TLE5109A16 E2210 [INFINEON]

Infineon´s TLE5109 product family covers Infineon Technologies AG’s new ultra-precise, fast analog AMR-based angle sensors. TLE5109 products are the right fit for any kind of ultra-precise and fast 180° angle measurement application. The sensors’ application fields range from BLDC motor position applications for e.g. pumps, wipers or brakes, position measurements of valves, flaps or pedals to steering angle applications with the highest functional safety requirements. Built within a 180° sensing technology, the new TLE509 sensors nevertheless can be used for 360° for motors with an even number of pole pairs.;
TLE5109A16 E2210
型号: TLE5109A16 E2210
厂家: Infineon    Infineon
描述:

Infineon´s TLE5109 product family covers Infineon Technologies AG’s new ultra-precise, fast analog AMR-based angle sensors. TLE5109 products are the right fit for any kind of ultra-precise and fast 180° angle measurement application. The sensors’ application fields range from BLDC motor position applications for e.g. pumps, wipers or brakes, position measurements of valves, flaps or pedals to steering angle applications with the highest functional safety requirements. Built within a 180° sensing technology, the new TLE509 sensors nevertheless can be used for 360° for motors with an even number of pole pairs.

文件: 总33页 (文件大小:1258K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE5x09A16(D)  
Analog AMR/GMR Angle Sensors  
Features  
Single and dual die sensor with AMR or GMR technology  
Separate supply pins for top and bottom sensor  
Low current consumption and quick start up  
180°(AMR) and 360°(GMR) contactless angle measurement  
Output amplitude optimized for circuits with 3.3 V or 5 V supply voltage  
Immune to airgap variations due to MR based sensing principle  
Automotive qualified Q100, Grade 1: -40°C to 125°C (ambient temperature)  
Pre-amplified output signals for differential or single-ended applications  
Diverse redundance combination of GMR sensor and AMR sensor in one package possible  
High accuracy typically 0.1° overall angle error for AMR sensor  
Green product (RoHS compliant)  
Functional Safety  
Safety Manual and Safety Analysis Summary Report available on request.  
Product Validation  
Developed for automotive applications. Product qualification according to AEC-Q100.  
Potential Applications  
The TLE5x0916(D) angle sensors are designed for angular position sensing in safety critical automotive and  
non- automotive applications. Their high accuracy combined with short propagation delay make especially  
the GMR sensor variants suitable for systems with high speeds and high accuracy demands such as brush-less  
DC (BLDC) motors for actuators and electric power steering systems (EPS). The AMR sensor variants with their  
typically accuracy of 0.1° fit for systems with high speeds and high accuracy demands such as pedals, levers  
or brush-less DC (BLDC) motors with an even number of pole pairs. At the same time their fast start-up time  
and low overall power consumption enables the device to be employed for low-power turn counting.  
Extremely low power consumption can be achieved with power cycling, where the advantage of fast power on  
time reduces the average power consumption. Potential applications are:  
BLDC motors  
Pedals and rotary switches  
Steering angle sensing  
Valve or flap position sensing  
Data Sheet  
www.infineon.com/sensors  
1
V 2.0  
2018-12  
TLE5x09A16(D)  
Analog AMR/GMR Angle Sensor  
Figure 1  
A usual application for TLE5x09A16(D) is the electrically commutated motor  
Description  
The TLE5x0916(D) are angle sensor with analog outputs. They detect the orientation of a magnetic field by  
measuring sine and cosine angle components with Magneto Resistive (MR) elements. The sensors provide  
analog sine and cosine output voltages that describe the magnetic angle in a range of 0 to 180° (AMR sensor),  
and 0 to 360° (GMR sensor), respectively. There are single die and dual die combinations with a Giant Magneto  
Resistance (GMR) sensor for full 360° angle range or also an Anisotropic Magneto Resistance (AMR) sensor for  
high precision in a top-bottom configuration in one package possible. The following derivatives of the  
TLE5x09A16(D) sensor family are available:  
Single die GMR: TLE5009A16  
Dual die GMR: TLE5009A16D  
Single die AMR: TLE5109A16  
Dual die AMR: TLE5109A16D  
Dual die AMR (bottom) / GMR (top): TLE5309D  
The differential MR bridge signals are independent of the magnetic field strength to maintain constant output  
voltage over a wide temperature and field range. The analog output is designed for differential or single-ended  
applications and an internal temperature compensation is applied for higher accuracy.  
The sensor is available as single die version (TLE5x09A16) and dual die version (TLE5x09A16D) for safety  
applications that require redundancy. The two versions are pin-compatible for easy scalability. In the dual die  
TLE5x09A16D, both sensor dies are supplied independently by separate supply and ground pins.  
Table 1  
TLE5009A16(D) Derivate ordering codes  
Product Type  
Marking  
09A11200  
09A11210  
09A12200  
09A12210  
Ordering Code Package  
Description  
TLE5009A16 E1200  
TLE5009A16 E1210  
TLE5009A16 E2200  
TLE5009A16 E2210  
SP001285624  
SP001296110  
SP001296118  
SP001296114  
SP001285628  
SP001296122  
PG-TDSO-16 3.3 V, single die, without TCO1)  
PG-TDSO-16 3.3 V, single die, with TCO1)  
PG-TDSO-16 5.0 V, single die, without TCO1)  
PG-TDSO-16 5.0 V, single die, with TCO1)  
PG-TDSO-16 3.3 V, dual die, without TCO1)  
PG-TDSO-16 3.3 V, dual die, with TCO1)  
TLE5009A16D E1200 09A21200  
TLE5009A16D E1210 09A21210  
Data Sheet  
2
V 2.0  
2018-12  
TLE5x09A16(D)  
Analog AMR/GMR Angle Sensor  
Table 1  
TLE5009A16(D) Derivate ordering codes (cont’d)  
Product Type  
Marking  
Ordering Code Package  
Description  
TLE5009A16D E2200 09A22200  
SP001296126  
SP001296130  
PG-TDSO-16 5.0 V, dual die, without TCO1)  
PG-TDSO-16 5.0 V, dual die, with TCO1)  
TLE5009A16D E2210 09A22210  
1) Temperature Compensation Offset.  
Table 2  
TLE5109A16(D) Derivate ordering codes  
Product Type  
Marking  
10911210  
10912210  
Ordering Code Package  
Description  
TLE5109A16 E1210  
TLE5109A16 E2210  
SP000956970  
