmission  
0x00 default (start) value  
Data Length Code  
Function  
DLC  
FUN  
[5:3]  
[2:0]  
w
w
The bits DLC[5:3] represent the data length code and is defined as shown in the next table.  
Table 37 DLC field overview  
DLC - Data Length Code  
data length in words - multiple of 2 bytes  
D2  
0
D1  
0
D0  
0
0 words, 0 bytes  
1 word, 2 bytes  
0
0
1
0
1
0
2 words, 4 bytes  
4 words, 8 bytes  
8 words, 16 bytes  
12 words, 24 bytes  
16 words, 32 bytes  
32 words, 64 bytes  
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
The bits FUN[2:0] represent the desired function request as listed in the table below.  
Table 38  
Function request field overview  
Function bits  
Function  
F0  
F2  
0
F1  
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Broadcast duty cycle synchronization  
0
Duty cycle shadow register update  
Request diagnostics  
Hardware control frame  
Write register  
0
0
1
1
Read register  
1
Power mode change  
Reserved  
1
The device increments the 2-bit master rolling counter MRC counter on every received valid master request frame  
despite the address field.  
A MRC fail is detected if there is a mismatch between the received MRC and the internal MRC counter.  
The internal MRC counter is loaded afer a mismatch condition with the received MRC.  
Datasheet  
69  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
9 Communication interface  
In case of an reset condition the MRC counter default value is set to 0.  
Figure 32  
Master rolling counter, function request and data length code byte  
9.1.11.12. StartADDR byte  
4
The start address byte is used for writing or reading up to 32 consecutive register locations starting from the defined  
start address register in a single command as shown in Figure 33. The number of successive write or read events is  
defined with the DLC.  
Table 39  
Start address byte overview  
Bits Type Description  
Field  
Start Address  
[7:0]  
w
Single byte start address for the 16-bit register write or read operation  
Figure 33  
Start address byte  
9.1.11.12. Data Word  
5
The two data bytes comprises the downloaded data from the master to the slave or the responded feedback from the  
slave to the master as shown in Figure 34.  
Table 40  
Data word - word structure overview  
Bits Type Description  
Field  
Data  
[15:8] w/r  
Data  
Contains the MSB(byte) of the data to written to the slave or read from the  
master  
Data  
[7:0] w/r  
Data  
Contains the LSB(byte) of the data to written to the slave or read from the  
master  
Datasheet  
70  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
9 Communication interface  
Figure 34  
Data word  
9.1.11.12. Power Mode  
6
The master power mode change byte comprises the commanded power mode state as shown in Figure 35.  
Table 41  
Power mode byte overview  
Bits Type Description  
Field  
Power Mode  
[2:0]  
w
Power mode  
000 ... enter_init_mode  
001 ... reserved  
010 ... enter_fail-safe  
011 ... enter_OTP_mode  
1xx ... reserved  
reserved  
[7:3]  
w
Figure 35  
Power mode byte  
9.1.11.12. Output Status Byte  
7
The output status byte comprises the status overview for all power output channels and is shown in Figure 36.  
The bit fields are described below, further details are available in the safety and user manuals.  
Table 42  
Bit field description  
Bits Type Description  
VLED/VS under voltage flag  
Field  
VLED_VS_UV  
7
r
0 ... if (VLED AND VS) is above VDEN_threshold  
1 ... there was at least one under voltage condition event detected  
(table continues...)  
Datasheet  
71  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
9 Communication interface  
Table 42  
(continued) Bit field description  
Bits Type Description  
Field  
OUT_SHORT_WRN  
6
r
short between adjacent output warning  
0 .. no short between adjacent output warning detected  
1 .. there was at least one short between an adjacent output warning  
detected  
GPINn_WRN  
DC_WRN  
CUR_WRN  
VFWD_WRN  
OVLD  
5
4
3
2
1
0
r
r
r
r
r
r
GPINn warning flag  
0 ... GPIN0 and GPIN1 are not in a fault condition  
1 ... there was at least one GPINn fault condition  
Duty cycle warning flag  
0 ... no duty cycle warning for OUT0 to OUT15 detected  
1 ... there was at least one duty cycle warning condition  
Output current warning flag  
