TLE75080-ESH [INFINEON]

TLE75080-ESH 是采用 PG-TSDSO-24-21 封装的八通道高边电源开关,提供嵌入式保护功能。它专门用于控制汽车和工业应用中的继电器和 LED。利用串行外设接口(SPI)控制和诊断设备的负载。对于直接控制和 PWM,在默认情况下有两个输入引脚连接到两个输出。可通过相同的输入引脚(可通过 SPI 编程)控制其他或不同的输出。;
TLE75080-ESH
型号: TLE75080-ESH
厂家: Infineon    Infineon
描述:

TLE75080-ESH 是采用 PG-TSDSO-24-21 封装的八通道高边电源开关,提供嵌入式保护功能。它专门用于控制汽车和工业应用中的继电器和 LED。利用串行外设接口(SPI)控制和诊断设备的负载。对于直接控制和 PWM,在默认情况下有两个输入引脚连接到两个输出。可通过相同的输入引脚(可通过 SPI 编程)控制其他或不同的输出。

开关 电源开关 继电器
文件: 总78页 (文件大小:2363K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE75080-ESH  
SPIDER+ 12V  
SPI Driver for Enhanced Relay Control  
Package  
Marking  
PG-TSDSO-24  
TLE75080ESH  
1
Overview  
Applications  
High-side switches for 12 V in automotive or industrial applications such  
as lighting, heating, motor driving, energy and power distribution  
Especially designed for driving relays, LEDs and motors.  
VBA TT  
VDD  
RVDD  
CVDD  
CVS  
VBA TT1  
VBA TT2  
IN0_LH  
IN1_LH  
VDD  
VDD  
VS  
GPO  
GPO  
GPO  
IN0  
RIN  
RIN  
VS1  
IN1  
OUT0_HS  
OUT2_HS  
OUT4_HS  
OUT6_HS  
IDLE  
RIDLE  
RLH  
ZVS  
LI MP HO ME  
VS2  
OUT1_HS  
OUT3_HS  
OUT5_HS  
OUT7_HS  
GPO  
GPO  
GPO  
GPI  
CSN  
SCLK  
SI  
RCSN  
RSCLK  
RSI  
SO  
RSO  
GND  
GND  
Application_8HS.emf  
Figure 1  
TLE75080-ESH Application Diagram  
Datasheet  
www.infineon.com  
1
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Overview  
Basic Features  
16-bit serial peripheral interface for control and diagnosis  
Daisy Chain capability SPI also compatible with 8-bit SPI devices  
2 CMOS compatible parallel input pins with Input Mapping functionality  
Cranking capability down to VS = 3.0 V (supports LV124)  
Digital supply voltage range compatible with 3.3 V and 5 V microcontrollers  
Bulb Inrush Mode (BIM) to drive 2 W lamps and electronic loads  
Two internal PWM Generators for µC offload  
Two independent battery feeds (VS1, VS2) for high-side channels  
Very low quiescent current (with usage of IDLE pin)  
Limp Home mode (with usage of IDLE and IN pins)  
Green Product (RoHS compliant)  
AEC Qualified  
Protection Features  
Reverse battery protection on VS without external components  
Short circuit to ground and battery protection  
Stable behavior at under voltage conditions (“Lower Supply Voltage Range for Extended Operation”)  
Over Current latch OFF  
Thermal shutdown latch OFF  
Overvoltage protection  
Loss of ground protection  
Loss of battery protection  
Electrostatic discharge (ESD) protection  
Diagnostic Features  
Latched diagnostic information via SPI register  
Over Load detection at ON state  
Open Load detection at OFF state using Output Status Monitor function  
Output Status Monitor  
Input Status Monitor  
Open Load detection at ON state  
Application Specific Features  
Fail-safe activation via Input pins in Limp-Home Mode  
SPI with Daisy Chain capability  
Safe operation at low battery voltage (cranking)  
2 W lamps, 5 W lamps with two channels in parallel mode and enhanced capacitive loads driving capability  
(Bulb Inrush Mode)  
Two independent internal PWM generators to drive e.g. LEDs  
Two supply pins for different battery feeds (each pin is the power drain of four high-side channels)  
Datasheet  
2
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Overview  
Description  
The TLE75080-ESH is an eight channel high-side power switch in PG-TSDSO-24 package providing embedded  
protective functions. It is specially designed to control relays and LEDs in automotive and industrial  
applications.  
A serial peripheral interface (SPI) is utilized for control and diagnosis of the loads as well as of the device. For  
direct control and PWM there are two input pins available connected to two outputs by default. Additional or  
different outputs can be controlled by the same input pins (programmable via SPI).  
Table 1  
Product Summary  
Parameter  
Symbol  
VS  
Values  
Analog supply voltage  
3.0 V … 28 V  
Digital supply voltage  
VDD  
3.0 V … 5.5 V  
Minimum overvoltage protection  
VS(AZ)  
RDS(ON)  
IL(NOM)  
EAR  
42 V (see Chapter 8.5 for details)  
Maximum on-state resistance at TJ = 150 °C  
Nominal load current (TA = 85 °C, all channels)  
Maximum Energy dissipation - repetitive  
Maximum Source to Ground clamping voltage  
Maximum overload switch OFF threshold  
Maximum total quiescent current at TJ 85 °C  
Maximum SPI clock frequency  
2.2 Ω  
330 mA  
10 mJ @ IL(EAR) = 220 mA  
VOUT(CL)  
IL(OVL0)  
ISLEEP  
fSCLK  
-16 V  
2.3 A  
5 µA  
5 MHz  
Detailed Description  
The TLE75080-ESH is an eight channel high-side switch providing embedded protective functions. The output  
stages incorporate eight high-side switches (typical RDS(ON) at TJ = 25°C is 1 ). Driving a load from high-side  
offers the possibility to perform Open Load at ON diagnosis.  
The 16-bit serial peripheral interface (SPI) is utilized to control and diagnose the device and the loads. The SPI  
interface provides daisy chain capability in order to assemble multiple devices (also devices with 8 bit SPI) in  
one SPI chain by using the same number of microcontroller pins.  
This device is designed for low supply voltage operation, therefore being able to keep its state at low battery  
voltage (VS 3.0 V). The SPI functionality, including the possibility to program the device, is available only  
when the digital power supply is present (see Chapter 6 for more details).  
The TLE75080-ESH is equipped with two input pins that are connected to two outputs, making them  
controllable even when the digital supply voltage is not available. With the Input Mapping functionality it is  
possible to connect the input pins to different outputs, or assign more outputs to the same input pin. In this  
case more channels can be controlled with one signal applied to one input pin.  
In Limp Home mode (Fail-Safe mode) the input pins are directly routed to channels 2 and 3. When IDLE pin is  
“low”, it is possible to activate the two channels using the input pins independently from the presence of the  
digital supply voltage.  
The device provides diagnosis of the load via Open Load at ON state, Open Load at OFF state (with  
DIAG_OSM.OUTn bits) and short circuit detection. For Open Load at OFF state detection, a internal current  
source IOL can be activated via SPI.  
Each output stage is protected against short circuit. In case of Overload, the affected channel switches OFF  
when the Overload Detection Current IL(OVLn) is reached and can be reactivated via SPI. In Limp Home mode  
operation, the channels connected to an input pin set to “high” restart automatically after Output Restart time  
Datasheet  
3
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Overview  
tRETRY(LH) is elapsed. Temperature sensors are available for each channel to protect the device against Over  
Temperature.  
The power transistors are built by N-channel power MOSFET with one central chargepump . The inputs are  
ground referenced TTL compatible. The device is monolithically integrated in Smart Power Technology.  
Datasheet  
4
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Block Diagram and Terms  
2
Block Diagram and Terms  
2.1  
Block Diagram  
VS1  
VS2  
VS  
VDD  
temperature  
sensor  
Over Load  
detection  
power supply  
Open Load at  
ON  
Power mode  
control  
IDLE  
Output Status  
Monitor  
IN0  
IN1  
Limp Home  
high-side  
gate control  
control,  
diagnostic  
and  
protective  
functions  
OUT7_HS  
OUT6_HS  
OUT5_HS  
OUT4_HS  
input register  
Bulb Inrush  
Mode  
OUT3_HS  
OUT2_HS  
OUT1_HS  
OUT0_HS  
PWM generator  
CSN  
SCLK  
SI  
SPI  
SO  
diagnosis  
register  
GND  
BlockDiagram_8HS.emf  
Figure 2  
Block Diagram of TLE75080-ESH  
Datasheet  
5
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Block Diagram and Terms  
2.2  
Terms  
Figure 3 shows all terms used in this data sheet, with associated convention for positive values.  
VS  
IVS  
VS  
IVDD  
IID LE  
IVS1  
VDD  
IDLE  
VS1  
VDD  
VID LE  
VDS6 VDS4 VDS2 VDS0 VS1  
IL_S0  
IL_S2  
IL_S4  
IL_S6  
OUT0_HS  
OUT2_HS  
OUT4_HS  
OUT6_HS  
VOUT0  
IIN0  
IIN1  
IN0  
IN1  
VIN0  
VIN1  
VOUT2  
VOUT4  
VOUT6  
IVS 2  
VS2  
VDS7 VDS5 VDS3 VDS1 VS2  
ICSN  
ISCLK  
ISI  
IL_S1  
IL_S3  
IL_S5  
IL_S7  
CSN  
SCLK  
SI  
OUT1_HS  
OUT3_HS  
OUT5_HS  
OUT7_HS  
VCSN  
VSCLK  
VSI  
VOUT1  
VOUT3  
VOUT5  
ISO  
SO  
VSO  
VOUT7  
GND  
IGND  
Terms_8HS.emf  
Figure 3  
Voltage and Current definition  
In all tables of electrical characteristics the channel related symbols without channel numbers are valid for  
each channel separately (e.g. VDS specification is valid for VDS0 ... VDS7).  
Furthermore, parameters relative to output current can be indicated without specifying whether the current  
is going into the Drain pin or going out of the Source pin, unless otherwise specified. For instance, nominal  
output current can be indicated in the following ways: IL(NOM) IL_HS(NOM) IL_S(NOM)  
All SPI registers bits are marked as follows: ADDR.PARAMETER(e.g. HWCR.RST) with the exception of the  
bits in the Diagnosis frames which are marked only with PARAMETER(e.g. UVRVS).  
Datasheet  
6
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment  
(top view)  
CSN  
SCLK  
SI  
1
2
3
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VDD  
IN0  
IN1  
SO  
GND  
4
5
IDLE  
VS  
6
7
OUT1_HS  
n.c.  
OUT0_HS  
n.c.  
25  
SUB  
OUT2_HS  
VS1  
8
9
OUT3_HS  
VS2  
OUT4_HS  
10  
11  
12  
OUT5_HS  
OUT6_HS  
n.c.  
OUT7_HS  
n.c.  
PinOut_8HS.emf  
Figure 4  
Pin Configuration TLE75080-ESH in PG-TSDSO-24  
Datasheet  
7
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Pin Configuration  
3.2  
Pin Definitions and Functions  
Pin  
Symbol  
I/O  
Function  
Power Supply Pins  
20  
VS  
Analog supply VS  
Positive supply voltage for power switches gate control (incl.  
protections)  
9
VS1  
VS2  
Analog supply VS1  
Positive supply voltage for power switches drain current (channels 0,  
2, 4 and 6)  
16  
Analog supply VS2  
Positive supply voltage for power switches drain current (channels 1,  
3, 5 and 7)  
24  
5
VDD  
GND  
Digital supply VDD  
Supply voltage for SPI with support function to VS  
Ground  
Ground connection  
SPI Pins  
1
CSN  
SCLK  
SI  
I
Chip Select  
“low” active, integrated pull-up to VDD  
2
3
4
I
Serial Clock  
“high” active, integrated pull-down to ground  
I
Serial Input  
“high” active, integrated pull-down to ground  
SO  
O
Serial Output  
“Z” (tri-state) when CSN is “high”  
Input and Stand-by Pins  
21  
23  
22  
IDLE  
I
I
I
Idle mode  
power mode control, “high” activates Idle mode, integrated pull-down  
to ground  
IN0  
Input pin 0  
connected to channel 2 by default and in Limp Home mode, “high”  
active, integrated pull-down to ground  
IN1  
Input pin 1  
connected to channel 3 by default and in Limp Home mode, “high”  
active, integrated pull-down to ground  
Power Ouput Pins  
6
OUT0_HS  
O
O
O
O
O
Source of high-side power transistor (channel 0)  
Source of high-side power transistor (channel 2)  
Source of high-side power transistor (channel 4)  
Source of high-side power transistor (channel 6)  
Source of high-side power transistor (channel 7)  
8
OUT2_HS  
OUT4_HS  
OUT6_HS  
OUT7_HS  
10  
11  
14  
Datasheet  
8
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Pin Configuration  
Pin  
15  
Symbol  
I/O  
O
Function  
OUT5_HS  
OUT3_HS  
OUT1_HS  
Source of high-side power transistor (channel 5)  
Source of high-side power transistor (channel 3)  
Source of high-side power transistor (channel 1)  
17  
O
19  
O
Not Connected pins / Cooling Tab  
7, 12, 13, 18  
25  
n.c.  
Not Connected, internally not bonded  
GND  
Exposed pad  
It is recommended to connect it to PCB ground for cooling and EMC -  
not usable as electrical GND pin. Electrical ground must be provided  
by pin 5.  