SP000956966  
SP001496434  
SP001044230  
PG-TDSO-16 3.3 V, single die, with TCO1)  
PG-TDSO-16 5.0 V, single die, with TCO1)  
PG-TDSO-16 3.3 V, dual die, with TCO1)  
PG-TDSO-16 5.0 V, dual die, with TCO1)  
TLE5109A16D E1210 10921210  
TLE5109A16D E2210 10922210  
1) Temperature Compensation Offset.  
Table 3  
TLE5309D Derivate ordering codes  
Product Type  
Marking  
Ordering Code Package  
Description  
TLE5309D E1211  
309D1211  
SP001227880  
SP001227888  
SP001227884  
PG-TDSO-16 3.3 V, dual die, AMR (bottom) and  
GMR (top), with TCO1)  
TLE5309D E2211  
TLE5309D E5201  
309D2211  
309D5201  
PG-TDSO-16 5.0 V, dual die, AMR(bottom) and  
GMR (top), with TCO1)  
PG-TDSO-16  
5.0 V AMR (bottom), 3.3 V GMR  
(top), dual die, without TCO1)  
1) Temperature Compensation Offset.  
Data Sheet  
3
V 2.0  
2018-12  
TLE5x09A16(D)  
Analog AMR/GMR Angle Sensor  
Table of Contents  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Functional Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Product Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Potential Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
1
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Dual die angle output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
1.1  
1.2  
1.3  
1.4  
1.5  
2
2.1  
2.2  
2.3  
2.3.1  
2.3.2  
2.3.3  
2.4  
2.5  
2.6  
Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Sensor specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Output parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Error diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Angle performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Electrostatic discharge protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Electro magnetic compatibility (EMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
2.7  
3
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Package parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Package outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3.1  
3.2  
3.3  
3.4  
3.5  
4
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Data Sheet  
4
V 2.0  
2018-12  
TLE5x09A16(D)  
Analog AMR/GMR Angle Sensor  
Functional description  
1
Functional description  
1.1  
General  
The Magneto Resistive (MR) sensors are implemented using vertical integration. This means that the MR  
sensitive areas are integrated above the analog portion of the ICs. These MR elements change their resistance  
depending on the direction of the magnetic field.  
On each sensor, four individual MR elements are connected in a Wheatstone bridge arrangement. Each MR  
element senses one of two components of the applied magnetic field:  
X component, Vx (cosine) or the  
Y component, Vy (sine)  
The advantage of a full-bridge structure is that the amplitude of the MR signal is doubled and temperature  
effects cancel out.  
GMR Sensor  
GMR Resistors  
VX  
VY  
0°  
S
N
ADCX+  
ADCX-  
GND  
ADCY+  
ADCY-  
VDD  
90°  
Figure 2  
Sensitive bridges of the GMR sensor  
Note:  
In Figure 2, the arrows in the resistors symbolize the direction of the reference layer. The size of the  
sensitive areas is greatly exaggerated for better visualization.  
With the trigonometric function ARCTAN2, the true 360° angle value that is represented by the relation of X and  
Y signals can be calculated according to Equation (1).  
α = arctan2(Vx,Vy)  
(1)  
The ARCTAN2 function is a microcontroller library function which resolves an angle within 360° using the x and  
y coordinates on a unit circle.  
Data Sheet  
5
V 2.0  
2018-12  
TLE5x09A16(D)  
Analog AMR/GMR Angle Sensor  
Functional description  
90°  
Y Component (SIN)  
VY  
X Component (COS)  
0°  
VX  
V
VX (COS_N)  
VX (COS_P)  
90°  
180°  
270°  
360°  
0°  
Angle α  
VY (SIN_N)  
VY (SIN_P)  
Figure 3  
Ideal output of the GMR sensor bridges  
Data Sheet  
6
V 2.0  
2018-12  
TLE5x09A16(D)  
Analog AMR/GMR Angle Sensor  
Functional description  
AMR sensor  
S
N
VDD  
Cos-  
0°  
Sin-  
VY  
Sin+  
VX  
90°  
GND  
Cos+  
Figure 4  
Sensitive bridges of the AMR sensor  
In Figure 4, the size of the sensitive areas is greatly exaggerated for better visualization.  
Note:  
With the trigonometric function ARCTAN2, the true 180° angle value that is represented by the relation of X and  
Y signals can be calculated according to Equation (2). The AMR sensing element internally measures the  
double angle, so the result has to be divided by 2. At external magnetic angles α between 180° and 360°, the  
angle measured by the sensor is α - 180°.  
α = arctan2(Vx,Vy) / 2  
(2)  
V
VX (COS_N)  
VX (COS_P)  
45°  
90°  
135°  
180°  
0°  
VMV  
Angle α  
VY (SIN_N)  
VY (SIN_P)  
Figure 5  
Ideal output of the AMR sensor bridges  
Data Sheet  
7
V 2.0  
2018-12  
TLE5x09A16(D)  
Analog AMR/GMR Angle Sensor  
Functional description  
1.2  
Pin configuration  
The sensitive area is located at the center of the chip.  
16  
15  
14  
13  
12  
11  
10  
9
Center of Sensitive  
Area  
1
2
3
4
5
6
7
8
Figure 6  
Pin configuration (top view)  
1.3  
Pin description  
The top die is defined as die 1 and the bottom die as die 2. Single die sensors use the top die only.  
Table 4  
Pin description  
In/Out TLE5x09A16 - Function  
Pin No. Pin Name  
TLE5x09A16D - Function  
Die 1 bridge voltage proportional to Die 1 bridge voltage proportional to  
1
VDIAG  
1
O
temperature. Diagnostic function  
Die 1 Supply voltage  
Die 1 Analog negative sine output  
Die 1 Analog positive sine output  
Not connected  
temperature. Diagnostic function  
2
3
4
5
6
7
8
VDD  
1
Die 1 Supply voltage  
SIN_N1  
SIN_P1  
SIN_P2  
SIN_N2  
O
O
O
O
Die 1 Analog negative sine output  
Die 1 Analog positive sine output  
Die 2 Analog positive sine output  
Die 2 Analog negative sine output  
Die 2 Supply voltage  
Not connected  
VDD2  
Not connected  
VDIAG  
2
O
Not connected  
Die 2 bridge voltage proportional to  
temperature. Diagnostic function  
9
GND2  
Not connected  
Not connected  
Not connected  
Not connected  
Die 2 Ground  
10  
11  
12  
13  
14  
15  
16  
GND2  
Die 2 Ground  
COS_N2  
COS_P2  
COS_P1  
COS_N1  
GND1  
O
O
O
O
Die 2 Analog negative cosine output  
Die 2 Analog positive cosine output  
Die 1 Analog positive cosine output Die 1 Analog positive cosine output  
