TLE7250VLEXUMA1 [INFINEON]

Interface Circuit, PDSO8, TSON-8;
TLE7250VLEXUMA1
型号: TLE7250VLEXUMA1
厂家: Infineon    Infineon
描述:

Interface Circuit, PDSO8, TSON-8

电信 光电二极管 电信集成电路
文件: 总34页 (文件大小:1621K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE7250V  
High Speed CAN-Transceiver  
TLE7250VLE  
TLE7250VSJ  
Data Sheet  
Rev. 1.0, 2015-08-12  
Automotive Power  
TLE7250VLE  
TLE7250VSJ  
Table of Contents  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
1
2
3
3.1  
3.2  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
4
4.1  
4.2  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
High Speed CAN Physical Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Normal-operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Power-save Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Power-up and Undervoltage Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Power-down State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Forced Power-save Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Undervoltage on the Digital Supply VIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Undervoltage on the Transmitter Supply VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Voltage Adaption to the Microcontroller Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4.2.1  
4.2.2  
4.3  
4.3.1  
4.3.2  
4.3.3  
4.3.4  
4.3.5  
4.3.6  
5
Fail Safe Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Short Circuit Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Unconnected Logic Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
TxD Time-out Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Overtemperature Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Delay Time for Mode Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
5.1  
5.2  
5.3  
5.4  
5.5  
6
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
6.1  
6.2  
6.3  
7
7.1  
7.2  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Functional Device Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
8
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
ESD Robustness according to IEC61000-4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Examples for Mode Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Mode Change while the TxD Signal is “low” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Mode Change while the Bus Signal is “dominant” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
8.1  
8.2  
8.3  
8.3.1  
8.3.2  
8.4  
9
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
10  
Data Sheet  
2
Rev. 1.0, 2015-08-12  
 
High Speed CAN-Transceiver  
TLE7250VLE  
TLE7250VSJ  
1
Overview  
Features  
Fully compatible to ISO 11898-2  
Wide common mode range for electromagnetic immunity (EMI)  
Very low electromagnetic emission (EME)  
Excellent ESD robustness  
Guaranteed loop delay symmetry to support CAN FD data frames up  
to 2 MBit/s  
VIO input for voltage adaption to the microcontroller supply  
Extended supply range on VCC and VIO supply  
CAN short circuit proof to ground, battery and VCC  
TxD time-out function  
PG-TSON-8  
Low CAN bus leakage current in power-down state  
Overtemperature protection  
Protected against automotive transients  
Power-save mode  
Transmitter supply VCC can be turned off in power-save mode  
Green Product (RoHS compliant)  
Two package variants: PG-TSON-8 and PG-DSO-8  
AEC Qualified  
PG-DSO-8  
Description  
The TLE7250V is a transceiver designed for HS CAN networks in automotive and industrial applications. As an  
interface between the physical bus layer and the CAN protocol controller, the TLE7250V drives the signals to the  
bus and protects the microcontroller against interferences generated within the network. Based on the high  
symmetry of the CANH and CANL signals, the TLE7250V provides a very low level of electromagnetic emission  
(EME) within a wide frequency range.  
The TLE7250V is available in a small, leadless PG-TSON-8 package and in a PG-DSO-8 package. Both packages  
are RoHS compliant and halogen free. Additionally the PG-TSON-8 package supports the solder joint  
requirements for automated optical inspection (AOI). The TLE7250VLE and the TLE7250VSJ are fulfilling or  
exceeding the requirements of the ISO11898-2.  
The TLE7250V provides a digital supply input VIO and a power-save mode. It is designed to fulfill the enhanced  
physical layer requirements for CAN FD and supports data rates up to 2 MBit/s.  
On the basis of a very low leakage current on the HS CAN bus interface the TLE7250V provides an excellent  
passive behavior in power-down state. These and other features make the TLE7250V exceptionally suitable for  
Type  
Package  
Marking  
7250V  
TLE7250VLE  
TLE7250VSJ  
PG-TSON-8  
PG-DSO-8  
7250V  
Data Sheet  
3
Rev. 1.0,2015-08-12  
TLE7250VLE  
TLE7250VSJ  
Overview  
mixed supply HS CAN networks.  
Based on the Infineon Smart Power Technology SPT, the TLE7250V provides excellent ESD immunity together  
with a very high electromagnetic immunity (EMI). The TLE7250V and the Infineon SPT technology are AEC  
qualified and tailored to withstand the harsh conditions of the automotive environment.  
Two different operating modes, additional fail-safe features like a TxD time-out and the optimized output slew rates  
on the CANH and CANL signals, make the TLE7250V the ideal choice for large HS CAN networks with high data  
transmission rates.  
Data Sheet  
4
Rev. 1.0, 2015-08-12  
TLE7250VLE  
TLE7250VSJ  
Block Diagram  
2
Block Diagram  
3
VCC  
5
VIO  
Transmitter  
7
1
TxD  
CANH  
CANL  
Timeout  
Driver  
Temp-  
protection  
6
8
Mode  
control  
NEN  
Receiver  
Normal-mode receiver  
4
RxD  
VCC/2  
=
Bus-biasing  
GND  
2
Figure 1  
Functional block diagram  
Data Sheet  
5
Rev. 1.0, 2015-08-12  
 
