TLE4971-A075N5-U-E0001 [INFINEON]

The Infineon XENSIV TLE4971-A075N5-E0001 is a new automotive qualified pre-programmed 75A current sensor. The high precision current measurement serves applications with medium to high currents. Due to the coreless magnetic current sensing principle, saturation or hysteresis effects commonly known from sensors using flux concentration techniques are avoided. The analog interface and two fast over-current detection pins with a reaction time of less than 1µs ensures a safe operation of the applications.;
TLE4971-A075N5-U-E0001
型号: TLE4971-A075N5-U-E0001
厂家: Infineon    Infineon
描述:

The Infineon XENSIV TLE4971-A075N5-E0001 is a new automotive qualified pre-programmed 75A current sensor. The high precision current measurement serves applications with medium to high currents. Due to the coreless magnetic current sensing principle, saturation or hysteresis effects commonly known from sensors using flux concentration techniques are avoided. The analog interface and two fast over-current detection pins with a reaction time of less than 1µs ensures a safe operation of the applications.

文件: 总23页 (文件大小:734K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE4971 high precision coreless current sensor for  
automotive applications in 8x8mm SMD package  
Description  
Features & Benefits  
TLE4971 is a high precision miniature coreless  
magnetic current sensor for AC and DC  
measurements with analog interface and two fast  
over-current detection outputs.  
Infineon's well-established and robust monolithic  
Hall technology enables accurate and highly linear  
measurement of currents with a full scale up to  
±120A. The sensor is equipped with internal self-  
diagnostic feature.  
Integrated current rail with typical 220µΩ insertion  
resistance enables ultra-low power loss  
Less than 1nH parasitic inductance  
Smallest form factor, 8x8mm SMD, for easy  
integration and board area saving  
High accurate, scalable, DC & AC current sensing  
210kHz bandwidth enables wide range of  
applications  
Very low sensitivity error over temperature  
Galvanic functional isolation up to 1150V peak VIORM  
s
Typical applications are Onboard Chargers as well  
as any kind of Drives.  
The differential measurement principle allows  
great stray field suppression for operation in  
harsh environments.  
Two separate interface pins (OCD) provide a fast  
output signal in case a current exceeds a pre-set  
threshold.  
The sensor is shipped as a fully calibrated product  
without requiring any customer end-of-line  
calibration.  
All user-programmable parameters such as OCD  
thresholds, blanking times and output configuration  
modes are stored in an embedded EEPROM  
memory.  
Coreless current sensor in PG-TISON-8 package  
Order Information  
Product Name  
Product Type  
Marking  
Ordering Code Package  
TLE4971-A120N5-E0001 120A range  
H71E1A1_N SP005737183  
PG-TISON-8-5  
PG-TISON-8-5  
PG-TISON-8-5  
PG-TISON-8-5  
PG-TISON-8-5  
PG-TISON-8-5  
PG-TISON-8-5  
PG-TISON-8-5  
SP005737179  
SP005737136  
SP005737132  
SP005737204  
SP005737200  
SP005737196  
SP005737188  
TLE4971-A075N5-E0001 75A range  
H71E3A1_N  
H71E4A1_N  
H71E6A1_N  
H71E1A1UN  
H71E3A1UN  
H71E4A1UN  
H71E6A1UN  
TLE4971-A050N5-E0001 50A range  
TLE4971-A025N5-E0001 25A range  
TLE4971-A120N5-U-E0001 120A range, UL-certified  
TLE4971-A075N5-U-E0001 75A range, UL-certified  
TLE4971-A050N5-U-E0001 50A range, UL-certified  
TLE4971-A025N5-U-E0001 25A range, UL-certified  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
Revision 1.02  
19-08-2022  
TLE4971  
Datasheet  
Pin Configuration  
Pin configuration  
IPN  
Pin No. Symbol Function  
VDD  
GND Ground  
Reference voltage input or  
output  
Supply voltage  
1
2
+
8
-
7
VREF  
3
4
1
2
3
4
5
AOUT Analog signal output  
6
Over-current detection  
OCD1 output 1 (open drain  
output)  
Over-current detection  
OCD2 output 2 (open drain  
output)  
5
6
Figure 1 Pin layout PG-TISON-8  
The current IPN is measured as a positive value  
when it flows from pin 8 (+) to pin 7 (-) through the  
integrated current rail.  
Negative current terminal  
pin (current-out)  
Positive current terminal  
pin (current-in)  
IP-  
7
8
IP+  
Target Applications  
The TLE4971 is suitable for AC as well as DC current measurement applications:  
On-Board Charger (OBC)  
Drives / Servo / Motor Control / Inverter / eScooter / eBike / LEV  
Current monitoring  
Overload and over-current detection  
Due to its implemented magnetic interference suppression, it is extremely robust when exposed to external  
magnetic fields. The device is suitable for fast over-current detection with a configurable threshold level.  
This allows the control unit to switch off and protect the affected system from damage, independently from  
the main measurement path.  
Standard Product Configuration  
Table 1 Standard Product Configuration  
Parameter  
TLE4971-A120xxx TLE4971-A075xxx  
TLE4971-A050xxx TLE4971-A025xxx  
Full scale range 1)  
±120A  
Semi-differential  
1.65V  
±75A  
Semi-differential  
1.65V  
±50A  
Semi-differential  
1.65V  
±25A  
Semi-differential  
1.65V  
Output mode  
Quiescent voltage  
OCD1 threshold  
factor 2)  
1.25  
0.82  
1.25  
0.82  
1.25  
0.82  
1.25  
0.82  
OCD1 threshold  
factor 2)  
OCD filter time both  
channels 2)  
Ratiometric mode  
0µs  
No  
0µs  
No  
0µs  
No  
0µs  
No  
1) Optional sensitivity values are mentioned in Table 5.  
2) Optional OCDx configuration are listed in Table 7 and Table 8.  
Datasheet  
2
Revision 1.02  
19-08-2022  
TLE4971  
Datasheet  
Block Diagram  