Die 1 Analog negative cosine output Die 1 Analog negative cosine output  
Die 1 Ground  
Die 1 Ground  
Die 1 Ground  
Die 1 Ground  
GND1  
Data Sheet  
8
V 2.0  
2018-12  
TLE5x09A16(D)  
Analog AMR/GMR Angle Sensor  
Functional description  
1.4  
Block diagram  
TLE5309D  
GMR_VDD  
GMR_COS_P  
GMR_COS_N  
DC-Offset &  
Fuses  
X-GMR  
Amplifier  
#1  
GMR_VDIAG  
PMU & Temperature Compensation  
GMR Sensor  
(top, close to upper surface)  
GMR_SIN_P  
GMR_SIN_N  
Y-GMR  
Amplifier  
GMR_GND1  
GMR_GND2  
TLE5009 (GMR)  
AMR_VDD  
AMR_COS_P  
AMR_COS_N  
DC-Offset &  
Fuses  
X-AMR  
Amplifier  
AMR_VDIAG  
#2  
PMU & Temperature Compensation  
AMR Sensor (bottom)  
AMR_SIN_P  
AMR_SIN_N  
Y-AMR  
Amplifier  
AMR_GND1  
AMR_GND2  
TLE5109 (AMR)  
Figure 7  
TLE5x09A16(D) block diagram example: TLE5309D sensor with die 1 GMR- and die 2 AMR-  
sensing technology  
Data Sheet  
9
V 2.0  
2018-12  
TLE5x09A16(D)  
Analog AMR/GMR Angle Sensor  
Functional description  
1.5  
Dual die angle output  
The TLE5x09A16(D) comprises one MR-based angle sensor IC mounted on the top and one MR-based angle  
sensor IC mounted on the bottom of a package lead frame in a flipped configuration, so the positions of the  
sensitive elements in the package-plane coincide. This mounting technique ensures a minimum deviation of  
the magnetic field orientation sensed by the two chips.  
Due to the flipped mounting, the two GMR ICs for the TLE5009A16D sense opposite rotation directions. This  
behavior is illustrated in Figure 8, which shows the angle calculated from the output of the two dies,  
respectively, for a given external magnetic field orientation.  
360°  
GMR sensor die 1  
GMR sensor die 2  
270°  
180°  
90°  
0°  
90°  
180°  
270°  
360°  
external magnetic field angle  
Figure 8  
TLE5009A16D Dual die angle output  
The TLE5109A16D consists of two AMR ICs sense opposite rotation directions. This behavior is illustrated in  
Figure 9, which shows the angle calculated from the output of the two dies, respectively, for a given external  
magnetic field orientation.  
180°  
AMR1 sensor output  
90°  
AMR2 sensor output  
AMR2 sensor output  
(SIN inverted)  
0°  
90°  
180°  
270°  
360°  
external magnetic field angle  
Figure 9  
TLE5109A16D Dual die angle output  
Data Sheet  
10  
V 2.0  
2018-12  
TLE5x09A16(D)  
Analog AMR/GMR Angle Sensor  
Functional description  
The bottom sensor element of the TLE5309D is an AMR sensor, the signal of which is only unambiguous over  
180°. Therefore, in the angle range of 180° to 360° of the GMR sensor, the AMR sensor output signal will be in a  
range of 0° to 180° again. This behavior is illustrated in Figure 10, which shows the angle calculated according  
to Equation (1) and Equation (2) from the output of the GMR and AMR sensors, respectively, for a given  
external magnetic field orientation.  
If in an application a different output of the two sensors is desired, the connections to the SIN_N and SIN_P or  
COS_N and COS_P pins on the printed circuit board can be interchanged. The consequence of this change of  
connections is that either the differential sine or the cosine signal are inverted, which corresponds to a change  
of rotation direction (see dashed line in Figure 9 and Figure 10).  
360°  
GMR sensor output  
AMR sensor output  
270°  
AMR sensor output  
(SIN inverted)  
180°  
90°  
0°  
90°  
180°  
270°  
360°  
external magnetic field angle  
Figure 10 TLE5309D Dual die angle output  
Attention: The positioning accuracy of each sensor IC in the package is ±3°. In addition, the sensor  
technology dependent offset of the magnetization must be considered in the overall angle  
offset. With a GMR sensor the non-orthogonality error can be in worst case +/-12° according to  
specification for each die. For AMR this effect is negligible. The non-orthogonality error means  
the deviation of the 90°-phase correlation from X- and Y-phase. The resulting angle error  
offsets for AMR and GMR dies are listed in Table 5. Both effects can be compensated by an end-  
of-line calibration including the definition of the zero-phase or X-reference direction. The angle  
error offsets are not included in the angular accuracy in Table 11 and Table 12.  
Table 5  
Angle error offset without end-of-line calibration  
AMR  
GMR  
Rotational displacement die to  
package  
+/-3°  
+/-3°  
Magnetization error on die  
Overall error  
+/-0°  
+/-3°  
+/-12°  
+/-15°  
Data Sheet  
11  
V 2.0  
2018-12  
TLE5x09A16(D)  
Analog AMR/GMR Angle Sensor  
Specification  
2
Specification  
2.1  
Application circuit  
The TLE5x09A16(D) sensor can be used in single-ended or differential output mode. Figure 11 shows a typical  
application circuit for the TLE5x09A16(D) in single-ended output mode using the positive output channels. For  
single-ended operation the positive or negative output channels can be used. Unused single-ended output  
pins should preferably be floating or connected to GND with a high-ohmic resistance (> 100 kΩ). The  
TLE5x09A16(D) has separate supply pins for the GMR sensor and the AMR sensor. The microcontroller  
comprises up to 10 A/D inputs used to receive the sensor output signals in differential output mode, illustrated  
in Figure 12. For reasons of EMC and output filtering, the following RC low pass arrangement is  
recommended. The RC low pass has to be adapted according to the applied rotation speed. 1)  
Attention: Unused output pins should not be connected.  
Channel 1  
VDD1  
2.15kΩ  
2.15kΩ  
SIN_P1  
SIN_N1  
COS_P1  
COS_N1  
VDIAG1  
*)  
*)  
VDD1  
100nF  
GND1  
GND1  
GND1  
4.7nF  
47nF  
47nF  
GND1  
GND1  
GND1  
μController  
Channel 2  
VDD2  
2.15kΩ  
2.15kΩ  
SIN_P2  
*)  
*)  
SIN_N2  
COS_P2  
COS_N2  
VDIAG2  
VDD2  
100nF  
GND2  
GND2  
GND2  
4.7nF  
47nF  
47nF  
GND2  
GND2  
GND2  
TLE5x09A16D  
*) Not used single-ended output pins should be floating. Another option is connected to GND with a high-ohmic resistance (>100kΩ)  
Figure 11 Application circuit for the TLE5x09A16(D) in single-ended output mode; positive output  
channels used  
1) E. g. the RC low pass with R=2.15kΩ and C=47nF is appropriate for a rotation speed up to 10,000 rpm.  
Data Sheet  
12  
V 2.0  
2018-12  
TLE5x09A16(D)  
Analog AMR/GMR Angle Sensor  
Specification  
Channel 1  
