TLE7189FXUMA1 [INFINEON]

AC Motor Controller, 0.01A, PQCC48, GREEN, PLASTIC, VQFN-48;
TLE7189FXUMA1
型号: TLE7189FXUMA1
厂家: Infineon    Infineon
描述:

AC Motor Controller, 0.01A, PQCC48, GREEN, PLASTIC, VQFN-48

电动机控制
文件: 总29页 (文件大小:497K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet, Rev. 2.2, Jan. 2016  
TLE7189F  
3-Phase Bridge Driver IC  
Automotive Power  
TLE7189F  
Table of Contents  
Table of Contents  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
1
2
3
3.1  
3.2  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Assignment TLE7189F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
4
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Default State of Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4.1  
4.2  
4.3  
5
5.1  
Description and Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
MOSFET Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Output Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Operation at Vs<12V - Integrated Charge Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Protection and Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Short Circuit Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Dead Time and Shoot Through Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Under Voltage Shut Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Over Voltage Shut Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Over Temperature Warning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
VCC Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
ERR Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Shunt Signal Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
5.2  
5.2.1  
5.2.2  
5.2.3  
5.2.4  
5.2.5  
5.2.6  
5.2.7  
5.2.8  
5.3  
5.3.1  
6
Application Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
6.1  
Layout Guide Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
7
8
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Data Sheet  
2
Rev. 2.2, 2016-01-28  
 