Infrastructure  
VDD  
GND  
IP+  
(power, clk, references)  
Integrated  
current  
rail  
Bias signal for  
Diagnosis Mode  
EEPROM  
OCD1  
OCD2  
References  
Signal  
Diff. Hall  
AOUT  
VREF  
Conditioning  
Differential  
Hall Plate  
Temp  
Stress  
MUX  
Output  
Offset  
IP-  
Figure 2 Block Diagram  
General Description  
TLE4971 is a high speed precision current sensor. Due to implemented EEPROM various configuration can  
be applied without using any external components.  
Depending on the selected programming option, the analog output signal can be provided either as:  
Single-ended  
Fully-differential  
Semi-differential  
In single-ended mode, the pin VREF is used as a reference voltage input. The analog output signal is  
provided on pin AOUT.  
In fully-differential mode, both AOUT (positive polarity) and VREF (negative polarity) are used as signal  
outputs whereas VDD is used as reference voltage input.  
In semi-differential mode a chip-internal reference voltage is used and provided on VREF (output).  
For fast over-current detection, the raw analog signal provided by the Hall probes is fed into comparators  
with programmable switching thresholds.  
A user-programmable deglitch filter is implemented to enable the suppression of fast switching transients.  
The open-drain outputs of the OCD pins are active lowand they can be directly combined into a wired-  
AND configuration on board level to have a general over-current detection signal.  
Programming of the memory can be performed in circuit through a Serial Inspection and Configuration  
Interface (SICI). The interface is descripded in detail in the programming guide which can be found on the  
Infineon webside.  
Datasheet  
3
Revision 1.02  
19-08-2022  
TLE4971  
Datasheet  
Absolute Maximum Ratings  
Table 2 Absolute Maximum Ratings  
General conditions (unless otherwise specified): VDD = 3.3V; TS = -40°C … +125°C  
Note /  
Test Condition  
Parameter  
Symbol Min Typ  
Max  
Unit  
-0.3  
-
3.3  
-
3.6  
6.5  
V
V
Supply voltage  
VDD  
duration < 1 minute  
Peak, frequency < 10Hz.  
Primary nominal rated  
current LF1)  
Tested on Infinenon reference  
PCB (see related application  
note: AppNote TLx4971 PCB)  
RMS, frequency 10Hz.  
IPNRLF  
-70  
-
70  
A
Primary nominal rated  
current HF2)  
Tested on Infinenon reference  
PCB (see related application  
note: AppNote TLx4971 PCB)  
IPNRHF  
-70  
-
-
70  
A
A
Single peak for 10µs,  
10 assertions per lifetime  
Primary current  
IPNS  
-250  
250  
Voltage on interface pins  
VREF, OCD1, AOUT  
VIO  
-0.3  
-0.3  
-
-
VDD + 0.3  
21  
V
V
Voltage on Interface pin  
OCD2  
VIO_OCD2  
ESD voltage3)  
ESD voltage4)  
Voltage slew-rate on  
current rail  
Maximum junction  
temperature  
Storage temperature  
VESD_HBM  
VESD_SYS  
-2  
-
-
2
kV  
kV  
-16  
16  
In the application circuit  
Considering continuous  
ΔV/dt  
-
-
10  
V/ns  
Tj_max  
-
-
-
130  
150  
°C  
°C  
TA_STORE  
-40  
Life time  
LT  
15  
-
-
Years operation with TS = 70°C  
and I = 30 A RMS  
1) Tested with primary nominal rated current of 70A peak on Infineon reference PCB at Low Frequency (LF).  
Thermal equilibrium reached after 2 min.  
2) Tested with primary nominal rated current of 70A rms on Infineon reference PCB at High Frequency (HF).  
Thermal equilibrium reached after 2 min.  
3) Human Body Model (HBM), according to standard AEC-Q 100-002  
4) According to standard IEC 61000−4−2 electrostatic discharge immunity test  
Stress above the limit values listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute  
ratings. Exceeding only one of these values may cause irreversible damage to the integrated circuit.  
Datasheet  
4
Revision 1.02  
19-08-2022  
TLE4971  
Datasheet  
Product Characteristics  
Table 3 Operating Ranges  
General conditions (unless otherwise specified): VDD = 3.3V; TS = -40°C … +125°C  
Parameter  
Symbol Min. Typ.  
Max.  
Unit Note / Test Condition  
Supply voltage  
VDD  
3.1  
3.3  
3.5  
V
Ambient temperature at  
soldering point  
Measured at soldering point, limited  
life time of 8800h  
TS  
-40  
-
125  
°C  
Measured at soldering point,  
°C Considering 8 years operation at  
I = 32 A RMS  
Ambient temperature at  
soldering point  
TS  
-40  
-
105  
Capacitance on analog  
output pin  
Capacitor on VDD  
W/o decoupling resistor, including  
parasitic cap on the board  
CAOUT  
CVDD  
VREF  
4.7  
6.8  
220  
1.65  
8
-
nF  
-
-
nF  
Other values available by EEPROM:  
1.2V, 1.5V, 1.8V  
Reference input voltage  
-
V
Reference input voltage  
variation  
VREF_var  
-10  
-
10  
%
Table 4 Operating Parameters  
General conditions (unless otherwise specified): VDD = 3.3V; TS = -40°C … +125°C  
Parameter  
Symbol Min. Typ.  
Max.  
Unit Note / Test Condition  
Current consumption  
IDD  
-
18  
25  
mA I(AOUT) = 0mA  
25°C, when soldered on PCB with  
140µm copper thickness  
Primary path resistance  
RPN  
-
220  
-
µΩ  
From VDD rising above VDD(min) to full  
operation. Output with lower accuracy is  
available within 0.5 ms.  
Power-on delay time  
tPOR  
-
1.0  
1.5  
ms  
0A primary input current.  
Voltage on interface pin  
OCD1  
Voltage on interface pin  
OCD2  
Voltage on analog output  
AOUT  
VIO_OCD1 -0.3  
VIO_OCD2 -0.3  
-
-
-
3.5  
3.5  
V
V
V
In functional mode  
VAOUT  
RTHJS  
-0.3  
-
VDD + 0.3  
Current rail to soldering point, on Infineon  
reference PCB (see related application note  
AppNote TLx4971 PCB)  
Thermal resistance1)  
0.25  
-
K/W  
1) Not subject to production test. Verified by design and characterization.  
Datasheet  
5
Revision 1.02  
19-08-2022  
 
