TLE7183QUXUMA3 [INFINEON]

AC Motor Controller, 0.02A, PQFP48, TQFP-48;
TLE7183QUXUMA3
型号: TLE7183QUXUMA3
厂家: Infineon    Infineon
描述:

AC Motor Controller, 0.02A, PQFP48, TQFP-48

文件: 总28页 (文件大小:932K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet, Rev. 1.1, Jan. 2016  
TLE7183QU  
3 Phase Driver IC  
Automotive Power  
TLE7183QU  
Table of Contents  
Table of Contents  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
1
2
3
3.1  
3.2  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Assignment TLE7183QU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
4
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Default State of Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4.1  
4.2  
4.3  
5
5.1  
Description and Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
MOSFET Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Output Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Operation at Vs<12V - Integrated Charge Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Protection and Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Short Circuit Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Overcurrent Warning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Dead Time and Shoot Through Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Undervoltage Shut Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Overvoltage Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Overtemperature Warning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
ERRx pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Shunt Signal Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Phase Voltage Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
5.2  
5.2.1  
5.2.2  
5.2.3  
5.2.4  
5.2.5  
5.2.6  
5.2.7  
5.2.8  
5.3  
5.3.1  
5.4  
5.4.1  
6
6.1  
6.2  
Application Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Layout Guide Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
7
8
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Data Sheet  
2
Rev. 1.1, 2016-01-28  
3 Phase Driver IC  
TLE7183QU  
1
Overview  
Features  
Compatible with very low ohmic normal level input N-Channel  
MOSFETs  
Separate input for each MOSFET  
PWM frequency up to 30kHz  
Fulfils specification down to 5.5V supply voltage  
Optimized Electromagnetic Compatibility (EMC)  
TQFP-48 package with exposed heat slug  
Control inputs with TTL characteristics  
Separate source connection for each MOSFET  
Integrated minimum dead time  
Shoot through protection  
Short circuit protection with 5 fixed detection levels available  
Disable and sleep mode features  
2-bit error diagnosis  
Thermal overload warning for driver IC  
Integrated overcurrent warning  
Integrated current sense amplifier  
0 to 100% duty cycle  
Green Product (RoHS compliant)  
AEC Qualified  
PG-TQFP-48  
Description  
The TLE7183QU driver IC is designed to control 6 to 12 external MOSFETs forming the converter for high current  
3 phase motor drives in the automotive sector. It includes features like short circuit detection, 2-bit error diagnosis  
and high output performance. It meets the typical requirements of automotive applications, e.g. full functionality  
even at low battery voltages. Its 3 high side and 3 low side output stages are powerful enough to drive MOSFETs  
with a gate charge of 400 nC with rise and fall times of approximately 150 ns.  
Typical applications are cooling fan, water pump, electro-hydraulic and electric power steering. The TLE7183QU  
is designed for a 12 V power net.  
Several options are available for the fixed short circuit detection level.  
Option  
SCD1  
Typ. SCD level  
Marking  
Availability  
0.5V  
0.75V  
1V  
TLE7183QU SCD1  
TLE7183QU SCD2  
TLE7183QU SCD3  
TLE7183QU SCD4  
TLE7183QU SCD5  
please contact Infineon  
available  
SCD2  
SCD3  
please contact Infineon  
please contact Infineon  
available  
SCD4  
1.5V  
2.0V  
SCD5  
Data Sheet  
3
Rev. 1.1, 2016-01-28  
TLE7183QU  
Block Diagram  
2
Block Diagram  
CL1  
CH1  
CB1  
CL2  
CH2  
CB2  
VS  
Charge Pump 1  
Undervoltage detection  
Charge Pump 2  
Undervoltage detection  
GND  
___  
INH  
VDH  
Floating HS driver  
Short circuit detection  
GH1  
SH1  
ERR1  
ERR2  
Diagnostic logic  
Undervoltage  
Overvoltage  
Overtemperature  
Short circuit  
Reset  
Floating LS driver  
Short circuit detection  
ENA1  
ENA2  
GL1  
SL1  
Overcurrent  
L
E
V
E
L
TP  
Floating HS driver  
Short circuit detection  
GH2  
SH2  
S
H
I
F
T
E
R
Floating LS driver  
Short circuit detection  
GL2  
SL2  
IL1  
___  
IH1  
Input control  
Floating HS driver  
Short circuit detection  
IL2  
GH3  
SH3  
___  
Shoot through  
protection  
IH2  
IL3  
___  
dead time  
IH3  
Floating LS driver  
Short circuit detection  
DT  
GL3  
SL3  
AGND  
GND  
ISP  
ISN  
Current sense OpAmp  
Bias reference buffer  
Overcurrent warning  
Phase voltage feedback  
VTHOC  
VRI  
VRO  
VO  
U_fb V_fb  
W_fb  
Figure 1  
Block Diagram  
Data Sheet  
4
Rev. 1.1, 2016-01-28  
TLE7183QU  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment TLE7183QU  
SL1  
36  
GL1  
35  
VDH  
34  
CB1  
33  
GND  
32  
CL2  
31  
VS  
30  
CL1  
29  
CH1  
28  
CH2  
27  
ERR2  
26  
ERR1  
25  
___  
GND  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
IH2  
SH1  
GH 1  
CB2  
GL2  
SL2  
GH 2  
SH2  
GH3  
SH3  
GND  
GL3  
IL2  
___  
IH1  
IL1  
GND  
ENA2  
ENA1  
W_fb  
V_fb  
TLE7183QU  
Topview  
U_fb  
___  
IH3  
IL3  
1
2
3
4
5
6
7
8
9
10  
11  
12  
___  
INH  
SL3  
GND  
VO  
ISN  
ISP  
VRI  
VRO  
AGND VTHOC  
TP  
DT  
Figure 2  
Pin Configuration  
Data Sheet  
5
Rev. 1.1, 2016-01-28  
TLE7183QU  
Pin Configuration  
3.2  
Pin Definitions and Functions  
Pin  
1
Symbol  
Function  
SL3  
Connection to source low side switch 3  
Logic and power ground  
2
GND  
VO  
3
Output of OpAmp for shunt signal amplification  
- Input of OpAmp for shunt signal amplification  
+ Input of OpAmp for shunt signal amplification  
