TLE4999C4-S0001 [INFINEON]

The Infineon TLE4999C4-S0001 is a dual channel linear Hall sensor with a bus-capable digital Short-PWM-Code (SPC) interface. The Infineon TLE4999C4 S-0001 provides all means that are necessary to fulfill the state-of-the-art functional safety requirements on system level. It is developed in full compliance with ISO 26262. The device provides high redundancy on one chip by means of two sensor elements included within one monolithic silicon design. The two diverse Hall sensor elements („main” and „sub”) have internally separated signal paths within the chip.;
TLE4999C4-S0001
型号: TLE4999C4-S0001
厂家: Infineon    Infineon
描述:

The Infineon TLE4999C4-S0001 is a dual channel linear Hall sensor with a bus-capable digital Short-PWM-Code (SPC) interface. The Infineon TLE4999C4 S-0001 provides all means that are necessary to fulfill the state-of-the-art functional safety requirements on system level. It is developed in full compliance with ISO 26262. The device provides high redundancy on one chip by means of two sensor elements included within one monolithic silicon design. The two diverse Hall sensor elements („main” and „sub”) have internally separated signal paths within the chip.

PC
文件: 总26页 (文件大小:838K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE4999C4-S0001  
Programmable dual channel linear Hall sensor with fast SPC  
interface  
Features  
Two highly accurate redundant Hall measurement channels (main and sub)  
integrated on one chip.  
Developed compliant to ISO 26262 (first edition 2011) Safety Element out of  
Context for safety requirements rated up to ASIL C.  
High diagnostic coverage by plausibility checking of main and sub signal on  
system level.  
Fast digital SPC interface with min. 0.5µs unit time for transmission of main  
and sub signals in less than 500 µs.  
Bus-capability for up to 4 sensor ICs on one data line.  
Selectable 12/14/16bit output signals, protected by CRC and rolling counter.  
Thin 4 pin leaded single sensor package.  
Operating automotive temperature range -40°C to 150°C.  
Digital temperature and stress compensation.  
Reverse-polarity and over voltage protection for VDD, GND and OUT pins.  
Main and sub channel programmable independently in EEPROM.  
Multipoint calibration up to 9 points.  
Frameholder mechanism.  
Single-wire SICI programming interface on output pin.  
2 x 16 bit user-configurable ID in EEPROM.  
PRO-SIL™ Features  
Safety Manual and Safety Analysis Summary Report.  
Potential applications  
Robust replacement of potentiometers: No mechanical abrasion, resistant to humidity, temperature,  
pollution, and vibration.  
Linear and angular position sensing in automotive and industrial applications with highest accuracy  
requirements.  
Suited for safety applications such as pedal position, throttle position, and steering torque sensing.  
Data Sheet  
www.infineon.com  
v01_00  
2021-12-13  
1
TLE4999C4-S0001  
Programmable dual channel linear Hall sensor with fast SPC interface  
Product validation  
Qualified for automotive applications. Product validation according to AEC-Q100.  
Description  
The TLE4999C4-S0001 is a dual channel linear Hall sensor with a bus-capable digital Short-PWM-Code (SPC)  
interface. Both channels are integrated on one die in the chip.  
The highly accurate measurement channels (main and sub) can be used for a plausibility check on system  
level. This enables a high diagnostic coverage.  
The sensor is developed in compliance to ISO 26262 (first edition 2011), supporting safety requirements on  
system level rated up to ASIL C.  
Highest accuracy over a wide temperature range and lifetime is achieved by an integrated digital  
temperature- and stress-compensation.  
Table 1  
Ordering Information  
Product Name  
Marking  
Ordering Code  
Package  
TLE4999C4-S0001  
99C4S1  
SP005727375  
single sensor, PG-SSO-4-1  
Data Sheet  
2
v01_00  
2021-12-13  
TLE4999C4-S0001  
Programmable dual channel linear Hall sensor with fast SPC interface  
Table of Contents  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1
2
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin and package configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.1  
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
4
5
Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
6
Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
6.1  
Calculation of the junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
7
Electrical, magnetic and output parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
8
SPC output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
SPC bus mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
SPC unit times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
SPC trigger pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Status nibble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Short serial message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Temperature nibbles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Rolling Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
CRC nibble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
SPC frameholder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.9  
9
Configuration and calibration parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
10  
Package outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
10.1  
Package marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
11  
Data Sheet  
3
v01_00  
2021-12-13  
TLE4999C4-S0001  
Programmable dual channel linear Hall sensor with fast SPC interface  
Block diagram  
1
Block diagram  
Supply  
CBUF  
VDD  
Main Analog  
Regulator  
Sub Analog  
Regulator  
Digital  
Regulator  
ROM 1  
Main Bias  
GND  
A
Main  
Hall  
DSP 1  
D
Main HADC  
Main  
T-Sensing  
element  
EEPROM  
Main  
S-Sensing  
element  
Sub Bias  
SPC  
Encoder  
OUT  
A
Sub  