3-Phase Bridge Driver IC  
TLE7189F  
1
Overview  
Features  
Compatible to very low ohmic normal level input N-channel  
MOSFETs  
PWM frequency up to 30kHz  
Fulfils specification down to 5.5V supply voltage  
Short circuit protection with adjustable detection level  
Three integrated current sense amplifiers  
0 to 100% duty cycle  
Low EMC sensitivity and emission  
Control inputs with TTL characteristics  
Separate input for each MOSFET  
Separate source connection for each MOSFET  
Integrated minimum dead time  
PG-VQFN-48  
Shoot through protection  
Disable function and sleep mode  
Detailed diagnosis  
Over temperature warning  
VQFN-48 package with exposed pad for excellent cooling  
Green Product (RoHS compliant)  
AEC (Automotive Electronics Council) qualified  
SIL3 supporting features:  
VCC check: Over- and under voltage check of 5V µC supply  
Test functions for short circuit detection and VCC check  
High voltage rated inputs  
Description  
The TLE7189F is a driver IC dedicated to control the 6 to 12 external MOSFETs forming the converter for high  
current 3 phase motor drives in the automotive sector. It incorporates features like short circuit detection, diagnosis  
and high output performance and combines it with typical automotive specific requirements like full functionality  
even at low battery voltages. Its 3 high side and 3 low side output stages are powerful enough to drive MOSFETs  
with 400nC gate charge with approx. 150ns fall and rise times.  
Type  
Package  
Marking  
TLE7189F  
PG-VQFN-48  
TLE7189F  
Data Sheet  
3
Rev. 2.2, 2016-01-28  
TLE7189F  
Block Diagram  
2
Block Diagram  
CL1  
CH1  
CB1  
CL2  
CH2  
CB2  
VS  
Charge Pump 1  
Under voltage det.  
Charge Pump 2  
Under voltage det.  
INH  
VDH  
Floating HS driver  
Short circuit detection  
GH1  
SH1  
ERR1  
ERR2  
ENA  
Diagnostic logic  
Under voltage  
Over voltage  
Overtemperature  
Short circuit  
Reset  
Floating LS driver  
Short circuit detection  
GL1  
SL1  
SCDL  
VCC failure  
L
E
V
E
L
VCT  
Floating HS driver  
Short circuit detection  
GH2  
SH2  
VCC voltage  
check  
S
H
I
F
T
E
R
Floating LS driver  
Short circuit detection  
VS_OA  
GL2  
SL2  
IL1  
IH1  
Input control  
Shoot through  
protection  
IL2  
IH2  
Floating HS driver  
Short circuit detection  
GH3  
SH3  
dead time  
IL3  
IH3  
Floating LS driver  
Short circuit detection  
GL3  
SL3  
VS_OA  
AGND  
ISP1  
ISN1  
GND1  
GND2  
GND3  
3x Current sense OpAmp  
Bias reference buffer  
ISP2  
ISN2  
ISP3  
ISN3  
VRI VRO  
VO1 VO2 VO3  
Figure 1  
Block Diagram  
Data Sheet  
4
Rev. 2.2, 2016-01-28  
TLE7189F  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment TLE7189F  
SL1  
GL1 VDH CB1 GND3 CL2  
VS  
CL1  
CH1 CH2 ERR2 ERR1  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
GND1  
SH1  
GH1  
CB2  
GL2  
IH2  
23  
IL2  
22  
IH1  
21  
IL1  
20  
IH3  
19  
SL2  
IL3  
TLE 7189 F  
Topview  
18  
GH2  
SH2  
GH3  
SH3  
GND2  
GL3  
ENA  
17  
SCDL  
16  
VCT  
15  
INH  
14  
AGND  
13  
ISP3  
1
2
3
4
5
6
7
8
9
10  
11  
12  
SL3 VS_OA VO1 ISN1 ISP1 VRI  
VRO VO2 ISN2 ISP2 VO3 ISN3  
Figure 2  
Pin Configuration  
Data Sheet  
5
Rev. 2.2, 2016-01-28  
TLE7189F  
Pin Configuration  
3.2  
Pin Definitions and Functions  
Pin  
1
Symbol  
Function  
SL3  
Connection to source low side switch 3  
2
VS_OA  
Voltage supply I-DC Link OpAmps and voltage reference buffer / input for VCC  
check  
3
VO1  
ISN1  
ISP1  
VRI  
Output of OpAmp 1 for shunt signal amplification  
- Input of OpAmp 1 for shunt signal amplification  
+ Input of OpAmp 1 for shunt signal amplification  
Input of bias reference amplifier  
4
5
6
7
VRO  
VO2  
ISN2  
ISP2  
VO3  
ISN3  
ISP3  
AGND  
INH  
Output of bias reference amplifier  
8
Output of OpAmp 2 for shunt signal amplification  
- Input of OpAmp 2 for shunt signal amplification  
+ Input of OpAmp 2 for shunt signal amplification  
Output of OpAmp 3 for shunt signal amplification  
- Input of OpAmp 3 for shunt signal amplification  
+ Input of OpAmp 3 for shunt signal amplification  
Analog ground especially for the current sense OpAmps  
Inhibit pin (active low)  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
VCT  
SCDL  
ENA  
IL3  
Input pin for VCC check test  
Input pin to adjust short circuit detection level  
Enable pin (active high)  
Input for low side switch 3 (active high)  
Input for high side switch 3 (active low)  
Input for low side switch 1 (active high)  
Input for high side switch 1 (active low)  
Input for low side switch 2 (active high)  
Input for high side switch 2 (active low)  
Error signal 1  
IH3  
IL1  
IH1  
IL2  
IH2  
ERR1  
ERR2  
CH2  
CH1  
CL1  
Error signal 2  
+ terminal for pump capacitor of charge pump 2  
+ terminal for pump capacitor of charge pump 1  
- terminal for pump capacitor of charge pump 1  
Voltage supply  
VS  
CL2  
- terminal for pump capacitor of charge pump 2  
Logic and power ground  
GND3  
CB1  
VDH  
GL1  
SL1  
Buffer capacitor for charge pump 1  
Connection to drain of high side switches for short circuit detection  
Output to gate low side switch 1  
Connection to source low side switch 1  
Logic and power ground  
GND1  
SH1  
GH1  
Connection to source high side switch 1  
Output to gate high side switch 1  
Data Sheet  
6
Rev. 2.2, 2016-01-28  
TLE7189F  
Pin Configuration  
Pin  
40  
41  
42  
43  
44  
45  
46  
47  
48  
Symbol  
CB2  
Function  
Buffer capacitor for charge pump 2  
Output to gate low side switch 2  
Connection to source low side switch 2  
Output to gate high side switch 2  
Connection to source high side switch 2  
Output to gate high side switch 3  
Connection to source high side switch 3  
Logic and power ground  
GL2  
SL2  
GH2  
SH2  
GH3  
SH3  
GND2  
GL3  
Output to gate low side switch 3  
Data Sheet  
7
Rev. 2.2, 2016-01-28  
TLE7189F  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Absolute Maximum Ratings 1)  
-40 °C Tj 150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise  
specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Max.  
Unit Conditions  
Min.  
Voltages  
4.1.1  
Supply voltage  
VS1  
-4.0  
45  
V
with 10Ω and  
1µF  
4.1.2  
4.1.3  
4.1.4  
4.1.5  
Supply voltage  
VS2  
-0.3  
-0.3  
-0.3  
-0.3  
45  
47  
18  
6.0  
V
V
V
V
Supply voltage  
VS3  
tp<200ms  
Voltage range at IHx, ILx, ENA, VCT  
VDP1  
Voltage range at ERRx, VOx, VRI, VRO, VDP2  
SCDL  
4.1.6  
Voltage range at ERRx, VRI, SCDL  
Voltage range at VOx  
Voltage range at INH  
VDP3  
VVO  
-0.3  
-0.3  
-0.3  
-0.3  
-7  
18  
V
V
V
V
V
V
V
V
V
V
V
with 10kΩ2)  
with 1kΩ2)  
4.1.7  
18.0  
18.0  
18.0  
7
4.1.8  
VINH  
VVS_OA  
VSL  
4.1.9  
Voltage range at VS_OA  
Voltage range at SLx  
4.1.10  
4.1.11  
4.1.12  
4.1.13  
4.1.14  
4.1.15  
4.1.16  
Voltage range at SHx  
Voltage range at GLx  
VSH  
-7  
45  
VGL  
-7  
18  
Voltage range at GHx  
Voltage difference Gxx-Sxx  
Voltage range at VDH  
Voltage range at VDH  
VGH  
-7  
55  
VGS  
-0.3  
-0.3  
-7.0  
15  
VVDH1  
VVDH2  
55  
55  
with 100Ω  
200ms; 10x  
4.1.17  
Voltage range at VDH  
VVDH3  
-9.0  
55  
V
with 100Ω 1ms;  
10x  
4.1.18  
4.1.19  
Voltage range at VDH  
Voltage range at VDH  
VVDH4  
VVDH5  
-0.3  
-7.0  
20  
28  
V
V
V
V
INH=low  
INH=low with  
100Ω 200ms;  
10x  
4.1.20  
4.1.21  
Voltage range at VDH  
Voltage range at VDH  
VVDH6  
-9.0  
-0.3  
28  
28  
V
V
VINH=low with  
100Ω 200ms;  
10x  
VVDH7  
VINH=low; 5min;  
3x  
4.1.22  
4.1.23  
4.1.24  
4.1.25  
4.1.26  
Voltage range at CL1  
VCL1  
VCH1  
VCP1  
VCL2  
VCH2  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
25  
25  
25  
25  
55  
V
V
V
V
V
Voltage range at CH1, CB1  
Voltage difference CH1-CL1  
Voltage range at CL2  
Voltage range at CH2, CB2  
Data Sheet  
8
Rev. 2.2, 2016-01-28  
TLE7189F  
General Product Characteristics  
Absolute Maximum Ratings (cont’d)1)  
-40 °C Tj 150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise  
specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit Conditions  
Min.  
-0.3  
-2  
Max.  
25  
4.1.27  
4.1.28  
Voltage difference CH2-CL2  
VCP2  
V
V
DC voltage difference between VDH and VVDHVS  
+2  
VS3)  
4.1.29  
4.1.30  
Voltage range at ISPx, ISNx  
Output current range at VOx  
VISI  
-5  
5
V
IVOx  
-10  
10  
mA  
External components  
4.1.31  
4.1.32  
4.1.33  
Gate resistor  
RG  
2
Ω
V
V
Min. Voltage rating of CB2 capacitor  
Min. Voltage rating of CB2 capacitor  
VCCB2a  
VCCB2b  
-20  
-31  
20  
+31  
VS > 20V;  
V
INH=low  
Temperatures  
4.1.34  
4.1.35  
4.1.36  
Junction temperature  
TJ  
-40  
-55  
150  
150  
260  
°C  
°C  
°C  
Storage temperature  
Tstg  
Tsol  
Lead soldering temperature  
(1/16’’ from body)  
4.1.37  
Peak reflow soldering temperature4)  
Tref  
260  
5
°C  
Thermal Resistance  
4.1.38  
Junction to case  
RthJC  
K/W  
ESD Susceptibility  
4.1.39  
4.1.40  
ESD Resistivity5)  
ESD Resistivity (charge device model)6) VESD  
VESD  
-2  
2
kV  
V
750  
1) Not subject to production test, specified by design.  
2) after 50h the chip must be replaced; resistor in series  
3) High frequent transient ringing above 1MHz exceeding the +/-2V is allowed  
4) Reflow profile IPC/JEDEC J-STD-020C  
5) ESD susceptibility HBM according to EIA/JESD 22-A 114B  
6) ESD susceptibility CDM according to EIA/JESD 22-C 101  
Note:Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Note:Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
4.2  
Functional Range  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
5.5  
Max.  
20  
4.2.1  
4.2.2  
Supply voltage1)  
Supply voltage1)  
VS1  
VS2  
V
DC  
5.5  
28  
TA=25°C; t<1min  
Data Sheet  
9
Rev. 2.2, 2016-01-28  
TLE7189F  
General Product Characteristics  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
Max.  
100  
25  
4.2.3  
4.2.4  
Duty cycle2)  
0
0
%
D
PWM frequency  
fPWM  
kHz  
Total gate charge  
400nC  
4.2.5  
4.2.6  
Quiescent current3)  
IQ  
30  
30  
µA  
µA  
VS ,VVDH<20 V  
Quiescent current into VDH  
IQ_VDH  
V
VDH<20V;  
VS pin open  
fPWM=20kHz  
4.2.7  
Supply current at Vs  
IVs  
VS=170nC:  
VS = 5.5V  
VS = 14V  
VS= 18V  
110  
110  
90  
mA  
mA  
90  
VS = 20V  
4.2.8  
4.2.9  
Supply current at Vs  
(device disabled by ENA)  
IVs(o)  
60  
40  
VS=5.5V... 20V  
VS=20V... 28V  
Supply current at VS_OA  
IVs_OA  
IVDH1  
30  
mA  
mA  
V
VS_OA=4.8 ... 5.2V  
VS=5.5V... 20V;  
SHx=0V  
VS=5.5V... 20V;  
VS=VVDH=VSHx  
IHx=low  
Operation mode  
4.2.10 Current flowing into VDH pin  
(device not in sleep mode)  
1.5  
V
4.2.11 Current flowing into VDH pin  
(device not in sleep mode)  
IVDH2  
150  
650  
µA  
;
V
4.2.12 Voltage difference CB2-VDH  
4.2.13 Junction temperature  
VCB2VDH -0.3  
TJ -40  
20  
V
150  
°C  
1) For proper start up minimum Vs=6.5V is required  
2) Duty cycle is referred to the high side input command (IHx); The duty cycles can be driven continuously and fully operational  
3) total current consumption from power net (Vs and VDH)  
Note:Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics table.  
Note:If the voltage difference between CB2 and SHx is smaller than 2V during normal operation, there is a risk  
that the high side output can switch on and off without a corresponding input signal. As soon as this supply  
voltage recovers and the input signal changes, the output stage is automatically aligned to the input again.  
Data Sheet  
10  
Rev. 2.2, 2016-01-28  
TLE7189F  
General Product Characteristics  
4.3  
Default State of Inputs  
Table 1  
Default State of Inputs  
Characteristic  
State  
Low  
Remark  
Default state of ILx (if ILx left open -pull down)  
Default state of IHx (if IHx left open - pull up)  
Default state of ENA (if ENA left open - pull down)  
Default state of VCT (if VCT left open - pull up)  
Default state of INH (if INH left open - pull down)  
Low side MOSFETs off  
High side MOSFETs off  
Device/outputs disabled  
Device/outputs disabled  
Sleep mode, IQ < 30 µA  
High  
Low  
High  
Low  
Default state of SCDL (if SCDL left open - internal  
voltage divider)  
Typ. 1.4V  
Default State of sense amplifier output VOx  
(ISPx=ISNx=0V)  
Zero ampere equivalent  
Status of the Device and the Outputs when  
ENA=INH=high & VCT=low1)  
Device active and outputs 5.5....28V; No VCC check  
functional failure  
1) No special start up procedure is required  
Note:The load condition “C=22nF; RLoad=1Ω” in the paragraph “Electrical characteristics / Dynamic characteristic”  
means that RLoad is connected between the output Gxx and the positive terminal of the C. The negative  
terminal of the C is connected to GND and the corresponding Sxx. The voltage is measured at the positive  
terminal of the C.  
Note:Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics table.  
Data Sheet  
11  
Rev. 2.2, 2016-01-28  
TLE7189F  
Description and Electrical Characteristics  
5
Description and Electrical Characteristics  
5.1  
MOSFET Driver  
5.1.1  
Output Stages  
The 3 low side and 3 high side powerful push-pull output stages of the TLE7189F are all floating blocks, each with  
its own source pin. This allows the direct connection of the output stage to the source of each single MOSFET,  
allowing a perfect control of each gate-source voltage even when 200A are driven in the bridge with rise and fall  
times clearly below 1µs.  
All 6 output stages have the same output power and thanks to the used charge pump principle they can be  
switched all up to 30kHz.  
Its output stages are powerful enough to drive MOSFETs with 400nC gate charge with approx. 150ns fall and rise  
times or even to run 12 MOSFETs with 200nC each with fall and rise times of approx. 150ns.  
Maximum allowed power dissipation, max. junction temperature and the capabilities of the charge pump limit the  
use for higher frequencies.  
Each output stage has its own short circuit detection block. For more details about short circuit detection see  
Chapter 5.2.1.  
100Ω  
To Vbat  
VS  
INH  
CL1 CH1  
CB1 CL2 CH2  
Charge pump 2  
VDH  
CB2  
Charge pump 1  
CB2  
SCD  
UVLO  
Under voltage lock out  
Error logic  
Reset  
+
-
ERR1  
ERR2  
ENA  
Power On Reset  
Under voltage  
Over voltage  
Over temperature  
Short circuit+disable  
GHx  
SHx  
VSCP  
+3.3V  
Level  
shifter  
SCD  
SCD  
Floating HS driver 3x  
CB1  
SCD  
R1  
SCDL  
SCD  
lock  
/ unlock  
R2  
short circuit filter  
IH1  
IL1  
IH2  
IL2  
IH3  
IL3  
+
-
ON  
ON  
/
/
OFF  
OFF  
Input logic  
GLx  
SLx  
shoot through  
protection  
VSCP  
Level  
shifter  
dead time  
Floating LS driver 3x  
Shuntx  
P-GND  
GND  
Figure 3  
Block Diagram of Driver Stages including Short Circuit Detection  
Data Sheet  
12  
Rev. 2.2, 2016-01-28  
 
