TLE493D-W2B6 A2 [INFINEON]

Infineon´s  3D magnetic sensor family TLE493D offers accurate three dimensional sensing with extremely low-power consumption. Within its small 6-pin package the sensor provides direct measurement of the x-, y-, and z components of a magnetic field.Thus the sensor family is ideally suited for the measurement of:;
TLE493D-W2B6 A2
型号: TLE493D-W2B6 A2
厂家: Infineon    Infineon
描述:

Infineon´s  3D magnetic sensor family TLE493D offers accurate three dimensional sensing with extremely low-power consumption. Within its small 6-pin package the sensor provides direct measurement of the x-, y-, and z components of a magnetic field.Thus the sensor family is ideally suited for the measurement of:

文件: 总21页 (文件大小:926K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE493D-W2B6  
Low Power 3D Hall Sensor with I2C Interface and Wake Up Function  
1
Overview  
Quality Requirement Category: Automotive | Industry  
PG-TSOP6-6-8  
Features  
3D magnetic flux density sensing of ±160 mT.  
Programmable flux resolution down to 65 µT (typ.).  
X-Y angular measurement mode  
Diagnostic measurements to check digital parts, analog parts and Hall probe of the sensor  
Power down mode with 7 nA (typ) power consumption  
12-bit data resolution for each measurement direction plus 10-bit temperature sensor  
Variable update frequencies and power modes (configurable during operation)  
Temperature range Tj = -40°C…125°C, supply voltage range = 2.8 V…3.5 V  
Triggering by external µC possible via I2C protocol  
Interrupt signal to indicate a valid measurement to the microcontroller  
Applications  
The TLE493D-W2B6 is designed for all kinds of sensing applications, including the following:  
Gear stick position  
Control elements in the top column module and multi function steering wheel  
Multi function knobs  
Pedal/valve position sensing  
Benefits  
Component reduction due to 3D magnetic measurement principle  
Wide application range addressable due to high flexibility  
Platform adaptability due to device configurability  
Supporting functional safety by means of integrated diagnostics  
Very low system power consumption due to Wake Up mode  
Disturbance of smaller stray fields are neglectable compared to the high magnetic flux measurement  
range  
Data Sheet  
www.infineon.com  
1
Ver. 1.2  
2019-04-09  
TLE493D-W2B6  
Overview  
Table 1  
Ordering Information  
Product Type  
Marking1)  
Ordering Code  
Package  
Default address  
write / read  
TLE493D-W2B6 A0  
TLE493D-W2B6 A1  
TLE493D-W2B6 A2  
TLE493D-W2B6 A3  
EC  
ED  
EE  
EF  
SP001605334  
SP001605340  
SP001605344  
SP001605348  
PG-TSOP6-6-8  
PG-TSOP6-6-8  
PG-TSOP6-6-8  
PG-TSOP6-6-8  
6AH / 6BH  
44H / 45H  
F0H / F1H  
88H / 89H  
1) Engineering samples are marked with “SA”.  
Data Sheet  
2
Ver. 1.2  
2019-04-09  
TLE493D-W2B6  
Table of Contents  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2
2.1  
2.1.1  
2.1.2  
2.1.3  
2.2  
2.3  
2.4  
2.5  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Power mode control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Wake Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Definition of Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Sensitive Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3
Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Magnetic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Temperature Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Overview of Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Interface and Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
4
4.1  
4.2  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Data Sheet  
3
Ver. 1.2  
2019-04-09  
TLE493D-W2B6  
Functional Description  
2
Functional Description  
This three dimensional Hall effect sensor can be configured by the microcontroller. The measurement data is  
provided in digital format to the microcontroller. The microcontroller is the master and the sensor is the slave.  
It also provides test functions and the capability to wake up a sleeping system.  
2.1  
General  
Description of the Block diagram and its functions.  
F-OSC  
LP-OSC  
Power Mode Control  