TLE7250VLE  
TLE7250VSJ  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment  
NEN  
1
8
TxD  
GND  
VCC  
1
2
3
4
8
NEN  
CANH  
CANL  
TxD  
GND  
VCC  
CANH  
CANL  
2
7
PAD  
7
6
5
3
4
6
5
RxD  
VIO  
(Top-side x-ray view)  
RxD  
VIO  
Figure 2  
Pin configuration  
3.2  
Pin Definitions  
Table 1  
Pin No.  
1
Pin definitions and functions  
Symbol  
Function  
TxD  
Transmit Data Input;  
internal pull-up to VIO, “low” for “dominant” state.  
2
3
GND  
Ground  
VCC  
Transmitter Supply Voltage;  
100 nF decoupling capacitor to GND required,  
V
CC can be turned off in power-save mode.  
4
5
RxD  
Receive Data Output;  
“low” in “dominant” state.  
VIO  
Digital Supply Voltage;  
supply voltage input to adapt the logical input and output voltage levels of the  
transceiver to the microcontroller supply,  
100 nF decoupling capacitor to GND required.  
6
7
CANL  
CANH  
CAN Bus Low Level I/O;  
“low” in “dominant” state.  
CAN Bus High Level I/O;  
“high” in “dominant” state.  
Data Sheet  
6
Rev. 1.0, 2015-08-12  
TLE7250VLE  
TLE7250VSJ  
Pin Configuration  
Table 1  
Pin No.  
8
Pin definitions and functions (cont’d)  
Symbol  
Function  
NEN  
Not Enable Input;  
internal pull-up to VIO, “low” for normal-operating mode.  
PAD  
Connect to PCB heat sink area.  
Do not connect to other potential than GND.  
Data Sheet  
7
Rev. 1.0, 2015-08-12  
TLE7250VLE  
TLE7250VSJ  
Functional Description  
4
Functional Description  
HS CAN is a serial bus system that connects microcontrollers, sensors and actuators for real-time control  
applications. The use of the Controller Area Network (abbreviated CAN) within road vehicles is described by the  
international standard ISO 11898. According to the 7-layer OSI reference model the physical layer of a HS CAN  
bus system specifies the data transmission from one CAN node to all other available CAN nodes within the  
network. The physical layer specification of a CAN bus system includes all electrical and mechanical specifications  
of a CAN network. The CAN transceiver is part of the physical layer specification. Several different physical layer  
standards of CAN networks have been developed in recent years. The TLE7250V is a High Speed CAN  
transceiver without a wake-up function and defined by the international standard ISO 11898-2.  
4.1  
High Speed CAN Physical Layer  
VIO  
=
=
Digital supply voltage  
Transmitter supply voltage  
Transmit data input from  
the microcontroller  
TxD  
VCC  
TxD  
VIO  
=
RxD  
=
Receive data output to  
the microcontroller  
CANH =  
CANL =  
Bus level on the CANH  
input/output  
t
t
Bus level on the CANL  
input/output  
CANH  
CANL  
VDiff  
=
Differential voltage  
VCC  
between CANH and CANL  
VDiff = VCANH VCANL  
VDiff  
VCC  
“dominant” receiver threshold  
“recessive” receiver threshold  
t
RxD  
VIO  
tLoop(H,L)  
tLoop(L,H)  
t
Figure 3  
High speed CAN bus signals and logic signals  
Data Sheet  
8
Rev. 1.0, 2015-08-12  
 
TLE7250VLE  
TLE7250VSJ  
Functional Description  
The TLE7250V is a High-Speed CAN transceiver, operating as an interface between the CAN controller and the  
physical bus medium. A HS CAN network is a two wire, differential network which allows data transmission rates  
for CAN FD frames up to 2 MBit/s. Characteristic for HS CAN networks are the two signal states on the HS CAN  
bus: “dominant” and “recessive” (see Figure 3).  
VCC, VIO and GND are the supply pins for the TLE7250V. The pins CANH and CANL are the interface to the  
HS CAN bus and operate in both directions, as an input and as an output. RxD and TxD pins are the interface to  
the CAN controller, the TxD pin is an input pin and the RxD pin is an output pin. The NEN pin is the input pin for  
the mode selection (see Figure 4).  
By setting the TxD input pin to logical “low” the transmitter of the TLE7250V drives a “dominant” signal to the CANH  
and CANL pins. Setting TxD input to logical “high” turns off the transmitter and the output voltage on CANH and  
CANL discharges towards the “recessive” level. The “recessive” output voltage is provided by the bus biasing (see  
Figure 1). The output of the transmitter is considered to be “dominant”, when the voltage difference between  
CANH and CANL is at least higher than 1.5 V (VDiff = VCANH - VCANL).  
Parallel to the transmitter the normal-mode receiver monitors the signal on the CANH and CANL pins and indicates  
it on the RxD output pin. A “dominant” signal on the CANH and CANL pins sets the RxD output pin to logical “low”,  
vice versa a “recessive” signal sets the RxD output to logical “high”. The normal-mode receiver considers a voltage  
difference (VDiff) between CANH and CANL above 0.9 V as “dominant” and below 0.5 V as “recessive”.  
To be conform with HS CAN features, like the bit to bit arbitration, the signal on the RxD output has to follow the  
signal on the TxD input within a defined loop delay tLoop 255 ns.  
The thresholds of the digital inputs (TxD and NEN) and also the RxD output voltage are adapted to the digital  
power supply VIO.  
Data Sheet  
9
Rev. 1.0, 2015-08-12  
TLE7250VLE  
TLE7250VSJ  
Functional Description  
4.2  
Modes of Operation  
The TLE7250V supports two different modes of operation, power-save mode and normal-operating mode while  
the transceiver is supplied according to the specified functional range. The mode of operation is selected by the  
NEN input pin (see Figure 4).  
power-save mode  
VCC = “don’t care”  
VIO > VIO(UV,R)  
NEN = 1  
NEN = 0  
NEN = 1  
normal-operating  
mode  
VCC > VCC(UV,R)  
VIO > VIO(UV,R)  
NEN = 0  
Figure 4  
Mode state diagram  
4.2.1  
Normal-operating Mode  
In normal-operating mode the transmitter and the receiver of the HS CAN transceiver TLE7250V are active (see  
Figure 1). The HS CAN transceiver sends the serial data stream on the TxD input pin to the CAN bus. The data  
on the CAN bus is displayed at the RxD pin simultaneously. A logical “low” signal on the NEN pin selects the  
normal-operating mode, while the transceiver is supplied by VCC and VIO (see Table 2 for details).  
4.2.2  
Power-save Mode  
The power-save mode is an idle mode of the TLE7250V with optimized power consumption. In power-save mode  
the transmitter and the normal-mode receiver are turned off. The TLE7250V can not send any data to the CAN  
bus nor receive any data from the CAN bus.  
The RxD output pin is permanently “high” in the power-save mode.  
A logical “high” signal on the NEN pin selects the power-save mode, while the transceiver is supplied by the digital  
supply VIO (see Table 2 for details).  
In power-save mode the bus input pins are not biased. Therefore the CANH and CANL input pins are floating and  
the HS CAN bus interface has a high resistance.  
The undervoltage detection on the transmitter supply VCC is turned off, allowing to switch off the VCC supply in  
power-save mode.  
Data Sheet  
10  
Rev. 1.0, 2015-08-12  
 