Input of bias reference amplifier  
4
ISN  
5
ISP  
6
VRI  
7
VRO  
AGND  
VTHOC  
TP  
Output of bias reference amplifier  
Analog ground especially for the current sense OpAmp  
Threshold voltage for overcurrent detection  
test pin, connect to GND of driver IC  
Dead time program pin  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
DT  
INH  
Inhibit pin (active low)  
IL3  
Input for low side switch 3 (active high)  
Input for high side switch 3 (active low)  
Digital logic representation of the voltage phase U; positive logic  
Digital logic representation of the voltage phase V; positive logic  
Digital logic representation of the voltage phase W; positive logic  
Enable pin (active high)  
IH3  
U_fb  
V_fb  
W_fb  
ENA1  
ENA2  
GND  
IL1  
Enable pin (active high)  
Logic and power ground  
Input for low side switch 1 (active high)  
Input for high side switch 1 (active low)  
Input for low side switch 2 (active high)  
Input for high side switch 2 (active low)  
Error signal 1  
IH1  
IL2  
IH2  
ERR1  
ERR2  
CH2  
CH1  
CL1  
VS  
Error signal 2  
+ terminal for pump capacitor of charge pump 2  
+ terminal for pump capacitor of charge pump 1  
- terminal for pump capacitor of charge pump 1  
Voltage supply  
CL2  
GND  
CB1  
VDH  
GL1  
SL1  
- terminal for pump capacitor of charge pump 2  
Logic and power ground  
Buffer capacitor for charge pump 1  
Connection to drain of high side switches for short circuit detection  
Output to gate low side switch 1  
Connection to source low side switch 1  
Logic and power ground  
GND  
SH1  
GH1  
CB2  
Connection to source high side switch 1  
Output to gate high side switch 1  
Buffer capacitor for charge pump 2  
Data Sheet  
6
Rev. 1.1, 2016-01-28  
TLE7183QU  
Pin Configuration  
Pin  
41  
42  
43  
44  
45  
46  
47  
48  
Symbol  
GL2  
Function  
Output to gate low side switch 2  
Connection to source low side switch 2  
Output to gate high side switch 2  
Connection to source high side switch 2  
Output to gate high side switch 3  
Connection to source high side switch 3  
Logic and power ground  
SL2  
GH2  
SH2  
GH3  
SH3  
GND  
GL3  
Output to gate low side switch 3  
Data Sheet  
7
Rev. 1.1, 2016-01-28  
TLE7183QU  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Absolute Maximum Ratings 1)  
40 °C Tj 150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Max.  
Unit Conditions  
Min.  
Voltages  
4.1.1  
Supply voltage  
VS  
-4.0  
45  
V
with 10Ohm and  
1µF  
4.1.2  
4.1.3  
4.1.4  
Supply voltage  
Supply voltage  
VS  
VS  
-0.3  
-0.3  
-0.3  
45  
47  
6.0  
V
V
V
tp<200ms  
Voltage range at IHx,ILx,ERRx, VO, DT, VDP  
VTHOC, ENAx, VRI, VRO  
4.1.5  
Voltage range at INH  
Voltage range at TP  
Voltage range at SLx  
Voltage range at SHx  
Voltage range at GLx  
Voltage range at GHx  
Voltage difference Gxx-Sxx  
Voltage range at VDH  
Voltage range at VDH  
VINH  
VTP  
-0.3  
-0.3  
-7  
18.0  
2
V
V
V
V
V
V
V
V
V
4.1.6  
4.1.7  
VSL  
7
4.1.8  
VSH  
VGL  
-7  
45  
18  
55  
15  
55  
55  
4.1.9  
-7  
4.1.10  
4.1.11  
4.1.12  
4.1.13  
VGH  
VGS  
VVDH  
VVDH  
-7  
-0.3  
-0.3  
-4.0  
INH=high  
INH=high;  
with RVDH >70Ω;  
200ms, 5x  
4.1.14  
4.1.15  
Voltage range at VDH  
Voltage range at VDH  
VVDH  
VVDH  
-0.3  
-4.0  
28  
28  
V
V
INH=low  
INH=low;  
with RVDH >70Ω;  
200ms, 5x  
4.1.16  
4.1.17  
4.1.18  
4.1.19  
4.1.20  
4.1.21  
4.1.22  
4.1.23  
4.1.24  
4.1.25  
Voltage range at CL1  
VCL1  
VCH1  
VDC1  
VCL2  
VCH2  
VCP2  
VISI  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-5  
25  
25  
25  
25  
45  
25  
5
V
Voltage range at CH1, CB1  
Voltage difference CH1-CL1  
Voltage range at CL2  
V
V
V
Voltage range at CH2, CB2  
Voltage difference CH2-CL2  
Voltage range at ISP, ISN  
Output current range at VO  
Gate resistor  
V
V
V
IVO  
-20  
2
20  
mA  
Ω
V
RGate  
Voltage range at U_fb, V_fb and W_fb VX_fb  
-0.3  
6
Temperatures  
4.1.26  
4.1.27  
Junction temperature  
Storage temperature  
Tj  
-40  
-55  
150  
150  
°C  
°C  
Tstg  
Data Sheet  
8
Rev. 1.1, 2016-01-28  
TLE7183QU  
General Product Characteristics  
Absolute Maximum Ratings (cont’d)1)  
40 °C Tj 150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Max.  
Unit Conditions  
Min.  
4.1.28  
4.1.29  
Lead soldering temperature  
(1/16’’ from body)  
Peak reflow soldering temperature2)  
Tsol  
Tref  
260  
°C  
°C  
260  
5
Thermal Resistance  
4.1.30  
Junction to case  
RthjC  
K/W  
W
Power Dissipation  
4.1.31  
Power Dissipation (DC) @ TCASE=125°C Ptot  
2
ESD Susceptibility  
4.1.32  
4.1.33  
4.1.34  
ESD Resistivity3)  
VESD  
VESD  
2
kV  
V
ESD Resistivity to GND  
-500  
500  
750  
CDM4)  
CDM4)  
ESD Resistivity Pin 1, 12, 13, 24, 25, 36, VESD1, 12, -750  
V
37,48 (corner pins) to GND  
13, 24, 25, 36,  
37, 48  
1) Not subject to production test, specified by design.  
2) Reflow profile IPC/JEDEC J-STD-020C  
3) ESD susceptibility HBM according to EIA/JESD 22-A 114B  
4) ESD susceptibility, Charged Device Model “CDM” ESDA STM5.3.1  
Attention: Stresses above the ones listed here may cause permanent damage to the device. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
Attention: Integrated protection functions are designed to prevent IC destruction under fault conditions  
described in the data sheet. Fault conditions are considered as “outside” normal operating  
range. Protection functions are not designed for continuous repetitive operation.  
4.2  
Functional Range  
Pos.  
4.2.1  
Parameter  
Symbol  
Limit Values  
Max.  
Unit  
Conditions  
Min.  
Supply voltage1)2)  
VS  
5.5  
5.5  
20  
28  
V
DC  
t<1s  
4.2.2  
4.2.3  
Duty cycle3)  
D
0
0
100  
25  
%
PWM frequency  
fPWM  
kHz  
Total gate charge  
400nC  
4.2.4  
4.2.5  
Quiescent current4)  
IQ  
30  
30  
µA  
µA  
VS,VDH<20 V  
Quiescent current into VDH  
IQ_VDH  
VDH<20V;  
VS pin open  
4.2.6  
Supply current at Vs  
IVs  
fPWM=25kHz  
QG=250nC:  
VS = 5.5V  
VS = 14V  
VS = 17V  
VS = 20V  
175  
175  
110  
110  
mA  