VDD  
GND  
Bias  
Wake Up  
SCL; /INT  
Lateral  
Hall plates  
Z-Direction  
Digital tracking,  
demodulation &  
I²C interface  
ADC  
MUX  
SDA  
Vertical  
Hall plates  
Y-Direction  
Temperature  
Figure 1  
Block Diagram  
The IC consists of three main functional units containing the following building blocks:  
The power mode control system, containing a low-power oscillator, basic biasing, accurate restart,  
undervoltage detection and a fast oscillator.  
The sensing unit, which contains the HALL biasing, HALL probes with multiplexers and successive tracking  
ADC, as well as a temperature sensor is implemented.  
The I2C interface, containing the register files and I/O pads  
2.1.1  
Power mode control  
The power mode control provides the power distribution in the IC, a power-on reset function and a specialized  
low-power oscillator as the clock source. It also manages the start-up behavior.  
On start-up, this unit:  
activates the biasing, provides an accurate reset detector and fast oscillator  
sensor enters low power mode and can be configured via I2C interface  
After re-configuration, a measurement cycle is performed, which consists of the following steps:  
activating internal biasing, checking for the restart condition and providing the fast oscillator  
HALL biasing  
measuring the three HALL probe channels sequentially (including the temperature). This is enabled by  
default  
reentering configured mode  
Data Sheet  
4
Ver. 1.2  
2019-04-09  
TLE493D-W2B6  
Functional Description  
In any case functions are only executed if the supply voltage is high enough, otherwise the restart circuit will  
halt the state machine until the required level is reached and restart afterwards. The functions are also  
restarted if a restart event occurs in between (see parameter ADC restart level).  
2.1.2  
Sensing  
Measures the magnetic field in X, Y and Z direction. Each X-, Y- and Z-Hall probe is connected sequentially to a  
multiplexer, which is then connected to an Analog to Digital Converter (ADC). Optional, the temperature  
(default = activated) can be determined as well after the three Hall channels.  
2.1.3  
Wake Up  
For each of the three magnetic channels (X/Y/Z), the Wake Up function has an upper and lower comparison  
threshold. Each component of the applied field is compared to the lower and upper threshold. If one of the  
results is above or below these thresholds, an interrupt pulse /INT is generated. This is called a Wake Up  
function. The sensor signals a certain field strength change to the microcontroller. As long as all components  
of the field stay within the envelope, no interrupt signal will be provided. Note however that the /INT can also  
be inhibited during I2C activities, by activated collision avoidance. An Wake Up interrupt /INT is the logical OR  
among all Wake Up interrupt envelopes of the three channels.  
2.2  
Pin Configuration (top view)  
Figure 2 shows the pinout of the TLE493D-W2B6.  
Figure 2  
TLE493D-W2B6 pinout  
Table 2  
Pin No.  
1
TSOP6 pin description and configuration (see Figure 2)  
Name  
Description  
SCL  
Interface serial clock pin (input)  
/INT  
Interrupt pin, signals a finished measurement cycle, open-drain  
2
3
4
5
6
GND  
GND  
VDD  
GND  
SDA  
Connect to GND  
Ground Pin  
Supply Pin  
Connect to GND  
Interface serial data pin (input/output), open-drain  
Data Sheet  
5
Ver. 1.2  
2019-04-09  
TLE493D-W2B6  
Functional Description  
2.3  
Definition of Magnetic Field  
A positive field is considered as South-Pole facing the corresponding Hall element.  
Figure 3 shows the definition of the magnetic directions X, Y, Z of the TLE493D-W2B6.  
Figure 3  
Definition of Magnetic Field Direction  
2.4  
Sensitive Area  
The magnetic sensitive area for the Hall measurement is shown in Figure 4.  
Figure 4  
Center of Sensitive Area (dimensions in mm)  
Data Sheet  
6
Ver. 1.2  
2019-04-09  
TLE493D-W2B6  
Functional Description  
2.5  
Application Circuit  
The use of an interrupt line is optional, but highly recommended to ensure proper and efficient readout of the  
sensor data.  
