TLE6250G [INFINEON]

CAN-Transceiver; CAN收发器
TLE6250G
型号: TLE6250G
厂家: Infineon    Infineon
描述:

CAN-Transceiver
CAN收发器

网络接口 电信集成电路 电信电路 光电二极管 信息通信管理 PC
文件: 总27页 (文件大小:617K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CAN-Transceiver  
TLE 6250  
TLE 6250 V33  
Final Data Sheet  
Features  
• CAN data transmission rate up to 1 MBaud  
• Suitable for 12 V and 24 V applications  
• Excellent EMC performance (very high immunity and  
very low emission)  
• Version for 5 V and 3.3 V micro controllers  
• Bus pins are short circuit proof to ground and battery  
voltage  
P-DSO-8-3  
• Over-temperature protection  
• Very wide temperature range (- 40°C up to 150°C)  
Type  
Ordering Code  
Q67006-A9427  
Q67000-A9594  
Q67006-A9523  
Q67000-A9538  
Package  
TLE 6250 G  
TLE 6250 C  
TLE 6250 G V33  
TLE 6250 C V33  
P-DSO-8-3  
(chip)  
P-DSO-8-3  
(chip)  
Description  
The CAN-transceiver TLE 6250 is a monolithic integrated circuit that is available as bare  
die as well as in a P-DSO-8-3 package. The IC is optimized for high speed differential  
mode data transmission in automotive and industrial applications and is compatible to  
ISO/DIS 11898 (see page 12 and 20). It works as an interface between the CAN protocol  
controller and the physical differential bus in both, 12 V and 24 V systems.  
Note:  
There are two versions available: one for 5 V logic and the other one for 3.3 V logic  
requiring additional supply via the V33V pin. The IC can be set to stand-by mode via an  
control input. In addition the 5 V-version offers a receive only mode feature to support  
diagnostic functions.  
The IC is based on the Smart Power Technology SPTwhich allows bipolar and CMOS  
control circuitry in accordance with DMOS power devices existing on the same  
monolithic circuit. The TLE 6250 is designed to withstand the severe conditions of  
automotive applications and provides excellent EMC performance.  
Data Sheet Version 3.4  
1
2002-10-08  
TLE 6250  
TLE 6250 V33  
TxD  
GND  
VCC  
1
2
3
4
8
7
6
5
INH  
TxD  
1
2
3
4
8
7
6
5
INH  
CANH GND  
CANH  
CANL  
V33V  
P-DSO-8-3  
P-DSO-8-3  
CANL  
RM  
VCC  
RxD  
RxD  
TLE 6250 G  
TLE 6250 GV33  
Figure 1  
Pin Configuration (top view)  
Pin Definitions and Functions  
Pin No. Symbol Function  
1
2
3
4
TxD  
GND  
VCC  
CAN transmit data input; 20 kpull up, LOW in dominant state  
Ground;  
5 V Supply;  
RxD  
CAN receive data output; LOW in dominant state,  
integrated pull up  
5
RM  
Receive-only input; (5 V-version), 20 kpull up, set low to  
activate RxD-only mode  
V33V  
Logic supply; (3.3 V-version) 3.3 V OR 5V microcontroller logic  
supply can be connected here! The digital I/Os of the TLE6250V33  
adopt to the connected microcontroller logic supply at V33V  
6
7
8
CANL  
CANH  
INH  
Low line input; LOW in dominant state  
High line output; HIGH in dominant state  
Control input; 20 kpull, set LOW for normal mode  
Data Sheet Version 3.4  
2
2002-10-08  
TLE 6250  
TLE 6250 V33  
Functional Block Diagram  
TLE 6250 G  
3
VCC  
7
CANH  
Driver  
Temp.-  
Protection  
1
Output  
Stage  
TxD  
6
CANL  
8
Mode Control  
Receiver  
INH  
5
=
RM  
4
RxD  
2
GND  
AEB02922  
Figure 2  
Block Diagram TLE 6250 G  