Data Sheet  
9
Rev. 1.1, 2016-01-28  
TLE7183QU  
General Product Characteristics  
Pos.  
Parameter  
Symbol  
Limit Values  
Max.  
Unit  
Conditions  
Min.  
4.2.7  
4.2.8  
4.2.9  
Supply current at Vs(device  
disabled by ENA)  
IVs(o)  
IVDH  
60  
50  
mA  
mA  
Vs=5.5V..17V  
Vs=17V..20V  
Currrent into VDH (device not in  
sleep mode)  
1.5  
VVDH=5.5..20V  
INH=high  
Voltage difference CB2-VDH  
VCB2  
Tj  
-0.3  
-40  
25  
V
Operation mode  
4.2.10 Junction temperature  
150  
°C  
1) max ratings for Tj has to be considered as well  
2) For proper start up minimum Vs=6.5V is required  
3) Duty cycle is referred to the high side input command (IHx); The duty cycles can be driven continuously and fully operational  
4) total current consumption from power net (Vs and VDH)  
Note:Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics table.  
4.3  
Default State of Inputs  
Table 1  
Default State of Inputs  
Characteristic  
State  
Low  
Remark  
Default state of ILx (if ILx left open)  
Default state of IHx (if IHx left open)  
Low side MOSFETs off  
High side MOSFETs off  
Device outputs disabled  
Device outputs disabled  
Sleep mode, IQ < 30 µA  
High  
Default state of ENA (if ENA1 left open) Low  
Default state of ENA (if ENA2 left open) Low  
Default state of INH (if INH left open)  
Low  
Default State of sense amplifier output VO Zero ampere equivalent  
(ISP=ISN=0V)  
Status of the device and the outputs when Device active and outputs functional  
ENA1=ENA2=INH=high  
Vs=5.5..28V  
Pull up or pull down integrated resistors 30kΩ +/-50%  
Ixx, ENA  
Pull down integrated resistor INH  
45kΩ +/-50%  
Note: The load condition “C=22nF; RLoad=1Ω” in the paragraph “Electrical characteristics / Dynamic charactersitic” means that  
RLoad is connected between the output Gxx and the positive terminal of the C. The negative terminal of the C is connected  
to GND and the corresponding Sxx. The voltage is measured at the positive terminal of the C.  
Data Sheet  
10  
Rev. 1.1, 2016-01-28  
TLE7183QU  
Description and Electrical Characteristics  
5
Description and Electrical Characteristics  
5.1  
MOSFET Driver  
5.1.1  
Output Stages  
The six powerful push-pull output stages of the TLE7183QU are floating blocks, each one of them with its own  
source pin which can be directly connected to the source pin of an external MOSFET. This enables a perfect  
control of each MOSFET’s gate-source voltage even if a current of 200A is driven in the bridge.  
All output stages have the same high output power. A single output stage is able to drive a single MOSFET with  
400nC gate charge (or two MOSFETs with 200nC) achieving rise and fall times of approx. 150ns.  
They can be switched with a frequency of up to 30kHz. The usability at higher frequencies is limited by the  
maximum allowed power dissipation, the max. junction temperature and the limited current capabilities of the  
charge pump.  
Each output stage has its own short circuit detection block. Please see Chapter 5.2.1 for short circuit detection  
details.  
___  
VS  
INH  
CL1 CH1  
CB1 CL2 CH2  
Charge Pump 2  
VDH  
CB2  
Charge Pump 1  
CB2  
UVLO  
Undervoltage lock out  
Error logic  
Reset  
+
-
GHx  
SHx  
ERR1  
ERR2  
Power On Reset  
Undervoltage  
Overvoltage  
Overtemperature  
Short circuit  
Over-current  
VSCP  
ENA1  
ENA2  
Level  
shifter  
SCD  
SCD  
Floating HS driver 3x  
CB1  
SCD  
lock /  
unlock  
Short Circuit  
Detection Level  
___  
IH1  
short circuit filter  
IL1  
+
-
___  
GLx  
SLx  
Input Logic  
ON / OFF  
ON / OFF  
IH2  
Shoot Through  
Protection  
IL2  
VSCP  
___  
IH3  
IL3  
Level  
shifter  
Dead Time  
Floating LS driver 3x  
DT  
GND  
Figure 3  
Block Diagram of Driver Ouput Stages including Short Circuit Detection  
Data Sheet  
11  
Rev. 1.1, 2016-01-28  
TLE7183QU  
Description and Electrical Characteristics  
5.1.2  
Operation at Vs<12V - Integrated Charge Pumps  
In 12V automotive applications, correct operation has to be assured also at lower supply voltages, even at 9V. At  
low supply voltages conventional bridge drivers provide clearly less than 9V to the gate of an external MOSFET.  
However low gate-source voltage increases RDSon of the MOSFET. This leads to an undesired, higher power  
dissipation.  
The two charge pumps circuitries of TLE7183QU address this problem enabling operation even at lower supply  
voltages. Their operational capability does not depend on a specific pulse pattern of the MOSFETs overcoming  
duty cycle limitations which are inherent to drivers that use the bootstrap principle instead. Therefore TLE7183QU  
supports the complete duty cycle range from 0 to 100%. This simplifies the usabilty in all applications and  
especially when used with block wise commutation. The charge pumps are only deactivated if the device is set to  
sleep mode using INH.  
The first charge pump supplies the low side MOSFETs and the corresponding output stages with sufficient voltage  
to assure 10V gate-source voltage even if Vs<10V. In addition it also supplies most of the internal circuitries,  
including the second charge pump.  
The second charge pump supplies the high side MOSFETs and the corresponding output stages. It is pumped on  
the voltage of Vs.  
Each charge pump circuitry requires external pump (CPx) and buffer (CBx) capacitors. The output of the first  
charge pump is CB1 which is referenced to GND. The output of the second charge pump is CB2 which is  
referenced to VDH. VDH and Vs are usually in the same voltage range. The driver is not designed to have  
significant higher voltages at VDH compared to Vs. This would lead to reduced supply voltages for the high side  
output stages.  
The outputs of both charge pumps are regulated. The first charge pump doubles the supply voltage for Vs<8V.  
For 8V<Vs<15V, its output is regulated to a typical voltage of 15V. For Vs>15V, its output increases linearly but  
does not exceed 25V.  