The pull-up resistor values of the I2C bus have to be calculated in such a way as to fulfill the rise- and fall time  
specification of the interface for the given worst case parasitic (capacitive) load of the actual application  
setup.  
Please note: too small resistive R1/2 values have to be prevented to avoid unnecessary power consumption  
during interface transmissions, especially for low-power applications.  
VDD  
Power  
Supply  
R1  
R2  
GND  
RSDA  
VDD  
VDD  
SDA  
TLE493D  
CBuf  
RSCL  
C1  
µC  
SCL  
(/INT)  
GND  
GND  
R1 = 1.2kΩ  
R2 = 1.2kΩ  
C1 = 100nF  
Optional (recommended for wire harness): RSDA, RSCL  
SDA, SCL capacitance < 200 pF each, including all stray capacitances  
Figure 5  
Application Circuit with external power supply and µC  
For additional EMC precaution in harsh environments, C1 may be implemented by two 100 nF capacitors in  
parallel, which should be already given by CBuf near the µC and/or power supply.  
Data Sheet  
7
Ver. 1.2  
2019-04-09  
TLE493D-W2B6  
Specification  
3
Specification  
This sensor is intended to be used in an automotive environment. This chapter describes the environmental  
conditions required by the device (magnetic, thermal and electrical).  
3.1  
Absolute Maximum Ratings  
Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at these or any other conditions above those  
indicated in the operational sections of this specification is not implied. Furthermore, only single error cases  
are assumed. More than one stress/error case may also damage the device.  
Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During  
absolute maximum rating overload conditions the voltage on VDD pin with respect to ground (GND) must not  
exceed the values defined by the absolute maximum ratings.  
Table 3  
Absolute Maximum Ratings  
Symbol  
Parameter  
min  
-40  
-0.3  
typ  
max  
125  
3.5  
±1  
Unit  
°C  
V
Note/Condition  
Junction temperature  
Voltage on VDD  
Tj  
VDD  
Bmax  
Vmax  
Magnetic field  
T
Voltage range on any pin to  
GND  
-0.1  
3.5  
V
open-drain outputs are not  
current limited.  
Table 4  
Ambient temperature TA = 25°C  
ESD Protection1)  
Parameter  
Symbol  
Values  
Unit  
Note or Test Condition  
Min.  
Typ.  
Max.  
ESD voltage (HBM)2)  
ESD voltage (CDM)3)  
VESD  
±2.0  
±0.75  
±0.5  
kV  
kV  
kV  
R = 1.5 kΩ, C = 100 pF  
for corner pins  
all pins  
1) Characterization of ESD is carried out on a sample basis, not subject to production test.  
2) Human Body Model (HBM) tests according to ANSI/ESDA/JEDEC JS-001.  
3) Charged Device Model (CDM), ESD susceptibility according to JEDEC JESD22-C101.  
Data Sheet  
8
Ver. 1.2  
2019-04-09  
TLE493D-W2B6  
Specification  
3.2  
Operating Range  
To achieve ultra low power consumption, the chip does not use a conventional, power-consuming restart  
procedure. The focus of the restart procedure implemented is to ensure a proper supply for the ADC operation  
only. So it inhibits the ADC until the sensor supply is high enough.  
Table 5  
Operating Range  
Symbol  
Parameter  
min  
-40  
2.8  
typ  
max  
125  
3.5  
Unit  
°C  
Note/Condition  
Operating temperature Tj  
Tj = Ta +3 K in fast mode  
Supply voltage  
VDD  
3.3  
V
Supply voltage must be above  
restart level  
ADC restart level  
Vres  
2.2  
2.5  
50  
2.8  
V
min. ADC operating level  
ADC restart hysteresis  
Register stable level  
Vres-hys  
Vreg  
mV  
V
2.5  
Register values are stable above  
this voltage level  
The sensor relies on a proper supply ramp defined with tPUP, VOUS and IDD-PUP, see Figure 6. The I2C reset feature  
of the sensor shall be used by the µC after Power Up. If supply monitoring is used in the system (e.g. brown-  
out detector etc.), it is also recommended to use the I2C reset of the sensor following events detected by this  
monitor.  
In any case, an external supply switch (either provided by a System-Basis-Chip solution which includes a  
supply-enable feature, a Bias-Resistor-Transistor device, a capable µC GPIO pin, etc.) shall allow a power-  
cycle of the sensor as backup for high availability applications to cope with any form of VDD ramps (including  
potential EMC influences), see Figure 6.  