Data Sheet Version 3.4  
3
2002-10-08  
TLE 6250  
TLE 6250 V33  
TLE 6250 G V33  
3
VCC  
5
V3.3 V  
7
CANH  
CANL  
Driver  
Temp.-  
Protection  
1
Output  
Stage  
TxD  
6
8
Mode Control  
Receiver  
INH  
=
4
RxD  
2
GND  
AEB02923  
Figure 3  
Block Diagram TLE 6250 G V33  
Data Sheet Version 3.4  
4
2002-10-08  
TLE 6250  
TLE 6250 V33  
Application Information  
Normal Mode  
INH = 1  
RM = 0  
RM = 1  
Normal Mode  
INH = 0  
RM = 1  
INH = 0  
INH = 0  
and RM = 1  
INH=1  
INH=0  
INH = 0  
and RM = 0  
Stand-by  
Mode  
Stand-by Mode  
Receive-only Mode  
INH = 1  
INH = 1  
RM = 0 / 1  
INH = 0  
RM = 0  
INH = 1  
AED02924  
5V Version  
3.3V Version  
Figure 4  
Mode State Diagram  
Both, the TLE 6250 G as well as the TLE 6250 C offer three different operation modes  
(see Figure 4), controlled by the INH and RM pin for the TLE6250 and only by the INH  
pin for the 6250 V33. In the normal mode the device is able to receive and to transmit  
messages whereas in the receive-only mode signals at the TxD input are not transmitted  
to the CAN bus. The receive-only mode can be used for diagnostic purposes as well as  
to prevent the bus being blocked by a faulty permanent dominant TxD input signal. The  
stand-by mode is a low power mode that disables both, the receiver as well as the  
transmitter. For the TLE 6250 G V33 and TLE 6250 C V33 the receive only mode  
feature is not available. The inhibit feature for this versions works in the same way as for  
the 5V versions.  
In case the receive-only feature is not used the RM pin has to be left open. When the  
stand-by mode is not used the INH pin has to be connected to ground level in order to  
switch the TLE 6250 in normal mode.  
Data Sheet Version 3.4  
5
2002-10-08  
TLE 6250  
Application Information for the 3.3V Version  
The TLE 6250V33 can be used for both; 3.3V and 5V microcontroller logic supply as  
shown below. Don´t apply external resistors between the power supply and this pin. This  
may cause a voltage drop and so reduce the available voltage at this pin.  
TLE 6250 G V33  
TLE 6250 G V33  
INH  
INH  
8
4
1
5
3
8
4
1
5
3
RxD  
RxD  
TxD  
V33V  
VCC  
TxD  
V33V  
7
6
CANH  
CANL  
7
6
CANH  
CANL  
5V  
µP  
3.3V  
µP  
GND  
2
VCC  
GND  
2
GND  
GND  
100 nF  
100 nF  
100 nF 100 nF 100 nF  
VQ1  
5V  
5V  
VI  
e.g. TLE 4476  
VQ2  
VI  
VQ  
100  
nF  
100  
nF  
e.g. TLE 4270  
22 µF  
3.3V  
GND  
GND  
22 µF  
22 µF  
22 µF  
22 µF  
Application with 3.3V I/O supply  
Application with 5V I/O supply  
Data Sheet Version 3.4  
6
2002-10-08  
TLE 6250  
Electrical  
Characteristics  
TLE6250 G  
(5V Version)  
Data Sheet Version 3.4  
7
2002-10-08  
TLE 6250  
Electrical Characteristics  
Absolute Maximum Ratings  
Parameter  
Symbol Limit Values Unit  
min. max.  
Remarks  
Voltages  
Supply voltage  
VCC  
0.3 6.5  
40  
V
V
CAN input voltage  
(CANH, CANL)  
VCANH/L 40  
Logic voltages at  
VI  
0.3 VCC  
V
0 V < VCC < 5.5 V  
INH, RM, TxD, RxD  
Electrostatic discharge  
voltage at CANH,CANL  
VESD  
VESD  
6  
2  
6
2
kV  
kV  
human body model  
(100 pF via 1.5 kΩ)  
Electrostatic discharge  
voltage  
human body model  
(100 pF via 1.5 kΩ)  
Temperatures  