For a proper wake up of the device at VVsWU, it is not permitted to have any PWM patterns at the input pins ILx and  
IHx before the charge pumps have ramped up to their final values unless the output stages have been switched  
off by setting one of the ENAx pins to low.  
The size of the charge pump capacitors (pump capacitors CPx as well as buffer capacitors CBx) can be varied  
between 1 µF and 4.7 µF. Yet, larger capacitor values result in higher charge pump voltages and less voltage  
ripple on the charge pump buffer capacistors CBx (which supply the internal circuits as well as the external  
MOSFETs, pls. see above). Besides the capacitance values the ESR of the buffer capacitors CBx determines the  
voltage ripple as well. It is recommended to use buffer capacitors CBx that have small ESR.  
Please see also Chapter 5.1.3 for capacitor selection.  
5.1.3  
Sleep Mode  
If the INH pin is set to low, the driver will be set to sleep mode. The INH pin switches off the complete supply  
structure of the device and finally leads to an undervoltage shut down of the complete driver. Enabling the device  
with the INH pin means to switch on the supply structure. The device will run through power on reset during wake  
up. It is recommended to perform a reset using ENAx after wake up to remove possible ERRx signals. Reset is  
performed by keeping one or more ENAx pins low until the charge pump voltages have ramped up.  
Enabling and disabling with the INH pin is not very fast. Please consider using the ENAx pins to speed things up.  
If the TLE7183QU is in sleep mode or if the supply voltage Vs is not available, then the driver IC is not supplied,  
the charge pumps are inactive and the charge pump capacitors are discharged. Pin CB2 (+ terminal of buffer  
capacitor 2) will decay to GND. If the battery voltage is still applied to VDH (- terminal of buffer capacitor 2) the  
buffer capacitor 2 will slowly be charged to battery voltage with reversed polarity compared to the one during  
regular operation. Hence, it is important to use a buffer capacitor 2 (CB2) that can withstand both, +25 V in regular  
operation mode and -VBAT in sleep mode, e.g. a ceramic capacitor. If there is load dump in sleep mode, then the  
negative voltage across CB2 will be clamped to -31 V (CB2 referenced to VDH).  
Data Sheet  
12  
Rev. 1.1, 2016-01-28  
TLE7183QU  
Description and Electrical Characteristics  
5.1.4  
Electrical Characteristics  
Electrical Characteristics MOSFET drivers - DC Characteristics  
VS = 5.5 to 20V, Tj = -40 to +150°C, fPWM < 25kHz, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
Typ.  
Max.  
5.1.1  
5.1.2  
Low Level Output Voltage  
VG_LL  
VG_HL  
0.2  
13  
V
V
I=30mA  
High Level Output Voltage, Low  
Side  
7.5  
I=-2mA; Vs=5.5..8V  
5.1.3  
High Level Output Voltage, High  
Side  
VG_HL  
6.5  
13  
V
I=-2mA; Vs=5.5..8V  
5.1.4  
5.1.5  
High Level Output Voltage  
VG_HL  
dVG_H  
9
13  
V
V
I=-2mA; Vs=8..20V  
I=-100mA; Vs=20V  
High Level Output Voltage  
Difference  
1.0  
5.1.6  
5.1.7  
Gate Drive Output Voltage (device VG(DIS)  
disabled via ENAx)  
0.2  
V
V
Disabled;  
Vs=5.5..20V;  
I=10mA  
Gate Drive Output Voltage  
Tj=-40°C  
VG_5  
UVLO; Vs<=5.5V  
1.4  
1.2  
1.0  
Tj=25°C  
Tj=150°C  
5.1.8  
5.1.9  
Gate Drive Output Voltage High  
Side  
Tj=-40°C  
Tj=25°C  
Tj=150°C  
VG_HS  
V
Overvoltage  
1.4  
1.2  
1.0  
Gate Drive Output Voltage Low  
Side  
VG_LS  
VI_LL  
VI_HL  
0.2  
1.0  
V
V
V
Overvoltage  
5.1.10 Low Level Input Voltage of Ixx,  
ENAx  
5.1.11 High Level Input Voltage of Ixx,  
ENAx  
2.0  
5.1.12 Low Level Input Voltage of INH  
5.1.13 High Level Input Voltage of INH  
VI_LL  
VI_HL  
0.75  
V
2.1  
50  
V
5.1.14 Input Hysteresis of IHx, ILx, ENAx dVI  
5.1.15 Input Hysteresis of IHx, ILx, ENAx dVI  
mV  
mV  
mA  
Vs=5.5..8V  
Vs=8..20V  
100  
-1.6  
200  
-1.0  
–-  
5.1.16 Output Bias Current SHx  
ISHx  
-0.3  
VSHx=0..(Vs+1);  
ILx=low; IHx=high  
5.1.17 Output Bias Current SLx  
ISLx  
-1.6  
-1.0  
-0.3  
mA  
VSLx=0..7V;  
ILx=low; IHx=high  
Data Sheet  
13  
Rev. 1.1, 2016-01-28  
TLE7183QU  
Description and Electrical Characteristics  
Electrical Characteristics MOSFET drivers - Dynamic Characteristics  
VS = 5.5 to 20V, Tj = -40 to +150°C, fPWM < 25kHz, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
Typ.  
Max.  
5.1.18 Minimum Internal Dead Time  
tDT_MIN  
50  
200  
ns  
µs  
DT pin to GND  
(RDT=0Ω)  
5.1.19 Programmable Internal Dead Time tDT  
0.26  
0.64  
1.07  
2.02  
0.41  
1.05  
1.85  
3.82  
0.56  
1.45  
2.63  
5.62  
RDT=10 kΩ  
RDT=47 kΩ  
RDT=100 kΩ  
RDT=1000 kΩ  
5.1.20 Maximum Internal Dead Time  
5.1.21 Turn On Current, Peak  
tDT_MAX  
2.33  
6.35  
µs  
A
DT pin open  
IG(on)  
IG(on)  
IG(off)  
tG_rise  
-0.8  
VGxx-VSxx=0V;  
Vs=5.5..8V;  
C=22nF;  
R
Load=1Ω  
5.1.22 Turn On Current, Peak  
5.1.23 Turn Off current, Peak  
-1.5  
1.5  
A
VGxx-VSxx=0V;  
Vs=8..20V  
C=22nF;  
R
Load=1Ω  
A
VGxx-VSxx=10V;  
Vs=8..20V  
C=22nF;  
R
Load=1Ω  
5.1.24 Rise Time (20-80%)  
Tj = -40°C  
ns  
C=22nF; RLoad=1Ω  
400  
400  
700  
150  
150  
Tj = 25°C  
Tj = 150°C  
5.1.25 Fall Time (20-80%)  
Tj = -40°C  
tG_fall  
ns  
C=22nF; RLoad=1Ω  
230  
230  
500  
Tj = 25°C  
Tj = 150°C  
5.1.26 Input Propagation Time (Low on)  
5.1.27 Input Propagation Time (Low off)  
tP(ILN)  
tP(ILF)  
90  
0
190  
100  
190  
100  
290  
200  
290  
200  
70  
ns  
ns  
ns  
ns  
ns  
C=22nF; RLoad=1Ω  
C=22nF; RLoad=1Ω  
C=22nF; RLoad=1Ω  
C=22nF; RLoad=1Ω  
C=22nF; RLoad=1Ω  
5.1.28 Input Propagation Time (High on) tP(IHN)  
5.1.29 Input Propagation Time (High off) tP(IHF)  
90  
0
5.1.30 Absolute Input Propagation Time  
Difference (all channels turn on)  
tP(an)  
5.1.31 Absolute Input Propagation Time  
Difference (all channels turn off)  
tP(af)  
50  
ns  
ns  
C=22nF; RLoad=1Ω  
C=22nF; RLoad=1Ω  
5.1.32 Absolute Input Propagation Time  
Difference (1channel High off - Low  
on)  
tP(1hfln)  
150  
5.1.33 Absolute Input Propagation Time  