At Power Up, SDA and SCL shall be pulled to VDD using R1 and R2 of Figure 5 and not be driven to low by any  
device or µC on SDA and SCL.  
VDD  
3.3V  
tPUP  
tAPC  
t
Figure 6  
VDD power up and power-cycle for high availability  
Data Sheet  
9
Ver. 1.2  
2019-04-09  
TLE493D-W2B6  
Specification  
Table 6  
VDD power up and power-cycle  
Parameter  
Symbol  
min  
typ  
max  
10  
Unit  
µs  
µs  
V
Note/Condition  
Power Up ramp time  
Availability power cycle1) tAPC  
tPUP  
150  
3.3  
400  
3.5  
Power Up over-  
undershoot  
VOUS  
3
Envelope which must not be  
exceeded at the end of a Power Up.  
Power Up current  
consumption  
IDD-PUP  
10  
mA  
Current consumption during tPUP  
1) Not subject to production test - verified by design.  
3.3  
Electrical Characteristics  
This sensor provides different operating modes and a digital communication interface. The corresponding  
electrical parameters are listed in Table 7. Regarding current consumption more information are available in  
Chapter 3.6.  
Table 7  
Electrical Setup  
Values for VDD = 3.3 V ±5 %, Tj = -40°C to +125°C (unless otherwise specified)  
Parameter  
Supply current 1)  
Symbol min typ  
max Unit Note/Condition  
130 nA Tj = 25°C; power down mode  
Fast mode  
IDD_pd  
IDD_fm  
VIL  
7
1
3.4  
5
mA  
Input voltage low threshold2)  
Input voltage high threshold2)  
Input voltage hysteresis2)  
30  
%VDD all input pads  
%VDD all input pads  
%VDD all input pads  
VIH  
70  
5
VIHYS  
Output voltage low level @ 3 mA load VOL  
0.4  
V
all output pads, static load  
1) Currents at pull up resistors (Figure 5) needs to be considered for power supply dimensioning.  
2) Based on I2C standard 1995 for VDD related input levels  
Data Sheet  
10  
Ver. 1.2  
2019-04-09  
TLE493D-W2B6  
Specification  
3.4  
Magnetic Characteristics  
The magnetic parameters are specified for an end of line production scenario and for an application life time  
scenario.  
The magnetic measurement values are provided in the two’s complement with 12 bit or 8 bit resolution in the  
registers with the symbols Bx, By and Bz. Two examples, how to calculate the magnetic flux are shown in  
Table 11 and Table 12.  
Table 8  
Values for Tj = +25°C, 0 h and VDD = 3.3 V (unless otherwise specified)  
Initial Magnetic Characteristics1)  
Parameter  
Symbol  
min  
typ  
max  
Unit  
Note/Condition  
Magnetic linear range2) (full range)  
Magnetic linear range2)3) (short range) Bxyz_LINSR  
Bxyz_LIN  
±160 ±200 ±230 mT  
±100 ±135 ±150 mT  
-40°C < Tj < +125°C  
Sensitivity X, Y, Z (full range)  
Sensitivity X, Y, Z (short range)  
Sx, Sy, Sz  
SxSR, SySR, SzSR 11  
-1.8  
5.5  
7.7  
10.5  
21  
LSB12/  
mT  
15.4  
±0.2  
Z-Offset (full range and short range) B0Z  
+1.8  
mT  
XY-Offset (full range and short range) B0xy  
-0.75 ±0.2  
+0.75 mT  
X to Y magnetic matching4)  
MXY  
-15  
-25  
95  
±1  
+15  
+25  
182  
91  
%
%
Up to min.  
X/Y to Z magnetic matching4)  
Resolution, 12-bit5) (full range)  
Resolution, 12-bit5) (short range)  
Resolution, 8-bit5) (full range)  
Resolution, 8-bit5) (short range)  
MX/YZ  
Res12  
Res12_SR  
Res8  
0
Bxyz_LIN or Bxyz_LINSR  
130  
65  
µT/  
LSB12  
47.5  
1.52  
0.76  
2.08  
1.04  
0.1  
2.91  
1.46  
0.5  
mT/  
LSB8  
Res8_SR  
Bineff  
Magnetic initial noise (rms)  
(full range and short range)  
mT  
rms = 1 sigma  
Magnetic hysteresis 2)  
(full range and short range)  
BHYS  
1
LSB12 due to quantization  
effects  
1) Magnetic test on wafer level. It is assumed that initial variations are stored and compensated in the external µC during  
module test and calibration.  
2) Not subject to production test - verified by design/characterization.  
3) The short range setting does not have an analogue saturation behavior due to internal offsets and the compensation  
thereof.  
4) See the magnetic matching definition in Equation (3.1) and Equation (3.2).  
5) Resolution is calculated as 1/Sensitivity (and multiplied by 16 for 8-bit value).  
Equation for parameter “X to Y magnetic matching”:  
(3.1)  
(3.2)  
ꢅꢆꢃ ꢇ ꢅꢈ  
ꢅꢆ ꢉ ꢅꢈ  
ꢁꢂ 100ꢃ ∙ 2ꢃ ꢃ  
ꢃꢊ%ꢋ  
Equation for parameter “X/Y to Z magnetic matching”:  