TLE4971  
Datasheet  
The quiescent voltage is derived from the supply  
pins VDD and GND and has the same value on both  
AOUT and VREF:  
Functional Output Description  
The analog output signal depends on the selected  
output mode:  
퐷퐷  
(
)
(
)
푄퐴푂푈푇 퐷퐷 = 푄푅퐸퐹 퐷퐷 =  
Single-ended  
2
Fully-differential  
Semi-differential  
The sensitivity in the fully-differential mode can be  
generally expressed as:  
퐷퐷  
Single-Ended Output Mode  
(
)
(
)
퐷퐷 푑푖푓푓 = 푆 3.3푉  
푑푖푓푓  
3.3푉  
In single-ended mode VREF is used as an input pin  
to provide the analog reference voltage, VREF. The  
voltage on AOUT, VAOUT, is proportional to the  
measured current IPN at the current rail:  
In this mode, the quiescent voltages and the  
sensitivity are both ratiometric with respect to VDD  
if ratiometricity is enabled.  
Semi-Differential Output Mode  
(
)
퐴푂푈푇  
푃푁 = 푂푄 + 푆 ∙ 퐼푃푁  
In semi-differential output mode, the sensor is  
using a chip-internal reference voltage to generate  
the quiescent voltage that is available on pin VREF  
(used as output).  
The quiescent voltage VOQ is the value of VAOUT  
when IPN=0. VOQ tracks the voltage on VREF  
(
)
푂푄 푅퐸퐹 = 푅퐸퐹  
The reference voltage can be set to different  
values which allow either bidirectional or  
uniderictional current sensing. The possible values  
of VREFNOM are indicated in Table 3.  
The analog measurement result is available as  
single-ended output signal on AOUT. The  
dependence of sensitivity and output offset on  
reference voltage is the same as described in  
single- ended output mode.  
The sensitivity is by default non ratiometric to VREF.  
If ratiometricity is activated the sensitivity  
becomes as follows:  
The quiescent voltage is programmable at 3  
different values, VOQbid_1 and VOQbid_2 for  
bidirectional current and VOQuni for unidirectional  
current (see Table 5).  
푅퐸퐹  
(
)
푅퐸퐹 = 푆(푅퐸퐹푁푂푀) ∙  
푅퐸퐹푁푂푀  
Fully-Differential Output Mode  
In fully-differential output mode, both VREF and  
AOUT are analog outputs to achieve double  
voltage swing: AOUT is the non-inverting output,  
while VREF is the inverting output:  
(
)
퐴푂푈푇  
푃푁 = 푄퐴푂푈푇 + 푆 ∙ 퐼푃푁  
(
)
푅퐸퐹 푃푁 = 푄푅퐸퐹 − 푆 ∙ 퐼푃푁  
Datasheet  
6
Revision 1.02  
19-08-2022  
TLE4971  
Datasheet  
Table 5 Analog Output Characteristics  
General conditions (unless otherwise specified): VDD = 3.3V; TS = -40°C … +125°C  
Note / Test  
conditions  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
IPN = 0A; fully-  
differential or semi-  
differential  
(bidirectional) modes,  
standard setting  
IPN = 0A; semi-  
differential  
Quiescent output voltage  
(bidirectional option 1)1)2)  
VOQbid_1  
-
VDD/2  
-
V
Quiescent output voltage  
(bidirectional option 2)2)  
(bidirectional) mode;  
for this option the  
ratiometricity offset is  
disabled  
IPN = 0A; semi-  
differential  
VOQbid_2  
-
-
1.5  
-
-
V
V
Quiescent output voltage  
(unidirectional mode)2)  
VOQuni  
VDD/5.5  
(unidirectional) mode  
Sensitivity, range11)2)3)  
Sensitivity, range22)3)  
Sensitivity, range32)3)  
Sensitivity, range42)3)  
Sensitivity, range52)3)  
Sensitivity, range62)3)  
Sensitivity ratiometry factor  
Quiescent ratiometry factor  
S1  
S2  
S3  
S4  
S5  
S6  
KS  
-
-
-
-
-
-
-
-
10  
12  
16  
24  
32  
48  
1
-
-
-
-
-
-
-
-
mV/A ±120A FS (Full Scale)  
mV/A ±100A FS  
mV/A ±75A FS  
mV/A ±50A FS  
mV/A ±37.5A FS  
mV/A ±25A FS  
-
KOQ  
1
-
Analog output drive  
capability  
IO  
-2  
-
2
mA  
DC current  
VDD-VAOUT  
Output  
current = 2mA  
-3dB criterion,  
CO = 6.8nF  
fsignal = 120kHz  
Typical value is at  
25°C.  
;
Analog output saturation  
voltage  
VSAT  
BW  
-
150  
210  
300  
mV  
Transfer function cutoff  
frequency  
Output phase delay4)  
Output noise density5)6)  
120  
-
kHz  
°
φdelay  
-
-
45  
60  
INOISE  
260  
660 µA/√Hz  
Frequency up to  
150kHz. Up to 20mT  
homogeneous field  
applied  
External homogenous  
BSR  
34  
50  
-
dB  
magnetic field suppression4)  
1) Pre-configured setting, for other pre-configured versions please contact your local sales.  
2) Can be programmed by user (valid only for 120A version).  
3) Values refer to semi-differential mode or single-ended mode, with VREF =1.65 V.  
In fully-differential mode the sensitivity value is doubled.  
4) Not subject to production test. Verified by design and characterization.  
5) Typical value in fully-differential mode, sensitivity range S6  
푂푢ꢃ푝푢ꢃ 푁ꢄ푖ꢅꢆ [ꢇ  
]
1
ꢈꢉꢊ  
6) ꢀ표ꢁ푠푒 ꢂ푒푛푠ꢁ푡푦 =  
ꢌꢆꢍꢅ푖ꢃ푖푣푖ꢃꢎꢏꢑ  
∗ 퐵푊[퐻푧]  
Datasheet  
7
Revision 1.02  
19-08-2022  
 