Junction temperature  
Tj  
40  
160  
°C  
Note: Maximum ratings are absolute ratings; exceeding any one of these values may  
cause irreversible damage to the integrated circuit.  
Data Sheet Version 3.4  
8
2002-10-08  
TLE 6250  
Operating Range  
Parameter  
Symbol Limit Values Unit  
Remarks  
min.  
4.5  
max.  
5.5  
Supply voltage  
VCC  
Tj  
V
Junction temperature  
40  
150  
°C  
Thermal Resistances  
Junction ambient  
Rthj-a  
185  
200  
K/W  
Thermal Shutdown (junction temperature)  
Thermal shutdown  
temperature  
TjsD  
160  
°C  
10 °C hysteresis  
Data Sheet Version 3.4  
9
2002-10-08  
TLE 6250  
Electrical Characteristics  
4.5 V < VCC < 5.5 V; RL = 60 ; VINH < VINH,ON; 40 °C < Tj < 150 °C; all voltages with  
respect to ground; positive current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Limit Values  
Unit Remarks  
min. typ. max.  
Current Consumption  
Current consumption  
ICC  
6
10  
70  
10  
10  
mA recessive state;  
V
TxD = VCC  
mA dominant state;  
TxD = 0 V  
Current consumption  
Current consumption  
Current consumption  
ICC  
45  
6
V
ICC  
mA receive-only mode;  
RM = low  
ICC,stb  
1
µA stand-by mode;  
TxD = RM = high  
Receiver Output R×D  
HIGH level output  
current  
IRD,H  
IRD,L  
-4  
4
-2  
mA VRD = 0.8 × VCC,  
Vdiff < 0.4 Vnote 1)  
LOW level output  
current  
2
mA VRD = 0.2 × VCC,  
Vdiff > 1 Vnote 1)  
Transmission Input T×D  
HIGH level input voltage VTD,H  
threshold  
0.5× 0.7×  
V
recessive state;  
dominant state  
VCC  
VCC  
LOW level input voltage VTD,L  
threshold  
0.3× 0.4×  
VCC  
10  
V
VCC  
25  
TxD pull up resistance  
RTD  
50  
kΩ  
note1) Vdiff = VCANH VCANL  
Data Sheet Version 3.4  
10  
2002-10-08  
TLE 6250  
Electrical Characteristics (contd)  
4.5 V < VCC < 5.5 V; RL = 60 ; VINH < VINH,ON; 40 °C < Tj < 150 °C; all voltages with  
respect to ground; positive current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Limit Values  
Unit Remarks  
min. typ. max.  
Inhibit Input (pin INH)  
HIGH level input voltage VINH,H  
threshold  
0.5× 0.7×  
V
stand-by mode;  
VCC  
VCC  
LOW level input voltage VINH,L  
threshold  
0.3× 0.4×  
V
normal mode  
VCC  
10  
VCC  
25  
INH pull up resistance  
RINH  
50  
kΩ  
Receive only Input (RM) (5V version only)  
HIGH level input voltage VRM,H  
threshold  
0.5× 0.7×  
V
normal mode;  
VCC  
VCC  
LOW level input voltage VRM,L  
threshold  
0.3× 0.4×  
V
receive-only mode  
VCC  
10  
VCC  
25  
RM pull up resistance  
RRM  
50  
kΩ  
Data Sheet Version 3.4  
11  
2002-10-08  
TLE 6250  
Electrical Characteristics (contd)  
4.5 V < VCC < 5.5 V; RL = 60 ; VINH < VINH,ON; 40 °C < Tj < 150 °C; all voltages with  
respect to ground; positive current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Limit Values  
Unit Remarks  
min. typ. max.  
Bus Receiver  
Differential receiver  
threshold voltage,  
recessive to dominant  
edge  
Vdiff,d  
0.75 0.90  
V
V
V
20 V < (VCANH  
CANL) < 25 V  
Vdiff = VCANH VCANL  
,
V
Differential receiver  
threshold voltage  
dominant to recessive  
edge  
Vdiff,r  
0.50 0.60  
20 V < (VCANH  
CANL) < 25 V  
Vdiff = VCANH VCANL  
,
V
Common Mode Range  
CMR  
-20  
25  
VCC = 5V  
Differential receiver  