0 ... no output current warning for OUT0 to OUT15 detected  
1 ... there was at least one output current warning condition  
Forward voltage warning flag  
0 ... no forward voltage warning for OUT0 to OUT15 detected  
1 ... there was at least one forward voltage warning condition  
Over load flag  
0 ... no thermal overload condition detected on OUT0 to OUT15  
1 ... there was at least one thermal overload condition detected  
Fault  
Internal fault flag  
0 ... no internal fault detected  
1 ... internal fault condition detected  
Figure 36  
Output status byte  
In case of GPIN short condition is detected, the Fault bit is set.  
Note:  
9.1.11.12. Channel status Byte – OUTn  
8
The Channel status Byte - OUTn comprises the status overview for a single power output channel OUTn and is shown  
in Figure 37.  
The bit fields are described below, where the warning conditions are described in Chapter 7.10 and in the safety  
manual  
Datasheet  
72  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
9 Communication interface  
Table 43  
Bit field description  
Bits Type Description  
Field  
OL  
7
6
5
4
r
r
r
r
Open load flag  
0 ... no open load condition detected  
1 ... there was at least one open load condition detected  
SLS  
Single LED Short (SLS) flag  
0 .. no SLS condition detected  
1 .. there was at least one single LED short detected  
OVLD  
OVLD flag  
0 ... no thermal overload condition detected  
1 ... there was at least one thermal overload condition detected  
OUT_SHORT_WRN  
short between adjacent output warning flag  
0 .. no short between adjacent output warning detected  
1 .. there was at least one short between an adjacent output warning  
detected  
DC_WRN  
3
2
1
0
r
r
r
r
Duty cycle warning flag  
0 ... no duty cycle warning detected  
1 ... there was at least one duty cycle warning condition detected  
CUR_WRN  
VFWD_WRN  
OUT_STAT  
Output current warning flag  
0 ... no output current warning detected  
1 ... there was at least one output current warning condition detected  
Forward voltage warning flag  
0 ... no forward voltage warning detected  
1 ... there was at least one forward voltage warning condition detected  
Output state flag  
0 ... power output channel is in ON state or device in INIT mode  
1 ... power output channel is in OFF state  
Figure 37  
Channel status Byte - OUTn  
Note:  
The output state flag (OUT_STAT) reports an on-state ("0") in case of a duty cycle ≥ 6.25% and no fault  
occured. In case of a duty cycle set to 0%, the output state flag reports off-state ("1") and no fault occured. In  
case of a duty cycle >0% and < 6.25% the output state flag reports either on-state or off-state.  
OUT_STAT reports the proper status of the channel with a delay of 2 PWM afeꢀ the duty cycle update  
(DC_UPDATE+DC_SYNC)  
Datasheet  
73  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
9 Communication interface  
9.1.11.12. RESET diagnostic words  
9
The two bytes comprise reset request for the reported thermal overload condition for each output channel.  
Table 44  
RESET_OVERLOAD word - structure overview  
Field  
Bits  
Type Description  
RESET_OVERLOAD  
[15:8]  
w
Reset OVERLOAD flag  
Contains the MSB(byte) for the reset thermal overload request. The bit  
RESET_OVERLOAD[n] is mapped to fault flag reported for OUTn .  
RESET_OVERLOAD  
[7:0]  
w
Reset OVERLOAD flag  
Contains the LSB(byte) for the reset thermal overload request. The bit  
RESET_OVERLOAD[n] is mapped to fault flag reported for OUTn.  
The two bytes comprise reset request for the reported open load condition for each output channel.  
Table 45  
RESET_OPENLOAD word - structure overview  
RESET_OPENLOAD  
[15:8] w  
Reset OPENLOAD flag  
Contains the MSB(byte) for the reset open load request. The bit  
RESET_OPENLOAD[n] is mapped to fault flag reported for OUTn.  
RESET_OPENLOAD  
[7:0]  
w
Reset OPENLOAD flag  
Contains the LSB(byte) for the reset open load request. The bit  
RESET_OPENLOAD[n] is mapped to fault flag reported for OUTn.  
The two bytes comprise reset request for the reported SLS condition for each output channel.  
Table 46  
RESET_SLS word - structure overview  
Bits Type Description  
[15:8] w  
Field  
RESET_SLS  
Reset SLS flag  
Contains the MSB(byte) for the reset SLS request. The bit RESET_SLS[n] is  