TLE4971  
Datasheet  
Table 5 Analog Output Characteristics (cont’d)  
General conditions (unless otherwise specified): VDD = 3.3V; TS = -40°C … +125°C  
Parameter  
Symbol Min  
Typ  
Max  
Unit Note / Test conditions  
Sensitivity error (all  
ranges)  
ESENS  
-1.5  
-
1.5  
%
TS = 25°C, 0h, ±3σ  
-2.0  
-1.5  
-
-
2.0  
1.5  
%
%
TS = -40°C to 25°C, 0h, ±3σ  
TS = 25°C to 125°C, 0h, ±3σ  
Sensitivity error (all  
ranges) over temperature  
ESENST  
Sensitivity error (all  
ranges) over temperature  
and lifetime4)  
ESENSL  
-3  
-
3
%
Output offset (all ranges)  
EOFF  
-180  
-230  
-230  
-
-
-
180  
230  
230  
mA  
mA  
mA  
TS = 25°C, 0h, ±3σ  
TS = -40°C to 25°C, 0h, ±3σ  
TS = 25°C to 125°C, 0h, ±3σ  
Output offset (all ranges)  
over temperature  
EOFFT  
Output offset (all ranges)  
over temperature and  
lifetime4)  
EOFF_L  
-500  
-
500  
mA  
TS = 25°C, 0h, ±3σ,  
includes linearity error  
Total error (S1)  
ETOT_S1  
-1.7  
-2.3  
-
-
1.7  
2.3  
%
%
TS = -40°C to 25°C, 0h, ±3σ,  
includes linearity error  
Total error (S1) over  
temperature  
ETOT_S1  
TS = 25°C to 125°C, 0h,  
±3σ, includes linearity  
error  
-1.7  
-
1.7  
%
TS = 25°C, 0h, ±3σ,  
includes linearity error  
TS = -40°C to 25°C, 0h, ±3σ,  
includes linearity error  
TS = 25°C to 125°C, 0h,  
±3σ, includes linearity  
error  
Percentage of FS,  
sensitivity S1; includes  
sensitivity, offset and  
linearity error  
Total error (S6)  
ETOT_S6  
-1.5  
-2.3  
-
-
1.5  
2.3  
%
%
Total error (S6) over  
temperature  
ETOT_S6  
-1.8  
-
-
1.8  
%
%
Total error over  
ETOTL  
-3.45  
3.45  
temperature and lifetime4)  
4) Not subject to production test. Verified by design and characterization.  
Datasheet  
8
Revision 1.02  
19-08-2022  
TLE4971  
Datasheet  
OCD thresholds  
Fast Over-Current Detection  
(OCD)  
The symmetric threshold level of the OCD outputs  
is adjustable and triggers an over-current event in  
case of a positive or negative over-current. The  
possible threshold levels are listed in Table 7 and  
Table 8. The instruction for the settings is  
documented in the TLI4971 programming guide  
and the TLE4971 addendum.  
The Over-Current Detection (OCD) function allows  
fast detection of over-current events. The raw  
analog output of the Hall probes is fed directly into  
comparators with programmable switching  
thresholds. A user programmable deglitch filter is  
implemented to enable the suppression of fast  
switching transients. The two different open-drain  
OCD pins are active low and can be directly  
combined into a wired-AND configuration on  
board level to have a general over-current  
detection signal. TLE4971 supports two  
OCD outputs timing behavior  
Both output pins feature a deglitch filter to avoid  
false triggers by noise spikes on the current rail.  
Deglitch filter settings can be programmed  
according to application needs. Available options  
are listed in Table 7 and Table 8.  
independent programmable OCD outputs, suited  
for different application needs.  
The OCD pins are providing a very fast response,  
thanks to independence from the main signal path.  
They can be used as a trap functionality to quickly  
shut down the current source as well as for precise  
detection of soft overload conditions.  
Figure 3 shows the OCD output pin typical  
behavior during an over-current event.  
Over-current Pulse 1: duration exceeds the over-  
current response time tD_OCDx + response time jitter  
ΔtD_OCDx + deglitch filter time tdeglitch. The OCD  
output voltage is set low until the current value  
drops below the OCD threshold.  
OCD pins external connection  
The OCD pins can be connected to a logic input pin  
of the microcontroller and/or the gate-driver to  
quickly react to over-current events. They are  
designed as open-drain outputs to easily setup a  
wired-AND configuration and allow monitoring of  
several current sensors outputs via only one  
microcontroller pin.  
Over-current Pulse 2: duration does not exceed  
the over-current response time tD_OCDx and  
therefore no OCD event is generated.  
Over-current Pulse 3: duration exceeds the  
response time tD_OCDx + response time jitter  
ΔtD_OCDx, but does not exceed the glitch filter time  
tdeglitch and no OCD event is generated.  
B
2 x BTHR  
BTHR  
1
2
3
t
Glitch  
counter  
threshold  
t
ΔtD_OCDx  
VOCD  
VDD  
0.5 x VDD  
t
tD_OCDx  
tdeglitch  
tD_OCDx  
tD_OCDx  
tdeglitch  
tOCD_low  
ΔtD_OCDx  
ΔtD_OCDx  
tOC < (tD_OCDx + ΔtD_OCDx  
)
tOC < (tD_OCDx + ΔtD_OCDx + tdeglitch  
)
Figure 3 Fast over-current detection output timing  
Datasheet  
9
Revision 1.02  
19-08-2022  
TLE4971  
Datasheet  
Fast Over-Current Detection (OCD) Output Parameters  
Table 6 Common OCD Parameters  
General conditions (unless otherwise specified): VDD = 3.3V; TS = -40°C … +125°C, CL=1nF.  
Parameter  