hysteresis  
Vdiff,hys  
150  
mV –  
CANH, CANL input  
resistance  
Ri  
10  
20  
20  
40  
30  
60  
krecessive state  
krecessive state  
Differential input  
resistance  
Rdiff  
Data Sheet Version 3.4  
12  
2002-10-08  
TLE 6250  
Electrical Characteristics (contd)  
4.5 V < VCC < 5.5 V; RL = 60 ; VINH < VINH,ON; 40 °C < Tj < 150 °C; all voltages with  
respect to ground; positive current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Limit Values  
Unit Remarks  
min. typ. max.  
Bus Transmitter  
CANL/CANH recessive VCANL/H  
output voltage  
0.4 × –  
0.6 × V  
V
V
TxD = VCC  
TxD = VCC  
VCC  
VCC  
CANH, CANL recessive Vdiff  
- 1  
0.05  
V
output voltage difference  
Vdiff = VCANH VCANL  
no load; (see note 2)  
CANL dominant output  
voltage  
VCANL  
2.0  
V
V
V
V
V
TxD = 0 V;  
CC = 5 V  
CANH dominant output VCANH  
voltage  
2.8  
1.5  
V
V
TxD = 0 V;  
CC = 5 V  
CANH, CANL dominant Vdiff  
output voltage difference  
Vdiff = VCANH VCANL  
3.0  
V
V
TxD = 0 V;  
CC = 5 V  
CANL short circuit  
current  
ICANLsc  
50  
120  
150  
200  
mA VCANLshort = 18 V  
mA VCANLshort = 36 V  
mA VCANHshort = 0 V  
CANH short circuit  
current  
ICANHsc  
ICANHsc  
ICANH,lk  
-200 -120 -50  
CANH short circuit  
ent  
-120 –  
mA VCANHshort = -5 V  
Output current  
-50  
-50  
50  
50  
-300 -400 µA  
-100 -150 µA  
V
V
CC = 0 V, VCANH  
CANL = -7 V  
=
=
=
=
V
V
CC = 0 V, VCANH  
CANL = -2 V  
Output current  
ICANH,lk  
280  
100  
400  
150  
µA  
µA  
V
V
CC = 0 V, VCANH  
CANL = 7 V  
V
V
CC = 0 V, VCANH  
CANL = 2 V  
note 2) deviation from ISO/DIS 11898  
Data Sheet Version 3.4  
13  
2002-10-08  
TLE 6250 V33  
Electrical Characteristics (contd)  
4.5 V < VCC < 5.5 V; RL = 60 ; VINH < VINH,ON; 40 °C < Tj < 150 °C; all voltages with  
respect to ground; positive current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Limit Values  
Unit Remarks  
min. typ. max.  
Dynamic CAN-Transceiver Characteristics  
Propagation delay  
TxD-to-RxD LOW  
(recessive to dominant)  
td(L),TR  
td(H),TR  
td(L),T  
150  
150  
100  
100  
50  
280  
280  
140  
140  
140  
140  
ns  
ns  
ns  
ns  
ns  
ns  
CL = 47 pF;  
RL = 60 ; VCC = 5 V;  
CRxD = 20 pF  
Propagation delay  
TxD-to-RxD HIGH  
(dominant to recessive)  
CL = 47 pF;  
RL = 60 ; VCC = 5 V;  
C
RxD = 20 pF  
Propagation delay  
TxD LOW to bus  
dominant  
CL = 47 pF;  
RL = 60 ; VCC = 5 V  
Propagation delay  
TxD HIGH to bus  
recessive  
td(H),T  
td(L),R  
td(H),R  
CL = 47 pF;  
RL = 60 ; VCC = 5 V  
Propagation delay  
bus dominant to RxD  
LOW  
CL = 47 pF;  
RL = 60 ; VCC = 5 V;  
C
RxD = 20 pF  
Propagation delay  
50  
CL = 47 pF;  
bus recessive to RxD  
HIGH  
1)  
RL = 60 ; VCC = 5 V;  
CRxD = 20 pF  
Data Sheet Version 3.4  
14  
2002-10-08  
TLE 6250 V33  
Electrical  
Characteristics  
TLE6250 GV33  
(3.3V Version)  
Data Sheet Version 3.4  
15  
2002-10-08  
TLE 6250 V33  
Electrical Characteristics  
Absolute Maximum Ratings  
Parameter  
Symbol Limit Values Unit  
min. max.  
Remarks  
Voltages  
Supply voltage  
3.3 V supply  
VCC  
0.3 6.5  
0.3 5.5  
V
V
V
V33V  
CAN input voltage  
(CANH, CANL)  
VCANH/L 40  
40  
Logic voltages at  
VI  
0.3 VCC  
V
0 V < VCC < 5.5 V  