mapped to the fault flag reported for OUTn.  
RESET_SLS  
[7:0]  
w
Reset SLS flag  
Contains the LSB(byte) for the reset SLS request. The bit RESET_SLS[n] is  
mapped to the fault flag reported for OUTn.  
The byte comprises the reset request for the reported status conditions for the device.  
Table 47  
Field  
RESET_STATUS - structure overview  
Bits Type Description  
RESET_VLED_VS_UV  
[7]  
w
w
w
Reset VLED_VS_UV flag  
Resets the VLED_VS_UV flag.  
RESET_OUT_SHORT_WR [6]  
N
Reset OUT_SHORT_WRN  
Resets the OUT_SHORT_WRN flag.  
RESET_GPINn_WRN  
[5]  
Reset GPINn_WRN  
Resets the GPINn_WRN flag.  
(table continues...)  
Datasheet  
74  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
9 Communication interface  
Table 47  
(continued) RESET_STATUS - structure overview  
Bits Type Description  
Field  
RESET_DC_WRN  
[4]  
[3]  
[2]  
w
w
w
Reset DC_WRN  
Resets the DC_WRN flag.  
RESET_CUR_WRN  
RESET_VFWD_WRN  
Reset CUR_WRN  
Resets the CUR_WRN flag.  
Reset VFWD_WRN  
Resets the VFWD_WRN flag.  
RESERVED  
[1]  
[0]  
w
w
Reserved  
RESET_FAULT  
Reset FAULT  
Resets the FAULT flag.  
9.1.11.12. ACK byte  
10  
The device increments the 2-bit slave rolling counter RC counter on every sent response frame.  
In case of an reset condition the RC counter default value is set to 0.  
The ACK byte comprises the response to the master including diagnostic feedback as shown in Figure 38.  
Table 48  
ACK byte - structure overview  
Bits Type Description  
Field  
CRC  
[7:5]  
[4:3]  
r
r
CRC, details see CRC-3 for slave response  
MODE  
MODE, power mode state  
00 ... init mode  
01 ... active mode  
10 ... fail-safe mode  
11 ... programming or emulation mode  
RC  
[2:1]  
[0]  
r
r
rolling counter, incremented every slave response  
TER  
TER 0 ... current frame has been successfully received 1 ... the received  
frame resulted in a CRC-8 error  
Figure 38  
slave ACK byte  
Datasheet  
75  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
9 Communication interface  
9.2  
Physical layer  
CAN-FD compliance  
9.2.1  
The integrated CAN transceiver is electrically compliant to ISO11898-2:2016 and CAN FD up to 2 Mbit/s.  
9.2.2  
Transceiver block diagram  
Figure 39  
Functional block diagram  
Datasheet  
76  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
9 Communication interface  
9.2.3  
Electrical characteristics  
Table 49  
Electrical Characteristics  
VS = 6 V to 20 V, TJ = -40°C to +150°C, all voltages with respect to ground, positive currents flowing as described  
in Figure 2 (unless otherwise specified). Typical values: VS = 9 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-  
Number  
Min.  
Max.  
HSLI bus receiver  
Differential receiver:  
threshold voltage,  
recessive to dominant  
edge  
Vdiff_rd(active)  
0.8  
0.9  
V
Vdiff = VHSLIH - VHSLIL  
;
PRQ-504  
PRQ-505  
- 12 V < VCM(HSLI)  
<
12 V; init mode, active  
mode, fail-safe mode,  
OTP programming and  
emulation modes  
Differential receiver:  
threshold voltage,  
dominant to recessive  
edge  
Vdiff_dr(active)  
0.5  
0.6  
V
Vdiff = VHSLIH - VHSLIL  
- 12 V < VCM(HSLI)  
;
<
12 V; init mode, active  
mode, fail-safe mode,  
OTP programming and  
emulation modes  
Common mode range CMR  
-12  
20  
12  
50  
V
PRQ-506  
PRQ-507  
HSLIH, HSLIL input  
resistance  
Ri  
40  
kΩ  
Recessive state  
Differential input  
Rdiff  
DRi  
40  
-3  
80  
100  
3
kΩ  
Recessive state  
PRQ-508  
PRQ-509  
resistance  
Input resistance  
deviation between  
HSLIH and HSLIL  
Recessive state, Not  
subject to production  
test - specified by  
design  
Input capacitance  
HSLIH, HSLIL versus  
GND  
Ci  
20  
40  
pF  
V
PRQ-510  
PRQ-511  
HSLI bus transmitter  
HSLIH/HSLIL recessive VHSLIH/L(active) 2.0  
output voltage  
3.0  
init mode, active  
mode, fail-safe mode,  
OTP programming and  
emulation modes; no  
load  
HSLIH/HSLIL recessive Vdiff_r(active)  
output voltage  
difference  
-500  
50  
mV  
Vdiff = VHSLIH - VHSLIL  
;
PRQ-513  
init mode, active  
mode, fail-safe mode,  
OTP programming and  
emulation modes; no  
load  
(table continues...)  
Datasheet  
77  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
9 Communication interface  
Table 49  
(continued) Electrical Characteristics  
VS = 6 V to 20 V, TJ = -40°C to +150°C, all voltages with respect to ground, positive currents flowing as described  
