TLE5041PLUSC [INFINEON]

TLE5041plusC 车轮速度传感器专为复杂车辆控制系统设计。该传感器可以精准感测转速,支持设计师在防抱死制动 (ABS) 和电子稳定控制 (ESP) 系统中集成间接胎压监测。;
TLE5041PLUSC
型号: TLE5041PLUSC
厂家: Infineon    Infineon
描述:

TLE5041plusC 车轮速度传感器专为复杂车辆控制系统设计。该传感器可以精准感测转速,支持设计师在防抱死制动 (ABS) 和电子稳定控制 (ESP) 系统中集成间接胎压监测。

电子 传感器
文件: 总30页 (文件大小:2417K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Wheel Speed Sensor  
iGMR based Wheel Speed Sensor  
TLE5041plusC  
Data Sheet  
V 1.2, 2018-01-18  
ATV SC  
Edition 2018-01-18  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2018 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
TLE5041plusC  
Revision History January 2018, V 1.2  
Previous version V 1.1, 2013-05  
Change  
Subjects (major changes since previous revision)  
V 1.2  
Update SP Numbers due to PCN 2017-106  
V 1.1  
Chapter 1  
Sensor picture added  
Chapter 3.4.1  
Chapter 3.4.1  
Periode jitter extended, dBx down to 1mT. Test conditions removed. See Table 4  
Equation added to Figure 12 “Period jitter definition is valid for measurement on rising-  
to-rising or falling-to-falling edge” on Page 18  
Chapter 3.4.2.1  
Magnetic induction areas where the jitter exceeds Sjit1 extended to the lifetime of the  
sensor. Comment “ valid at 0 ” hours removed from Table 6 “Magnetic induction area  
where period jitter exceeds Sjit1” on Page 19  
Trademarks of Infineon Technologies AG  
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™,  
CORECONTROL™, CROSSAVE™, DAVE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™,  
EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™,  
ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, PRIMARION™, PrimePACK™, PrimeSTACK™,  
PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™,  
SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.  
Other Trademarks  
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,  
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR  
development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™,  
FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.  
FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of  
Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data  
Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of  
MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics  
Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™  
of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc.,  
OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc.  
RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc.  
SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden  
Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA.  
UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™  
of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of  
Diodes Zetex Limited.  
Last Trademarks Update 2011-02-24  
Data Sheet  
3
V 1.2, 2018-01-18  
TLE5041plusC  
Table of Contents  
Table of Contents  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1
Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Target Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
1.1  
1.2  
1.3  
2
2.1  
2.2  
2.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Sensitive area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Uncalibrated Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Calibrated Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Behavior at Magnetic Input Signals Slower than fmag < 1Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Undervoltage behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.4  
2.4.1  
2.4.2  
2.4.3  
2.4.4  
3
3.1  
3.2  
3.3  
Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Magnetic Input Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Operating area for Period Jitter Sjit1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Typical Diagrams (measured performance) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Electrostatic discharge protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Electro Magnetic Compatibility (EMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
ISO 7637-2:2011 and ISO 16750-2:2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
ISO 7637-3:2007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
ISO 11452-3:2004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.4  
3.4.1  
3.4.2  
3.4.2.1  
3.4.3  
3.4.4  
3.5  
3.5.1  
3.5.2  
3.5.3  
4
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Bending for assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Package surface to silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Data Sheet  
4
V 1.2, 2018-01-18  
TLE5041plusC  
List of Figures  
List of Figures  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Figure 9  
Side read placement of the TLE5041plusC besides a magnetic encoder wheel . . . . . . . . . . . . . . . 8  
Sensing element positions of TLE5041plusC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
TLE5041plusC block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Differential amplitude and threshold dBlimit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