INH, RM, TxD, RxD  
Electrostatic discharge  
voltage at CANH,CANL  
VESD  
VESD  
6  
2  
6
2
kV  
kV  
human body model  
(100 pF via 1.5 kΩ)  
Electrostatic discharge  
voltage  
human body model  
(100 pF via 1.5 kΩ)  
Temperatures  
Junction temperature  
Tj  
40  
160  
°C  
Note: Maximum ratings are absolute ratings; exceeding any one of these values may  
cause irreversible damage to the integrated circuit.  
Data Sheet Version 3.4  
16  
2002-10-08  
TLE 6250 V33  
Operating Range  
Parameter  
Symbol Limit Values Unit  
Remarks  
min.  
4.5  
max.  
5.5  
Supply voltage  
VCC  
V33V  
Tj  
V
3.3 V supply voltage  
Junction temperature  
3.0  
5.5  
V
40  
150  
°C  
Thermal Resistances  
Junction ambient  
Rthj-a  
185  
200  
K/W  
Thermal Shutdown (junction temperature)  
Thermal shutdown  
temperature  
TjsD  
160  
°C  
10 °C hysteresis  
Data Sheet Version 3.4  
17  
2002-10-08  
TLE 6250 V33  
Electrical Characteristics  
4.5 V < VCC < 5.5 V; (3.0 V < V33V < 3.6 V for 3.3 V version); RL = 60 ; VINH < VINH,ON  
;
40 °C < Tj < 150 °C; all voltages with respect to ground; positive current flowing into  
pin; unless otherwise specified.  
Parameter  
Symbol  
Limit Values  
Unit Remarks  
min. typ. max.  
Current Consumption (3.3V version)  
Current consumption  
Current consumption  
ICC+33V  
ICC+33V  
6
10  
70  
mA recessive state;  
V
TxD = V33V  
mA dominant state;  
TxD = 0 V  
45  
V
Current consumption  
Current consumption  
I33V  
2
mA  
ICC+33V,stb  
1
10  
µA stand-by mode  
TxD = high  
Receiver Output R×D  
HIGH level output  
current  
IRD,H  
-2  
2
-1  
mA VRD = 0.8 × V33V,  
Vdiff < 0.4 Vnote 1)  
LOW level output current IRD,L  
1
mA VRD = 0.2 × V33V,  
Vdiff > 1 Vnote 1)  
Transmission Input T×D  
HIGH level input voltage VTD,H  
threshold  
0.55× 0.7×  
V
recessive state;  
dominant state;  
V33V V33V  
LOW level input voltage VTD,L  
threshold  
0.3× 0.45× –  
V33V V33V  
V
TxD pull up resistance  
RTD  
10  
25  
50  
kΩ  
note1) Vdiff = VCANH VCANL  
Data Sheet Version 3.4  
18  
2002-10-08  
TLE 6250 V33  
Electrical Characteristics (contd)  
4.5 V < VCC < 5.5 V; (3.0 V < V33V < 3.6 V for 3.3 V version); RL = 60 ; VINH < VINH,ON  
;
40 °C < Tj < 150 °C; all voltages with respect to ground; positive current flowing into  
pin; unless otherwise specified.  
Parameter  
Symbol  
Limit Values  
Unit Remarks  
min. typ. max.  
Inhibit Input (pin INH)  
HIGH level input voltage VINH,H  
threshold  
0.55× 0.7×  
V33V V33V  
V
stand-by mode;  
LOW level input voltage VINH,L  
threshold  
0.3× 0.45× –  
V33V V33V  
V
normal mode;  
INH pull up resistance  
RINH  
10  
25  
50  
kΩ  
Data Sheet Version 3.4  
19  
2002-10-08  
TLE 6250 V33  
Electrical Characteristics (contd)  
4.5 V < VCC < 5.5 V; (3.0 V < V33V < 3.6 V for 3.3 V version); RL = 60 ; VINH < VINH,ON  
;
40 °C < Tj < 150 °C; all voltages with respect to ground; positive current flowing into  
pin; unless otherwise specified.  
Parameter  
Symbol  
Limit Values  
Unit Remarks  
min. typ. max.  
Bus Receiver  
Differential receiver  
threshold voltage,  
recessive to dominant  
edge  
Vdiff,d  
0.75 0.90  
V
V
V
20 V < (VCANH  
CANL) < 25 V  
Vdiff = VCANH VCANL  
,
