TLE4927C E6547 [INFINEON]

Infineon´s TLE4927C detects the motion and positi;
TLE4927C E6547
型号: TLE4927C E6547
厂家: Infineon    Infineon
描述:

Infineon´s TLE4927C detects the motion and positi

文件: 总25页 (文件大小:962K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE4927C  
Dynamic Differential Hall Effect Sensor  
Features  
High sensitivity single chip solution  
Symmetrical thresholds  
High resistance to Piezo effects  
South and north pole pre-induction possible  
Low cut-off frequency  
Digital output signal  
Advanced performance by dynamic self-calibration principle  
Two-wire and three-wire configuration possible  
Wide operating temperature range  
Fast start-up time  
Large operating air-gaps  
Reverse voltage protection at VS-pin  
Short- circuit and over temperature protection of output  
Digital output signal (voltage interface)  
Module style package with two integrated capacitors:  
o
o
4.7nF between Q and GND  
47nF1 between VS and GND: Needed for micro cuts in power supply  
Potential applications  
Automotive Crankshaft applications and similar, industrial speed sensor applications  
Product validation  
Qualified for Automotive Applications.  
Product Validation according to AEC-Q100/101  
Description  
The differential Hall sensor IC detects the motion and position of ferromagnetic and permanent magnet  
structures by measuring the differential flux density of the magnetic field. To detect ferromagnetic objects the  
magnetic field must be provided by a back biasing permanent magnet (south or north pole of the magnet  
attached to the rear unmarked side of the IC package).  
Ordering Information  
Type  
Marking  
Ordering Code  
Package  
TLE4927C E6547  
27D8  
SP000718266  
PG-SSO-3-92  
1 value of capacitor: 47nF10%; (excluded drift due to temperature and over lifetime); ceramic: X8R; maximum voltage: 50V.  
Data Sheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 1 of 25  
Revision 1.0  
2022-05-10  
 
 
 
 
TLE4927C  
Dynamic Differential Hall Effect Sensor  
Functional Description  
General Information  
The TLE4927C E6547 is an active Hall sensor suited to detect the motion and position of ferromagnetic and  
permanent magnet structures. An additional self-calibration module has been implemented to achieve  
optimum accuracy during normal running operation. It comes in a three-pin package for the supply voltage and  
an open drain output.  
VS  
GND  
47nF  
4.7nF  
Figure 1  
Pin configuration PG-SSO-3-92  
Pin No.  
Symbol  
VS  
Function  
1
2
3
Supply Voltage  
Ground  
GND  
Q
Open Dain Output  
2 of 25  
Revision 1.0  
2022-05-10  
Data Sheet  
 
TLE4927C  
Dynamic Differential Hall Effect Sensor  
Table of contents  
Table of contents  
Features ........................................................................................................................................ 1  
Potential applications..................................................................................................................... 1  
Product validation.......................................................................................................................... 1  
Description .................................................................................................................................... 1  
General Information ....................................................................................................................... 2  
Table of contents............................................................................................................................ 3  
1
1.1  
1.1.1  
1.1.2  
Functional Description............................................................................................................ 4  
Circuit Description...................................................................................................................................4  
Startup mode .....................................................................................................................................4  
Running mode....................................................................................................................................5  
2
General Characteristics........................................................................................................... 6  
Absolute Maximum Ratings ....................................................................................................................6  
Operating Range......................................................................................................................................7  
AC/DC Characteristics .............................................................................................................................8  
Magnetic Characteristics in Running Mode ............................................................................................9  
Typical Hysteresis Values......................................................................................................................10  
Self-calibration Characteristics ............................................................................................................10  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
3
3.1  
Application Configurations.....................................................................................................13  
Gear Tooth Sensing ...............................................................................................................................13  
4
5
Electro Magnetic Compatibility...............................................................................................17  
Package Information .............................................................................................................19  
Appendix: .....................................................................................................................................21  
Revision history.............................................................................................................................24  
3 of 25  
Revision 1.0  
2022-05-10  
Data Sheet  
 