Datasheet  
9
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Table 2  
Absolute Maximum Ratings 1)  
TJ = -40 °C to +150 °C  
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Voltage ranges specifed for VS apply also to VS1 and VS2 (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
Typ. Max.  
Supply Voltages  
Analog Supply voltage  
Digital Supply voltage  
VS  
-0.3  
-0.3  
28  
5.5  
42  
V
V
V
P_4.1.1  
P_4.1.2  
P_4.1.3  
VDD  
2)  
Supply voltage for load dump VS(LD)  
protection  
Supply voltage for short circuit VS(SC)  
protection (single pulse)  
0
28  
16  
V
V
P_4.1.4  
P_4.1.5  
3)  
Reverse polarity voltage  
-VS(REV)  
TJ(0) = 25 °C  
t 2 min  
See Chapter 11 for  
general setup.  
RL = 70 on all  
channels  
Current through VS pin  
Current through VDD pin  
Power Stages  
IVS  
-10  
-50  
10  
10  
mA  
mA  
t 2 min  
t 2 min  
P_4.1.7  
P_4.1.8  
IVDD  
Load current  
|IL|  
IL(OVL0)  
A
V
V
single channel  
P_4.1.9  
Voltage at power transistor  
VDS  
-0.3  
-16  
42  
P_4.1.10  
P_4.1.11  
Power transistor source voltage VOUT_S  
VOUT_D  
+0.3  
Power transistor drain voltage VOUT_D  
(VOUT_S 0 V)  
VOUT_S - –  
0.3  
42  
42  
50  
V
P_4.1.12  
P_4.1.59  
P_4.1.13  
Power transistor drain voltage VOUT_D  
(VOUT_S < 0 V)  
-0.3  
V
4)  
Maximum energy dissipation  
single pulse  
EAS  
mJ  
TJ(0) = 25 °C  
I
L(0) = 2*IL(EAR)  
4)  
Maximum energy dissipation  
single pulse  
EAS  
25  
mJ  
P_4.1.14  
TJ(0) = 150 °C  
IL(0) = 400 mA  
Datasheet  
10  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
General Product Characteristics  
Table 2  
Absolute Maximum Ratings (cont’d)1)  
TJ = -40 °C to +150 °C  
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Voltage ranges specifed for VS apply also to VS1 and VS2 (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
Typ. Max.  
4)  
Maximum energy dissipation  
EAR  
10  
mJ  
P_4.1.15  
repetitive pulses - IL(EAR)  
TJ(0) = 85 °C  
IL(0) = IL(EAR)  
2*106 cycles  
IDLE pin  
Voltage at IDLE pin  
Current through IDLE pin  
Current through IDLE pin  
Input Pins  
VIDLE  
IIDLE  
IIDLE  
-0.3  
5.5  
V
P_4.1.23  
P_4.1.25  
P_4.1.26  
-0.75  
-10.0  
0.75  
2.0  
mA  
mA  
t 2 min.  
Voltage at input pins  
Current through input pins  
Current through input pins  
SPI Pins  
VIN  
IIN  
IIN  
-0.3  
5.5  
V
P_4.1.28  
P_4.1.30  
P_4.1.31  
-0.75  
-10.0  
0.75  
2.0  
mA  
mA  
t 2 min.  
Voltage at chip select pin  
VCSN  
-0.3  
5.5  
V
P_4.1.33  
P_4.1.34  
P_4.1.35  
P_4.1.37  
P_4.1.38  
P_4.1.39  
P_4.1.41  
P_4.1.42  
P_4.1.43  
P_4.1.58  
P_4.1.45  
Current through chip select pin ICSN  
Current through chip select pin ICSN  
-0.75  
-10.0  
-0.3  
0.75  
2.0  
mA  
mA  
V
t 2 min.  
Voltage at serial clock pin  
VSCLK  
5.5  
Current through serial clock pin ISCLK  
Current through serial clock pin ISCLK  
-0.75  
-10.0  
-0.3  
0.75  
2.0  
mA  
mA  
V
t 2 min.  
Voltage at serial input pin  
VSI  
5.5  
Current through serial input pin ISI  
Current through serial input pin ISI  
Voltage at serial output pin SO VSO  
-0.75  
-10.0  
-0.3  
0.75  
2.0  
mA  
mA  
V
t 2 min.  
VDD+0.3  
0.75  
Current through serial output  
pin SO  
ISO  
-0.75  
mA  
Current through serial output  
pin SO  
ISO  
-2.0  
10.0  
mA  
t 2 min.  
P_4.1.46  
Temperatures  
Junction Temperature  
Storage Temperature  
ESD Susceptibility  
TJ  
-40  
-55  
150  
150  
°C  
°C  
P_4.1.48  
P_4.1.49  
Tstg  
5)  
ESD Susceptibility HBM  
OUT pins vs. VS or GND  
VESD  
VESD  
-4  
-2  
4
2
kV  
kV  
P_4.1.50  
P_4.1.51  
HBM  
5)  
ESD Susceptibility HBM  
other pins  
HBM  
Datasheet  
11  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
General Product Characteristics  
Table 2  
Absolute Maximum Ratings (cont’d)1)  
TJ = -40 °C to +150 °C  
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Voltage ranges specifed for VS apply also to VS1 and VS2 (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
Typ. Max.  
6)  
ESD Susceptibility CDM  
Pin 1, 12, 13, 24 (corner pins)  
VESD  
VESD  
-750  
750  
V
P_4.1.52  
P_4.1.54  
CDM  
6)  
ESD Susceptibility CDM  
-500  
500  
V
CDM  
1) Not subject to production test, specified by design.  
2) For a duration of ton = 400 ms; ton/toff = 10%; limited to 100 pulses  
3) Device is mounted on a FR4 2s2p board according to Jedec JESD51-2,-5,-7 at natural convection; the Product  
(Chip+Package) was simulated on a 76.2 *114.3 *1.5 mm board with 2 inner copper layers (2 * 70 µm Cu, 2 * 35 µm Cu).  
Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.  
4) Pulse shape represents inductive switch off: IL(t) = IL(0) x (1 - t / tpulse); 0 < t < tpulse  
5) ESD susceptibility, Human Body Model “HBM” according to AEC Q100-002  
6) ESD susceptibility, Charged Device Mode “CDM” according to AECQ100-011 Rev D  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
4.2  
Functional Range  
Table 3  
Functional range  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Supply Voltage Range for  
Normal Operation  
VS(NOR)  
7
18  
V
V
V
P_4.2.1  
P_4.2.2  
P_4.2.3  
Upper Supply Voltage Range VS(EXT,UP)  
for Extended Operation  
18  
3
28  
7
Parameter  
deviation possible  
Lower Supply Voltage Range VS(EXT,LOW)  
Parameter  
for Extended Operation  
deviation possible  
Junction Temperature  
Logic supply voltage  
TJ  
-40  
3
150  
5.5  
°C  
V
P_4.2.4  
P_4.2.5  
VDD  
Note:  
Within the functional or operating range, the IC operates as described in the circuit description. The  
electrical characteristics are specified within the conditions given in the Electrical Characteristics  
table.  
Datasheet  
12  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
General Product Characteristics  
4.3  
Thermal Resistance  
Note:  
This thermal data was generated in accordance with JEDEC JESD51 standards. For more  
information, go to www.jedec.org.  
Table 4  
Thermal Resistance  
Parameter  
Symbol  
Values  
Typ.  
3
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Junction to Soldering Point RthJSP  
5
K/W  
P_4.3.4  
measured to  
exposed pad (pin 25)  
1)2)  
Junction to Ambient  
RthJA  
28  
K/W  
P_4.3.5  
1) not subject to production test, specified by design  
2) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; the Product  
(Chip+Package) was simulated on a 76.2 * 114.3 * 1.5 mm board with 2 inner copper layers (2 * 70 µm Cu, 2 * 35 µm  
Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.  
4.3.1  
PCB set up  
70µm  
1.5mm  
35µm  
0.3mm  
Zth_PCB_2s2p.emf  
Figure 5  
2s2p PCB Cross Section  
Datasheet  
13  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
General Product Characteristics  
Figure 6  
PC Board for Thermal Simulation with 600 mm2 Cooling Area  
Figure 7  
PC Board for Thermal Simulation with 2s2p Cooling Area  
Datasheet  
14  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
General Product Characteristics  
4.3.2  
Thermal Impedance  
Figure 8  
Typical Thermal Impedance. PCB setup according Chapter 4.3.1  
Figure 9  
Typical Thermal Resistance. PCB setup 1s0p  
Datasheet  
15  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Control Pins  
5
Control Pins  
The device has three pins (IN0, IN1 and IDLE) to control directly the device without using SPI.  
5.1  
Input pins  
TLE75080-ESH has two input pins available. Each input pin is connected by default to one channel (IN0 to  
channel 2, IN1 to channel 3). Input Mapping Registers MAPIN0 and MAPIN1 can be programmed to connect  
additional or different channels to each input pin, as shown in Figure 10. The signals driving the channels are  
an OR combination between OUT register status, PWM Generators (according to PWM Generator Output  
Mapping status), IN0 and IN1 (according to Input Mapping registers status). See Chapter 7.5 for further  
details.  
IN1  
Limp Home mode  
(default )  
IIN1  
&
MAPIN1  
8
8
IN0  
Limp Home mode  
Channel 7  
Channel 6  
(default )  
IIN0  
Channel 5  
OR  
Channel 4  
8
Channel 3  
Channel 2  
Channel 1  
&
Channel 0  
MAPIN0  
OUT  
8
8
8
OR  
8
InputMapping_8ch.emf  
Figure 10 Input Mapping  
The logic level of the input pins can be monitored via the Input Status Monitor Register (INST). The Input  
Status Monitor is operative also when TLE75080-ESH is in Limp Home mode. If one of the Input pins is set to  
“high” and the IDLE pin is set to “low”, the device switches into Limp Home mode and activates the channel  
mapped by default to the input pins. See Chapter 6.1.5 for further details.  
5.2  
IDLE pin  
The IDLE pin is used to bring the device into Sleep mode operation when is set to “low” and all input pins are  
set to “low”.When IDLE pin is set to “low” while one of the input pins is set to “high” the device enters Limp  
Home mode.  
To ensure a proper mode transition, IDLE pin must be set for at least tIDLE2SLEEP (P_6.3.54, transition from “high”  
to “low”) or tSLEEP2IDLE (P_6.3.53, transition from “low” to “high”).  
Setting the IDLE pin to “low” has the following consequences:  
All registers in the SPI are reset to default values  
Datasheet  
16  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Control Pins  
VDD and VS Undervoltage detection circuits are disabled to decrease current consumption (if both inputs  
are set to “low”)  
No SPI communication is allowed (SO pin remains in high impedance state also when CSN pin is set to  
“low”) if both input pins are set to “low”  
Datasheet  
17  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Control Pins  
5.3  
Electrical Characteristics Control Pins  
Table 5  
Electrical Characteristics: Control Pins  
VDD = 3 V to 5.5 V, VS = 7 V to 18 V, TJ = -40 °C to +150 °C (unless otherwise specified)  
Typical values: VDD = 5 V, VS = 13.5 V, TJ = 25 °C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
IDLE pin  
L-input level  
H-input level  
L-input current  
H-input current  
Input Pins  
VIDLE(L)  
VIDLE(H)  
IIDLE(L)  
IIDLE(H)  
0
0.8  
5.5  
20  
V
P_5.3.1  
P_5.3.2  
P_5.3.3  
P_5.3.4  
2.0  
5
V
12  
28  
μA  
μA  
VIDLE = 0.8 V  
VIDLE = 2.0 V  
14  
45  
L-input level  
H-input level  
L-input current  
H-input current  
VIN(L)  
VIN(H)  
IIN(L)  
0
0.8  
5.5  
20  
V
P_5.3.5  
P_5.3.6  
P_5.3.7  
P_5.3.8  
2.0  
5
V
12  
28  
μA  
μA  
VIN = 0.8 V  
VIN = 2.0 V  
IIN(H)  
14  
45  
Datasheet  
18  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Power Supply  
6
Power Supply  
The TLE75080-ESH is supplied by four supply voltages:  
VS (analog supply voltage used also for the logic)  
V
V
S1 (analog supply voltage used as drain for channels 0, 2, 4 and 6)  
S2 (analog supply voltage used as drain for channels 1, 3, 5 and 7)  
VDD (digital supply voltage)  
The VS supply line is connected to a battery feed and used, in combination with VDD supply, for the driving  
circuitry of the power stages. In situations where VS voltage drops below VDD voltage (for instance during  
cranking events down to 3.0 V), an increased current consumption may be observed at VDD pin.  
VS and VDD supply voltages have an undervoltage detection circuit, which prevents the activation of the  
associated function in case the measured voltage is below the undervoltage threshold. More in detail:  
An undervoltage on both VS and VDD supply voltages prevents the activation of the power stages and any  
SPI communication (the SPI registers are reset)  
An undervoltage on VDD supply prevents any SPI communication. SPI read/write registers are reset to  
default values.  
An undervoltage on VS supply forces the TLE75080-ESH to drain all needed current for the logic from VDD  
supply. All channels are disabled, and are enabled again as soon as VS VS(OP)  
.
Figure 11 shows a basic concept drawing of the interaction between supply pins VS and VDD, the output stage  
drivers and SO supply line.  