ꢅꢆ ꢉ ꢅꢈꢃ ꢇ 2ꢃ ∙ ꢅꢍ  
ꢅꢆ ꢉ ꢅꢈ ꢉ 2ꢃ ∙ ꢅꢍ  
ꢁ/ꢂꢌ 100ꢃ ∙ 2ꢃ ꢃ  
ꢃꢊ%ꢋ  
Data Sheet  
11  
Ver. 1.2  
2019-04-09  
TLE493D-W2B6  
Specification  
Table 9  
Sensor Drifts1) valid for both full range and short range (unless indicated)  
Values for VDD = 3.3 V ±5 %, Tj = -40°C to 125°C, static magnetic field within full magnetic linear range (unless  
otherwise specified)  
Parameter  
Symbol  
min  
typ  
±5  
max  
+15  
Unit  
%
Note/Condition  
Sensitivity drift X, Y, Z  
Offset drift X, Y  
Offset drift Z  
SxD, SyD, SzD -15  
TC0  
BO_DXY  
BO_DZ  
BO_DZ  
-0.45  
+0.45 mT  
+1.6 mT  
+0.45 mT  
@ 0 mT, TC0  
-1.6  
-0.45  
-3.5  
-15  
@ 0 mT, TC0  
Offset drift Z  
@ 0 mT, TC0, Z Hall spintest  
X to Y magnetic matching drift2) MXY_D  
X/Y to Z magnetic matching drift2) MX/YZ_D  
±1  
±10  
+3.5  
+15  
%
%
TC0  
TC0  
1) Not subject to production test, verified by design/characterization. Drifts are changes from the initial characteristics  
due to external influences.  
2) See the magnetic matching definition in Equation (3.1) and Equation (3.2).  
Table 10  
Values for VDD = 3.3 V ±5 %, Tj = -40°C to 125°C (unless otherwise specified)  
Temperature compensation, non-linearity and noise1)  
Parameter  
Temperature compensation2)  
(full range and short range)  
Symbol min  
typ  
±0  
max  
Unit  
Note/Condition  
TC0  
TC1  
TC2  
TC3  
DNL  
ppm/K Bx, By and Bz (default)  
Bx, By and Bz (option 1)  
Bx, By and Bz (option 2)  
Bx, By and Bz (option 3)  
LSB12 Bx, By and Bz  
-750  
-1500  
+350  
±2  
Differential Non Linearity (full range)  
Differential Non Linearity (short range) DNLSR  
±4  
Integral Non Linearity (full range)  
Integral Non Linearity (short range)  
Magnetic noise (rms)  
INL  
±2  
LSB12 Bx, By and Bz  
LSB12 Bx, By and Bz  
INLSR  
BNeff  
±4  
1
mT  
mT  
mT  
rms = 1 sigma  
Z-Magnetic noise (rms)  
BNeffZ  
BNeffXY  
0.5  
0.25  
rms = 1 sigma,  
-40°C < Tj < +85°C  
XY-Magnetic noise (rms)  
1) Not subject to production test, verified by design/characterization.  
2) TCX must be set before magnetic flux trimming and measurements with the same value.  
Data Sheet  
12  
Ver. 1.2  
2019-04-09  
TLE493D-W2B6  
Specification  
Conversion register value to magnetic field value:  
Table 11  
Magnetic conversion table for 12Bit  
MSB  
Bit10 Bit9  
Bit8  
256  
1
Bit7  
128  
0
Bit6  
64  
0
Bit5  
32  
0
Bit4  
16  
0
Bit3  
8
Bit2  
4
Bit1  
2
LSB  
1
[Dec]  
-2048 1024 512  
[Bin] e.g. 1  
1
1
1
1
1
1
The conversion is realized by the two’s complement. Please use following table for transformation:  
Example for 12-bit read out: 1111 0000 1111B: -2048 + 1024 + 512 + 256 + 0 + 0 + 0 + 0 + 8 + 4 + 2 +1 = -241 LSB12  
Calculation of magnetic flux: -241 LSB12 * 0.13 mT/LSB12 = -31.3 mT  
Table 12  
Magnetic conversion table for 8Bit  
MSB  
-128  
0
Bit10  
64  
Bit9  
32  
0
Bit8  
16  
1
Bit7  
8
Bit6  
4
Bit5  
2
LSB  
1
[Dec]  
[Bin] e.g.  
1
1
1
0
1
Example for 8-bit read out: 0101 1101B: 0 + 64 + 0 + 16 + 8 + 4 + 0 + 1 = 93 LSB8  
Calculation of magnetic flux: 93 LSB8 * 2.08 mT/LSB8 = 193.4 mT  
3.5  
Temperature Measurement  
By default, the temperature measurement is activated. The temperature measurement can be disabled if it is  
not needed and to increase the speed of repetition of the magnetic values.  
Table 13  
Temperature Measurement Characteristics1)  
Parameter  
Symbol  
T25  
min  
1000  
0.21  
typ  
max  
1360  
0.27  
Unit  
Note/Condition  
Digital value @ 25°C  
Temperature resolution, 12-bit  
Temperature resolution, 8-bit  
1180  
0.24  
3.84  
LSB12  
TRes12  
TRes8  
K/LSB12  
K/LSB8  
referring to Tj  
referring to Tj  
1) The temperature measurement is not trimmed on the sensor. An external μC can measure the sensor during module  
production and implement external trimming to gain higher accuracies.  
Temperature values are based on 12 bit resolution. Please note: only bit 11 ... 2 are listed in the bitmap registers.  
Table 14  
Temperature conversion table for 12Bit  
The bits MSB to Bit2 are read out from the temperature value registers. Bit1 and LSB are added to get a 12-bit  
value for calculation.  
MSB  
-2048  
0
Bit10  
1024  
1
Bit9  