TLE5041plusC differential arrangement of sensing elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Offset calibration of TLE5041plusC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Undervoltage behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Basic application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Advanced application circuit including protection and EMC components. . . . . . . . . . . . . . . . . . . . 13  
Figure 10 Test circuit for the TLE5041plusC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 11 Slew Rate definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 12 Period jitter definition is valid for measurement on rising-to-rising or falling-to-falling edge. . . . . . 18  
Figure 13 Operating area for period jitter Sjit1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 14  
Figure 15  
Figure 16  
Figure 17  
Figure 18  
Supply Current = f(T) (left), Supply Current Ratio IHigh / ILow = f(T) (right) . . . . . . . . . . . . . . . . . . . 21  
Slew Rate = f(T), RM = 75 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Magnetic Threshold dBLimit = f(T) (left), Magnetic Threshold dBLimit = f(f) (right). . . . . . . . . . . . . . . 22  
Magnetic Threshold dBLimit = f(f). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Period Jitter = f(T) at dBX = 2 mT (left) , Duty Cycle = f(T) at dBX = 2 mT (right). . . . . . . . . . . . . . 23  
Figure 19 EMC test circuit for the TLE5041plusC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 20 Distance from package surface to silicon (=sensing element) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 21 Package dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 22 Packing dimensions in mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 23 Packing dimensions in mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Data Sheet  
5
V 1.2, 2018-01-18  
TLE5041plusC  
List of Tables  
List of Tables  
Table 1  
Table 2  
Table 3  
Table 4  
Table 5  
Table 6  
Table 7  
Table 8  
Table 9  
Table 10  
Table 11  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Magnetic input values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Magnetic induction area where period jitter exceeds Sjit1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Conducted pulses along supply lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Pulses by capacitive coupling on signal lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Radiated immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Package parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Data Sheet  
6
V 1.2, 2018-01-18  
iGMR based Wheel Speed Sensor  
TLE5041plusC  
1
Product Description  
1.1  
Overview  
The TLE5041plusC is a wheel speed sensor designed for sophisticated  
vehicle control systems. The rotational speed is sensed accurately,  
enabling the sensor to be used as a component of indirect tire pressure  
monitoring systems. It is based on integrated giant magneto resistive  
(GMR) elements sensitive to the direction of a magnetic field. Excellent  
repeatability and sensitivity is specified over a wide temperature range. To  
meet harsh automotive requirements, robustness to electrostatic  
discharge (ESD) and electromagnetic compatibility (EMC) has been  
maximized. State of the art BiCMOS technology is used for monolithic integration of sensing elements and signal  
conditioning circuitry, thus requiring no external components.  
1.2  
Features  
Low jitter  
High sensitivity  
Immunity against external magnetic disturbances  
Wide air-gap performance  
2 mm sensing iGMR element pitch for use with magnetic encoder wheels  
Differential front end highly immune to disturbing fields  
Two-wire current interface  
Monolithic integration on a single die  
No external components required  
Insensitive to mechanical stress  
Wide junction temperature range -40°C to 170°C  
1.3  
Target Applications  
Wheel speed sensing (ABS) or stability control systems with iTPMS feature.  
General wheel speed sensing (ABS)  
ESP  
Indirect tire pressure monitoring (iTPMS)  
Product Type  
Marking  
Ordering Code  
Package  
TLE5041plusC  
541CPS  
SP001952936  
PG-SSO-2-53  
Data Sheet  
7
V 1.2, 2018-01-18  
TLE5041plusC  
Functional Description  
2
Functional Description  
The integrated GMR sensor detects differential magnetic fields in x-direction. Two iGMR sensing elements are  
arranged at a distance of 2mm. Their output signals are processed differentially. To detect the motion of objects  
the magnetic field must be provided by a magnetized encoder wheel mounted on the rotating axis.  
Magnetic offsets and device offsets are cancelled by a self-calibration algorithm. Self-calibration is done after start  
up and requires only a short history of magnetic input. After calibration switching occurs exactly at the zero  
crossing for sinusoidal signals or generally speaking the arithmethical mean of any magnetic input signal.  