VS1  
CP  
GD  
HS  
Ch. 0,2,4,6  
VS  
IVS  
VS2  
VREG  
VDD  
GD  
UVR  
VDD  
IVDD  
HS  
UVR  
VS  
Ch. 1,3,5,7  
SO  
SPI  
SupplyConcept_8HS.emf  
Figure 11 TLE75080-ESH Internal Power Supply concept  
When 3.0 V VS VDD - VSDIFF TLE75080-ESH operates in “Cranking Operative Range” (COR). In this condition the  
current consumption from VDD pin increases while it decreases from VS pin where the total current  
consumption remains within the specified limits. Figure 12 shows the voltage levels at VS pin where the  
device goes in and out of COR. During the transition to and from COR operative region, IVS and IVDD change  
between values defined for normal operation and for COR operation. The sum of both current remains within  
limits specified in “Overall current consumption” section (see Table 8).  
Datasheet  
19  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Power Supply  
VS  
VDD + VSDIFF  
VDD  
VDD - VSDIFF  
3.0 V  
t
COR  
(no)  
yes  
(no)  
t
IVS  
Supply transition  
Supply transition  
IVDD  
t
SupplyConcept_COR.emf  
Figure 12 “Cranking Operative Range”  
Furthermore, when VS(UV) VS VS(OP) it may be not possible to switch ON a channel that was previously OFF.  
All channels that are already ON keep their state unless they are switched OFF via SPI or via INn pins. An  
overview of channel behavior according to different VS and VDD supply voltages is shown in Table 6 (the table  
is valid after a successful power-up, see Chapter 6.1.1 for more details).  
Datasheet  
20  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Power Supply  
Table 6  
Device capability as function of VS and VDD  
VDD VDD(UV)  
VDD = VDD(LOP)  
VDD > VDD(LOP)  
(VDD(UV) = P_6.3.25)  
(VDD(LOP) = P_6.3.24)  
VS 3.0 V  
channels cannot be  
controlled  
channels cannot be  
controlled  
channels cannot be  
controlled  
3.0 V = VS(UV),max  
(P_6.3.1)  
SPI registers reset  
SPI registers available  
SPI registers available  
SPI communication not  
available (fSCLK = 0 MHz)  
SPI communication  
possible (fSCLK = 1 MHz)  
(P_10.4.34)  
SPI communication  
possible (fSCLK = 5 MHz)  
(P_10.4.22)  
Limp Home mode not  
available  
Limp Home mode available Limp Home mode available  
(channels are OFF) (channels are OFF)  
3.0 V < VS VS(OP)  
(VS(OP) = P_6.3.2)  
channels cannot be  
controlled by SPI  
channels can be switched channels can be switched  
ON and OFF (SPI control)1) ON and OFF (SPI control)1)  
(RDS(ON) deviations possible) (RDS(ON) deviations possible)  
SPI registers reset  
SPI registers available  
SPI registers available  
SPI communication not  
available (fSCLK = 0 MHz)  
SPI communication  
possible (fSCLK = 1 MHz)  
(P_10.4.34)  
SPI communication  
possible (fSCLK = 5 MHz)  
(P_10.4.22)  
Limp Home mode  
available1) (RDS(ON)  
deviations possible)  
Limp Home mode  
available1) (RDS(ON)  
deviations possible)  
Limp Home mode  
available1) (RDS(ON)  
deviations possible)  
VS VS(OP)  
channels cannot be  
controlled by SPI  
channels can be switched channels can be switched  
ON and OFF ON and OFF  
(small RDS(ON) dev. possible (small RDS(ON) dev. possible  
when VS = VS(EXT,LOW) when VS = VS(EXT,LOW)  
)
)
SPI registers reset  
SPI registers available  
SPI registers available  
SPI communication not  
available (fSCLK = 0 MHz)  
SPI communication  
possible (fSCLK = 5 MHz)  
(P_10.4.22)  
SPI communication  
possible (fSCLK = 5 MHz)  
(P_10.4.22)  
Limp Home mode available Limp Home mode available Limp Home mode available  
(small RDS(ON) dev. possible (small RDS(ON) dev. possible (small RDS(ON) dev. possible  
when VS = VS(EXT,LOW)  
)
when VS = VS(EXT,LOW)  
)
when VS = VS(EXT,LOW))  
1) undervoltage condition on VS must be considered - see Chapter 6.2.1 for more details  
Datasheet  
21  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Power Supply  
6.1  
Operation Modes  
TLE75080-ESH has the following operation modes:  
Sleep mode  
Idle mode  
Active mode  
Limp Home mode  
The transition between operation modes is determined according to following levels and states:  
logic level at IDLE pin  
logic level at INn pins  
OUT.OUTn bits state  
HWCR.ACT bit state  
HWCR_PWM.PWM0 and HWCR_PWM.PWM1 bits state  
The state diagram including the possible transitions is shown in Figure 13. The behaviour of TLE75080-ESH as  
well as some parameters may change in dependence from the operation mode of the device. Furthermore,  
due to the undervoltage detection circuitry which monitors VS and VDD supply voltages, some changes within  
the same operation mode can be seen accordingly.  
The operation mode of the TLE75080-ESH can be observed by:  
status of output channels  
status of SPI registers  
current consumption at VDD pin (IVDD  
)
current consumption at VS pin (IVS)  
The default operation mode to switch ON the loads is Active mode. If the device is not in Active mode and a  
request to switch ON one or more outputs comes (via SPI or via Input pins), it will switch into Active or Limp  
Home mode, according to IDLE pin status. Due to the time needed for such transitions, output turn-on time  
tON will be extended due to the mode transition latency.  
Datasheet  
22  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Power Supply  
init  
IDLE = „high“  
IDLE = „low“  
INn = „low“  
Sleep  
INn = „high“  
& IDLE = „low“  
INn = „low“  
& VDD < VDD(UV)  
IDLE = „low“  
& INn = „low“  
Idle  
Limp Home  
HWCR.ACT= 0  
& OUT.OUTn = 0  
& HWCR_PWM.PWMn = 0  
& INn = „low“  
IDLE = „high“  
Active  
IDLE = „low“  
& INn = „high“  
HWCR.ACT= 1  
or OUT.OUTn = 1  
or HWCR_PWM.PWMn = 1  
or INn = high“  
OpModesLED.emf  
Figure 13 Operation Mode state diagram  
Table 7 shows the correlation between device operation modes, VS and VDD supply voltages, and state of the  
most important functions (channels operativity, SPI communication and SPI registers).  
Table 7  
Device function in relation to operation modes, VS and VDD voltages  
Operation Function  
Mode  
Undervoltage  
condition on VS  
VDD VDD(UV)  
Undervoltage  
condition on VS  
VDD > VDD(UV)  
VS not in  
undervoltage  
VS not in  
undervoltage  
VDD >VDD(UV)  
1)  
V
DD VDD(UV)  
Sleep  
Channels  
SPI comm.  
SPI registers  
Channels  
not available  
not available  
reset  
not available  
not available  
reset  
not available  
not available  
reset  
not available  
not available  
reset  
Idle  
not available  
not available  
reset  
not available  
not available  
not available  
reset  
not available  
SPI comm.  
SPI registers  
Channels  
Active  
not available  
not available  
reset  
not available  
(IN pins only)  
not available  
reset  
SPI comm.  
SPI registers  
Limp Home Channels  
SPI comm.  
not available  
not available  
reset  
not available  
(read-only)  
(read-only)2)  
(IN pins only)  
not available  
reset  
(IN pins only)  
(read-only)  
(read-only)2)  
SPI registers  
1) see Chapter 6.2.1 for more details  
2) see Chapter 6.1.5 for a detailed overview  
Datasheet  
23  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Power Supply  
6.1.1  
Power-up  
The Power-up condition is satisfied when one of the supply voltages (VS or VDD) is applied to the device and the  
INn or IDLE pins are set to “high”. If VS is above the threshold VS(OP) or if VDD is above the threshold VDD(LOP) the  
internal power-on signal is set.  
6.1.2  
Sleep mode  
When TLE75080-ESH is in Sleep mode, all outputs are OFF and the SPI registers are reset, independently from  
the supply voltages. The current consumption is minimum. See parameters IVDD(SLEEP) and IVS(SLEEP), or  
parameter ISLEEP for the whole device.  
6.1.3  
Idle mode  
In Idle mode, the current consumption of the device can reach the limits given by parameters IVDD(IDLE) and  
IVS(IDLE), or by parameter IIDLE for the whole device. The internal voltage regulator is working. Diagnosis  
functions are not available. The output channels are switched OFF, independently from the supply voltages.  
When VDD is available, the SPI registers are working and SPI communication is possible. In Idle mode the ERRn  
bits are not cleared for functional safety reasons.  
6.1.4  
Active mode  
Active mode is the normal operation mode of TLE75080-ESH when no Limp Home condition is set and it is  
necessary to drive some or all loads. Voltage levels of VDD and VS influence the behavior as described at the  
beginning of Chapter 6. Device current consumption is specified with IVDD(ACTIVE) and IVS(ACTIVE) (IACTIVE for the  
whole device). The device enters Active mode when IDLE pin is set to “high” and one of the input pins is set to  
“high” or one OUT.OUTn bit is set to “1”. If HWCR.ACT is set to “0”, the device returns to Idle mode as soon as  
all inputs pins are set to “low” and OUT.OUTn bits are set to “0”. If HWCR.ACT is set to “1”, the device remains  
in Active mode independently of the status of input pins and OUT.OUTn bits. An undervoltage condition on  
VDD supply brings the device into Idle mode, if all input pins are set to “low”. Even if the registers MAPIN0 and  
MAPIN1 are both set to “00H” but one of the input pins INn is set to “high”, the device goes into Active mode.  
6.1.5  
Limp Home mode  
TLE75080-ESH enters Limp Home mode when IDLE pin is “low” and one of the input pins is set to “high”,  
switching ON the channel connected to it. SPI communication is possible but only in read-only mode (SPI  
registers can be read but cannot be written). More in detail:  
UVRVS and LOPVDD are set to “1”  
MODE bits are set to “01B” (Limp Home mode)  
TER bit is set to “1” on the first SPI command after entering Limp Home mode. Afterwards it works  
normally  
OLON and OLOFF bits is set to “0”  
ERRn bits work normally  
DIAG_OSM.OUTn bits can be read and work normally  
All other registers are set to their default value and cannot be programmed as long as the device is in Limp  
Home mode  
See Table 6 for a detailed overview of supply voltage conditions required to switch ON channels 2 and 3 during  
Limp Home. All other channels are OFF.  
Datasheet  
24  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Power Supply  
A transmission of SPI commands during transition from Active to Limp Home mode or Limp Home to Active  
mode may result in undefined SPI responses.  
6.1.6  
Definition of Power Supply modes transition times  
The channel turn-ON time is as defined by parameter tON when TLE75080-ESH is in Active mode or in Limp  
Home mode. In all other cases, it is necessary to add the transition time required to reach one of the two  
aforementioned Power Supply modes (as shown in Figure 14).  
init  
tSLEEP2IDLE  
tIDLE2SLEEP  
tLH2SLEEP  
tSLEEP2LH  
Sleep  
tON  
tACTIVE2SLEEP  
Channel ON  
Idle  
Limp Home  
tON  
tACTIVE2IDLE  
tIDLE2ACTIVE  
tLH2ACTIVE  
tACTIVE2LH  
Active  
OpModesTimings.emf  
Figure 14 Transition Time diagram  
6.2  
Reset condition  
One of the following 3 conditions resets the SPI registers to the default value:  
VDD is not present or below the undervoltage threshold VDD(UV)  
IDLE pin is set to “low”  
a reset command (HWCR.RST set to “1”) is executed  
ERRn bits are not cleared by a reset command (for functional safety)  
UVRVS and LOPVDD bits are cleared by a reset command  
In particular, all channels are switched OFF (if there are no input pin set to “high”) and the Input Mapping  
configuration is reset.  
6.2.1  
Undervoltage on VS  
Between VS(UV) and VS(OP) the undervoltage mechanism is triggered. If the device is operative and the supply  
voltage drops below the undervoltage threshold VS(UV), the logic set the bit UVRVS to “1”. As soon as the supply  
voltage VS is above the minimum voltage operative threshold VS(OP), the bit UVRVS is set to “0” after the first  
Standard Diagnosis readout. Undervoltage condition on VS influences the status of the channels, as described  
Datasheet  
25  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Power Supply  
in Table 6. Figure 15 sketches the undervoltage behavior (the “VS - VDS” line refers to a channel which is  
programmed to be ON).  
VS  
VS(OP)  
VS(HYS)  
VS(UV)  
t
VS - VDS  
t
UVRVS  
1
0
1
t
Supply_UVRVS.emf  
Figure 15 VS Undervoltage Behavior  
6.2.2  
Low Operating Power on VDD  
When VDD supply voltage is in the range indicated by VDD(LOP), the bit LOPVDD is set to “1”. As soon as VDD  
DD(LOP) the bit LOPVDD is set to “0” after the first Standard Diagnosis readout.  
>
V
If VDD supply voltage is not present, a voltage applied to pins CSN or SO can supply the internal logic (not  
recommended in normal operation due to internal design limitations).  