VDD1  
2.15kΩ  
2.15kΩ  
2.15kΩ  
2.15kΩ  
SIN_P1  
SIN_N1  
COS_P1  
COS_N1  
VDIAG1  
VDD1  
100nF  
GND1  
GND1  
GND1  
4.7nF  
47nF  
47nF  
47nF  
47nF  
GND1  
GND1  
GND1  
GND1  
GND1  
μController  
Channel 2  
VDD2  
2.15kΩ  
2.15kΩ  
SIN_P2  
SIN_N2  
COS_P2  
COS_N2  
VDIAG2  
VDD2  
2.15kΩ  
2.15kΩ  
100nF  
GND2  
GND2  
GND2  
4.7nF  
47nF  
47nF  
47nF  
47nF  
GND2  
GND2 GND2  
GND2  
GND2  
TLE5x09A16D  
Figure 12 Application circuit for the TLE5x09A16(D) in differential output mode  
Application circuit for low-power consumption (e.g. turn counter)  
Applications that use electric motors and actuators may require a turn counter function. A turn counter  
function allows to keep track of the electric motor or actuator position with low-power consumption. During  
operation the sensor is powered on, therefore the angle information is constantly available and, if necessary,  
stored. But when the system is not in operation the sensor is powered off to save power consumption,  
therefore rotational movements are not detected. To avoid missing the position the sensor can be awaked  
periodically to obtain the angle information. The minimum length of the awake time must cover the  
TLE5x09A16(D) power-up time (described in Table 8) and the required time to transmit the data, which is also  
dependent on the application circuit.  
An optimal TLE5309D application circuit for systems with turn counter function is shown in Figure 13 for  
single-ended output respectively in Figure 14 for differential output. The AMR sensor is used for high precise  
angle measurement in normal operation and the GMR sensor for turn counter function. With a lower resistor  
and capacitor design the low-pass filter time constant can be adapted for high speed applications. Therefore,  
the time needed to supply the TLE5309D with power in order to read the output signal is considerably  
reduced.  
Data Sheet  
13  
V 2.0  
2018-12  
TLE5x09A16(D)  
Analog AMR/GMR Angle Sensor  
Specification  
GMR  
2.15kΩ  
2.15kΩ  
GMR VDD  
GMR SIN_P  
**)  
ASIC  
GMR SIN_N  
GMR COS_P  
GMR COS_N  
GMR VDIAG  
GMR VDD  
(for turn  
counter)  
100nF  
**)  
*)  
GMR GND  
GMR GND  
47nF  
47nF  
GMR GND  
GMR  
GND  
GMR  
GND  
μController  
AMR  
AMR VDD  
2.15kΩ  
2.15kΩ  
AMR SIN_P  
AMR SIN_N  
AMR COS_P  
AMR COS_N  
AMR VDIAG  
**)  
AMR VDD  
100nF  
**)  
*)  
AMR GND  
AMR GND  
47nF  
47nF  
AMR GND  
AMR  
GND  
AMR  
GND  
TLE5309D  
*) VDIAG is an output pin and can be floating. Another option is connected to GND with a high-ohmic resistance (e.g. 100kΩ)  
**) Not used single-ended output pins should be floating. Another option is connected to GND with a high-ohmic resistance (>100kΩ)  
Figure 13 Application circuit for the TLE5309D in low-power applications in single-ended output  
mode (e.g. turn counter); positive output channels used  
GMR  
2.15kΩ  
GMR VDD  
GMR SIN_P  
2.15kΩ  
ASIC  
GMR SIN_N  
GMR VDD  
(for turn  
2.15kΩ  
100nF  
GMR COS_P  
GMR COS_N  
GMR VDIAG  
counter)  
2.15kΩ  
GMR GND  
GMR GND  
*)  
47nF  
47nF  
47nF  
47nF  
GMR GND  
GMR  
GND  
GMR  
GND  
GMR  
GND  
GMR  
GND  
μController  
AMR  
AMR VDD  
2.15kΩ  
AMR SIN_P  
AMR SIN_N  
AMR COS_P  
AMR COS_N  
AMR VDIAG  
2.15kΩ  
2.15kΩ  
2.15kΩ  
AMR VDD  
100nF  
AMR GND  
AMR GND  
*)  
47nF  
47nF  
47nF  
47nF  
AMR GND  
AMR  
GND  
AMR  
GND  
AMR  
GND  
AMR  
GND  
TLE5309D  
*) VDIAG is an output pin and can be floating. Another option is connected to GND with a high-ohmic resistance (e.g. 100kΩ)  
Figure 14 Application circuit for the TLE5309D in low-power applications in differential output mode  
(e.g. turn counter)  
Pull-down resistors for partial diagnostics  
It is also possible to use pull-down resistors to get partial diagnostics. With this setting it is not required to use  
the VDIAG pin. The application circuit with pull-down resistors is shown in Figure 15 for single-ended output  
respectively in Figure 16 for differential output. For further details please refer to the Safety Manual.  
Data Sheet  
14  
V 2.0  
2018-12  
TLE5x09A16(D)  
Analog AMR/GMR Angle Sensor  
Specification  
Channel 1  
VDD1  
2.15kΩ  
2.15kΩ  
SIN_P1  
***)  
*)  
SIN_N1  
COS_P1  
COS_N1  
VDIAG1  
VDD1  
100nF  
***)  
**)  
*)  
GND1  
GND1  
GND1  
47nF  
47nF  
GND1  
GND1  
GND1  
GND1  
μController  
Channel 2  
VDD2  
2.15kΩ  
2.15kΩ  
SIN_P2  
***)  
*)  
SIN_N2  
COS_P2  
COS_N2  
VDIAG2  
VDD2  
100nF  
***)  
**)  
*)  
GND2  
GND2  
GND2  
47nF  
47nF  
GND2  
GND2  
GND2  
GND2  
TLE5x09A16D  
*) 100kΩ < R < 500kΩ  
**) VDIAG is an output pin and can be floating. Another option is connected to GND with a high-ohmic resistance (e.g. 100kΩ)  
***) Not used single-ended output pins should be floating. Another option is connected to GND with a high-ohmic resistance (>100kΩ)  
Figure 15 Application circuit for the TLE5x09A16(D) for partial diagnostics with pull-down resistors in  
single-ended output mode; positive output channels used  
Channel 1  
VDD1  
2.15kΩ  
2.15kΩ  
2.15kΩ  
2.15kΩ  
SIN_P1  
SIN_N1  
COS_P1  
COS_N1  
VDIAG1  
*)  
VDD1  
*)  
100nF  
*)  
GND1  
GND1  
*)  
**)  
GND1  
47nF  
47nF  
47nF  
47nF  
GND1  
GND1  
GND1  
GND1  
GND1 GND1 GND1 GND1  
μController  
Channel 2  
VDD2  
2.15kΩ  
2.15kΩ  
2.15kΩ  
2.15kΩ  
SIN_P2  
*)  
SIN_N2  
COS_P2  
COS_N2  
VDIAG2  
VDD2  
*)  
100nF  
*)  
GND2  
GND2  
*)  
**)  
GND2  
47nF  
47nF  
47nF  
47nF  
GND2  
GND2  
GND2  
GND2  
GND2 GND2 GND2 GND2  
TLE5x09A16D  
**) VDIAG is an output pin and can be floating. Another option is connected to  
*) 100kΩ < R < 500kΩ  
GND with a high-ohmic resistance (e.g. 100kΩ)  
Figure 16 Application circuit for the TLE5x09A16(D) for partial diagnostics with pull-down resistors in  
differential output mode  
Data Sheet  
15  
V 2.0  
2018-12  
TLE5x09A16(D)  
Analog AMR/GMR Angle Sensor  
Specification  
2.2  
Absolute maximum ratings  
Table 6  
Absolute maximum ratings  
Symbol  
Parameter  
Values  
Unit Note or Test Condition  
Min. Typ. Max.  
Supply voltage  
Ambient temperature1)  
VDD  
TA  
-0.5  
-40  
6.5  
V
Max. 40 h over lifetime  
140  
200  
150  
°C  
Magnetic field induction  
|B|  
mT Max. 5 min. at TA = 25°C  
mT Max. 5 h at TA = 25°C  
1) Assuming a thermal resistance of the sensor assembly in the application of 150 K/W or less.  