Hall  
DSP 2  
D
Sub HTS-ADC  
Sub  
T-Sensing  
element  
SICI  
Sub  
S-Sensing  
element  
ROM 2  
Figure 1  
Block diagram  
Data Sheet  
4
v01_00  
2021-12-13  
TLE4999C4-S0001  
Programmable dual channel linear Hall sensor with fast SPC interface  
Pin and package configuration  
2
Pin and package configuration  
Figure 2 shows the arrangement of the measurement channels of the TLE4999C4-S0001. The location of the  
Hall probes in the package and the pin configuration of the TLE4999C4-S0001 are shown in Figure 3.  
TLE4999C4  
TLE4999C4  
Pin 1 - CBUF  
Pin 2 - VDD  
Main  
Hall  
Main Channel  
SPC  
Pin 3 - GND  
Pin 4 - OUT  
Sub  
Hall  
Sub Channel  
Figure 2  
TLE4999C4-S0001 Package configuration  
Table 2  
TLE4999C4-S0001 Pin definitions and functions  
Pin No.  
Symbol  
CBUF  
VDD  
TLE4999C4-S0001 Function  
Buffer capacitor pin1)  
Supply voltage  
1
2
3
4
GND  
Ground  
OUT  
SPC output / programming interface I/O  
1) In case CBUF capacitor is not used, CBUF pin shall be left floating  
2.67  
d
0.9  
Center of  
sensitive area  
Branded Side  
Hall-Probe  
1
2
3
4
0.08  
PG-SSO-4-1: 0.3  
mm  
Figure 3  
Pin Configuration of TLE4999C4-S0001 package  
Data Sheet  
5
v01_00  
2021-12-13  
TLE4999C4-S0001  
Programmable dual channel linear Hall sensor with fast SPC interface  
General  
3
General  
3.1  
Functional description  
The TLE4999C4-S0001 is a dual channel linear Hall sensor designed to meet the requirements of applications  
with highly accurate and reliable magnetic field measurement. The sensor provides a digital SPC (Short PWM  
Code) protocol on the OUT pin that is based on the SENT (Single Edge Nibble Transmission) standard.  
Configuration parameters can be programmed after assembly of the sensor in a module in an end-of-line  
calibration procedure using the serial inspection and configuration interface (SICI).  
The two measurement channels have separate analog supply domains controlled by the main and sub analog  
regulators. These regulators feed separate biasing units for the main and sub Hall sensor elements.  
A multiplexed second analog-digital converter (Sub HTS-ADC) is used to convert analog signals from the main  
and sub temperature sensors, and the sub Hall probe. The sub Hall, the temperature and the stress signals are  
fed into the second digital signal processing unit (DSP2).  
The DSP2 uses the signals from all stress and temperature sensing elements for plausibility and range checks  
to ensure the integrity of the sensing elements and the analog signal path.  
The analog signal of the main Hall probe is fed into an analog-digital converter (Main HADC), and is then  
processed in a digital signal processing unit (DSP1).  
Each DSP uses its corresponding Hall signal, together with compensation parameters stored in the EEPROM,  
to calculate a Hall measurement value that is compensated for stress and temperature effects.  
A high speed SPC protocol is generated containing the data of the two DSPs in the SPC protocol encoder and  
transmitted after a SPC trigger pulse.  
Data Sheet  
6
v01_00  
2021-12-13  
TLE4999C4-S0001  
Programmable dual channel linear Hall sensor with fast SPC interface  
Application circuit  
4
Application circuit  
Figure 4 shows the recommended application circuit for two TLE4999C4-S0001 sensors.  
VDD_1 Vpull-up_1 VDD_2 Vpull-up_2  
VµC  
VDD  
VDD  
CS  
CL  
Rp  
Rp  
µC  
Out  
SPC  
CBuf  
GND  
CBuf  
GND  
0.5 - 1 µs  
1 nF  
Unit Time  
CL  
1.05 - 2 µs 2.05 - 3 µs  
2.2 nF  
100 nF  
68 nF  
3.9 nF  
VDD  
CS  
CS  
CBuf  
Pull-up  
resistor  
Out  
SPC  
min.  
typ.  
max.  
CL  
1.45 kΩ  
Rp  
2.2 kΩ  
10 kΩ  
CBuf  
CBuf  
Voltages min.  
typ.  
max.  
5.5V  
5.5V  
GND  
VDD  
4.5V  
3.0V  
-
-
Vpull-up  
Figure 4  
Application circuit  
Attention: The system integrator shall take in consideration that the maximum value of CL shall include  
also the capacitance of the bus line.  
Note:  
For improved EMC capability the usage of a twisted cable is recommended.  
Data Sheet  
7
v01_00  
2021-12-13  
TLE4999C4-S0001  
Programmable dual channel linear Hall sensor with fast SPC interface  
Maximum ratings  
5
Maximum ratings  
All specifications are valid over the full temperature range and over lifetime. They refer to each of the  
implemented sensors IC’s, unless otherwise noted.  
Table 3  
Absolute maximum ratings  
Symbol  
Parameter  
Limit Values  
Unit Notes  
Min.  
-40  
-40  
-20  
Max.  
175  
150  
20  
Junction temperature  
TJ  
°C  
°C  
V
max. 96h at 175°C1) (not additive)  
max. 4400h (not additive)1)  
Non-operating temperature  
Maximum supply voltage  
TNO  
VDD  
max. 24 h for -40°C to 30°C TJ  
max. 10 min. for 30°C to 80°C TJ  
max. 30 s for 80°C to 125°C TJ  
max. 15 s above 125°C TJ  
Maximum voltage on OUT  
Maximum voltage on CBuf  
VOUT  
VCbuf  
-18  
19.5  
20  
V
V
max. 40 h (not additive)  
-0.3  
max. 24 h for -40°C to 30°C TJ  
max. 10 min. for 30°C to 80°C TJ  
max. 30 s for 80°C to 125°C TJ  
max. 15 s above 125°C TJ  
Maximum voltage between 2 VDiff  
pins  
-20  
20  
V
max. 24 h for -40°C to 30°C TJ  
max. 10 min. for 30°C to 80°C TJ  
max. 30 s for 80°C to 125°C TJ  
max. 15 s above 125°C TJ  
Voltage peaks  
OUT short circuit current2)  
VDD, VOUT  
IOUT  
30  
130  
45  
V
for max. 50 µs  
-130  
mA  
mA  
mA  
max. 1 h  
Supply current in over voltage IDD, ov  
time limitation for VDD applies  
time limitation for VDD applies  
Supply current in reverse  
voltage  
IDD, rev  
-75  
Magnetic flux density  
ESD Immunity  
Bmax  
VHBM  
VCDM  
1000  
+4  
mT  
kV  
-4  
Human Body Model3)  
Charged Device Model4)  
-0.75  
+0.75  
kV  
1) Maximum exposure time at other junction temperatures shall be calculated using the Arrhenius-model.  
2) Short to VDD or GND.  
3) Human Body Model (HBM) according to ANSI/ESDA/JEDEC JS-001.  
4) Charged Device Model (CDM) according to ANSI/ESDA/JEDEC JS-002.  