TLE4927C  
Dynamic Differential Hall Effect Sensor  
Functional Description  
1
Functional Description  
The differential Hall sensor IC detects the motion and position of ferromagnetic and permanent magnet  
structures by measuring the differential flux density of the magnetic field. To detect ferromagnetic objects the  
magnetic field must be provided by a back biasing permanent magnet (south or north pole of the magnet  
attached to the rear unmarked side of the IC package).  
Offset cancellation is achieved by advanced digital signal processing. Immediately after power-on motion is  
detected (start-up mode). After a few transitions the sensor has finished self-calibration and switches to a high-  
accuracy mode (running mode). In running mode switching occurs at signal zero-crossing of the arithmetic  
mean of max and min value of magnetic differential signal. B is defined as difference between hall plate 1 and  
hall plate 2.  
1.1  
Circuit Description  
The TLE4927C E6547 is comprised of a supply voltage regulator, a pair of hall probes, spaced at 2.5mm,  
differential amplifier, noise-shaping filter, comparator, advanced digital signal processor (DSP), A/D and D/A  
converter and an open drain output.  
Figure 2  
Block diagram of TLE4927C E6547  
1.1.1  
Startup mode  
The differential signal is digitized in the A/D converter and fed into the DSP part of the circuit. There a rising or  
falling transition is detected and the output stage is triggered accordingly. As the signal is not offset  
compensated at this time, the output does not necessarily switch at zero-crossing of the magnetic signal.  
Signal peaks are also detected in the digital circuit and their arithmetic mean value can be calculated. The  
4 of 25  
Revision 1.0  
2022-05-10  
Data Sheet  
TLE4927C  
Dynamic Differential Hall Effect Sensor  
Functional Description  
offset of this mean value is determined and fed into the offset cancellation DAC. This procedure can be  
repeated with increasing accuracy. After few increments the IC is switched into the high accuracy running  
mode.  
1.1.2  
Running mode  
In running mode, the output is triggered by the comparator. An offset cancellation feedback loop is formed by  
the A/D converter, DSP and offset cancellation D/A converter. In running mode switching always occurs at zero-  
crossing. It is only affected by the (small) remaining offset of the comparator and by the remaining propagation  
delay time of the signal path, mainly determined by the noise-shaping filter. Nevertheless, signals below a  
defined threshold are not detected to avoid unwanted parasitic switching.  
peak detection  
offset= (max + min) / 2  
offset  
offset  
correction  
Startup-mode  
Startup of the device  
Running-mode  
Figure 3  
At transition from startup-mode to running mode switching timing is moving from low-accuracy to high  
accuracy zero-crossing.  
5 of 25  
Revision 1.0  
2022-05-10  
Data Sheet  
TLE4927C  
Dynamic Differential Hall Effect Sensor  
General Characteristics  
2
General Characteristics  
2.1  
Absolute Maximum Ratings  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
Supply voltage  
VS  
-18  
-24  
-26  
-28  
18  
24  
26  
28  
V
V
V
V
-
1h with RSeries 200  
5min with RSeries 200  
1min with RSeries 200  
-
Supply current  
IS  
-10  
25  
mA  
Output OFF voltage  
VQ  
-0.3  
-18  
-18  
-1.0  
18  
24  
26  
-
V
V
V
V
-
1h with RLoad 500  
5min with RLoad 500  
1h (protected by internal  
series resistor)  
Output ON voltage  
VQ  
-
-
-
16  
18  
24  
V
V
V
Current internal limited by  
short circuit protection  
(72h @ TA 40°C).  
Current internal limited by  
short circuit protection  
(1h @ TA 40°C).  
Current internal limited by  
short circuit protection  
(1min @ TA 40°C).  
Continuous output  
current  
IQ  
Tj  
-50  
-40  
50  
mA  
-
Junction temperature  
°C  
°C  
°C  
°C  
°C  
-
155  
165  
175  
195  
2000h (not additive)  
1000h (not additive)  
168 h (not additive)  
3 x1 h (additive to the  
other life times).  
Storage temperature  
TS  
-40  
±6  
150  
190  
°C  
-
Thermal resistance  
junction-air for  
PG-SSO-3-92  
Rth JA  
K/W Lower values are possible  
with overmoulded devices.  
ESD-protection  
PG-SSO-3-92  
VESD  
kV  
According to standard  
EIA/JESD22-A114-B  
Human Body Model  
(HBM 1500 Ohm/100pF)  
2 Accumulated life time.  
6 of 25  
Revision 1.0  
2022-05-10  
Data Sheet  
 