 
TLE7250VLE  
TLE7250VSJ  
Functional Description  
4.3  
Power-up and Undervoltage Condition  
By detecting an undervoltage event, either on the transmitter supply VCC or the digital supply VIO, the transceiver  
TLE7250V changes the mode of operation. Turning off the digital power supply VIO, the transceiver powers down  
and remains in the power-down state. While switching off the transmitter supply VCC, the transceiver either  
changes to the forced power-save mode, or remains in power-save mode (details see Figure 5).  
normal-operating  
mode  
VIO “on”  
VCC “on”  
NEN “0”  
VIO “on”  
VCC “on”  
NEN “0”  
NEN VCC  
VIO  
0
“on” “on”  
VIO “on”  
VCC “off”  
NEN “0”  
VIO “on”  
VCC “on”  
NEN “0”  
power-down  
state  
forced power-save  
mode  
VIO “on”  
VCC “off”  
NEN “0”  
NEN VCC  
“X” “X”  
VIO  
NEN VCC  
VIO  
“off”  
0
“off” “on”  
VIO “on”  
VCC “X”  
NEN “1”  
VIO “on”  
VCC “X”  
NEN “1”  
power-save  
mode  
VIO “on”  
VCC “X”  
NEN “1”  
NEN VCC  
“X”  
VIO  
1
“on”  
Figure 5  
Power-up and undervoltage  
Modes of operation  
Table 2  
Mode  
NEN  
VIO  
VCC  
Bus Bias  
Transmitter  
Normal-mode Low-power  
Receiver  
Receiver  
Normal-operating  
Power-save  
“low”  
“on”  
“on”  
“on”  
“off”  
“on”  
“X”  
VCC/2  
“on”  
“off”  
“off”  
“off”  
“on”  
not available  
not available  
not available  
not available  
“high”  
floating  
floating  
floating  
“off”  
Forced power-save “low”  
Power-down state “X”  
“off”  
“X”  
“off”  
“off”  
Data Sheet  
11  
Rev. 1.0, 2015-08-12  
 
 
TLE7250VLE  
TLE7250VSJ  
Functional Description  
4.3.1  
Power-down State  
Independent of the transmitter supply VCC and of the NEN input pin, the TLE7250V is in power-down state when  
the digital supply voltage VIO is turned off (see Figure 5).  
In the power-down state the input resistors of the receiver are disconnected from the bus biasing VCC/2. The CANH  
and CANL bus interface of the TLE7250V is floating and acts as a high-impedance input with a very small leakage  
current. The high-ohmic input does not influence the “recessive” level of the CAN network and allows an optimized  
EME performance of the entire HS CAN network (see also Table 2).  
4.3.2  
Forced Power-save Mode  
The forced power-save mode is a fail-safe mode to avoid any disturbance on the HS CAN bus, while the  
TLE7250V faces a loss of the transmitter supply VCC.  
In forced power-save mode, the transmitter and the normal-mode receiver are turned off and therefore the  
transceiver TLE7250V can not disturb the bus media.  
The RxD output pin is permanently set to logical “high”. The bus biasing is floating (details see Table 2).  
The forced power-save mode can only be entered when the transmitter supply VCC is not available, either by  
powering up the digital supply VIO only or by turning off the transmitter supply in normal-operating mode. While the  
transceiver TLE7250V is in forced power-save mode, switching the NEN input to logical “high” triggers a mode  
change to power-save mode (see Figure 5).  
4.3.3  
Power-up  
The HS CAN transceiver TLE7250V powers up if at least the digital supply VIO is connected to the device. By  
default the device powers up in power-save mode, due to the internal pull-up resistor on the NEN pin to VIO.  
In case the device needs to power-up to normal-operating mode, the NEN pin needs to be pulled active to logical  
“low” and the supplies VIO and VCC have to be connected.  
By supplying only the digital power supply VIO the TLE7250V powers up either in forced power-save mode or in  
power-save mode, depending on the signal of the NEN input pin (see Figure 5).  
Data Sheet  
12  
Rev. 1.0, 2015-08-12  
TLE7250VLE  
TLE7250VSJ  
Functional Description  
4.3.4  
Undervoltage on the Digital Supply VIO  
If the voltage on VIO supply input falls below the threshold VIO < VIO(UV,F), the transceiver TLE7250V powers down  
and changes to the power-down state.  
The undervoltage detection on the digital supply VIO has the highest priority. It is independent of the transmitter  
supply VCC and also independent of the currently selected operating mode. An undervoltage event on VIO always  
powers down the TLE7250V.  
transmitter supply voltage VCC = “don’t care”  
VIO  
VIO undervoltage monitor  
VIO(UV,R)  
hysteresis  
VIO(UV,H)  
VIO undervoltage monitor  
VIO(UV,F)  
tDelay(UV) delay time undervoltage  
t
any mode of operation  
power-down state  
stand-by mode  
NEN  
“high” due the internal  
pull-up resistor1)  
“X” = don’t care  
t
1) assuming no external signal applied  
Figure 6  
Undervoltage on the digital supply VIO  
Data Sheet  
13  
Rev. 1.0, 2015-08-12  
 
TLE7250VLE  
TLE7250VSJ  
Functional Description  
4.3.5  
Undervoltage on the Transmitter Supply VCC  
In case the transmitter supply VCC falls below the threshold VCC < VCC(UV,F), the transceiver TLE7250V changes  
the mode of operation to forced power-save mode. The transmitter and also the normal-mode receiver of the  
TLE7250V are powered by the VCC supply. In case of an insufficient VCC supply, the TLE7250V can neither  
transmit the CANH and CANL signals correctly to the bus, nor can it receive them properly. Therefore the  
TLE7250V blocks the transmitter and the receiver in forced power-save mode (see Figure 7).  
The undervoltage detection on the transmitter supply VCC is only active in normal-operating mode (see Figure 5).  
digital supply voltage VIO = “on”  
VCC  
V
CC undervoltage monitor  
VCC(UV,R)  
hysteresis  
VCC(UV,H)  
V
CC undervoltage monitor  
VCC(UV,F)  
tDelay(UV) delay time undervoltage  
t
t
normal-operating mode  
forced stand-by mode  
normal-operating mode  
NEN  
Assuming the NEN remains “low”. The “low” signal is driven by the external microcontroller  
Figure 7  
Undervoltage on the transmitter supply VCC  
4.3.6  
Voltage Adaption to the Microcontroller Supply  
The HS CAN transceiver TLE7250V has two different power supplies, VCC and VIO. The power supply VCC supplies  
the transmitter and the normal-mode receiver. The power supply VIO supplies the digital input and output buffers  
and it is also the main power domain for the internal logic.  
To adjust the digital input and output levels of the TLE7250V to the I/O levels of the external microcontroller,  
connect the power supply VIO to the microcontroller I/O supply voltage (see Figure 13).  
Note:In case the digital supply voltage VIO is not required in the application, connect the digital supply voltage VIO  
to the transmitter supply VCC  
.
Data Sheet  
14  
Rev. 1.0, 2015-08-12  
 