Difference (1channel Low off - High  
on)  
tP(1lfhn)  
150  
ns  
C=22nF; RLoad=1Ω  
Data Sheet  
14  
Rev. 1.1, 2016-01-28  
TLE7183QU  
Description and Electrical Characteristics  
Electrical Characteristics MOSFET drivers - Dynamic Characteristics  
VS = 5.5 to 20V, Tj = -40 to +150°C, fPWM < 25kHz, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
Typ.  
Max.  
5.1.34 Absolute Input Propagation Time  
Difference (all channels High off -  
Low on)  
tP(ahfln)  
150  
150  
20  
ns  
C=22nF; RLoad=1Ω  
5.1.35 Absolute Input Propagation Time  
Difference (all channels Low off -  
High on)  
tP(alfhn)  
ns  
C=22nF; RLoad=1Ω  
5.1.36 Wake Up Time; INH Low to High  
tINH_Pen  
ms  
Driver fully  
functional;  
Vs=6.5...8V;  
ENAx=low;  
CPx=CBx=4.7µF  
5.1.37 Wake Up Time; INH Low to High  
tINH_Pen  
tINH_log  
tINH_log  
10  
10  
5
ms  
ms  
ms  
Driver fully  
functional;  
VS=8..20V;  
ENAx=low;  
CPx=CBx=4.7µF;  
5.1.38 Wake Up Time Logic Functions;  
INH Low to High  
diagnostic, OpAmp  
working;  
Vs=6.5...8V;  
ENAx=low;  
CPx=CBx=4.7µF  
5.1.39 Wake Up Time Logic Functions;  
INH Low to High  
diagnostic, OpAmp  
working;  
VS=8..20V;  
ENAx=low;  
CPx=CBx=4.7µF  
5.1.40 INH Propagation Time to Disable  
the Output Stages  
tINH_P(O)  
tINH_P(O)  
tINH_P(IC)  
VVsWU  
fCP  
10  
8
µs  
µs  
µs  
V
Vs=5.5..8V  
Vs=8..20V  
5.1.41 INH Propagation Time to Disable  
the Output Stages  
5.1.42 INH Propagation Time to Disable  
the entire Driver IC  
300  
5.1.43 Supply Voltage Vs for Wake Up  
6.5  
38  
diagnostic, OpAmp  
working;  
5.1.44 Charge Pump Frequency  
55  
72  
kHz  
Data Sheet  
15  
Rev. 1.1, 2016-01-28  
TLE7183QU  
5.2  
Protection and Diagnostic Functions  
Short Circuit Detection  
5.2.1  
The TLE7183QU provides a short circuit detection for the external MOSFETs. It monitors their drain-source  
voltage. It is active as soon as the corresponding input is set to "on" and the dead time has elapsed.  
If the drain-source voltage is higher than the short circuit detection level, a timer will be started. After a delay of  
about 6 µs all external MOSFETs will be switched off. The ERRx pins will indicate a short circuit. This error is not  
self-clearing. The driver has to be reset using one of the ENAx pins.  
The short circuit detection level is a fixed setting of the chip. Several options are available and described in  
Chapter 5.2.8.  
5.2.2  
Overcurrent Warning  
The TLE7183QU offers the possibility to have a warning at the ERRx pins if a current threshold is reached. (see  
Figure 4 ).  
The output of the current sense OpAmp is connected to an integrated comparator. It compares the amplified  
current sense signal with an external adjustable threshold. After the comparator a blanking time (1.5 µs typ.) is  
implemented to avoid false triggering caused by an overshoot of the current sense signal. If the overcurrent  
situation is detected, there is a warning at the ERRx pins.  
The driver remains in normal operation mode. The overcurrent warning is self-clearing. It will be cleared if the  
current drops below the overcurrent limit set on the VTHOC pin. The overcurrent warning is also cleared if the  
current commutates from the low side MOSFET to the associated high side MOSFET (no current through the  
shunt resistor).  
It is up to the user to react on the overcurrent warning by modifying the Ixx patterns to lower the current.  
5.2.3  
Dead Time and Shoot Through Protection  
In bridge applications it has to be assured that the external high side and low side MOSFETs in a single half bridge  
are not switched on at the same time. This would lead to a direct connection from battery voltage to GND. The  
integrated mechanisms of TLE7183QU preventing this are called shoot through protection and minimum dead  
time generation.  
The shoot through protection is a locking mechanism which deals with faulty input commands at the Ixx pins. If the  
command is given to switch on the high side and the low side MOSFET of a single half bridge at same time, it is  
ignored. The driver output stages remain unchanged.  
The dead time of a half bridge is the time after the command to switch off a MOSFET has been given during which  
the command to switch on the other MOSFET is not executed. A minimum dead time has to be applied because  
switching does not happen instantly. If both MOSFETs of a single half bridge start to switch at the same time, both  
of them may be on at the same time causing the critical connection from battery voltage to ground. The dead time  
assures that a MOSFET is only switched on after the other one has been switched off.  
The exact dead time of the bridge is usually set by the PWM generation unit of the µC. The minimum dead time  
generation of TLE7183QU assures a minimum dead time if the input signals from the µC are faulty. If the DT pin  
is connected to GND, the generated minimum dead time is fixed to 50..200ns .  
It can be increased by connecting the DT pin via a dead time resistor RDT to GND - the larger the dead time resistor,  
the larger the dead time (please see Programmable Internal Dead Time for details).  
5.2.4  
Undervoltage Shut Down  
The TLE7183QU has an integrated undervoltage shut down, to assure that the behavior of the device is  
predictable in all supply voltage ranges.  
Data Sheet  
16  
Rev. 1.1, 2016-01-28  
TLE7183QU  
If the voltage of a charge pump buffer capacitors CBx reaches the undervoltage shut down level for a minimum  
specified filter time, the gate-source voltage of all external MOSFETs will be actively pulled to low. In this situation  
the short circuit detection of this output stage is deactivated to avoid a latching shut down of the driver.  
If the charge pump buffer voltage recovers, the status of the output stages will match the input patterns again. This  
allows an operation of the motor in case of undervoltage shut down without a reset by the µC.  