Attention: Stresses above the max. values listed here may cause permanent damage to the device.  
Exposure to absolute maximum rating conditions for extended periods may affect device  
reliability. Maximum ratings are absolute ratings; exceeding only one of these values may  
cause irreversible damage to the device.  
Data Sheet  
16  
V 2.0  
2018-12  
TLE5x09A16(D)  
Analog AMR/GMR Angle Sensor  
Specification  
2.3  
Sensor specification  
The following operating conditions must not be exceeded in order to ensure correct operation of the  
TLE5x09A16(D).  
All parameters specified in the following sections refer to these operating conditions, unless otherwise noted.  
Table 7 is valid for -40°C < TA < 125°C and through the TLE5x09A16(D) lifetime. Parameters are valid for AMR  
and GMR sensor, unless otherwise noted.  
2.3.1  
Operating range  
Table 7  
Operating range  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Min. Typ. Max.  
Ambient temperature1)  
Supply voltage GMR2)  
TA  
-40  
125  
3.6  
5.5  
3.6  
5.5  
0.5  
0.1  
4.7  
°C  
VDD, GMR 3.0  
4.5  
3.3  
5
V
V
V
V
E1200, E1210, E1211, E5201  
E2200, E2210, E2211  
E1210, E1211  
Supply voltage AMR2)  
Output current3)4)  
VDD, AMR 3.0  
4.5  
3.3  
5
E2210, E2211, E5201  
IQ  
0
0
0
mA COS_N; COS_P; SIN_N; SIN_P  
mA VDIAG  
Load capacitance3)5)  
CL  
nF  
All output pins - without series  
resistor  
Magnetic induction  
GMR1)3)6)7)  
BXY  
24  
26  
21  
20  
60  
mT In X/Y direction, at TA = 25°C  
mT In X/Y direction, at TA = -40°C  
mT In X/Y direction, at TA = 125°C  
100  
50  
Magnetic induction AMR3)6) BXY  
mT in X/Y direction, tested up to 500 mT  
quasi-static  
Angle range  
α
n
0
360  
°
(AMR is 180°-periodic, see  
Chapter 1.5)  
Rotation speed3)8)  
30,000 rpm  
150,000 rpm No signal degradation observed in lab  
1) Assuming a thermal resistance of the sensor assembly in the application of 150 K/W or less.  
2) Supply voltage VDD buffered with 100 nF ceramic capacitor in close proximity to the sensor.  
3) Not subject to production test - verified by design/characterization.  
4) Assuming a symmetrical load.  
5) Directly connected to the pin.  
6) Values refer to a homogenous magnetic field (BXY) without vertical magnetic induction (BZ = 0 mT).  
7) Min/Max values for magnetic field for intermediate temperatures can be obtained by linear interpolation.  
8) Typical angle propagation delay error is 1.62° at 30,000 rpm.  
Data Sheet  
17  
V 2.0  
2018-12  
TLE5x09A16(D)  
Analog AMR/GMR Angle Sensor  
Specification  
2.3.2  
Electrical parameters  
The indicated electrical parameters apply to the full operating range, unless otherwise specified. The typical  
values correspond to the specified supply voltage range and 25°C, unless individually specified. All other  
values correspond to -40°C < TA < 125°C and through the TLE5x09A16(D) lifetime.  
Table 8  
Electrical parameters  
Symbol  
Parameter  
Values  
Typ.  
7
Unit  
Note or Test Condition  
Min.  
Max.  
10.5  
9.5  
Supply current GMR  
Supply current AMR  
POR level  
POR hysteresis1)  
Power-On time2)  
IDD  
mA  
mA  
V
Without load on output pins  
Without load on output pins  
Power-On Reset  
6
VPOR  
2.3  
2.65  
50  
2.97  
VPORhy  
tPON  
mV  
µs  
40  
70  
Settling time to 90% of full output  
voltages  
Temperature reference  
voltage  
VDIAG  
0.5  
0
1.05  
2.0  
V
Temperature proportional  
output voltage; available on pin  
VDIAG  
Diagnostic function  
VDIAG  
0.39  
V
Diagnostic for internal errors;  
available on pin VDIAG  
Temperature coefficient of TCVDIAG  
VDIAG  
0.4  
%/K  
1)  
1) Not subject to production test - verified by design/characterization.  
2) Time measured at chip output pins.  
2.3.3  
Output parameters  
All parameters apply over the full operating range, unless otherwise specified. The parameters in Table 9 refer  
to single pin output and Table 10 to differential output. For variable names please refer to Figure 17 “GMR  
sensor single-ended output signals” on Page 20 and Figure 19 “GMR differential output of ideal cosine”  
on Page 21.  
The following equations describe various types of errors that combine to the overall angle error.  
The maximum and zero-crossing of the SIN and COS signals do not occur at the precise angle of 90°. The  
difference between the X and Y phases is called the orthogonality error. In Equation (3) the angle at zero  
crossing of the X COS output is subtracted from the angle at the maximum of the Y SIN output, which describes  
the orthogonality of X and Y.  
(3)  
The amplitudes of SIN and COS signals are not equal to each other. The amplitude mismatch is defined as  
synchronism, shown in Equation (4). This value could also be described as amplitude ratio mismatch.  
A
X
k = 100  
*
(4)  
A
Y
Data Sheet  
18  
V 2.0  
2018-12  
TLE5x09A16(D)  
Analog AMR/GMR Angle Sensor  
Specification  
The sensor outputs 4 single-ended signals SIN_N, SIN_P, COS_N, and COS_P, which are centered at the  
voltage offset 0.5*VDD. The differential signals are calculated from the single-ended signals. The differential  
voltages for X or Y are defined in Equation (5).  
V
= V COSP V COSN  
Xdiff  
(5)  
V Ydiff = V SINP V SINN  
The maximum amplitudes for the differential signals are centered at 0 V and defined for X or Y as given in  
Equation (6):  
(
=
)
X
X  
2
Ydiff  
diff _ MAX  
diff _ MIN  
AXdiff  
AYdiff  
(6)  
(
)
Ydiff  
_ MAX  
_ MIN  
=
2
Differential offset is of X or Y is defined in Equation (7).  
(
=
X
+ X  
2
+ Ydiff  
)
diff _ MAX  
diff _ MIN  
O Xdiff  
O Ydiff  
(7)  
(
)
Ydiff  
_ MAX  
_ MIN  
=
2
In single-ended mode the offset is defined as the mean output voltage and equals typically 0.5*VDD. For  
further details please refer to the application note “TLE5xxx(D) Calibration”.  
Table 9  
Single-ended output parameters over temperature and lifetime  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or Test Condition  
Min.  
0.7  
1.2  
94  
Max.  
1.3  
X, Y amplitude  
AX, AY  
V
Sensors with 3.3 V supply  
Sensors with 5.0 V supply  
GMR  
1.95  
106  
106  
12  
V
X, Y synchronism  
k
100  
100  
%
%
°
94  
AMR  
X, Y orthogonality error  
Mean output voltage  
X,Y cut off frequency2)  
X,Y delay time2)3)  
φ
-12  
GMR (AMR negligible)  
VMV=(Vmax+Vmin)/21)  