 
TLE7250VLE  
TLE7250VSJ  
Fail Safe Functions  
5
Fail Safe Functions  
5.1  
Short Circuit Protection  
The CANH and CANL bus outputs are short circuit proof, either against GND or a positive supply voltage. A current  
limiting circuit protects the transceiver against damages. If the device is heating up due to a continuous short on  
the CANH or CANL, the internal overtemperature protection switches off the bus transmitter.  
5.2  
Unconnected Logic Pins  
All logic input pins have an internal pull-up resistor to VIO. In case the VIO supply is activated and the logical pins  
are open, the TLE7250V enters into the power-save mode by default. In power-save mode the transmitter of the  
TLE7250V is disabled and the bus bias is floating.  
5.3  
TxD Time-out Function  
The TxD time-out feature protects the CAN bus against permanent blocking in case the logical signal on the TxD  
pin is continuously “low”. A continuous “low” signal on the TxD pin might have its root cause in a locked-up  
microcontroller or in a short circuit on the printed circuit board, for example. In normal-operating mode, a logical  
“low” signal on the TxD pin for the time t > tTxD enables the TxD time-out feature and the TLE7250V disables the  
transmitter (see Figure 8). The receiver is still active and the data on the bus continues to be monitored by the  
RxD output pin.  
t > tTxD  
TxD time–out released  
TxD time-out  
CANH  
CANL  
t
TxD  
t
RxD  
t
Figure 8  
TxD time-out function  
Figure 8 illustrates how the transmitter is deactivated and activated again. A permanent “low” signal on the TxD  
input pin activates the TxD time-out function and deactivates the transmitter. To release the transmitter after a TxD  
time-out event the TLE7250V requires a signal change on the TxD input pin from logical “low” to logical “high”.  
Data Sheet  
15  
Rev. 1.0, 2015-08-12  
 
TLE7250VLE  
TLE7250VSJ  
Fail Safe Functions  
5.4  
Overtemperature Protection  
The TLE7250V has an integrated overtemperature detection to protect the TLE7250V against thermal overstress  
of the transmitter. The overtemperature protection is active in normal-operating mode and disabled in power-save  
mode. In case of an overtemperature condition, the temperature sensor will disable the transmitter (see Figure 1)  
while the transceiver remains in normal-operating mode.  
After the device has cooled down the transmitter is activated again (see Figure 9). A hysteresis is implemented  
within the temperature sensor.  
TJSD (shut down temperature)  
cool down  
TJ  
˂T  
switch-on transmitter  
t
CANH  
CANL  
t
TxD  
t
RxD  
t
Figure 9  
Overtemperature protection  
5.5  
Delay Time for Mode Change  
The HS CAN transceiver TLE7250V changes the mode of operation within the time window tMode. During the mode  
change the RxD output pin is permanently set to logical “high” and does not reflect the status on the CANH and  
CANL input pins (see as an example Figure 14 and Figure 15).  
Data Sheet  
16  
Rev. 1.0, 2015-08-12  
 
TLE7250VLE  
TLE7250VSJ  
General Product Characteristics  
6
General Product Characteristics  
6.1  
Absolute Maximum Ratings  
Table 3  
Absolute maximum ratings voltages, currents and temperatures1)  
All voltages with respect to ground; positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
Voltages  
Transmitter supply voltage  
Digital supply voltage  
VCC  
VIO  
-0.3  
-0.3  
-40  
-40  
6.0  
6.0  
40  
V
V
V
V
V
P_6.1.1  
P_6.1.2  
P_6.1.3  
P_6.1.4  
P_6.1.5  
CANH DC voltage versus GND VCANH  
CANL DC voltage versus GND  
VCANL  
40  
Differential voltage between  
CANH and CANL  
VCAN_Diff -40  
VMAX_IN -0.3  
VMAX_OUT -0.3  
40  
Voltages at the input pins:  
NEN, TxD  
6.0  
V
V
P_6.1.6  
P_6.1.7  
Voltages at the output pin:  
RxD  
VIO  
Currents  
RxD output current  
Temperatures  
IRxD  
-20  
20  
mA  
P_6.1.8  
Junction temperature  
Storage temperature  
ESD Resistivity  
Tj  
-40  
-55  
150  
150  
°C  
°C  
P_6.1.9  
TS  
P_6.1.10  
ESD immunity at CANH, CANL VESD_HBM_ -9  
9
kV  
kV  
V
HBM  
P_6.1.11  
P_6.1.12  
P_6.1.13  
versus GND  
(100 pF via 1.5 k)2)  
CAN  
ESD immunity at all other pins  
ESD immunity to GND  
VESD_HBM_ -2  
2
HBM  
(100 pF via 1.5 k)2)  
ALL  
VESD_CDM -750  
750  
CDM3)  
1) Not subject to production test, specified by design  
2) ESD susceptibility, Human Body Model “HBM” according to ANSI/ESDA/JEDEC JS-001  
3) ESD susceptibility, Charge Device Model “CDM” according to EIA/JESD22-C101 or ESDA STM5.3.1  
Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability. Integrated protection functions  
are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions  
are considered as “outside” normal-operating range. Protection functions are not designed for continuos  
repetitive operation.  
Data Sheet  
17  
Rev. 1.0, 2015-08-12  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TLE7250VLE  
TLE7250VSJ  
General Product Characteristics  
6.2  
Functional Range  
Table 4  
Functional range  
Parameter  
Symbol  
Values  
Unit Note /  
Number  
Test Condition  
Min.  
Typ. Max.  
Supply Voltages  
Transmitter supply voltage  
Digital supply voltage  
Thermal Parameters  
Junction temperature  
VCC  
VIO  
4.5  
3.0  
5.5  
5.5  
V
V
P_6.2.1  
P_6.2.2  
1)  
Tj  
-40  
150  
°C  
P_6.2.3  
1) Not subject to production test, specified by design.  
Note:Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics table.  
6.3  
Thermal Resistance  
Note:This thermal data was generated in accordance with JEDEC JESD51 standards. For more information,  
please visit www.jedec.org.  
Table 5  
Thermal resistance1)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note /  
Test Condition  
Number  
Min.  
Max.  
Thermal Resistances  
Junction to Ambient PG-TSON-8  
Junction to Ambient PG-DSO-8  
RthJA  
RthJA  
55  
K/W  
K/W  
2) TLE7250VLE P_6.3.1  
2) TLE7250VSJ P_6.3.2  
130  
Thermal Shutdown (junction temperature)  
Thermal shutdown temperature  
Thermal shutdown hysteresis  
TJSD  
150  
175  
10  
200  
°C  
K
P_6.3.3  
P_6.3.4  
T  
1) Not subject to production test, specified by design  
2) Specified RthJA value is according to Jedec JESD51-2,-7 at natural convection on FR4 2s2p board. The product (TLE7250V)  
was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu).  
Data Sheet  
18  
Rev. 1.0, 2015-08-12  
 