Undervoltage shut down will not occur if VS > 6 V, QG < 250 nC, fPWM < 25 kHz, and the charge pump capacitors  
CPx, CBx = 4.7 µF.  
5.2.5  
Overvoltage Shutdown  
The TLE7183QU has an integrated overvoltage shut down to avoid destruction of the IC at high supply voltages.  
The voltages at the pins Vs and VDH are monitored. The external MOSFETs will be switched off if one or both of  
them exceed the overvoltage shut down level for more than the specified filter time. In addition, the overvoltage  
condition will lead to a shut down of the charge pumps and a discharge of the charge pump capacitors. This results  
in an undervoltage condition which will be indicated at the ERRx pins. During overvoltage shut down the external  
MOSFETs and the charge pumps remain off until a reset is performed.  
5.2.6  
Overtemperature Warning  
If the junction temperature is exceeding typ. 170°C, an overtemperature warning is reported at the ERRx pins.  
However the driver IC will continue to operate in order not to disturb the application.  
This warning is self-clearing and will be cleared if the junction temperature cools down again. It is up to the user  
to protect the device from overtemperature destruction.  
5.2.7  
ERRx pins  
The TLE7183QU has two status pins to provide diagnostic feedback to a µC. The outputs of these pins are 5V  
push pull stages which are either high or low. Table 2 contains an overview. Some errors require a full reset of the  
driver using one of the ENAx pins to return to normal operation. Please see Table 3 for details.  
If multiple errors occur at the same time, only the one with the highest priority listed in Table 4 is reported. If the  
device is disabled using one of the ENAx pins, only the errors Undervoltage and Overtemperature Warning are  
reported. Other errors are not reported.  
Table 2  
Overview of Error Conditions  
ERR1  
Low  
ERR2  
Low  
Driver conditions  
no errors  
High  
High  
Low  
Low  
Overtemperature Warning or Overvoltage Shut Down  
Undervoltage Shut Down  
High  
High  
Short Circuit Detection or Overcurrent Warning  
Table 3  
Behavior at different Error Conditions  
Error condition  
restart behavior  
Shuts down...  
Short Circuit Detection  
Overcurrent Warning  
Latch, reset must be performed at ENAx pin All external Power -MOSFETs  
Self clearing  
Nothing  
Undervoltage Shut Down Auto restart  
Overvoltage Shut Down  
Overtemperature Warning Self clearing  
All external Power -MOSFETs  
Latch, reset must be performed at ENAx pin All external Power -MOSFETs  
Nothing  
Note:Errors do NOT lead to sleep mode. Sleep mode is only initiated with the INH pin. The latch and restart  
behavior allows to distinguish between the different combined error types reported at the ERRx pins.  
Data Sheet  
17  
Rev. 1.1, 2016-01-28  
TLE7183QU  
Table 4  
Prioritization of Errors  
Priority  
Error  
1
2
3
4
Short Circuit Detection  
Undervoltage Shut Down  
Overvoltage Shut Down  
Overtemperature Warning  
Overcurrent Warning  
5.2.8  
Electrical Characteristics  
Electrical Characteristics - Protection and diagnostic functions  
VS = 5.5 to 20V, Tj = -40 to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
Typ.  
Max.  
Overtemperature  
5.2.1  
5.2.2  
Overtemperature Warning  
Tj(OW)  
150  
170  
20  
190  
°C  
°C  
Hysteresis for Overtemperature  
Warning  
dTj(OW)  
Overcurrent warning  
5.2.3  
5.2.4  
5.2.5  
5.2.6  
Overcurrent Threshold  
Overcurrent Threshold  
VTHOC  
VTHOC  
2
4.5  
4.8  
50  
5
V
Vs=5.5..8V  
2
V
Vs=8..20V  
Input Offset Voltage of OC Comp VOCOF  
-50  
-5  
mV  
mV  
Input Offset Voltage Temperature VIO  
Drift of OC Comp1)  
5.2.7  
5.2.8  
5.2.9  
Overcurrent Warning Threshold  
Hysteresis  
dVTHOC  
dVTHOC  
25  
50  
1.0  
mV  
mV  
µs  
Vs=5.5..8V  
Vs=8..20V  
Overcurrent Warning Threshold  
Hysteresis  
80  
Filter Time of Overcurrent Warning tOC  
1.5  
3.0  
Short Circuit Protection  
5.2.10 Filter Time of Short Circuit  
Protection  
5.2.11 Maximum Duty Cycle for no SCD2) DySCDmax  
tSCP(off)  
4.5  
6.8  
9
6
µs  
%
default  
fPWM=20kHz at IHx  
or ILx and at static  
applied SC  
5.2.12 Minimum Duty Cycle for Periodic  
SCD2)  
DySCDmin  
13  
%
V
fPWM=20kHz at IHx  
or ILx and at static  
applied SC  
5.2.13 Short Circuit Detection Level SCD1 VSCP1(off)  
0.3  
0.5  
0.65  
please contact  
Infineon  
5.2.14 Short Circuit Detection Level SCD2 VSCP2(off)  
5.2.15 Short Circuit Detection Level SCD3 VSCP3(off)  
0.6  
0.75  
1.0  
0.9  
V
V
0.85  
1.15  
please contact  
Infineon  
Data Sheet  
18  
Rev. 1.1, 2016-01-28  
TLE7183QU  
Electrical Characteristics - Protection and diagnostic functions (cont’d)  
VS = 5.5 to 20V, Tj = -40 to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
Typ.  
Max.  
5.2.16 Short Circuit Detection Level SCD4 VSCP4(off)  
1.35  
1.5  
1.65  
V
V
please contact  
Infineon  
5.2.17 Short Circuit Detection Level SCD5 VSCP5(off)  
ERRx pins  
1.8  
2.0  
2.2  
5.2.18 High Level Output Voltage of ERRx VOHERR  
5.2.19 Low Level Output Voltage of ERRx VOLERR  
4.0  
5.2  
0.4  
200  
V
I= -0.2mA  
I= 0.2mA  
-0.1  
V
5.2.20 Propagation Time Difference ERR1 tPD(ERR)  
ns  
to ERR2  
5.2.21 Rise Time ERRx (20 - 80 %)  
5.2.22 Fall Time ERRx (80 - 20 %)  
Over- and undervoltage  
tr(ERR)  
tf(ERR)  
50  
50  
600  
400  
ns  
ns  
CLOAD=100pF  
CLOAD=100pF  
5.2.23 Overvoltage Shut Down  
5.2.24 Overvoltage Filter Time  
5.2.25 Undervoltage Shut Down CB1  
5.2.26 Undervoltage Shut Down CB2  
VOV(off)  
tOV  
28  
33  
V
on Vs and/or VDH  
30  
6.75  
3.9  
65  
µs  
V
VUV1  
VUV2  
VDUV  
8.25  
5.7  
CB1 to GND  
CB2 to VDH  
V
5.2.27 Undervoltage Shut Down  
Hysteresis of CB1 and CB2  
1.0  
V
5.2.28 Undervoltage Filter Time  
tUV  
1
3
µs  
Reset and Enable  
5.2.29 Reset Time to clear ERRx  
Registers  
tRes1  
2.0  
µs  
µs  
µs  
µs  
µs  
5.2.30 Low Time of ENAx Signal without tRes0  
0.5  
2.0  
0.5  
1.0  
Reset  
5.2.31 ENAx Propagation Time (High --> tPENA_H-L  
Low)  