V
Differential receiver  
threshold voltage  
dominant to recessive  
edge  
Vdiff,r  
0.50 0.60  
20 V < (VCANH  
CANL) < 25 V  
Vdiff = VCANH VCANL  
,
V
Common Mode Range  
CMR  
-20  
25  
VCC = 5V  
Differential receiver  
hysteresis  
Vdiff,hys  
150  
mV –  
CANH, CANL input  
resistance  
Ri  
10  
20  
20  
40  
30  
60  
krecessive state  
krecessive state  
Differential input  
resistance  
Rdiff  
Data Sheet Version 3.4  
20  
2002-10-08  
TLE 6250 V33  
Electrical Characteristics (contd)  
4.5 V < VCC < 5.5 V; (3.0 V < V33V < 3.6 V for 3.3 V version); RL = 60 ; VINH < VINH,ON  
;
40 °C < Tj < 150 °C; all voltages with respect to ground; positive current flowing into  
pin; unless otherwise specified.  
Parameter  
Symbol  
Limit Values  
Unit Remarks  
min. typ. max.  
Bus Transmitter  
CANL/CANH recessive VCANL/H  
output voltage  
0.4 × –  
0.6 × V  
V
V
TxD = V33V  
TxD = V33V  
VCC  
VCC  
CANH, CANL recessive Vdiff  
- 1  
0.05  
V
output voltage difference  
Vdiff = VCANH VCANL  
no load; (see note 2)  
CANL dominant output  
voltage  
VCANL  
2.0  
V
V
V
V
V
TxD = 0 V;  
CC = 5 V  
CANH dominant output VCANH  
voltage  
2.8  
1.5  
V
V
TxD = 0 V;  
CC = 5 V  
CANH, CANL dominant Vdiff  
output voltage difference  
Vdiff = VCANH VCANL  
3.0  
V
V
TxD = 0 V;  
CC = 5 V  
CANL short circuit  
current  
ICANLsc  
50  
120  
150  
200  
mA VCANLshort = 18 V  
mA VCANLshort = 36 V  
mA VCANHshort = 0 V  
CANH short circuit  
current  
ICANHsc  
ICANHsc  
ICANH,lk  
-200 -120 -50  
CANH short circuit  
current  
-120 –  
mA VCANHshort = -5 V  
Output current  
-50  
-50  
50  
50  
-300 -400 µA  
-100 -150 µA  
V
V
CC = 0 V, VCANH  
CANL = -7 V  
=
=
=
=
V
V
CC = 0 V, VCANH  
CANL = -2 V  
Output current  
ICANH,lk  
280  
100  
300  
150  
µA  
µA  
V
V
CC = 0 V, VCANH  
CANL = 7 V  
V
V
CC = 0 V, VCANH  
CANL = 2 V  
note 2) deviation from ISO/DIS 11898  
Data Sheet Version 3.4  
21  
2002-10-08  
TLE 6250  
TLE 6250 V33  
Electrical Characteristics (contd)  
4.5 V < VCC < 5.5 V; (3.0 V < V33V < 3.6 V for 3.3 V version); RL = 60 ; VINH < VINH,ON  
;
40 °C < Tj < 150 °C; all voltages with respect to ground; positive current flowing into  
pin; unless otherwise specified.  
Parameter  
Symbol  
Limit Values  
Unit Remarks  
min. typ. max.  
Dynamic CAN-Transceiver Characteristics  
Propagation delay  
TxD-to-RxD LOW  
(recessive to dominant)  
td(L),TR  
td(H),TR  
td(L),T  
150  
150  
100  
100  
50  
280  
280  
140  
140  
140  
140  
ns  
ns  
ns  
ns  
ns  
ns  
CL = 47 pF;  
RL = 60 ; VCC = 5 V;  
CRxD = 20 pF  
Propagation delay  
TxD-to-RxD HIGH  
(dominant to recessive)  
CL = 47 pF;  
RL = 60 ; VCC = 5 V;  
C
RxD = 20 pF  
Propagation delay  
TxD LOW to bus  
dominant  
CL = 47 pF;  
RL = 60 ; VCC = 5 V  
Propagation delay  
TxD HIGH to bus  
recessive  
td(H),T  
td(L),R  
td(H),R  
CL = 47 pF;  
RL = 60 ; VCC = 5 V  
Propagation delay  
bus dominant to RxD  
LOW  
CL = 47 pF;  
RL = 60 ; VCC = 5 V;  
C
RxD = 20 pF  
Propagation delay  
bus recessive to RxD  
HIGH  
50  
CL = 47 pF;  
RL = 60 ; VCC = 5 V;  
C
RxD = 20 pF  
Data Sheet Version 3.4  
22  
2002-10-08  
TLE 6250  
TLE 6250 V33  
Diagrams  
8
1
5
4
3
8
INH  
TxD  
RM  
INH  