 
 
 
 
 
 
 
TLE7250VLE  
TLE7250VSJ  
Electrical Characteristics  
7
Electrical Characteristics  
7.1  
Functional Device Characteristics  
Table 6  
Electrical characteristics  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; RL = 60 ; -40 °C < Tj < 150 °C; all voltages with respect to ground;  
positive current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Number  
Min. Typ. Max.  
Current Consumption  
Current consumption at VCC  
normal-operating mode  
ICC  
2.6  
38  
4
mA  
mA  
mA  
µA  
“recessive” state,  
TxD = VIO, VNEN = 0 V;  
“dominant” state,  
P_7.1.1  
P_7.1.2  
P_7.1.3  
P_7.1.4  
P_7.1.5  
V
Current consumption at VCC  
normal-operating mode  
ICC  
60  
1
V
V
TxD = VNEN = 0 V;  
Current consumption at VIO  
normal-operating mode  
IIO  
NEN = 0 V;  
Current consumption at VCC  
power-save mode  
ICC(PSM)  
IIO(PSM)  
5
V
V
TxD = VNEN = VIO;  
TxD = VNEN = VIO,  
Current consumption at VIO  
5
8
µA  
power-save mode  
0 V < VCC < 5.5 V;  
Supply Resets  
V
CC undervoltage monitor  
rising edge  
CC undervoltage monitor  
falling edge  
CC undervoltage monitor  
VCC(UV,R) 3.8  
VCC(UV,F) 3.65  
4.0  
3.85  
150  
2.5  
2.3  
200  
4.3  
4.3  
V
P_7.1.6  
P_7.1.7  
P_7.1.8  
P_7.1.9  
P_7.1.10  
P_7.1.11  
P_7.1.12  
V
V
1)  
V
VCC(UV,H)  
VIO(UV,R) 2.0  
VIO(UV,F) 1.8  
mV  
V
hysteresis  
VIO undervoltage monitor  
rising edge  
3.0  
3.0  
VIO undervoltage monitor  
falling edge  
V
1)  
VIO undervoltage monitor  
hysteresis  
VIO(UV,H)  
mV  
µs  
VCC and VIO undervoltage delay tDelay(UV)  
100  
1) (see Figure 6 and  
Figure 7);  
time  
Receiver Output RxD  
“High” level output current  
IRD,H  
IRD,L  
2
-4  
4
-2  
mA  
mA  
V
V
RxD = VIO - 0.4 V,  
Diff < 0.5 V;  
P_7.1.13  
“Low” level output current  
V
RxD = 0.4 V,V Diff > 0.9 V; P_7.1.14  
Data Sheet  
19  
Rev. 1.0, 2015-08-12  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TLE7250VLE  
TLE7250VSJ  
Electrical Characteristics  
Table 6  
Electrical characteristics (cont’d)  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; RL = 60 ; -40 °C < Tj < 150 °C; all voltages with respect to ground;  
positive current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Number  
Min. Typ. Max.  
Transmission Input TxD  
“High” level input voltage  
threshold  
VTxD,H  
VTxD,L  
0.5  
0.7  
V
V
“recessive” state;  
“dominant” state;  
P_7.1.15  
P_7.1.16  
× VIO × VIO  
“Low” level input voltage  
threshold  
0.3  
0.4  
× VIO × VIO  
Pull-up resistance  
Input hysteresis  
Input capacitance  
RTxD  
10  
25  
450  
50  
kΩ  
mV  
pF  
1)  
P_7.1.17  
P_7.1.18  
P_7.1.19  
P_7.1.20  
VHYS(TxD)  
CTxD  
1)  
10  
16  
TxD permanent “dominant”  
time-out  
tTxD  
4.5  
ms  
normal-operating mode;  
Not Enable Input NEN  
“High” level input voltage  
threshold  
VNEN,H  
VNEN,L  
0.5  
0.7  
V
V
power-save mode;  
P_7.1.21  
P_7.1.22  
× VIO × VIO  
“Low” level input voltage  
threshold  
0.3  
0.4  
normal-operating mode;  
× VIO × VIO  
Pull-up resistance  
Input capacitance  
Input hysteresis  
Bus Receiver  
RNEN  
10  
25  
50  
10  
kΩ  
pF  
1)  
P_7.1.23  
P_7.1.24  
P_7.1.25  
CNEN  
1)  
VHYS(NEN)  
200  
mV  
2)  
Differential receiver threshold  
“dominant”  
normal-operating mode  
VDiff_D  
VDiff_R  
CMR  
0.75  
0.66  
0.9  
V
V
P_7.1.26  
P_7.1.27  
2)  
Differential receiver threshold  
“recessive”  
normal-operating mode  
0.5  
Common mode range  
-12  
12  
V
V
1)  
CC = 5 V;  
P_7.1.28  
P_7.1.29  
Differential receiver hysteresis VDiff,hys  
90  
mV  
normal-operating mode  
CANH, CANL input resistance Ri  
10  
20  
- 1  
20  
40  
30  
60  
1
kΩ  
kΩ  
%
“recessive” state;  
“recessive” state;  
1) “recessive” state;  
P_7.1.30  
P_7.1.31  
P_7.1.32  
Differential input resistance  
RDiff  
Input resistance deviation  
between CANH and CANL  
Ri  
Input capacitance CANH, CANL CIn  
versus GND  
20  
10  
40  
20  
pF  
pF  
1) VTxD = VIO;  
1) VTxD = VIO;  
P_7.1.33  
P_7.1.34  
Differential input capacitance  
CIn_Diff  
Data Sheet  
20  
Rev. 1.0, 2015-08-12  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TLE7250VLE  
TLE7250VSJ  
Electrical Characteristics  
Table 6  
Electrical characteristics (cont’d)  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; RL = 60 ; -40 °C < Tj < 150 °C; all voltages with respect to ground;  
positive current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Number  
Min. Typ. Max.  
Bus Transmitter  
CANL/CANH “recessive”  
output voltage  
normal-operating mode  
VCANL/H 2.0  
2.5  
3.0  
50  
V
V
TxD = VIO,  
P_7.1.35  
P_7.1.36  
P_7.1.37  
P_7.1.38  
P_7.1.39  
no load;  
CANH, CANL “recessive”  
output voltage difference  
normal-operating mode  
VDiff_NM -500  
mV  
V
V
TxD = VIO,  
no load;  
CANL “dominant”  
output voltage  
normal-operating mode  
VCANL  
VCANH  
VDiff  
0.5  
2.25  
4.5  
3.0  
V
V
V
TxD = 0 V;  
TxD = 0 V;  
TxD = 0 V,  
CANH “dominant”  
output voltage  
normal-operating mode  
2.75  
1.5  
V
CANH, CANL “dominant”  
output voltage difference  
normal-operating mode  
according to ISO 11898-2  
V
50 < RL < 65 ,  
4.75 < VCC < 5.25 V;  
VDiff = VCANH - VCANL  
CANH, CANL “dominant”  
output voltage difference  
normal-operating mode  
VDiff_R45 1.4  
3.0  
V
V
TxD = 0 V,  
P_7.1.40  
45 < RL < 50 ,  
4.75 < VCC < 5.25 V;  
VDiff = VCANH - VCANL  
Driver “dominant” symmetry  
normal-operating mode  
VSYM = VCANH + VCANL  
VSYM  
4.5  
40  
5
5.5  
100  
-40  
5
V
V
CC = 5.0 V, VTxD = 0 V;  
P_7.1.41  
P_7.1.42  
P_7.1.43  
P_7.1.44  
P_7.1.45  
CANL short circuit current  
CANH short circuit current  
Leakage current, CANH  
Leakage current, CANL  
ICANLsc  
ICANHsc  
ICANH,lk  
ICANL,lk  
75  
mA  
mA  
µA  
µA  
V
V
V
CANLshort = 18 V,  
CC = 5.0 V, t < tTxD  
TxD = 0 V;  
,
,
-100 -75  
V
V
V
CANHshort = 0 V,  
CC = 5.0 V, t < tTxD  
TxD = 0 V;  
-5  
-5  
V
CC = VIO = 0 V,  
0 V < VCANH < 5 V,  
V
CANH = VCANL  
;
5
V
CC = VIO = 0 V,  
0 V < VCANL < 5 V,  
CANH = VCANL  
V
;
Data Sheet  
21  
Rev. 1.0, 2015-08-12  
 