5.2.32 ENAx Propagation Time (Low --> tPENA_L-H  
High)  
5.2.33 Return Time to Normal Operation tAR  
at Auto-Restart  
1) Not subject to production test; specified by design  
2) Parameters describe the behavior of the internal SCD circuit. Therefore only internal delay times are considered. In  
application dead-/ delay times determined by application circuit (switching times of MOSFETs, adjusted dead time) have  
to be considered as well.  
Data Sheet  
19  
Rev. 1.1, 2016-01-28  
TLE7183QU  
5.3  
Shunt Signal Conditioning  
The TLE7183QU incorporates a fast and precise operational amplifier for conditioning and amplification of the  
current sense shunt signal. A reference bias buffer is integrated to provide an adjustable bias reference for the  
three OpAmps. The voltage divider connected to the VRI pin should be less than 50 kOhm. If required at all, the  
filtering capacitor should be less than 1.2 µF. The gain of the OpAmp can be adjusted by external resistors within  
a range of 5 to 15.  
If V(ISP) equals V(ISN), VO provides the reference voltage VRO. Using a voltage divider VRO is usually set to half  
of the regulated voltage to allow bi-directional current sensing. The additional buffer permits the adaptation of the  
reference bias to different µC I/O voltages.  
The output of the I-DC link Opamp VO is not short-circuit proof.  
5V  
RVRI  
VRI  
RVRI  
CVRI  
TLE7183QU  
+
VRO  
Bias  
Reference  
-
Rfb  
to Error  
logic  
Rs  
Rs  
ISP  
+
OC  
Comp  
blanking  
time  
1.5µs  
I-DC Link  
OpAmp  
Rshunt  
overcurrent  
-
ISN  
Rfb  
5V  
adjustable  
overcurrent  
limit  
VTHOC  
VO  
to ADC  
Figure 4  
Shunt Signal Conditioning Block Diagram and Overcurrent Limitation  
For overcurrent warning, please see Chapter 5.2.2.  
Data Sheet  
20  
Rev. 1.1, 2016-01-28  
TLE7183QU  
5.3.1  
Electrical Characteristics  
Electrical Characteristics - Current sense signal conditioning  
VS = 5.5 to 20V, Tj = -40 to +150°C, fPWM < 25kHz, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
100  
Typ.  
500  
Max.  
5.3.1  
5.3.2  
Series Resistors  
RS  
1000  
Ω
Ω
Feedback Resistor  
Rfb  
2000  
7500  
Limited by the Output Voltage  
Dynamic Range  
5.3.3  
5.3.4  
Resistor Ratio (Gain Ratio)  
Rfb/RS  
5
15  
Steady State Differential Input  
Voltage Range across VIN1)  
VIN(ss)  
-400  
400  
mV  
5.3.5  
5.3.6  
5.3.7  
5.3.8  
5.3.9  
Transient Differential Input Voltage VIN(tr)  
Range across VIN  
-800  
-800  
-800  
-800  
1
800  
mV  
mV  
mV  
mV  
mV  
Input Differential Voltage (ISP -  
ISN)  
VIDR  
800  
Input Voltage (Both Inputs - GND) VLL  
(ISP - GND) or (ISN -GND)  
1500  
2000  
+/-5  
Vs=5.5..8V  
Vs=8..20V  
Input Voltage (Both Inputs - GND) VLL  
(ISP - GND) or (ISN -GND)  
Input Offset Voltage of the I-DC link VIO  
OpAmp  
RS=500Ω; VCM=0V;  
VO=1.65V;  
VRI=1.65V  
5.3.10 Input Offset Voltage Temperature VIO  
1
2
mV  
RS=500Ω; VCM=0V;  
VO=1.65V;  
Drift of the I-DC link OpAmp2)  
VRI=1.65V  
5.3.11 Input Offset Voltage of the  
Reference Buffer  
VIO  
1
1
+/-5  
2
mV  
mV  
5.3.12 Input Offset Voltage Temperature VIO  
Drift of the Reference Buffer2)  
5.3.13 Input Range at VRI  
VIO  
IIB  
1.2  
2.8  
V
5.3.14 Input Bias Current (ISx to GND)  
5.3.15 High Level Output Voltage of VO  
-300  
4.8  
µA  
V
VCM=0V; VO=open  
VOH  
5.2  
VRI=1.65V/2.5V;  
IOH=-3mA  
5.3.16 Low Level Output Voltage of VO  
VOL  
VOR  
-0.1  
0.2  
V
V
VRI=1.65V/2.5V;  
IOH=3mA  
5.3.17 Output Voltage of VO3)  
VRI= 2.5V,  
VIN(SS)=0V;  
Gain=15;  
2.42  
1.58  
2.50  
1.65  
2.58  
1.73  
VRI=1.65V  
5.3.18 Temperature Drift of Output  
Voltage of VO3)  
VO  
0
32  
mV  
mA  
VIN(SS)=0V;  
Gain=15  
5.3.19 Guaranteed Output Current  
Capability  
5.3.20 Differential Input Resistance2)  
IGOC  
RI  
-5  
5
100  
kΩ  
5.3.21 Common Mode Input apacitance2) CCM  
10  
pF  
10kHz  
Data Sheet  
21  
Rev. 1.1, 2016-01-28  
TLE7183QU  
Electrical Characteristics - Current sense signal conditioning (cont’d)  
VS = 5.5 to 20V, Tj = -40 to +150°C, fPWM < 25kHz, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
Typ.  
Max.  
5.3.22 Common Mode Rejection Ratio at CMRR  
80  
100  
db  
DC  
CMRR =  
20*Log((Vout_diff/Vin_diff) *  
(Vin_CM/Vout_CM))  
5.3.23 Common Mode Suppression4) with CMS  
CMS = 20*Log(Vout_CM/Vin_CM)  
Freq =100kHz  
db  
VIN=360mV*  
sin(2*π*freq*t);  
Rs=500Ω;  
Rfb=7500Ω;  
VRI=1.65/2.5V  
62  
43  
33  
Freq = 1MHz  
Freq = 10MHz  
5.3.24 Slew Rate  
dV/dt  
AOL  
3
10  
V/µs  
dB  
Gain>= 5;  
RL=1.0kΩ;  
CL=500pF  
5.3.25 Large Signal Open Loop Voltage  
Gain (DC)  
80  
100  
5.3.26 Unity Gain Bandwidth  
5.3.27 Phase Margin 2)  
GBW  
10  
20  
50  
MHz  
°
RL=1kΩ; CL=100pF  
ΦM  
Gain>= 5;  
RL=1kΩ; CL=100pF  
5.3.28 Gain Margin 2)  
5.3.29 Bandwidth  
AM  
12  
db  
RL=1kΩ; CL=100pF  
BWG  
1.6  
MHz  
Gain=15;  
RL=1kΩ;  
CL=500pF;  
Rs=500Ω  
5.3.30 Output Settle Time to 98% 1)  
tset  
1
1.8  
µs  
Gain=15;  
RL=1kΩ;  
CL=500pF;  
0.3<VO< 4.8V;  
Rs=500Ω  
5.3.31 Output Rise Time 10% to 90% 1)  
5.3.32 Output Fall Time 90% to 10%1)  
tIrise  
1
1
µs  
µs  
Gain=15;  
RL=1kΩ;CL=500pF;  
0.3<VO< 4.8V;  
Rs=500Ω  
tIfall  
Gain=15;  
RL=1kΩ;CL=500pF;  
0.3<VO< 4.8V;  
Rs=500Ω;  
1) Input current and output amplifier characteristics:  
"Output signal must be amplified and available at 2µs after input signal change (Gain 5...15)  
2) Not subject to production test; specified by design  
3) calculated out of 5.3.9, 5.3.10, 5.3.11 and 5.3.12  
4) Without considering any offsets such as input offset voltage, internal mismatch and assuming no tolerance error in external  
resistors.  
Data Sheet  
22  
Rev. 1.1, 2016-01-28  
TLE7183QU  
5.4  
Phase Voltage Feedback  
The TLE7183QU incorporates a fast conversion of the phase voltages to logic signals. The threshold values are proportional  
to VDH. The outputs are 5V push pull stages. If they are not used they can be left open.  
5V  
-
S
+
40% VDH  
SHx  
X_fb  
VDH  
R
+
-
60% VDH  
3x voltage feedback  
Figure 5  