512  
0
Bit8  
256  
1
Bit7  
128  
0
Bit6  
64  
0
Bit5  
32  
1
Bit4  
16  
0
Bit3  
8
Bit2  
4
[Dec]  
[Bin] e.g.  
1
1
Example for 12-bit calculation: 0110 1010 11B: 0 + 1024 + 0 + 256 + 0 + 0 + 32 + 0 + 8 + 4 = 1324 LSB12  
Calculation to temperature: (1324 LSB12 - 1180 LSB12) * 0.24 K/LSB12 + 25°C 60°C  
Data Sheet  
13  
Ver. 1.2  
2019-04-09  
TLE493D-W2B6  
Specification  
3.6  
Overview of Modes  
For a good adaptation on application requirements this sensor is equipped with different modes. An overview  
is listed in Table 15.  
Table 15  
Mode  
Overview of modes1)  
Measurements  
2)  
Typ. fUpdate  
Description  
Power Down  
No measurements  
Bx, By, Bz, T  
Bx, By, Bz  
Bx, By  
Lowest possible supply current IDD.  
Low Power Mode  
(full range and  
short range)  
0.05 Hz - 770 Hz Cyclic measurements and ADC-conversions  
(8 steps)  
with different update rates.  
Fast Mode  
(full range)  
Bx, By, Bz, T  
Bx, By, Bz  
Bx, By  
5.7 kHz  
7.5 kHz  
8.4 kHz  
4.2 kHz  
5.5 kHz  
6.2 kHz  
Measurements and ADC conversions are  
running continuously.  
An I2C clock speed 800 kHz and use of the  
interrupt /INT is required.  
Fast Mode  
(short range)  
Bx, By, Bz, T  
Bx, By, Bz  
Bx, By  
Master-Controlled Mode Bx, By, Bz, T  
Up to Fast Mode Measurements triggered by the  
values. microcontroller via I2C.  
(full range and  
short range)  
Bx, By, Bz  
Bx, By  
1) Not subject to production test - verified by design/characterization.  
2) This is the frequency at which specified measurements are updated.  
I2C triggered Master-Controlled Mode typical IDD current consumption estimation formula:  
Equation IDD full range  
(3.3)  
(3.4)  
ꢏꢏ ꢐ ꢎꢑꢑˍꢒꢓ ∙ 0.18ꢃꢓꢔꢃ ∙ ꢒ  
ꢕꢖꢗꢘꢙꢚ  
Equation IDD short range  
ꢏꢏ ꢐ ꢎꢑꢑˍꢒꢓ ∙ 0.24ꢃꢓꢔꢃ ∙ ꢕꢖꢗꢘꢙꢚ  
The average supply current IDDin the 8 Low Power Modes and I2C triggered mode will decrease by about 25 %  
if the temperature measurement is disabled and will decrease by about 50% if the temperature and Bz  
measurement is disabled.  
Data Sheet  
14  
Ver. 1.2  
2019-04-09  
TLE493D-W2B6  
Specification  
3.7  
Interface and Timing Description  
This chapter refers to how to set the boundary conditions in order to establish a proper interface  
communication.  
Table 16  
Interface and timing1)  
Parameter  
Symbol min  
typ  
2.5  
40  
max Unit Note/Condition  
End of Conversion /INT pulse  
tINT  
1.8  
30  
3.2  
50  
μs  
μs  
low-active (when activated)  
read after rising /INT edge  
Time window to read first value  
(full range)  
tRD1  
Time window to read first value  
(short range)  
tRD1_SR  
tRDn  
tRDn_SR  
tclk_E  
42  
32  
44  
-25  
56  
43  
59  
70  
μs  
μs  
μs  
%
read after rising /INT edge  
consecutive reads  
Time window to read next value  
(full range)  
54  
Time window to read next value  
(short range)  
74  
consecutive reads  
Internal clock accuracy  
I2C timings  
+25  
Allowed I2C bit clock frequency2)  
Low period of SCL clock  
High period of SCL clock  
fI2C_clk  
tL  
400  
1000 kHz  
0.5  
0.4  
0.4  
μs  
μs  
μs  
1.3 μs for 400-kHz mode  
0.6 μs for 400-kHz mode  
0.6 μs for 400-kHz mode  
tH  
SDA fall to SCL fall hold time  
tSTA  
(hold time start condition to clock)  
SCL rise to SDA rise su. time  
(setup time clock to stop condition)  
tSTOP  
tWAIT  
0.4  
0.4  
μs  
μs  
0.6 μs for 400-kHz mode  
0.6 μs for 400-kHz mode  
SDA rise to SDA fall hold time  
(wait time from stop to start cond.)  
SDA setup before SCL rising  
SDA hold after SCL falling  
Fall time SDA/SCL signal3)  
Rise time SDA/SCL signal3)  
tSU  
0.1  
0
μs  
μs  
µs  
µs  
tHOLD  
tFALL  
tRISE  
0.25  
0.5  
0.3  
R = 1.2 kΩ  
1) Not subject to production test - verified by design/characterization  
2) Dependent on R-C-combination on SDA and SCL. Ensure reduced capacitive load for speeds above 400 kHz.  
3) Dependent on used R-C-combination.  
The fast mode, shown in Figure 7, requires a very strict I2C behavior synchronized with the sensor conversions  
and high bit rates. In this mode, a fresh measurement cycle is started immediately after the previous cycle was  
completed.  
Other modes are available for more relaxed timing and also for a synchronous microcontroller operation of  