Switching is indicated by a high or low supply current level.  
2.1  
General  
The sensor is sensitive to magnetic field gradients in x direction. In Figure 1 the typical placement of the  
TLE5041plusC facing a magnetic encoder wheel is shown. The figure also indicates the coordinate system, which  
is valid throughout this document. Other sensor positions and encoder wheels are possible, the coordinate system  
is therefore related to the sensor. The iGMR structures (sensitive areas) are located at the front side of the  
package which is marked.  
Magnetic encoder wheel  
rotation = X-motion  
Y
N S N  
S N  
S N  
X
Sensor location  
N S N  
X
„air-gap“  
z-distance  
Sensing elements face the  
marked package front  
Z
Figure 1  
Side read placement of the TLE5041plusC besides a magnetic encoder wheel  
Data Sheet  
8
V 1.2, 2018-01-18  
TLE5041plusC  
Functional Description  
2.2  
Sensitive area  
Figure 2  
Sensing element positions of TLE5041plusC  
2.3  
Pin Description  
Table 1  
Pin description  
Pin No.  
Symbol  
VDD  
In/Out  
Supply  
Supply  
Function  
1
2
GND  
Output node  
Data Sheet  
9
V 1.2, 2018-01-18  
TLE5041plusC  
Functional Description  
2.4  
Block Diagram  
The device is supplied internally by a voltage regulator within the PMU. An on chip oscillator serves as clock  
generator for the digital part of the circuit.  
The TLE5041plusC incorporates two GMR sensing elements spaced at 2mm. The signal path is comprised of a  
differential amplifier, a noise limiting low pass filter and two comparators. An offset cancellation loop is in place to  
compensate magnetic and electric offsets. The regulation loop consists of a tracking A/D converter, the digital core  
to evaluate the offset and the offset DAC to feed in the corrective voltage.  
The current interface is triggered by the main comparator.  
ESD  
PMU  
VDD  
Current  
Modulator  
Main-  
Comparator  
Bandgap-  
Biasing  
async logic  
hys.-ctrl  
GMR1  
Left  
GMR3  
Right  
Pre-Amplifier  
LP-  
Filter  
+/-  
Tracking-  
ADC  
- + /  
GMR4  
Left  
GMR2  
Right  
GND  
Offset-DAC  
Oscillator  
Fuses  
Figure 3  
TLE5041plusC block diagram  
The device can be in one of two operating modes, namely uncalibrated mode or calibrated mode. The term  
calibration is related to the offset correction algorithm. The device starts up in uncalibrated mode. Most  
performance parameters will not be guaranteed in this mode. While the magnet moves, the device observes the  
magnetic input and adjusts for signal offsets. After a few periods the offset is calibrated and the device operates  
with its full performance.  
To prevent unwanted switching, the changes below a certain value dBLimit are not considered to switch the output.  
dB  
14mA  
7mA  
dB_limit  
dB_limit  
Figure 4  
Differential amplitude and threshold dBlimit  
Data Sheet  
10  
V 1.2, 2018-01-18  
TLE5041plusC  
Functional Description  
Bx, right  
Bx, left  
hidden fixed  
hysteresis = dBlimit  
dBx  
t
zero crossing, out  
put  
switching  
Output  
switching  
sensing right  
z
sensing left  
x
moving direction  
Figure 5  
TLE5041plusC differential arrangement of sensing elements  
2.4.1  
Uncalibrated Mode  
When the device is supplied after power down, the device is awake after power on time tPOR. The digital core  
immediately starts tracking the signal. In order to trigger a first edge, the magnetic signal has to exceed a threshold  
DNC (digital noise constant d1). Refer to Figure 6 where the first switching point is after the magnetic input has  
exceeded dBstartup_x . The algorithm works in both directions, thus for rising and falling slopes.  
dB  
dBm ax  
d2 = (dBm ax dBstartup_x )/4  
d1  
t
Offset  
td,input  
correction  
tpor  
d3 = (dBm ax dBm in)/4  
dBm in  
Output signal  
Phase shift change  
Calibrated M ode  
Uncalibrated M ode  
d1 = dBstartup_x  
t1 = initial calibration delay time = tpor + td,input  
Offset correction = (dBm ax + dBm in)/2  
Figure 6  
Offset calibration of TLE5041plusC  
Data Sheet  
11  
V 1.2, 2018-01-18  
TLE5041plusC  
Functional Description  
2.4.2  
Calibrated Mode  
In calibrated mode the output will switch at zero-crossing of the input signal. Oscillations of the Offset DAC are  
avoided by switching into a low-jitter mode. Signals below a defined threshold dΒLimit do not trigger the current  
interface to avoid unwanted output switching. Offset determination is done continuously in calibrated mode.  
The phase shift between input and output signal is no longer determined by the ratio between digital noise constant  
and signal amplitude. Therefore a sudden change in the phase shift may occur during the transition from  
uncalibrated to calibrated mode.  
2.4.3  
Behavior at Magnetic Input Signals Slower than fmag < 1Hz  
Magnetic changes exceeding dBstartup can cause output switching of the TLE5041plusC even at fmag significantly  
lower than 1 Hz. Depending on their amplitude edges slower than Δtstartup might be detected. If the digital noise  