Note:  
Any stress exceeding the values listed in Table 3 may cause permanent damage to the device. The  
values given are stress ratings only and functional operation of the device at these conditions is not  
implied. Exposure to absolute maximum rating conditions for extended periods may affect device  
reliability.  
Data Sheet  
8
v01_00  
2021-12-13  
TLE4999C4-S0001  
Programmable dual channel linear Hall sensor with fast SPC interface  
Operating range  
6
Operating range  
The following operating conditions shall not be exceeded in order to ensure correct operation of the  
TLE4999C4-S0001. All parameters specified in the following sections refer to these operating conditions.  
Table 4  
Operating range  
Symbol  
Values  
Parameter  
Unit Notes  
Min.  
4.5  
Typ.  
Max.  
5.5  
Supply voltage  
VDD  
V
VDD, pon  
0.1  
VDD, poff  
108  
V
Extended range1)  
2)  
Supply voltage slew rate VDD,slew  
V/s  
°C  
Operating junction  
temperature  
TJ  
-40  
165  
max. 1000h at 165°C3)  
(not additive)  
5)6)  
Output pull-up voltage Vpull-up  
3.04)/4.5  
5.5  
10  
3.9  
V
7)  
7)  
Pull-up resistance  
Load capacitance  
Supply capacitance  
Buffer capacitor  
RP  
1.45  
2.2  
kΩ  
nF  
nF  
nF  
mT  
CL  
1
CS  
100  
68  
CBuf  
Magnetic flux density  
|B|  
50  
Maximum measurement range  
1) No magnetic performance degradation in extended range between supply under voltage release level and supply  
over voltage release level.  
2) The slew rate is the maximum voltage change per time and relates to the Application circuit.  
3) Maximum exposure time at other junction temperatures shall be calculated using the Arrhenius-model.  
4) Value valid only when the 3.3V bus capability bit is set in the EEPROM.  
5) Output protocol characteristics depend on these parameters, RL must be according to max. output current. For the  
maximum output pull up voltage value refer to the note on Table 3.  
6) The SPC output protocol will be deactivated when permanent voltages higher then 7.5V are present at the OUT pin.  
7) Pull-up resistance and load capacitance have to be chosen in accordance with configured unit time, please see  
Application circuit.  
6.1  
Calculation of the junction temperature  
The internal power dissipation PTOT of the sensor increases the chip junction temperature above the ambient  
temperature (TA).  
The power multiplied by the total thermal resistance RthJA (junction to ambient) added to TA leads to the  
final junction temperature. RthJA is the sum of the addition of the two components, Junction to Case and  
Case to Ambient.  
RthJA=RthJC +RthCA  
TJ=TA +Δ T = RthJA xPTOT = RthJA x(VDD x IDD +VOUT x IOUT); IDD, IOUT > 0, if direction is into IC  
Example (assuming no load on VOUT ):  
• VDD = 5.5 V  
• IDD = 14.5mA  
ΔT= 165 [K/W] x (5.5 [V] x 0.0145 [A] + 0 [VA]) = 13.159K → 15K used for worst case scenario calculations  
Data Sheet  
9
v01_00  
2021-12-13  
TLE4999C4-S0001  
Programmable dual channel linear Hall sensor with fast SPC interface  
Electrical, magnetic and output parameters  
7
Electrical, magnetic and output parameters  
All specifications are valid over the full temperature range and over lifetime. They refer to each of the  
implemented sensors IC’s, if not otherwise noted.  
Table 5  
Electrical characteristics  
Symbol  
Values  
Parameter  
Unit Notes  
Min.  
4
Typ.  
Max.  
14.5  
165  
5
Supply current  
IDD  
mA  
Thermal resistance1)  
Power-on time2)  
RthJA  
tpon  
K/W junction to ambient  
ms  
V
Supply under voltage  
reset/release level  
VDD, pon  
3.1  
4.2  
Supply over voltage  
reset/release level  
VDD, poff  
6
7.5  
300  
9
V
Supply voltage reset  
hysteresis  
VDD,pon hyst  
VOUT, ov res  
VOUT, ov res  
VOUT, ov hyst  
VOL  
100  
7.5  
6
mV  
V
Out pin over voltage  
reset level  
8.25  
6.75  
1.5  
Out pin over voltage  
release level  
7.5  
2
V
Out pin over voltage  
reset hyteresis  
1
V
Output saturation  
voltage  
0.1*VDD  
for IOUT 3.4mA  
Output fall and rise time tfall/trise  
0.3  
0.6  
0.9  
1.2  
1.8  
0.5  
1
0.75  
1.4  
2.1  
2.8  
4.2  
5
µs  
µs  
µs  
µs  
µs  
mA  
µA  
%
for UT = 0.5 µs and 0.75 µs  
for UT = 1 µs and 1.25 µs  
for UT = 1.5 µs  
1.5  
2
for UT = 2 µs and 2.5 µs  
for UT = 3 µs  
3
Output current  
IOUT,avg  
Output leakage current IOUT Leak  
20  
-5  
100  
120  
5
Vpull-up= 5V and 0 < VDD< VDD, pon  
Oscillator frequency  
variation  
Δf  
Nominal oscillator frequency:  
20MHz  
1) Measured on 2s0p PCB board  
2) Time since the sensor starts, until it is ready to respond to the first trigger pulse  
The following Figure 5 shows the operating area of the device, the condition for over voltage and  
under voltage and the corresponding sensor reaction. The values for the over- and under voltage comparators  
are the typical values from Table 5.  
In the extended range, the sensor fulfills the full specification. However, voltages above the operating range  
can only be applied for a limited time (see Table 3).  
Data Sheet  
10  
v01_00  
2021-12-13  
TLE4999C4-S0001  
Programmable dual channel linear Hall sensor with fast SPC interface  
Electrical, magnetic and output parameters  
V
OUT / Vpull up  
No output  
No output  
9
Extended range  
7.5  
Operating range  
No output  
31)/ 4.5  
Operating  
range  
No output  
VDD  
7.5  
VDD  
OV reset  
3.1 4.2  
VDD  
UV reset  
6
Figure 5  
Operating area and sensor reaction for over- and under voltage.  
1) Value valid only when the 3.3V bus capability bit is set in the EEPROM.  
Main and Sub channels of the TLE4999C4-S0001 provide highly accurate 12/14/16bit magnetic field signals.  
The output characteristics of the two channels are specified in Table 6.  
Table 6  
Magnetic and output characteristics of main and sub channel  
Values  
Parameter  
Symbol  
Unit  
Notes  
Min.  
-100  
-200  
-300  
-2.5  
Typ.  
Max.  