TLE4927C  
Dynamic Differential Hall Effect Sensor  
General Characteristics  
Note:  
Stresses above those listed here may cause permanent damage to the device. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
2.2  
Operating Range  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
18  
Supply voltage  
VS  
Continuous  
3.2  
V
V
V
1h with RSeries 200  
24  
26  
5min with RSeries 200  
Extended limits for  
parameters in  
characteristics.  
3
V
During test pulse 4. Limited  
performance possible  
Supply voltage ripple  
VSAC  
6
Vpp  
V
VS=13V; 0 < f < 50kHz  
Continuous  
Continuous output OFF VQ  
voltage  
0
0
0
18  
24  
20  
V
1h with RLoad 500  
VQmax=0.6V  
Continuous output ON  
Current  
IQ  
mA  
Power on time  
ton  
1.0  
ms  
Time to achieve specified  
accuracy. After power on  
the output of the IC is  
always in high-state. After  
internal resets output is  
locked3.  
Operating junction  
temperature  
Tj  
-40  
°C  
°C  
°C  
°C  
-
155  
165  
175  
2000 h (not additive)  
1000 h (not additive)  
168 h (not additive)  
reduced signal quality  
permittable (e.g. jitter)  
Note:  
Unless otherwise noted, all temperatures refer to junction temperature. For the supply  
voltage lower than 28V (RSeries 200) and junction temperature lower than 195°C the  
magnetic and AC/DC characteristics can exceed the specification limits  
3 Output of the IC is locked in present state (high-state or low-state) after an internal reset is launched. This reset happens  
typically every 780ms when there is no output switching in either case. See also “Offset recalibration time after last output  
change, treset. A voltage reset causes a release of the output and output is in high state after power on again.  
7 of 25  
Revision 1.0  
2022-05-10  
Data Sheet  
TLE4927C  
Dynamic Differential Hall Effect Sensor  
General Characteristics  
2.3  
AC/DC Characteristics  
Parameter  
Symbol  
Min.  
Values  
Typ.  
Unit Note or Test Condition  
Max.  
9
Supply current  
IS  
-
3
3
3
6.8  
6.7  
7
mA  
mA  
mA  
V
Supply current @ 3.2V IS_Vs_min  
VS=3.2V  
8.5  
9.5  
Supply current @ 24V  
IS_Vs_max  
VQsat  
VS=24V, RSeries 200  
IQ= 20mA  
Output saturation  
voltage  
0.25  
0.6  
Output leakage current IQleak  
0.1  
60  
10  
80  
µA  
VQ= 18V  
-
Current limit for short-  
Circuit protection  
IQshort  
30  
mA  
Junction temperature  
limit for output  
protection  
Tprot  
195  
210  
12  
230  
20  
°C  
µs  
-
Output rise time  
Output fall time  
tr4  
4
VLoad = 4.5 to 24V  
RLoad = 1.2k;  
CLoad = 4.7nF included  
in package  
tf5  
0.5  
0.9  
1.3  
µs  
µs  
VLoad = 5V  
0.65  
1.15  
1.65  
VLoad = 12V  
RLoad = 1.2k;  
CLoad = 4.7nF included  
in package  
Delay time  
Falling edge  
Rising edge  
td  
7
12.5  
186  
20  
257  
µs  
µs  
Only valid for Tj=25°C.  
Tj=-40°C -Tj=175°C  
Tj=-40°C -Tj=175°C  
Higher magnetic slopes  
and overshoots reduce td,  
because the signal is  
filtered internal8  
39  
6
8
µs  
Time over specified  
temperature range; not  
additional to td  
Temperature drift of  
delay time of output to  
magnetic edge  
td  
-6  
Operation below 1Hz10  
Frequency range  
f
0.001  
kHz  
4 value of capacitor: 4.7nF10%; (excluded drift due to temperature); ceramic: X8R; maximum voltage: 50V. The rise time is  
defined as the time between the 10 and 90% value.  
5 see footnote 4.  
6 only valid for the falling edge.  
7 Not subject to production test-verified by design/characterisation  
8 measured with a sinusoidal-field with 10mTpp and a frequency of 1kHz.  
9 related to Tj= 175°C.  
10 output will switch if magnetic signal is changing more that 2xBminwithin offset recalibration time even below 1Hz once per  
magnetic edge, increased phase error is possible  
8 of 25  
Revision 1.0  
2022-05-10  
Data Sheet  
 