Threshold level tolerance1)  
Symbol  
Min  
Typ  
Max  
Unit  
Note / Test Conditions  
ITHT  
-10  
-
10  
%
Type tested  
At 3σ, Irail=2xITHRx.x, input  
rise time 0.1µs  
Response time jitter1)  
ΔtD_OCD  
-
-
0.25  
µs  
Deglitch filter basic time  
Detection minimum time  
Load capacitance  
tOCDgl  
tOCD_low  
tOCD_low  
CL  
400  
500  
600  
-
ns  
µs  
3
-
-
-
Valid for both OCDs  
1
nF  
Open-drain current  
-
-
1
mA  
kΩ  
DC current  
To VDD  
Pull-up resistor  
RPU  
1
4.7  
10  
1) Not subject to production test. Verified by design and characterization.  
Table 7 OCD1 Parameters  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Note / Test Conditions  
Factor with respect to IFS  
(IFS = current full scale  
according to programming  
i.e. 120A)  
Threshold level - Level11)2) 3)  
ITHR1.1  
-
1.25  
-
x IFS  
Threshold level - Level21)2)  
Threshold level - Level31)2)  
Threshold level - Level41)2)  
Threshold level - Level51)2)  
Threshold level - Level61)2)  
Threshold level - Level71)2)  
Threshold level - Level81)2)  
Response time4)  
ITHR1.2  
ITHR1.3  
ITHR1.4  
ITHR1.5  
ITHR1.6  
ITHR1.7  
ITHR1.8  
tD_OCD1  
tf_OCD1  
-
-
-
-
-
-
-
-
-
1.39  
1.54  
1.68  
1.82  
1.96  
2.11  
2.25  
0.7  
-
x IFS  
x IFS  
x IFS  
x IFS  
x IFS  
x IFS  
x IFS  
µs  
Factor with respect to IFS  
Factor with respect to IFS  
Factor with respect to IFS  
Factor with respect to IFS  
Factor with respect to IFS  
Factor with respect to IFS  
Factor with respect to IFS  
IPN = 2*ITHR1.x  
-
-
-
-
-
-
1
Fall time5)  
100  
150  
ns  
tdeglitch = OCD1gl_mul*tOCDgl  
pre-configured setting = 0  
Deglitch filter setting2)6)  
OCD1gl_mul  
0
-
7
-
1) Symmetric threshold level for positive and negative currents.  
2) Can be programmed by user.  
3) Pre-configured threshold level  
4) Time between primary current exceeding current threshold and falling edge of OCD1-pin at 50%.  
5) Not subject to production test. Verified by design and characterization.  
6) The specified deglitching timing is valid when input current step overtakes the threshold of at least 10%.  
Datasheet  
10  
Revision 1.02  
19-08-2022  
TLE4971  
Datasheet  
Table 8 OCD2 Parameters  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Note / Test Conditions  
Factor with respect to IFS  
(IFS = current full scale  
according to programming  
i.e. 120A)  
Threshold level - level11)2)  
ITHR2.1  
-
0.5  
-
x IFSR  
Threshold level - level21)2)  
Threshold level - level31)2)  
Threshold level - level41)2)3)  
Threshold level - level51)2)  
Threshold level - level61)2)  
Threshold level - level71)2)  
Threshold level - level81)2)  
Response time4)  
ITHR2.2  
ITHR2.3  
ITHR2.4  
ITHR2.5  
ITHR2.6  
ITHR2.7  
ITHR2.8  
tD_OCD2  
tf_OCD2  
-
-
-
-
-
-
-
-
-
0.61  
0.71  
0.82  
0.93  
1.04  
1.14  
1.25  
0.7  
-
x IFSR  
x IFSR  
x IFSR  
x IFSR  
x IFSR  
x IFSR  
x IFSR  
µs  
Factor with respect to IFS  
Factor with respect to IFS  
Factor with respect to IFS  
Factor with respect to IFS  
Factor with respect to IFS  
Factor with respect to IFS  
Factor with respect to IFS  
IPN = 2 x ITHR2.x  
-
-
-
-
-
-
1.2  
300  
Fall time5)  
200  
ns  
tdeglitch = OCD2gl_mul x tOCDgl  
pre-configured setting = 0  
Deglitch filter setting2)6)  
OCD2gl_mul  
0
-
15  
-
1) Symmetric threshold level for positive and negative currents.  
2) Can be programmed by user.  
3) Pre-configured threshold level.  
4) Time between primary current exceeding current threshold and falling edge of OCD2-pin at 50%.  
5) Not subject to production test. Verified by design and characterization.  
6) The specified deglitching timing is valid when input current step overtakes the threshold of at least 10%.  
Undervoltage / Overvoltage detection  
TLE4971 is able to detect undervoltage or overvoltage condition of its own power supply (VDD). When an  
undervoltage (VDD<UVLOH) or overvoltage (VDD>OVLOH) condition is detected both OCD pins are pulled down in order  
to signal such a condition to the user.  
The undervoltage detection on OCD pins is performed only if VDD > VDD,OCD  
.
Both OCD pins are pulled down at start up. When VDD exceeds the undervoltage threshold UVLOH_R and the power  
on delay time tPOR has been reached, the sensor indicates the correct functionality and high accuracy by releasing  
the OCD pins.  
Table 9 Operating Parameters  
General conditions (unless otherwise specified): VDD = 3.3V; TS = -40°C … +125°C  
Parameter  
Symbol Min.  
Typ.  
Max.  
Unit Note / Test Condition  
Supply undervoltage  
lockout threshold  
UVLOH_R  
UVLOH_F  
-
-
2.9  
V
V
VDD at rising edge  
Supply undervoltage  
lockout threshold  
2.5  
-
-
VDD at falling edge  
VDD at rising edge  
Supply overvoltage lockout  
threshold  
OCD undervoltage  
detection limit  
Undervoltage/overvoltage  
lockout delay  
1) Not subject to production test. Verified by design and characterization.  