TLE7189F  
Description and Electrical Characteristics  
5.1.2  
Operation at Vs<12V - Integrated Charge Pumps  
The TLE7189F provides a feature tailored to the requirements in 12V automotive applications. Often the operation  
of an application has to be assured even at 9V supply voltage or lower. Normally bridge driver ICs provide in such  
conditions clearly less than 9V to the gate of the external MOSFETs, increasing their RDSon and the associated  
power dissipation.  
The TLE7189F has two charge pump circuitries for external capacitors.  
The operation of the charge pumps is independent upon the pulse pattern of the MOSFETs.  
The output of the charge pumps are regulated. The first charge pump doubles the supply voltage as long as it is  
below 8V. At 8V supply voltage and above, charge pump 1 regulates its output to 15V typically. Above 15V supply  
voltage, the output voltage of charge pump 1 will increase linearly. Yet, the output will not exceed 25V.  
Charge pump 2 is regulated as well but it is pumped to the voltage on Vs. Normally VDH and Vs are in the same  
voltage range. The driver is not designed to have significant different voltages at VDH compared to Vs. This would  
lead to reduced supply voltages for the high side output stages.  
Charge pump 1 supplies the low side MOSFETS and output stages for the low side MOSFETs with sufficient  
voltage to assure 10V at the MOSFETs´ gate even if the supply voltage is below 10V. Charge pump 2 supplies  
the output stages for the high side MOSFETs with sufficient voltage to assure 10V at the MOSFETs´ gate. In  
addition, the charge pump 1 supplies most of the internal circuits of the driver IC, including charge pump 2. Output  
of charge pump 1 is the buffer capacitor CB1 which is referenced to GND.  
Charge pump 2 supplies the high side MOSFETs and the output stages for the high side MOSFETs with sufficient  
voltage to assure 10V at the high side MOSFET gate. Output of charge pump 2 is buffer capacitor CB2 which is  
referenced to VDH.  
This concept allows to drive all external MOSFETs in the complete duty cycle range of 0 to 100% without taking  
care about recharging of any bootstrap capacitors.  
This simplifies the use in all applications especially in motor drives with block wise commutation.  
The charge pumps are only deactivated when the device is put into sleep mode via INH.  
The size of the charge pump capacitors (pump capacitors CPx as well as buffer capacitors CBx) can be varied  
between 1µF and 4.7µF. Yet, larger capacitor values result in higher charge pump voltages and less voltage ripple  
on the charge pump buffer capacitors CBx (which supply the internal circuits as well as the external MOSFETs,  
pls. see above). Besides the capacitance values the ESR of the buffer capacitors CBx determines the voltage  
ripple as well. It is recommended to use buffer capacitors CBx that have small ESR.  
Pls. see also Chapter 5.1.3 for capacitor selection.  
5.1.3  
Sleep Mode  
When the INH pin is set to low, the driver will be set to sleep mode. The INH pin switches off the complete supply  
structure of the device and leads finally to an under voltage shut down of the complete driver. Enabling the device  
with the INH pin means to switch on the supply structure. The device will run through power on reset during wake  
up. It is recommended to perform a Reset by ENA after Wake up to remove possible ERR signals; Reset is  
performed by keeping ENA pin low until the charge pump voltages have ramped up.  
Enabling and disabling with the INH pin is not very fast. For fast enable / disable the ENA pin is recommended.  
When the TLE7189F is in INH mode (INH is low) or when the supply voltage is not available on the Vs pin, then  
the driver IC is not supplied, the charge pumps are inactive and the charge pump capacitors are discharged. Pin  
CB2 (+ terminal of buffer capacitor 2) will decay to GND. When the battery voltage is still applied to VDH (- terminal  
of buffer capacitor 2) the buffer capacitor 2 will slowly charged to battery voltage, yet with reversed polarity  
compared to the polarity during regular operation. Hence, it is important to use a buffer capacitor 2 (CB2) that can  
withstand both, +25 V during operation mode and -VBAT during INH mode, e.g. a ceramic capacitor. In case of load  
dump during INH mode, the negative voltage across CB2 will be clamped to -31 V (CB2 referenced to VDH).  
Data Sheet  
13  
Rev. 2.2, 2016-01-28  
 