in Figure 2 (unless otherwise specified). Typical values: VS = 9 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-  
Number  
Min.  
0.5  
Max.  
2.25  
HSLIL dominant  
output voltage  
VHSLIL  
V
VDD = 5 V, 50 Ω < R <  
65 Ω; init mode, active  
mode, fail-safe mode,  
OTP programming and  
emulation modes  
PRQ-515  
PRQ-516  
PRQ-517  
HSLIH dominant  
output voltage  
VHSLIH  
2.75  
1.5  
4.5  
3.0  
V
V
VDD = 5V, 50 Ω < R <  
65 Ω; init mode, active  
mode, fail-safe mode,  
OTP programming and  
emulation modes  
HSLIH dominant  
output voltage  
difference  
Vdiff_d(active)  
Vdiff = VHSLIH -  
VHSLIL, VDD = 5V,  
50 Ω < R < 65  
Ω; init mode, active  
mode, fail-safe mode,  
OTP programming and  
emulation modes  
Driver symmetry  
VSYM  
4.5  
-100  
50  
5.5  
-50  
100  
V
VDD = 5 V; 50 Ω < R <  
65 Ω; init mode, active  
mode, fail-safe mode,  
OTP programming and  
emulation modes  
PRQ-518  
PRQ-519  
PRQ-520  
HSLIH short circuit  
current  
HSLIHSC  
HSLILSC  
-80  
80  
mA  
mA  
VHSLIHshort = 0 V;  
init mode, active  
mode, fail-safe mode,  
OTP programming and  
emulation modes  
HSLIL short circuit  
current  
VHSLILshort ≤ 18 V;  
init mode, active  
mode, fail-safe mode,  
OTP programming and  
emulation modes  
HSLIH leakage current HSLIH(leak)  
HSLIL leakage current HSLIL(leak)  
5
5
7.5  
7.5  
µA  
µA  
idle mode; 0 V ≤ VHSLIH PRQ-521  
< 5 V;  
idle mode; 0 V ≤ VHSLIL PRQ-522  
< 5 V;  
Datasheet  
78  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
10 Application Information  
10  
Application Information  
VS  
TLS41xx  
Rev-Pol  
VLED  
SW  
PGND  
FB  
VS  
EN  
FREQ  
AGND  
VLED  
VDD  
VS  
VLED  
TLD7002-16  
VCP  
VS  
VCC1  
Internal  
supply  
LIN BUS  
VDD  
State  
Micro  
controller  
Protection  
CSN  
CLK  
SDI  
CSN  
CLK  
SDO  
SDI  
Machine  
Diagnosis  
1 to 16  
Current  
Reference  
SDO  
Current  
Reference  
LIN  
OTP  
TxD LIN  
RxD LIN  
TxD LIN  
RxD LIN  
PWM  
Engine  
PWM Master  
GPIN  
GPIN0  
TxD CAN  
RxD CAN  
TxD UART  
RxD UART GND  
GPIN1  
Configuration  
Diagnosis  
Register  
SBC  
TLE9262  
Output  
control  
Watchdog  
CANH  
HSLIH  
HSLIL  
15  
HSLI  
CAN  
HSLIH  
HSLIL  
CAN  
Protocol  
TX  
T
Handler  
CANL  
0
GND  
GND  
VLED  
VS  
VLED  
BCM or LCU  
TLD7002-16  
Internal  
supply  
VDD  
State  
Machine  
Protection  
Diagnosis  
1 to 16  
Current  
Reference  
Current  
Reference  
OTP  
PWM  
Engine  
PWM Master  
GPIN  
GPIN0  
GPIN1  
Configuration  
Diagnosis  
Register  
Output  
control  
Watchdog  
15  
HSLI  
CAN  
HSLIH  
HSLIL  
Protocol  
TX  
T
Handler  
0
GND  
Light Module  
HSLIH HSLIL  
Figure 40  
Application diagram  
Datasheet  
79  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
11 Package dimensions  
11  
Package dimensions  
Figure 41  
PG-TSDSO-24 package outline  
Figure 42  
PG-TSDSO-24 package pads and stencil  
Note:  
Green product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-  
Compliant (i.e. Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further information on packages, please visit our website: https://www.infineon.com/packages  
Datasheet  
80  
Rev.1.00  
2022-05-03  
TLD7002-16ES  
Datasheet  
Revision history  
Revision history  
Document  
version  
Date of  
Description of changes  
• Initial Datasheet  
release  
Rev.1.00  
2022-05-03  
Datasheet  
81  
Rev.1.00  
2022-05-03  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
Edition 2022-05-03  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
Important notice  
Warnings  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer’s compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer’s products and any use of the product of  
Infineon Technologies in customer’s applications.  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
Except as otherwise explicitly approved by Infineon  
Technologies in  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or  
any consequences of the use thereof can reasonably  
be expected to result in personal injury.  
a written document signed by  
©
2022 Infineon Technologies AG  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Document reference  
IFX-age1637677403423  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to such  
application.  