OVLOH  
VDD,OCD  
tUVLOe  
3.55  
1.8  
1
-
-
-
-
V
V
For VDD<VDD,OCD undervoltage may not be  
performed.  
2.4  
3.1  
µs Enabled to disabled  
Datasheet  
11  
Revision 1.02  
19-08-2022  
TLE4971  
Datasheet  
Isolation Characteristics  
TLE4971 conforms functional isolation.  
Table 10 Isolation Characteristics  
Parameter  
Symbol  
Min  
Typ Max  
Unit Note / Test Conditions  
Maximum rated working  
voltage (sine wave)1)2)3)  
VIOWM  
VIOWMP  
VIORM  
-
-
-
-
-
690  
975  
1150  
-
V
V
V
V
RMS, @ 4000m altitude  
Peak, @ 4000m altitude  
Maximum rated working  
voltage (sine wave)1)2)3)  
-
-
Maximum repetitive  
isolation voltage2)3)  
Max DC voltage, spike,  
@ 4000m altitude  
Apparent charge voltage  
capability (method B)2)3)  
Partial discharge < 5pC peak  
@ 0m altitude  
VPDtest  
1500  
Isolation test voltage3)4)  
VISO  
3500  
3000  
-
-
-
-
V
V
RMS, 60s  
Isolation production test  
voltage4)  
RMS, in production,  
1.2s, UL certified version  
Peak, rise time = 1.2µs,  
fall time = 50µs  
VISOP  
Isolation pulse test voltage3)  
Vpulse  
CPG  
CLR  
6500  
-
-
-
-
-
-
V
Minimum external creepage  
distance  
Minimum external clearance  
distance  
4
4
mm  
mm  
Minimum comparative  
tracking index  
Isolation resistance3)  
Material  
group II  
CTI  
RIO  
-
-
-
-
-
10  
GΩ  
UIO = 500V DC, 1min  
1) The given value is considered an example based on pollution degree 2.  
2) After stress test according to qualification plan.  
3) Not subject to production test. Verified by design and characterization.  
4) Agency type tested for 60 seconds by UL according to UL 1577 standard.  
TLE4971 characteristics are tested at VDE according basic isolation as well and a report is available on request.  
Datasheet  
12  
Revision 1.02  
19-08-2022  
TLE4971  
Datasheet  
System integration  
VCC_IO  
VCC_IO  
VDCLink  
IP+  
IP-  
Load  
VSens  
6
PWM  
TLx4971  
VDD  
GND  
Gate-  
Driver  
220nF  
25V  
µC  
PGND  
VCC_IO  
VCC_IO  
VAREF  
EN  
V
AREF = VSens  
VAREF  
GPIO  
4k7 ꢀ 4k7 ꢀ  
1k ꢀ  
1k ꢀ  
1nF  
25V  
1nF  
50V  
220nF  
25V  
6.8nF  
25V  
220 ꢀ  
220 ꢀ  
220 ꢀ  
A/D  
A/D  
A/D  
A/D  
15nF 15nF 15nF  
25V 25V 25V  
6.8nF 6.8nF 6.8nF  
25V 25V 25V  
Optional low pass filter for bandwidth limitation fc = 48.2kHz  
Figure 4 Application circuit for three phase system in single-ended configuration. In-circuit-programming not included.  
VCC_IO  
VCC_IO  
VDCLink  
IP-  
IP+  
Load  
6
VSens  
PWM  
VDDTLx4971  
Gate-  
Driver  
220nF  
25V  
GND  
µC  
PGND  
VCC_IO VCC_IO  
VAREF  
EN  
VAREF  
GPIO  
4k7 ꢀ 4k7 ꢀ  
1nF  
25V  
1nF  
50V  
220 ꢀ  
220 ꢀ  
220 ꢀ  
220 ꢀ  
220 ꢀ  
220 ꢀ  
A/D  
A/D  
A/D  
A/D  
A/D  
A/D  
6.8nF 6.8nF 6.8nF 6.8nF 6.8nF 6.8nF  
25V 25V 25V 25V 25V 25V  
15nF 15nF 15nF 15nF 15nF 15nF  
25V 25V 25V 25V 25V 25V  
Optional low pass filter for bandwidth limitation fc = 48.2kHz  
Figure 5 Application circuit for three phase system in differential configuration. In-circuit-programming not included.  
Datasheet  
13  
Revision 1.02  
19-08-2022  
TLE4971  
Datasheet  
VCC_IO  
VSens  
VDD  
GND  
VCC  
220nF  
GND  
4k7  
4k7  
GND  
µC  
TLx4971  
220  
220  
A/Din  
A/Din  
INTN  
INTN  
VREF  
AOUT  
OCD1  
OCD2  
6.8nF 6.8nF 1nF  
25V 25V 25V  
1nF  
50V  
15nF  
25V  
15nF  
25V  
Optional low pass filter  
for bandwidth limitation fc = 48.2kHz  
Figure 6 Application circuit with external components. In-circuit-programming not included.  
For bandwidth limitation an external filter is recommended as shown in the above application circuits.  
Datasheet  
14  
Revision 1.02  
19-08-2022  
TLE4971  
Datasheet  
Typical Performance Characteristics  
Offset S6 (+/-25A measurement range) error over T  
300  
250  
200  
150  
100  
50  
0
-50  
-100  
-150  
-200  
-250  
-300  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
T (°C)  
Figure 7 Offset error over T (+/-25A version) with 3 sigma limits in green and 1% limit in dotted blue  
Offset S6 (+/-25A measurement range) drift error over T  
300  
250  
200  
150  
100  
50  
0
-50  
-100  
-150  
-200  
-250  
-300  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
T (°C)  
Figure 8 After single point calibration: Offset error over T (+/-25A version) with 3 sigma limits in green and 1% limit in dotted  
blue  
Datasheet  
15  
Revision 1.02  
19-08-2022  
TLE4971  
Datasheet  
Offset S1 (+/-120A measurement range) error over T  
300  
250  
200  
150  
100  
50  
0
-50  
-100  
-150  
-200  
-250  
-300  
-40 -30 -20 -10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100 110 120 130  
T (°C)  
Figure 9 Offset error over T (+/-120A version) with 3 sigma limits in green  
Offset S1 (+/-120A measurement range) drift error over T  
300  
250  
200  
150  
100  
50  
0
-50  
-100  
-150  
-200  
-250  
-300  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