TLE7189F  
Description and Electrical Characteristics  
5.1.4  
Electrical Characteristics  
Electrical Characteristics MOSFET drivers - DC Characteristics  
VS = 5.5 to 20V, Tj = -40 to +150 °C, fPWM < 25kHz, all voltages with respect to ground, positive current flowing into  
pin (unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
Typ.  
Max.  
5.1.1  
5.1.2  
Low level output voltage  
High level output voltage  
VG_LL  
9
0.2  
13  
V
V
I
Load=30mA  
VS=8... 20V;  
Load=-2mA  
VS=5.5... 8V;  
Load=-2mA  
VS=5.5... 8V;  
VG_HL1  
I
5.1.3  
5.1.4  
5.1.5  
5.1.6  
High level output voltage, Low Side VG_HL2  
High level output voltage, High Side VG_HL3  
High level output voltage difference dVG_H  
7.5  
6.5  
13  
V
V
V
V
I
13  
I
Load=-2mA  
1.0  
0.2  
I
Load=-100mA;  
VS=20V  
Gate drive output voltage  
VGS_D  
V
V
ENA=low or  
VCT=high;  
5.5V<VS<28V  
Load=10mA  
UVLO; VS<=5.5V;  
Load=2mA  
I
5.1.7  
5.1.8  
5.1.9  
Gate drive output voltage  
Tj=-40°C  
Tj=25°C  
VGS1  
V
V
V
1.4  
1.2  
1.0  
I
Tj=150°C  
Gate drive output voltage high side VGS2  
Over voltage or  
VS=open or  
Tj=-40°C  
Tj=25°C  
Tj=150°C  
1.4  
1.2  
1.0  
V
INH=low;  
Load=2mA  
Over voltage;  
Load=2mA  
I
Gate drive output voltage low side VGS3  
0.2  
I
5.1.10 Low level input voltage of Ixx, ENA VI_LL  
5.1.11 High level input voltage of Ixx, ENA VI_HL  
1.0  
V
2.0  
50  
100  
V
5.1.12 Input hysteresis of IHx, ILx, ENA  
5.1.13 Input hysteresis of IHx, ILx, ENA  
5.1.14 Low level input voltage of INH  
5.1.15 High level input voltage of INH  
5.1.16 IHx pull up resistor  
dVI1  
dVI2  
VI_LL  
VI_HL  
RIHx  
–-  
mV  
mV  
V
VS=5.5... 8V  
200  
–-  
VS=8... 20V  
0.75  
2.1  
18  
18  
27  
V
30  
30  
45  
5
42  
42  
63  
kΩ  
kΩ  
kΩ  
μA  
mA  
V
IHx<5.5V  
VILx<5.5V  
VINH; VENA<5.5V  
5.1.17 ILx pull down resistor  
RILx  
5.1.18 INH, ENA pull down resistor  
5.1.19 Quiescent current VDH  
RINEN  
IQVDH  
ISHx  
25°C; VINH=low  
5.1.20 Output bias current SHx  
-1.6  
-1.0  
-0.3  
VS=5.5...20V;  
V
SHx=0...(VS+1);  
VILx=low; VIHx=high  
5.1.21 Output bias current SLx  
ISLx  
-1.6  
-1.0  
-0.3  
mA  
VS=5.5...20V;  
V
SLx=0...7V;  
VILx=low; VIHx=high  
Data Sheet  
14  
Rev. 2.2, 2016-01-28  
TLE7189F  
Description and Electrical Characteristics  
Electrical Characteristics MOSFET drivers - Dynamic Characteristics  
VS = 5.5 to 20V, Tj = -40 to +150 °C, fPWM < 25kHz, all voltages with respect to ground, positive current flowing into  
pin (unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
220  
Typ.  
400  
-1.5  
Max.  
5.1.22 Fixed internal dead time  
5.1.23 Turn on current, peak  
tDT  
600  
ns  
A
IG(on)1  
V
Gxx-VSxx=0V;  
VS=8...20V;  
Load=22nF;  
C
R
Load=1Ω  
5.1.24 Turn on current, peak  
5.1.25 Turn off current, peak  
IG(on)2  
IG(off)  
tG_rise  
-0.8  
1.5  
A
V
Gxx-VSxx=0V;  
VS=5.5...8V;  
Load=22nF;  
C
R
Load=1Ω  
A
V
Gxx-VSxx=10V;  
VS=8...20V;  
Load=22nF;  
Load=1Ω  
Load=22nF;  
Load=1Ω  
C
R
5.1.26 Rise time (20-80%)  
Tj = -40°C  
ns  
C
400  
400  
700  
R
150  
150  
Tj = 25°C  
Tj = 150°C  
5.1.27 Fall time (20-80%)  
Tj = -40°C  
tG_fall  
ns  
C
R
Load=22nF;  
Load=1Ω;  
230  
230  
500  
Tj = 25°C  
Tj = 150°C  
5.1.28 Input propagation time (low on)  
5.1.29 Input propagation time (low off)  
5.1.30 Input propagation time (high on)  
5.1.31 Input propagation time (high off)  
tP(ILN)  
tP(ILF)  
tP(IHN)  
tP(IHF)  
tP(an)  
90  
0
190  
100  
190  
100  
290  
200  
290  
200  
70  
ns  
ns  
ns  
ns  
ns  
C
Load=22nF;  
R
Load=1Ω  
90  
0
5.1.32 Absolute input propagation time  
difference (all channels turn on)  
5.1.33 Absolute input propagation time  
difference (all channels turn off)  
tP(af)  
50  
ns  
ns  
ns  
ns  
ns  
ms  
5.1.34 Absolute input propagation time  
difference (1channel high off - low on)  
tP(1hfln)  
tP(1lfhn)  
tP(ahfln)  
tP(alfhn)  
tINH_Pen1  
180  
180  
180  
180  
20  
C
Load=22nF;  
R
Load=1Ω  
5.1.35 Absolute input propagation time  
difference (1channel low off - high on)  
5.1.36 Absolute input propagation time  
difference (all channel high off - low on)  
5.1.37 Absolute input propagation time  
difference (all channel low off - high on)  
5.1.38 Wake up time; INH low to high  
Driver fully  
functional;  
VS=6.5...8V;  
V
ENA=low;  
C
CPx=CCBx=4,7µF  
Data Sheet  
15  
Rev. 2.2, 2016-01-28  
TLE7189F  
Description and Electrical Characteristics  
Electrical Characteristics MOSFET drivers - Dynamic Characteristics  
VS = 5.5 to 20V, Tj = -40 to +150 °C, fPWM < 25kHz, all voltages with respect to ground, positive current flowing into  
pin (unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
Typ.  
Max.  
5.1.39 Wake up time; INH low to high  
tINH_Pen2  
10  
10  
5
ms  
Driver fully  
functional;  
VS=8...20V;  
V
ENA=low;  
C
CPx=CCBx=4,7µF  
5.1.40 Wake up time logic functions; INH low tINH_log  
ms  
ms  
Driver fully  
functional;  
VS=6.5...8V;  
to high  
V
ENA=low;  
C
CPx=CCBx=4,7µF  
5.1.41 Wake up time logic functions; INH low tINH_log  
Driver fully  
functional;  
VS=8...20V;  
to high  
V
ENA=low;  
C
CPx=CCBx=4,7µF  
5.1.42 INH propagation time to disable the  
output stages  
tINH_Pdi1  
tINH_Pdi2  
tINH_Pdi3  
VVsWU  
fCP  
10  
8
µs  
µs  
µs  
V
VS=5.5...8V  
VS=8...20V  
5.1.43 INH propagation time to disable the  
output stages  
5.1.44 INH propagation time to disable the  
entire driver IC  
300  
5.1.45 Supply voltage Vs for Wake up  
6.5  
38  
diagnostic,  
OpAmp working  
5.1.46 Charge pump frequency  
55  
72  
kHz  
Data Sheet  
16  
Rev. 2.2, 2016-01-28  
TLE7189F  
5.2  
Protection and Diagnostic Functions  
Short Circuit Protection  
5.2.1  
The TLE7189F provides a short circuit protection for the external MOSFETs. It is a monitoring of the drain-source  
voltage of the external MOSFETs. As soon as this voltage is higher than the short circuit detection limit, a capacitor  
will be charged. The high side and the low side output stage of the same half bridge use the same capacitor (see  
Figure 3 ). This capacitor is discharged permanently with a current which is about 2 times smaller than the  
charging current. This charging and discharging ratio is specified with the help of duty cycle where a short is  
detected or not detected.  
After a delay of about 12µs all external MOSFETs will be switched off until the driver is reset by the ENA pin. The  
error flag is set.  
The drain-source voltage monitoring of the short circuit detection for a certain external MOSFET is active as soon  
as the corresponding input is set to "on" and the dead time is expired.  
The short circuit detection level is adjustable in an analogue manner by the voltage setting at the SCDL pin. There  
is a 1:1 translation between the voltage applied to the SCDL pin and the drain-source voltage limit. E.g. to trigger  
the SCD circuit at 1V drain-source voltage, the SCDL pin must be set to 1V as well. The drain-source voltage limit  
can be chosen between 0.7 ... 2.5V.  
If the SCDL pin is left open, the short circuit detection level will be set internally to a specified value. In case SCDL  
is connected to GND the detection level is low. If SCDL is connected to 3.3V, the detection level is about 3.2V.  
In the TLE7189F the short circuit detection functionality can be tested by setting the SCDL pin to voltages lower  
than 0.4V, switching off the low side MOSFETs and switching on one or more high side MOSFETs. In this test, a  
short circuit will be detected even without current in the external MOSFET (VDH-SHx > VTSCD1).  
