TLE5012B E5000 [INFINEON]

The Infineon TLE5012B is a 360° angle sensor that detects the orientation of a magnetic field. Th;
TLE5012B E5000
型号: TLE5012B E5000
厂家: Infineon    Infineon
描述:

The Infineon TLE5012B is a 360° angle sensor that detects the orientation of a magnetic field. Th

文件: 总51页 (文件大小:1126K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE5012B  
GMR-Based Angle Sensor  
1
Overview  
Features  
Giant Magneto Resistance (GMR)-based principle  
Integrated magnetic field sensing for angle measurement  
360° angle measurement with revolution counter and angle speed  
measurement  
Two separate highly accurate single bit SD-ADC  
15 bit representation of absolute angle value on the output (resolution of 0.01°)  
16 bit representation of sine / cosine values on the interface  
Max. 1.0° angle error over lifetime and temperature-range with activated auto-calibration  
Bi-directional SSC Interface up to 8 Mbit/s  
Supports Safety Integrity Level (SIL) with diagnostic functions and status information  
Interfaces: SSC, PWM, Incremental Interface (IIF), Hall Switch Mode (HSM), Short PWM Code (SPC, based on  
SENT protocol defined in SAE J2716)  
Output pins can be configured (programmed or pre-configured) as push-pull or open-drain  
Bus mode operation of multiple sensors on one line is possible with SSC or SPC interface  
0.25 µm CMOS technology  
Automotive qualified: -40°C to 150°C (junction temperature)  
ESD > 4 kV (HBM)  
RoHS compliant (Pb-free package)  
Halogen-free  
PRO-SIL™ Features  
Test vectors switchable to ADC input (activated via SSC interface)  
Inversion or combination of filter input streams (activated via SSC interface)  
Data transmission check via 8-bit Cyclic Redundancy Check (CRC) for SSC communication and 4-bit CRC  
nibble for SPC interface  
Built-in Self-test (BIST) routines for ISM, CORDIC, CCU, ADCs run at startup  
Two independent active interfaces possible  
Overvoltage and undervoltage detection  
Data Sheet  
www.infineon.com  
1
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Overview  
Potential applications  
The TLE5012B GMR-based angle sensor is designed for angular position sensing in automotive applications  
such as:  
Electrical commutated motor (e.g. used in Electric Power Steering (EPS))  
Rotary switches  
Steering angle measurements  
General angular sensing  
Product validation  
Qualified for automotive applications. Product validation according to AEC-Q100.  
Description  
The TLE5012B is a 360° angle sensor that detects the orientation of a magnetic field. This is achieved by  
measuring sine and cosine angle components with monolithic integrated Giant Magneto Resistance (iGMR)  
elements. These raw signals (sine and cosine) are digitally processed internally to calculate the angle  
orientation of the magnetic field (magnet).  
The TLE5012B is a pre-calibrated sensor. The calibration parameters are stored in laser fuses. At start-up the  
values of the fuses are written into flip-flops, where these values can be changed by the application-specific  
parameters. Further precision of the angle measurement over a wide temperature range and a long lifetime  
can be improved by enabling an optional internal autocalibration algorithm.  
Data communications are accomplished with a bi-directional Synchronous Serial Communication (SSC) that  
is SPI-compatible. The sensor configuration is stored in registers, which are accessible by the SSC interface.  
Additionally four other interfaces are available with the TLE5012B: Pulse-Width-Modulation (PWM) Protocol,  
Short-PWM-Code (SPC) Protocol, Hall Switch Mode (HSM) and Incremental Interface (IIF). These interfaces can  
be used in parallel with SSC or alone. Pre-configured sensor derivates with different interface settings are  
available (see Table 1 and Chapter 5).  
Online diagnostic functions are provided to ensure reliable operation.  
Table 1  
Derivate ordering codes  
Marking  
Product type  
Ordering code  
SP001166960  
SP001166964  
SP001166968  
SP001166972  
SP001166998  
Package  
TLE5012B E1000  
TLE5012B E3005  
TLE5012B E5000  
TLE5012B E5020  
TLE5012B E9000  
012B1000  
012B3005  
012B5000  
012B5020  
012B9000  
PG-DSO-8  
PG-DSO-8  
PG-DSO-8  
PG-DSO-8  
PG-DSO-8  
Note:  
See Chapter 5 for description of derivates.  
Data Sheet  
2
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Table of Contents  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2
2.1  
2.2  
2.2.1  
2.2.2  
2.2.3  
2.2.4  
2.2.5  
2.2.6  
2.3  
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Functional block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Internal power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Oscillator and PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
SD-ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Digital Signal Processing Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Safety features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Sensing principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.4  
2.5  
3
Application circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
IIF interface and SSC (IIF in push-pull configuration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
HSM interface and SSC (HSM in push-pull configuration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
HSM interface and SSC (HSM in open-drain configuration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
PWM interface (push-pull configuration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
PWM interface (open-drain configuration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
SPC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
SSC interface (push-pull configuration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
SSC interface (open-drain configuration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Sensor supply in bus mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4
4.1  
4.2  
4.3  
Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Input/Output characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
GMR parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Angle performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Autocalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Signal processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Clock supply (CLK timing definition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Synchronous Serial Communication (SSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
SSC timing definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
SSC data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Pulse Width Modulation (PWM) interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Short PWM Code (SPC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Unit time setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Master trigger pulse requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Checksum nibble details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Hall Switch Mode (HSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Incremental Interface (IIF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
4.3.1  
4.3.2  
4.3.3  
4.3.4  
4.3.5  
4.3.6  
4.3.7  
4.4  
4.4.1  
4.4.1.1  
4.4.1.2  
4.4.2  
4.4.3  
4.4.3.1  
4.4.3.2  
4.4.3.3  
4.4.4  
4.4.5  
Data Sheet  
3
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
4.5  
Test mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
4.5.1  
4.6  
4.6.1  
4.6.2  
4.6.3  
4.6.4  
ADC test vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Supply monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Internal supply voltage comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
V
DD overvoltage detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
GND - Off comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
DD - Off comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
V
5
Pre-configured derivates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
IIF-type: E1000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
HSM-type: E3005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
PWM-type: E5000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
PWM-type: E5020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
SPC-type: E9000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
5.1  
5.2  
5.3  
5.4  
5.5  
6
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Package parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
6.1  
6.2  
6.3  
6.4  
6.5  
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Data Sheet  
4
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Functional description  
2
Functional description  
2.1  
Block diagram  
TLE5012B  
VDD  
VRG  
VRA  
VRD  
GND  
CSQ  
SCK  
DATA  
IFA  
X
GMR  
SD-  
ADC  
Digital  
Signal  
Processing  
SSC Interface  
Unit  
ISM  
CORDIC  
CCU  
Y
GMR  
SD-  
ADC  
Incremental IF  
PWM  
IFB  
SD-  
ADC  
HSM  
SPC  
RAM  
Temp  
IFC  
Fuses  
Osc  
PLL  
Figure 1  
TLE5012B block diagram  
2.2  
Functional block description  
2.2.1  
Internal power supply  
The internal stages of the TLE5012B are supplied with several voltage regulators:  
GMR Voltage Regulator, VRG  
Analog Voltage Regulator, VRA  
Digital Voltage Regulator, VRD (derived from VRA)  
These regulators are directly connected to the supply voltage VDD  
.
2.2.2  
Oscillator and PLL  
The digital clock of the TLE5012B is given by the Phase-Locked Loop (PLL), which is by default fed by an  
internal oscillator. In order to synchronize the TLE5012B with other ICs in a system, the TLE5012B can be  
configured via SSC interface to use an external clock signal supplied on the IFC pin as source for the PLL,  
instead of the internal clock. External clock mode is only available in PWM or SPC interface configuration.  
Data Sheet  
5
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Functional description  
2.2.3  
SD-ADC  
The Sigma-Delta Analog-Digital-Converters (SD-ADC) transform the analog GMR voltages and temperature  
voltage into the digital domain.  
2.2.4  
Digital Signal Processing Unit  
The Digital Signal Processing Unit (DSPU) contains the:  
Intelligent State Machine (ISM), which does error compensation of offset, offset temperature drift,  
amplitude synchronicity and orthogonality of the raw signals from the GMR bridges, and performs  
additional features such as auto-calibration, prediction and angle speed calculation  