-3 dB attenuation  
VMVX, VMVY 0.47*VDD 0.5*VDD 0.53*VDD  
V
fc  
30  
9
kHz  
µs  
mV  
tadel  
VNoise  
Output noise2)  
5
RMS  
1) Vmax and Vmin correspond to the voltage levels at Xmax or Ymax and Xmin or Ymin respectively as shown in Figure 17,  
Figure 18.  
2) Not subject to production test - verified by design/characterization  
3) Time measured at chip output pins.  
Data Sheet  
19  
V 2.0  
2018-12  
TLE5x09A16(D)  
Analog AMR/GMR Angle Sensor  
Specification  
VDD  
φ
XMAX  
YMAX  
AY  
AX  
X0  
YMIN  
XMIN  
Figure 17 GMR sensor single-ended output signals  
Figure 18 AMR sensor single-ended output signals  
Data Sheet  
20  
V 2.0  
2018-12  
TLE5x09A16(D)  
Analog AMR/GMR Angle Sensor  
Specification  
Table 10  
Differential output parameters over temperature and lifetime  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or Test Condition  
Min.  
Max.  
2.6  
X, Y amplitude  
AXdiff, AYdiff 1.4  
V
Sensors with 3.3 V supply  
2.4  
3.9  
V
Sensors with 5.0 V supply  
X, Y synchronism  
k
94  
94  
100  
100  
106  
106  
12  
%
GMR  
%
AMR  
X, Y orthogonality error  
X, Y offset  
φ
-12  
°
GMR (AMR negligible)  
GMR  
OXdiff, OYdiff -100  
0
100  
200  
mV  
mV  
kHz  
µs  
mV  
-200  
0
AMR  
X,Y cut-off frequency1)  
X,Y delay time1)2)  
Output noise1)  
fc  
30  
9
-3 dB attenuation  
tadel  
VNoise  
5
RMS  
1) Not subject to production test - verified by design/characterization.  
2) Time measured at chip output pins.  
Figure 19 GMR differential output of ideal cosine  
Data Sheet  
21  
V 2.0  
2018-12  
TLE5x09A16(D)  
Analog AMR/GMR Angle Sensor  
Specification  
Figure 20 AMR differential output of ideal cosine  
Attention: The misalignment of the magnetization depends on the sensing technology. With a GMR sensor  
the non-orthogonality error can be in worst case +/-12° according to specification for each die.  
For AMR this effect is negligible. The non-orthogonality error, which means the deviation of the  
90°-phase correlation from X- and Y-phase, can be compensated through an end-of-line  
calibration including the definition of the zero-phase or X-reference direction. This applies to  
each sensor die and has to be taken into account during operation of the TLE5x09A16(D).  
Data Sheet  
22  
V 2.0  
2018-12  
TLE5x09A16(D)  
Analog AMR/GMR Angle Sensor  
Specification  
2.4  
Error diagnosis  
Each sensor provides two functions at its VDIAG pin. During normal operation the voltage measured at this pin  
is temperature dependent. The typical voltage at room temperature and the temperature coefficient are given  
in Table 8. The temperature accuracy is not part of the sensor qualification.  
The second purpose of pin VDIAG is the diagnosis functionality. In case the device detects an internal error, the  
pin is driven to a low level. Another option for obtaining partial diagnostic functions is the alternative  
configuration with pull-down resistors described in Figure 16. With this setting, it is not required to use the  
VDIAG pin, but internal error detection is also reduced. For further details please refer to the Safety Manual.  
2.5  
Angle performance  
The overall angle error represents the relative angular error. This error describes the deviation from the  
reference line after zero angle definition. The typical value corresponds to an ambient temperature of 25°C. All  
other values correspond to the operating ambient temperature range -40°C < TA < 125°C and through the  
TLE5x09A16(D) lifetime.  
Fully compensated performance  
Using the algorithm described in the application note “TLE5xxx(D) Calibration”, it is possible to implement  
an ongoing automatic calibration on the microcontroller to greatly improve the performance of the  
TLE5x09A16(D), as temperature and lifetime drifts are better compensated. This is only possible in  
applications where a rotor is turning continuously.  
Table 11  
Residual angle error over temperature and lifetime1)  
Parameter  
Symbol  
Values  
Unit  
Note or Test Condition  
Min. Typ. Max.  
4)  
4)  
Overall angle error AMR sensor  
(single-ended)2)3)  
αERR,C  
αERR,C  
αERR,C  
αERR,C  
0.1  
0.5  
°
°
°
°
Overall angle error AMR sensor  
(differential)2)  
0.1  
0.5  
Overall angle error GMR sensor  
(single-ended)2)3)  
< 0.6 0.9  
< 0.6 0.9  
Overall angle error GMR sensor  
(differential)2)  
1) After perfect compensation of offset, amplitude synchronicity mismatch and orthogonality error.  
2) Including hysteresis error.  
3) Assuming a symmetrical load.  
4) For AMR sensor only: an additional angle error of 0.2° applies to operation in the magnetic field 10 mT < B < 20 mT  
With this auto calibration algorithm, it is possible to reach an angular accuracy as good as the residual error  
of the sensing elements, which means the remaining error after perfect compensation of offset and amplitude  
synchronicity mismatch for both the AMR and the GMR sensors and perfect compensation of orthogonality  
error for the GMR sensor. A typical behavior of a fully compensated angle error with this ongoing calibration is  
shown in Figure 21 for the GMR sensor and Figure 22 for the AMR sensor for different ambient temperatures.  
The accuracy of the fully compensated angle is listed in Table 11, which is divided into single-ended and  
differential output of the sensor.  
Data Sheet  
23  
V 2.0  
2018-12  
TLE5x09A16(D)  
Analog AMR/GMR Angle Sensor  
Specification  
Angle performance with one-time calibration  
To achieve the overall angle error specified, both sensor ICs in the TLE5x09A16(D) have to be calibrated for  
offset and amplitude synchronism at 25°C. Additionally, the GMR sensor has to be calibrated for orthogonality.  
The compensation parameters have to be stored and applied on the microcontroller. For the detailed  
calibration procedure refer to the application note “TLE5xxx(D) Calibration”. Table 12 characterizes the  
accuracy of the angle, which is calculated from the single-ended output respectively the differential output of  
the sensor and the compensation parameters acquired in the end-of-line calibration.  
Table 12  
One-time calibrated angle error over temperature and lifetime  
Parameter  
Symbol  
Values  
Unit  
Note or Test Condition  
Min. Typ. Max.  
Overall angle error AMR αERR  
sensor (single-ended)1)2)  