Datasheet  
26  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Power Supply  
6.3  
Electrical Characteristics Power Supply  
Table 8  
Electrical Characteristics Power Supply  
VDD = 3 V to 5.5 V, VS = 7 V to 18 V, TJ = -40 °C to +150 °C, all voltages with respect to ground, positive currents  
flowing as described in Figure 3 (unless otherwise specified)  
Typical values: VDD = 5 V, VS = 13.5 V, TJ = 25 °C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
VS pin  
Analog supply undervoltage VS(UV)  
shutdown  
1.5  
3.0  
V
V
OUTn = ON  
from VDS 1 V  
to UVRVS = 1B  
RL = 50 Ω  
P_6.3.1  
Analog supply minimum  
operative voltage  
VS(OP)  
4.0  
OUT.OUTn = 1B  
from UVRVS = 1B  
to VDS 1 V  
RL = 50 Ω  
P_6.3.2  
1)  
Undervoltage shutdown  
hysteresis  
VS(HYS)  
1
3
V
P_6.3.3  
P_6.3.4  
1)  
Analog supply current  
consumption in Sleep mode  
with loads  
IVS(SLEEP)  
0.1  
µA  
VIDLE floating  
V
INn floating  
VCSN = VDD  
TJ 85 °C  
1)  
Analog supply current  
consumption in Sleep mode  
with loads  
IVS(SLEEP)  
0.1  
µA  
P_6.3.63  
VIDLE floating  
V
INn floating  
VCSN = VDD  
TJ 85 °C  
VS = 13.5 V  
Analog supply current  
consumption in Sleep mode  
with loads  
IVS(SLEEP)  
0.1  
20  
µA  
VIDLE floating  
VINn floating  
P_6.3.5  
P_6.3.6  
V
CSN = VDD  
TJ = 150 °C  
Analog supply current  
consumption in Idle mode  
with loads  
IVS(IDLE)  
2.2  
mA  
IDLE = “high”  
V
INn floating  
fSCLK = 0 MHz  
HWCR.ACT = 0B  
OUT.OUTn = 0B  
DIAG_IOL.OUTn =  
0B  
VCSN = VDD  
Datasheet  
27  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Power Supply  
Table 8  
Electrical Characteristics Power Supply (cont’d)  
VDD = 3 V to 5.5 V, VS = 7 V to 18 V, TJ = -40 °C to +150 °C, all voltages with respect to ground, positive currents  
flowing as described in Figure 3 (unless otherwise specified)  
Typical values: VDD = 5 V, VS = 13.5 V, TJ = 25 °C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Analog supply current  
consumption in Idle mode  
with loads (COR)  
IVS(IDLE)  
0.3  
mA  
IDLE = “high”  
INn floating  
P_6.3.7  
V
fSCLK = 0 MHz  
HWCR.ACT = 0B  
OUT.OUTn = 0B  
DIAG_IOL.OUTn =  
0B  
VCSN = VDD  
VS VDD - 1 V  
Analog supply current  
consumption in Active mode  
with loads - channels OFF  
IVS(ACTIVE)  
7.7  
5.0  
mA  
mA  
IDLE = “high”  
VINn floating  
P_6.3.10  
P_6.3.14  
f
SCLK = 0 MHz  
HWCR.ACT = 1B  
OUT.OUTn = 0B  
DIAG_IOL.OUTn =  
0B  
VCSN = VDD  
Analog supply current  
consumption in Active mode  
with loads - channels OFF  
(COR)  
IVS(ACTIVE)  
IDLE = “high”  
VINn floating  
f
SCLK = 0 MHz  
HWCR.ACT = 1B  
OUT.OUTn = 0B  
DIAG_IOL.OUTn =  
0B  
VCSN = VDD  
VS VDD - 1 V  
Analog supply current  
IVS(ACTIVE)  
8.7  
mA  
IDLE = “high”  
P_6.3.18  
consumption in Active mode  
with loads - channels ON  
VINn floating  
fSCLK = 0 MHz  
HWCR.ACT = 1B  
OUT.OUTn = 1B  
DIAG_IOL.OUTn =  
0B  
DIAG_OLONEN.M  
UX = 0100B  
VCSN = VDD  
Datasheet  
28  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Power Supply  
Table 8  
Electrical Characteristics Power Supply (cont’d)  
VDD = 3 V to 5.5 V, VS = 7 V to 18 V, TJ = -40 °C to +150 °C, all voltages with respect to ground, positive currents  
flowing as described in Figure 3 (unless otherwise specified)  
Typical values: VDD = 5 V, VS = 13.5 V, TJ = 25 °C  
Parameter  
Symbol  
Values  
Typ.  
2.3  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Analog supply current  
consumption in Active mode  
with loads - channels ON  
(COR)  
IVS(ACTIVE)  
5.0  
mA  
IDLE = “high”  
INn floating  
P_6.3.22  
V
fSCLK = 0 MHz  
HWCR.ACT = 1B  
OUT.OUTn = 1B  
DIAG_IOL.OUTn =  
0B  
VCSN = VDD  
VS VDD - 1 V  
VDD pin  
Logic Supply Operating  
voltage  
VDD(OP)  
VDD(LOP)  
VDD(UV)  
3.0  
3.0  
1
5.5  
4.5  
3.0  
V
V
V
fSCLK = 5 MHz  
P_6.3.23  
P_6.3.24  
P_6.3.25  
Logic Supply Lower  
Operating Voltage  
Undervoltage shutdown  
VSI = 0 V  
V
SCLK = 0 V  
VCSN = 0 V  
SO from “low” to  
high impedance  
1)  
Logic supply current in  
Sleep mode  
IVDD(SLEEP)  
0.1  
2.5  
µA  
P_6.3.26  
VIDLE floating  
VINn floating  
V
CSN = VDD  
TJ 85 °C  
Logic supply current in  
Sleep mode  
IVDD(SLEEP)  
10  
µA  
VIDLE floating  
P_6.3.27  
P_6.3.28  
V
INn floating  
VCSN = VDD  
TJ = 150 °C  
Logic supply current in Idle IVDD(IDLE)  
0.3  
mA  
IDLE = “high”  
mode  
VINn floating  
fSCLK = 0 MHz  
HWCR.ACT = 0B  
OUT.OUTn = 0B  
VCSN = VDD  
Logic supply current in Idle IVDD(IDLE)  
2.2  
mA  
IDLE = “high”  
P_6.3.29  
mode (COR)  
VINn floating  
f
SCLK = 0 MHz  
HWCR.ACT = 0B  
OUT.OUTn = 0B  
VCSN = VDD  
VS VDD - 1 V  
Datasheet  
29  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Power Supply  
Table 8  
Electrical Characteristics Power Supply (cont’d)  
VDD = 3 V to 5.5 V, VS = 7 V to 18 V, TJ = -40 °C to +150 °C, all voltages with respect to ground, positive currents  
flowing as described in Figure 3 (unless otherwise specified)  
Typical values: VDD = 5 V, VS = 13.5 V, TJ = 25 °C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Logic supply current in  
Active mode - channels OFF  
IVDD(ACTIVE)  
0.3  
mA  
IDLE = “high”  
INn floating  
P_6.3.30  
V
fSCLK = 0 MHz  
HWCR.ACT = 1B  
OUT.OUTn = 0B  
VCSN = VDD  
Logic supply current in  
Active mode - channels OFF  
(COR)  
IVDD(ACTIVE)  
2.7  
mA  
IDLE = “high”  
VINn floating  
P_6.3.33  
f
SCLK = 0 MHz  
HWCR.ACT = 1B  
OUT.OUTn = 0B  
VCSN = VDD  
VS VDD - 1 V  
Logic supply current in  
Active mode - channels ON  
IVDD(ACTIVE)  
0.3  
3.5  
mA  
mA  
IDLE = “high”  
VINn floating  
fSCLK = 0 MHz  
HWCR.ACT = 1B  
OUT.OUTn = 1  
VCSN = VDD  
P_6.3.35  
P_6.3.66  
Logic supply current in  
Active mode - channels ON  
(COR)  
IVDD(ACTIVE)  
IDLE = “high”  
VINn floating  
f
SCLK = 0 MHz  
HWCR.ACT = 1B  
OUT.OUTn = 1B  
DIAG_IOL.OUTn =  
0B  
DIAG_OLONEN.M  
UX = 0100B  
VCSN = VDD  
VS VDD - 1 V  
Overall current consumption  
1)  
Overall current  
ISLEEP  
5
µA  
P_6.3.40  
consumption in Sleep mode  
VIDLE floating  
IVS(SLEEP) + IVDD(SLEEP)  
V
V
INn floating  
CSN = VDD  
TJ 85 °C  
Datasheet  
30  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Power Supply  
Table 8  
Electrical Characteristics Power Supply (cont’d)  
VDD = 3 V to 5.5 V, VS = 7 V to 18 V, TJ = -40 °C to +150 °C, all voltages with respect to ground, positive currents  
flowing as described in Figure 3 (unless otherwise specified)  
Typical values: VDD = 5 V, VS = 13.5 V, TJ = 25 °C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Overall current  
ISLEEP  
5
µA  
P_6.3.64  
consumption in Sleep mode  
IVS(SLEEP) + IVDD(SLEEP)  
VIDLE floating  
VINn floating  
V
CSN = VDD  
TJ 85 °C  
VS = 13.5 V  
Overall current  
consumption in Sleep mode  
ISLEEP  
30  
µA  
VIDLE floating  
VINn floating  
VCSN = VDD  
P_6.3.41  
P_6.3.42  
IVS(SLEEP) + IVDD(SLEEP)  
TJ = 150 °C  
Overall current  
IIDLE  
2.5  
mA  
IDLE = “high”  
consumption in Idle mode  
IVS(IDLE) + IVDD(IDLE)  
VINn floating  
fSCLK = 0 MHz  
HWCR.ACT = 0B  
OUT.OUTn = 0B  
DIAG_IOL.OUTn =  
0B  
VCSN = VDD  
Overall current  
consumption in Active mode  
- channels OFF  
IACTIVE  
8
9
mA  
mA  
mV  
IDLE = “high”  
VINn floating  
P_6.3.45  
P_6.3.62  
P_6.3.52  
fSCLK = 0 MHz  
HWCR.ACT = 1B  
OUT.OUTn = 0B  
DIAG_IOL.OUTn =  
0B  
IVS(ACTIVE) + IVDD(ACTIVE)  
VCSN = VDD  
Overall current  
consumption in Active mode  
- channels ON  
IACTIVE  
IDLE = “high”  
VINn floating  
fSCLK = 0 MHz  
HWCR.ACT = 1B  
OUT.OUTn = 1B  
DIAG_IOL.OUTn =  
0B  
IVS(ACTIVE) + IVDD(ACTIVE)  
VCSN = VDD  
1)  
Voltage difference between VSDIFF  
VS and VDD supply lines  
200  
Timings  
Datasheet  
31  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Power Supply  
Table 8  
Electrical Characteristics Power Supply (cont’d)  
VDD = 3 V to 5.5 V, VS = 7 V to 18 V, TJ = -40 °C to +150 °C, all voltages with respect to ground, positive currents  
flowing as described in Figure 3 (unless otherwise specified)  
Typical values: VDD = 5 V, VS = 13.5 V, TJ = 25 °C  
Parameter  
Symbol  
Values  
Typ.  
200  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Sleep to Idle delay  
tSLEEP2IDLE  
400  
µs  
P_6.3.53  
from IDLE pin to  
TER + INST  
register = 8680H  
(see  
Chapter 10.6.1 for  
details)  
1)  
Idle to Sleep delay  
tIDLE2SLEEP  
100  
200  
µs  
P_6.3.54  
from IDLE pin to  
Standard  
Diagnosis = 0000H  
(see Chapter 10.5  
for details)  
externalpull-down  
SO to GND  
required  
1)  
Idle to Active delay  
Active to Idle delay  
tIDLE2ACTIVE  
100  
100  
200  
200  
µs  
µs  
µs  
µs  
P_6.3.55  
P_6.3.56  
P_6.3.57  
P_6.3.58  
from INn or CSN  
pins to MODE = 10B  
1)  
tACTIVE2IDLE  
from INn or CSN  
pins to MODE = 11B  
1)  
Sleep to Limp Home delay tSLEEP2LH  
Limp Home to Sleep delay tLH2SLEEP  
300  
+tON  
600  
+tON  
from INn pins  
to VDS = 10% VS  
1)  
200  
400  
+tOFF  
+tOFF  
from INn pins to  
Standard  
Diagnosis = 0000H  
(see  
Chapter 10.6.1 for  
details). External  
pull-down SO to  
GND required  
1)  
Limp Home to Active delay tLH2ACTIVE  
50  
100  
µs  
P_6.3.59  
from IDLE pin to  
MODE = 10B  
Datasheet  
32  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Power Supply  
Table 8  
Electrical Characteristics Power Supply (cont’d)  
VDD = 3 V to 5.5 V, VS = 7 V to 18 V, TJ = -40 °C to +150 °C, all voltages with respect to ground, positive currents  
flowing as described in Figure 3 (unless otherwise specified)  
Typical values: VDD = 5 V, VS = 13.5 V, TJ = 25 °C  
Parameter  
Symbol  
Values  
Typ.  
50  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Active to Limp Home delay tACTIVE2LH  
100  
µs  
P_6.3.60  
from IDLE pin to  
TER + INST  
register = 8683H  
(IN0 = IN1 = “high”)  
or 8682H(IN1 =  
“high”, IN0 =  
“low”) or 8681H  
(IN1 = “low”, IN0 =  
“high”) (see  
Chapter 10.5 for  
details)  
1)  
Active to Sleep delay  
tACTIVE2SLEEP  
50  
100  
µs  
P_6.3.61  
from IDLE pin to  
Standard  
Diagnosis = 0000H  
(see  
Chapter 10.6.1 for  
details). External  
pull-down SO to  
GND required.  