100  
200  
300  
2.5  
1
Magnetic offset drift1)  
ΔBOS_Main  
ΔBOS_Sub  
BOS  
µT  
Main channel offset drift  
Sub channel offset drift  
at 0 h, 25 °C  
µT  
Magnetic initial offset  
Magnetic sensitivity drift1)  
Output noise (RMS)2)3)  
µT  
ΔS  
%
OUTNoise_Main  
OUTNoise_Sub  
BHys  
LSB12  
LSB12  
µT  
Main channel noise  
Sub channel noise  
4
Magnetic hysteresis  
Integral non-linearity3)  
Signal latency4)5)  
40  
INL  
-4  
4
LSB12  
µs  
tlatency  
200  
not including interface  
transmission time  
1) Drift over temperature and lifetime  
2) For LP-Filter setting 8  
3) Range 50 mT, gain 1.0 (scales linearly with gain)  
4) Defined as phase shift of 100 Hz sine signal  
5) For LP-Filter setting Off  
Figure 6 shows the output characteristics of the sensor’s main and sub channel in the default setting. The  
output characteristics can be changed by reconfiguring the zero point, gain and clamping ranges for main and  
sub channel (see Chapter 9).  
Data Sheet  
11  
v01_00  
2021-12-13  
TLE4999C4-S0001  
Programmable dual channel linear Hall sensor with fast SPC interface  
Electrical, magnetic and output parameters  
4095  
Main Channel  
Sub Channel  
3890  
2047  
N
S
Branded Side  
Sub clamping  
Main clamping  
205  
0
-50  
0
50  
Magnetic Flux B [mT]  
Figure 6  
Output characteristic  
Data Sheet  
12  
v01_00  
2021-12-13  
TLE4999C4-S0001  
Programmable dual channel linear Hall sensor with fast SPC interface  
SPC output  
8
SPC output  
The TLE4999C4-S0001 features a fast SPC (Short PWM Code) protocol, which is based on the SENT standard  
(Single Edge Nibble Transmission) defined by SAE J2716. As opposed to SENT, which implies a continuous  
transmission of data, the SPC protocol transmits data only after receiving a specific trigger pulse from the  
micro controller. The required length of the trigger pulse depends if the sensor is configured in synchronous  
mode or in bus mode. In case of bus mode the trigger pulse depends on the sensor number, which is  
configurable. Thereby, SPC allows the operation of up to four sensors on one bus line.  
For the SPC interface the push pull setting with controlled slopes is used (the push-pull mode is only active  
during the slope controlled mode). In this configuration, the TLE4999C4-S0001 has controlled rising and  
falling slopes. Between the slope controlled transitions the HIGH level is maintained by the external pull-up  
resistor. Once the SPC protocol telegram is sent, the TLE4999C4-S0001 goes in to receiving mode (OUT Pin in  
Tri-sate mode) and waits until a valid trigger signal is received.  
Main Hall data (12 bit)  
Data Nibble 1  
Sub Hall data (12 bit)  
CRC Nibble  
Data Nibble 5  
Data Nibble 3  
End  
Pulse  
Trigger Pulse  
13 UT / 90 UT  
Sync Frame  
Status Nibble  
Data Nibble 4  
Data Nibble 6  
Data Nibble 2  
12 … 27 UT 12 … 27 UT 12 … 27 UT 12 … 27 UT 12 UT  
56 UT  
12 … 27 UT 12 … 27 UT 12 … 27 UT 12 … 27 UT  
Nibble Encoding: (12 + x) * UT  
µC Activity  
Sensor Activity  
Figure 7  
SPC default protocol example  
As in the SENT protocol, the time between two consecutive falling edges defines the value of a 4-bit nibble,  
thus representing numbers between 0 and 15. The transmission time therefore depends on the transmitted  
data values. All values are multiples of a unit time frame (see Table 8). A SPC frame consists of the following  
nibbles (see Table 7):  
A trigger pulse by the master, which initiates the data transmission.  
A synchronization period of 56 UT.  
A status nibble of 12-27 UT, containing over voltage/ error signaling and short serial message (SSM) data or  
the sensor ID.  
Between 3 and 4 data nibbles of 12-27 UT each (number is programmable), representing the Main Hall  
value  
Between 3 and 4 data nibbles of 12-27 UT each (number is programmable), representing the Sub Hall  
value.  
Optional 2 temperature nibbles of 12-27 UT each (programmable).  
Optional 2 /4 bit rolling counter of 12-27 UT (programmable).  
One or two checksum (CRC) nibbles of 12-27 UT each (programmable).  
An end pulse of 12 UT to terminate the SPC frame transmission.  
The sensor is available for the next sample after the falling edge of the end pulse. The sensor’s sampling  
time is at the beginning of the synchronization period, i.e. when a correct trigger is received.  
Data Sheet  
13  
v01_00  
2021-12-13  
TLE4999C4-S0001  
Programmable dual channel linear Hall sensor with fast SPC interface  
SPC output  
Table 7  
Frame selection  
Frame Type  
Parameter F Data nibbles Temperature Rolling  
CRC bits  
nibbles  
Counter  
12 bit Main Hall, 12 Bit Sub Hall  
16 bit Main Hall, 16 Bit Sub Hall  
12 bit Main Hall, 12 bit Sub Hall  
14 bit Main Hall, 14 bit Sub Hall  
12 bit Main Hall, 12 Bit Sub Hall  
A (default)  
6 nibbles  
8 nibbles  
6 nibbles  
7 nibbles  
6 nibbles  
4 bits  
4 bits  
4 bits  
B
C
D
E
2 nibbles  
2 x 2 bits1) 8 bits  
2 bits2)  
6 bits  
1) Rolling counters combined with data nibbles, see Figure 8  
2) Rolling counter combined with CRC nibble, see Figure 8  
Frame  
A
TRIGGER  
SYNC  
STATUS  
M1  
M2  
M3  
S3  
S2  
S1  
CRC  
bits  
description  
status information  
description  
MSBs  
LSBs  
SSM/ID  
10  
startup/internal error main  
CRC calculation  
for all nibbles  
internal error sub/return from  
overvoltage  
SSM/ID  
SSM/ID  
01  
00  
seed value: 0101  
normal operation  
polynomial: X4+X3 +X2+1  
bits  
11  
description  
SSM or ID #3  
SSM or ID #2  
SSM or ID #1  
SSM or ID #0  
10  
01  
00  
bits  
M2  
description  
bits  
S2  
description  
M1  
M3  
S1  
S3  
Main Hall value (12 bit)  
Sub Hall value (12 bit)  
1111 1111 1111  
1111 1111 1110  
1111 1111 1101  
4095  
1111 1111 1111  
1111 1111 1110  
1111 1111 1101  
4095  
4094  
4094  
4093  
4093  
:
:
:
:
:
:
:
:
0000 0000 0010  
0000 0000 0001  
0000 0000 0000  
2
1
0
0000 0000 0010  
0000 0000 0001  