COordinate Rotation DIgital Computer (CORDIC), which contains the trigonometric function for angle  
calculation  
Capture Compare Unit (CCU), which is used to generate the PWM and SPC signals  
Random Access Memory (RAM), which contains the configuration registers  
Laser Fuses, which contain the calibration parameters for the error-compensation and the IC default  
configuration, which is loaded into the RAM at startup  
2.2.5  
Interfaces  
Bi-directional communication with the TLE5012B is enabled by a three-wire SSC interface. In parallel to the  
SSC interface, one secondary interface can be selected, which is available on the IFA, IFB, IFC pins:  
PWM  
Incremental Interface  
Hall Switch Mode  
Short PWM Code  
By using pre-configured derivates (see Chapter 5), the TLE5012B can also be operated with the secondary  
interface only, without SSC communication.  
2.2.6  
Safety features  
The TLE5012B offers a multiplicity of safety features to support the Safety Integrity Level (SIL) and  
it is a PRO-SIL™ product.  
Safety features are:  
Test vectors switchable to ADC input (activated via SSC interface)  
Inversion or combination of filter input streams (activated via SSC interface)  
Data transmission check via 8-bit Cyclic Redundancy Check (CRC) for SSC communication and 4-bit CRC  
nibble for SPC interface  
Built-in Self-test (BIST) routines for ISM, CORDIC, CCU, ADCs run at startup  
Two independent active interfaces possible  
Overvoltage and undervoltage detection  
Disclaimer  
PRO-SIL™ is a Registered Trademark of Infineon Technologies AG.  
The PRO-SIL™ Trademark designates Infineon products which contain SIL Supporting Features.  
SIL Supporting Features are intended to support the overall System Design to reach the desired SIL (according  
to IEC61508) or A-SIL (according to ISO26262) level for the Safety System with high efficiency.  
Data Sheet  
6
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Functional description  
SIL respectively A-SIL certification for such a System has to be reached on system level by the System  
Responsible at an accredited Certification Authority.  
SIL stands for Safety Integrity Level (according to IEC 61508)  
A-SIL stands for Automotive-Safety Integrity Level (according to ISO 26262)  
2.3  
Sensing principle  
The Giant Magneto Resistance (GMR) sensor is implemented using vertical integration. This means that the  
GMR-sensitive areas are integrated above the logic part of the TLE5012B device. These GMR elements change  
their resistance depending on the direction of the magnetic field.  
Four individual GMR elements are connected to one Wheatstone sensor bridge. These GMR elements sense  
one of two components of the applied magnetic field:  
X component, Vx (cosine) or the  
Y component, Vy (sine)  
With this full-bridge structure the maximum GMR signal is available and temperature effects cancel out each  
other.  
GMR Resistors  
VX  
VY  
0°  
S
N
ADCX+  
ADCX-  
GND  
ADCY+  
ADCY-  
VDD  
90°  
Figure 2  
Sensitive bridges of the GMR sensor (not to scale)  
Attention: Due to the rotational placement inaccuracy of the sensor IC in the package, the sensors 0° position  
may deviate by up to 3° from the package edge direction indicated in Figure 2.  
In Figure 2, the arrows in the resistors represent the magnetic direction which is fixed in the reference layer. If  
the external magnetic field is parallel to the direction of the Reference Layer, the resistance is minimal. If they  
are anti-parallel, resistance is maximal.  
The output signal of each bridge is only unambiguous over 180° between two maxima. Therefore two bridges  
are oriented orthogonally to each other to measure 360°.  
Data Sheet  
7
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Functional description  
With the trigonometric function ARCTAN2, the true 360° angle value is calculated out of the raw X and Y signals  
from the sensor bridges.  
Y Component (SIN)  
VY  
X Component (COS)  
VX  
V
VX (COS)  
0°  
90°  
180°  
270°  
360°  
Angle α  
VY (SIN)  
Figure 3  
Ideal output of the GMR sensor bridges  
Data Sheet  
8
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Functional description  
2.4  
Pin configuration  
8
7
6
5
Center of Sensitive  
Area  
1
2
3
4
Figure 4  
Pin configuration (top view)  
2.5  
Pin description  
Table 2  
Pin Description  
Pin No. Symbol  
In/Out Function  
1
IFC  
I/O  
Interface C:  
(CLK / IIF_IDX / HS3)  
External Clock1) / IIF Index / Hall Switch Signal 3  
2
3
4
5
SCK  
I
SSC Clock  
CSQ  
DATA  
I
SSC Chip Select  
SSC Data  
I/O  
I/O  
IFA  
Interface A:  
(IIF_A / HS1 / PWM / SPC)  
IIF Phase A / Hall Switch Signal 1 /  
PWM / SPC output (input for SPC trigger only)  
6
7
8
VDD  
-
Supply Voltage  
Ground  
GND  
-
IFB  
O
Interface B:  
(IIF_B / HS2)  
IIF Phase B / Hall Switch Signal 2  
1) External clock feature is not available in IIF or HSM interface mode.  
Data Sheet  
9
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Application circuits  
3
Application circuits  
The application circuits in this chapter show the various communication possibilities of the TLE5012B. The pin  
output mode configuration is device-specific and it can be either push-pull or open-drain. The bit IFAB_OD  
(register IFAB, 0DH) indicates the output mode for the IFA, IFB and IFC pins. The SSC pins are by default push-  
pull (bit SSC_OD, register MOD_3, 09H). Every application circuits below are using otherwise specified SSC  
with push-pull configuration and the internal clock.  
3.1  
IIF interface and SSC (IIF in push-pull configuration)  
Figure 5 shows a block diagram of a TLE5012B with Incremental Interface (IIF) and SSC interface. The derivate  
TLE5012B - E1000 is by default configured with push-pull IFA (IIF_A), IFB (IIF_ B) and IFC (IIF_IDX) pins. When  
the output pins are configurated as open-drain, three pull-up resistors should be added (e.g. 2K2) between  
the data lines and VDD.  
3.0 – 5.5V  
TLE5012B  
VDD  
100nF  
CSQ  
SCK  
Rs1  
Rs1  
Rs2  
SSC  
IIF  
DATA  
(IIF_A)  
IFA  
IFB  
IFC  
(IIF_B)  
(IIF_IDX)  
GND  
Rs1 recommended, e.g. 100  
Rs2 recommended, e.g. 470Ω  
Figure 5  
Application circuit for TLE5012B with IIF interface and SSC  
Data Sheet  
10  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Application circuits  
3.2  
HSM interface and SSC (HSM in push-pull configuration)  
Figure 6 shows a block diagram of the TLE5012B with Hall Switch Mode (HSM) and SSC interface. The derivate  
TLE5012B - E3005 is by default configurated with push-pull IFA (HS1), IFB (HS2) and IFC (HS3) pins.  
3.0 – 5.5V  
TLE5012B  
VDD  
100nF  
CSQ  
SCK  
Rs1  
Rs1  
Rs2  
SSC  
DATA  
(HS1)  
(HS2)  
(HS3)  
IFA  
IFB  
IFC  
HSM  
GND  
Rs1 recommended, e.g. 100  
Rs2 recommended, e.g. 470Ω  
Figure 6  
Application circuit for TLE5012B with HSM interface (push-pull configuration) and SSC  
3.3  
HSM interface and SSC (HSM in open-drain configuration)  
As shown in Figure 7 when IFA, IFB and IFC are configurated via the SSC interface as open drain pins, three pull-  
up resistors (Rpu) should be added on the output lines.  
3.0 – 5.5V  
TLE5012B  
VDD  
100nF  
CSQ  
SCK  
Rs1  
Rs1  
Rs2  
SSC  
DATA  
(HS1)  
(HS2)  
(HS3)  
IFA  
IFB  
IFC  
HSM  
GND  
Rs1 recommended, e.g. 100  
Rs2 recommended, e.g. 470Rpu required, e.g. 2K2Ω  
Figure 7  
Application circuit for TLE5012B with HSM interface (open-drain configuration) and SSC  
Data Sheet  
11  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Application circuits  
3.4  
PWM interface (push-pull configuration)  
The TLE5012B can be configured with PWM only (Figure 8). The derivate TLE5012B - E5000 is by default  
configurated with push-pull configuration for IFA (PWM) pin. Internal pull-up resistors are always available for  
DATA and CSQ pins (see Table 7). It is recommended to connect CSQ pin to VDD to provide a high level and  
avoid unintentional activation of the SSC interface. DATA pin should be left open. The figure below shows a  
typical implementation of the TLE5012B - E5000.  
3.0 – 5.5V  
TLE5012B  
VDD  
100nF  
CSQ  
SCK  
DATA  
(PWM)  
IFA  
IFB  
IFC  
PWM  
GND  
Figure 8  
Application circuit for TLE5012B with PWM (push-pull configuration) interface  
3.5  
PWM interface (open-drain configuration)  
The TLE5012B - E5020 is also a PWM derivate but with open drain for IFA (PWM) pin. A pull-up resistor  
(e.g. 2.2 k) should be added between the IFA line and VDD, as shown in Figure 9.  
Internal pull-up resistors are always available for DATA and CSQ pins (see Table 7). It is recommended to  
connect CSQ pin to VDD to provide a strong level and avoid unintentional activation of the SSC interface. DATA  
pin should be left open. The figure below shows a typical implementation of the TLE5012B - E5020.  
3.0 – 5.5V  
TLE5012B  
VDD  
100nF  
CSQ  
SCK  
DATA  
(PWM)  
IFA  
IFB  
IFC  
PWM  
GND  
Rpu required, e.g. 2K2Ω  
Figure 9  
Application circuit for TLE5012B with PWM (open-drain configuration) interface  
Data Sheet  
12  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Application circuits  
3.6  
SPC interface  
The TLE5012B can be configured with SPC only (Figure 10). This is only possible with the TLE5012B - E9000  
derivate, which is by default configurated with an open-drain IFA (SPC) pin.  
In Figure 10 the IFC (S_NR[1]) and SCK (S_NR[0]) pins are set to ground to generate the slave number (S_NR)  
0D (or 00B). In case of SCK (S_NR[0]) needs to be set to VDD to generate another slave address, CSQ pin should  
be set to ground instead. Internal pull-up resistors are always available for DATA and CSQ pins (see Table 7).  
DATA pin should be left open. Since SCK and CSQ pins should have opposite level, it is not recommended to  
use the SSC interface in parallel.  
3.0 – 5.5V  
TLE5012B  
VDD  
100nF  
CSQ  
SCK  
DATA  
(SPC)  
IFA  
IFB  
IFC  
SPC  
GND  
Rpu required, e.g. 2K2Ω  
Figure 10 Application circuit for TLE5012B with SPC interface  
3.7  
SSC interface (push-pull configuration)  
In Figure 5, Figure 6 and Figure 7 the SSC interface has the default push-pull configuration (see details in  
Figure 11). A series resistor on the DATA line is recommended to limit the current in erroneous cases (e.g. the  
sensor pushes high and the microcontroller pulls low at the same time or vice versa). Resistors on SCK and  
CSQ lines are recommended in case of disturbances or noise.  
(SSC Slave) TLE 5012B  
µC (SSC Master)  
MTSR  
DATA  
Shift Reg.  
Rs2  
Shift Reg.  
EN  
EN  
MRST  