constant (dBstartup) is not exceeded before Δtstartup a new initial self-calibration is started. In other words dBstartup  
needs to be exceeded before Δtstartup. Output switching strongly depends on signal amplitude and initial phase.  
2.4.4  
Undervoltage behavior  
The voltage supply comparator has an integrated hysteresis Vhys with the maximum value of the release level Vrel  
< 4.5V. This determines the minimum required supply voltage VDD of the chip. A minimum hysteresis Vhys of 0.7V  
is implemented thus avoiding a toggling of the output when the supply voltage VDD is modulated due to the  
additional voltage drop at RM when switching from low to high current level and VDD = 4.5V (designed for use with  
RM 75).  
Ihigh  
Ilow  
VDD*  
Vrel  
Vhys  
Vres  
Vhys = Vrel - Vres  
*direct on pins  
Figure 7  
Undervoltage behavior  
Data Sheet  
12  
V 1.2, 2018-01-18  
TLE5041plusC  
Specification  
3
Specification  
3.1  
Application Circuit  
TLE5041plusC is designed to operate with a minimum amount of external components as shown in Figure 9.  
Refer to Figure 9 for the recommended application circuit with reverse bias protection, over voltage protection and  
EMC capacitors. Component values depend on the application.  
Inserting a 10 resistor in the VDD path (R1) causes some additional voltage drop, limiting the maximum current  
through diode D2, adding to the overall circuits robustness. Increasing R1 further reduces supply voltage  
headroom.  
TLE5041plusC  
VDD  
GND  
ECU_VDD  
Uout  
30Ω - 75Ω  
ECU_GND  
Figure 8  
Basic application circuit  
Figure 9  
Advanced application circuit including protection and EMC components  
Data Sheet  
13  
V 1.2, 2018-01-18  
TLE5041plusC  
Specification  
3.2  
Absolute Maximum Ratings  
If not indicated otherwise, absolute maximum ratings are valid at Tj = -40°C to 150°C and 4.5V VDD 20V.  
Table 2  
Absolute maximum ratings  
Symbol  
Parameter  
Values  
Typ.  
Unit Note / Test Condition  
Min.  
Max.  
Supply voltage  
VDD  
-0.3  
V
V
V
V
Tj < 80 °C  
20  
22  
24  
t = 10 * 5 min.  
t = 10 * 5 min., including voltage  
drop over RM 30 Ω  
24  
27  
V
V
30 min. @ Tj = 25±5°C  
t 400 ms, including voltage  
drop over RM 30 Ω  
Reverse polarity voltage  
Reverse polarity current  
Vrev  
Irev  
-22  
V
with current limitation Irev  
200  
300  
mA  
t < 4 h, external current  
limitation required  
mA  
t < 1 h, external current  
limitation required  
Junction temperature 1)  
Tj  
either  
-40  
-40  
-40  
-40  
125  
150  
160  
170  
190  
60  
°C  
limited to 10000 h  
limited to 5000 h  
limited to 2500 h  
limited to 500 h  
or  
°C  
or  
°C  
or  
°C  
additional  
°C  
t = 4 h, VDD < 16.5 V  
limited to 30000 h  
additional -10  
°C  
Power-on cycles  
Passive life time 1)  
npo  
500.000  
times  
a
LTpassive  
15  
Tj 50 °C, VDD = 0 V  
Tj = 25 °C  
Maximum magnetic induction BX  
-300  
-300  
-1000  
300  
mT  
mT  
mT  
over lifetime 2)  
BY  
300  
Tj = 25 °C  
BZ  
1000  
Tj = 25 °C  
1) This life time statement is an anticipation based on extrapolation of Infineon qualification test results. The actual life time  
of a component depends on its form of application and type of use etc. and may deviate from such a statement. The life  
time statement shall in no event extend the agreed warranty period.  
2) Conversion: B = µ0 * H, µ0 = 4 * π * 10-7 mT/A  
Attention: Stresses above the max. values listed here may cause permanent damage to the device.  
Exposure to absolute maximum rating conditions for extended periods may affect device  
reliability. Maximum ratings are absolute ratings; exceeding only one of these values may  
cause irreversible damage to the integrated circuit.  
Data Sheet  
14  
V 1.2, 2018-01-18  
TLE5041plusC  
Specification  
3.3  
Operating Range  
The following operating conditions must not be exceeded in order to ensure correct operation of the  
TLE5041plusC.  
All parameters specified in the following sections refer to these operating conditions, unless otherwise noted.  
Table 3  
Operating range  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Min.  
Typ. Max.  
Supply voltage 1)  
Supply voltage modulation 2)  
VDD  
VAC  
Tj  
4.5  
20  
6
V
Vpp VDD = 13 V, 0 < fmod < 150 kHz  
Operating junction temperature  
either  
or  
-40  
-40  
-40  
-40  
-20  
-75  
125  
150  
160  
170  
20  
°C  
°C  
°C  
°C  
limited to 10000 h  
limited to 5000 h  
limited to 2500 h  
limited to 500 h  
or  
or  
Junction temperature variation 3) 4) Tj_var  
K/s no unwanted or missing pulses  
mT TJ = 25 °C  
Magnetic induction amplitude at  
each GMR element 4) 5)  
BX  
75  
Differential magnetic induction 4) 5) dBX  
-150  
150  
2
mT TJ = 25 °C  
mT  
Static differential magnetic pre-  
induction4)  
dBXoffset -2  
Dynamic and static homogeneous Bext_XYZ -2  
external disturbance fields 4)  
2
mT In calibrated mode. Same field at  
both probes, no unwanted pulses  
Magnetic signal frequency 4)  