1.7  
2.9  
1.7  
2.9  
4.0  
4.8  
3.0  
3.8  
°
°
°
°
°
°
°
°
E1210, E1211, E2210, E2211, with TCO3); 4)  
E5201, without TCO3); 4)  
E1210, E1211, E2210, E2211, with TCO3); 4)  
E5201, without TCO3); 4)  
E1210, E1211, E2210, E2211, with TCO3)  
E1200, E2200, E5201, without TCO3)  
E1210, E1211, E2210, E2211, with TCO3)  
E1200, E2200, E5201, without TCO3)  
Overall angle error AMR αERR  
sensor (differential)1)  
Overall angle error GMR αERR  
sensor (single-ended)1)2)  
Overall angle error GMR αERR  
sensor (differential)1)  
1) Including hysteresis error.  
2) Assuming a symmetrical load.  
3) Temperature Compensation Offset.  
4) For AMR sensor only: an additional angle error of 0.2° applies to operation in the magnetic field 10 mT < B < 20 mT.  
Typical behaviour of angle error compensation  
The angle accuracy performance for ideal compensation and one-time compensation is listed in Table 11  
respectively in Table 12. Figure 21 shows for the GMR sensor and Figure 22 for the AMR sensor the typical  
behavior of the residual angle error with ongoing respectively one-time calibration at different ambient  
temperatures. The comparison of this compensation algorithms demonstrates the superior performance of  
the full compensation method over lifetime and temperature with an average residual error below 0.6° for the  
GMR sensor and 0.1° for the AMR sensor operating in the specified magnetic field. With one-time  
compensation an additional residual angle error occurs due to the temperature dependency of the sensor.  
Data Sheet  
24  
V 2.0  
2018-12  
TLE5x09A16(D)  
Analog AMR/GMR Angle Sensor  
Specification  
Fully compensated  
One-time compensated  
1
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
25°C  
25°C  
-40°C  
125°C  
-40°C  
125°C  
20  
40  
60  
80  
20  
40  
60  
80  
magnetic induction (mT)  
magnetic induction (mT)  
Figure 21 Typical residual angle error of fully and one-time compensated GMR sensor for differential  
output at different temperatures (measured at 0 h); one-time compensation is calibrated at  
T = 25°C and B = 40 mT; TLE5309D derivative with TCO1) and 3.3 V supply voltage is used  
Fully compensated  
One-time compensated  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
25°C  
25°C  
-40°C  
125°C  
-40°C  
125°C  
20  
40  
60  
80  
20  
40  
60  
80  
magnetic induction (mT)  
magnetic induction (mT)  
Figure 22 Typical residual angle error of fully and one-time compensated AMR sensor for differential  
output at different temperatures (measured at 0 h); one-time compensation is calibrated at  
T = 25°C and B = 40 mT; TLE5309D derivative with TCO1) and 3.3 V supply voltage is used  
1) Temperature Compensation Offset  
Data Sheet  
25  
V 2.0  
2018-12  
TLE5x09A16(D)  
Analog AMR/GMR Angle Sensor  
Specification  
2.6  
Electrostatic discharge protection  
Table 13  
ESD protection for single die  
Parameter  
Symbol Values  
Unit  
Notes  
min.  
max.  
4.0  
1)  
2)  
ESD voltage  
VHBM  
kV  
kV  
kV  
VCDM  
0.5  
0.75  
2) for corner pins  
1) Human Body Model (HBM) according to: ANSI/ESDA/JEDEC JS-001.  
2) Charged Device Model (CDM) according to: JESD22-C101.  
Table 14  
ESD protection for dual die  
Parameter  
Symbol  
min.  
Values  
max.  
Unit  
Notes  
ESD voltage  
VHBM  
4.0  
kV  
kV  
kV  
kV  
1) Ground pins connected.  
1)  
2.0  
2)  
VCDM  
0.5  
0.75  
2) For corner pins.  
1) Human Body Model (HBM) according to ANSI/ESDA/JEDEC JS-001.  
2) Charged Device Model (CDM) according to JESD22-C101.  
2.7  
Electro magnetic compatibility (EMC)  
The TLE5x09A16(D) is characterized according to the EMC requirements described in the “Generic IC EMC Test  
Specification” Version 1.2 from November 15, 2007. The classification of the TLE5x09A16(D) is done for local  
pins.  
Data Sheet  
26  
V 2.0  
2018-12  
TLE5x09A16(D)  
Analog AMR/GMR Angle Sensor  
Package information  
3
Package information  
The TLE5x09A16(D) is delivered in a green SMD package with lead-free plating, the same PG-TDSO-16 is used  
for the single die and the dual die derivates.  
3.1  
Package parameters  
Table 15  
Package parameters  
Symbol  
Parameter  
Limit Values  
min. typ. max.  
130 150 K/W  
Unit  
Notes  
Thermal Resistance  
RthJA  
RthJC  
RthJL  
Junction-to-Air1)  
Junction-to-Case  
Junction-to-Lead  
260°C  
35  
70  
K/W  
K/W  
Moisture Sensitivity Level MSL 3  
Lead Frame  
Plating  
Cu  
Sn 100%  
> 7 µm  
1) According to Jedec JESD51-7  
3.2  
Package outlines  
Figure 23 Package dimensions  
Data Sheet  
27  
V 2.0  
2018-12  
TLE5x09A16(D)  
Analog AMR/GMR Angle Sensor  
Package information  
0.2  
0.2  
Figure 24 Position of sensing element  
Note:  
Figure 24 shows the positioning of the two sensor dies in the TLE5x09A16D. In the TLE5x09A16, only  
the top die is mounted.  
Table 16  
Sensor IC placement tolerances in package  
Parameter  
Values  
Max.  
Unit  
Notes  
Min.  
-100  
-3  
Position eccentricity  
100  
3
µm  
In X- and Y-direction  
Rotation  
Tilt  
°
°
Affects zero position offset of sensor  
-3  
3
Attention: The positioning accuracy of each sensor IC in the package is ±3°. Thus, the relative rotation of  
the two sensor ICs can be up to 6°, resulting in a constant offset of the angle output of up to 6°.  
Additionally, the misalignment due to magnetization resulting in the orthogonality error  
(listed in Table 9 and Table 10) has to be added to the overall angle offset, listed in Table 5.  
With a GMR sensor the orthogonality error can be in worst case +/-12° according to  
specification for each die. For AMR this effect is negligible. These effects have to be measured  
in an end-of-line calibration and taken into account during operation of the TLE5x09A16(D).  
Data Sheet  
28  
V 2.0  
2018-12  
TLE5x09A16(D)  
Analog AMR/GMR Angle Sensor  
Package information  
z
y
Tilt angle  
Reference plane  
Chip  
Package  
Chip  
Die pad  
Rotational  
displacement  
x
x
Figure 25 Tolerance of the die in the package  
3.3  
Footprint  
Figure 26 Footprint  
3.4  
Packing  
Do  
T
P2  
Po  
4.± ±±.1(II)  
±.3± ±±.±5  
2.± ±±.±5(I)  
1.55  
YY  
±±.±5  
XX  
3.5±  
Ao  
K1  
P1  
SECTION Y-Y  
(I)  
Measured from centreline of sprocket hole  
to centreline of pocket.  
(II)  
Cumulative tolerance of 10 sprocket  
holes is 0.20 .  