SCK  
SCK  
CSQ  
Rs1  
Rs1  
Clock Gen.  
CSQ  
Rs1 recommended, e.g. 100  
Rs2 recommended, e.g. 470Ω  
Figure 11 SSC interface with push-pull configuration (high-speed application)  
Data Sheet  
13  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Application circuits  
3.8  
SSC interface (open-drain configuration)  
It is possible to use an open-drain configuration for the DATA line. This setup can be used to communicate with  
a microcontroller in a bus system, together with other SSC slaves (e.g. two TLE5012B devices for redundancy  
reasons). This mode can be activated using the bit SSC_OD.  
Even though, push-pull configuration in a bus system is also possible since the addressing of the sensor is  
performed with CSQ pin.  
The open-drain configuration can be seen in Figure 12. Series resistors on the DATA line are recommended to  
limit the current in erroneous cases. Resistors on SCK and CSQ lines are recommended in case of disturbances  
or noise A pull-up resistor of typ. 1 kis required on the DATA line.  
(SSC Slave) TLE 5012B  
µC (SSC Master)  
MTSR  
DATA  
Shift Reg.  
Rs1  
Rs1  
Shift Reg.  
EN  
EN  
MRST  
SCK  
SCK  
CSQ  
Rs1  
Rs1  
Clock Gen.  
CSQ  
Rs1 recommended, e.g. 100  
Rpu required, e.g. 1kΩ  
Figure 12 SSC interface with open-drain configuration (bus systems)  
3.9  
Sensor supply in bus mode  
When using two or more devices in a bus configuration (SSC or SPC interface). It is recommended to use the  
same supply for every sensors connected to the bus. In case of a power loss the unpowered device is sinking  
current through the OUT pin. Depending on the external circuitry the additional current flow might disturb the  
bus behavior.  
The figure below (Figure 13) shows a typical implementation of a bus mode using SPC interface. External  
components such as EMC filter or additional series resistors are not represented for clarity purpose. Only the  
pull-up resistor Rpu is shown.  
Data Sheet  
14  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Application circuits  
VDD  
VDD  
VDD  
Sensor 1  
VDD  
MCU  
VDD  
CCU  
GND  
OUT  
GND  
VDD  
Sensor x  
VDD  
OUT  
GND  
Figure 13 Sensors’ supply in bus mode  
Data Sheet  
15  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Specification  
4
Specification  
4.1  
Absolute maximum ratings  
Table 3  
Absolute maximum ratings  
Symbol  
Parameter  
Values  
Typ. Max.  
6.5  
Unit Note or Test Condition  
Min.  
-0.5  
Voltage on VDD pin with respect VDD  
to ground (VSS)  
V
V
Max 40 h/Lifetime  
Voltage on any pin with respect VIN  
to ground (VSS)  
-0.5  
-40  
6.5  
V
DD + 0.5 V  
Junction temperature  
Magnetic field induction  
Storage temperature  
TJ  
150  
150  
200  
150  
150  
°C  
°C  
For 1000 h, not additive  
B
mT Max. 5 min @ TA = 25°C  
mT Max. 5 h @ TA = 25°C  
TST  
-40  
°C  
Without magnetic field  
Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure  
to absolute maximum rating conditions for extended periods may affect device reliability. Maximum  
ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to  
the device.  
4.2  
Operating range  
The following operating conditions must not be exceeded in order to ensure correct operation of the  
TLE5012B. All parameters specified in the following sections refer to these operating conditions, unless  
otherwise noted. Table 4 is valid for -40°C < TJ < 150°C unless otherwise noted.  
Table 4  
Operating range and parameters  
Symbol  
Parameter  
Values  
Min. Typ.  
Unit Note or Test Condition  
Max.  
5.5  
16  
1)  
Supply voltage  
Supply current  
VDD  
IDD  
3.0  
5.0  
14  
V
mA  
Magnetic induction at  
BXY  
30  
30  
30  
25  
50  
mT -40°C < TJ < 150°C  
mT -40°C < TJ < 100°C  
mT -40°C < TJ < 85°C  
mT Additional angle error of 0.1°  
TJ = 25°C2)3)  
60  
70  
Extended magnetic induction  
BXY  
30  
range at TJ = 25°C2)3)  
Angle range  
POR level  
Ang  
0
360  
2.9  
°
VPOR  
2.0  
V
Power-on reset  
POR hysteresis  
VPORhy  
30  
mV  
Data Sheet  
16  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Specification  
Table 4  
Operating range and parameters (cont’d)  
Parameter  
Symbol  
Values  
Min. Typ.  
Unit Note or Test Condition  
ms VDD > VDDmin  
Max.  
7
Power-on time4)  
Fast Reset time5)  
tPon  
5
;
tRfast  
0.5  
ms Fast reset is triggered by  
disabling startup BIST  
(S_BIST = 0), then enabling  
chip reset (AS_RST = 1)  
1) Directly blocked with 100-nF ceramic capacitor.  
2) Values refer to a homogeneous magnetic field (BXY) without vertical magnetic induction (BZ = 0 mT).  
3) See Figure 14.  
4) During “Power-on time,” write access is not permitted (except for the switch to External Clock which requires a  
readout as a confirmation that external clock is selected).  
5) Not subject to production test - verified by design/characterization.  
The field strength of a magnet can be selected within the colored area of Figure 14. By limitation of the  
junction temperature, a higher magnetic field can be applied. In case of a maximum temperature TJ = 100°C,  
a magnet with up to 60 mT at TJ = 25°C is allowed.  
It is also possible to widen the magnetic field range for higher temperatures. In that case, additional angle  
errors have to be considered.  
Figure 14 Allowed magnetic field range as function of junction temperature.  
Data Sheet  
17  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Specification  
4.3  
Characteristics  
4.3.1  
Input/Output characteristics  
The indicated parameters apply to the full operating range, unless otherwise specified. The typical values  
correspond to a supply voltage VDD = 5.0 V and 25°C, unless individually specified. All other values correspond  
to -40 °C < TJ < 150°C.  
Within the register MOD_3, the driver strength and the slope for push-pull communication can be varied  
depending on the sensor output. The driver strength is specified in Table 5 and the slope fall and rise time in  
Table 6.  
Table 5  
Input voltage and output currents  
Symbol  
Parameter  
Values  
Min. Typ. Max.  
Unit Note or Test Condition  
Input voltage  
VIN  
IQ  
-0.3  
5.5  
V
VDD+ 0.3  
-25  
V
Output current (DATA-Pad)  
mA PAD_DRV =’0x’, sink current1)2)  
mA PAD_DRV =’10’, sink current1)2)  
mA PAD_DRV =’11’, sink current1)2)  
mA PAD_DRV =’0x’, sink current1)2)  
mA PAD_DRV =’1x’, sink current1)2)  
-5  
-0.4  
-15  
Output current (IFA / IFB / IFC - IQ  
Pad)  
-5  
1) Max. current to GND over open-drain output.  
2) At VDD = 5 V.  
Table 6  
Driver strength characteristic  
Symbol  
Parameter  
Values  
Unit  
Note or Test Condition  
Min. Typ. Max.  
8
Output rise/fall time  
t
fall, trise  
ns  
ns  
ns  
ns  
ns  
ns  
DATA, 50 pF,  
PAD_DRV=’00’1)2)  
28  
DATA, 50 pF,  
PAD_DRV=’01’1)2)  
45  
DATA, 50 pF,  
PAD_DRV=’10’1)2)  
130  
15  
DATA, 50 pF,  
PAD_DRV=’11’1)2)  
IFA/IFB, 20 pF,  
PAD_DRV=’0x’1)2)  
30  
IFA/IFB, 20 pF,  
PAD_DRV=’1x’1)2)  
1) Valid for push-pull output  
2) Not subject to production test - verified by design/characterization  
Data Sheet  
18  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Specification  
Table 7  
Electrical parameters for 4.5 V < VDD < 5.5 V  
Parameter  
Symbol  
Values  
Unit  
Note or Test Condition  
Min.  
Typ. Max.  
Input signal low-level  
VL5  
0.3 VDD  
V
V
V
Input signal high level VH5  
Output signal low-level VOL5  
0.7 VDD  
1
1
DATA;  
IQ = -25 mA (PAD_DRV=’0x’),  
IQ = -5 mA (PAD_DRV=’10’),  
IQ = -0.4 mA (PAD_DRV=’11’)  
V
IFA,B,C;  
IQ = -15 mA (PAD_DRV=’0x’),  
IQ = -5 mA (PAD_DRV=’1x’)  
Pull-up current1)  
IPU  
IPD  
-10  
-10  
10  
-225  
-150  
225  
µA  
µA  
µA  
µA  
CSQ  
DATA  
Pull-down current2)  
SCK  
10  
150  
IFA, IFB, IFC  
1) Internal pull-ups on CSQ and DATA pin are always enabled.  
2) Internal pull-downs on IFA, IFB and IFC are enabled during startup and in open-drain mode, internal pull-down on  
SCK is always enabled.  
Table 8  
Electrical parameters for 3.0 V < VDD < 3.6 V  
Parameter  
Symbol  
Values  
Unit  
Note or Test Condition  
Min.  
Typ. Max.  
Input signal low-level  
Input signal high level  
Output signal low-level  
VL3  
0.3 VDD  
V
V
V
VH3  
VOL3  
0.7 VDD  
0.9  
0.9  
DATA;  
IQ = -15 mA (PAD_DRV=’0x’),  
IQ = -3 mA (PAD_DRV=’10’),  
IQ = -0.24 mA (PAD_DRV=’11’)  
V
IFA,IFB;  
IQ = - 10 mA (PAD_DRV=’0x’),  
IQ = -3 mA (PAD_DRV=’1x’)  
Pull-up current1)  
IPU  
IPD  
-3  
-3  
3
-225  
-150  
225  
µA  
µA  
µA  
µA  
CSQ  
DATA  
Pull-down current2)  
SCK  
3
150  
IFA, IFB, IFC  
1) Internal pull-ups on CSQ and DATA pin are always enabled.  
2) Internal pull-downs on IFA, IFB and IFC are enabled during startup and in open-drain mode, internal pull-down on  
SCK is always enabled.  
Data Sheet  
19  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Specification  
4.3.2  
ESD protection  
Table 9  
ESD protection  
Symbol  
Parameter  
Values  
Typ.  
Unit  
Note or Test Condition  
Min.  
Max.  
±4.0  
±0.5  
ESD voltage  
VHBM  
VSDM  
kV  
kV  
Human Body Model1)  
Socketed Device Model2)  
1) Human Body Model (HBM) according to: AEC-Q100-002.  
2) Socketed Device Model (SDM) according to: ESDA/ANSI/ESD SP5.3.2-2008.  
4.3.3  
GMR parameters  
All parameters apply over BXY = 30 mT and TA = 25°C, unless otherwise specified.  
Table 10  
Basic GMR parameters  
Parameter  
Symbol  
Values  
Unit  
Note or Test Condition  
Min. Typ. Max.  
X, Y output range  
X, Y amplitude2)  
RGADC  
±23230  
6000 9500 15781  
digits Operating range1)  
AX, AY  
digits At ambient temperature  
3922  
20620  
112.49  
+2047  
+11.24  
+4096  
digits Operating range  
X, Y synchronicity3)  
X, Y offset4)  
k
87.5 100  
%
OX, OY  
-2048  
0
digits  
X, Y orthogonality error  
j
-11.25 0  
°
X, Y amplitude without magnet X0, Y0  
digits Operating range1)  
1) Not subject to production test - verified by design/characterization.  
2) See Figure 15.  
3) k = 100 * (AX/AY)  
4) OY = (YMAX + YMIN) / 2; OX = (XMAX + XMIN) / 2  
VY  
+A  
Offset  
0
0°  
90°  
180°  
270°  
360°  
Angle  
-A  
Figure 15 Offset and amplitude definition  
Data Sheet  
20  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Specification  
4.3.4  
Angle performance  
After internal calculation, the sensor has a remaining error, as shown in Table 11. The error value refers to  
BZ = 0 mT and the operating conditions given in Table 4.  
The overall angle error represents the relative angle error. This error describes the deviation from the  
reference line after zero-angle definition. It is valid for a static magnetic field.  