7
7
1
4
5
3
CANH  
CANL  
CANH  
CANL  
TxD  
RxD  
V3.3V  
VCC  
47 pF  
60  
47 pF  
60  
20 pF  
3.3 V  
6
6
RxD  
VCC  
20 pF  
5 V  
100 nF  
5 V  
GND  
2
GND  
2
100 nF  
100 nF  
AES02925  
5V Version  
Test Circuits for Dynamic Characteristics  
3.3V Version  
Figure 5  
Data Sheet Version 3.4  
23  
2002-10-08  
TLE 6250  
TLE 6250 V33  
VTxD  
VCC(33V)  
GND  
td(L), T  
td(H), T  
t
t
t
VDIFF  
VDIFF(d)  
VDIFF(r)  
VRxD  
td(L), R  
td(H), R  
VCC(33V)  
0.7VCC(33V)  
0.3VCC(33V)  
GND  
td(L), TR  
td(H), TR  
AET02926  
Figure 6  
Timing Diagrams for Dynamic Characteristics  
Data Sheet Version 3.4  
24  
2002-10-08  
TLE 6250  
TLE 6250 V33  
Application  
120  
TLE 6250 G  
5
8
4
1
VBat  
RM  
CAN  
Bus  
INH  
7
6
µP  
CANH  
CANL  
RxD  
TxD  
VCC  
3
GND  
2
GND  
100 nF  
100 nF  
V
VQ  
5 V  
I
e.g. TLE 4270  
GND  
22 µF  
100 nF  
22 µF  
ECU 1  
TLE 6250 G V33  
8
INH  
4
1
RxD  
TxD  
7
6
µP  
CANH  
CANL  
5
V3.3 V  
VCC  
100 nF  
100 nF  
GND  
2
GND  
100 nF  
V
VQ1  
5 V  
I
e.g. TLE 4476  
VQ2  
3.3 V  
22 µF  
GND  
22 µF  
100 nF  
22 µF  
120 Ω  
ECU X  
AES02927  
Figure 7  
Application Circuit  
Data Sheet Version 3.4  
25  
2002-10-08  
TLE 6250  
TLE 6250 V33  
Package Outlines  
P-DSO-8-3  
(Plastic Dual Small Outline Package)  
Sorts of Packing  
Package outlines for tubes, trays etc. are contained in our  
Data Book Package Information”  
Dimensions in mm  
2002-10-08  
SMD = Surface Mounted Device  
Data Sheet Version 3.4  
26  
TLE 6250  
TLE 6250 V33  
Edition 2002-10-08  
Published by Infineon Technologies AG,  
St.-Martin-Strasse 53,  
D-81541 München, Germany  
© Infineon Technologies AG 2002.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe  
certain components and shall not be consid-  
ered as warranted characteristics.  
Terms of delivery and rights to technical  
change reserved.  
We hereby disclaim any and all warranties,  
including but not limited to warranties of  
non-infringement, regarding circuits, descrip-  
tions and charts stated herein.  
Infineon Technologies is an approved CECC  
manufacturer.  
Information  
For further information on technology, deliv-  
ery terms and conditions and prices please  
contact your nearest Infineon Technologies  
Office in Germany or our Infineon Technolo-  
gies Representatives worldwide (see ad-  
dress list).  
Warnings  
Due to technical requirements components  
may contain dangerous substances. For in-  
formation on the types in question please  
contact your nearest Infineon Technologies  
Office.  
Infineon Technologies Components may only  
be used in life-support devices or systems  
with the express written approval of Infineon  
Technologies, if a failure of such components  
can reasonably be expected to cause the fail-  
ure of that life-support device or system, or to  
affect the safety or effectiveness of that de-  
vice or system. Life support devices or sys-  
tems are intended to be implanted in the hu-  
man body, or to support and/or maintain and  
sustain and/or protect human life. If they fail, it  
is reasonable to assume that the health of the  
user or other persons may be endangered.  
Data Sheet Version 3.4  
27  
2002-10-08  