0000 0000 0000  
2
1
0
Frame  
B
TRIGGER  
TRIGGER  
SYNC  
STATUS  
STATUS  
M1  
M1  
M2  
M2  
M3  
M4  
S3  
S4  
S3  
S1  
S2  
T1  
S1  
T2  
CRC  
CRC  
Frame  
C
SYNC  
SYNC  
SYNC  
M3  
M3  
M3  
S2  
S4  
S2  
Frame  
D
RC  
RC  
S1  
2
TRIGGER  
TRIGGER  
STATUS  
STATUS  
M1  
M2  
M2  
M4  
S3  
S3  
S1  
S2  
CRC  
CRC  
1
Frame  
E
CR  
C
M1  
RC  
CRC  
Figure 8  
Content of the SPC protocol  
8.1  
SPC bus mode  
When the sensor is used in a bus mode with other sensors on a common SPC line, individual addresses have  
to be assigned to each sensor for identification. For the operation of the sensor in a SPC bus mode, it is strongly  
recommended that the sensor ID is written into the EEPROM of the sensor, as all sensors are pre configured  
with the default value “ID = 0” (see the TLE4999C User Manual for further details).  
A corresponding trigger nibble from the micro controller can therefore address each sensor individually.  
Data Sheet  
14  
v01_00  
2021-12-13  
TLE4999C4-S0001  
Programmable dual channel linear Hall sensor with fast SPC interface  
SPC output  
The trigger nibble low time is shown in Table 10. Each low time corresponds to an individual sensor address.  
The total length of the trigger nibble can be selected to be constant at 90 UT (constant trigger length) or  
variable according to Table 9(variable trigger length).  
8.2  
SPC unit times  
Table 8  
Programmable unit times  
Symbol  
Parameter  
Values  
Unit Note or Test Condition  
μs Clkunit=20MHz  
SPC unit time1)  
UT  
0.5, 0.75, 1.0, 1.25, 1.5, 2.0, 2.5, 3.0  
1) Default setting is 3 μs nominal SPC unit time.  
8.3  
SPC trigger pulse  
A SPC transmission is initiated by a trigger pulse from the ECU on the OUT pin. To detect a low-level on the  
OUT pin, the voltage has to be below the threshold Vth, falling. The sensor detects that the OUT line has been  
released as soon as Vth, rising is crossed. Table 9 and Figure 9 show the timing specification for the trigger pulse.  
The master low time tmlow as well as the total trigger time tmtr are different for SPC bus mode on or off. With bus  
mode switched off, the total trigger time tmtr is shortest. This leads to a significantly shorter overall protocol  
transmission time for configurations where only one sensor IC is connected to the SPC line.  
With bus mode switched on, it is possible to use up to four SPC sensors on one data line. The total trigger time  
in bus mode is longer, and can be selected between a constant trigger or a variable trigger.  
The master low time tmlow is used to identify the sensor ID of the addressed sensor IC, see Table 10. A proper  
addressing requires all sensors on the bus to be programmed with the same nominal SPC unit time.  
tmtr  
SPC  
Vth, rising  
Vth, falling  
tmlow  
Figure 9  
SPC master pulse timing  
Table 9  
SPC master pulse parameters  
Parameter  
Symbol  
Vthf  
Vthr  
Values  
Min. Typ.  
Unit Note or Test Condition  
Max.  
1)2)  
Falling edge threshold  
Rising edge threshold  
35  
% of  
VDD  
1)2)  
50  
% of  
VDD  
Data Sheet  
15  
v01_00  
2021-12-13  
TLE4999C4-S0001  
Programmable dual channel linear Hall sensor with fast SPC interface  
SPC output  
Table 9  
SPC master pulse parameters (cont’d)  
Parameter  
Symbol  
Values  
Min. Typ.  
Unit Note or Test Condition  
Max.  
Total trigger time  
tmtr  
13  
90  
UT  
UT  
Bus mode off3)  
Bus mode on, with  
constant trigger length3)  
tmlow,min  
12  
+
UT  
Bus mode on, with  
variable trigger length3)  
1) Not subject to production test - verified by design/characterization  
2) Unit is % of nominal VDD (4.5V - 5.5V)  
3) Trigger time in the sensor is fixed to the number of unit times specified in the “typ.” column, but the effective trigger  
time varies due to the sensor’s oscillator variation  
The below Table 10 shows the trigger time window to which the sensor responds:  
Table 10 Sensor SPC trigger parameters  
Parameter  
Symbol  
Values  
Min. Typ.  
Unit Note or Test Condition  
Max.  
7
Master nibble low time  
Master nibble low time  
Master nibble low time  
Master nibble low time  
Master nibble low time  
tmlow  
tmlow  
tmlow  
tmlow  
tmlow  
2
UT  
UT  
UT  
UT  
UT  
Bus mode off1)  
8
15  
Bus mode on, ID = 0  
Bus mode on, ID = 1  
Bus mode on, ID = 2  
Bus mode on, ID = 3  
16  
29  
50  
28  
49  
82  
1) The combination of CL and pull-up resistor Rp may prevent use of some master nibble low times due to increased  
output rise time. Infineon recommends that for fast unit times (<=1.0us) the sensor is used in bus mode (with variable  
trigger option) with ID0 instead of bus mode off.  
The below Table 11 shows the trigger time window to be programmed in the ECU:  
Table 11 ECU SPC trigger parameters  
Parameter  
Symbol  
Values  
Min. Typ.  
Unit Note or Test Condition  
Max.  
4
Master nibble low time  
Master nibble low time  
Master nibble low time  
Master nibble low time  
Master nibble low time  
tmlow  
tmlow  
tmlow  
tmlow  
tmlow  
2
UT  
UT  
UT  
Bus mode off1)  
9
12  
Bus mode on, ID = 0  
Bus mode on, ID = 1  
Bus mode on, ID = 2  
Bus mode on, ID = 3  
19  
35.5  
61.5  
23  
40.5 UT  
67.5 UT  
1) The combination of CL and pull-up resistor Rp may prevent use of some master nibble low times due to increased  
output rise time. Infineon recommends that for fast unit times (<=1.0us) the sensor is used in bus mode (with variable  
trigger option) with ID0 instead of bus mode off.  
Attention: For detailed description of the master nibble low times, please consult the application note for  
the TLE4999C, “Master nibble low time parameter and related tolerances”.  
Data Sheet  
16  
v01_00  
2021-12-13  
TLE4999C4-S0001  
Programmable dual channel linear Hall sensor with fast SPC interface  
SPC output  
8.4  
Status nibble  
The status nibble consists of 4 bits. The first two bits are status bits to monitor the internal status of the sensor  