If the magnetic field is rotating during the measurement, an additional propagation error is caused by the  
angle delay time (see Table 12), which the sensor needs to calculate the angle from the raw sine and cosine  
values from the MR bridges. In fast-turning applications, prediction can be enabled to reduce this propagation  
error.  
Table 11  
Angle performance  
Parameter  
Symbol  
Values  
Min. Typ. Max.  
0.61) 1.0  
Unit  
°
Note or Test Condition  
Including lifetime and  
Overall angle error (with auto- αErr  
calibration)  
temperature drift2)3)4)  
Note: in case of  
.
temperature changes  
above 5 Kelvin within  
1.5 revolutions refer to  
Figure 16 for additional  
angle error.  
Overall angle error (without  
auto- calibration)  
αErr  
0.61) 1.3  
1.9  
°
°
Including temperature  
drift2)3)5)  
Including lifetime and  
temperature drift2)3)4)  
1) At 25°C, B = 30 mT.  
2) Including hysteresis error, caused by revolution direction change.  
3) Relative error after zero angle definition.  
4) Not subject to production test - verified by design/characterization.  
5) 0 h.  
If autocalibration (see Chapter 4.3.5) is enabled and the temperature changes by more than 5 Kelvin during 1.5  
revolutions an additional error has to be added to the specified angle error in Table 11. This error depends on  
the temperature change (Delta Temperature) as well as from the initial temperature (Tstart) as shown in  
Figure 16. Once the temperature stabilizes and the application completes 1.5 revolutions, then the angle error  
is as specified in Table 11.  
For negative Delta Temperature changes (from higher to lower temperatures) the additional angle error will  
be smaller than the corresponding positive Delta Temperature changes (from lower to higher temperatures)  
shown in Figure 16. The Figure 16 applies to the worst case.  
Data Sheet  
21  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Specification  
3.5  
3
2.5  
2
Tstart -40°C  
Tstart 25°C  
Tstart 85°C  
Tstart 105°C  
Tstart 125°C  
Tstart 135°C  
Tstart >135°C  
1.5  
1
0.5  
0
0 10 20 30 40 50 60 70 80 90 100110120130140150160170180190  
Delta Temperature (Kelvin) within 1.5 revolutions  
Figure 16 Additional angle error for temperature changes above 5 Kelvin within 1.5 revolutions  
4.3.5  
Autocalibration  
The autocalibration enables online parameter calculation and therefore reduces the angle error due to  
temperature and lifetime drifts.  
The TLE5012B is a pre-calibrated sensor, so autocalibration is only enabled in some devices by default. The  
update mode can be chosen with the AUTOCAL setting in the MOD_2 register. The TLE5012B needs  
1.5 revolutions to generate new autocalibration parameters. These parameters are continuously updated.  
The parameters are updated in a smooth way (one Least-Significant Bit within the chosen range or time) to  
avoid an angle jump on the output.  
AUTOCAL Modes:  
00: No autocalibration.  
01: Autocalibration Mode 1. One LSB to final values within the update time tupd (depending on FIR_MD  
setting).  
10: Autocalibration Mode 2. Only one LSB update over one full parameter generation (1.5 revolutions).  
After update of one LSB, the autocalibration will calculate the parameters again.  
11: Autocalibration Mode 3. One LSB to final values within an angle range of 11.25°.  
Data Sheet  
22  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Specification  
4.3.6  
Signal processing  
TLE5012B  
Microcontroller  
X
GMR  
SD-  
ADC  
Filter  
Angle  
Calculation  
IF  
Y
GMR  
SD-  
ADC  
Filter  
tdelIF  
tadelSSC  
tadelIIF  
Figure 17 Signal path  
The signal path of the TLE5012B is depicted in Figure 17. It consists of the GMR-bridge, ADC, filter and angle  
calculation. The delay time between a physical change in the GMR elements and a signal on the output  
depends on the filter and interface configurations. In fast turning applications, this delay causes an additional  
rotation speed dependent angle error.  
The TLE5012B has an optional prediction feature, which serves to reduce the speed dependent angle error in  
applications where the rotation speed does not change abruptly. Prediction uses the difference between  
current and last two angle values to approximate the angle value which will be present after the delay time  
(see Figure 18). The output value is calculated by adding this difference to the measured value, according to  
Equation (4.1).  
(4.1)  
α (t +1) = α (t) + α (t 1) α (t 2)  
Sensor output  
Angle  
With  
Without  
Prediction  
Prediction  
Magnetic field  
direction  
time  
tadel  
tupd  
Figure 18 Delay of sensor output  
Data Sheet  
23  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Specification  
Table 12  
Signal processing  
Parameter  
Symbol  
Values  
Unit  
Note or Test Condition  
Min. Typ.  
Max.  
Filter update period  
tupd  
42.7  
85.3  
170.6  
85  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
°
FIR_MD = 11)  
FIR_MD = 21)  
FIR_MD = 31)  
FIR_MD = 11)  
FIR_MD = 21)  
FIR_MD = 31)  
FIR_MD = 11)  
FIR_MD = 21)  
Angle delay time without  
prediction2)  
tadelSSC  
tadelIIF  
tadelSSC  
tadelIIF  
NAngle  
95  
150  
275  
120  
180  
305  
45  
165  
300  
135  
200  
330  
50  
FIR_MD = 31)  
Angle delay time with  
prediction2)  
FIR_MD = 1; PREDICT = 11)  
FIR_MD = 2; PREDICT = 11)  
FIR_MD = 3; PREDICT = 1 1)  
FIR_MD = 1; PREDICT = 11)  
FIR_MD = 2; PREDICT = 11)  
FIR_MD = 3; PREDICT = 1 1)  
FIR_MD = 11)  
65  
70  
105  
75  
115  
90  
95  
110  
150  
135  
0.08  
0.05  
0.04  
Angle noise (RMS)  
°
FIR_MD = 21)(default)  
FIR_MD = 31)  
°
1) Not subject to production test - verified by design/characterization.  
2) Valid at constant rotation speed.  
All delay times specified in Table 12 are valid for an ideal internal oscillator frequency of 24 MHz. For the exact  
timing, the variation of the internal oscillator frequency has to be taken into account (see Chapter 4.3.7).  
Data Sheet  
24  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Specification  
4.3.7  
Clock supply (CLK timing definition)  
The internal clock supply of the TLE5012B is subject to production-specific variations, which have to be  
considered for all timing specifications.  
Table 13  
Internal clock timing specification  
Symbol  
Parameter  
Values  
Unit  
Note or Test Condition  
Min. Typ. Max.  
Digital clock  
fDIG  
22.8 24  
3.8 4.0  
25.8  
4.3  
MHz  
MHz  
Internal oscillator frequency  
fCLK  
In order to fix the IC timing and synchronize the TLE5012B with other ICs in a system, it can be switched to  
operate with an external clock signal supplied to the IFC pin. The clock input signal must fulfill certain  
requirements:  
The high or low pulse width must not exceed the specified values, because the PLL needs a minimum pulse  
width and must be spike-filtered.  
The duty cycle factor should typically be 50%, but it can vary between 30% and 70%.  
The PLL is triggered at the positive edge of the clock. If more than 2 edges are missing, a chip reset is  
generated automatically and the sensor restarts with the internal clock. This is indicated by the S_RST, and  
CLK_SEL bits, and additionally by the Safety Word (see Chapter 4.4.1.2).  
tCLK  
tCLKh  
tCLKl  
VH  
VL  
t
Figure 19 External CLK timing definition  
Table 14  
External clock specification  
Symbol  
Parameter  
Values  
Min. Typ. Max.  
Unit  
Note or Test Condition  
Input frequency  
CLK duty cycle1)2)  
CLK rise time  
fCLK  
3.8  
30  
4.0  
50  
4.3  
70  
30  
30  
MHz  
%
CLKDUTY  
tCLKr  
ns  
From VL to VH  
From VH to VL  
CLK fall time  
tCLKf  
ns  
1) Minimum duty cycle factor: tCLKh(min) / tCLK with tCLK= 1 / fCLK  
2) Maximum duty cycle factor: tCLKh(max) / tCLK with tCLK= 1 / fCLK  
Data Sheet  
25  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Specification  
4.4  
Interfaces  
4.4.1  
Synchronous Serial Communication (SSC)  
The 3-pin SSC interface consists of a bi-directional push-pull (tri-state on receive) or open-drain data pin  
(configurable with SSC_OD bit) and the serial clock and chip-select input pins. The SSC Interface is designed  
to communicate with a microcontroller peer-to-peer for fast applications.  
4.4.1.1  
SSC timing definition  
tCSs  
tCSh  
tCSoff  
tSCKp  
CSQ  
tSCKh  
tSCKl  
SCK  
DATA  
tDATAs tDATAh  
Figure 20 SSC timing  
SSC inactive time (CSoff  
)
The SSC inactive time defines the delay time after a transfer before the TLE5012B can be selected again.  
Table 15  
SSC push-pull timing specification  
Symbol  
Parameter  
Values  
Unit  
Note or Test Condition  
Min. Typ. Max.  
1)  
1)  
1)  
SSC baud rate  
CSQ setup time  
CSQ hold time  
CSQ off  
fSSC  
8.0  
105  
Mbit/s  
ns  
tCSs  
tCSh  
105  
ns  
tCSoff  
tSCKp  
tSCKh  
tSCKl  
600  
ns  
SSC inactive time1)  
1)  
SCK period  
120  
40  
125  
ns  
1)  
1)  
1)  
1)  
1)  
SCK high  
ns  
SCK low  
30  
ns  
DATA setup time  
DATA hold time  
Write read delay  
Update time  
SCK off  
tDATAs  
tDATAh  
twr_delay  
tCSupdate  
tSCKoff  
25  
ns  
40  
ns  
130  
1
ns  
µs  
See Figure 241)  
1)  
170  
ns  
1) Not subject to production test - verified by design/characterization.  
Data Sheet  
26  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Specification  
Table 16  
SSC open-drain timing specification  
Parameter  
Symbol  
Values  
Unit  
Note or Test Condition  
Min. Typ. Max.  
SSC baud rate  
CSQ setup time  
CSQ hold time  
CSQ off  
fSSC  
2.0  
300  
400  
600  
500  
190  
190  
25  
Mbit/s Pull-up Resistor = 1 kΩ1)  
1)  
tCSs  
ns  
1)  
tCSh  
ns  
tCSoff  
tSCKp  
tSCKh  
tSCKl  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
SSC inactive time1)  
1)  
SCK period  
1)  
1)  
1)  
1)  
1)  
SCK high  
SCK low  
DATA setup time  
DATA hold time  
Write read delay  
Update time  
SCK off  
tDATAs  
tDATAh  
twr_delay  
tCSupdate  
tSCKoff  
40  
130  
1
See Figure 241)  
1)  
170  
1) Not subject to production test - verified by design/characterization.  
Data Sheet  
27  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Specification  
4.4.1.2  
SSC data transfer  
The SSC data transfer is word-aligned. The following transfer words are possible:  
Command Word (to access and change operating modes of the TLE5012B)  
Data words (any data transferred in any direction)  
Safety Word (confirms the data transfer and provides status information)  
twr_delay  
SAFETY-WORD  
COMMAND  
READ Data 1  
READ Data2  
SSC-Master is driving DATA  