fMAG  
1
5000  
Hz  
1) Directly at the sensor pins, not including the voltage drop at RM.  
2) Sinusoidal shape of supply voltage variation.  
3) Junction temperature change homogenously distributed on the die, equal change at both iGMR sensing elements.  
4) Not subject to production test, verified by design/characterisation.  
5) Consider magnetic induction temperature coefficient of -0.18 %/K.  
Data Sheet  
15  
V 1.2, 2018-01-18  
TLE5041plusC  
Specification  
3.4  
Characteristics  
All parameters are related to the application test circuit shown in Figure 10.  
Figure 10 Test circuit for the TLE5041plusC  
3.4.1  
Electrical Parameters  
The indicated electrical parameters apply over operating range, unless otherwise specified. The magnetic input is  
assumed sinusoidal with constant amplitude and offset. Typical values are at VDD = 12V and TA = 25°C.  
Table 4  
Electrical parameters  
Symbol  
Parameter  
Values  
Unit  
Note / Test Condition  
Min.  
5.9  
Typ. Max.  
Supply current - initial  
IINIT  
ILOW  
7
8.4  
8.4  
16.8  
2.3  
24  
mA  
mA  
mA  
initial state is low  
Supply current - output low  
5.9  
7
Supply current - output high IHIGH  
11.8  
1.9  
14  
2.1  
Supply current ratio  
Output current slew rate 1)  
Line regulation 2)  
kI  
kI = IHIGH / ILOW  
SRr, SRf 8  
mA/µs RM = 75 , RM = 30 Ω  
SL  
90  
µA/V  
µs  
dIX / dVDD, quasi static  
time required for stable IINIT  
5th edge correct  
Power on time 2) 3)  
tPOR  
100  
4
Magnetic edges required for nstart  
offset calibration 2) 4)  
Number of edges in  
uncalibrated mode 2)  
nuncalib  
4
Number of edges supressed2) nsupressed  
0
2
after power-on or reset  
after power-on or reset  
Magnetic edges required for nfirst_pulse  
first output pulse 2) 5)  
1
Systematic phase error of  
output edges during start-up  
and uncalibrated mode 2)  
Φuncalib -90  
+90  
°
°
Systematic phase error of “uncal”  
edge; nth vs. n + 1th edge (does not  
include random phase error)  
Phase shift change during  
transition from uncalibrated to  
calibrated mode 2)  
∆Φswitch -45  
+45  
+90  
dBX > 4 x dBStartup_X  
dBX < 4 x dBStartup_X  
-90  
Max. permissible change of  
signal offset with time2)6)  
dBX_Offset  
10  
%
Within one signal period, assumig  
sinusoidal input signal  
Initial calibration delay time 2)7) td, input  
120  
300  
100  
µs  
µs  
min-max detection starts after this  
time, additional to tPOR  
Switching delay time 2)8)  
Data Sheet  
tD  
dBX 1mT  
16  
V 1.2, 2018-01-18  
TLE5041plusC  
Specification  
Table 4  
Electrical parameters  
Symbol  
Parameter  
Values  
Unit  
Note / Test Condition  
Min.  
Typ. Max.  
Duty cycle2)  
DC  
Sjit1  
40  
50  
60  
%
dBX 2 mT, Bext_XYZ = 0 mT,  
differential offset jumps are not  
considered9)  
Period Jitter 2) 10)  
± 0.3  
%
± 3 σ value of period T  
-10 °C Tj 80 °C  
dBX 1 mT  
100 Hz fMAG 1000 Hz,  
Bext_XYZ = 0 mT, valid in the operating  
area described in Chapter 3.4.2.1  
Sjit2  
± 2  
± 3  
%
%
± 3 σ value of period T  
-40 °C Tj 150 °C  
dBX 1 mT  
1 Hz fMAG 2500 Hz, B11)  
<
<
ext_XYZ  
0.15 mT  
Sjit3  
± 3 σ value of period T  
-40 °C Tj < 170 °C  
dBX 1 mT  
1 Hz fMAG 5000 Hz, B11)  
0.15 mT  
ext_XYZ  
Time allowed for edge to  
exceed dBX_Startup  
Watchdog reset time 2)  
590  
848  
ms  
ms  
2)  
tWD_reset 590  
1) Refer to Figure 11  
2) Not subject to production test, verified by design/characterisation.  
3) VDD 4.5V.  
4)  
One magnetic edge is defined as a monotonic signal change of more than 0.6 mT.  
5) A loss of edges may occur at high frequencies.  
6) Percentage of amplitude  
7) Occurrence of initial calibration delay time td, input: if there is no input signal change (e.g. at vehicle halt) a new initial  
calibration is triggered each tWD_reset according to Chapter 2.4.3. This calibration has a duriation of td, input. During this  
calibration time no input signal change is detected.  
8) Internal signal propagation delay time between magnetic input signal and electrical output signal in calibrated mode.  
9) During fast offset alterations, due to the calibration algorithm, exceeding the specified duty cycle is permitted for short time  
periods.  
10) Refer to Figure 12  
11) Verified by design  
I
tr  
tf  
Ihigh  
90%  
50%  
10%  
t1  
Ilow  
T
t
Figure 11 Slew Rate definition  
Data Sheet  
17  
V 1.2, 2018-01-18  
TLE5041plusC  
Specification  
Figure 12 Period jitter definition is valid for measurement on rising-to-rising or falling-to-falling edge  
3.4.2  
Magnetic Input Characteristics  
All magnetic input values specified at constant sinusoidal amplitude and constant offset over operating range,  
unless otherwise specified. Magnetic values are referred to the location at the silicon surface. Typical values are  
related to VDD = 12V and TA = 25°C.  
Table 5  
Magnetic input values  
Parameter  
Symbol Values  
min.  
Unit Notes  
typ.  
max.  
Threshold limit 1) 2) 3)  
dBLimit_X 0.1  
0.18  
0.3  
mT  
mT  
mT  
1 Hz < fMAG < 5000 Hz,  