T (°C)  
Figure 10 After single point calibration: Offset error over T (+/-120A version) with 3 sigma limits in green  
Datasheet  
16  
Revision 1.02  
19-08-2022  
TLE4971  
Datasheet  
Sensitivity S6 (+/-25A measurement range) error over T  
1,4  
1,2  
1
0,8  
0,6  
0,4  
0,2  
0
-0,2  
-0,4  
-0,6  
-0,8  
-1  
-1,2  
-1,4  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
T (°C)  
Figure 11 Sensitivity error over T (+/-25A version) with 3 sigma limits in green and 1% limit in dotted blue  
Sensitivity S6 (+/-25A measurement range) drift error over T  
1,4  
1,2  
1
0,8  
0,6  
0,4  
0,2  
0
-0,2  
-0,4  
-0,6  
-0,8  
-1  
-1,2  
-1,4  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
T (°C)  
Figure 12 After single point calibration: Sensitivity error over T (+/-25A version) with 3 sigma limits in green and 1% limit in  
dotted blue  
Datasheet  
17  
Revision 1.02  
19-08-2022  
TLE4971  
Datasheet  
Sensitivity S1 (+/-120A measurement range) error over T  
1,8  
1,6  
1,4  
1,2  
1
0,8  
0,6  
0,4  
0,2  
0
-0,2  
-0,4  
-0,6  
-0,8  
-1  
-1,2  
-1,4  
-1,6  
-1,8  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
T (°C)  
Figure 13 Sensitivity error over T (+/-120A version) with 3 sigma limits in green and 1% limit in dotted blue  
Sensitivity S1 (+/-120A measurement range) drift error over T  
1,4  
1,2  
1
0,8  
0,6  
0,4  
0,2  
0
-0,2  
-0,4  
-0,6  
-0,8  
-1  
-1,2  
-1,4  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
T (°C)  
Figure 14 After single point calibration: Sensitivity error over T (+/-120A version) with 3 sigma limits in green and 1% limit in  
dotted blue  
Datasheet  
18  
Revision 1.02  
19-08-2022  
TLE4971  
Datasheet  
Gain [dB]  
1
0
-1  
-2  
-3  
Ta = -40°C  
Ta = 25°C  
Ta = 75°C  
Ta = 125°C  
1
10  
100  
1000  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
Frequency [kHz]  
Figure 15 Typical amplitude over frequency  
Phase shift [°]  
0
-10  
-20  
-30  
-40  
Ta = -40°C  
Ta = 25°C  
Ta = 75°C  
Ta = 125°C  
-50  
-60  
1
10  
100  
1000  
-70  
-80  
-90  
-100  
Frequency [kHz]  
Figure 16 Typical phase-shift over frequency  
Datasheet  
19  
Revision 1.02  
19-08-2022  
TLE4971  
Datasheet  
Thermal Performance  
70  
60  
50  
40  
30  
20  
10  
TLE4971  
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
I [A]  
Figure 17 Typical steady state temperature increase  
Datasheet  
20  
Revision 1.02  
19-08-2022  
TLE4971  
Datasheet  
Package  
The TLE4971 is packaged in a RoHS compliant, halogen-free leadless package (QFN-like).  
4.83  
0.1 A  
0.1 A  
4.83  
0.6  
2.32  
0.6  
0.1 A  
0.1 A  
2.32  
0.30  
0.25  
0.30  
B
0.25  
A
8
7
1
A
6
1.0  
1.4  
8 x  
0.1  
1.0  
M
INDEX MARKING  
1.1 MAX.  
0.4  
2.26  
R0.20  
R0.30  
R0.20  
R0.30  
0.60  
0.60  
Figure 18 PG-TISON-8-5 package dimensions  
Datasheet  
21  
Revision 1.02  
19-08-2022  
TLE4971  
Datasheet  
Revision History  
Major changes since the last revision  
Date  
19-08-2022 V1.02  
Typo in Table 3 in column “Symbol”  
04-07-2022 V1.01  
Typo in all eight order numbers on first page (wrong sequence)  
Description of change  
Editorial changes  
27-05-2022 Initial version  
Datasheet  
22  
Revision 1.02  
19-08-2022  
Trademarks of Infineon Technologies AG  
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,  
DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,  
HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™,  
OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,  
SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™  
Trademarks updated November 2015  
Other Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on the product, technology,  
Edition 19-08-2022  
event be regarded as a guarantee of conditions or delivery terms and conditions and prices please  
Published by  
characteristics (“Beschaffenheitsgarantie”) .  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
Infineon Technologies AG  
81726 München, Germany  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement of  
intellectual property rights of any third party.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2022 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about this  
document?  
In addition, any information given in this document  
is subject to customer’s compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and standards  
concerning customer’s products and any use of the  
product of Infineon Technologies in customer’s  
applications.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized  
representatives  
of  
Infineon  
Email: erratum@infineon.com  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of the  
product or any consequences of the use thereof can  
reasonably be expected to result in personal injury.  
Document reference  
----  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  