SSC-Slave is driving DATA  
Figure 21 SSC data transfer (data-read example)  
twr_delay  
SAFETY-WORD  
COMMAND  
WRITE Data 1  
SSC-Master is driving DATA  
SSC-Slave is driving DATA  
Figure 22 SSC data transfer (data-write example)  
Command Word  
SSC Communication between the TLE5012B and a microcontroller is generally initiated by a command word.  
The structure of the command word is shown in Table 17. If an update is triggered by shortly pulling low CSQ  
without a clock on SCK a snapshot of all system values is stored in the update registers simultaneously. A read  
command with the UPD bit set then allows to readout this consistent set of values instead of the current  
values. Bits with an update buffer are marked by an “u” in the Type column in register descriptions. The  
initialization of such an update is described on page 30.  
Table 17  
Name  
RW  
Structure of the Command Word  
Bits  
[15]  
Description  
Read - Write  
0: Write  
1: Read  
Lock  
[14..11]  
4-bit Lock Value  
0000B: Default operating access for addresses 0x00:0x04  
1010B: Configuration access for addresses 0x05:0x11  
Data Sheet  
28  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Specification  
Table 17  
Name  
UPD  
Structure of the Command Word (cont’d)  
Bits  
[10]  
Description  
Update-Register Access  
0: Access to current values  
1: Access to values in update buffer  
ADDR  
ND  
[9..4]  
[3..0]  
6-bit Address  
4-bit Number of Data Words  
Safety Word  
The safety word consists of the following bits:  
Table 18  
Name  
Structure of the Safety Word  
Bits  
Description  
STAT1)  
Chip and Interface Status  
[15]  
Indication of chip reset or watchdog overflow (resets after readout) via  
SSC  
0: Reset occurred  
1: No reset  
[14]  
System error (e.g. overvoltage; undervoltage; VDD-, GND- off; ROM;...)  
0: Error occurred (S_VR; S_DSPU; S_OV; S_XYOL: S_MAGOL; S_FUSE;  
S_ROM; S_ADCT)  
1: No error  
[13]  
[12]  
Interface access error (access to wrong address; wrong lock)  
0: Error occurred  
1: No error  
Valid angle value (NO_GMR_A = 0; NO_GMR_XY = 0)  
0: Angle value invalid  
1: Angle value valid  
RESP  
CRC  
[11..8]  
[7..0]  
Sensor number response indicator  
The sensor number bit is pulled low and the other bits are high  
Cyclic Redundancy Check (CRC)  
1) When an error occurs, the corresponding status bit in the safety word remains “low” until the STAT register (address  
00H) is read via SSC interface.  
Data Sheet  
29  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Specification  
Bit Types  
The types of bits used in the registers are listed here:  
Table 19  
Bit Types  
Abbreviation  
Function  
Read  
Description  
r
Read-only registers  
Read and write registers  
w
u
Write  
Update  
Update buffer for this bit is present. If an update is issued and the Update-  
Register Access bit (UPD in Command Word) is set, the immediate values  
are stored in this update buffer simultaneously. This allows a snapshot of  
all necessary system parameters at the same time.  
Data communication via SSC  
SSC Transfer  
twr_delay  
Command Word  
Data Word (s)  
SCK  
DATA  
CSQ  
MSB 14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
LSB  
MSB  
1
LSB  
RW  
LOCK  
UPD  
ADDR  
LENGTH  
SSC -Master is driving DAT A  
SSC -Slave is driving DAT A  
Figure 23 SSC bit ordering (read example)  
Update -Signal  
Update -Event  
Command Word  
MSB  
Data Word (s)  
SCK  
DATA  
CSQ  
LSB  
LSB  
tCSupdate  
SSC -Master is driving DAT A  
SSC-Slave is driving DAT A  
Figure 24 Update of update registers  
The data communication via SSC interface has the following characteristics:  
The data transmission order is Most-Significant Bit (MSB) first, Last-Significant Bit (LSB) last.  
Data is put on the data line with the rising edge on SCK and read with the falling edge on SCK.  
The SSC Interface is word-aligned. All functions are activated after each transmitted word.  
After every data transfer with ND 1, the 16-bit Safety Word is appended by the TLE5012B.  
A “high” condition on the Chip Select pin (CSQ) of the selected TLE5012B interrupts the transfer  
immediately. The CRC calculator is automatically reset.  
After changing the data direction, a delay twr_delay (see Table 16) has to be implemented before continuing  
the data transfer. This is necessary for internal register access.  
Data Sheet  
30  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Specification  
If in the Command Word the number of data is greater than 1 (ND > 1), then a corresponding number of  
consecutive registers is read, starting at the address given by ADDR.  
In case an overflow occurs at address 3FH, the transfer continues at address 00H.  
If in the Command Word the number of data is zero (ND = 0), the register at the address given by ADDR is  
read, but no Safety Word is sent by the TLE5012B. This allows a fast readout of one register.  
At a rising edge of CSQ without a preceding data transfer (no SCK pulse, see Figure 24), the content of all  
registers which have an update buffer is saved into the buffer. This procedure serves to take a snapshot of  
all relevant sensor parameters at a given time. The content of the update buffer can then be read by  
sending a read command for the desired register and setting the UPD bit of the Command Word to “1”.  
After sending the Safety Word, the transfer ends. To start another data transfer, the CSQ has to be  
deselected once for at least tCSoff  
.
By default, the SSC interface is set to push-pull. The push-pull driver is active only if the TLE5012B has to  
send data, otherwise the DATA pin is set to high-impedance.  
Cyclic Redundancy Check (CRC)  
This CRC is according to the J1850 Bus Specification.  
Every new transfer restarts the CRC generation.  
Every Byte of a transfer will be taken into account to generate the CRC (also the sent command(s)).  
Generator polynomial: X8+X4+X3+X2+1, but for the CRC generation the fast-CRC generation circuit is used  
(see Figure 25).  
The seed value of the fast CRC circuit is ‘11111111B’.  
The remainder is inverted before transmission.  
Serial  
CRC  
X7  
X6  
X5  
X4  
X3  
X2  
X1  
X0  
xor  
&
xor  
1
1
1
1
1
1
1
xor  
xor  
1
Input  
output  
TX_CRC  
parallel  
Remainder  
Figure 25 Fast CRC polynomial division circuit  
Data Sheet  
31  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Specification  
4.4.2  
Pulse Width Modulation (PWM) interface  
The Pulse Width Modulation (PWM) interface can be selected via SSC (IF_MD = ‘01’).  
The PWM update rate can be programmed within the register 0EH (IFAB_RES) in the following steps:  
~0.25 kHz with 12-bit resolution  
~0.5 kHz with 12-bit resolution  
~1.0 kHz with 12-bit resolution  
~2.0 kHz with 12-bit resolution  
PWM uses a square wave with constant frequency whose duty cycle is modulated according to the last  
measured angle value (AVAL register).  
Figure 26 shows the principal behavior of a PWM with various duty cycles and the definition of timing values.  
The duty cycle of a PWM is defined by the following general formulas:  
ton  
Duty Cycle =  
tPWM  
tPWM = ton + toff  
1
fPWM  
=
tPWM  
(4.2)  
The duty cycle range between 0 - 6.25% and 93.75 - 100% is used only for diagnostic purposes. In case the  
sensor detects an error, the corresponding error bit in the Status register is set and the PWM duty cycle goes  
to the lower (0 - 6.25%) or upper (93.75 - 100%) diagnostic range, depending on the kind of error (see “Output  
duty cycle range” in Table 20). Except for an S_ADCT error, an error is only indicated by the corresponding  
diagnostic duty-cycle as long as it persists, but at least once. However the value in the status register will  
remain until a read-out via the SSC interface or a chip reset is performed. An S_ADCT error on the other side  
will be transmitted until the next chip reset. This fail-safe diagnostic function can be disabled via the MOD_4  
register.  
Sensors with preset PWM are available as TLE5012B E50x0.  
tON  
ON = High level  
OFF = Low level  
UIFA  
tPWM  
Duty cycle = 6.25%  
Vdd  
tOFF  
‚0'  
UIFA  
Duty cycle = 50%  
t
t
Vdd  
‚0'  
UIFA  
Duty cycle = 93.75%  
Vdd  
‚0'  
t
Figure 26 Typical example of a PWM signal  
Data Sheet  
32  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Specification  
Table 20  
PWM interface  
Parameter  
Symbol  
Values  
Unit  
Note or Test Condition  
Min. Typ. Max.  
1)  
1)  
1)  
1)  
PWM output frequencies  
(Selectable by IFAB_RES)  
fPWM1  
fPWM2  
fPWM3  
fPWM4  
DYPWM  
232  
464  
929  
244  
488  
977  
262  
Hz  
Hz  
Hz  
Hz  
%
525  
1050  
1855 1953 2099  
Output duty cycle range  
6.25  
93.75  
Absolute angle1)  
2
%
Electrical Error (S_RST;  
S_VR)1)  
98  
%
System error (S_FUSE;  
S_OV; S_XYOL; S_MAGOL;  
S_ADCT)1)  
0
1
%
%
Short to GND1)  
Short to VDD, power loss1)  
99  
100  
1) Not subject to production test - verified by design/characterization.  
The PWM frequency is derived from the digital clock via:  
(4.3)  
f DIG * 2 IFAB_RES  
f PWM  
=
24 * 4096  
The min/max values given in Table 20 take into account the internal digital clock variation specified in  
Chapter 4.3.7. If external clock is used, the variation of the PWM frequency can be derived from the variation  
of the external clock using Equation (4.3).  
Data Sheet  
33  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Specification  
4.4.3  
Short PWM Code (SPC)  
The Short PWM Code (SPC) is a synchronized data transmission based on the SENT protocol (Single Edge  
Nibble Transmission) defined by SAE J2716. As opposed to SENT, which implies a continuous transmission of  
data, the SPC protocol transmits data only after receiving a specific trigger pulse from the microcontroller. The  
required length of the trigger pulse depends on the sensor number, which is configurable. Thereby, SPC allows  
the operation of up to four sensors on one bus line.  
SPC enables the use of enhanced protocol functionality due to the ability to select between various sensor  
slaves (ID selection). The slave number (S_NR) can be given by the external circuit of SCK and IFC pin. In case  
of VDD on SCK, the S_NR[0] can be set to 1 and in the case of GND on SCK the S_NR[0] is equal to 0. S_NR[1] can  
be adjusted in the same way by the IFC pin.  
As in SENT, the time between two consecutive falling edges defines the value of a 4-bit nibble, thus  
representing numbers between 0 and 15. The transmission time therefore depends on the transmitted data  