This test function can be used as well to detect an open VDH pin. If VDH is open during this test, no SCD error  
will be reported.  
A setting of 5V at the SCDL pin will disable the short circuit protection function.  
5.2.2  
Dead Time and Shoot Through Protection  
In bridge applications it has to be assured that the external high side and low side MOSFETs are not "on" at the  
same time, connecting directly the battery voltage to GND. The dead time generated in the TLE7189F is fixed to  
a minimum value. This function assures a minimum dead time if the input signals coming from the µC are faulty.  
The exact dead time of the bridge is usually controlled by the PWM generation unit of the µC.  
In addition to this dead time, the TLE7189F provides a locking mechanism, avoiding that both external MOSFETs  
of one half bridge can be switched on at the same time. This functionality is called shoot through protection.  
If the command to switch on both high and low side switches in the same half bridge is given at the input pins, the  
command will be ignored. The conflicting input signals will not generate an error message.  
5.2.3  
Under Voltage Shut Down  
The TLE7189F has an integrated under voltage shut down, to assure that the behavior of the device is predictable  
in all voltage ranges.  
If the voltage of a charge pump buffer capacitors CBx reaches the under voltage shut down level for a minimum  
specified filter time, the gate-source voltage of all external MOSFETs will be actively pulled to low. In this situation  
the short circuit detection of this output stage is deactivated to avoid a latching shut down of the driver.  
As soon as the charge pump buffer voltage recovers, the output stage condition will be aligned to the input patterns  
automatically.This allows to continue operation of the motor in case of under voltage shut down without a reset by  
the µC.  
Data Sheet  
17  
Rev. 2.2, 2016-01-28  
TLE7189F  
Under voltage shut down will not occur when VS > 6V, QG < 250nC, fPWM < 25kHz, and the charge pump capacitors  
Cxx = 4.7 µF.  
5.2.4  
Over Voltage Shut Down  
The TLE7189F has an integrated over voltage shut down to avoid destruction of the IC at high supply voltages.The  
voltage is measured at the Vs and the VDH pin. When one of them or all of them exceed the over voltage shut  
down level for more than the specified filter time then the external MOSFETs are switched off. In addition, over  
voltage will shut down the charge pumps and will discharge the charge pump capacitors. This results in an under  
voltage condition which will be indicated on the ERRx pins. During over voltage shut down the external MOSFETs  
and the charge pumps remain off until a reset is performed.  
5.2.5  
Over Temperature Warning  
If the junction temperature is exceeding typ. 155°C an error signal is given as warning. The driver IC will continue  
to operate in order not to disturb the application.  
The warning is removed automatically when the junction temperature is cooling down.  
It is in the responsibility of the user to protect the device against over temperature destruction.  
5.2.6  
VCC Check  
To assure a high level of system safety, the TLE7189F provides an VCC check.  
The 5.0V system supply connected to the VS_OA pin is checked by an internally monitoring for over- and under  
voltage. An internal filter time is integrated to avoid faulty triggering.  
The VCC check is active when the signal on the ENA pin is high and inactive when ENA signal is low (=driver IC  
disabled).  
In case of under- or over voltage at VS_OA, the VCC check will disable the driver IC and is latched. To restart the  
output stages, a reset has to be performed with the ENA pin.  
The VCT pin decides about the over voltage and under voltage detection level.  
5.2.7  
ERR Pins  
The TLE7189F has two status pins to provide diagnostic feedback to the µC. The outputs of these pins are 5V  
push pull stages, they are either High or Low.  
Table 2  
Overview of error conditions  
INH  
ENA  
High  
High  
High  
High  
Low  
X
ERR1  
Low  
ERR2  
Low  
Driver conditions  
High  
High  
High  
High  
High  
Low  
Under voltage or VCC check error  
Over temperature or over voltage  
Short circuit detection  
Low  
High  
Low  
High  
High  
High  
Low  
High  
High  
Low  
No errors observed  
No errors will be reported  
ERR output tristate - low secured by pull down  
Table 3  
Behavior at different error conditions  
Error condition  
Short circuit detection  
Under voltage  
restart behavior  
Latch, reset must be performed at ENA pin All external Power -MOSFETs  
Auto restart All external Power -MOSFETs  
Latch, reset must be performed at ENA pin All external Power -MOSFETs  
Shuts down...  
Over voltage  
Data Sheet  
18  
Rev. 2.2, 2016-01-28  
TLE7189F  
Error condition  
Over temperature warning Self clearing  
VCC check  
restart behavior  
Shuts down...  
Nothing  
Latch, reset must be performed at ENA pin All external Power -MOSFETs  
Note:All errors do NOT lead to sleep mode. Sleep mode is only initiated with the INH pin. The latch and restart  
behavior allows to distinguish between the different error types combined at the ERR signals.  
Table 4  
Priorisation of Errors  
Priority  
Error  
1
2
3
4
5
VCC check  
Short circuit detection  
Under voltage detection  
Over voltage detection  
Over temperature  
Reset of ERROR registers and Disable  
The TLE7189F can be reset with the help of the enable pin ENA. If the ENA pin is pulled to low for a specified  
minimum time, the error registers are cleared and the external MOSFETs are switched off actively.  
During disable only the errors under voltage shut down and over temperature warning are shown. Other errors are  
not displayed.  
5.2.8  
Electrical Characteristics  
Electrical Characteristics - Protection and diagnostic functions  
VS = 5.5 to 20V, Tj = -40 to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
Typ.  
Max.  
Over temperature  
5.2.1  
5.2.2  
Over temperature warning  
Tj(OW)  
135  
155  
20  
175  
°C  
°C  
Hysteresis for over temperature  
warning  
dTj(OW)  
Short circuit detection  
5.2.3  
5.2.4  
Filter time of short circuit protection tSCP(off)  
Maximum duty cycle for no SCD1) DSCDmax  
8
12  
16  
30  
µs  
%
Default  
f
PWM=100kHzatIHx  
or ILx and at static  
applied SC  
5.2.5  
minimum duty cycle for periodic  
SCD1)  
DSCDmin 70  
%
fPWM=100 kHz at  
IHx or ILx and at  
static applied SC  
5.2.6  
5.2.7  
Voltage range on VSCD pin to  
adjust the Vds limit  
VSCDLa1 0.7  
2.5  
V
V
Short circuit  
detection is active  
Short circuit detection level  
VSCDLa2 2.64  
3.63  
Short circuit  
detection is active  
V
SCDL=3.3V  
Data Sheet  
19  
Rev. 2.2, 2016-01-28  
TLE7189F  
Electrical Characteristics - Protection and diagnostic functions (cont’d)  
VS = 5.5 to 20V, Tj = -40 to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
VSCDL(dis) 4.5  
Typ.  
Max.  
5.2.8  
Short circuit disable voltage at  
VSCD pin  
5.5  
V
Short circuit  
detection is  
disabled  
5.2.9  
Accuracy of SCD  
ASC(off)1  
ASC(off)2  
0.85  
1.15  
1.3  
V
2.5V  
SCDL(off) set to 1...  
(VSCDL /VDS(off)  
5.2.10 Accuracy of SCD  
(VSCDL /VDS(off)  
)
0.7  
V
1V  
SCDL(off) setto0.7...  
)
5.2.11 SCDL pull up resistor  
5.2.12 SCDL pull down resistor  
5.2.13 SCDL default voltage  
Test of short circuit detection  
RSCDU  
RSCDD  
VSCDLop  
400  
160  
1.4  
kΩ  
kΩ  
V
Not tested  
Not tested  
Open pin  
VSCDT  
5.2.14 SCDL voltage for SCD test  
activation  
0.4  
V
tSCDT  