1) Not subject to production test - specified by design  
Datasheet  
33  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Power Stages  
7
Power Stages  
The TLE75080-ESH is an eight channels high-side relay switch. The power stages are built by N-channel lateral  
power MOSFET transistors.  
The supply voltages VS1 and VS2 can be connected to any potential between ground and VS. A charge pump is  
connected to the output MOSFET gate.  
7.1  
Output ON-state resistance  
The ON-state resistance RDS(ON) depends on the supply voltage as well as the junction temperature TJ.  
7.1.1  
Switching Resistive Loads  
When switching resistive loads the following switching times and slew rates can be considered.  
INn /  
OUT.OUTn  
tON  
tOFF  
t
tDELAY(ON)  
tDELAY(OFF)  
VDS  
90% of VS  
70%  
70% of VS  
dV /  
dtOFF  
dV /  
dtON  
30%  
30% of VS  
10% of VS  
t
SwitchON .emf  
Figure 16 Switching a Resistive Load  
7.1.2  
Inductive Output Clamp  
When switching off inductive loads, the voltage across the power switch rises to VDS(CL) potential, because the  
inductance intends to continue driving the current. The potential at Output pin is not allowed to go below  
VOUT(CL). The voltage clamping is necessary to prevent device destruction.  
Figure 17 shows a concept drawing of the implementation. Nevertheless, the maximum allowed load  
inductance is limited. The clamping structure protects the device in all operative modes (Sleep, Idle, Active,  
Limp Home).  
Datasheet  
34  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Power Stages  
VS  
High-side  
Channel  
VSn  
VDS  
VDS(CL)  
IL_ S  
VOUTn  
OUTn  
VOUT(CL)  
L,  
RL  
IL  
GND  
PowerStage_HS.emf  
Figure 17 Output Clamp concept  
7.1.3  
Maximum Load Inductance  
During demagnetization of inductive loads, energy has to be dissipated in the TLE75080-ESH. Equation (7.1)  
and Equation (7.2) can be used for high-side switches :  
RL IL  
VOUTS(CL)  
--------------------------  
RL  
L
RL  
æ
ö
ø
--------------------------  
VOUTS(CL)  
------  
E = (VS VOUTS(CL)  
)
ln 1 –  
è
+ IL  
(7.1)  
(7.2)  
RL IL  
VOUT(CL)  
-----------------------  
RL  
L
æ
ö
ø
-----------------------  
------  
E = (VS VOUT(CL)  
)
ln 1 –  
+ IL  
è
VOUT(CL)  
RL  
The maximum energy, which is converted into heat, is limited by the thermal design of the component. The  
EAR value provided in Table 2 assumes that all channels can dissipate the same energy when the inductances  
connected to the outputs are demagnetized at the same time.  
7.2  
Inverse Current Behavior  
During inverse current (VOUTn > VSn) the affected channels stays in ON- or in OFF- state. Furthermore, during  
applied inverse currents the ERRn bit can be set if the channel is in ON-state and the over temperature  
threshold is reached.  
The general functionality (switch ON and OFF, protection, diagnostic) of unaffected channels is not influenced  
by inverse currents applied to other channels. Parameter deviations are possible especially for the following  
ones (Over Temperature protection is not influenced):  
Switching capability: tON, tOFF, dV/dtON, -dV/dtOFF  
Protection: IL(OVL0), IL(OVL1)  
Diagnostic: VOUT(OL), IL(OL)  
Reliability in Limp Home condition for the unaffected channels is unchanged.  
Note:  
No protection mechanism like temperature protection or over load protection is active during  
applied inverse currents. Inverse currents cause power losses inside the DMOS, which increase the  
Datasheet  
35  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Power Stages  
overall device temperature. This could lead to a switch OFF of unaffected channels due to Over  
Temperature  
7.3  
Switching Channels in parallel  
In case of appearance of a short circuit with channels in parallel, it may happen that the two channels switch  
OFF asynchronously, therefore bringing an additional thermal stress to the channel that switches OFF last. In  
order to avoid this condition, it is possible to parametrize in the SPI registers the parallel operation of two  
neighbour channels (bits HWCR.PAR). When operating in this mode, the fastest channel to react to an Over  
Load or Over Temperature condition will deactivate also the other. The inductive energy that two channels  
can handle once set in parallel is lower than twice the single channel energy (see P_7.6.11). It is possible to  
synchronize the following couples of channels:  
channel 0 and channel 2 HWCR.PAR (0) set to “1”  
channel 1 and channel 3 HWCR.PAR (1) set to “1”  
channel 4 and channel 6 HWCR.PAR (2) set to “1”  
channel 5 and channel 7 HWCR.PAR (3) set to “1”  
The synchronization bits influence only how the channels react to Over Load or Over Temperature conditions.  
Synchronized channels have to be switched ON and OFF individually by the micro-controller.  
7.4  
“Bulb Inrush Mode” (BIM)  
Although TLE75080-ESH is optimized for relays and LED, it may be necessary to use one or more of the outputs  
to drive small lamps (typically 2 W) or electronic loads with a big input capacitor. In such operative conditions,  
at the switch ON an inrush current may appear, reaching the overload current threshold which latches the  
channel OFF (see Chapter 8.1 for further details). In normal operation the device waits until the  
microcontroller sends an SPI command to clear the latches (register HWCR_OCL) allowing the channel to turn  
ON again. Usually this delay is too long to transfer enough energy to the load.  
If the corresponding bit BIM.OUTn is set to “1”, in case the channel reaches the overload current threshold or  
the overtemperature threshold and latches OFF, it restarts automatically after a time tINRUSH, allowing the load  
to go out of the inrush phase. A time diagram is shown in Figure 18. As shown, the counter starts when the  
channel is switched ON. Every channel switch OFF (independently from the entity controlling the channel - see  
Figure 19 for further details) resets the bit BIM.OUTn to “0”.  
While BIM.OUTn bits are set to “1”, ERRn bits may be also set to “1” but this doesn’t latch the channel OFF.  
An internal timer set the bit BIM.OUTn back to “0” after 40 ms (parameter tBIM) to prevent an excessive thermal  
stress to the channel, especially in case of short circuit at the output.  
TLE75080-ESH allows a per-channel selection of Bulb Inrush Mode (BIM) in order to be fully flexible without  
any additional reliability risk.  
Datasheet  
36  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Power Stages  
INn  
OUT.OUTn  
t
t
BIM.OUTn  
tBI M  
ILn  
IL(OVL0)  
IL(OVL1)  
t
tINRUSH  
tINRUSH  
tOVLIN  
ERRn  
0
0
0
0
1
0
1
0 1  
1
1
1
t
PowerStage_BIM.emf  
Figure 18 Bulb Inrush Mode (BIM) operation  
7.5  
Automatic PWM Generator  
The TLE75080-ESH has two independent automatic PWM generator implemented. Each PWM generator can  
be assigned to one or more channels, and can be programmed with a different duty cycle and frequency.  
Both PWM generator refer to a base frequency fINT generated by an internal oscillator. This base frequency can  
be adjusted using HWCR_PWM.ADJ bits as described in Table 9.  
Table 9  
bit content  
0000B  
0001B  
0010B  
0011B  
0100B  
0101B  
0110B  
0111B  
1000B  
1001B  
1010B  
1011B  
1100B  
1101B  
1110B  
1111B  
HWCR_PWM.ADJ coefficients overview  
absolute delta to fINT  
(reserved)  
-37.2%  
relative delta between steps  
(reserved)  
-5.2%  
-5.1%  
-5.9%  
-5.5%  
-4.6%  
-5.1%  
-5.8%  
-31.9%  
-26.9%  
-21.0%  
-15.5%  
-10.9%  
-5.8%  
+4.3%  
+4.3%  
+4.6%  
+5.1%  
+5.6%  
+6.1%  
+6.8%  
+7.6%  
+8.9%  
+14.0%  
+19.5%  
+25.6%  
+32.4%  
+40.0%  
Datasheet  
37  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Power Stages  
For each PWM generator 4 parameters can be set:  
duty cycle (bits PWM_CR0.DC for PWM Generator 0)  
8 bits are available to achieve 0.39% duty cycle resolution  
when the micro-controller programs a new duty cycle, the PWM generator waits until the previous cycle  
is completed before using the new duty cycle (this happens also when the duty cycle is either 0% or  
100% - the new duty cycle is taken with the next PWM cycle)  
the maximum duty cycle achievable is 99.61% (PWM_CR0.DC set to “11111111B”). It is possible to  
achieve 100% by setting PWM_CR0.FREQ to “11B”  
frequency (bits PWM_CR0.FREQ for PWM Generator 0)  
with 2 bits is possible to select the divider for fINT to achieve the needed duty cycle  
00B = fINT / 1024 (when fINT = 102.4 kHz the corresponding PWM frequency is 100 Hz)  
01B = fINT / 512 (corresponding to 200 Hz)  
10B = fINT / 256 (corresponding to 400 Hz)  
channel output control and mapping registers PWM_OUT and PWM_MAP)  
any channel can be mapped to each PWM Generator  
together with 2 parallel input it is possible to have 4 independent PWM groups of channels with low  
effort from the point of view of micro-controller resources and SPI data traffic  
Figure 19 expands the concept shown in Figure 10 adding the PWM Generators.  
Datasheet  
38  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Power Stages  
IN1  
Limp Home mode  
(default )  
IIN1  
&
MAPIN1  
8
8
IN0  
Limp Home mode  
(default )  
Channel 7  
Channel 6  
IIN0  
Channel 5  
OR  
Channel 4  
8
Channel 3  
Channel 2  
Channel 1  
&
Channel 0  
MAPIN0  
OUT  
8
8
8
OR  
8
PWM_OUT  
PWM Gen. 0  
PWM_MAP  
PWM Gen. 1  
8
&
&
&
8
8
8
8
OR  
8
PWM_Mapping.emf  
Figure 19 PWM Generator Mappings  
Datasheet  
39  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Power Stages  
7.6  
Electrical Characteristics Power Stages  
Table 10 Electrical Characteristics: Power Stage  
VDD = 3 V to 5.5 V, VS = 7 V to 18 V, TJ = -40 °C to +150 °C (unless otherwise specified)  
Typical values: VDD = 5 V, VS = 13.5 V, TJ = 25 °C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Output Characteristics  
1)  
On-State Resistance  
RDS(ON)  
RDS(ON)  
IL(NOM)  
1.0  
1.8  
330  
P_7.6.1  
P_7.6.2  
P_7.6.3  
TJ = 25 °C  
On-State Resistance  
2.2  
TJ = 150 °C  
IL = IL(EAR) = 220 mA  
1)  
Nominal load current  
(all channels active)  
5002)3) mA  
5002)3) mA  
5002)3) mA  
TA = 85 °C  
TJ 150 °C  
1)  
Nominal load current  
(all channels active)  
IL(NOM)  
260  
470  
220  
P_7.6.4  
P_7.6.5  
P_7.6.8  
TA = 105 °C  
TJ 150 °C  
1)  
Nominal load current  
(half of channels active)  
IL(NOM)  
TA = 85 °C  
TJ 150 °C  
1)  
Load current for maximum IL(EAR)  
energy dissipation -  
repetitive  
mA  
TA = 85 °C  
TJ 150 °C  
(all channels active)  
1)  
Inverse current capability  
per channel  
-IL(IC)  
IL(EAR) mA  
P_7.6.9  
No influences on  
switching  
functionality of  
unaffected  
channels -  
parameter  
deviations  
possible  
1)  
Maximum energy  
EAR  
15  
mJ  
P_7.6.11  
dissipation repetitive pulses  
- 2*IL(EAR)  
(two channels in parallel)  
TJ(0) = 85 °C  
I
L(0) = 2*IL(EAR)  
2*106 cycles  
HWCR.PAR = “1”  
for affected  
channels  
Datasheet  
40  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Power Stages  
Table 10 Electrical Characteristics: Power Stage (cont’d)  
VDD = 3 V to 5.5 V, VS = 7 V to 18 V, TJ = -40 °C to +150 °C (unless otherwise specified)  
Typical values: VDD = 5 V, VS = 13.5 V, TJ = 25 °C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Power stage voltage drop at VDS(OP)  
1
V
RL = 50 Ω  
P_7.6.15  
low battery  
VS = VS(OP),max  
VS1 = VS(OP),max  
VS2 = VS(OP),max  
refer to Figure 17  
Drain to Source Output  
clamping voltage  
VDS(CL)  
42  
46  
55  
V
V
IL = 20 mA  
VS = VSn= 36 V  
P_7.6.16  
P_7.6.18  
Source to Ground Output  
clamping voltage  
VOUT(CL)  
-25  
-16  
IL = 20 mA  
VS = VSn= 7 V  
1)  
Output leakage current  
(each channel)  
TJ 85 °C  
IL(OFF)  
0.01  
0.5  
µA  
P_7.6.47  
VIN = 0 V or floating  
VDS = 28 V  
V
OUT_S = 1.5V  
OUT.OUTn = 0  
TJ 85 °C  
1)  
Output leakage current  
(each channel)  
TJ = 150 °C  
IL(OFF)  
0.1  
5
µA  
P_7.6.49  
VIN = 0 V or floating  
V
V
DS = 28 V  
OUT_S = 1.5V  
OUT.OUTn = 0  
TJ = 150 °C  
Timings  
Turn-ON delay  
(from INn pin or bit to VOUT  
10% VS)  
tDELAY(ON)  
tDELAY(OFF)  
tON  
1
1
6
6
4
8
µs  
µs  
µs  
µs  
RL = 50 Ω  
VS = 13.5 V  
Active mode or  
Limp Home mode  
P_7.6.35  
P_7.6.36  
P_7.6.37  
P_7.6.38  
=
=
=
=
Turn-OFF delay  
(from INn pin or bit to VOUT  
90% VS)  
6
12  
35  
35  
RL = 50 Ω  
VS = 13.5 V  
Active mode or  
Limp Home mode  
Turn-ON time  
(from INn pin or bit to VOUT  
90% VS)  
15  
15  
RL = 50 Ω  
VS = 13.5 V  
Active mode or  
Limp Home mode  
Turn-OFF time  
(from INn pin or bit to VOUT  
10% VS)  
tOFF  
RL = 50 Ω  
VS = 13.5 V  
Active mode or  
Limp Home mode  
Datasheet  
41  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Power Stages  
Table 10 Electrical Characteristics: Power Stage (cont’d)  
VDD = 3 V to 5.5 V, VS = 7 V to 18 V, TJ = -40 °C to +150 °C (unless otherwise specified)  
Typical values: VDD = 5 V, VS = 13.5 V, TJ = 25 °C  
Parameter  
Symbol  
Values  
Typ.  
0
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Turn-ON/OFF matching  
tON - tOFF  
-10  
10  
µs  
RL = 50 Ω  
P_7.6.39  
VS = 13.5 V  
Active mode or  
Limp Home mode  
Turn-ON slew rate  
VDS = 30% to 70% VS  
dV/dtON  
0.7  
0.7  
1.3  
1.3  
1.9  
1.9  
V/µs RL = 50 Ω  
VS = 13.5 V  
Active mode or  
Limp Home mode  
V/µs RL = 50 Ω  
P_7.6.40  
P_7.6.41  
Turn-OFF slew rate  
-dV/dtOFF  
VDS = 70% to 30% VS  
VS = 13.5 V  
Active mode or  
Limp Home mode  
1)  
Bulb Inrush Mode  
restart time  
tINRUSH  
tBIM  
40  
µs  
P_7.6.42  
P_7.6.43  
Active mode  
1)  
Bulb Inrush Mode  
reset time  
40  
ms  
Active mode  
PWM Generator  
Internal reference frequency fINT  
80  
-15  
102  
125  
15  
kHz  
%
HWCR_PWM.ADJ P_7.6.44  
= 1000B  
1)  
Internalreferencefrequency fINT(VAR)  
variation  
P_7.6.56  
1)  
Internal reference frequency tSYNC  
5
10  
µs  
P_7.6.45  
synchronization time  
HWCR_PWM.ADJ  
= 1000B  
1) Not subject to production test - specified by design  
2) If one channel has IL(NOM),max applied, the remaining channels must be underloaded accordingly so that TJ < 150°C  
3) IL(NOM),max can reach IL(OVL1),min  
Datasheet  
42  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Protection Functions  
8
Protection Functions  
8.1  
Over Load Protection  
The TLE75080-ESH is protected in case of over load or short circuit of the load. There are two over load current  
thresholds (see Figure 20):  
I
L(OVL0) between channel switch ON and tOVLIN  
IL(OVL1) after tOVLIN  
Every time the channel is switched OFF for a time longer than 2 * tSYNC the over load current threshold is set  
back to IL(OVL0)  
.
INn  
OUT.OUTn  
t
IL(OVL0)  
IL(OVL)  
IL(OVL 1)  
t
tOVLIN  
OverLoadStep.emf  
Figure 20 Over Load current thresholds  
In case the load current is higher than IL(OVL0) or IL(OVL1), after time tOFF(OVL) the over loaded channel is switched  
OFF and the according diagnosis bit ERRn is set. The channel can be switched ON after clearing the protection  
latch by setting the corresponding HWCR_OCL.OUTn bit to “1”. This bit is set back to “0” internally after de-  
latching the channel. Please refer to Figure 21 for details.  
INn  
OUT.OUTn  
t
ILn  
IL(OVLn)  
tOFF(OVL)  
t
ERRn  
0
1
0
t
SPI command to set  
HWCR_OCL.OUTn = 1b  
t
HWCR_OCL.OUTn  
0
1
0
t
OverLoad.emf  
Figure 21 Latch OFF at Over Load  
8.2  
Over Temperature Protection  
A temperature sensor is integrated for each channel, causing an overheated channel to switch OFF to prevent  
destruction. The according diagnosis bit ERRn is set (combined with Over Load protection). The channel can  
Datasheet  
43  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Protection Functions  
be switched ON after clearing the protection latch by setting the corresponding HWCR_OCL.OUTn bit to “1”.  
This bit is set back to “0” internally after de-latching the channel.  
8.3  
Over Temperature and Over Load Protection in Limp Home mode  
When TLE75080-ESH is in Limp Home mode, channels 2 and 3 can be switched ON using the input pins. In case  
of Over Load, Short Circuit or Over Temperature the channels switch OFF. If the input pins remain “high”, the  
channels restart with the following timings:  
10 ms (first 8 retries)  
20 ms (following 8 retries)  
40 ms (following 8 retries)  
80 ms (as long as the input pin remains “high” and the error is still present)  
If at any time the input pin is set to “low” for longer than 2*tSYNC, the restart timer is reset. At the next channel  
activation while in Limp Home mode the timer starts from 10 ms again. See Figure 22 for details. Over Load  
current thresholds behave as described in Chapter 8.1.  
IN0  
IN1  
t
IL2  
IL3  
0
1
0
1
8
1
8
1
8
tRETRY0(LH)  
tRETRY1(LH)  
tRETRY2(LH)  
tRETRY3(LH)  
tRETRY0(LH)  
t
10 ms  
20 ms  
40 ms  
80 ms  
10 ms  
LHrestart.emf  
Figure 22 Restart timer in Limp Home mode  
8.4  
Reverse Polarity Protection  
In Reverse Polarity (also known as Reverse Battery) condition, High-Side channels have Reversave™  
functionality. Each ESD diode of the logic and supply pins contributes to total power dissipation. Channels  
with Reversave™ functionality are switched ON almost with the same RDS(ON) (see parameter RDS(REV)). The  
reverse current through the channels has to be limited by the connected loads. The current through digital  
power supply VDD and input pins has to be limited as well (please refer to the Absolute Maximum Ratings listed  
on Chapter 4.1).  
Note:  
No protection mechanism like temperature protection or current limitation is active during reverse  
polarity.  
8.5  
Over Voltage Protection  
In the case of supply voltages between VS(SC) and VS(LD) the output transistors are still operational and follow  
the input pins or the OUT register.  
In addition to the output clamp for inductive loads as described in Chapter 7.1.2, there is a clamp mechanism  
available for over voltage protection for the logic and all channels, monitoring the voltage between VS and  
GND pins (VS(AZ)).  
Datasheet  
44  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Protection Functions  
8.6  
Electrical Characteristics Protection  
Table 11 Electrical Characteristics Protection  
VDD = 3 V to 5.5 V, VS = 7 V to 18 V, TJ = -40 °C to +150 °C (unless otherwise specified)  
Typical values: VDD = 5 V, VS = 13.5 V, TJ = 25 °C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Over Load  
Over Load detection current IL(OVL0)  
Over Load detection current IL(OVL0)  
1.3  
1.7  
2.3  
2.3  
A
A
TJ = -40 °C  
1)  
P_8.8.19  
P_8.8.20  
1.25  
1.55  
TJ = 25 °C  
TJ = 150 °C  
Over Load detection current IL(OVL0)  
Over Load detection current IL(OVL1)  
Over Load detection current IL(OVL1)  
1
1.45  
0.95  
0.85  
2
A
A
A
P_8.8.21  
P_8.8.22  
P_8.8.23  
0.7  
0.65  
1.3  
1.3  
TJ = -40 °C  
1)  
TJ = 25 °C  
Over Load detection current IL(OVL1)  
0.5  
0.8  
1.25  
260  
A
TJ = 150 °C  
1)  
P_8.8.24  
P_8.8.5  
Over Load threshold switch tOVLIN  
110  
170  
µs  
delay time  
1)  
Over Load shut-down delay tOFF(OVL)  
4
7
11  
µs  
P_8.8.26  
time  
BIM.OUTn=HWCR  
.PAR=0B  
Over Temperature and Over Voltage  
Thermal shut-down  
temperature  
TJ(SC)  
150  
42  
1751)  
50  
2201)  
60  
°C  
V
P_8.8.7  
P_8.8.8  
Over voltage protection  
VS(AZ)  
IVS = 10 mA  
Sleep mode  
Reverse Polarity  
1)  
On-State Resistance during RDS(REV)  
Reverse Polarity  
(High-Side channels )  
1.0  
1.8  
P_8.8.11  
P_8.8.12  
VS = -VS(REV)  
IL = IL(EAR)  
TJ = 25 °C  
1)  
On-State Resistance during RDS(REV)  
Reverse Polarity  
(High-Side channels )  
VS = -VS(REV)  
IL = IL(EAR)  
TJ = 150 °C  
Timings  
1)  
1)  
1)  
1)  
Restart time in Limp Home tRETRY0(LH)  
mode  
7
10  
20  
40  
80  
13  
ms  
ms  
ms  
ms  
P_8.8.13  
P_8.8.14  
P_8.8.15  
P_8.8.16  
Restart time in Limp Home tRETRY1(LH)  
mode  
14  
28  
56  
26  
Restart time in Limp Home tRETRY2(LH)  
mode  
52  
Restart time in Limp Home tRETRY3(LH)  
104  
mode  
Datasheet  
45  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Protection Functions  
1) Not subject to production test - specified by design  
Datasheet  
46  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Diagnosis  
9
Diagnosis  
The SPI of TLE75080-ESH provides diagnosis information about the device and the load status. Each channel  
diagnosis information is independent from other channels. An error condition on one channel has no  
influence on the diagnostic of other channels in the device (unless configured to work in parallel, see  
Chapter 7.3 for more details).  
9.1  
Over Load and Over Temperature  
When either an Over Load or an Over Temperature occurs on one channel, the diagnosis bit ERRn is set  
accordingly. As described in Chapter 8.1 and Chapter 8.2, the channel latches OFF and must be reactivated  
setting corresponding HWCR_OCL.OUTn bit to “1”.  
9.2  
Output Status Monitor  
The device compares each channel VOUT with VOUT(OL)and sets the corresponding DIAG_OSM.OUTn bits  
accordingly. The bits are updated every time DIAG_OSM register is read.  
VOUT > VOUT(OL) DIAG_OSM.OUTn = “1”  
A diagnosis current IOL in parallel to the power switch can be enabled by programming the DIAG_IOL.OUTn  
bit, which can be used for Open Load at OFF detection. Each channel has its dedicated diagnosis current  
source. If the diagnosis current IOL is enabled or if the channel changes state (ON OFF or OFF ON) it is  
necessary to wait a time tOSM for a reliable diagnosis. Enabling IOL current sources increases the current  
consumption of the device. Even if an Open Load is detected, the channel is not latched OFF.  
See Figure 23 for a timing overview (the values of DIAG_IOL.OUTn refer to a channel in normal operation  
properly connected to the load).  
INn  
OUT.OUTn  
t
Output voltage  
comparator  
0
x
1
x
0
t
tON + tOSM  
tOFF + tOSM  
SPI readout of  
DIAG_OSM.OUTn  
t
t
DIAG_OSM.OUTn  
x
1
x
0
0
OutStatMon_timings.emf  
Figure 23 Output Status Monitor timing  
Output Status Monitor diagnostic is available when VS = VS(NOR) and VDD VDD(UV)  
.
Due to the fact that Output Status Monitor checks the voltage level at the outputs in real time, for Open Load  
in OFF diagnostic it is necessary to synchronize the reading of DIAG_OSM register with the OFF state of the  
channels.  
Datasheet  
47  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Diagnosis  
Figure 24 shows how Output Status Monitor is implemented at concept level.  
VS  
High-side  
Channel  
VOUT > VOUT(OL) à DIAG_OSM.OUTn = „1"  
VSn  
VDS  
IOL  
DIAG_OSM.OUTn  
OUTn  
VOUTn  
VOUT(OL)  
ROL  
IOL  
GND  
OutStatMon_HS.emf  
Figure 24 Output Status Monitor - concept  
In Standard Diagnosis the bit OLOFF represents the OR combination of all DIAG_OSM.OUTn bits for all  
channels in OFF state which have the corresponding current source IOL activated.  
9.3  
Open Load at ON  
Each channel has the possibility of Open Load at ON diagnosis, which can be controlled programming  
DIAG_OLONEN.MUX bits. By default after a reset Open Load at ON diagnosis is not active. The device  
compares IL_Sn with IL(OL) and sets the DIAG_OLON.OUTn accordingly:  
IL_Sn < IL(OL) DIAG_OLON.OUTn = “1” if VSn > VOUT(OL)  
9.3.1  
Open Load at ON - direct channel diagnosis  
When DIAG_OLONEN.MUX bits are programmed with a value corresponding to a channel (0000B 0111B), the  
internal multiplexer checks for Open Load at ON condition on the selected channel. It is recommended that  
the channel is ON for at least tON before activating the diagnosis. After a time tOLONSET the corresponding  
DIAG_OLON.OUTn bit for the selected channel is available. All the other bits in the DIAG_OLON register are  
set to default (“0B”). The bits are updated every time the register is read.  
When a channel is selected, the corresponding DIAG_OLON.OUTn bit content is mirrored also in the Standard  
Diagnosis (bit OLON). In case of several register readouts in sequence the register content is updated at every  
read request from micro-controller. See Figure 25 for further details.  
Datasheet  
48  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Diagnosis  
INn  
OUT.OUTn  
t
DIAG_OLONEN.MUX  
1111  
≠ 1111 (ch. n)  
t
t
ILn  
IL(OL)  
tOLONSW  
tOLONSW  
tON  
tOLONSET  
DIAG_OLON.OUTn  
0
1
1
0
t
t
SPI readout of  
DIAG_OLON.OUTn  
OpenLoadON_direct.emf  
Figure 25 Open Load at ON timings (direct channels diagnosis)  
9.3.2  
Open Load at ON - diagnosis loop  
When DIAG_OLONEN.MUX bits are programmed with the value 1010B, the device starts a diagnosis loop  
where all channels are checked for Open Load at ON. The internal multiplexer is controlled by the internal  
logic, therefore there is no need for the micro-controller to send any additional command.  
First the internal logic checks all channels which are directly driven by the micro-controller and not configured  
to be driven by the internal PWM generator, then the internal logic checks all channels which are configured  
to be driven by the internal PWM generator.  
Diagnosis sequence for channels driven directly by the micro-controller  
First channel checked: channel 0. It is recommended that the channels are ON at least tON before  
activating the diagnosis loop.  
After a time tOLONSET + tSYNC the diagnosis for the first channel is completed (DIAG_OLON.OUTn bit is  
updated)  
The internal multiplexer is set to the next channel. After a time tOLONSW + tSYNC the diagnosis is completed  
(DIAG_OLON.OUTn bit is updated) for the currently selected channel. This step is repeated for all  
remaining directly driven channels.  
If one channel is OFF when the diagnosis is performed, the corresponding DIAG_OLON.OUTn is set to  
“0B”  
Diagnosis sequence for channels driven by the internal PWM Generators (see Chapter 7.5)  
These channels are diagnosed only after all channels directly driven by micro-controller are checked  
Channels mapped to PWM Generator 0 are diagnosed first  
After a time tOLONSET the channel activation (switch ON) is the trigger event to perform Open Load at ON  
diagnosis for the first channel  
After a time tONMAX + tOLONSW the diagnosis for the first channel is completed (DIAG_OLON.OUTn bit is  
updated)  
The internal multiplexer is set to the next channel. After a time tOLONSW the diagnosis is completed  
(DIAG_OLON.OUTn bit is updated) for the currently selected channel. This step is repeated for all  
Datasheet  
49  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Diagnosis  
remaining PWM generator driven channels.  
If the channel is in OFF state during the PWM period, the internal logic waits for the ON state to perform  
the diagnosis. After a time tONMAX + tOLONSW the diagnosis for that channel is completed.  
The minimum ON time for a reliable diagnosis is > tONMAX + tOLONSW. If the ON time is < tONMAX + tOLONSW the  
corresponding DIAG_OLON.OUTn is set to “0B”.  
When the loop finishes, DIAG_OLONEN.MUX bits are set back to 1111B (default value) and DIAG_OLON.OUTn  
bits store the last diagnosis loop result. It is necessary to start another diagnosis loop to update the register  
content.  
Figure 26 shows the timing in case of channels driven directly by micro-controller, while Figure 27 represents  
the case with channels driven by internal PWM Generators.  
DIAG_OLONEN.MUX  
1111  
1010  
1111  
t
t
IL0  
Ch. 0  
(ON)  
DIAG_OLON.OUT0  
0
tOLONSET  
t
Ch. 1 (ON in  
Open Load)  
IL(OL)  
IL1  
t
DIAG_OLON.OUT1  
1
t
tOLONSW  
IL7  
Ch. 7 (OFF)  
t
DIAG_OLON.OUT7  
0
t
tOLONSW tOLONSW tOLONSW tOLONSW tOLONSW tOLONSW  
OpenLoadON_loop_ext_8ch.emf  
Figure 26 Open Load at ON timings (diagnosis loop - channels driven by micro-controller directly)  
Datasheet  
50  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Diagnosis  
DIAG_OLONEN.MUX 1111  
1010  
t
PWM Generator  
t
t
Multiplexer switch  
for diagnosis  
(not allowed)  
Allowed  
(not allowed)  
tOLONSW tONMAX  
Allowed  
tOLONSW  
tONMAX  
DIAG_OLON.OUTn  
(updated)  
t
tOLONSW  
DIAG_OLON.OUTn+1  
DIAG_OLON.OUTn+2  
DIAG_OLON.OUTn+3  
(updated)  
t
tOLONSW  
(updated)  
t
t
tOLONSW  
(updated)  
tOLONSW  
OpenLoadON_loop_int.emf  
Figure 27 Open Load at ON timings (diagnosis loop - channels driven by internal PWM Generators  
9.3.3  
OLON bit  
The OLON bit can assume the following values:  
“0” = no Open Load at ON state detected, or the channel is OFF when the diagnosis is performed  
“1” = Open Load at ON state detected  
According to the setting of DIAG_OLONEN.MUX different information are reported in the Standard Diagnosis.  
DIAG_OLONEN.MUX set to 0000B 0111B: The OLON bit shows the Open Load at ON state diagnosis  
performed on the selected channel. The information is updated at every Standard Diagnosis readout.  
DIAG_OLONEN.MUX set to 1010B: the OLON bit shows the “OR” combination of all bits in DIAG_OLON  
register. The information is updated while the diagnosis loop is running.  
DIAG_OLONEN.MUX set to 1111B: the OLON bit shows the result of the latest diagnosis loop performed. It  
is necessary to start another diagnosis loop to update the information.  
DIAG_OLONEN.MUX set to any other value: The OLON bit is set to “0”. These values of  
DIAG_OLONEN.MUX bits are reserved and should not be used in the application.  
Datasheet  
51  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Diagnosis  
9.4  
Electrical Characteristics Diagnosis  
Table 12 Electrical Characteristics Diagnosis  
VDD = 3 V to 5.5 V, VS = 7 V to 18 V, TJ = -40 °C to +150 °C (unless otherwise specified)  
Typical values: VDD = 5 V, VS = 13.5 V, TJ = 25 °C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Output Status Monitor  
1)  
2)  
Output Status Monitor  
comparator settling time  
tOSM  
20  
µs  
V
P_9.5.1  
P_9.5.3  
P_9.5.5  
Output Status Monitor  
threshold voltage  
VOUT(OL)  
IOL  
3
3.3  
85  
3.6  
100  
Output diagnosis current  
70  
µA  
V
OUT = 3.3 V  
1)  
Open Load equivalent  
resistance  
ROL  
30  
40  
300  
76  
kΩ  
P_9.5.6  
P_9.5.7  
Open Load at ON  
1)  
Open Load at ON Diagnosis tONMAX  
waiting time before mux  
activation  
58  
µs  
1)  
1)  
Open Load at ON Diagnosis tOLONSET  
settling time  
1
1
20  
10  
6
40  
20  
10  
µs  
P_9.5.8  
P_9.5.9  
P_9.5.10  
P_9.5.11  
P_9.5.12  
Open Load at ON Diagnosis tOLONSW  
channel switching time  
µs  
Open Load detection  
threshold current  
IL(OL)  
IL(OL)  
IL(OL)  
mA  
mA  
mA  
TJ = -40 °C  
1)  
Open Load detection  
threshold current  
6
TJ = 25 °C  
TJ = 150 °C  
Open Load detection  
threshold current  
6
10  
1) Not subject to production test - specified by design  
2) Output status detection voltages are referenced to ground (GND pin)  
Datasheet  
52  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Serial Peripheral Interface (SPI)  
10  
Serial Peripheral Interface (SPI)  
The serial peripheral interface (SPI) is a full duplex synchronous serial slave interface, which uses four lines:  
SO, SI, SCLK and CSN. Data is transferred by the lines SI and SO at the rate given by SCLK. The falling edge of  
CSN indicates the beginning of an access. Data is sampled in on line SI at the falling edge of SCLK and shifted  
out on line SO at the rising edge of SCLK. Each access must be terminated by a rising edge of CSN. A modulo  
8/16 counter ensures that data is taken only when a multiple of 8 bit has been transferred after the first 16 bits.  
Otherwise a TER bit is asserted. In this way the interface provides daisy chain capability with 16 bit as well as  
with 8 bit SPI devices.  
MSB  
MSB  
14  
14  
13  
13  
12  
12  
11  
11  
10  
10  
9
9
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
LSB  
LSB  
SO  
SI  
CSN  
SCLK  
time  
SPI_16bit.emf  
Figure 28 Serial Peripheral Interface  
10.1  
SPI Signal Description  
CSN - Chip Select  
The system microcontroller selects the TLE75080-ESH by means of the CSN pin. Whenever the pin is in “low”  
state, data transfer can take place. When CSN is in "high" state, any signals at the SCLK and SI pins are ignored  
and SO is forced into a high impedance state.  
CSN “high” to “low” Transition  
The requested information is transferred into the shift register.  
SO changes from high impedance state to "high" or “low” state depending on the logic OR combination  
between the transmission error flag (TER) and the signal level at pin SI. This allows to detect a faulty  
transmission even in daisy chain configuration.  
If the device is in Sleep mode, SO pin remains in high impedance state and no SPI transmission occurs.  
TER  
SI  
SO  
OR  
1
0
SO  
S
SI  
SPI  
CSN  
SCLK  
S
SPI _TER.emf  
Figure 29 Combinatorial Logic for TER bit  
Datasheet  
53  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Serial Peripheral Interface (SPI)  
CSN “low” to "high" Transition  
Command decoding is only done, when after the falling edge of CSN exactly a multiple (1, 2, 3, …) of eight  
SCLK signals have been detected after the first 16 SCLK pulses. In case of faulty transmission, the  
transmission error bit (TER) is set and the command is ignored.  
Data from shift register is transferred into the addressed register.  
SCLK - Serial Clock  
This input pin clocks the internal shift register. The serial input (SI) transfers data into the shift register on the  
falling edge of SCLK while the serial output (SO) shifts diagnostic information out on the rising edge of the  
serial clock. It is essential that the SCLK pin is in “low” state whenever chip select CSN makes any transition,  
otherwise the command may be not accepted.  
SI - Serial Input  
Serial input data bits are shift-in at this pin, the most significant bit first. SI information is read on the falling  
edge of SCLK. The input data consists of two parts, control bits followed by data bits. Please refer to  
Chapter 10.5 for further information.  
SO Serial Output  
Data is shifted out serially at this pin, the most significant bit first. SO is in high impedance state until the CSN  
pin goes to “low” state. New data appears at the SO pin following the rising edge of SCLK.  
Please refer to Chapter 10.5 for further information.  
10.2  
Daisy Chain Capability  
The SPI of TLE75080-ESH provides daisy chain capability. In this configuration several devices are activated by  
the same CSN signal MCSN. The SI line of one device is connected with the SO line of another device (see  
Figure 30), in order to build a chain. The end of the chain is connected to the output and input of the master  
device, MO and MI respectively. The master device provides the master clock MCLK which is connected to the  
SCLK line of each device in the chain.  
device 1  
SPI  
device 2  
SPI  
device 3  
SPI  
SI  
SO SI  
SO SI  
SO  
MO  
MI  
MCSN  
MCLK  
SPI_DaisyChain_1.emf  
Figure 30 Daisy Chain Configuration  
In the SPI block of each device, there is one shift register where each bit from SI line is shifted in each SCLK.  
The bit shifted out occurs at the SO pin. After sixteen SCLK cycles, the data transfer for one device is finished.  
Datasheet  
54  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Serial Peripheral Interface (SPI)  
In single chip configuration, the CSN line must turn “high” to make the device acknowledge the transferred  
data. In daisy chain configuration, the data shifted out at device 1 has been shifted in to device 2. When using  
three devices in daisy chain, several multiples of 8 bits have to be shifted through the devices (depending on  
how many devices with 8 bit SPI and how many with 16 bit SPI). After that, the MCSN line must turn “high” (see  
Figure 31).  