相关型号:

TLE4971-A120N5-E0001

The Infineon XENSIV TLE4971-A120N5-E0001 is a new automotive qualified pre-programmed 120A sensor. It serves the unique ±120A measurement rage, the highest for current sensors with integrated current rail in a small SMD body. Due to the coreless magnetic current sensing principle, saturation or hysteresis effects commonly known from sensors using flux concentration techniques are avoided. The analog interface and two dedicated fast over-current detection pins with a reaction time of less than 1µs ensures a safe operation of systems.
INFINEON

TLE4971-A120N5-U-E0001

The Infineon XENSIV TLE4971-A120N5-E0001 is a new automotive qualified pre-programmed 120A sensor. It serves the unique ±120A measurement rage, the highest for current sensors with integrated current rail in a small SMD body. Due to the coreless magnetic current sensing principle, saturation or hysteresis effects commonly known from sensors using flux concentration techniques are avoided. The analog interface and two dedicated fast over-current detection pins with a reaction time of less than 1µs ensures a safe operation of systems.
INFINEON

TLE4972-AE35S5

The Infineon TLE4972 –AE35S5 is a high precision current sensor based on Hall technology. Due to its differential measurement principle it is robust against stray fields and suited for current measurements in EMC prone environments, e.g. in-phase current sensing in a motor application. The integrated Infineon proprietary, stress and temperature compensation together with the digitally assisted measurement concept, provide a very high stability over temperature and lifetime.
INFINEON

TLE4974U

Sensor/Transducer,
INFINEON

TLE4976-1H

High Precision Hall-Effect Switch
INFINEON

TLE4976-1K

High Precision Hall Effect Switch with Current Interface
INFINEON

TLE4976-2K

Hall Effect Switch with Current Interface
INFINEON

TLE49761KHTSA1

Analog Circuit, 1 Func, PDSO3, SC59, SOT-23, 3 PIN
INFINEON

TLE4976L

High Precision Hall-Effect Switch
INFINEON

TLE4976LXA

Analog Circuit, 1 Func, PSIP3, PLASTIC, SSO-3
INFINEON

TLE4980C

Smart Hall Effect Sensor for Camshaft Applications
INFINEON

TLE4982C

Analog Circuit, 1 Func, PSSS3, PLASTIC, SSO-3
INFINEON