1.1±  
Ao  
Bo  
Ko  
6.30 +/- 0.1  
5.45 +/- 0.1  
1.60 +/- 0.1  
1.30 +/- 0.1  
5.50 +/- 0.05  
(III) Measured from centreline of sprocket  
hole to centreline of pocket.  
(IV)  
Other material available.  
K
1
SECTION X-X  
F
8.00  
+/- 0.1  
12.00 +0.3/- 0.1  
P
W
1
Figure 27 Tape and reel  
Data Sheet  
29  
V 2.0  
2018-12  
TLE5x09A16(D)  
Analog AMR/GMR Angle Sensor  
Package information  
3.5  
Marking  
The device is marked on the frontside with a date code, the device type and a lot code.  
On the backside there is a 8 x 18 data matrix code and an OCR-A code.  
Position  
1st Line  
2nd Line  
3rd Line  
Marking  
Gxxxx  
Description  
G = green, 4-digit = date code  
Type (8 digits), see ordering Table 3  
Lot code (3 digits)  
309Dxxxx  
xxx  
Figure 28 Marking  
Data Sheet  
30  
V 2.0  
2018-12  
TLE5x09A16(D)  
Analog AMR/GMR Angle Sensor  
Revision history  
4
Revision history  
Revision  
Date  
Changes  
1.0  
2016-01  
TLE5309D  
Initial release  
1.0  
1.1  
2016-06  
2017-04  
TLE5009A16D  
Initial release  
TLE5009A16(D)  
Table 1: single die types added.  
Table 2: single die pin description added.  
Chapter 3: Table 6 splitted in single-ended and differential output parameters, type  
description replaced by VDD value.  
Figure 8 added (Single-ended output signals).  
Table 8: single-ended fully compensated angle error added.  
Table 9: single-ended angle error added.  
Chapter 3: Typical behavior of angle error compensation added.  
Figure 13: Typical residual angle error for full and one-time compensation added.  
Chapter 3: ESD protection splitted in single and dual die.  
Figure 15 added (Marking).  
Layout changed.  
1.2  
2017-10  
TLE5009A16(D)  
Chapter References removed.  
Table 2: Pin description changed.  
Figure 7: Application circuit in single-ended output mode added.  
Figure 9: Application circuit for partial diagnostics with pull-down resistors in  
single-ended output mode added.  
Figure 10: Application circuit for partial diagnostics with pull-down resistors in  
differential output mode added.  
Table 6: single-ended output noise changed.  
Data Sheet  
31  
V 2.0  
2018-12  
TLE5x09A16(D)  
Analog AMR/GMR Angle Sensor  
Revision history  
Revision  
Date  
Changes  
1.1  
2017-10  
TLE5309D  
Layout changed.  
Table 8: single-ended angle error added.  
Table 9: single-ended angle error added.  
Figure 19: Typical residual angle error for full and one-time compensation GMR  
sensor added.  
Figure 20: Typical residual angle error for full and one-time compensation AMR  
sensor added.  
Chapter References removed.  
Pin description: Symbol changed to Pin Name.  
Figure 9: Application circuit in single-ended output mode added.  
Figure 11: Application circuit in low-power applications in single-ended output  
mode added.  
Figure 13: Application circuit for partial diagnostics with pull-down resistors in  
single-ended output mode added.  
2.0  
2018-12  
TLE5x09A16(D) family sensor datasheet released  
Changes TLE5009A16(D) rev. 1.2 to TLE5x09A16(D) rev. 2.0:  
Chapter 2.4 Error diagnosis: internal detectable errors removed.  
Table 9 differential mode: vector length removed.  
Figure 25: die displacement added.  
TLE5109A16(D) - initial release in TLE5x09A16(D) rev. 2.0  
Changes TLE5309D rev. 1.1 to TLE5x09A16(D) rev. 2.0:  
Table 6: Magnetic induction AMR added.  
Chapter 2.4 Error diagnosis: internal detectable errors removed.  
Table 8 single-ended: AMR synchronism to +/- 6 % changed.  
Table 9 differential mode: AMR synchronism to +/- 6 % changed.  
Table 9 differential mode: vector length removed.  
Table 10: footnote angle error adder at low magnetic field for AMR added.  
Table 11: footnote angle error adder at low magnetic field for AMR added.  
Table 11: AMR single-ended one-time calibrated angle error improved.  
Figure 25: die displacement added.  
Data Sheet  
32  
V 2.0  
2018-12  
Please read the Important Notice and Warnings at the end of this document  
Trademarks of Infineon Technologies AG  
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,  
DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,  
HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™,  
OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,  
SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™.  
Trademarks updated November 2015  
Other Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
Edition 2018-12  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2018 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  

相关型号:

TLE5109A16D E1210

Infineon´s TLE5109 products are available as single and dual die versions and at two different supply voltage options, optimized for 3.3V(E1210) as well as 5V(E2210). All products come inside the TDSO-16 Package. The whole TLE5109 family is ready for ISO 26262, targeting ASIL D for dual die sensors. This makes the products a perfect fit for both automotive as well as industrial safety applications.

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE5109A16D E2210

Adding the AMR-based TLE5109 family to the already existing GMR-based TLE5009 and diverse TLE5309 products, Infineon Technologies AG is also increasing the design-in flexibility for customers. Having all the same footprint and interfaces customers have the option to start designs with one product family – and easily change from one to the other product family as both pinning as well as interfaces of all products.

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE5203

3-A DC Motor Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE5203G

3-A DC Motor Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE5203S

Micro Peripheral IC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE5204

3-A DC Motor Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE5204G

3-A DC Motor Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE5205-2

5-A H-Bridge for DC-Motor Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE5205-2G

5-A H-Bridge for DC-Motor Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE5205-2GP

5-A H-Bridge for DC-Motor Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE5205-2S

5-A H-Bridge for DC-Motor Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE5205-2_07

5-A H-Bridge for DC-Motor Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON