TLE7368 [INFINEON]

Next Generation Micro Controller Supply; 下一代微控制器供应
TLE7368
型号: TLE7368
厂家: Infineon    Infineon
描述:

Next Generation Micro Controller Supply
下一代微控制器供应

微控制器
文件: 总39页 (文件大小:898K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet, Rev. 1.1, November 2007  
TLE7368  
Next Generation Micro Controller Supply  
Automotive Power  
TLE7368  
Table of Contents  
Table of Contents  
1
2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3
3.1  
3.2  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Definitions and Functions TLE7368G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
4
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.1  
4.2  
4.3  
4.4  
5
Detailed Internal Circuits Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Buck Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Buck Regulator Control Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
High Side Driver Supply and 100% Duty Cycle Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Electromagnetic Emission Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Charge Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Buck Converter Protection Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Linear Regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Voltage Tracking Regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Power Up and Power Down Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Stand-by Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Overtemperature Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Device Enable Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Monitoring Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Watchdog Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
5.1  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
5.1.5  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
5.10  
6
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Choosing Components for the Buck Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Setting up LDO1, LDO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Setting up of LDO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Setting up the Stand-by Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Stand-by Regulator’s Output Voltage Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
6.1  
6.2  
6.3  
6.4  
6.4.1  
7
8
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Data Sheet  
2
Rev. 1.1, 2007-11-08  
Next Generation Micro Controller Supply  
TLE7368  
1
Overview  
Features  
High efficient next generation microcontroller power supply system  
Wide battery input voltage range < 4.5 V up to 45 V  
Operating temperature range Tj = -40 °C to +150 °C  
Pre-regulator for low all over power loss:  
Integrated current mode Buck converter 5.5 V/2.5 A  
Post-regulators, e.g. for system and controller I/O supply:  
– LDO1: 5 V ±2%, 800 mA current limit  
– LDO2: 3.3 V ±2% or 2.6V ±2% (selectable output), 700 mA  
current limit  
P-DSO-36-12  
Integrated linear regulator control circuit to supply controller cores:  
– LDO3 control for an external NPN power stage: 1.5 V ±2%  
Post-regulators for off board supply:  
– 2 Tracking regulators following the main 5 V, 105 mA and 50 mA  
Stand-by regulator with lowest current consumption:  
– Linear voltage regulator as stand-by supply for e.g.  
memory circuits  
– Hardware selectable output voltages as 1.0 V or 2.6 V, 30 mA  
– Independent battery input, separated from Buck regulator input  
Hardware controlled on/off logic  
PG-DSO-36-24  
Undervoltage detection:  
– Undervoltage reset circuits with adjustable reset delay time at power up  
– Undervoltage monitoring circuit on stand-by supply  
Window watchdog circuit  
Overcurrent protection on all regulators  
Power sequencing on controller supplies  
Overtemperature shutdown  
Packages: Low Rthja power P-DSO-36-12; small exposed pad PG-DSO-36-24  
PG-DSO-36-24 only: Green Product (RoHS compliant)  
AEC Qualified  
Type  
Package  
Marking  
Remark  
TLE7368G  
P-DSO-36-12  
TLE7368 G  
TLE7368E  
PG-DSO-36-24  
TLE7368 E  
RoHS compliant  
Data Sheet  
3
Rev. 1.1, 2007-11-08  
TLE7368  
Overview  
Description  
The TLE7368 device is a multifunctional power supply circuit especially designed for Automotive powertrain  
systems using a standard 12 V battery. The device is intended to supply and monitor next generation 32-bit  
microcontroller families (13 µm lithography) where voltage levels such as 5 V, 3.3 V or 1.5 V are required.  
The regulator follows the concept of its predecessor TLE6368/SONIC, where the output of a pre-regulator feeds  
the inputs of the micro’s linear supplies. In detail, the TLE7368 cascades a Buck converter with linear regulators  
and voltage followers to achieve lowest power dissipation. This configuration allows to power the application even  
at high ambient temperatures.  
The step-down converter delivers a pre-regulated voltage of 5.5 V with a minimum peak current capability of 2.5 A.  
Supplied by this step down converter two low drop linear post-regulators offer 5 V and 3.3 V (2.6 V) with high  
accuracy. The current capability of the regulators is 800 mA and 700 mA. The 3.3 V (2.6 V) linear regulator does  
have its own input allowing to insert a dropper from the Buck output to reduce the on chip power dissipation if  
necessary. For the same reason, reduction of on chip power dissipation, the 1.5 V core supply follows the concept  
of integrated control circuit with external power stage.  
Implementing the on board and microcontroller supplies in this way described, allows operation even at high  
ambient temperatures.  
The regulator system contains the so called power sequencing function which provides a controlled power up  
sequence of the three output voltages.  
In addition to the main regulators the inputs of two voltage trackers are connected to the 5.5 V Buck converter  
output voltage. Their protected outputs follow the main 5 V linear regulator with high accuracy and are able to drive  
loads of 50 mA and 105 mA.  
To monitor the output voltage levels of each of the linear regulators two independent undervoltage detection  
circuits are available. They can be used to implement the reset or an interrupt function.  
For energy saving reasons, e.g. while the motor is turned off, the TLE7368 offers a stand-by mode. The stand by  
mode can be enabled and disabled either by battery or the microcontroller. In this stand-by mode just the stand-  
by regulator remains active and the current drawn from battery is reduced to a minimum for extended battery  
lifetime. A selection pin allows to configure the output voltages of the stand-by regulator to the application’s needs.  
The input of the stand-by regulator is separated from the high power input of the pre-/post-regulator system.  
The TLE7368 is based on Infineon’s Power technology SPT™ which allows bipolar, CMOS and power DMOS  
circuitry to be integrated on the same monolithic chip/circuitry.  
Data Sheet  
4
Rev. 1.1, 2007-11-08  
TLE7368  
Block Diagram  
2
Block Diagram  
INT.BIASING,  
BST  
SW  
CHARGE PUMP  
IN  
PWM  
CONTROLLER  
5.5V  
TLE 7368  
FB/L_IN  
Q_T1  
TEMPERATURE  
SENSE  
Q_T2  
EN_µC  
EN_IGN  
ENABLE  
1  
Q_LDO1  
5.0V  
RESET  
(WINDOW  
RO_1  
RT  
COMPARATOR)  
IN_LDO2  
Q_LDO2  
2.6/3.3V  
1.5V  
TIMING  
SEL_LDO2  
RESET  
(WINDOW  
COMPARATOR)  
RO_2  
DRV_EXT  
FB_EXT  
WDO  
WINDOW  
WATCHDOG  
WDI  
IN_STBY  
Q_STBY  
1.0/2.6V  
STANDBY  
MONITOR  
MON_STBY  
SEL_STBY  
GND_A  
GND_P  
Figure 1  
Block Diagram  
Data Sheet  
5
Rev. 1.1, 2007-11-08  
TLE7368  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment  
GND  
GND_A  
RT  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
GND_A  
MON_STBY  
IN_STBY  
Q_STBY  
DRV_EXT  
FB_EXT  
Q_LDO1  
FB/L_IN  
BST  
GND_A  
RT  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
MON_STBY  
IN_STBY  
Q_STBY  
N.C.  
2
2
RO_1  
3
RO_1  
RO_2  
N.C.  
3
RO_2  
4
4
IN_LDO2  
Q_LDO2  
Q_T1  
5
5
N.C.  
6
IN_LDO2  
Q_LDO2  
Q_T1  
6
DRV_EXT  
FB_EXT  
Q_LDO1  
FB/L_IN  
BST  
7
7
Q_T2  
8
8
EN_uC  
EN_IGN  
SEL_STBY  
C1-  
9
Q_T2  
9
TLE 7368 G  
SW  
10  
11  
12  
13  
14  
15  
16  
17  
18  
EN_uC  
EN_IGN  
SEL_STBY  
C1-  
10  
11  
12  
13  
14  
15  
16  
17  
18  
SW  
SW  
WDO  
SW  
C2-  
WDI  
WDO  
C1+  
SEL_Q2  
IN  
C2-  
WDI  
C2+  
C1+  
SEL_Q2  
N.C.  
CCP  
GND_P  
GND_A  
IN  
C2+  
IN  
CCP  
IN  
TLE 7368 E  
GND_A  
GND_P  
IN  
GND  
Figure 2  
Pin Configuration  
3.2  
Pin Definitions and Functions TLE7368G  
Pin  
Pin  
Symbol  
GND_A  
RT  
Function  
(TLE7368G) (TLE7368E)  
1
1
Analog ground connection;  
Connect to heatslug resp. exposed pad.  
Reset and watchdog timing pin;  
2
2
Connect a ceramic capacitor to GND to determine the time base for the  
reset delay circuits and the watchdog cycle time  
3
4
3
4
RO_1  
RO_2  
N.C.  
Reset output Q_LDO1;  
Open drain output, active low.  
Connect an external 10 kpull-up resistor to microcontroller I/O  
voltage.  
Reset output Q_LDO2 and FB_EXT;  
Open drain output, active low.  
Connect an external 10 kpull-up resistor to microcontroller I/O  
voltage  
5
Internally not connected; Connect to GND_A  
Data Sheet  
6
Rev. 1.1, 2007-11-08  
TLE7368  
Pin Configuration  
Pin  
Pin  
Symbol  
Function  
(TLE7368G) (TLE7368E)  
6
7
5
IN_LDO2  
LDO2 input;  
Connect this pin straight to the Buck converter output or add a dropper  
in between to reduce power dissipation on the chip.  
6
Q_LDO2  
Voltage regulator 2 output;  
3.3 V or 2.6 V, depending on the state of SEL_LDO2.  
Block to GND with capacitor for stable regulator operation; selection of  
capacitor CQ_LDO2 according to Chapter 4.4 and Chapter 6.  
8
7
8
9
Q_T1  
Q_T2  
EN_uC  
Tracking regulator 1 output;  
Block to GND with capacitor for stable regulator operation; selection of  
capacitor CQ_T1 according to Chapter 4.4 and Chapter 6.  
9
Tracking regulator 2 output;  
Block to GND with capacitor for stable regulator operation; selection of  
capacitor CQ_T2 according to Chapter 4.4 and Chapter 6.  
10  
Enable input microcontroller;  
High level enables / low level disables the IC except the stand-by  
regulators;  
Integrated pull-down resistor  
11  
12  
10  
11  
EN_IGN  
Enable input ignition line;  
High level enables / low level disables the IC except the stand-by  
regulators;  
Integrated pull-down resistor  
SEL_STBY Selection input for stand-by regulator;  
Connect to GND to select 2.6 V output voltage for Q_STBY;  
Connect straight to Q_STBY to select 1.0 V output voltage for Q_STBY  
13  
14  
15  
16  
17  
12  
13  
14  
15  
16  
C1-  
Charge pump negative #1;  
Connect a ceramic capacitor 100 nF, to C1+  
C2-  
Charge pump negative #2;  
Connect a ceramic capacitor 100 nF, toC2+  
Charge pump positive #1;  
Connect a ceramic capacitor 100 nF, to C1-  
Charge pump positive #2;  
Connect a ceramic capacitor 100 nF, to C2-  
Charge pump output;  
Connect a ceramic capacitor, 220 nF, to GND;  
Used for internal IC supply, do not use for other circuitry.  
C1+  
C2+  
CCP  
18  
17  
GND_P  
Power ground;  
Exclusive GND connection of charge pump;  
Connect this pin to the power ground star point on the PCB.  
18, 19  
GND_A  
IN  
Analog ground connection;  
Connect to exposed pad.  
19, 20  
20, 21, 22  
Buck regulator input;  
Connect to a pi-filter (or if not used to battery) with short lines; connect  
filter capacitors in any case with short lines; connect a small ceramic  
directly at the pin; For details refer to Chapter 6.  
Interconnect the pins.  
21  
N.C.  
Internally not connected; Connect to GND_A.  
Data Sheet  
7
Rev. 1.1, 2007-11-08  
TLE7368  
Pin Configuration  
Pin  
Pin  
Symbol  
Function  
(TLE7368G) (TLE7368E)  
22  
23  
SEL_LDO2 Selection input LDO2;  
Connect to GND to select 2.6 V output voltage for LDO2;  
Connect straight to Q_LDO2 to select 3.3 V output voltage for LDO2.  
23  
24  
24  
25  
WDI  
Window Watchdog input;  
Apply a watchdog trigger signal to this pin  
WDO  
Window Watchdog output;  
Open drain output, active low,  
connect external 10 kpull-up resistor to microcontroller I/O voltage  
25, 26  
27  
26, 27  
28  
SW  
Buck power stage’s output;  
Connect both pins directly, on short lines, to the Buck converter circuit,  
i.e. the catch diode and the Buck inductance  
BST  
Bootstrap driver supply input;  
Connect the buck power stage’s driver supply capacitor to the SW pins;  
For capacitor selection please refer to Chapter 6.  
28  
29  
FB/L_IN  
Q_LDO1  
Buck converter feedback input plus input for LDO1 and trackers;  
Connect the output of the buck converter circuit with short lines to these  
pins; For Buck output capacitor selection please refer to Chapter 6.  
29  
30  
Voltage regulator 1 output;  
5 V output; Block to GND with capacitor for stable regulator operation;  
Selection of capacitor CQ_LDO1 according to Chapter 4.4 and  
Chapter 6.  
30  
31  
31  
32  
FB_EXT  
External regulator feedback input;  
Feedback input of control loop for the external power stage regulator.  
Connect to the emitter of the regulating transistor; Block to GND with  
capacitor for stable regulator operation; Selection of capacitor  
CQ_FB_EXT according to Chapter 4.4 and Chapter 6.  
DRV_EXT  
Bipolar power stage driver output;  
Connect the base of an external NPN transistor directly to this pin;  
Regarding choice of the external power stage refer to Chapter 6.  
32, 33  
34  
33  
N.C.  
Q_STBY  
Internally not connected; Connect to GND_A.  
Stand-by regulator output;  
Output voltage depending on the state of SEL_STBY; Block to GND  
with capacitor for stable regulator operation; Selection of capacitor  
CQ_STBY according to Chapter 4.4 and Chapter 6.  
35  
34  
IN_STBY  
Input to stand-by regulator;  
Always connect the reverse polarity protected battery line to this pin;  
Input to all IC internal biasing circuits;  
Block to GND directly at the IC with ceramic capacitor; For proper  
choice of input capacitors please refer to Chapter 6.  
36  
35  
36  
MON_STBY Monitoring output for stand-by regulator; power fail active low  
output with special timing, open drain, connect external pull-up resistor.  
GND_A  
Analog ground connection;  
Connect to exposed pad.  
Data Sheet  
8
Rev. 1.1, 2007-11-08  
TLE7368  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Absolute Maximum Ratings 1)  
Tj = -40 °C to +150 °C; all voltages with respect to ground.  
Pos.  
Parameter  
Symbol  
Limit Values  
Max.  
Unit Conditions  
Min.  
Stand-by Regulator Input IN_STBY  
4.1.1  
4.1.2  
Voltage  
Current  
VIN_STBY  
IIN_STBY  
-0.3  
45  
V
A
Limited internally  
Selection Input SEL_STBY  
4.1.3  
4.1.4  
4.1.5  
Voltage  
Voltage  
Current  
VSEL_STBY  
VSEL_STBY  
ISEL_STBY  
-0.3  
-0.3  
5.5  
6.2  
V
V
A
t < 10 s2)  
Limited internally  
Buck Regulator Inputs IN  
4.1.6  
4.1.7  
4.1.8  
Voltage  
Voltage  
Current  
VIN  
VIN  
IIN  
V
-0.3  
SW - 0.3  
45  
45  
V
V
A
Limited internally  
Watchdog Input WDI  
4.1.9  
4.1.10  
4.1.11  
Voltage  
Voltage  
Current  
VWDI  
VWDI  
IWDI  
-0.3  
-0.3  
5.5  
6.2  
V
V
A
t < 10 s2)  
Limited internally  
Watchdog Output WDO  
4.1.12  
4.1.13  
4.1.14  
Voltage  
Voltage  
Current  
VWDO  
VWDO  
IWDO  
-0.3  
-0.3  
5.5  
6.2  
V
V
A
t < 10 s2)  
Limited internally  
Charge Pump Positive C<1+, 2+>  
4.1.15  
4.1.16  
Voltage  
Current  
VC<1+, 2+>  
IC<1+, 2+>  
-0.3  
18  
V
mA  
Charge Pump Negative C<1-, 2->  
4.1.17  
4.1.18  
Voltage  
Current  
VC<1-, 2->  
IC<1-, 2->  
-0.3  
5.5  
V
mA  
Charge Pump Output CCP  
4.1.19  
4.1.20  
Voltage  
Current  
VCCP  
ICCP  
-0.3  
18  
V
mA  
Reset Output RO_1  
4.1.21  
4.1.22  
4.1.23  
Voltage  
Voltage  
Current  
VRO_1  
VRO_1  
IRO_1  
-0.3  
-0.3  
5.5  
6.2  
V
V
A
t < 10 s2)  
Limited internally  
Data Sheet  
9
Rev. 1.1, 2007-11-08  
TLE7368  
General Product Characteristics  
Absolute Maximum Ratings (cont’d)1)  
Tj = -40 °C to +150 °C; all voltages with respect to ground.  
Pos.  
Parameter  
Symbol  
Limit Values  
Max.  
Unit Conditions  
Min.  
Reset Output RO_2  
4.1.24  
4.1.25  
4.1.26  
Voltage  
Voltage  
Current  
VRO_2  
VRO_2  
IRO_2  
-0.3  
-0.3  
5.5  
6.2  
V
V
A
t < 10 s2)  
Limited internally  
Reset Timing RT  
4.1.27  
4.1.28  
4.1.29  
Voltage  
Voltage  
Current  
VRT  
VRT  
IRT  
-0.3  
-0.3  
5.5  
6.2  
V
V
A
t < 10 s2)  
Limited internally  
Tracking Regulator Outputs Q_T<1..2>  
4.1.30  
4.1.31  
Voltage  
Voltage  
VQ_T<1..2>  
VQ_T<1..2>  
-5  
-5  
40  
35  
V
V
V
FB/L_IN = 5.5V  
off mode;  
FB/L_IN = 0V  
V
4.1.32  
Current  
IQ_T<1..2>  
A
Limited internally  
Enable Ignition EN_IGN  
4.1.33  
4.1.34  
Voltage  
Current  
VEN_IGN  
IEN_IGN  
-0.3  
45  
V
mA  
Enable Micro EN_uC  
4.1.35  
4.1.36  
4.1.37  
Voltage  
Voltage  
Current  
VEN_uC  
VEN_uC  
IEN_uC  
-0.3  
-0.3  
-5  
5.5  
6.2  
5
V
V
mA  
t < 10 s2)  
Voltage Regulator Outputs Q_LDO<1..2>  
4.1.38  
4.1.39  
4.1.40  
4.1.41  
4.1.42  
Voltage  
Voltage  
Voltage  
Voltage  
Current  
VQ_LDO1  
VQ_LDO2  
VQ_LDO<1..2> -0.3  
VQ_LDO<1..2> -0.3  
-0.3  
-0.3  
V
V
5.5  
6.2  
FB/L_IN + 0.3  
IN_LDO2 + 0.3 V  
V
V
V
A
t < 10 s2)  
IQ_LDO<1..2>  
Limited internally  
Selection Input SEL_LDO2  
4.1.43  
4.1.44  
4.1.45  
Voltage  
Voltage  
Current  
VSEL_LDO2  
VSEL_LDO2  
ISEL_LDO2  
-0.3  
-0.3  
5.5  
6.2  
V
V
A
t < 10 s2)  
Limited internally  
External Driver Output DRV_EXT  
4.1.46  
4.1.47  
4.1.48  
Voltage  
Voltage  
Current  
VDRV_EXT  
VDRV_EXT  
IDRV_EXT  
-0.3  
-0.3  
5.5  
6.2  
V
V
A
t < 10 s2)  
Limited internally  
External Regulator Feedback Input FB_EXT  
4.1.49  
4.1.50  
4.1.51  
Voltage  
Voltage  
Current  
VFB_EXT  
VFB_EXT  
IFB_EXT  
-0.3  
-0.3  
5.5  
6.2  
V
V
A
t < 10 s2)  
Limited internally  
Data Sheet  
10  
Rev. 1.1, 2007-11-08  
TLE7368  
General Product Characteristics  
Absolute Maximum Ratings (cont’d)1)  
Tj = -40 °C to +150 °C; all voltages with respect to ground.  
Pos.  
Parameter  
Symbol  
Limit Values  
Max.  
Unit Conditions  
Min.  
Feedback and Post-Regulators Input FB/L_IN  
4.1.52  
4.1.53  
4.1.54  
Voltage  
Voltage  
Current  
VFB/L_IN  
VFB/L_IN  
IFB/L_IN  
V
-0.3  
Q_LDO1 - 0.3 18  
V
V
A
18  
Limited internally  
Linear Regulator 2 Input IN_LDO2  
4.1.55  
4.1.56  
4.1.57  
Voltage  
Voltage  
Current  
VIN_LDO2  
VIN_LDO2  
IIN_LDO2  
V
-0.3  
Q_LDO2 - 0.3 18  
V
V
A
18  
Limited internally  
Bootstrap Supply BST  
4.1.58  
4.1.59  
4.1.60  
Voltage  
Voltage  
Current  
VBST  
VBST  
IBST  
V
-0.3  
SW - 0.3  
V
51  
SW + 5.5  
V
V
A
Limited internally  
Buck Power Stage SW  
4.1.61  
4.1.62  
4.1.63  
Voltage  
Voltage  
Current  
VSW  
VSW  
ISW  
-2  
-2  
VIN + 0.3  
45  
V
V
A
Limited internally  
Stand-by Regulator Output Q_STBY  
4.1.64  
4.1.65  
4.1.66  
Voltage  
Voltage  
Current  
VQ_STBY  
VQ_STBY  
IQ_STBY  
-0.3  
-0.3  
5.5  
6.2  
V
V
A
t < 10 s2)  
Limited internally  
Monitoring Output MON_STBY  
4.1.67  
4.1.68  
4.1.69  
Voltage  
Voltage  
Current  
VMON_STBY -0.3  
VMON_STBY -0.3  
5.5  
6.2  
V
V
A
t < 10 s2)  
IMON_STBY  
Limited internally  
Temperatures  
4.1.70  
4.1.71  
Junction Temperature  
Storage Temperature  
Tj  
Tstg  
-40  
-50  
150  
150  
°C  
°C  
ESD-Protection (Human Body Model)  
4.1.72  
Electrostatic discharge  
voltage  
VESD  
-2  
2
kV  
Human Body Model  
(HBM)3)  
ESD-Protection (Charged Device Model)  
4.1.73  
Electrostatic discharge  
VESD  
-500  
-750  
500  
750  
V
V
Charged Device  
Model (CDM)4)  
voltage to GND  
4.1.74  
Electrostatic discharge  
voltage, corner pins to GND  
VESD  
Charged Device  
Model (CDM)4)  
1) Not subject to production test, specified by design.  
2) Exposure to those absolute maximum ratings for extended periods of time (t > 10 s) may affect device reliability.  
3) According to JEDEC standard EIA/JESD22-A114-B (1.5 k, 100 pF)  
4) According to EIA/JESD22-C101 or ESDA STM5.3.1  
Data Sheet  
11  
Rev. 1.1, 2007-11-08  
TLE7368  
General Product Characteristics  
Note:Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Note:Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
4.2  
Functional Range  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
VIN_STBY 3.0  
Max.  
45  
45  
1)  
1)  
4.2.1  
4.2.2  
4.2.3  
Stand-by input voltage  
Buck input voltage  
Peak to peak ripple voltage at  
FB/L_IN  
V
V
mVpp  
VIN  
4.5  
0
VFB/L_IN  
150  
4.2.4  
Junction temperature  
Tj  
-40  
150  
°C  
1) At minimum battery voltage regulators with higher nominal output voltage will not be able to provide the full output voltage.  
Their outputs follow the battery with certain drop.  
Note:Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics table.  
4.3  
Thermal Resistance  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
Typ.  
Max.  
P-DSO-36-12  
4.3.1  
Junction to ambient  
RthJA  
RthJA  
49  
39  
K/W  
K/W  
Footprint only1)  
4.3.2  
Junction to ambient  
Junction to ambient  
Junction to case  
Heat sink area  
300mm2 1)  
4.3.3  
4.3.4  
RthJA  
RthJC  
32  
K/W  
K/W  
Heat sink area  
600mm2 1)  
4.4  
PG-DSO-36-24  
4.3.5  
Junction to ambient  
RthJA  
RthJA  
54  
42  
K/W  
K/W  
Footprint only1)  
4.3.6  
Junction to ambient  
Junction to ambient  
Junction to case  
Heat sink area  
300mm2 1)  
4.3.7  
4.3.8  
RthJA  
RthJC  
35  
K/W  
Heat sink area  
600mm2 1)  
5.6  
K/W  
1) Worst case regarding peak temperature; zero airflow; mounted on FR4; 80 × 80 × 1.5 mm3; 35µ Cu; 5µ Sn  
Data Sheet  
12  
Rev. 1.1, 2007-11-08  
TLE7368  
General Product Characteristics  
4.4  
Electrical Characteristics  
Electrical Characteristics  
VIN = VIN_STBY = 13.5 V, Tj = -40 °C to +150 °C,  
V
Pos.  
CCP = 9.0 V; SEL_STBY = Q_STBY; all voltages with respect to ground.  
Parameter  
Symbol  
Limit Values  
Unit Conditions  
Min.  
Typ.  
Max.  
Buck Regulator  
4.4.1  
4.4.2  
Switching frequency  
Current transition  
rise/fall time  
280  
370  
50  
425  
kHz  
ns  
f
tr, I  
1); slope magnitude 1 A; fixed  
internally  
4.4.3  
4.4.4  
Power stage on  
resistance  
Power stage peak  
current limit  
RON, Buck  
Ipeak, SW  
280  
4.6  
mΩ  
2.5  
A
VIN = 5.0 V;  
V
SW ramped down from 5.0 V  
to 3.7 V;  
V
FB/L_IN = 5.0 V  
4.4.5  
4.4.6  
4.4.7  
4.4.8  
4.4.9  
4.4.10  
Buck converter output VFB/L_IN  
5.4  
5.4  
6.0  
6.4  
4.5  
V
I
Buck = 2.0 A2)  
voltage  
Buck converter output VFB/L_IN  
V
I
Buck = 100 mA2)  
voltage  
Buck converter, turn on VIN, on  
V
VIN increasing  
VIN decreasing  
threshold  
Buck converter, turn off VIN, off  
3.5  
450  
V
threshold  
Buck converter On/off VIN, hyst  
500  
550  
mV  
V
VIN, hyst = VIN, on - VIN, off  
hysteresis  
Bootstrap undervoltage VBST_UV, on  
VSW  
+
Bootstrap voltage increasing  
lockout, turn on  
5.0  
threshold  
4.4.11  
4.4.12  
Bootstrap undervoltage VBST_UV, off  
VSW  
+
1
V
V
Bootstrap voltage decreasing  
lockout, turn off  
3.2  
threshold  
Bootstrap undervoltage VBST_UV, hyst 0.2  
VBST_UV, hyst  
=
lockout, hysteresis  
V
BST_UV, on - VBST_UV, off  
Charge Pump  
4.4.13  
Charge pump voltage VCCP  
9
9
15  
V
V
C
C
C
C1 = 100 nF;  
C2 = 100 nF;  
CCP = 220 nF  
4.4.14  
Charge pump voltage VCCP  
13.5  
VIN = 4.5 V;  
CC1 = 100 nF;  
CC2 = 100 nF;  
CCCP = 220 nF  
4.4.15  
Charge pump switching fCCP  
1.0  
2.5  
MHz  
frequency  
Data Sheet  
13  
Rev. 1.1, 2007-11-08  
TLE7368  
General Product Characteristics  
Electrical Characteristics (cont’d)  
VIN = VIN_STBY = 13.5 V, Tj = -40 °C to +150 °C,  
V
CCP = 9.0 V; SEL_STBY = Q_STBY; all voltages with respect to ground.  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit Conditions  
Min.  
Typ.  
Max.  
Voltage Regulator Q_LDO1  
4.4.16  
4.4.17  
4.4.18  
Output voltage  
Output current limitation IQ_LDO1, lim  
Drop voltage  
VQ_LDO1  
4.9  
800  
5.1  
1600 mA  
400  
400  
V
1 mA < IQ_LDO1 < 700 mA3)  
Q_LDO1 = 4.0 V  
Q_LDO1 = 500 mA;  
FB/L_IN = 5.0 V;3) 4)  
Q_LDO1 = 250 mA;  
VIN = 4.5 V;3) 4)  
V
Vdr, Q_LDO1  
mV  
mV  
I
V
4.4.19  
I
4.4.20  
4.4.21  
Load regulation  
Power supply ripple  
rejection  
VQ_LDO1  
PSRRQ_LD O1 26  
60  
120  
mV/A –  
dB  
V
FB/L_IN = 5.6 V;  
V
FB/L_IN, ripple pp = 150 mV;  
f
FB/L_IN, ripple = 370 kHz;  
I
Q_LDO1 = 250 mA;  
C
Q_LDO1 = 4.7 µF, X7R1)  
1) 5)  
4.4.22  
4.4.23  
Output capacitor  
Output capacitor  
CQ_LDO1  
ESR  
CQ_LDO1  
1
0
470  
2
µF  
at 10 kHz1)  
Voltage Regulator Q_LDO2  
4.4.24  
4.4.25  
4.4.26  
4.4.27  
Output voltage  
VQ_LDO2  
3.23  
700  
3.37  
V
SEL_LDO2 = Q_LDO2;  
IN_LDO2 = FB/L_IN;  
1 mA < IQ_LDO2 < 500 mA  
Output current limitation IQ_LDO2, lim  
1400 mA  
SEL_LDO2 = Q_LDO2;  
IN_LDO2 = FB/L_IN;  
V
Q_LDO2 = 2.8 V  
Drop voltage  
Drop voltage  
Vdr, Q_LDO2  
400  
400  
mV  
SEL_LDO2 = Q_LDO2;  
CCP = 9 V;  
Q_LDO2 = 500 mA;4) 6)  
SEL_LDO2 = Q_LDO2;  
CCP = 9 V;  
Q_LDO2 = 250 mA;  
VIN = 4.5 V;4) 6)  
mV/A 3.3 V mode  
1 mA < IQ_LDO2 < 650 mA  
V
I
Vdr, Q_LDO2  
mV  
V
I
4.4.28  
4.4.29  
Load regulation  
Output voltage  
VQ_LDO2  
80  
VQ_LDO2  
2.56  
2.67  
V
SEL_LDO2 = GND;  
IN_LDO2 = FB/L_IN;  
1 mA < IQ_LDO2 < 500 mA  
4.4.30  
4.4.31  
Output current limitation IQ_LDO2, lim  
700  
1400 mA  
SEL_LDO2 = GND;  
IN_LDO2 = FB/L_IN;  
V
Q_LDO2 = 2.0 V  
Drop voltage  
Vdr, Q_LDO2  
400  
mV  
SEL_LDO2 = GND;  
CCP = 9 V;  
Q_LDO2 = 500 mA;4)6)  
V
I
Data Sheet  
14  
Rev. 1.1, 2007-11-08  
TLE7368  
General Product Characteristics  
Electrical Characteristics (cont’d)  
VIN = VIN_STBY = 13.5 V, Tj = -40 °C to +150 °C,  
V
CCP = 9.0 V; SEL_STBY = Q_STBY; all voltages with respect to ground.  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit Conditions  
Min.  
Typ.  
Max.  
4.4.32  
Drop voltage  
Vdr, Q_LDO2  
400  
mV  
SEL_LDO2 = GND;  
CCP = 9 V;  
Q_LDO2 = 250 mA;  
VIN = 4.5 V;4)6)  
mV/A 2.6 V mode  
1 mA < IQ_LDO2 < 650 mA  
V
I
4.4.33  
4.4.34  
Load regulation  
VQ_LDO2  
65  
Power supply ripple  
rejection  
PSRRQ_LDO2 26  
dB  
V
IN_LDO2 = 5.6 V;  
V
IN_LDO2, ripple pp = 150 mV;  
f
IN_LDO2, ripple = 370 kHz;  
I
Q_LDO2 = 250mA;  
C
Q_LDO2 = 4.7 µF ceramic  
X7R1)  
4.4.35  
Selector Pull-down  
resistor  
Output capacitor  
Output capacitor  
RSEL_LDO2  
CQ_LDO2  
ESR  
CQ_LDO2  
0.7  
1.2  
1.9  
MΩ  
1)5)  
4.4.36  
4.4.37  
1
0
470  
2
µF  
at 10 kHz;1)  
External Voltage Regulator Control  
4.4.38  
4.4.39  
4.4.40  
4.4.41  
Driver current limit  
Feedback voltage  
Feedback input current IFB_EXT  
Load regulation  
IDRV_EXT, lim 75  
VFB_EXT 1.51  
150  
1.55  
mA  
V
µA  
V
FB_EXT = 1.2 V  
-250  
VFB_EXT  
20  
mV/A VFB/L_IN = 5.4 V;  
V
CCP = 9.0 V;  
I
FB_EXT = 100 µA to 1 A;7)  
1)5)7)  
4.4.42  
4.4.43  
Output capacitor  
Output capacitor  
CFB_EXT  
ESR  
CFB_EXT  
4.7  
0
0.1  
µF  
at 10 kHz;1)  
Voltage Tracker Q_T1  
4.4.44  
Output voltage tracking VQ_T1  
-10  
10  
mV  
0 mA < IQ_T1 < 105 mA  
accuracy to Q_LDO1  
4.4.45  
4.4.46  
Output current limitation IQ_T1  
120  
240  
400  
mA  
mV  
V
Q_T1 = 4.0 V  
Drop voltage  
Vdr, Q_T1  
I
Q_T1 = 105 mA;  
V
FB/L_IN = 5.3 V;  
Q_LDO1 = 5.0 V4)  
V
4.4.47  
Power supply ripple  
rejection  
PSRRQ_T1  
26  
dB  
V
V
FB/L_IN = 5.6 V;  
FB/L_IN, ripple pp = 150 mV;  
f
FB/L_IN, ripple = 370 kHz;  
Q_LDO1 = 5.0 V;  
V
I
Q_T1 = 100 mA;  
C
Q_T1 = 4.7µF ceramic X7R;1)  
1)5)  
4.4.48  
4.4.49  
Output capacitor  
Output capacitor  
CQ_T1  
ESR CQ_T1  
4.7  
0
3
µF  
at 10 kHz;1)  
Data Sheet  
15  
Rev. 1.1, 2007-11-08  
TLE7368  
General Product Characteristics  
Electrical Characteristics (cont’d)  
VIN = VIN_STBY = 13.5 V, Tj = -40 °C to +150 °C,  
V
CCP = 9.0 V; SEL_STBY = Q_STBY; all voltages with respect to ground.  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit Conditions  
Min.  
Typ.  
Max.  
Voltage Tracker Q_T2  
4.4.50  
Output voltage tracking VQ_T2  
-10  
10  
mV  
0 mA < IQ_T2 < 50 mA;  
accuracy to Q_LDO1  
4.4.51  
4.4.52  
Output current limitation IQ_T2  
60  
110  
400  
mA  
mV  
V
Q_T2 = 4.0 V  
Drop voltage  
Vdr, Q_T2  
I
Q_T2 = 50 mA;  
V
FB/L_IN = 5.3 V;  
Q_LDO1 = 5.0 V4)  
V
4.4.53  
Power supply ripple  
rejection  
PSRRQ_T2  
26  
dB  
V
V
FB/L_IN = 5.6 V;  
FB/L_IN, ripple pp = 150 mV;  
f
FB/L_IN, ripple = 370 kHz;  
Q_LDO1 = 5.0 V;  
V
I
Q_T2 = 40 mA;  
C
Q_T2 = 4.7 µF ceramic X7R;1)  
1)5)  
4.4.54  
4.4.55  
Output capacitor  
Output capacitor  
CQ_T2  
ESR CQ_T2  
4.7  
0
3
µF  
at 10 kHz;1)  
Stand-by Regulator  
4.4.56  
4.4.57  
4.4.58  
Output voltage  
VQ_STBY  
VQ_STBY  
VQ_STBY  
0.93  
0.93  
2.51  
1.02  
1.02  
2.62  
1.08  
1.08  
2.73  
V
V
V
VIN_STBY > 3 V;  
100 µA < IQ_STBY < 10 mA;  
SEL_STBY = Q_STBY  
Output voltage  
Output voltage  
V
IN_STBY > 4.5 V;  
Q_STBY = 30 mA;  
SEL_STBY = Q_STBY  
I
V
IN_STBY > 3.0 V;  
100 µA < IQ_STBY < 10 mA;  
SEL_STBY = GND  
4.4.59  
4.4.60  
4.4.61  
Selector pull-up current ISEL_STBY  
Output current limitation IQ_STBY, lim  
-2  
31  
-5  
-10  
90  
5
µA  
mA  
V/A  
SEL_STBY = GND  
V
Q_ STBY = 0.5 V  
Q_STBY = 100µA to 10 mA  
IN_STBY > 4.5 V;  
SEL_STBY = Q_STBY  
Q_STBY = 1.0V  
Q_STBY = 100µA to 10 mA  
IN_STBY > 4.5 V;  
Load regulation  
VQ_ STBY  
I
V
V
10  
V/A  
I
V
SEL_STBY = GND  
V
Q_STBY = 2.6V  
4.4.62  
4.4.63  
Line regulation  
VQ_ STBY  
5
mV/V –  
dB  
Power supply ripple  
rejection  
PSRRQ_STBY 60  
V
IN_STBY, ripple pp = 500 mV;  
f
IN_STBY, ripple = 100 Hz;  
I
Q_STBY = 5 mA;  
C
Q_STBY = 1 µF ceramic X7R;1)  
1) 5)  
4.4.64  
Output capacitor  
CQ_STBY  
0.47  
2
µF  
Data Sheet  
16  
Rev. 1.1, 2007-11-08  
TLE7368  
General Product Characteristics  
Electrical Characteristics (cont’d)  
VIN = VIN_STBY = 13.5 V, Tj = -40 °C to +150 °C,  
V
CCP = 9.0 V; SEL_STBY = Q_STBY; all voltages with respect to ground.  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit Conditions  
Min.  
0
Typ.  
Max.  
0.5  
4.4.65  
Output capacitor  
ESR  
CQ_STBY  
at 10 kHz;1)  
Device Enable Blocks and Quiescent Current  
4.4.66  
Ignition turn on  
VEN_IGN, on  
4.0  
V
V
Device operating  
threshold  
4.4.67  
Ignition turn off  
threshold  
VEN_IGN, off  
2.0  
Only stand-by regulators are  
active if VEN_IGN < VEN_IGN, off  
and VEN_uC < VEN_uC, off  
4.4.68  
Ignition pull-down  
resistor current  
IEN_IGN  
-100  
µA  
VEN_IGN = 13.5 V  
4.4.69  
4.4.70  
Turn on threshold  
Turn off threshold  
VEN_uC, on  
VEN_uC, off  
0.8  
2.0  
V
V
Device operating  
Only stand-by regulators are  
active if VEN_IGN < VEN_IGN, off  
and VEN_uC < VEN_uC, off  
4.4.71  
4.4.72  
Pull-down resistor  
current  
IEN_uC  
-30  
µA  
µA  
V
EN_uC = 5 V  
Quiescent current  
Quiescent current  
Quiescent current  
Iq =IIN_STBY - -120  
V
EN_uC = VEN_IGN = 0 V;  
IQ_STBY  
SEL_STBY = Q_STBY;  
MON_STBY = H;  
I
Q_STBY = 100 µA; Tj < 125 °C  
4.4.73  
4.4.74  
Iq =IIN_STBY - -130  
µA  
µA  
VEN_uC = VEN_IGN = 0 V;  
IQ_STBY  
SEL_STBY = GND;  
MON_STBY = H;  
I
Q_STBY = 100 µA; Tj < 125 °C  
Iq, IN  
-10  
V
EN_uC = VEN_IGN = 0 V;  
V
IN_STBY = 0 V;  
Tj < 125 °C  
Reset Generator RO_1 Monitoring Q_LDO1  
4.4.75  
4.4.76  
4.4.77  
4.4.78  
4.4.79  
4.4.80  
4.4.81  
Undervoltage Reset  
VURT Q_LDO1, 4.50  
de  
4.75  
4.90  
220  
5.65  
5.60  
180  
0.4  
V
V
V
V
Q_LDO1 decreasing;  
FB/L_IN = open;  
Q_LDO1 increasing  
threshold on Q_LDO1  
Undervoltage Reset  
threshold on Q_LDO1  
Undervoltage Reset  
hysteresis  
Overvoltage Reset  
threshold on Q_LDO1  
Overvoltage Reset  
threshold on Q_LDO1  
VURT Q_LDO1, 4.55  
in  
V
VURO_1, hyst 100  
mV  
V
VORT Q_LDO1, 5.40  
in  
V
V
Q_LDO1 increasing  
Q_LDO1 decreasing  
VORT Q_LDO1, 5.25  
de  
V
Overvoltage Reset  
hysteresis  
VORO_1, hyst 80  
mV  
V
RO_1, Reset output low VRO_1, low  
I
RO_1 = -10 mA;  
voltage  
VQ_LDO1 > 2.5 V  
Data Sheet  
17  
Rev. 1.1, 2007-11-08  
TLE7368  
General Product Characteristics  
Electrical Characteristics (cont’d)  
VIN = VIN_STBY = 13.5 V, Tj = -40 °C to +150 °C,  
V
CCP = 9.0 V; SEL_STBY = Q_STBY; all voltages with respect to ground.  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit Conditions  
Min.  
Typ.  
Max.  
4.4.82  
RO_1, Reset output low VRO_1, low  
0.25  
V
V
V
IN_STBY = 3.0 V;  
Q_LDO1 = 2.5V;  
voltage  
I
RO_1 = -500 µA;  
4.4.83  
RO_1, Reset output  
leakage  
IRO_1, high  
-1  
1
µA  
VRO_1 = 5.0 V  
4.4.84  
4.4.85  
Reset delay time base Tcycle  
41.6  
0.33  
50  
1.0  
62.5  
4.7  
µs  
nF  
C
RT = 1 nF  
Reset timing capacitor CRT  
range  
4.4.86  
4.4.87  
Reset delay time RO_1 tRD, RO_1  
2
160  
10  
Tcycle  
µs  
Undervoltage Reset  
tUVRR, RO_1  
Voltage step at Q_LDO1 from  
5.00 V to 4.48 V  
reaction time  
4.4.88  
Overvoltage Reset  
reaction time  
tOVRR, RO_1  
20  
80  
µs  
Buck converter operating;  
Voltage step at Q_LDO1 from  
5.00 V to 5.67 V  
Reset Generator RO_2 Monitoring Q_LDO2 and FB_EXT  
4.4.89  
Undervoltage Reset  
VURT Q_LDO2, 3.135  
de  
3.230  
V
SEL_LDO2 = Q_LDO2;  
threshold on Q_LDO2  
V
Q_LDO2 decreasing;  
IN_LDO2 = open  
V
4.4.90  
Undervoltage Reset  
headroom on Q_LDO2  
VURT Q_LDO2, 55  
head  
117.5  
mV  
SEL_LDO2 = Q_LDO2;  
VURT Q_LDO2, head  
= VQ_LDO2 - VURT Q_LDO2, de  
;
V
Q_LDO2 @ IQ_LDO2 = 500 mA  
4.4.91  
Undervoltage Reset  
hysteresis Q_LDO2  
VURO_2, hyst 15  
55  
mV  
SEL_LDO2 = Q_LDO2;  
VURO_2, hyst  
= VURT Q_LDO2, in - VURT Q_LDO2, de  
4.4.92  
4.4.93  
4.4.94  
4.4.95  
Overvoltage Reset  
VORT Q_LDO2, 3.70  
in  
3.85  
3.80  
200  
V
SEL_LDO2 = Q_LDO2;  
threshold on Q_LDO2  
VQ_LDO2 increasing  
Overvoltage Reset  
threshold on Q_LDO2  
Overvoltage Reset  
hysteresis  
Undervoltage Reset  
threshold on Q_LDO2  
VORT Q_LDO2, 3.55  
de  
V
SEL_LDO2 = Q_LDO2;  
V
Q_LDO2 decreasing  
VORO_2, hyst 50  
mV  
V
SEL_LDO2 = Q_LDO2;  
VURT Q_LDO2, 2.485  
de  
2.560  
SEL_LDO2 = GND;  
V
V
Q_LDO2 decreasing;  
IN_LDO2 = open  
4.4.96  
4.4.97  
Undervoltage Reset  
VURT Q_LDO2, 47  
head  
mV  
mV  
SEL_LDO2 = GND;  
VURT Q_LDO2, head  
headroom on Q_LDO2  
= VQ_LDO2 - VURT Q_LDO2, de  
;
V
Q_LDO2 @ IQ_LDO2 = 500 mA  
Undervoltage Reset  
hysteresis Q_LDO2  
VURO_2, hyst 15  
60  
SEL_LDO2 = GND;  
VURO_2, hyst  
= VURT Q_LDO2, in - VURT Q_LDO2, de  
Data Sheet  
18  
Rev. 1.1, 2007-11-08  
TLE7368  
General Product Characteristics  
Electrical Characteristics (cont’d)  
VIN = VIN_STBY = 13.5 V, Tj = -40 °C to +150 °C,  
V
CCP = 9.0 V; SEL_STBY = Q_STBY; all voltages with respect to ground.  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit Conditions  
Min.  
Typ.  
Max.  
4.4.98  
4.4.99  
Overvoltage Reset  
VORT Q_LDO2, 2.85  
in  
3.0  
V
SEL_LDO2 = GND;  
Q_LDO2 increasing  
SEL_LDO2 = GND;  
Q_LDO2 decreasing  
SEL_LDO2 = GND;  
threshold on Q_LDO2  
V
Overvoltage Reset  
threshold on Q_LDO2  
VORT Q_LDO2, 2.73  
de  
2.95  
120  
V
V
4.4.100 Overvoltage Reset  
hysteresis Q_LDO2  
4.4.101 Undervoltage Reset  
threshold on FB_EXT  
VORO_2, hyst 50  
mV  
V
VURT FB_EXT, 1.425  
de  
1.480  
V
V
FB_EXT decreasing;  
FB/L_IN = 5 V  
or VQ_LDO2 = 3.3/2.6 V  
4.4.102 Undervoltage Reset  
VFB_EXT  
-
40  
60  
mV  
VFB/L_IN = 5 V  
headroom on FB_EXT VURT FB_EXT,  
or VQ_LDO2 = 3.3/2.6 V;  
V
FB_EXT @ IFB_EXT = 1 A  
de  
4.4.103 Undervoltage Reset  
hysteresis FB_EXT  
4.4.104 Overvoltage Reset  
threshold on FB_EXT  
4.4.105 Overvoltage Reset  
threshold on FB_EXT  
4.4.106 Overvoltage Reset  
hysteresis FB_EXT  
VURO_2, hyst 15  
45  
mV  
V
VORT FB_EXT, 1.65  
in  
1.72  
1.67  
120  
0.4  
0.25  
1
V
V
FB_EXT increasing  
FB_EXT decreasing  
VORT FB_EXT, 1.55  
de  
V
VORO_2, hyst 50  
mV  
V
4.4.107 RO_2, Reset output low VRO_2, low  
I
RO_2 = -10 mA;  
Q_LDO2 > 2.0 V  
RO_2 = -500 µA;  
Q_LDO2 = 1V  
RO_2 = 5.0 V  
voltage  
V
4.4.108 RO_2, Reset output low VRO_2, low  
V
I
voltage  
V
V
4.4.109 RO_2, Reset output  
leakage  
IRO_2, high  
-1  
µA  
4.4.110 Reset delay time RO_2 tRD, RO_2  
2
160  
10  
Tcycle  
µs  
4.4.111 Undervoltage Reset  
tUVRR, RO_2  
tUVRR, RO_2  
tOVRR, RO_2  
Voltage step on Q_LDO2 from  
reaction time  
V
Q_LDO2, nom to  
V
URT Q_LDO2, de, min - 20 mV  
4.4.112 Undervoltage Reset  
reaction time  
2
10  
80  
µs  
µs  
Voltage step on FB_EXT from  
V
FB_EXT, nom to  
URT FB_EXT, de, min - 20 mV  
V
4.4.113 Overvoltage Reset  
reaction time  
20  
Buck converter operating;  
Voltage step on Q_LDO2 from  
V
Q_LDO2, nom to  
ORT Q_LDO2, in, max + 20 mV  
V
4.4.114 Overvoltage Reset  
reaction time  
tOVRR, RO_2  
20  
80  
µs  
Buck converter operating;  
Voltage step on FB_EXT from  
V
V
FB_EXT, nom to  
ORT FB_EXT, in, max + 20 mV  
Data Sheet  
19  
Rev. 1.1, 2007-11-08  
TLE7368  
General Product Characteristics  
Electrical Characteristics (cont’d)  
VIN = VIN_STBY = 13.5 V, Tj = -40 °C to +150 °C,  
V
CCP = 9.0 V; SEL_STBY = Q_STBY; all voltages with respect to ground.  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit Conditions  
Min.  
Typ.  
Max.  
Monitoring Block  
4.4.115 MON_STBY,  
VMON,Q_STBY, 0.90  
de  
V
IN_STBY = 3.0 V;  
Threshold on Q_STBY  
SEL_STBY = Q_STBY;  
V
V
Q_STBY decreasing;  
IN_STBY = 3.0 V;  
4.4.115a MON_STBY headroom VMON,Q_STBY, 10  
mV  
SEL_STBY = Q_STBY;  
head  
V
Q_STBY decreasing;  
4.4.116 MON_STBY hysteresis VMON_STBY,  
10  
30  
mV  
V
SEL_STBY = Q_STBY  
hyst  
4.4.117 MON_STBY,  
Threshold on Q_STBY  
VMON,Q_STBY, 2.36  
de  
2.50  
V
IN_STBY = 3.0 V;  
SEL_STBY = GND;  
Q_STBY decreasing;  
SEL_STBY = GND  
V
4.4.118 MON_STBY hysteresis VMON_STBY,  
20  
50  
mV  
V
hyst  
4.4.119 MON_STBY,  
Monitoring output low  
voltage  
4.4.120 MON_STBY time delay tMON_ STBY  
VMON_ STBY,  
0.4  
I
MON_STBY1 < 10 mA;  
IN_STBY > 3.0 V  
V
low  
3
8
6
tRD,  
RO_1  
see diagram in section  
“Monitoring Circuit” on  
Page 28  
4.4.121 Monitor reaction time  
tRR, MON_STBY  
µs  
Data Sheet  
20  
Rev. 1.1, 2007-11-08  
TLE7368  
General Product Characteristics  
Electrical Characteristics (cont’d)  
VIN = VIN_STBY = 13.5 V, Tj = -40 °C to +150 °C,  
V
CCP = 9.0 V; SEL_STBY = Q_STBY; all voltages with respect to ground.  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit Conditions  
Min.  
Typ.  
Max.  
Window Watchdog  
4.4.122 H-input voltage  
VWDI, high  
VWDI, low  
2.0  
V
V
threshold  
4.4.123 L-input voltage  
threshold  
0.8  
4.4.124 WDI pull-up resistor  
4.4.125 Watchdog cycle time  
RWDI  
TWD  
60  
100  
2
512  
140  
kΩ  
Tcycle  
TWD  
connected to Q_LDO2  
4.4.126 Window duration (OW, tWD, W  
CW, FW)  
4.4.127 Window duration (IW) tWD, IW  
32  
32  
TWD  
4.4.128 Window watchdog  
tWD, start  
TWD Watchdog will start/initialized if  
WDI is kept low for this period  
and RO_2 is released  
initialization time  
4.4.129 Watchdog output low  
voltage  
4.4.130 Watchdog output  
leakage current  
VWDO,low  
IWDO,leak  
0.4  
1
V
IWDO = 2 mA  
µA  
WDO state = High  
Thermal Shutdown  
1) 8)  
1)  
4.4.131 Overtemperature  
Tj, shtdwn  
160  
15  
175  
190  
30  
°C  
shutdown  
4.4.132 Overtemperature  
shutdown hysteresis  
T  
K
1) Specified by design, not subject to production test.  
2) Tested according to measurement circuit 1.  
3) VCCP supplied externally with a voltage according to the actual value of VCCP measurement.  
4) Vdr, Q_LDO1 = VFB/L_IN - VQ_LDO1; Vdr, Q_LDO2 = VIN_LDO2 - VQ_LDO2; Vdr, T<1, 2> = VFB/L_IN - VQ_T<1, 2>  
5) Minimum value given is needed for regulator stability; application might need higher capacitance than the minimum.  
6) Measured when VQ_LDO2 has dropped 100 mV from its nominal value obtained at VIN_LDO2 = 5.4 V.  
7) External power transistor type: Fairchild KSH200.  
8) Permanent operation of the device above 150 °C degrades lifetime; please refer to quality information.  
Data Sheet  
21  
Rev. 1.1, 2007-11-08  
TLE7368  
Detailed Internal Circuits Description  
5
Detailed Internal Circuits Description  
In the following the main circuit blocks of the TLE7368, namely the Buck converter, the linear regulators, the  
trackers, the charge pump, the enable and reset circuits and the watchdog are described in more detail.  
5.1  
Buck Regulator  
The TLE7368’s DC to DC converter features all the functions necessary to implement a high efficient, low emission  
Buck regulator with minimum external components. The step down regulator in the TLE7368 follows a concept  
similar to the one of its predecessor, TLE6368, which allows operation over a battery voltage range from as low  
as 4.5 V up to a maximum of 45 V at peak currents of 2.5 A at minimum. Figure 3 shows the block diagram of the  
converter with its major components, i.e. the internal DMOS power stages, the high side driver including its supply  
scheme, the power stage slope control circuit for reduced EME, the current mode control scheme and various  
protection circuits for safe converter operation.  
5.1.1  
Buck Regulator Control Scheme  
The step down converter’s control method is based upon the current mode control scheme. Current mode control  
provides an inherent line feed forward, cycle by cycle current limiting and ease of loop compensation. No external  
compensation components are needed to stabilize the loop, i.e. the operation of the Buck converter. The slope  
compensation circuit in addition to the current sense amplifier and the error amplifier prevents instabilities/sub  
harmonic oscillations at duty cycles higher than 0.5. The cycle by cycle current limiting feature supports also a soft  
start feature during power up. Additional implemented current blanking prevents faulty DMOS turn off signals  
during switching operation.  
5.1.2  
High Side Driver Supply and 100% Duty Cycle Operation  
The supply concept of the Buck converter’s power stage driver follows the Bootstrapping principle. A small external  
capacitor, placed between pins SW and BST, is used to provide the necessary charge at the gate of the power  
stage. The capacitor is refreshed at each switching cycle while the power stage is turned off resulting in the ability  
to power the gate at the next turn on of the power stage.  
In cases where the input/battery voltage approaches the nominal Buck converter output voltage, the duty cycle of  
the converter increases. At the point where the power stage is statically turned on (100% duty cycle) a refresh of  
the Bootstrap capacitor as described above is not possible. In this case the charge pump helps to accomplish the  
gate over drive in order to keep the power stage turned on with low Rdson. With decreasing input voltage, shortly  
before switching to 100% duty cycle, the device operates in pulse skipping mode. In this mode the device appears  
to be operating at much lower frequencies with very small duty cycles. In real, the device is doing a few 100% duty  
cycle periods followed by a period with a duty cycle smaller than 1.  
Data Sheet  
22  
Rev. 1.1, 2007-11-08  
TLE7368  
Detailed Internal Circuits Description  
Figure 3  
Buck Converter Block Diagram  
5.1.3  
Electromagnetic Emission Reduction  
The Buck DMOS power stage is implemented as multiple cells. This allows to control the slope of the power  
stage’s current at turn on/off by sequentially turning on/off the cells, achieving a smooth turn on/off and therefore  
avoiding high frequency components in the electromagnetic emissions to the battery line. The current slope control  
is adjusted internally, the typical current slew rate is 50 ns/A.  
Data Sheet  
23  
Rev. 1.1, 2007-11-08  
TLE7368  
Detailed Internal Circuits Description  
5.1.4  
Charge Pump  
The charge pump serves as support circuit for the Buck converter’s high side driver supply, the linear regulators  
drive circuits for low drop operation and the internal device biasing blocks. In order to guarantee full device  
operation at battery voltages as allow as even 4.5 V, the concept of a voltage tripler is chosen for the charge pump.  
It operates at a switching frequency of typical 2 MHz utilizing three small external capacitors, two pumping caps  
and one storage capacitor. The CCP circuit is equipped with a current limit function which avoids destruction in  
case of a short of one of the external CCP capacitors. The charge pump’s output, CCP, is designed to supply the  
circuitry described above, it should not be used as e.g. driver rail for external on board/PCB circuits.  
5.1.5  
Buck Converter Protection Circuits  
Besides the circuits mandatory for the Buck converter operation additional protection circuits are foreseen which  
help preventing false operation of the device. Undervoltage lockouts are foreseen at the battery input line1) and  
the high side driver supply rail to ensure the device operates only with proper voltages present. The overvoltage  
shutdown at the Buck converter output provides a safe high side shutdown for the case where the Buck control  
loop becomes messed up due to non predictable circumstances. At overtemperatures the thermal shutdown circuit  
disables the Buck converter until the device cools down to be enabled again.  
5.2  
Linear Regulators  
The TLE7368 features three linear voltage regulator circuits, two fully integrated DMOS low drop voltage  
regulators and one integrated linear control circuit to operate with an external NPN power stage.  
Integrated linear regulator one (LDO1) offers a 5 V output and the second integrated linear regulator (LDO2) can  
be configured with pin SEL_LDO2 either for 2.6 V or for 3.3 V. With SEL_LDO2 tied to GND 2.6 V will adjust at  
the output of LDO2, SEL_LDO2 being connected to Q_LDO2 gives the 3.3 V option. The external regulator will  
adjust its output to 1.5 V with the emitter of the NPN power stage directly connected to pin FB_EXT, by using a  
voltage divider, higher output voltages can be achieved.  
The regulators are designed for low drop operation and offer high output voltage accuracies to meet the needs of  
current and next generation 32-bit microcontroller families. Additionally all regulators feature a short circuit  
protection, i.e. the integrated regulators contain a output current limit function whereas the control circuit for the  
external NPN power stage limits the maximum base current.  
For low on chip power dissipation the input of LDO1 is internally directly connected to the Buck converter output  
(FB/L_IN). LDO2’s input is on purpose externally accessible at IN_LDO2. This allows the insertion of a drop  
element between the Buck converter output and IN_LDO2 to split the power dissipation and avoid high losses on  
the TLE7368. Similar for the external NPN power stage regulator, the collector of the NPN can be either connected  
directly to the Buck converter output or a drop element can be inserted in between to split power dissipation.  
5.3  
Voltage Tracking Regulators  
For off board/off PCB supplies, i.e. sensors, two voltage tracking regulators are incorporated in the TLE7368. Their  
outputs follow the output of the main 5 V regulator, Q_LDO1, within a tight tolerance of ±10 mV. The tracking  
regulators are implemented with bipolar PNP power stages for improved ripple rejection to reduce emission when  
lead off board. Both tracker outputs can withstand short circuits to GND and battery in a range of -5 V to +40 V.  
When shorted to lower levels than the nominal output voltage level the current limit function prevents excessive  
current draw.  
1) Not shown in the schematic, Figure 3.  
Data Sheet  
24  
Rev. 1.1, 2007-11-08  
TLE7368  
Detailed Internal Circuits Description  
5.4  
Power Up and Power Down Sequencing  
In a supply system with multiple outputs the sequence of enabling the individual regulators is important. Especially  
32-bit microcontrollers require a defined power up and power down sequencing. Figure 4 shows the details for  
the power up and power down sequence of the TLE7368.  
At power up, the first circuit block to be enabled is the charge pump as it is mandatory for the other circuits to  
operate. With the charge pump reaching its nominal value, the Buck converter starts to power up its output. Also  
the output voltage the linear regulators are enabled. The three linear regulators power up simultaneously. The 5 V  
regulator acts as the master, the 3.3 V/2.6 V regulator and the 1.5 V regulator follow. As the 5 V regulator powers  
up also the tracking regulators follow. The ramp if the increasing output voltage of each line is determined by the  
connected output capacitance, the load current and the current limit of the regulator under consideration. In  
addition an integrated supervision circuit ensures the following two conditions during power-up:  
-0.3 V < (VQ_LDO1 - VQ_LDO2) < 3.1 V and  
-0.3 V < (VQ_LDO2 - VFB_EXT  
(1)  
(2)  
)
The power down sequence is practically vice versa to the start up procedure. With the battery decreasing to zero  
the charge pump and Buck regulator will stop to operate at the minimum battery threshold, the Buck output voltage  
will fall down and so will the outputs of the linear regulators.  
In the event where the device is disabled, EN_IGN = low and EN_uC = low, the charge pump, the Buck converter  
and the linear regulators are disabled immediately.  
The linear regulators’ outputs are not discharged actively in any case of power down. Diode circuitry (i.e. Schottky  
diodes) might be necessary to avoid violation of certain microcontrollers’ sequencing requirements.  
Data Sheet  
25  
Rev. 1.1, 2007-11-08  
TLE7368  
Detailed Internal Circuits Description  
VIN  
VIN, on  
VIN, off  
t
VCCP  
VCCP, ok  
t
t
t
t
t
t
VBST  
VBST, on  
VSW  
VFB/L_IN  
*)  
VQ_LDO1  
VQ_LDO2  
VFB_EXT  
VQ_T<1,2>  
*) drop depending on  
application / setup  
*)  
*)  
VQ_LDO1  
-0.3 < (Q_LDO1-Q_LDO2) < 3.1V  
Linear regulators not actively  
discharged at power down; externa  
Schottky diodes required to meet  
uC”s sequencing requirements  
VQ_LDO2  
*)  
*)  
-0.3 < ( Q_LDO2 - FB_EXT)  
t
t
VQ_LDO1  
Figure 4  
Power Sequencing of the TLE7368  
Data Sheet  
26  
Rev. 1.1, 2007-11-08  
TLE7368  
Detailed Internal Circuits Description  
5.5  
Stand-by Regulator  
The intention of the stand-by or keep alive regulator is to supply e.g. external memory even with the main  
microcontroller supply being disabled. Therefore the state of the stand-by regulator is not controlled by the enable  
block, but it is active all the time. The stand-by regulator starts to operate as soon as the battery voltage increases  
above its operating threshold. The current consumption during single operation of the stand-by regulator is  
reduced to a minimum. It can be configured for output voltages as either 1.0 V or 2.6 V through the SEL_STBY pin.  
5.6  
Overtemperature Protection  
At junction temperatures between 160 °C and 190 °C, which can be caused by e.g. excessive power dissipation  
or increased ambient temperatures, the overtemperature protection kicks in and disables the Buck converter. With  
the Buck converter disabled the linear regulators will most likely not be able to keep up their output voltage and a  
system reset can be expected. Due to the drop in power dissipation the junction temperature will decrease. The  
built in hysteresis circuit ensures that the junction temperature cools down by a certain temperature delta before  
the Buck converter is enabled again.  
5.7  
Device Enable Function  
The device enable block controls the operation of the Buck converter as well as of the linear regulators and tracker  
blocks. Two external signal inputs determine the state of those blocks, a high voltage input EN_IGN and a low  
voltage input EN_uC. Internally the two signals are logic OR-ed which means that with either signal the Buck and  
linear regulators can be turned on or held active, provided that the battery voltage is above its minimum operating  
range. In order to turn off the regulator blocks, the signals on both inputs, EN_IGN and EN_uC must be lower than  
their deactivating threshold. The stand-by regulator’s operation is not affected by the device enable block.  
5.8  
Reset Function  
The Reset concept of the TLE7368 is chosen to support multiple microcontroller platforms. Two open drain  
outputs, i.e. the Reset outputs, RO_1 and RO_2, indicate the states of the different regulators. Figure 5 gives the  
details on the Reset timing. RO_1 is tied to LDO1 and will indicate whenever its output, Q_LDO1, is crossing the  
under- or overvoltage threshold. The second Reset output, RO_2, turns low whenever one of the two outputs,  
Q_LDO2 or FB_EXT, are crossing their under- and overvoltage thresholds. At power up in order to avoid a faulty  
microcontroller start, a so called Reset delay function, i.e. the Reset release delay, is implemented. This delay until  
the reset is released, counted from the time where the regulator outputs cross the threshold, is determined by a  
small external delay capacitor at pin RT.  
The power up reset delay time tRD is directly proportional to the capacitance CRT within the capacitance range of  
0.33 nF … 4.7 nF:  
t
RD = 160 × 50 µs × CRT/nF  
(3)  
For the tolerance calculation please refer to the parameters 4.4.77, 4.4.78 and 4.4.79. In order to find the worst  
case limits of tRD the capacitance tolerance should be taken into account.  
The Reset generators within the TLE7368 are supplied from multiple sources, VIN_STBY, VCCP, VFB_L/IN,  
VQ_LDO1 and VQ_LDO2, to fulfill next generation microcontroller requirements during power up and power down.  
Data Sheet  
27  
Rev. 1.1, 2007-11-08  
TLE7368  
Detailed Internal Circuits Description  
VFB/L_IN  
t
VORT Q_LDO1, in  
VQ_LDO1 VORT Q_LDO1, de  
VURT Q_LDO1, in  
VURT Q_LDO1, de  
< tOVRR, RO_1  
< tUVRR, RO_1  
tRD, RO_1  
t
tRD, RO_1  
tRD, RO_1  
tUVRR, RO_1  
tUVRR, RO_1  
*)  
VRO_1  
t
VORT Q_LDO2, in  
VQ_LDO2 VORT Q_LDO2, de  
VURT Q_LDO2, in  
VFB_EXT  
VURT Q_LDO2, de  
< tOVRR, RO_2  
< tUVRR, RO_2  
VORT FB_EXT, in  
VORT FB_EXT, de  
VURT FB_EXT, in  
VURT FB_EXT, de  
< tUVRR, RO_2  
< tOVRR, RO_2  
t
tRD, RO_2  
tRD, RO_2  
tRD, RO_2  
tOVRR, RO_2  
tRD, RO_2  
**)  
VRO_2  
tUVRR, RO_2  
tOVRR, RO_2  
tUVRR, RO_2  
t
*) pulled to e.g. Q_LDO1 by 10kOhm **) pulled to e.g. Q_LDO2 by 10kOhm  
Figure 5  
Reset Timing TLE7368  
Data Sheet  
28  
Rev. 1.1, 2007-11-08  
TLE7368  
Detailed Internal Circuits Description  
5.9  
Monitoring Circuit  
The monitoring block within the TLE7368 detects an undervoltage at the stand-by regulator output and is able to  
distinguish between two different undervoltage situations. When the stand-by output gets back into regulation after  
an undervoltage event, the timing on the MON_STBY output signal indicates the kind of undervoltage scenario  
which has happened before. The behavior of the monitoring block is also described in Figure 6 and Figure 7  
below.  
In case of an undervoltage at the stand-by regulator with the 5 V regulator LDO1 in regulation (which means that  
RO_1 = HIGH) the monitoring circuit has basically a power fail functionality which means that the MON_STBY  
output will be LOW just as long as the undervoltage at the stand-by output occurs. As soon as Q_STBY is coming  
back into regulation MON_STBY turns high again.  
When the 5 V regulator is out of regulation (RO_1 = LOW), e.g. in case of EN_uC = EN_IGN = LOW, the  
MON_STBY will turn LOW again if an undervoltage event happens at Q_STBY. The difference to the scenario  
described above is now that when Q_STBY gets back into regulation the toggling of the MON_STBY output to  
HIGH is coupled with the 5 V Reset line, RO_1, turning HIGH. In detail, the MON_STBY line turns high delayed  
by tMON_STBY after the Reset line RO_1 had gone high.  
MON = High  
VQ_STBY < V  
VQ_STBY < VMON, Q_STBY, de  
aMnOdN, Q_STBY, de  
and  
RO_1 = High  
RO_1 = Low  
Monitor timing  
= don’t care  
VQ_STBY > VMON, Q_STBY, in  
VQ_STBY > VMON, Q_STBY, in  
and  
and  
RO_1 = High  
RO_1 = High  
MON = Low  
MON = Low  
VQ_STBY > VMON, Q_STBY, in  
and  
RO_1 = Low  
Monitor timing  
= no delay*)  
Monitor timing  
= delay**)  
VQ_STBY < VMON, Q_STBY, de  
and  
RO_1 = Low  
*) power fail functionionality  
**) power on reset functionality  
Figure 6  
Stand by Monitor State Diagram  
Data Sheet  
29  
Rev. 1.1, 2007-11-08  
TLE7368  
Detailed Internal Circuits Description  
VIN  
VIN_STBY  
VQ_STBY  
t
t
VMON, Q_STBY, in  
VMON, Q_STBY, de  
< tRR, MON_STBY1  
t
t
t
*)  
VRO_1  
tMON_STBY  
tRR, MON_STBY  
tRR, MON_STBY  
tRR, MON_STBY  
*)  
VMON_STBY  
Power on reset functionality, with RO_1  
low during under voltage at Q_STBY  
Power fail functionality, w/o delay, with  
RO_1 high during under voltage at Q_STBY  
*) output pulled to e.g. Q_LDO1 by 10kOhm  
Figure 7  
Stand by Monitor Timing Diagram  
Data Sheet  
30  
Rev. 1.1, 2007-11-08  
TLE7368  
Detailed Internal Circuits Description  
5.10  
Watchdog Circuit  
Always  
Ignore  
WDO = LOW  
Window  
Trigger During  
Closed Window  
No Trigger During  
Open Window  
Always  
Trigger  
Closed  
Open  
Window  
Window  
No Trigger  
AEA03533.VSD  
Figure 8  
Window Watchdog State Diagram  
Principle of Operation:  
A Window Watchdog is integrated in the TLE7368 to monitor a microcontroller. The Window Watchdog duty cycle  
consists of an "Open window" and a "Closed window". The microcontroller that is being monitored has to send a  
periodic falling edge trigger signal to the watchdog input pin WDI within the "Open Window". If a trigger signal is  
not sent or if it is sent during the "Closed Window", then Watchdog Output (WDO) switches from high to low  
signaling a potential microcontroller fault has occurred. The watchdog cycle time TWD is derived from the time base  
T
Cycle. An external capacitor connected between pins RT and GND determines TCycle  
.
Initialization:  
The Watchdog is switched off per default and activated by pulling WDI to low at least for the time tWD,start after RO_2  
has turned to high. Watchdog input pin WDI has an integrated pull-up resistor RWDI connected to Q_LDO2. If WDI  
transitions to high before tWD,start has elapsed, then the watchdog will not start operation. To initialize the Watchdog  
the watchdog input WDI should transition to high within the "Ignore Window". The WDI signal may also transition  
to high during the following "Open Window", but sufficient time must be left for a falling edge transition before the  
end of the "Open Window". The watchdog function is turned off following a RO_2 reset, and must be reinitialized  
to be turned back on.  
Normal Operation:  
Please refer to Figure 8.  
The Watchdog starts operating in the "Ignore Window" state for a duration of tWD,IW. Within the "Ignore Window"  
the microcontroller is given time to initialize. Any signal to watchdog input WDI within the "Ignore Window" is  
ignored. After time tWD,IW, the watchdog transitions from the "Ignore Window" state to the "Open Window" state for  
a maximum duration of tWD,W. Within the "Open Window" a valid trigger signal must be applied to the watchdog  
Data Sheet  
31  
Rev. 1.1, 2007-11-08  
TLE7368  
Detailed Internal Circuits Description  
input WDI. A valid trigger signal is a falling edge from VWDI,high to VWDI,low. After receiving a valid trigger signal within  
the "Open Window" the watchdog immediately terminates the "Open Window" and enters the "Closed Window"  
state. The "Closed Window" has a fixed duration tWD,W. During normal operation a trigger signal should not be  
applied during the "Closed Window. After the "Closed Window" time tWD,W an the watchdog returns back to the  
"Open Window" state. Within the "Open Window", a valid trigger signal must be applied to the watchdog input WDI.  
In normal operation, the watchdog continues to cycle between the "Open Window" and "Closed Window" state. If  
reset signal RO_2 is asserted and transitions to a low state, then the watchdog needs to be reinitialized as  
described in the Initialization section. The watchdog output WDO stays high as long as the watchdog input WDI  
is triggered correctly.  
Valid Trigger Signal:  
Please refer to Figure 9.  
Watchdog input WDI is periodically sampled with a period of TWD. A valid trigger signal is a falling edge from  
VWDI,high to VWDI,low. To improve immunity against noise or glitches on the WDI input, at least two high samples  
followed two low samples are required for a valid trigger signal. For example, if the first three samples (two HGH  
one LOW) of the trigger pulse at pin WDI are inside the closed window and only the fourth sample (the second  
LOW sample) is taken in the open window then the watchdog output WDO will remain High.  
Invalid Triggering:  
Please refer to Figure 8 and Figure 9.  
No trigger signal detected during the "Open Window" or a trigger signal detected during the "Closed Window", is  
considered invalid triggering. Watchdog output WDO switches to low for a duration of tWD,W immediately after no  
valid trigger during the "Open Window" or immediately if a trigger signal is detected during the "Closed Window".  
Fault Operation:  
If a capacitor failure on the watchdog timing pin RT causes a short circuit to GND, then the internal oscillator stops  
operating. Without oscillator operation there is no time reference for the watchdog so it does not know when the  
"Closed Window" period has ended. Thus, every second trigger signal on watchdog input WDI generates a  
watchdog failure causing WDO to switch from high to low. An open circuit at pin RT also causes WDO to switch  
from high to low.  
:DWFKGRJꢀ  
2XWSXWꢀꢁ:'2ꢂ  
&ORVHGꢀ:LQGRZ  
2SHQꢀ:LQGRZ  
2SHQꢀ:LQGRZ  
&ORVHGꢀ:LQGRZ  
+LJK  
:',  
:',  
:',  
:',  
ꢁ1RUPDOꢂ  
/RZ  
ꢁ)DXOWꢂ  
:DWFKGRJꢀ'HFRGHUꢀ6DPSOHꢀ3RLQW  
Figure 9  
Window Watchdog Input Signal Validation  
Data Sheet  
32  
Rev. 1.1, 2007-11-08  
TLE7368  
Application Information  
6
Application Information  
Note:The following information is given as a hint for the implementation of the device only and shall not be  
regarded as a description or warranty of a certain functionality, condition or quality of the device.  
C1  
C2  
CCP  
BST  
INT.BIASING,  
Battery  
Input  
CHARGE PUMP  
IN  
5.5V  
PWM  
CONTROLLER  
5.5V  
SW  
TLE 7368  
FB/L_IN  
Q_T1  
5V, to sensor  
5V, to sensor  
5V  
TEMPERATURE  
SENSE  
Q_T2  
EN_µC  
from µC  
ENABLE  
1  
EN_IGN  
from IGN  
Q_LDO1  
5.0V  
RESET  
(WINDOW  
RO_1  
RT  
to µC  
IN_LDO2  
Q_LDO2  
COMPARATOR)  
e.g. 3.3V  
2.6/3.3V  
1.5V  
TIMING  
SEL_LDO2  
RESET  
(WINDOW  
COMPARATOR)  
RO_2  
to µC  
DRV_EXT  
FB_EXT  
e.g. 1.5V  
WINDOW  
WDO  
WDI  
to µC  
from µC  
WATCHDOG  
IN_STBY  
Keep Alive  
Input  
Q_STBY  
e.g. 1.5V  
1.0/2.6V  
MON_STBY  
STANDBY  
MONITOR  
to µC  
SEL_STBY  
GND_P  
GND_A  
Figure 10 Application Diagram, Example  
Note:This is a very simplified example of an application circuit. The function must be verified in the real application.  
Data Sheet  
33  
Rev. 1.1, 2007-11-08  
TLE7368  
Application Information  
This section intends to give hints for correct set up of the IC, i.e. to avoid misbehavior caused by the influence of  
other PCB board circuits and shows also how to calculate external components, power loss, etc.  
6.1  
Choosing Components for the Buck Regulator  
Stable operation of the Buck converter is ensured when choosing the external passive components according to  
the characteristics given below:  
Buck inductance: 18 µH < LBuck < 220 µH  
Buck output capacitor: CBuck > 20 µF  
ESR of Buck output capacitor: ESR_CBuck < 150 mΩ  
6.2  
Setting up LDO1, LDO2  
The linear regulators LDO1 and LDO2 need to be connected to appropriate output capacitors in order to keep the  
regulation loop stable and avoid oscillations. The essential parameters of the output capacitor are the minimum  
capacitance and the equivalent series resistance (ESR). The required ranges for each output are specified in  
Chapter 4.4 (Electrical Characteristics). Tantalum capacitors as well as multi layer ceramic capacitors are  
suitable for LDO1 and LDO2.  
Table 1  
No.  
1
LDO2 Output Voltage Configuration  
SEL_LDO2  
GND  
Q_LDO2  
Q_LDO2  
2.6 V  
3.3 V  
2
6.3  
Setting up of LDO3  
LDO3 consists of an integrated regulator which needs to be equipped with an external power transistor (NPN-  
Type). Suitable NPN power transistors types are e.g. KSH 200 from Fairchild semiconductor or NJD 2873T4 from  
ON semiconductor. The most important parameters to be checked when choosing the external transistor are the  
‘current gain bandwidth product’ (fT), the ‘DC current gain’ (hFE) and the thermal resistance of the package.  
Darlington type transistors should not be used. For stability of the regulation loop a multi layer ceramic capacitor  
of min. 4.7 µF must be connected to the LDO3 output voltage (Emitter of the external power transistor). In order  
to improve suppression load current steps an additional capacitor of tantalum type can be connected in parallel.  
In case LDO3 voltage is not needed the external NPN transistor can be spared. For this configuration the pins  
‘DRV_EXT’ and ‘FB_EXT’ should be directly connected to each other in order to ensure correct operation of  
Reset 2. Also in this case a small ceramic capacitor of 220 nF connected from pin ‘FB_EXT’ to GND is  
recommended in order to avoid oscillations of the regulation loop LDO3.  
Data Sheet  
34  
Rev. 1.1, 2007-11-08  
TLE7368  
Application Information  
6.4  
Setting up the Stand-by Regulator  
The stand by regulator provides an output current up to 30 mA sourced via linear regulation directly from Battery  
even when the main regulator is disabled. This low quiescent current regulator is commonly used as supply for  
stand by memory. The output voltage can be selected as 1.0 V or 2.6 V. For stability of the regulation loop the  
output Q_STBY should be connected via a ceramic capacitor (470 nF to 2 µF) to GND.  
6.4.1  
Stand-by Regulator’s Output Voltage Configuration  
The stand by regulator provides an output voltage of nominal 1.0 V or 2.6 V which is associated with an  
appropriate stand-by monitoring threshold. The output voltage level is selected by the SEL_STBY configuration.  
Connecting SEL_STBY to GND results in a voltage level of 2.6 V at Q_STBY, while connecting SEL_STBY with  
Q_STBY leads to 1.0 V configuration. An integrated pull-up current ensures that the system will turn in the lower  
stand-by voltage mode in case of open mode at the SEL_STBY pin. However the SEL_STBY pin should be  
connected either to Q_STBY or to GND in order to select the appropriate Q_STBY voltage level. Intermediate  
voltage levels at SEL_STBY should be avoided.  
Table 2  
Stand-by Regulator’s Output Voltage Configuration  
No.  
1
2
SEL_STBY  
GND  
Q_STBY  
Q_STBY  
2.6 V  
1.0 V  
Data Sheet  
35  
Rev. 1.1, 2007-11-08  
TLE7368  
Package Outlines  
7
Package Outlines  
1)  
±0.15  
11  
B
2.8  
±0.1  
1.1  
±0.1  
15.74  
6.3  
(Heatslug)  
Heatslug  
0.65  
0.1 C 36x  
±0.15  
0.95  
0.25 +0.13  
M
0.25 A B C  
±0.3  
14.2  
0.25 B  
17 x 0.65 = 11.05  
36  
19  
Bottom View  
19  
36  
Index Marking  
1 x 45˚  
Heatslug  
1
18  
1
10  
13.7-0.2  
1)  
±0.1  
15.9  
A
1) Does not include plastic or metal protrusion of 0.15 max. per side  
2) Stand off  
GPS09181  
Figure 11 P-DSO-36-12 (Plastic - Dual Small Outline Package)  
You can find all of our packages, sorts of packing and others in our  
Dimensions in mm  
Rev. 1.1, 2007-11-08  
Infineon Internet Page “Products”: http://www.infineon.com/products.  
Data Sheet  
36  
TLE7368  
Package Outlines  
0.35 x 45˚  
1)  
7.6-0.2  
12˚  
+0.09  
0.23  
0.65  
±0.2  
±0.3  
0.7  
0.1  
36x  
C
C
10.3  
SEATING PLANE  
D
17 x 0.65 = 11.05  
2)  
±0.08  
0.33  
M
0.17 A-B C  
36x  
D
Bottom View  
A
36  
19  
19  
36  
Exposed Diepad  
1
18  
B
18  
1
Index Marking  
7
1)  
12.8-0.2  
Index Marking  
1) Does not include plastic or metal protrusion of 0.15 max. per side  
2) Does not include dambar protrusion of 0.05 max. per side  
GPS01153  
Figure 12 PG-DSO-36-24 (Plastic Green - Dual Small Outline Package)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with  
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e  
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
You can find all of our packages, sorts of packing and others in our  
Infineon Internet Page “Products”: http://www.infineon.com/products.  
Dimensions in mm  
Data Sheet  
37  
Rev. 1.1, 2007-11-08  
TLE7368  
Revision History  
8
Revision History  
Rev Date  
Changes  
1.1 2007-11-08 • Final datasheet for both versions, TLE7368G and TLE7368E.  
Page 3, Overview: Updated package pictures.  
Page 3, Overview: Updated table: Status Final/Target removed.  
Page 12, Thermal resistance table: Inserted values for version TLE7368E.  
Page 12, Thermal resistance table: Updated values for version TLE7368G.  
4.4.72/4.4.73: Condition described more precise: Inserted “MON_STBY = H”.  
Figure 9: Modified graph for better description of the window watchdog function.  
Chapter 5.10 Watchdog: Revised phrasing for better understanding  
1.0 2007-08-13 • Final Datasheet Version TLE7368G; Target Datasheet Version TLE7368E  
0.61 2006-12-18 • Target Datasheet  
Data Sheet  
38  
Rev. 1.1, 2007-11-08  
Edition 2007-11-08  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2007 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  

相关型号:

TLE7368-2E

Next Generation Micro Controller Supply
INFINEON

TLE7368-3E

Next Generation Micro Controller Supply
INFINEON

TLE73682EXUMA1

Power Supply Management Circuit, Adjustable, 1 Channel, CMOS, PDSO36, GREEN, PLASTIC PACKAGE-36
INFINEON

TLE73682EXUMA2

Power Supply Management Circuit, Adjustable, 1 Channel, CMOS, PDSO36, GREEN, PLASTIC PACKAGE-36
INFINEON

TLE7368E

Next Generation Micro Controller Supply
INFINEON

TLE7368EXUMA2

Power Supply Management Circuit, Adjustable, 1 Channel, CMOS, PDSO36, GREEN, PLASTIC PACKAGE-36
INFINEON

TLE7368EXUMA3

Power Supply Management Circuit, Adjustable, 1 Channel, CMOS, PDSO36, GREEN, PLASTIC PACKAGE-36
INFINEON

TLE7368G

Next Generation Micro Controller Supply
INFINEON

TLE7368GNUMA1

Power Supply Management Circuit, Adjustable, 1 Channel, CMOS, PDSO36, PLASTIC PACKAGE-36
INFINEON

TLE7368_10

Next Generation Micro Controller Supply
INFINEON

TLE7469

Dual Low Drop Voltage Regulator
INFINEON

TLE7469GV52

Dual Low Drop Voltage Regulator
INFINEON