5.2.15 Filter time for SCD test activation  
0.5  
-80  
2.5  
µs  
VTSCD1  
5.2.16 VDH-SHx voltage for SCD  
detection in SCD test mode  
mV  
VTSCD2  
5.2.17 VDH-SHx voltage with no SCD  
detection in SCD test mode  
-350  
mV  
ERR pins  
5.2.18 High level output voltage of ERRx VOHERR  
5.2.19 Low level output voltage of ERRx VOLERR  
4.0  
-0.1  
2.7  
5.2  
0.4  
112  
V
I
I
V
Load= -0.2mA  
Load= 0.2mA  
V
RERR  
ERR<5.5V; VINH=low  
5.2.20 ERR pull down resistor  
kΩ  
tPD(ERR)  
5.2.21 Propagation time difference ERR1  
and ERR2  
200  
ns  
Over- and under voltage  
5.2.22 Over voltage shut down  
5.2.23 Over voltage filter time  
5.2.24 Under voltage shut down CB1  
5.2.25 Under voltage shut down CB2  
VOV(off)  
tOV  
28  
30  
7.4  
4.6  
33  
60  
9.0  
6.8  
V
µs  
V
VUV1  
8.2  
CB1 to GND  
CB2 to VDH  
VUV2  
V
5.2.26 Hysteresis of under voltage shut  
down on CB1 and CB2  
VHUV1,2  
1.0  
V
5.2.27 Under voltage filter time on CB1  
and CB2  
tUV  
3.5  
5
7
µs  
Enable and reset  
5.2.28 Reset time to clear ERR registers tRes1  
3.0  
µs  
µs  
µs  
5.2.29 Low time of ENA signal without  
reset  
tRes0  
1.0  
4.0  
5.2.30 ENA propagation time (for enable / tPENA  
disable)  
Data Sheet  
20  
Rev. 2.2, 2016-01-28  
TLE7189F  
Electrical Characteristics - Protection and diagnostic functions (cont’d)  
VS = 5.5 to 20V, Tj = -40 to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
Typ.  
Max.  
5.2.31 Return time to normal operation at tAR  
1.0  
µs  
auto-restart  
VCC Check  
5.2.32 Under voltage detection level  
5.2.33 Over voltage detection level  
5.2.34 Over voltage detection level  
VVCU  
4.3  
5.3  
3.3  
10  
4.7  
5.8  
4.3  
25  
1.0  
V
V
V
V
VCT=low  
VCT=low  
VCT=high  
VVCOl  
VVCOh  
V
V
5.2.35 Over- and under voltage filter time tVC  
µs  
V
5.2.36 Low level input voltage of VCT  
5.2.37 High level input voltage of VCT  
5.2.38 VCT pull down resistor  
VVCT_LL  
VVCT_HL 2.0  
V
RVCT  
V
VCT<5.5V  
27  
45  
63  
kΩ  
tVCT  
5.2.39 Filter time for VCT test  
1.3  
2
3.0  
µs  
1) Parameters describe the behavior of the internal SCD circuit. Therefore only internal delay times are considered. In  
application dead-/ delay times determined by application circuit (switching times of MOSFETs, adjusted dead time) have  
to be considered as well.  
Data Sheet  
21  
Rev. 2.2, 2016-01-28  
TLE7189F  
5.3  
Shunt Signal Conditioning  
The TLE7189F incorporates three fast and precise operational amplifiers for conditioning and amplification of the  
shunt signals sensed in the three phases. Additionally, one reference bias buffer is integrated to provide an  
adjustable bias reference for the three OpAmps. The voltage divider on the VRI pin should be less than 50 kΩ, the  
filtering capacitor less than 1.2 µF - if needed at all. The gain of the OpAmps is adjustable by external resistors  
within a range of 3 to 20 or more, as long as the band width satisfies the need of the application.  
In the circuit example below VO1 provides the reference voltage VVRO, when the shunt voltage is zero. VVRO is  
normally half of the regulated voltage provided from an external voltage regulator for the ADC used to read the  
current sense signal. The additional buffer allows bi-directional current sensing and permits the adaptation of the  
reference bias to different µC I/O voltages. The reference buffer assures a stable reference voltage even in the  
high frequency range.  
The reference bias buffer is used for all of the OpAmps. The OpAmps of the TLE7189F demonstrate low offset  
voltages and very little drift over temperature, thus allowing accurate phase current measurements.  
3.3V  
Adjustable  
bias  
reference  
CVRI < 1.2 µF (if needed)  
RVRI  
VRI  
RVRI < 50 kOhm  
CVRI  
RVRI  
+
VRO  
Rfb  
Bias  
Reference  
-
Rfb  
Rs  
Rfb  
ISP1  
+
I-DC Link  
OpAmp1  
Shunt  
Rs  
-
ISN1  
Rfb  
TLE7189  
Rs  
+
ISP2  
ISN2  
I-DC Link  
Rs  
OpAmp2  
-
Dependent on  
customer specific  
requirements additional  
filtering can be  
necessary  
Rs  
Rs  
+
ISP3  
ISN3  
I-DC Link  
OpAmp3  
-
VO3 VO2  
VO1  
1k  
1k  
to ADCs  
Figure 4  
Shunt Signal Conditioning Block Diagram  
Data Sheet  
22  
Rev. 2.2, 2016-01-28  
TLE7189F  
5.3.1  
Electrical Characteristics  
Electrical Characteristics - Current sense signal conditioning  
VS = 5.5 to 20V, VVSOA = 5V, Tj = -40 to +150 °C, fPWM < 25kHz, all voltages with respect to ground, positive current  
flowing into pin (unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
100  
5
Typ.  
500  
Max.  
5.3.1  
5.3.2  
5.3.3  
Series resistors  
RRS  
1000  
20  
Ω
Resistor ratio (gain ratio)  
Resistor ratio (gain ratio)  
R
R
Rfb/RRS1  
Rfb/RRS2  
1kΩ and 200pF at  
VOx  
3
20  
5.3.4  
5.3.5  
5.3.6  
5.3.7  
Input differential voltage (ISPx -  
ISNx)  
VIDR  
-800  
-800  
-800  
-1.58  
800  
mV  
mV  
mV  
mV  
Input voltage (Both Inputs - GND) VLL1  
(ISP - GND) or (ISN -GND)  
2200  
1500  
1.28  
VS=8 ... 20V  
Input voltage (Both Inputs - GND) VLL2  
(ISP - GND) or (ISN -GND)  
Input offset voltage of the I-DC link VIO1  
OpAmp, including drift over  
temperature range  
RRS=500Ω;  
V
V
CM=0V;VO=1.65V;  
VRI=1.65V  
5.3.8  
5.3.9  
Input offset voltage of reference  
buffer  
VIO2  
-3  
2
mV  
VRI input range  
VRI  
IIB  
1.2  
2.6  
V
5.3.10 Input bias current  
-300  
µA  
V
CM=0V;  
VOx=open  
V
VRI=1.65V  
5.3.11 Input bias current of reference  
buffer  
IIBRB  
0.6  
1.4  
2.4  
µA  
V
VRI=1.2 ... 2.6V;  
5.3.12 High level output voltage of VOx  
5.3.13 Low level output voltage of VOx  
5.3.14 Output voltage of VOx  
VOH  
VOL  
VOR  
4.0  
4.5  
V
V
V
IOx=-3mA;  
VRI=1.2 ... 2.6V;  
IOx=3mA  
IN(SS)=0V;  
Gain=15;  
VRI=1.65V  
V
-0.1  
0.2  
V
1.623 1.65  
1.668  
V
5.3.15 Output short circuit current  
5.3.16 Differential input resistance1)  
5.3.17 Common mode input capacitance1)  
ISC  
-5  
mA  
kΩ  
pF  
db  
short to GND  
RRI  
100  
10  
10kHz  
CICM  
CMRR  
5.3.18 Common mode rejection ratio at  
80  
DC  
CMRR =  
20*Log((Vout_diff/Vin_diff) *  
(Vin_CM/Vout_CM))  
5.3.19 Common mode suppression2) with  
CMS = 20*Log(Vout_CM/Vin_CM)  
Freq =100kHz  
db  
VIN=360mV*  
sin(2*π*freq*t);  
RRS=500Ω;  
CMS  
62  
43  
33  
Freq = 1MHz  
Freq = 10MHz  
R
V
Rfb=7500Ω;  
VRI=1.65, 2.5V  
Data Sheet  
23  
Rev. 2.2, 2016-01-28  
TLE7189F  
Electrical Characteristics - Current sense signal conditioning (cont’d)  
VS = 5.5 to 20V, VVSOA = 5V, Tj = -40 to +150 °C, fPWM < 25kHz, all voltages with respect to ground, positive current  
flowing into pin (unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
Typ.  
Max.  
5.3.20 Slew rate  
ISC  
10  
V/µs  
Gain>= 5;  
R
Load=1.0kΩ;  
CLoad=500pF  
5.3.21 Large signal open loop voltage gain AOL  
80  
10  
100  
20  
dB  
MHz  
°
(DC)  
5.3.22 Unity gain bandwidth  
R
C
Load=1kΩ;  
Load=100pF  
Gain>= 5;  
Load=1kΩ;  
Load=100pF  
Load=1kΩ;  
Load=100pF  
Gain=15;  
Load=1kΩ;  
Load=500pF;  
GBW  
5.3.23 Phase margin1)  
ΦM  
50  
R
C
5.3.24 Gain margin1)  
5.3.25 Bandwidth  
AM  
12  
db  
R
C
BWG  
1.6  
MHz  
R
C
RRS=500Ω  
5.3.26 Output settle time to 98%  
5.3.27 Output rise time 10% to 90%  
5.3.28 Output fall time 90% to 10%  
tset  
1
1.8  
1
µs  
µs  
µs  
Gain=15;  
R
C
Load=1kΩ;  
Load=500pF;  
tIrise  
tIfall  
1
0.2<VVO< 4.0V;  
RRS=500Ω  
1) Not subject to production test; specified by design  
2) Without considering any offsets such as input offset voltage, internal miss match and assuming no tolerance error in  
external resistors.  
Data Sheet  
24  
Rev. 2.2, 2016-01-28  
 