TLE4927C  
Dynamic Differential Hall Effect Sensor  
General Characteristics  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
Oscillator frequency  
fOSC  
treset  
1.34  
780  
MHz  
ms  
-
Offset recalibration  
time after last output  
change  
625  
970  
Output locked to state  
before recalibration  
Clamping voltage  
VS-pin  
VSclamp  
VQclamp  
VSreset  
24  
24  
27.5  
27.5  
2.35  
V
V
V
1 mA through clamping  
device  
Clamping voltage Q-  
pin  
1 mA through clamping  
device  
Analog reset voltage  
2.9  
-
Note:  
The listed AC/DC and magnetic characteristics are ensured over the operating range of the  
integrated circuit. Typical characteristics specify mean values expected over the production  
spread. If not other specified, typical characteristics apply at Tj = 25 °C and VS = 12 V  
2.4  
Magnetic Characteristics in Running Mode  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
-500  
-30  
Max.  
500  
30  
Bias preinduction  
B0  
-
-
mT  
mT  
Differential bias  
induction  
B0  
Bmin11  
Minimum signal  
amplitude  
0.35  
0.75  
1.35  
100  
0.2  
mT  
mT  
mT  
12  
Maximum signal  
amplitude  
Additional to B0  
F= 2N  
Bmax  
Resistivity against  
Bmin  
-0.2  
mechanical stress  
(piezo)  
Note:  
The listed characteristics are ensured over the operating range of the integrated circuit. Typical  
characteristics specify mean values expected over the production spread. If not otherwise  
specified, typical characteristics apply at Tj=25°C and the given supply voltage.  
11 |∆Bmin| refers to 50 % criteria: 50 % of output pulses are lost, sinusoidal input signal  
12 exceeding this limit might result in decreased duty cycle performance. With higher values the internal measured signal will be  
clipped. This will decrease the phase accuracy.  
9 of 25  
Revision 1.0  
2022-05-10  
Data Sheet  
TLE4927C  
Dynamic Differential Hall Effect Sensor  
General Characteristics  
2.5  
Typical Hysteresis Values  
PGA  
GainRange  
Hysteresis (peak  
FullRange  
=MaxSignal  
Percentage  
thresholds  
to peak)  
10.6 mT  
8.0 mT  
5.5 mT  
3.8 mT  
2.6 mT  
1.8 mT  
1.3 mT  
X1  
6
5
4
3
2
1
0
4.42 %  
6.67 %  
9.17 %  
12.67 %  
17.33 %  
24 %  
120 mT  
60 mT  
X2  
X4  
30 mT  
X8  
15 mT  
X16  
X32  
X64  
7.5 mT  
3.75 mT  
1.875 mT  
34.67 %  
2.6  
Self-calibration Characteristics  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
No. of magnetic edges  
for first output switching  
nStart  
nCalib  
latest 2nd magnetic edge  
-
2
will cause output switching  
No. of magnetic edges  
to enter calibrated  
mode  
Low phase accuracy  
permitted (see:  
6
-
uncalibrated phase error).  
7th edge with high  
accuracy. Valid for  
sinusoidal signal without  
noise influence  
Duty cycle in running  
mode13  
Dty  
45  
40  
50  
50  
55  
60  
%
%
BPP = 10mT ideal  
sinusoidal input signal  
(Tj=25°C)  
BPP = 10mT ideal  
sinusoidal input signal  
(-40°C Tj < 175°C)  
 0.1114  
 0.16  
BPP = 10mT ideal  
sinusoidal input signal;  
Tj<150°C  
Signal jitter in running  
mode; 1 sigma value6  
%
%
1  
2  
BPP = 10mT ideal  
sinusoidal input signal;  
150°C Tj < 175°C  
Signal Jitter in running  
mode at power supply  
of VS=13V and ripple  
3V; 1 sigma value6  
%
3  
 0.11  
BPP = 10mT ideal  
sinusoidal input signal;  
Tj<150°C  
Bneff  
25  
µT  
Tj = 25°C; The magnetic  
noise is normal distributed,  
13 this corresponds to a B0 = 0mT (magnetic offset).  
14 depends largely onBminmagnetic signal steepness and also on frequency.  
10 of 25  
Revision 1.0  
2022-05-10  
Data Sheet  
TLE4927C  
Dynamic Differential Hall Effect Sensor  
General Characteristics  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
nearly independent to  
frequency and without  
sampling noise or digital  
noise effects. The typical  
value represents the rms-  
value here and  
Effective noise value of  
the magnetic switching  
points, 1 sigma value  
corresponds therefore to  
1probability of normal  
distribution. Consequently  
a 3value corresponds to  
0.3% probability of  
appearance.  
70  
µT  
The max value  
corresponds to the rms-  
values in the full  
temperature range and  
includes technological  
spreads.  
Related to calibrated  
switching behaviour.  
BPP = 10mT ideal  
sinusoidal input  
Uncalibrated phase  
error:  
Magnetic edge 1-3  
After 3rd edge  
°
 90  
 55  
signal15 Magnetic fields  
close to 2xBmin  
15 smaller phase errors are possible at higher signal amplitudes, because sinus signal changes to a more rectangle signal.  
11 of 25  
Revision 1.0  