相关型号:

TLD8S10AH

6600W, 10V – 43V Surface Mount Transient Voltage Suppressor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TSC

TLD8S11AH

6600W, 10V – 43V Surface Mount Transient Voltage Suppressor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TSC

TLD8S12AH

6600W, 10V – 43V Surface Mount Transient Voltage Suppressor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TSC

TLD8S13AH

6600W, 10V – 43V Surface Mount Transient Voltage Suppressor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TSC

TLD8S14AH

6600W, 10V – 43V Surface Mount Transient Voltage Suppressor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TSC

TLD8S15AH

6600W, 10V – 43V Surface Mount Transient Voltage Suppressor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TSC

TLD8S16AH

6600W, 10V – 43V Surface Mount Transient Voltage Suppressor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TSC

TLD8S17AH

6600W, 10V – 43V Surface Mount Transient Voltage Suppressor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TSC

TLD8S18AH

6600W, 10V – 43V Surface Mount Transient Voltage Suppressor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TSC

TLD8S20AH

6600W, 10V – 43V Surface Mount Transient Voltage Suppressor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TSC

TLD8S22AH

6600W, 10V – 43V Surface Mount Transient Voltage Suppressor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TSC

TLD8S24AH

6600W, 10V – 43V Surface Mount Transient Voltage Suppressor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TSC