 
 
 
 
 
 
 
 
 
 
TLE7250VLE  
TLE7250VSJ  
Electrical Characteristics  
Table 6  
Electrical characteristics (cont’d)  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; RL = 60 ; -40 °C < Tj < 150 °C; all voltages with respect to ground;  
positive current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Number  
Min. Typ. Max.  
Dynamic CAN-Transceiver Characteristics  
Propagation delay  
TxD-to-RxD “low”  
(“recessive to “dominant”)  
tLoop(H,L)  
180  
180  
255  
255  
300  
ns  
ns  
ns  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
CRxD = 15 pF;  
P_7.1.46  
P_7.1.47  
P_7.1.53  
Propagation delay  
TxD-to-RxD “high”  
(“dominant” to “recessive”)  
tLoop(L,H)  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
CRxD = 15 pF;  
1) CL = 200 pF,  
Propagation delay  
extended load  
tLoop_Ext(H  
RL = 120 , 4.75 V <  
,L)  
TxD-to-RxD “low”  
(“recessive to “dominant”)  
V
C
CC < 5.25 V,  
RxD = 15 pF;  
Propagation delay  
extended load  
tLoop_Ext(L  
300  
ns  
1) CL = 200 pF,  
RL = 120 , 4.75 V <  
P_7.1.54  
,H)  
TxD-to-RxD “high”  
(“dominant” to “recessive”)  
V
C
CC < 5.25 V,  
RxD = 15 pF;  
Propagation delay  
TxD “low” to bus “dominant”  
td(L),T  
td(H),T  
td(L),R  
td(H),R  
90  
90  
90  
90  
140  
140  
140  
140  
ns  
ns  
ns  
ns  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
P_7.1.48  
P_7.1.49  
P_7.1.50  
P_7.1.51  
CRxD = 15 pF;  
Propagation delay  
TxD “high” to bus “recessive”  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
CRxD = 15 pF;  
Propagation delay  
bus “dominant” to RxD “low”  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
CRxD = 15 pF;  
Propagation delay  
CL = 100 pF,  
bus “recessive” to RxD “high”  
4.75 V < VCC < 5.25 V,  
CRxD = 15 pF;  
Delay Times  
Delay time for mode change  
tMode  
20  
µs  
1) (see Figure 14 and  
Figure 15);  
P_7.1.52  
Data Sheet  
22  
Rev. 1.0, 2015-08-12  
 
 
 
 
 
 
 
 
 