BY < 0.15 mT, Bext_XYZ  
0mT  
=
Start-up threshold peak to peak value3) dBStartup_X 0.2  
0.36  
0.6  
1 Hz < fMAG < 5000 Hz,  
BY < 0.15 mT, Bext_XYZ = 0  
mT  
4)  
Internal offset drift3)  
dBX_Drift  
0
0.1  
1) Refer to Figure 6 “Offset calibration of TLE5041plusC” on Page 11. dBLimit_X is a 99% criteria, calculated out of  
measured sensitivity.  
2)Threshold limit dBLimit_X is increased by 25% under influence of an in-plane magnetic induction perpendicular to  
the sensitive direction (refer to Chapter 3.3 “Operating Range” on Page 15 of Bext_XYZ).  
Note: In typical encoder wheel applications, at large air gaps where dBX is as low as dBLimit_X, the in-plane  
magnetic induction perpendicular to the sensitive direction BY is smaller than 0.15mT.  
3) Not subject to production test, verified by design/characterisation  
4) dBStartup_X is the minimum DNC at start-up.  
Data Sheet  
18  
V 1.2, 2018-01-18  
TLE5041plusC  
Specification  
3.4.2.1  
Operating area for Period Jitter Sjit1  
It has to be ensured that the operating location of the sensor is selected in accordance to BX_Area and BY_Area  
referring to Table 6. The operating location is defined by air gap and displacement in Y direction. Therefore the  
project specific encoder wheel parameters have to be characterized.  
AirGap  
Limit thresholddB  
Limit_X  
BX =1mT  
Operatingarea  
withlowperiod  
jitter S  
jit1  
Combinationsof BXArea and  
B
:
YArea  
BXArea  
Thespecificationof S  
jit1  
isnot validinthese  
areas.  
BYArea  
BYArea  
Encoder Wheel (Example)  
Axisof rotation  
0
Displacement (Y-direction)  
Figure 13 Operating area for period jitter Sjit1  
Marked areas are defined by a combination of BY and BX field components. Table 6 shows field amplitudes (field  
offsets are not considered) related to these areas.  
In most cases the areas marked in figure Figure 13 are at low air gaps, close to the pole wheel.  
Table 6  
Magnetic induction area where period jitter exceeds Sjit1  
Symbol Values Unit Notes  
min. max.  
Parameter  
Magnetic induction area in X-direction 1) BX_Area  
Magnetic induction area in Y-direction 1) BY_Area  
2.9  
0.7  
10  
mT  
mT  
in combination with BY_Area  
in combination with BX_Area  
2.9  
1) Not subject to production test. Verified by characterisation.  
The sequence to find the areas marked in Figure 13 is:  
The encoder wheel magnetic field shall be characterised (measurement of BX and BY at the sensor location).  
Is the amplitude of the magnetic induction BX between the minimum and maximum value of BX_Area  
?
– If the answer is NO: no further action required  
– If the answer is YES: For low jitter Sjit1 the magnetic field at the sensor location shall not have a value  
between the minimum and maximum value of BY_Area  
Data Sheet  
19  
V 1.2, 2018-01-18  
TLE5041plusC  
Specification  
Note:This information applies especially to narrow pole wheels. Depending on the pole wheel these areas are at  
a magnetic air gap of 0.8mm to 2.8mm. At a specific air gap the mounting tolerance in Y-direction can be  
between +/- 0.5mm to +/-2mm. This effect is usually observed when using narrow pole wheels, it is  
recommended to investigate the magnetic field of every pole wheel used. Air gap and tolerance in Y-direction  
are typical application values mentioned here are for information only, without specification character. For  
further information and support please contact Infineon.  
Data Sheet  
20  
V 1.2, 2018-01-18  
TLE5041plusC  
Specification  
3.4.3  
Typical Diagrams (measured performance)  
ILow , IHigh [mA]  
IHigh / ILow  
15  
14  
13  
12  
11  
10  
9
2,3  
2,2  
2,1  
2,0  
1,9  
8
7
6
1,8  
40  
0
40  
80  
Tj [°C]  
120  
160  
40  
0
40  
80  
Tj [°C]  
120  
160  
Figure 14  
Supply Current = f(T) (left), Supply Current Ratio IHigh / ILow = f(T) (right)  
Slewrate [mA/µs]  
24  
22  
20  
18  
16  
14  
12  
10  
8
40  
0
40  
80  
120  
160  
Tj [°C]  
Figure 15  
Slew Rate = f(T), RM = 75 Ω  
Data Sheet  
21  
V 1.2, 2018-01-18  
TLE5041plusC  
Specification  
dBlimit [mT], f=1kHz  
dBlimit [mT], T=25°C  
j
0,30  
0,30  
0,25  
0,20  
0,15  
0,10  
0,25  
0,20  
0,15  
0,10  
40  
0
40  
80  
Tj [°C]  
120  
160  
1
10  
100  
1000  
10000  
f[Hz]  
Figure 16  
Magnetic Threshold dBLimit = f(T) (left), Magnetic Threshold dBLimit = f(f) (right)  
dBlimit [mT], Tj=170°C  
0,30  
0,25  
0,20  
0,15  
0,10  
1
10  
100  
1000  
10000  
f [Hz]  
Figure 17  
Magnetic Threshold dBLimit = f(f)  
Data Sheet  
22  
V 1.2, 2018-01-18  
TLE5041plusC  
Specification  
Duty Cycle [%], f=1kHz  
Period Jitter [%], f=1kHz,  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
3sigmavalue  
0,10  
0,09  
0,08  
0,07  
0,06  
0,05  
0,04  
0,03  
0,02  
0,01  
0,00  
40  
0
40  
80  
Tj [°C]  
120  
160  
40  
0
40  
80  
Tj [°C]  
120  
160  
Figure 18  
Period Jitter = f(T) at dBX = 2 mT (left) , Duty Cycle = f(T) at dBX = 2 mT (right)  
Data Sheet  
23  
V 1.2, 2018-01-18  
TLE5041plusC  