Block Diagram Phase Voltage Feedback  
5.4.1  
Electrical Characteristics  
Electrical Characteristics - Phase Voltage Feedback  
VS = 5.5 to 20V, Tj = -40 to +150°C, fPWM < 25kHz, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
Typ.  
Max.  
Low Level Threshold  
High Level Threshold  
VILfb  
VIHfb  
35  
40  
45  
% of  
VDH  
VDH>5.5V  
5.4.1  
5.4.2  
VSHX decreasing  
55  
60  
65  
% of  
VDH  
VDH>5.5V  
VSHX decreasing  
5.4.3  
5.4.4  
5.4.5  
High Level Output Voltage of X_fb  
Low Level Output Voltage of X_fb  
VOHfb  
VOLfb  
tPDfb  
4.0  
-0.1  
5.2  
0.2  
110  
V
I= -0.5mA  
I= 0.5mA  
V
Propagation Delay Time incl. Rise or  
Fall Time  
ns  
CLOAD<100pF  
5.4.6  
Matching of Propagation Delay Time  
tdPDfb  
30  
ns  
Data Sheet  
23  
Rev. 1.1, 2016-01-28  
TLE7183QU  
Application Description  
6
Application Description  
In the automotive sector there are more and more applications requiring high performance motor drives, such as  
electro-hydraulic or electric power steering. In these applications 3 phase motors, synchronous and  
asynchronous, are used, combining high output performance, low space requirements and high reliability.  
VBAT=12V  
RVS  
10 Ω  
CVS  
4.7µF  
to sub µC or  
ASIC  
RVdh  
___  
CH1  
INH ENA2  
ENA1  
VDH  
CCP1  
VS  
4.7µF  
CC  
1µF  
CB  
1000µF  
CL1  
CB1  
RG  
GH1  
CCB1  
4.7µF  
CC  
1µF  
SH1  
CB  
1000µF  
CH2  
RG  
CC  
CCP2  
4.7µF  
GH2  
SH2  
1µF  
CL2  
CB2  
CB  
1000µF  
RG  
CCB2  
4.7µF  
GH3  
SH3  
U_fb  
V_fb  
TLE7183QU  
W_fb  
ERR1  
ERR2  
RG  
GL1  
SL1  
IL1  
___  
IH1  
µC  
or  
digital  
ASIC  
RG  
GL2  
SL2  
IL2  
___  
IH2  
IL3  
___  
IH3  
RG  
GL3  
SL3  
DT  
RDT  
VRO  
5V  
VRI  
Rfb  
5V  
ISP  
RS  
RS  
Shunt  
VTHOC  
VO  
ISN  
Rfb  
ADC  
GND  
GND  
TP  
AGND  
P-GND  
Figure 6  
Application Circuit  
Note:This is a very simplified example of an application circuit. The function must be verified in the real application.  
Data Sheet  
24  
Rev. 1.1, 2016-01-28  
TLE7183QU  
Application Description  
6.1  
Layout Guide Lines  
Please refer also to the simplified application example.  
Three separate bulk capacitors CB should be used - one per half bridge  
Three separate ceramic capacitors CC should be used - one per half bridge  
Each of the 3 bulk capacitors CB and each of the 3 ceramic capacitors CC should be assigned to one of the half  
bridges and should be placed very close to it  
The components within one half bridge should be placed close to each other: high side MOSFET, low side  
MOSFET, bulk capacitor CB and ceramic capacitor CC (CB and CC are in parallel) and the shunt resistor form  
a loop that should be as small and tight as possible. The traces should be short and wide  
The three half bridges can be seperated but if there is one common GND referenced shunt resistor for the three  
half bridges the sources of the three low side MOSFETs should be close to each other and close to the  
common shunt resistor  
VDH is the sense pin used for short circuit detection; VDH should be routed (via Rvdh) to the common point  
of the drains of the high side MOSFETs to sense the voltage of the drain high side  
CB2 is the buffer capacitor of charge pump 2; its negative terminal should be routed to the common point of  
the drains of the high side MOSFETs as well - this connection should be low inductive / resistive  
Additional R-C snubber circuits (R and C in series) can be placed to attenuate/suppress oscillations during  
switching of the MOSFETs, there may be one or two snubber circuits per half bridge, R (several Ohm) and C  
(several nF) must be low inductive in terms of routing and packaging (ceramic capacitors)  
the exposed pad on the backside of the package should be connected to GND  
6.2  
Further Application Information  
For further information you may contact http://www.infineon.com/  
Data Sheet  
25  
Rev. 1.1, 2016-01-28  
TLE7183QU  
Package Outlines  
7
Package Outlines  
11 x 0.5 = 5.5  
12°  
H
0.5  
12°  
0.2 MIN.  
0.08  
48x  
C
C
SEATING PLANE COPLANARITY  
0.15  
0.05  
0.6  
0.22  
M
0.08  
A-B D C 48x  
(1)  
9
0.2 A-B D 48x  
0.2 A-B D H 4x  
1)  
7
52)  
D
Exposed Diepad  
A
B
48  
1
Index Marking  
1) Does not include plastic or metal protrusion of 0.25 max. per side  
2) Exposed pad for soldering purpose  
Figure 7  
PG-TQFP-48  
Green Product  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with  
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e  
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
You can find all of our packages, sorts of packing and others in our  
Dimensions in mm  
Infineon Internet Page “Products”: http://www.infineon.com/products.  
Data Sheet 26  
Rev. 1.1, 2016-01-28  
TLE7183QU  
Revision History  
8
Revision History  
Version  
Date  
Changes  
1.1  
2016-01-28  
- package adjustments  
- replaced misleading term ERRx with ERRx  
1.0  
2011-09-09  
Data Sheet  
Data Sheet  
27  
Rev. 1.1, 2016-01-28  
Edition 2016-01-28  
Published by  
Infineon Technologies AG  
81726 München, Germany  
© Infineon Technologies AG 2016.  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values  
stated herein and/or any information regarding the application of the device, Infineon Technologies hereby  
disclaims any and all warranties and liabilities of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  

相关型号:

TLE7183QUXUMA5

AC Motor Controller, 0.02A, PQFP48, TQFP-48
INFINEON

TLE7183QUXUMA9

AC Motor Controller,
INFINEON

TLE7183SCD1

Automotive Power
INFINEON

TLE7183SCD2

Automotive Power
INFINEON

TLE7183SCD3

Automotive Power
INFINEON

TLE7183SCD4

Automotive Power
INFINEON

TLE7183SCD5

Automotive Power
INFINEON

TLE7184F

System IC for B6 motor drives
INFINEON

TLE7184F-3V

System IC for B6 motor drives
INFINEON

TLE7184F3V

System IC for B6 motor drives
INFINEON

TLE7184F3VXUMA2

Analog Circuit, 1 Func, VQFN-48
INFINEON

TLE7184FXUMA1

Brushless DC Motor Controller, PQCC48, GREEN, PLASTIC, VQFN-48
INFINEON