whereas the last two bits can represent a short serial message (see Chapter 8.5) or the sensor ID. Table 12  
shows the usage of the status bits.  
The status nibble, which is sent with each SPC data frame, provides an error indication. In case the sensor  
detects an error or an over voltage condition, the corresponding error bit in the status nibble is set. As long  
as the error or over voltage condition is present the error bit is set and the sensor output is disabled. After  
returning from the over voltage condition the corresponding error bit is set in the first transmitted frame in the  
status nibble.  
Table 12 Structure of SPC status nibble  
Bits  
Description  
[0] LSB  
Short Serial Message bit (data) or bus mode ID LSB  
Short Serial Message bit (start indication) or bus mode ID MSB  
Return from over voltage condition/ internal error sub channel  
Startup/ internal error main channel  
[1]  
[2]  
[3] MSB  
8.5  
Short serial message  
The short serial message is an additional option which can be enabled or disabled. The short serial message  
provides additional information in a slow channel transmitting an 8 bit temperature value of the main hall and  
32 bit sensor ID (16 bits from main channel ID1 and 16 bits from sub channel ID2).  
In each SPC frame, one bit of information is transmitted. The start of the short serial message is indicated by  
a “1” in bit [1] of the status nibble. For the next 15 SPC frames, this bit will contain a “0”. The Information is  
transmitted in blocks of 16 bit with 1 bit per SPC frame in bit [0] of the status nibble.  
4 bit message ID  
8 bit data  
4bit CRC (calculated from message ID and data bits)  
The message ID is used for identification of the type of data received. All data are transmitted in the bit [0] of  
the status nibble in the order MSB to LSB.  
The transmitted information is as follows:  
Message -ID 0: 8 bit temperature value starting with MSB  
Message -ID 1: 8 bit of sensor ID1 (starting with MSB)  
Message -ID 2: 8 bit of sensor ID1 (starting with MSB-8)  
Message -ID 3: 8 bit of sensor ID2 (starting with MSB)  
Message -ID 4: 8 bit of sensor ID2 (starting with MSB-8)  
Note:  
For further details please see the TLE4999C User Manual.  
Data Sheet  
17  
v01_00  
2021-12-13  
TLE4999C4-S0001  
Programmable dual channel linear Hall sensor with fast SPC interface  
SPC output  
8.6  
Temperature nibbles  
The temperature is coded as an 8 bit value. The value is transferred in unsigned integer format and  
corresponds to the range between -55 °C and +200 °C, so a transferred value of 55 corresponds to 0 °C. The  
temperature is additional information and although it is not calibrated, may be used for a plausibility check,  
for example. Table 13 shows the mapping between junction temperature and the transmitted value in the  
SPC frame.  
Table 13 Mapping of Temperature Value  
Junction Temperature  
Typ. Decimal Value from Sensor  
Note  
- 55 °C  
0 °C  
0
Theoretical lower limit1)  
55  
80  
255  
25 °C  
200 °C  
Theoretical upper limit1)  
1) Theoretical range of temperature values, not operating temperature range.  
8.7  
Rolling Counter  
The rolling counter is an additional option for a safety check implementation. Therefore the counter counts  
the number of transmitted frames with rollover back to 0 and increments with each message. The ECU can use  
this data for verification that no frame is missed or that no frame is sent repeatedly from the sensor.  
There are two selectable protocols that include the rolling counter (see Figure 8), on frame D a 2 bit rolling  
counter is included in the first main data nibble and another 2 bit rolling counter in the first sub data nibble.  
On frame E a 2 bit rolling counter is included in the CRC nibble, further details can be found in Chapter 8.8.  
There are frames without rolling counter bits, but to meet the safety requirements and target ASIL level of the  
application, it is recommended to use this function.  
8.8  
CRC nibble  
The CRC checksum can be used to check the validity of the decoded data. In the checksum included is the  
status nibble and the data nibbles. It is calculated using a polynomial(x4 + x3 + x2 + 1) with a seed value of 0101B.  
The remainder after the last data nibble is transmitted as CRC.  
To allow enhanced checksum for higher diagnostic coverage also 6 and 8 bit checksum are available to secure  
the data transmission (see Table 7).  
The 6 bit checksum is calculated using a polynomial (x6 + x + 1) with a seed value of 010101B and the 8 bit  
checksum is calculated using a polynomial (x8 + x5+ x3 + x2 + x + 1) with a seed value of 01010101B.  
The calculation scheme of the CRC is described in detail in the TLE4999C User Manual.  
8.9  
SPC frameholder  
The frameholder functionality allows the user to operate multiple sensors in a bus configuration with  
synchronized sampling of the measurement value. This is achieved by having (apart from the SPC Bus ID) a  
separate frameholder ID for each chip on the bus which is used as a common signal trigger.  
For further information please see TLE4999C User Manual.  
Data Sheet  
18  
v01_00  
2021-12-13  
TLE4999C4-S0001  
Programmable dual channel linear Hall sensor with fast SPC interface  
Configuration and calibration parameters  
9
Configuration and calibration parameters  
To perform the EEPROM programming with application and customer specific data the Serial Inspection and  
Configuration Interface (SICI) is used. The single wire interface uses the same pin as the SPC output for  
communication.  
The TLE4999C4-S0001 has several configurable parameters which are stored in the EEPROM. These  
parameters affect the internal data processing and the output protocol. Table 14 gives an overview of the  
magnetic measurement parameters, which can be configured separately for main and sub channel. Table 15  