sensor conversions. In these modes, a fresh measurement cycle is only started if it is triggered by an internal  
or external trigger source.  
In the default measurement configuration (Bx, By, Bz and T), shown in Figure 7, the measurement cycle ends  
after the temperature measurement.  
In 3-channel measurement configuration (Bx, By and Bz), the temperature channel is not converted and  
updated. Thus, the measurement cycle ends after the Bz measurement.  
Data Sheet  
15  
Ver. 1.2  
2019-04-09  
TLE493D-W2B6  
Specification  
In X/Y angular measurement configuration (Bx and By), the Bz and temperature channel are not converted and  
updated. Thus, the measurement cycle ends after the By measurement.  
*) setup/hold time for i2c readout to register value.  
first register  
address is0,  
trigger bits are0  
SCL falling edge SCL falling edge SCL falling edge SCL falling edge  
shadowed LSBs  
from prev.  
MSBs read  
status output starts  
with odd parity bit of  
last 6bytes transmitted  
time must be either:  
or:  
addressing options;  
R/W bit is1  
@ ACK bit  
@ ACK bit  
@ ACK bit  
@ ACK bit  
1
1
reads X[n-1]  
reads Y[n-1]  
reads Z[n-1]  
reads T[n-1]  
tS/H  
tS/H  
-
fi2 c_clk  
fi2 c_clk  
(update after read)  
u(pdate before read)  
i2c bus protocol  
SCL / SDA  
X[n-1]LSBs Z[n-1]LSBs  
Y[ n- 1]LSBs T[n-1]LSBs  
S
i2c_adr sens_reg X[n-1]MSBs Y[n-1]MSBs Z[n-1]MSBs T[n-1]MSBs  
STATUS  
P
S
i2 c_adr sens_reg X[n-1]MSBs  
MÆ S MÆ S SÆ M  
transmission direction  
MÆ S  
MÆ S  
SÆ M  
SÆ M  
SÆ M  
SÆ M  
SÆ M  
SÆ M  
SÆ M  
tS/H *)  
tS/H *)  
corresponds to10 bit addressing:  
two bytes following a S condition  
(i2c standard 1995, section 13.1)  
µC can start  
readout after  
/INT (=SCL) is  
high again  
tS/H *)  
t
S/H *)  
/INT (= SCL pin)  
X value register  
tINT  
1 / update_rate (fast mode)  
tRDn  
tRD1  
X[n-1]  
tRDn  
tRDn  
tRD1  
X[n]  
Y[n-1]  
Y[n]  
Y value register  
Z value register  
T value register  
Z[n-1]  
By  
Z[n]  
T[n-1]  
T[n]  
Bx  
ADC conversion  
chan. (fast mode)  
Bx  
Bz  
T
Figure 7  
I2C readout frame, ADC conversion and related timing  
tRISE  
tFALL  
tH  
tL  
tSTOP  
tWAIT  
tSTA  
70% VDD  
30% VDD  
SCL  
pin  
70% VDD  
30% VDD  
SDA  
pin  
tHOLD  
tSU  
1 bit transfer  
I2C timing specification  
STOP cond.  
START cond.  
Figure 8  
Data Sheet  
16  
Ver. 1.2  
2019-04-09  
TLE493D-W2B6  
Package Information  
4
Package Information  
4.1  
Package Parameters  
Table 17  
Package Parameters  
Symbol  
Parameter  
Limit Values  
Unit  
Notes  
Min.  
Typ. Max.  
Thermal resistance1)  
Junction ambient  
RthJA  
RthJL  
200  
K/W  
K/W  
Junction to air  
for PG-TSOP-6-6-8  
Thermal resistance  
Junction lead  
100  
Junction to lead  
for PG-TSOP-6-6-8  
Soldering moisture level2)  
MSL 1  
260°C  
1) According to Jedec JESD51-7  
2) Suitable for reflow soldering with soldering profiles according to JEDEC J-STD-020D.1 (March 2008)  
Figure 9  
Image of TLE493D-W2B6 in TSOP6  
Figure 10 Footprint PG-TSOP6-6-8 (compatible to PG-TSOP6-6-5, all dimensions in mm)  
Data Sheet  
17  
Ver. 1.2  
2019-04-09  
TLE493D-W2B6  
Package Information  
4.2  
Package Outlines  
Figure 11 Package Outlines (all dimensions in mm)  
Data Sheet  
18  
Ver. 1.2  
2019-04-09  
TLE493D-W2B6  
Package Information  
Figure 12 Packing (all dimensions in mm)  
Further information about the package can be found here:  
http://www.infineon.com/cms/packages/SMD_-_Surface_Mounted_Devices/TSOP/TSOP6.html  
Data Sheet  
19  
Ver. 1.2  
2019-04-09  
TLE493D-W2B6  
Revision History  
5
Revision History  
Revision History  
Page or Item  
Subjects (major changes since previous revision)  
Ver. 1.2, 2019-04-09  
Chapter 3.2 text “I2C reset” updated.  
Ver. 1.1, 2019-02-08  
Figure 4, Figure 11 and Figure 12 updated.  
Ver. 1.0, 2018-01-24  
Initial version  
Data Sheet  
20  
Ver. 1.2  
2019-04-09  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2019-04-09  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2019 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
a written document signed by  
Document reference  