2022-05-10  
Data Sheet  
TLE4927C  
Dynamic Differential Hall Effect Sensor  
General Characteristics  
Figure 4  
Switching direction  
Figure 5  
Definition of signal jitter  
12 of 25  
Revision 1.0  
2022-05-10  
Data Sheet  
TLE4927C  
Dynamic Differential Hall Effect Sensor  
Application Configurations  
3
Application Configurations  
Two possible applications are shown in Figure 8 and Figure 9 (Toothed and Magnet Wheel). The difference  
between two-wire and three-wire application is shown in Figure 10.  
3.1  
Gear Tooth Sensing  
In the case of ferromagnetic toothed wheel application, the IC has to be biased by the south or north pole of a  
permanent magnet (e.g. SmCO5 (Vacuumschmelze VX145) with the dimensions 8 mm x 5 mm x 3 mm) which  
should cover both Hall probes.  
The maximum air gap depends on:  
the magnetic field strength (magnet used; pre-induction) and  
the toothed wheel that is used (dimensions, material, etc.; resulting differential field).  
Figure 6  
Sensor spacing  
Figure 7  
Toothed wheel dimensions  
13 of 25  
Revision 1.0  
2022-05-10  
Data Sheet  
TLE4927C  
Dynamic Differential Hall Effect Sensor  
Application Configurations  
Figure 8  
TLE4927C, with ferromagnetic toothed wheel  
Figure 9  
TLE4927C, with magnet wheel  
14 of 25  
Revision 1.0  
2022-05-10  
Data Sheet  
TLE4927C  
Dynamic Differential Hall Effect Sensor  
Application Configurations  
Figure 10  
Application circuits TLE4927C (capacitors included in package)  
15 of 25  
Revision 1.0  
2022-05-10  
Data Sheet  
TLE4927C  
Dynamic Differential Hall Effect Sensor  
Application Configurations  
S (N)  
N (S)  
Pin 3 (Q)  
Pin 1 (Vs)  
B2  
B1  
Branded Side  
Crankshaft Wheel Profile  
Small airgap  
Large airgap  
Magnetic Field Difference  
B=B1-B2  
BENOP  
Hidden Adaptive  
Hysteresis  
BENRP  
Output Signal  
VQ  
Enabling point for releasing output: B1-B2<BENRP. Next zero crossing switches the output OFF  
(VQ=HIGH).  
Enabling point for operate point: B1-B2>BENOP. Next zero crossing switches the output ON  
(VQ=LOW).  
BHYS=|BENOP-BENRP  
|
Outside of a permanent magnet the magnetic induction (=flux density)  
points from north to the south pole. It is common to define positive flux  
if the south pole of a magnet is on the branded side of the IC. This is equivalent to the north pole of  
the magnet on the rear side of the IC.  
Figure 11  
System operation with hidden hysteresis  
16 of 25  
Revision 1.0  
2022-05-10  
Data Sheet  
TLE4927C  
Dynamic Differential Hall Effect Sensor  
Electro Magnetic Compatibility  
4
Electro Magnetic Compatibility  
Note: Values depend on RSeries  
!
Ref. ISO 7637-2, 2nd edition 06/2004, test circuit of Figure 12, conducted on supply line. BPP = 10mT (ideal  
sinusoidal signal), VS=13.5V ± 0.5V, fB= 1000Hz, T= 25°C, RSeries 200  
ISO 7637-2  
Parameter  
Symbol  
Level/Type  
IV / -100V  
IV / 50V  
Status  
Test pulse 1  
Test pulse 2a  
Test pulse 2b  
Test pulse 3a  
Test pulse 3b  
Test pulse 5a  
Test pulse 5b  
VEMC  
C
C
IV / 10V  
C
IV / -150V  
IV / 100V  
IV / 86.5V  
IV / 86.5V  
A16  
A16  
C
A17  
Note: Test criteria for status A: No missing pulse no additional pulse on the IC output signal plus duty cycle  
and jitter are in the specification limits  
Test criteria for status B: No missing pulse no additional pulse on the IC output signal.  
(Output signal “OFF” means switching to the voltage of the pull-up resistor).  
Test criteria for status C: One or more parameter can be out of specification during the  
exposure but returns automatically to normal operation after exposure is removed.  
Test criteria for status E: IC destroyed  
Ref. ISO 7637-3, 1st edition 11/1995, test circuit of Figure 12, coupling clamp.  
BPP = 10mT (ideal sinusoidal signal), VS=13.5V ± 0.5V, fB= 1000Hz, T= 25°C, RSeries 200.  
ISO 7637-3  
Parameter  
Symbol  
Level/Type  
IV / -60V  
Status  
A16  
A16  
Test pulse 3a  
Test pulse 3b  
VEMC  
IV / 40V  
Ref. ISO 11452-3, test circuit of Figure 12, measured in TEM-cell.  
BPP = 4mT (ideal sinusoidal signal), VS=13.5V ± 0.5V, fB= 200Hz, T= 25°C, RSeries 200.  
ISO 11452-3  
Parameter  
Symbol  
Level/Type  
Status  
EMC field strength  
ETEM-Cell  
IV / 200V/m  
AM=80%, f=1kHz  
Note: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability. Test condition for the  
trigger window: fB-field=200Hz, Bpp=4mT, vertical limits are ± 10 % of VQ and horizontal limits are ±200µs  
16 Output signal overlayed by burst pulse  
17 Suppressed Us* = 35 V  
17 of 25  
Revision 1.0  
2022-05-10  
Data Sheet  
 