TLE7250VLE  
TLE7250VSJ  
Electrical Characteristics  
Table 6  
Electrical characteristics (cont’d)  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; RL = 60 ; -40 °C < Tj < 150 °C; all voltages with respect to ground;  
positive current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Number  
Min. Typ. Max.  
CAN FD Characteristics  
Received recessive bit width  
at 2 MBit/s  
tBit(RxD)_2 400  
500  
500  
550  
530  
40  
ns  
ns  
ns  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
P_7.1.55  
MB  
CRxD = 15 pF,  
t
Bit = 500 ns,  
(see Figure 12);  
Transmitted recessive bit width tBit(Bus)_2 435  
at 2 MBit/s  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
P_7.1.56  
P_7.1.57  
MB  
CRxD = 15 pF,  
t
Bit = 500 ns,  
(see Figure 12);  
Receiver timing symmetry  
at 2 MBit/s  
ΔtRec_2MB -65  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
tRec = tBit(RxD) - tBit(Bus)  
C
t
RxD = 15 pF,  
Bit = 500 ns,  
(see Figure 12);  
1) Not subject to production test, specified by design.  
2) In respect to common mode range.  
Data Sheet  
23  
Rev. 1.0, 2015-08-12  
 
 
 
TLE7250VLE  
TLE7250VSJ  
Electrical Characteristics  
7.2  
Diagrams  
5
VIO  
100 nF  
7
6
CANH  
CANL  
1
8
TxD  
NEN  
CL  
RL  
4
3
RxD  
VCC  
CRxD  
GND  
2
100 nF  
Figure 10 Test circuits for dynamic characteristics  
TxD  
0.7 x VIO  
0.3 x VIO  
t
td(L),T  
td(H),T  
VDiff  
0.9 V  
0.5 V  
t
td(L),R  
td(H),R  
tLoop(H,L)  
tLoop(L,H)  
RxD  
0.7 x VIO  
0.3 x VIO  
t
Figure 11 Timing diagrams for dynamic characteristics  
Data Sheet  
24  
Rev. 1.0, 2015-08-12  
TLE7250VLE  
TLE7250VSJ  
Electrical Characteristics  
TxD  
0.7 x VIO  
0.3 x VIO  
0.3 x VIO  
t
t
5 x tBit  
tBit  
tLoop(H,L)  
tBit(Bus)  
VDiff = VCANH - VCANL  
VDiff  
0.9 V  
0.5 V  
tLoop(L,H)  
tBit(RxD)  
RxD  
0.7 x VIO  
0.3 x VIO  
t
Figure 12 “Recessive” bit time - five “dominant” bits followed by one “recessive” bit  
Data Sheet  
25  
Rev. 1.0, 2015-08-12  
TLE7250VLE  
TLE7250VSJ  
Application Information  
8
Application Information  
8.1  
ESD Robustness according to IEC61000-4-2  
Test for ESD robustness according to IEC61000-4-2 “Gun test” (150 pF, 330 ) have been performed. The results  
and test conditions are available in a separate test report.  
Table 7  
ESD robustness according to IEC61000-4-2  
Result Unit  
Performed Test  
Remarks  
Electrostatic discharge voltage at pin CANH and +8  
kV  
1)Positive pulse  
CANL versus GND  
Electrostatic discharge voltage at pin CANH and -8  
kV  
1)Negative pulse  
CANL versus GND  
1) ESD susceptibility “ESD GUN” according to GIFT / ICT paper: “EMC Evaluation of CAN Transceivers, version 03/02/IEC  
TS62228”, section 4.3. (DIN EN61000-4-2)  
Tested by external test facility (IBEE Zwickau, EMC test report no. TBD).  
Data Sheet  
26  
Rev. 1.0, 2015-08-12  
 
TLE7250VLE  
TLE7250VSJ  
Application Information  
8.2  
Application Example  
VBAT  
I
Q1  
Q2  
22 uF  
TLE4476D  
GND  
100 nF  
CANH  
CANL  
EN  
100 nF  
3
VCC  
100 nF  
22 uF  
VIO  
5
8
1
4
120  
Ohm  
TLE7250VLE  
VCC  
Out  
NEN  
TxD  
RxD  
7
6
CANH  
CANL  
Out  
Microcontroller  
e.g. XC22xx  
In  
optional:  
common mode choke  
GND  
GND  
2
I
Q1  
Q2  
22 uF  
TLE4476D  
GND  
100 nF  
EN  
3
VCC  
100 nF  
22 uF  
VIO  
100 nF  
5
8
1
4
TLE7250VLE  
VCC  
Out  
NEN  
TxD  
RxD  
7
6
CANH  
Out  
Microcontroller  
e.g. XC22xx  
In  
CANL  
2
optional:  
common mode choke  
GND  
120  
Ohm  
GND  
CANH  
CANL  
example ECU design  
Figure 13 Application circuit  
Data Sheet  
27  
Rev. 1.0, 2015-08-12  
TLE7250VLE  
TLE7250VSJ  
Application Information  
8.3  
Examples for Mode Changes  
Changing the status on the NEN input pin triggers a change of the operating mode, disregarding the actual signal  
on the CANH, CANL and TxD pins (see also Chapter 4.2).  
Mode changes are triggered by the NEN pin, when the device TLE7250V is fully supplied. Setting the NEN pin to  
logical “low” changes the mode of operation to normal-operating mode:  
The mode change is executed independently of the signal on the HS CAN bus. The CANH, CANL inputs may  
be either “dominant” or “recessive”. They can be also permanently shorted to GND or VCC.  
A mode change is performed independently of the signal on the TxD input. The TxD input may be either logical  
“high” or “low”.  
Analog to that, changing the NEN input pin to logical “high” changes the mode of operation to the power-save  
mode independent on the signals at the CANH, CANL and TxD pins.  
Note:In case the TxD signal is “low” setting the NEN input pin to logical “low” changes the operating mode of the  
device to normal-operating mode and drives a “dominant” signal to the HS CAN bus.  
Note:The TxD time-out is only effective in normal-operating mode. The TxD time-out timer starts when the  
TLE7250V enters normal-operating mode and the TxD input is set to logical “low”.  
Data Sheet  
28  
Rev. 1.0, 2015-08-12  
TLE7250VLE  
TLE7250VSJ  
Application Information  
8.3.1  
Mode Change while the TxD Signal is “low”  
The example in Figure 14 shows a mode change to normal-operating mode while the TxD input is logical “low”.  
The HS CAN signal is “recessive”, assuming all other HS CAN bus subscribers are also sending a “recessive” bus  
signal.  
While the transceiver TLE7250V is in power-save mode, the transmitter and the normal-mode receiver are turned  
off. The TLE7250V drives no signal to the HS CAN bus nor does it receive any signal from the HS CAN bus.  
Changing the NEN to logical “low” turns the mode of operation to normal-operating mode, while the TxD input  
signal remains logical “low”. The transmitter and the normal-mode receiver remain disabled until the mode  
transition is completed. In normal-operating mode the transmitter and the normal-mode receiver are active. The  
“low” signal on the TxD input drives a “dominant” signal to the HS CAN bus and the RxD output becomes logical  
“low” following the “dominant” signal on the HS CAN bus.  
Changing the NEN pin back to logical “high”, disables the transmitter and normal-mode receiver again. The RxD  
output pin is blocked and set to logical “high” with the start of the mode transition. The TxD input and the transmitter  
are blocked and the HS CAN bus becomes “recessive”.  
Note: The signals on the HS CAN bus are “recessive”, the “dominant” signal is  
generated by the TxD input signal  
t = tMode  
t = tMode  
NEN  
TxD  
t
t
VDiff  
t
t
RxD  
power-save  
transition  
normal-operating  
transition  
power-save mode  
normal-mode  
receiver disabled  
RxD output  
blocked  
normal-mode receiver  
active  
RxD output  
blocked  
normal-mode receiver  
disabled  
TxD input and transmitter  
blocked  
TxD input and transmitter  
active  
TxD input and transmitter blocked  
Figure 14 Example for a mode change while the TxD is “low”  
Data Sheet  
29  
Rev. 1.0, 2015-08-12  
 