shows the SPC interface parameters.  
Table 14 TLE4999C4-S0001 Magnetic measurement parameters for main and sub Channel  
Parameter  
Setting range  
Note  
Magnetic range  
±50 mT (default)  
±25 mT  
Gain  
-7.59...7.59  
Gain value of +1.0 corresponds to typical 36.875  
LSB12/mT sensitivity in 50mT range, with ±5%  
clamping,(73.75 LSB12/mT in 25mT range, with  
±5% clamping).  
1)  
Zero point  
0 LSB16 ... 65535 LSB16  
The user zero point setting is independently  
configurable for main and sub channels with 12,  
14 or 16 bit granularity.  
Default setting: 32768 LSB16.  
1)  
1)  
Clamping low level  
Clamping high level  
0 LSB16 ... 65535 LSB16  
0 LSB16 ... 65535 LSB16  
Output clamping settings, see Figure 6.  
Default setting:  
CL: 205 LSB16  
CH: 3890 LSB16  
Multi point linearization 0 ... 9 point  
9 user selectable linearization points  
configurable in the EEPROM. The user can select  
the concentration either at the corners or  
around the middle point. For further details  
please see the TLE4999C User Manual.  
Low-pass filter2)  
0: Off3)  
Low pass filter cut-off (-3 dB) frequency.  
1: 80Hz  
2: 160 Hz  
3: 200 Hz  
4: 240 Hz  
5: 320 Hz  
6: 400 Hz  
7: 470 Hz  
8: 500 Hz (default)  
9: 650 Hz  
10: 870 Hz  
11: 980 Hz  
12: 1070 Hz  
13: 1270 Hz  
14: 1380 Hz  
15: 1530 Hz  
Data Sheet  
19  
v01_00  
2021-12-13  
TLE4999C4-S0001  
Programmable dual channel linear Hall sensor with fast SPC interface  
Configuration and calibration parameters  
Table 14 TLE4999C4-S0001 Magnetic measurement parameters for main and sub Channel  
Parameter  
Setting range  
Note  
1st order temperature  
coefficient TC1  
-2400 ppm/°C ... 5400 ppm/°C  
Second order user configurable temperature  
compensation.  
4)  
2nd order temperature -30 ppm/°C2 ... 30 ppm/°C2  
4)  
coefficient TC2  
Reference Temperature 0°C ... 127°C  
T0  
1) The internal value is always 16 bit, in case the 12 or 14 bit setting range is used, the output will be clamped  
accordingly.  
2) Subject to oscillator variation ±5%.  
3) Set programmable low pass filter off, inherent filter of ADC stays on.  
4) Adjusting the temperature coefficients (TC1 & TC2) can lead to a slight increase of the ADC noise level.  
Table 15 TLE4999C4-S0001 SPC Interface parameters  
Parameter  
Setting range  
Note  
SPC protocol frames  
2x 12 bit Hall + 4 bit CRC (default)  
2x 16 bit Hall +4 bit CRC  
see Table 7  
2x 12 bit Hall + 8 bit temperature + 4 bit CRC  
2x 14 bit Hall + 2x 2 bit RC + 8 bit CRC  
2x 12 bit Hall + 2 bit RC + 6 bit CRC  
SPC unit time1)  
SPC bus mode  
0.5 µs ... 3.0 µs  
See chapter Chapter 8.2  
See chapter Chapter 8.1  
On  
Off (default)  
SPC bus pull-up voltage 3.3V/5V  
Default 5V  
Default ID0  
SPC ID  
0 ... 3  
SPC variable trigger  
On  
Off (default)  
SPC frameholder  
address2)  
0 ... 3  
Default ID0  
1) Subject to oscillator variation ±5%.  
2) The SPC frameholder is deactivated in case the frameholder address is equal to the SPC address.  
Data Sheet  
20  
v01_00  
2021-12-13  
TLE4999C4-S0001  
Programmable dual channel linear Hall sensor with fast SPC interface  
Package outlines  
10  
Package outlines  
0.05  
5.34  
5.16  
0.2  
0.08  
2
A
1-0.1  
0.25  
1˚˚  
1 x 45˚˚  
1.9 MAX.  
0.05  
0.2+0.1  
4x  
0.05  
0.6 MAX.  
0.4  
0.5  
1
2
3
4
1.27  
12.7  
3 x 1.27 = 3.81  
1
Adhesive  
Tape  
A
Tape  
0.4  
0.3  
0.25-0.15  
6.35  
4
0.1  
0.3  
0.39  
12.7  
Total tolerance at 10 pitches  
1
1) No solder function area  
GPO05357  
Figure 10 PG-SSO (Plastic Green Single Small Outline), package dimensions  
Data Sheet  
21  
v01_00  
2021-12-13  
TLE4999C4-S0001  
Programmable dual channel linear Hall sensor with fast SPC interface  
Package outlines  
10.1  
Package marking  
BACK SIDE  
DATA MATRIX CODE  
FRONT SIDE  
E (NOTE OF  
MANUFACTURER)  
DATE CODE(YYWW)  
TYPE  
Figure 11 PG-SSO (Plastic Green Single Small Outline), package marking  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products, and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS Compliant  
(i.e Pb free finish on leads and suitable for Pb free soldering according to IPC/JEDEC J-STD-020)  
Data Sheet  
22  
v01_00  
2021-12-13  
TLE4999C4-S0001  
Programmable dual channel linear Hall sensor with fast SPC interface  
Terminology  
A
ADC  
B
Analog to digital converter  
Built-in self-test  
BIST  
C
CBUF  
CRC  
D
Buffer capacitor  
Cyclic redundancy check  
DSP  
E
Digital Signal Processing unit  
ECC  
Error correction code to protect EEPROM content  
EEPROM  
(abbrev. EEP)  
Electrically erasable and programmable read only memory - programmable memory for  
sensor calibration and configuration data  
G
GND  
H
Ground - ground line of sensor  
HADC  
HTS-ADC  
I
Hall analog to digital converter  
Hall, temperature, stress analog to digital converter  
ID  
Identification  
L
LP-Filter  
LSB  
M
Low pass filter  
Least significant bit  
MSB  
MVS  
O
Most significant bit  
Margin voltage selector  
OUT  
P
Digital output pin of the sensor  
Pulse Width Modulation  
PWM  
R
RMS  
ROM  
S
Root mean square  
Read only memory  
SICI  
Serial Inspection and Configuration Interface - Programming interface of the TLE4999C4-  
S0001  
SPC  
Short PWM Code  
Data Sheet  
23  
v01_00  
2021-12-13  
TLE4999C4-S0001  
Programmable dual channel linear Hall sensor with fast SPC interface  
T
TBD  
To be done  
Data Sheet  
24  
v01_00  
2021-12-13  
TLE4999C4-S0001  
Programmable dual channel linear Hall sensor with fast SPC interface  
Revision History  
11  
Revision History  
Revision Date  
Changes  
v01.00  
2021-12-13 Initial release  
Data Sheet  
25  
v01_00  
2021-12-13  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2021-12-13  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2021 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
Document reference  