TLE7189F  
Application Description  
6
Application Description  
In the automotive sector there are more and more applications requiring high performance motor drives, such as  
electro-hydraulic or electric power steering. In these applications 3 phase motors, synchronous and  
asynchronous, are used, combining high output performance, low space requirements and high reliability.  
Reverse  
polarity  
switch  
VS=12V  
RVS  
10 Ω *)  
C
xxxx µF  
P-GND  
RVDH  
100 Ω  
V_Bridge  
INH VS VDH  
VS_OA  
>2 Ω  
SCDL  
VRI  
GH1  
SH1  
>2 Ω  
>2 Ω  
GH2  
SH2  
GH3  
SH3  
CH2  
CCP2  
1µF  
CL2  
CB2  
CCB2  
1 µF  
ceramic  
TLE7189  
V_Bridge  
CH1  
CCP1  
1 µF  
µC  
>2 Ω  
CL1  
CB1  
and/or  
System  
ASIC  
GL1  
SL1  
CCB1  
2.2µF  
see 4.1.2: all  
pump capacitors  
1μF to 4.7μF  
>2 Ω  
>2 Ω  
GL2  
SL2  
ENA  
ERR1  
ERR2  
RERR *)  
RERR *)  
GL3  
SL3  
IL1  
IH1  
IL2  
IH2  
VRO  
ISP3  
IL3  
IH3  
ISP2  
ISP1  
VCT  
Shunt  
ISN3  
ISN2  
ISN1  
VO3  
VO2  
VO1  
GND  
GND  
RO *)  
capacitors for  
shunt signal  
conditioning only if  
additional filtering  
is desired  
*) see max. Ratings  
P-GND  
Figure 5  
Application Circuit - TLE7189F  
Note:This is a very simplified example of an application circuit. The function must be verified in the real application.  
Data Sheet  
25  
Rev. 2.2, 2016-01-28  
TLE7189F  
Application Description  
6.1  
Layout Guide Lines  
Please refer also to the simplified application example.  
Three separated bulk capacitors CB should be used - one per half bridge  
Three separated ceramic capacitors CC should be used - one per half bridge  
Each of the 3 bulk capacitors CB and each of the 3 ceramic capacitors CC should be assigned to one of the half  
bridges and should be placed very close to it  
The components within one half bridge should be placed close to each other: high side MOSFET, low side  
MOSFET, bulk capacitor CB and ceramic capacitor CC (CB and CC are in parallel) and the shunt resistor form  
a loop that should be as small and tight as possible. The traces should be short and wide  
The three half bridges can be separated; yet, when there is one common GND referenced shunt resistor for  
the three half bridges the sources of the three low side MOSFETs should be close to each other and close to  
the common shunt resistor  
VDH is the sense pin used for short circuit detection; VDH should be routed (via Rvdh) to the common point  
of the drains of the high side MOSFETs to sense the voltage present on drain high side  
CB2 is the buffer capacitor of charge pump 2; its negative terminal should be routed to the common point of  
the drains of the high side MOSFETs as well - this connection should be low inductive / resistive  
Additional R-C snubber circuits (R and C in series) can be placed to attenuate/suppress oscillations during  
switching of the MOSFETs, there may be one or two snubber circuits per half bridge, R (several Ohm) and C  
(several nF) must be low inductive in terms of routing and packaging (ceramic capacitors)  
the exposed pad on the backside of the VQFN is recommended to connect to GND  
Data Sheet  
26  
Rev. 2.2, 2016-01-28  
TLE7189F  
Package Outlines  
7
Package Outlines  
Figure 6  
PG-VQFN-48  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with  
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e  
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
You can find all of our packages, sorts of packing and others in our  
Dimensions in mm  
Infineon Internet Page “Products”: http://www.infineon.com/products.  
Data Sheet 27  
Rev. 2.2, 2016-01-28  
TLE7189F  
Revision History  
8
Revision History  
Version  
Date  
Changes  
V0.1  
V1.0  
V2.0  
V2.1  
2005-11  
Proposal for Target Data Sheet  
Preliminary Data Sheet  
Data Sheet  
2007-02-26  
2007-03-29  
2007-05-30  
5.1.25 + 26: turn on current - sign changed  
5.3.10: Input bias current - sign changed  
5.3.15: Output short circuit current - sign changed  
Description of OpAmp slightly changed  
Names of some parameters changed  
V2.2  
2016-01-28  
package adjustments  
Data Sheet  
28  
Rev. 2.2, 2016-01-28  
Edition 2016-01-28  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2016 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  