Specification  
3.4.4  
Electrostatic discharge protection  
Characterized according to Human Body Model (HBM) test in compliance with EIA/JESD22-A114-B HBM (covers  
MIL STD 883D)  
Table 7  
ESD protection  
Parameter  
Symbol Values  
Unit  
Notes  
min.  
max.  
±12  
±2  
ESD voltage  
ESD voltage  
VHBM  
kV  
kV  
Method AEC-Q100 (1.5 k, 100 pF)  
VSDM  
Method ANSI/ESD SP5.3.2-2008  
3.5  
Electro Magnetic Compatibility (EMC)  
The device is characterized according to the IC level EMC requirements described in the “Generic IC EMC Test  
Specification” Version 1.2 from 20071).  
Additionally component level EMC characterizations according to ISO 7637-2:2011, ISO 7637-3:2007 and ISO  
16750-2:2010 regarding pulse immunity and CISPR 25 (2009-01) Ed. 3.0 regarding conducted emissions are  
performed.  
Note:Characterization of electromagnetic compatibility is carried out on sample base. Not all specification  
parameters can be monitored during EMC exposure. Only functional parameters, e.g., switching current and  
duty cycle have been monitored.  
Figure 19 outlines all needed external components to operate the DUT under application conditions. The  
(additional) outlined components can effect the final EMC result. They are treated as inherent part of the DUT  
during component level EMC characterizations.  
Figure 19 EMC test circuit for the TLE5041plusC  
1) The document is available online at http://www.zvei.org/Verband/Publikationen/Seiten/Generic-IC-EMCTest-  
Specification-english.aspx.  
Data Sheet  
24  
V 1.2, 2018-01-18  
TLE5041plusC  
Specification  
3.5.1  
ISO 7637-2:2011 and ISO 16750-2:2010  
Refer to EMC test circuit; dBx= 2mT (amplitude of sinus signal); VDD= 13.5V, fMAG= 100Hz; T=25°C  
Table 8  
Test Pulse  
TP1 1)  
TP2a 1)  
TP2b 2)  
TP3a 1)  
TP3b 1)  
TP4 3)  
Conducted pulses along supply lines  
Symbol  
Level/Typ  
Status  
VEMC  
IV / -150V  
IV / 112V  
- / 10V  
C / A (after stress)  
C
C
A
A
C
C
C
IV / -220V  
IV / 150V  
IV / -7V  
TP5a 3)  
TP5b 4)  
IV / 86.5V  
Us*= 28.5V  
1) according to ISO 7637-2:2011  
2) according to ISO 7637-2:2004  
3) according to ISO 16750-2:2010  
4) According to ISO 16750-2:2010. A central load dump of 42V is used. Us = 42 V - 13.5 V.  
3.5.2  
ISO 7637-3:2007  
Refer to EMC test circuit; dBx= 2mT (amplitude of sinus signal); VDD= 13.5V, fMAG= 100Hz; T=25°C  
Table 9  
Test Pulse  
TP3a  
Pulses by capacitive coupling on signal lines  
Symbol  
Level/Typ  
IV / -220 V  
IV / 150V  
Status  
VEMC  
A
A
TP3b  
3.5.3  
ISO 11452-3:2004  
Refer to EMC test circuit; dBx= 2mT (amplitude of sinus signal); VDD= 13.5V, fMAG= 100Hz; T=25°C  
Table 10  
Radiated immunity  
Parameter  
Symbol  
Level/Typ  
Remark  
EMC field strength  
ETEM-Cell  
IV / 250 V/m  
AM (80%, 1kHz)  
Data Sheet  
25  
V 1.2, 2018-01-18  
TLE5041plusC  
Package Information  
4
Package Information  
Pure tin plating (green lead plating) is used with the plastic single small outline package PG-SSO-2-53. The  
product complies to restrictions of hazardous substances (RoHS) when marked with the letter G in front or after  
the date code. Additionally it shows a data matrix on the back side of the package.  
4.1  
Package Parameters  
Table 11  
Package parameters  
Parameter  
Symbol Limit Values  
min. typ. max.  
190  
CuSn1CrNiTi  
FPO 10  
Unit Notes  
Thermal Resistance  
Lead Frame  
RthJA  
K/W  
N
Junction-to-Air 1)  
material K62 (UNS:C18090)  
for each lead 2)  
Lead pull out Force  
1) According to Jedec JESD51-7  
2)  
according to IEC 60068-2-21 (fifth edition 1999-1)  
4.2  
Bending for assembly  
By following our package handling and assembly recommendation remarks for Sensor-packages the sensor  
terminals can be bent without causing incipient cracks influencing the sensor element function. Please contact  
your local Infineon application support.  
4.3  
Package surface to silicon  
The distance from the package surface to the surface of the silicon chip d = 0.3 mm ± 0.08 mm.  
Front side  
Back side  
iGMR elements  
Figure 20 Distance from package surface to silicon (=sensing element)  
Data Sheet  
26  
V 1.2, 2018-01-18  
TLE5041plusC  
Package Information  
4.4  
Package Outline  
Figure 21 Package dimensions  
Data Sheet  
27  
V 1.2, 2018-01-18  
TLE5041plusC  
Package Information  
4.5  
Packing  
The TLE5041plusC is delivered in Ammopack as described below.  
Figure 22 Packing dimensions in mm  
Data Sheet  
28  
V 1.2, 2018-01-18  
TLE5041plusC  
Package Information  
4.6  
Marking  
Front side marking  
The TLE5041plusC is delivered in Ammopack as described below.  
Figure 23 Packing dimensions in mm  
Position  
Marking  
Description  
1st Line  
GYYWW  
G: green package  
YY: production year  
WW: production week  
2nd Line  
123456  
Marking  
Backside marking  
Position  
1st Line  
2nd Line  
Marking  
Description  
xxxxxxx  
Data Matrix Code  
Data Matrix Code  
0123456789  
Data Sheet  
29  
V 1.2, 2018-01-18  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