TLE4927C  
Dynamic Differential Hall Effect Sensor  
Electro Magnetic Compatibility  
Figure 12  
Test Circuit of EMC Tests  
18 of 25  
Revision 1.0  
2022-05-10  
Data Sheet  
TLE4927C  
Dynamic Differential Hall Effect Sensor  
Package Information  
5
Package Information  
Pure tin covering (green lead plating) is used. Product is RoHS (Restriction of Hazardous Substances) compliant  
and marked with letter G in front of the data code marking and may contain a data matrix code on the rear side  
of the package. Please refer to your key account team or regional sales if your need further information  
Figure 13  
PG-SSO-3-92 (Plastic Green Single Small Outline)  
19 of 25  
Revision 1.0  
2022-05-10  
Data Sheet  
TLE4927C  
Dynamic Differential Hall Effect Sensor  
Package Information  
Figure 14  
Hall probe spacing in the PG-SSO-3-92 package  
Figure 15  
Tape Loading Orientation in the PG-SSO-3-92 package  
20 of 25  
Revision 1.0  
2022-05-10  
Data Sheet  
TLE4927C  
Dynamic Differential Hall Effect Sensor  
Package Information  
Appendix:  
Calculation of mechanical errors  
Figure 16  
Systematic Phase Error   
The systematic error comes in because of the delay-time between the threshold point and the time when the  
output is switching. It can be calculated as follows:  
360n  
=
td  
60  
n
td  
... systematic phase error in °  
... speed of the camshaft-wheel in min-1  
... delay time (see specification) in sec  
Figure 17  
Systematic Phase Error   
The stochastic phase error includes the error due to the variation of the delay time with temperature and the  
error caused by the resolution of the threshold. It can be calculated in the following way:  
360n  
d =  
• td  
60  
d  
n
… stochastic phase error due to the variation of the delay time over temperature in °  
… speed of the camshaft wheel in min-1  
td  
… variation of delay time over temperature in sec  
Figure 18  
Stochastic Phase Error   
21 of 25  
Revision 1.0  
2022-05-10  
Data Sheet  
TLE4927C  
Dynamic Differential Hall Effect Sensor  
Package Information  
Jitter (Repeatability)  
Figure 19  
Phase Jitter  
The phase jitter is normally caused by the analogue system noise. If there is an update of the offset-DAC due to  
the algorithm, what could happen after each tooth, then an additional step in the phase occurs (see description  
of the algorithm). This is not included in the following calculations. The noise is transformed through the slope  
of the magnetic edge into a phase error. The phase jitter is determined by the two formulas:  
B  
(
)
Jitter_ typ  
=
=
Bneff _ typ  
  