相关型号:

TLE7189QK

PRO-SILTM 3-Phase Bridge Driver IC
INFINEON

TLE7189QKXUMA1

AC Motor Controller, 0.01A, PQFP64, GREEN, PLASTIC, LQFP-64
INFINEON

TLE7189QK_09

PRO-SILTM 3-Phase Bridge Driver IC
INFINEON

TLE7201R

Automotive Analog Circuit,
INFINEON

TLE7209-2R

7 A H-Bridge for DC-Motor Applications
INFINEON

TLE7209-2R_07

7 A H-Bridge for DC-Motor Applications
INFINEON

TLE7209-2R_10

7 A H-Bridge for DC-Motor Applications
INFINEON

TLE7209-3R

MOTIX™ | Integrated Full-Bridge Driver
INFINEON

TLE72092RAUMA2

Stepper Motor Controller, PDSO20, GREEN, PLASTIC, DSO-20
INFINEON

TLE72092RAUMA4

Stepper Motor Controller, PDSO20, GREEN, PLASTIC, DSO-20
INFINEON

TLE72092RNUMA1

Stepper Motor Controller, PDSO20, GREEN, PLASTIC, DSO-20
INFINEON

TLE72093RAUMA1

IC MOTOR DRIVER SPI 20DSO
INFINEON