TLE7250VLE  
TLE7250VSJ  
Application Information  
8.3.2  
Mode Change while the Bus Signal is “dominant”  
The example in Figure 15 shows a mode change while the bus is “dominant” and the TxD input signal is set to  
logical “high”.  
While the transceiver TLE7250V is in power-save mode, the transmitter and the normal-mode receiver are turned  
off. The TLE7250V drives no signal to the HS CAN bus nor does it receive any signal from the HS CAN bus.  
Changing the NEN to logical “low” turns the mode of operation to normal-operating mode, while the TxD input  
signal remains logical “high”. The transmitter and the normal-mode receiver remain disabled until the mode  
transition is completed. In normal-operating mode the transmitter of TLE7250V remains “recessive”, because of  
the logical “high” signal on the TxD input. The normal-mode receiver becomes active and the RxD output signal  
changes to logical “low” following the “dominant” signal on the HS CAN bus.  
Changing the NEN pin back to logical “high”, disables the transmitter and normal-mode receiver again. The RxD  
output pin is blocked and set to logical “high” with the start of the mode transition.  
Note: The “dominant” signal on the HS CAN bus is set by another HS CAN bus  
subscriber.  
t = tMode  
t = tMode  
NEN  
TxD  
t
t
VDiff  
t
t
RxD  
power-save mode  
transition  
normal-operating  
transition  
power-save mode  
normal-mode receiver  
disabled  
RxD output  
blocked  
normal-mode receiver  
active  
RxD output  
blocked  
normal-mode receiver  
disabled  
TxD input and transmitter  
active  
TxD input and transmitter blocked  
TxD input and transmitter blocked  
Figure 15 Example for a mode change while the HS CAN is “dominant”  
Data Sheet  
30  
Rev. 1.0, 2015-08-12  
 
TLE7250VLE  
TLE7250VSJ  
Application Information  
8.4  
Further Application Information  
Please contact us for information regarding the pin FMEA.  
Existing application note.  
For further information you may visit: http://www.infineon.com/  
Data Sheet  
31  
Rev. 1.0, 2015-08-12  
TLE7250VLE  
TLE7250VSJ  
Package Outline  
9
Package Outline  
±±0.  
204  
±±0.  
±0.  
±±0.  
±±0.  
±±0.  
3
±03  
±038  
±0±5  
Z
±±0.  
±065  
Pin . Marking  
±±0.  
Pin . Marking  
Z (4:.)  
±03  
PG-TSON-8-.-PO V±.  
±0±7 MIN0  
Figure 16 PG-TSON-8 (Plastic Thin Small Outline Nonleaded PG-TSON-8-1)  
0.35 x 45˚  
1)  
4-0.2  
C
1.27  
B
0.1  
±0.25  
0.64  
+0.1 2)  
-0.06  
0.41  
±0.2  
6
M
M
0.2  
A B 8x  
0.2  
C 8x  
8
5
4
1
A
1)  
5-0.2  
Index Marking  
1) Does not include plastic or metal protrusion of 0.15 max. per side  
2) Lead width can be 0.61 max. in dambar area  
GPS01181  
Figure 17 PG-DSO-8 (Plastic Dual Small Outline PG-DSO-8-44)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with  
government regulations the device is available as a green product. Green products are RoHS compliant (i.e  
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further information on alternative packages, please visit our website:  
http://www.infineon.com/packages.  
Dimensions in mm  
Data Sheet  
32  
Rev. 1.0, 2015-08-12  
TLE7250VLE  
TLE7250VSJ  
Revision History  
10  
Revision History  
Revision  
Date  
Changes  
Data Sheet created.  
1.00  
2015-08-12  
Data Sheet  
33  
Rev. 1.0, 2015-08-12  
Edition 2015-08-12  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2006 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  

相关型号:

TLE7250VLE_15

Material Content Data Sheet
INFINEON

TLE7250VSJ

Material Content Data Sheet
INFINEON

TLE7250VSJXUMA1

Interface Circuit, PDSO8, DSO-8
INFINEON

TLE7250VSJ_15

Material Content Data Sheet
INFINEON

TLE7250V_15

High Speed CAN-Transceiver
INFINEON

TLE7250X

High Speed CAN-Transceiver
INFINEON

TLE7250XLE

Material Content Data Sheet
INFINEON

TLE7250XLEXUMA1

Interface Circuit, PDSO8, TSON-8
INFINEON

TLE7250XLE_15

Material Content Data Sheet
INFINEON

TLE7250XSJ

Material Content Data Sheet
INFINEON

TLE7250XSJXUMA1

Interface Circuit, PDSO8, DSO-8
INFINEON

TLE7250XSJ_15

Material Content Data Sheet
INFINEON