values. The single edge is defined by a 3 Unit Time (UT, see Chapter 4.4.3.1) low pulse on the output, followed  
by the high time defined in the protocol (nominal values, may vary depending on the tolerance of the internal  
oscillator and the influence of external circuitry). All values are multiples of a unit time frame concept. A  
transfer consists of the following parts (Figure 27):  
A trigger pulse by the master, which initiates the data transmission  
A synchronization period of 56 UT (in parallel, a new sample is calculated)  
A status nibble of 12-27 UT  
Between 3 and 6 data nibbles of 12-27 UT  
A CRC nibble of 12-27 UT  
An end pulse to terminate the SPC transmission  
Data-Nibble 1  
Bit 11-8  
Data-Nibble 2  
Bit 7-4  
Data-Nibble 3  
Bit 3-0  
Trigger Nibble  
24,34,51,78 tck  
Synchronisation Frame  
Status -Nibble  
12..27 tck  
CRC  
End -Pulse  
56 tck  
12..27 tck  
12.. 27 tck  
12..27 tck  
12..27 tck  
12 tck  
Time-Base: 1 tck (3µs+/-dtck )  
Nibble-Encoding : ( 12+x)*tck  
µC Activity  
Sensor Activity  
Figure 27 SPC frame example  
The CRC checksum includes the status nibble and the data nibbles, and can be used to check the validity of  
the decoded data. The sensor is available for the next trigger pulse 90 µs after the falling edge of the end pulse  
(see Figure 28).  
Trigger Nibble  
Synchronisation Frame  
End-Pulse  
Trigger Nibble  
Synchronisation Frame  
End-Pulse  
...  
...  
µC Activity  
Sensor Activity  
> 90 µs  
Figure 28 SPC pause timing diagram  
Data Sheet  
34  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Specification  
In SPC mode, the sensor does not continuously calculate an angle from the raw data. Instead, the angle  
calculation is started by the trigger nibble from the master. In this mode, the AVAL register, which stores the  
angle value and can be read via SSC, contains the angle which was calculated after the last SPC trigger nibble.  
In parallel to SPC, the SSC interface can be used for individual configuration. The number of transmitted SPC  
nibbles can be changed to customize the amount of information sent by the sensor. The frame contains a 16-  
bit angle value and an 8-bit temperature value in the full configuration (Table 21).  
Sensors with preset SPC are available as TLE5012B E9000.  
Table 21  
Frame configuration  
Frame type  
12-bit angle  
16-bit angle  
IFAB_RES  
Data nibbles  
3 nibbles  
4 nibbles  
5 nibbles  
6 nibbles  
00  
01  
10  
11  
12-bit angle, 8-bit temperature  
16-bit angle, 8-bit temperature  
The status nibble, which is sent with each SPC data frame, provides an error indication similar to the Safety  
Word of the SSC protocol. In case the sensor detects an error, the corresponding error bit in the Status register  
is set and either the bit SYS_ERR or the bit ELEC_ERR of the status nibble will be “high”, depending on the kind  
of error (see Table 22). Except for an S_ADCT error, an error is only indicated by the corresponding error bit in  
the status nibble as long as it persists, but at least once. However the value in the status register will remain  
until a read-out via the SSC interface or a chip reset is performed. An S_ADCT error on the other side will be  
transmitted until the next chip reset. The fail-safe diagnostic function can be disabled via the MOD_4 register.  
Table 22  
Name  
Structure of status nibble  
Bits  
[3]  
Description  
SYS_ERR  
Indication of system error (S_FUSE, S_OV, S_XYOL, S_MAGOL, S_ADCT)  
0: No system error  
1: System error occurred  
ELEC_ERR  
S_NR  
[2]  
Indication of electrical error (S_RST, S_VR)  
0: No electrical error  
1: Electrical error occurred  
[1]  
[0]  
Slave number bit 1 (level on IFC)  
Slave number bit 0 (level on SCK)  
Data Sheet  
35  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Specification  
4.4.3.1  
Unit time setup  
The basic SPC protocol unit time granularity is defined as 3 µs. Every timing is a multiple of this basic time  
unit.To achieve more flexibility, trimming of the unit time can be done within IFAB_HYST. This enables a setup  
of different unit times.  
Table 23  
Predivider setting  
Parameter  
Symbol  
Values  
Unit  
µs  
Note or Test Condition  
Min. Typ. Max.  
Unit time  
tUnit  
3.0  
2.5  
2.0  
1.5  
IFAB_HYST = 001)  
IFAB_HYST = 011)  
IFAB_HYST = 101)  
IFAB_HYST = 111)  
1) Not subject to production test - verified by design/characterization.  
Data Sheet  
36  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Specification  
4.4.3.2  
Master trigger pulse requirements  
An SPC transmission is initiated by a master trigger pulse on the IFA pin. To detect a low-level on the IFA pin,  
the voltage must be below a threshold Vth. The sensor detects that the IFA line has been released as soon as  
Vth is crossed. Figure 29 shows the timing definitions for the master pulse. The master low time tmlow as well as  
the total trigger time tmtr are given in Table 24.  
If the master low time exceeds the maximum low time, the sensor does not respond and is available for a next  
triggering 30 µs after the master pulse crosses Vthr. tmd,tot is the delay between internal triggering of the falling  
edge in the sensor and the triggering of the ECU.  
tmtr  
SPC  
ECU trigger  
Vth  
level  
tmd,tot  
tmlow  
Figure 29 SPC master pulse timing  
Table 24  
Master pulse parameters  
Symbol  
Parameter  
Values  
Min. Typ.  
Unit  
Note or Test Condition  
Max.  
1)  
Threshold  
Vth  
50  
% of  
VDD  
Threshold hysteresis  
Vthhyst  
8
% of  
VDD  
UT  
VDD = 5 V1)  
VDD = 3 V1)  
SPC_Trigger = 0;1)2)  
SP_Trigger = 11)  
S_NR =001)  
3
Total trigger time  
Master low time  
tmtr  
90  
tmlow +12  
12  
UT  
tmlow  
8
14  
27  
48  
81  
UT  
16  
29  
50  
22  
S_NR =011)  
S_NR =101)  
S_NR =111)  
1)  
39  
66  
Master delay time  
tmd,tot  
5.8  
µs  
1) Not subject to production test - verified by design/characterization.  
2) Trigger time in the sensor is fixed to the number of units specified in the “Typ.” column, but the effective trigger time  
varies due to the sensor’s clock variation.  
4.4.3.3  
Checksum nibble details  
The checksum nibble is a 4-bit CRC of the data nibbles including the status nibble. The CRC is calculated using  
a polynomial x4+x3+x2+1 with a seed value of 0101B. The remainder after the last data nibble is transmitted as  
CRC.  
Data Sheet  
37  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Specification  
4.4.4  
Hall Switch Mode (HSM)  
The Hall Switch Mode (HSM) within the TLE5012B makes it possible to emulate the output of 3 Hall switches.  
Hall switches are often used in electrical commutated motors to determine the rotor position. With these  
3 output signals, the motor will be commutated in the right way. Depending on which pole pairs of the rotor  
are used, various electrical periods have to be controlled. This is selectable within 0EH (HSM_PLP). Figure 30  
depicts the three output signals with the relationship between electrical angle and mechanical angle. The  
mechanical 0° point is always used as reference.  
The HSM is generally used with push-pull output, but it can be changed to open-drain within the register  
IFAB_OD.  
Sensors with preset HSM are available as TLE5012B E3005.  
Hall-Switch-Mode: 3phase Generation  
Electrical Angle  
0°  
60°  
120°  
180°  
240°  
300°  
360°  
HS1  
HS2  
HS3  
Angle  
Mech. Angle with  
5 Pole Pairs  
0°  
0°  
12°  
20°  
24°  
40°  
36°  
60°  
48°  
80°  
60°  
72°  
Mech. Angle with  
3 Pole Pairs  
100°  
120°  
Figure 30 Hall Switch Mode  
The HSM Interface can be selected via SSC (IF_MD = 010).  
Data Sheet  
38  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Specification  
Table 25  
Hall Switch Mode  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Min. Typ. Max.  
Rotation speed  
n
10000 rpm Mechanical2)  
Electrical angle accuracy  
αelect  
0.6  
1
°
1 pole pair with  
autocalibration1)2)  
1.2  
1.8  
2.4  
3.0  
3.6  
4.2  
4.8  
5.4  
6.0  
6.6  
7.2  
7.8  
8.4  
9.0  
9.6  
2
°
°
°
°
°
°
°
°
°
°
°
°
°
°
°
°
2 pole pairs with autocal.1)2)  
3 pole pairs with autocal.1)2)  
4 pole pairs with autocal.1)2)  
5 pole pairs with autocal.1)2)  
6 pole pairs with autocal.1)2)  
7 pole pairs with autocal.1)2)  
8 pole pairs with autocal.1)2)  
9 pole pairs with autocal.1)2)  
10 pole pairs with autocal.1)2)  
11 pole pairs with autocal.1)2)  
12 pole pairs with autocal.1)2)  
13 pole pairs with autocal.1)2)  
14 pole pairs with autocal.1)2)  
15 pole pairs with autocal.1)2)  
16 pole pairs with autocal.1)2)  
Selectable by IFAB_HYST2)3)4)  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
0.703  
Mechanical angle switching  
hysteresis  
αHShystm  
αHShystel  
0
Electrical angle switching  
hysteresis5)  
0.70  
1.41  
2.11  
2.81  
3.52  
4.22  
4.92  
5.62  
6.33  
7.03  
7.73  
8.44  
9.14  
9.84  
10.55  
11.25  
°
°
°
°
°
°
°
°
°
°
°
°
°
°
°
°
1 pole pair; IFAB_HYST=111)2)  
2 pole pairs; IFAB_HYST=111)2)  
3 pole pairs; IFAB_HYST=111)2)  
4 pole pairs; IFAB_HYST=111)2)  
5 pole pairs; IFAB_HYST=111)2)  
6 pole pairs; IFAB_HYST=111)2)  
7 pole pairs; IFAB_HYST=111)2)  
8 pole pairs; IFAB_HYST=111)2)  
9 pole pairs; IFAB_HYST=111)2)  
10 pole pairs; IFAB_HYST=111)2)  
11 pole pairs; IFAB_HYST=111)2)  
12 pole pairs; IFAB_HYST=111)2)  
13 pole pairs; IFAB_HYST=111)2)  
14 pole pairs; IFAB_HYST=111)2)  
15 pole pairs; IFAB_HYST=111)2)  
16 pole pairs; IFAB_HYST=111)2)  
Data Sheet  
39  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Specification  
Table 25  
Hall Switch Mode (cont’d)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Min. Typ. Max.  
Fall time  
Rise time  
tHSfall  
tHSrise  
0.02  
0.4  
1
1
µs  
µs  
RL = 2.2 kΩ; CL < 50 pF2)  
RL = 2.2 kΩ; CL < 50 pF2)  
1) Depends on internal oscillator frequency variation (Section 4.3.7).  
2) Not subject to production test - verified by design/characterization.  
3) GMR hysteresis not considered.  
4) Minimum hysteresis without switching.  
5) The hysteresis has to be considered only at change of rotation direction.  
To avoid switching due to mechanical vibrations of the rotor, an artificial hysteresis is recommended  
(Figure 31).  
Ideal Switching Point  
αHShystel αHShystel  
αelect  
αelect  
0°  
Figure 31 HS hysteresis  
4.4.5  
Incremental Interface (IIF)  
The Incremental Interface (IIF) emulates the operation of an optical quadrature encoder with a 50% duty  