相关型号:

INFINEON

TLE6250GITJKKNTMA1

Interface Circuit, BICMOS, PDSO8, GREEN, PLASTIC, SOP-8
INFINEON

TLE6250GNT

Interface Circuit, BICMOS, PDSO8, GREEN, PLASTIC, SOP-8
INFINEON

TLE6250GNTMA1

Interface Circuit, BICMOS, PDSO8, GREEN, PLASTIC, SOP-8
INFINEON

TLE6250GPBF

Interface Circuit,
INFINEON

TLE6250GV33

CAN-Transceiver
INFINEON

TLE6250GV33NT

Interface Circuit, BICMOS, PDSO8, GREEN, PLASTIC, SOP-8
INFINEON

TLE6250GV33XUMA1

Interface Circuit, BICMOS, PDSO8, GREEN, PLASTIC, SOP-8
INFINEON

TLE6250GXT

Interface Circuit, BICMOS, PDSO8, GREEN, PLASTIC, SOP-8
INFINEON

TLE6250GXUMA1

Interface Circuit, BICMOS, PDSO8, GREEN, PLASTIC, SOP-8
INFINEON

TLE6250_08

High Speed CAN-Transceiver
INFINEON

TLE6251-2G

High Speed CAN-Transceiver with Wake and Failure Detection
INFINEON