相关型号:

TLE493D-W2B6 A3

Infineon´s  3D magnetic sensor family TLE493D offers accurate three dimensional sensing with extremely low-power consumption. Within its small 6-pin package the sensor provides direct measurement of the x-, y-, and z components of a magnetic field. Thus the sensor family is ideally suited for the measurement of:
INFINEON

TLE493D-W2B6A0

Low Power 3D Hall Sensor with I2C Interface and Wake Up Function
INFINEON

TLE493D-W2B6A1

Low Power 3D Hall Sensor with I2C Interface and Wake Up Function
INFINEON

TLE493D-W2B6A2

Low Power 3D Hall Sensor with I2C Interface and Wake Up Function
INFINEON

TLE493D-W2B6A3

Low Power 3D Hall Sensor with I2C Interface and Wake Up Function
INFINEON

TLE493DA2B6HTSA1

Hall Effect Sensor,
INFINEON

TLE493DW2B6A1HTSA1

Hall Effect Sensor,
INFINEON

TLE493DW2B6A2HTSA1

Hall Effect Sensor,
INFINEON

TLE493DW2B6A3HTSA1

Hall Effect Sensor,
INFINEON

TLE4941

Differential Two-Wire Hall Effect Sensor IC
INFINEON

TLE4941-1C

Analog Circuit, 1 Func, PSSS2, PLASTIC, SSO-2
INFINEON

TLE4941-1C-HT

Analog Circuit,
INFINEON