B  
(
)
Jitter_ max  
Bneff _ max  
Jitter_typ  
...  
...  
...  
typical phase jitter at Tj=25°C in ° (1Sigma)  
maximum phase jitter at Tj=175°C in ° (3Sigma)  
inverse of the magnetic slope of the edge in °/T  
Jitter_max  
  
B  
Bneff_typ  
Bneff_max  
...  
...  
typical value of Bdiff in T (1-value at Tj=25°C)  
maximum value of Bdiff in T (3-value at Tj=175°C)  
Figure 20  
Phase Jitter Calculation  
22 of 25  
Revision 1.0  
2022-05-10  
Data Sheet  
TLE4927C  
Dynamic Differential Hall Effect Sensor  
Package Information  
Example  
Assumption: n = 4500 min-1  
td = 14 µs  
td = ±3 µs  
B  
= 3 mT/°  
  
Bneff_typ = ±40 µT (1-value at Tj=25°C)  
Bneff_max = ±210 µT (3-value at Tj=175°C)  
Calculation:  
= 0.378°  
...  
...  
...  
systematic phase error  
stochastic phase error due to delay time variation  
typical phase jitter (1-value at Tj=25°C)  
d = ±0.081°  
Jitter_typ = ±0.013°  
Jitter_max = ±0.07°  
...  
maximum phase jitter (3-value at Tj=175°C)  
23 of 25  
Revision 1.0  
2022-05-10  
Data Sheet  
TLE4927C  
Dynamic Differential Hall Effect Sensor  
Revision history  
Revision history  
Document  
version  
Date of release  
Description of changes  
1.0  
2022-05-10  
Initial release. Document integration of Data sheet TLE4926C-HT  
E6547 version 1.1(Sensor reference type) and Data sheet supplement  
TLE4927C E6547 version 1.0. Editorial changes.  
24 of 25  
Revision 1.0  
2022-05-10  
Data Sheet  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on the product, technology,  
Edition 2022-05-10  
event be regarded as a guarantee of conditions or delivery terms and conditions and prices please  
Published by  
characteristics (“Beschaffenheitsgarantie”) .  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
Infineon Technologies AG  
81726 München, Germany  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement of  
intellectual property rights of any third party.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2022 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about this  
document?  
In addition, any information given in this document  
is subject to customer’s compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and standards  
concerning customer’s products and any use of the  
product of Infineon Technologies in customer’s  
applications.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized  
representatives  
of  
Infineon  
Email: erratum@infineon.com  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of the  
product or any consequences of the use thereof can  
reasonably be expected to result in personal injury.  
Document reference  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  

相关型号:

TLE4929C-XAF-M28

Hall Effect Sensor,
INFINEON

TLE4929C-XAN-M28

Hall Effect Sensor,
INFINEON

TLE4929CXAFM28HAMA1

Hall Effect Sensor,
INFINEON

TLE4929CXANM28HAMA1

Hall Effect Sensor,
INFINEON

TLE4935

Uni- and Bipolar Hall IC Switches for Magnetic Field Applications
INFINEON

TLE4935-2G

Uni- and Bipolar Hall IC Switches for Magnetic Field Applications
INFINEON

TLE4935-2L

Uni- and Bipolar Hall IC Switches for Magnetic Field Applications
INFINEON

TLE4935G

Uni- and Bipolar Hall IC Switches for Magnetic Field Applications
INFINEON

TLE4935L

Uni- and Bipolar Hall IC Switches for Magnetic Field Applications
INFINEON

TLE4935LHALA1

Hall Effect Sensor, Rectangular, Through Hole Mount, GREEN, PLASTIC, SSOP-3
INFINEON

TLE4935LS

Analog Circuit, 1 Func, BIPolar, PSIP3, PLASTIC, SSO-3
INFINEON

TLE4935LXA

Hall Effect Sensor, Rectangular, Through Hole Mount, SSOP-3
INFINEON