cycle. It transmits a square pulse per angle step, where the width of the steps can be configured from 9 bit  
(512 steps per full rotation) to 12 bit (4096 steps per full rotation) within the register MOD_4 (IFAB_RES)1). The  
rotation direction is given either by the phase shift between the two channels IFA and IFB (A/B mode) or by the  
level of the IFB channel (Step/Direction mode), as shown in Figure 32 and Figure 33. The incremental interface  
can be configured for A/B mode or Step/Direction mode in register MOD_1 (IIF_MOD).  
Using the Incremental Interface requires an up/down counter on the microcontroller, which counts the pulses  
and thus keeps track of the absolute position. The counter can be synchronized periodically by using the SSC  
interface in parallel. The angle value (AVAL register) read out by the SSC interface can be compared to the  
stored counter value. In case of a non-synchronization, the microcontroller adds the difference to the actual  
counter value to synchronize the TLE5012B with the microcontroller.  
After startup, the IIF transmits a number of pulses which correspond to the actual absolute angle value. Thus,  
the microcontroller gets the information about the absolute position. The Index Signal that indicates the zero  
crossing is available on the IFC pin.  
Sensors with preset IIF are available as TLE5012B E1000.  
1) Decreasing the number of bits does not increase the maximum rotation speed.  
Data Sheet  
40  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Specification  
A/B Mode  
The phase shift between phases A and B indicates either a clockwise (A follows B) or a counterclockwise  
(B follows A) rotation of the magnet.  
Incremental Interface  
(A/B Mode)  
90° el . Phase shift  
VH  
Phase A  
VL  
VH  
Phase B  
VL  
Counter  
0
1
2
3
4
5
6
7
6
5
4
3
2
1
Figure 32 Incremental interface with A/B mode  
Step/Direction Mode  
Phase A pulses out the increments and phase B indicates the direction.  
Incremental Interface  
(Step/Direction Mode)  
VH  
Step  
VL  
VH  
Direction  
VL  
Counter  
0
1
2
3
4
5
6
7
6
5
4
3
2
1
Figure 33 Incremental interface with Step/Direction mode  
Table 26  
Incremental interface  
Parameter  
Symbol  
Values  
Min. Typ. Max.  
1.0  
Unit  
Note or Test Condition  
Incremental output frequency  
Index pulse width  
fInc  
t0°  
MHz  
µs  
Frequency of phase A and  
phase B1)  
1)  
5
1) Not subject to production test - verified by design/characterization.  
Data Sheet  
41  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Specification  
4.5  
Test mechanisms  
4.5.1  
ADC test vectors  
In order to test the correct functionality of the ADCs, the ADC inputs can be switched from the GMR bridge  
outputs to a chain of fixed resistors which act as a voltage divider. The ADCs are then fed with test vectors of  
fixed voltages to simulate a set of magnet positions. The functionality of the ADCs is verified by checking the  
angle value (AVAL register) for each test vector. This test is activated via SSC command within the SIL register  
(ADCTV_EN). Registers ADCTV_Y and ADCTV_X are used to select the test vector, as shown in Figure 34.  
The following X/Y ADC values can be programmed:  
4 points, circle amplitude = 70% (0°,90°, 180°, 270°)  
8 points, circle amplitude = 100% (0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°)  
8 points, circle amplitude = 122.1% (35.3°, 54.7°, 125.3°, 144.7°, 215.3°, 234.7°, 305.3°, 324.7°)  
4 points, circle amplitude = 141.4% (45°, 135°, 225°, 315°)  
Note:  
The 100% values typically correspond to 21700 digits and the 70% values to 15500 digits.  
Table 27  
ADC test vectors  
Register bits  
X/Y values (decimal)  
Min.  
Typ.  
Max.  
000  
001  
010  
011  
1001)  
101  
110  
0
15500  
21700  
32767  
0
-15500  
-21700  
-32768  
111  
1) Not allowed to use.  
Data Sheet  
42  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Specification  
ADCTV_Y  
122.1%  
141.4%  
100.0%  
70%  
0%  
ADCTV_X  
Figure 34 ADC test vectors  
4.6  
Supply monitoring  
The internal voltage nodes of the TLE5012B are monitored by a set of comparators in order to ensure error-  
free operation. An over- or undervoltage condition must be active at least 256 periods of the digital clock to  
set the corresponding error bits in the Status register. This works as digital spike suppression.  
Over- or undervoltage errors trigger the S_VR bit of Status register. This error condition is signaled via the in  
the Safety Word of the SSC protocol, the status nibble of the SPC interface or the lower diagnostic range of the  
PWM interface.  
Table 28  
Test comparator threshold voltages  
Symbol  
Parameter  
Values  
Unit  
Note or Test Condition  
Min. Typ. Max.  
1)  
1)  
1)  
1)  
1)  
1)  
1)  
1)  
Overvoltage detection  
VOVG  
2.80  
2.80  
2.80  
6.05  
2.70  
-0.55  
0.55  
10  
V
VOVA  
V
VOVD  
V
VDD overvoltage  
VDD undervoltage  
GND - off voltage  
VDD - off voltage  
Spike filter delay  
VDDOV  
VDDUV  
VGNDoff  
VVDDoff  
tDEL  
V
V
V
V
µs  
1) Not subject to production test - verified by design/characterization  
4.6.1  
Internal supply voltage comparators  
Every voltage regulator has an overvoltage (OV) comparator to detect malfunctions. If the nominal output  
voltage of 2.5 V is larger than VOVG, VOVA and VOVD, then this overvoltage comparator is activated.  
Data Sheet  
43  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Specification  
4.6.2  
VDD overvoltage detection  
The overvoltage detection comparator monitors the external supply voltage at the VDD pin.  
VDDA  
REF  
-
10µs  
Spike  
VDD  
VRG  
VRA  
VRD  
xxx_OV  
Filter  
+
GND  
GND  
Figure 35 Overvoltage comparator  
4.6.3  
GND - Off comparator  
The GND - Off comparator is used to detect a voltage difference between the GND pin and SCK. This circuit can  
detect a disconnection of the supply GND pin.  
VDD  
VDDA  
Diode-  
reference  
SCK  
GND  
+dV  
-
1µs  
Mono  
Flop  
10µs  
Spike  
Filter  
GND_OFF  
+
GND  
Figure 36 GND - Off comparator  
4.6.4  
VDD - Off comparator  
The VDD - Off comparator detects a disconnection of the VDD pin supply voltage. In this case, the TLE5012B is  
supplied by the SCK and CSQ input pins via the ESD structures.  
VDDA  
VDD  
-
1µs  
Mono  
Flop  
10µs  
Spike  
Filter  
VVDDoff  
-dV  
VDD_OFF  
CSQ  
SCK  
+
GND  
GND  
Figure 37  
VDD - Off comparator  
Data Sheet  
44  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Pre-configured derivates  
5
Pre-configured derivates  
Derivates of the TLE5012B are available with different pre-configured register settings for specific  
applications. The configuration of all derivates can be changed via SSC interface.  
5.1  
IIF-type: E1000  
The TLE5012B-E1000 is preconfigured for Incremental Interface and fast angle update period (42.7 µs). It is  
most suitable for BLDC motor commutation.  
Autocalibration mode 1 enabled.  
Prediction enabled.  
Hysteresis is set to 0.703°.  
12bit mode, one count per 0.088° angle step.  
Incremental Interface A/B mode.  
5.2  
HSM-type: E3005  
The TLE5012B-E3005 is preconfigured for Hall-Switch-Mode and fast angle update period (42.7 µs). It is most  
suitable as a replacement for three Hall switches for BLDC motor commutation.  
Number of pole pairs is set to 5.  
Autocalibration mode 1 enabled.  
Prediction enabled.  
Hysteresis is set to 0.703°.  
5.3  
PWM-type: E5000  
The TLE5012B-E5000 is preconfigured for Pulse-Width-Modulation interface. It is most suitable for steering  
angle and actuator position sensing.  
Filter update period is 85.4 µs.  
PWM frequency is 244 Hz.  
Autocalibration, Prediction, and Hysteresis are disabled.  
5.4  
PWM-type: E5020  
The TLE5012B-E5020 is preconfigured for Pulse-Width-Modulation interface with high frequency. It is most  
suitable for steering angle and actuator position sensing.  
Filter update period is 42.7 µs.  
PWM frequency is 1953 Hz.  
Autocalibration mode 2 enabled.  
Prediction and Hysteresis are disabled.  
PWM interface is set to open-drain output.  
Data Sheet  
45  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Pre-configured derivates  
5.5  
SPC-type: E9000  
The TLE5012B-E9000 is preconfigured for Short-PWM-Code interface. It is most suitable for steering angle and  
actuator position sensing.  
Filter update period is 85.4 µs.  
Autocalibration, Prediction, and Hysteresis are disabled.  
SPC unit time is 3 µs.  
SPC interface is set to open-drain output.  
Data Sheet  
46  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Package information  
6
Package information  
6.1  
Package parameters  
Table 29  
Package parameters  
Symbol  
Parameter  
Values  
Min. Typ.  
150  
Unit  
Note or Test Condition  
Max.  
200  
75  
Thermal resistance  
RthJA  
RthJC  
RthJL  
K/W  
K/W  
K/W  
Junction to air1)  
Junction to case  
Junction to lead  
260°C  
85  
Soldering moisture level  
Lead Frame  
MSL 3  
Cu  
Plating  
Sn 100%  
> 7 µm  
1) according to Jedec JESD51-7  
6.2  
Package outline  
Figure 38 PG-DSO-8 package dimension  
Data Sheet  
47  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Package information  
Figure 39 Position of sensing element  
Table 30  
Sensor IC placement tolerances in package  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
µm In X- and Y-direction  
Min. Typ. Max.  
Position eccentricity  
-200  
-3  
200  
3
Rotation  
Tilt  
°
°
Affects zero position offset of sensor  
-3  
3
6.3  
Footprint  
0.65  
1.27  
Figure 40 Footprint of PG-DSO-8  
Data Sheet  
48  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Package information  
6.4  
Packing  
0.3  
8
1.75  
2.1  
6.4  
Figure 41 Tape and Reel  
6.5  
Marking  
Position  
1st Line  
2nd Line  
3rd Line  
Marking  
012Bxxxx  
xxx  
Description  
See Table 1 “Derivate ordering codes” on Page 2  
Lot code  
Gxxxx  
G..green, 4-digit..date code  
Processing  
Note:  
For processing recommendations, please refer to Infineon’s Notes on processing  
Data Sheet  
49  
Rev. 2.1  
2018-06-20  
TLE5012B  
GMR-Based Angle Sensor  
Revision history  
7
Revision history  
Revision Date  
Changes  
Rev. 2.1 2018-06-20 New Template/New Logo  
Chapter 4.4.5: Add footnote regarding maximum rotation speed  
Chapter 3: Update Chapter 3  
Data Sheet  
50  
Rev. 2.1  
2018-06-20  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2018-06-20  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2018 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
a written document signed by  
Document reference  
Doc_Number  