相关型号:

TLE4999C8

The Infineon XENSIV™ TLE4999C8 provides all means that are necessary to fulfill the state-of-the-art functional safety requirements on system level. It is developed in full compliance with ISO 26262. The device provides high redundancy on one chip by means of two sensor elements included within one monolithic silicon design. The two diverse Hall sensor elements („main” and „sub”) have internally separated signal paths within the chip. A plausibility check secures the high diagnostic coverage required for premium functional safety compliant systems up to ASIL D.
INFINEON

TLE4999I3

The XENSIV™ TLE4999I3 provides all means that are necessary to fulfill the state-of-the-art functional safety requirements on system level. It is developed in full compliance with ISO 26262. The device provides high redundancy on one chip by means of two sensor elements included within one monolithic silicon design. The two diverse Hall sensor elements („main” and „sub”) have internally separated signal paths within the chip. A plausibility check secures the high diagnostic coverage required for premium functional safety compliant systems up to ASIL-D.
INFINEON

TLE5009

3V to 5.5V operating supply voltage
INFINEON

TLE5009 E1000

The Infineon TLE5009 family are angle sensors with analog outputs. It detects the orientation of a
INFINEON

TLE5009 E1010

The TLE5009 is an angle sensor with analog outputs. It detects the orientation of a magnetic field
INFINEON

TLE5009 E2000

The TLE5009 is an angle sensor with analog outputs. It detects the orientation of a magnetic field
INFINEON

TLE5009 E2010

The TLE5009 is an angle sensor with analog outputs. It detects the orientation of a magnetic field
INFINEON

TLE5009-E1000

GMR-Based Angular Sensor
INFINEON

TLE5009-E1010

GMR-Based Angular Sensor
INFINEON

TLE5009-E2000

GMR-Based Angular Sensor
INFINEON

TLE5009-E2010

GMR-Based Angular Sensor
INFINEON

TLE5009A16 E1200

Infineon´s XENSIVTM angle sensor is available as single die version (TLE5x09A16) and dual die version (TLE5x09A16D) for safety applications that require redundancy. The two versions are pin-compatible for easy scalability. In the dual die TLE5x09A16D, both sensor dies are supplied independently by separate supply and ground pins.
INFINEON