TLE5045IC-R050

Analog Circuit,
INFINEON

TLE5045ICR050HALA1

Analog Circuit,
INFINEON

TLE5046IC

High End GMR Wheel Speed Sensor with direction detection, ASIL B(D)
INFINEON

TLE5046IC-AK-ERR

High End GMR Wheel Speed Sensor with direction detection, ASIL B(D)
INFINEON

TLE5046IC-AK-LR

High End GMR Wheel Speed Sensor with direction detection, ASIL B(D)
INFINEON

TLE5046IC-PWM2-R050

High End GMR Wheel Speed Sensor with direction detection, ASIL B(D)
INFINEON

TLE5046IC-PWM2-R100

High End GMR Wheel Speed Sensor with direction detection, ASIL B(D)
INFINEON

TLE5046IC-PWM2E-R050

High End GMR Wheel Speed Sensor with direction detection, ASIL B(D)
INFINEON

TLE5046IC-PWM2E-R100

High End GMR Wheel Speed Sensor with direction detection, ASIL B(D)
INFINEON

TLE5046ICAKLRHALA1

Analog Circuit,
INFINEON

TLE5046ICPWMR050HALA1

Analog Circuit,
INFINEON

TLE5109A16 E1210

Infineon´s TLE5109 products are available as single and dual die versions and at two different supply voltage options, optimized for 3.3V as well as 5V. All products come inside the TDSO-16 Package. The whole TLE5109 family is ready for ISO26262, targeting ASIL D for dual die sensors. This makes the products a perfect fit for both automotive as well as industrial safety applications.
INFINEON