相关型号:

TLE5012B E5020

The Infineon TLE5012B is a 360° angle sensor that detects the orientation of a magnetic field. Th
INFINEON

TLE5012B E9000

The TLE5012B is a 360° angle sensor that detects the orientation of a magnetic field. This is ach
INFINEON

TLE5012BDE1200XUMA1

Analog Circuit, 1 Func, CMOS, PDSO16, TDSO-16
INFINEON

TLE5012BE1000FUMA1

Analog Circuit, 1 Func, CMOS, PDSO8, GREEN, PLASTIC, DSO-8
INFINEON

TLE5012BE1000XUMA1

Analog Circuit, 1 Func, CMOS, PDSO8, GREEN, PLASTIC, DSO-8
INFINEON

TLE5012BE3005FUMA1

Analog Circuit, 1 Func, CMOS, PDSO8, GREEN, PLASTIC, DSO-8
INFINEON

TLE5012BE3005XUMA1

Analog Circuit, 1 Func, CMOS, PDSO8, GREEN, PLASTIC, DSO-8
INFINEON

TLE5012BE5000FUMA1

Analog Circuit, 1 Func, CMOS, PDSO8, GREEN, PLASTIC, DSO-8
INFINEON

TLE5012BE5020

Analog Circuit
INFINEON

TLE5012BE5020XUMA1

Analog Circuit, 1 Func, CMOS, PDSO8, DSO-8
INFINEON

TLE5012BE9000FUMA1

Analog Circuit, 1 Func, CMOS, PDSO8, GREEN, PLASTIC, DSO-8
INFINEON

TLE5012BE9000XUMA1

Analog Circuit, 1 Func, CMOS, PDSO8, GREEN, PLASTIC, DSO-8
INFINEON