SO device 3  
SI device 3  
SO device 2  
SI device 2  
SO device 1  
SI device 1  
MI  
MO  
MCSN  
MCLK  
SPI_DaisyChain_2.emf  
Figure 31 Data Transfer in Daisy Chain Configuration  
10.3  
Timing Diagrams  
tCSN(lead)  
tCSN(lag)  
tCSN(td)  
tSCLK(P )  
VCSN(H)  
VCSN(L)  
CSN  
tSCLK (H)  
tSCLK (L)  
VSCLK(H)  
VSCLK(L)  
SCLK  
SI  
tSI (s u)  
tSI (h)  
VSI (H)  
VSI (L)  
tSO(en)  
tSO(v )  
tSO (dis )  
VSO(H)  
VSO(L)  
SO  
SPI _Timings.emf  
Figure 32 Timing Diagram SPI Access  
Datasheet  
55  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Serial Peripheral Interface (SPI)  
10.4  
Electrical Characteristics  
VDD = 3 V to 5.5 V, VS = 7 V to 18 V, TJ = -40 °C to +150 °C (unless otherwise specified)  
Typical values: VDD = 5 V, VS = 13.5 V, TJ = 25 °C  
Table 13 Electrical Characteristics Serial Peripheral Interface (SPI)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Input Characteristics (CSN, SCLK, SI) - “low” level of pin  
CSN  
SCLK  
SI  
VCSN(L)  
VSCLK(L)  
VSI(L)  
0
0
0
0.8  
0.8  
0.8  
V
V
V
P_10.4.1  
P_10.4.2  
P_10.4.3  
Input Characteristics (CSN, SCLK, SI) - “high” level of pin  
CSN  
VCSN(H)  
VSCLK(H)  
VSI(H)  
2
2
2
VDD  
VDD  
VDD  
V
V
V
P_10.4.4  
P_10.4.5  
P_10.4.6  
SCLK  
SI  
Input Pull-Up Current at Pin CSN  
L-input pull-up current at CSN pin -ICSN(L)  
H-input pull-up current at CSN pin -ICSN(H)  
L-Input Pull-Down Current at Pin  
30  
20  
60  
40  
90  
65  
μA  
μA  
VDD = 5 V  
P_10.4.7  
P_10.4.8  
V
CSN = 0.8 V  
VDD = 5 V  
CSN = 2 V  
V
SCLK  
ISCLK(L)  
ISI(L)  
5
5
12  
12  
20  
20  
μA  
μA  
VSCLK = 0.8 V  
VSI = 0.8 V  
P_10.4.9  
SI  
P_10.4.10  
H-Input Pull-Down Current at Pin  
SCLK  
ISCLK(H)  
ISI(H)  
14  
14  
28  
28  
45  
45  
μA  
μA  
VSCLK = 2 V  
VSI = 2 V  
P_10.4.11  
P_10.4.12  
SI  
Output Characteristics (SO)  
L level output voltage  
H level output voltage  
VSO(L)  
VSO(H)  
0
0.4  
V
V
ISO = -1.5 mA  
ISO = 1.5 mA  
P_10.4.13  
P_10.4.14  
VDD - 0.4 –  
VDD  
Output tristate leakage current  
Output tristate leakage current  
Timings  
ISO(OFF)  
ISO(OFF)  
-1  
-1  
1
1
μA  
μA  
VCSN =VDD  
VSO = 0 V  
P_10.4.15  
P_10.4.16  
VCSN =VDD  
VSO = VDD  
1)  
Enable lead time (falling CSN to tCSN(lead) 200  
rising SCLK)  
ns  
ns  
P_10.4.17  
P_10.4.18  
VDD = 4.5 V or VS  
> 7 V  
1)  
Enable lag time (falling SCLK to  
rising CSN)  
tCSN(lag)  
200  
VDD = 4.5 V or VS  
> 7 V  
Datasheet  
56  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Serial Peripheral Interface (SPI)  
Table 13 Electrical Characteristics Serial Peripheral Interface (SPI) (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Transfer delay time (rising CSN to tCSN(td)  
250  
ns  
P_10.4.19  
falling CSN)  
VDD = 4.5 V or VS  
> 7 V  
1)  
Output enable time (falling CSN to tSO(en)  
SO valid)  
200  
200  
ns  
P_10.4.20  
P_10.4.21  
VDD = 4.5 V or VS  
> 7 V  
CL = 20 pF at SO  
pin  
1)  
Output disable time (rising CSN to tSO(dis)  
ns  
SO tristate)  
VDD = 4.5 V or VS  
> 7 V  
CL = 20 pF at SO  
pin  
1)  
Serial clock frequency  
Serial clock period  
fSCLK  
5
MHz  
ns  
P_10.4.22  
P_10.4.23  
P_10.4.24  
P_10.4.25  
P_10.4.26  
P_10.4.27  
P_10.4.28  
VDD = 4.5 V or VS  
> 7 V  
1)  
tSCLK(P)  
tSCLK(H)  
tSCLK(L)  
200  
75  
75  
20  
20  
VDD = 4.5 V or VS  
> 7 V  
1)  
Serial clock “high” time  
Serial clock “low” time  
ns  
VDD = 4.5 V or VS  
> 7 V  
1)  
ns  
VDD = 4.5 V or VS  
> 7 V  
1)  
Data setup time (required time SI tSI(su)  
to falling SCLK)  
ns  
VDD = 4.5 V or VS  
> 7 V  
1)  
Data hold time (falling SCLK to SI) tSI(h)  
ns  
VDD = 4.5 V or VS  
> 7 V  
1)  
Output data valid time with  
capacitive load  
tSO(v)  
100  
ns  
VDD = 4.5 V or VS  
> 7 V  
CL = 20 pF at SO  
pin  
1)  
Enable lead time (falling CSN to tCSN(lead)  
rising SCLK)  
1
μs  
μs  
μs  
P_10.4.29  
P_10.4.30  
P_10.4.31  
VDD = VS = 3.0 V  
1)  
Enable lag time (falling SCLK to  
rising CSN)  
tCSN(lag)  
1
VDD = VS = 3.0 V  
1)  
Transfer delay time (rising CSN to tCSN(td)  
1.25  
falling CSN)  
VDD = VS = 3.0 V  
Datasheet  
57  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Serial Peripheral Interface (SPI)  
Table 13 Electrical Characteristics Serial Peripheral Interface (SPI) (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Output enable time (falling CSN to tSO(en)  
SO valid)  
1
μs  
μs  
P_10.4.32  
VDD = VS = 3.0 V  
CL = 20 pF at SO  
pin  
1)  
Output disable time (rising CSN to tSO(dis)  
1
P_10.4.33  
SO tristate)  
VDD = VS = 3.0 V  
CL = 20 pF at SO  
pin  
1)  
Serial clock frequency  
Serial clock period  
fSCLK  
1
MHz  
μs  
P_10.4.34  
P_10.4.35  
P_10.4.36  
P_10.4.37  
P_10.4.38  
P_10.4.39  
P_10.4.40  
VDD = VS = 3.0 V  
1)  
tSCLK(P)  
tSCLK(H)  
tSCLK(L)  
1
VDD = VS = 3.0 V  
1)  
Serial clock “high” time  
Serial clock “low” time  
375  
375  
100  
100  
ns  
VDD = VS = 3.0 V  
1)  
ns  
VDD = VS = 3.0 V  
1)  
Data setup time (required time SI tSI(su)  
to falling SCLK)  
ns  
VDD = VS = 3.0 V  
1)  
Data hold time (falling SCLK to SI) tSI(h)  
ns  
VDD = VS = 3.0 V  
1)  
Output data valid time with  
capacitive load  
tSO(v)  
500  
ns  
VDD = VS = 3.0 V  
CL = 20 pF at SO  
pin  
1) Not subject to production test, specified by design  
Datasheet  
58  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Serial Peripheral Interface (SPI)  
10.5  
SPI Protocol  
The relationship between SI and SO content during SPI communication is shown in Figure 33. SI line  
represents the frame sent from the µC and SO line is the answer provided by TLE75080-ESH.  
SI  
frame A  
frame B  
frame C  
(previous  
response)  
response to  
frame A  
response to  
frame B  
SO  
SPI_SI2SO.emf  
Figure 33 Relationship between SI and SO during SPI communication  
The SPI protocol provides the answer to a command frame only with the next transmission triggered by the  
µC. Although the biggest majority of commands and frames implemented in TLE75080-ESH can be decoded  
without the knowledge of what happened before, it is advisable to consider what the µC sent in the previous  
transmission to decode TLE75080-ESH response frame completely.  
More in detail, the sequence of commands to “read” and “write” the content of a register looks as follows:  
SI  
write register A  
read register A  
(new command)  
(previous  
response)  
Standard  
diagnostic  
register A  
content  
SO  
SPI_RWseq.emf  
Figure 34 Register content sent back to µC  
There are 3 special situations where the frame sent back to the µC is not related directly to the previous  
received frame:  
in case an error in transmission happened during the previous frame (for instance, the clock pulses were  
not multiple of 8 with a minimum of 16 bits), shown in Figure 35  
when TLE75080-ESH logic supply comes out of Power-On reset condition or after a Software Reset, as  
shown in Figure 36  
in case of command syntax errors  
“write” command starting with “11” instead of “10”  
“read” command starting with “00” instead of “01”  
“read” or “write” commands on registers which are “reserved” or “not used”  
Datasheet  
59  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Serial Peripheral Interface (SPI)  
frame A  
(error in transmission )  
SI  
(new command)  
SO  
(previous response )  
Standard diagnostic + TER  
SPI_SO_TER.emf  
Figure 35 TLE75080-ESH response after a error in transmission  
VDD VDD(PO)  
SI  
frame A  
frame B  
frame C  
INST register + TER  
(8680h)  
SO  
(SO = „Z“)  
response to frame B  
SPI _SO_POR.emf  
Figure 36 TLE75080-ESH response after coming out of Power-On reset at VDD  
frame A  
(syntax or addressing error )  
SI  
(new command)  
SO  
(previous response )  
Standard diagnostic  
SPI_SO_SyntaxError.emf  
Figure 37 TLE75080-ESH response after a command syntax error  
A summary of all possible SPI commands is presented in Table 14, including the answer that TLE75080-ESH  
sends back at the next transmission.  
Datasheet  
60  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Serial Peripheral Interface (SPI)  
Table 14 SPI Command summary1)  
Requested Operation  
Read Standard Diagnosis  
Write 10 bit register  
Frame sent to SPIDER+ (SI pin)  
Frame received from SPIDER+ (SO  
pin) with the next command  
0xxxxxxxxxxxxx01B  
(“xxxxxxxxxxxxB” = don´t care)  
0dddddddddddddddB  
(Standard Diagnosis)  
10aaaaccccccccccB  
where:  
0dddddddddddddddB  
(Standard Diagnosis)  
aaaaB” = register address ADDR0  
ccccccccccB” = new register  
content  
Read 10 bit registers  
Write 8 bit register  
01aaaaxxxxxxxx10B  
where:  
aaaaB” = register address ADDR0  
xxxxxxxxB” = don´t care  
10aaaaccccccccccB  
where:  
aaaaB” = register address ADDR0  
ccccccccccB” = register content  
10aaaabbccccccccB  
0dddddddddddddddB  
where:  
(Standard Diagnosis)  
aaaaB” = register address ADDR0  
bbB” = register address ADDR1  
ccccccccB” = new register content  
Read 8 bit registers  
01aaaabbxxxxxx10B  
where:  
10aaaabbccccccccB  
where:  
aaaaB” = register address ADDR0  
bbB” = register address ADDR1  
xxxxxxB” = don´t care  
aaaaB” = register address ADDR0  
bbB” = register address ADDR1  
ccccccccB” = register content  
1) “a” = address bits for ADDR0 field, “b” = address bit for ADDR1 field, “c” = register content, “d” = diagnostic bit  
Datasheet  
61  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Serial Peripheral Interface (SPI)  
10.6  
SPI Registers Overview  
10.6.1  
Standard Diagnosis  
Table 15 Standard Diagnosis  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Default  
0
UVR LOP MODE  
VS VDD  
TER OL OL  
ON OFF  
ERR  
7800H  
Field  
Bits  
Type  
Description  
VS Undervoltage Monitor  
UVRVS  
14  
r
0B No undervoltage condition on VS detected (see Chapter 6.2.1  
for more details)  
1B (default) There was at least one VS Undervoltage condition  
since last Standard Diagnosis readout  
LOPVDD  
MODE  
13  
r
r
VDD Lower Operating Range Monitor  
0B VDD is above VDD(LOP)  
1B (default) There was at least one “VDD = VDD(LOP)” condition since  
last Standard Diagnosis readout  
12:11  
Operative Mode Monitor  
00B (reserved)  
01B Limp Home Mode  
10B Active Mode  
11B (default) Idle Mode  
TER  
10  
r
r
Transmission Error  
0B Previous transmission was successful  
(modulo 16 + n*8 clocks received, where n = 0, 1, 2...)  
1B (default) Previous transmission failed  
The first frame after a reset is TER set to “high” and the INST  
register. The second frame is the Standard Diagnosis with TER set to  
“low” (if there was no fail in the previous transmission).  
OLON  
9
Open Load at ON state Diagnosis  
0B (default) No Open Load at ON detected  
1B Open Load at ON detected  
See Chapter 9.3.3 for a detailed explanation  
Datasheet  
62  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Serial Peripheral Interface (SPI)  
Field  
Bits  
Type  
Description  
OLOFF  
8
r
Open Load in OFF Diagnosis  
0B (default) All channels in OFF state (which have  
DIAG_IOL.OUTn bit set to “1”) have VOUT_S < VOUT_S(OL)  
1B At least one channel in OFF state (with DIAG_IOL.OUTn bit set  
to “1”) has VOUT_S > VOUT_S(OL)  
Channels in ON state are not considered  
ERRn  
n = 7 to 0  
n:0  
r
Over Load / Over Temperature Diagnosis of channel n  
0B (default) No failure detected  
1B Over Temperature or Over Load  
Datasheet  
63  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Serial Peripheral Interface (SPI)  
10.6.2  
Register structure  
The register banks the digital part have following structure:  
Table 16 Register structure - all registers (with the exclusion of PWM_CR0 and PWM_CR1)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Default  
r = 0 r = 1 ADDR0  
w = 1 w = 0  
ADDR1  
DATA  
XXXXH  
Table 17 Register structure - PWM_CR0 and PWM_CR1  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Default  
r = 0 r = 1 ADDR0  
w = 1 w = 0  
DATA  
XXXXH  
Table 18 summarizes the available registers with their addresing space and size  
Table 18 Register addressing space  
Register name ADDR0 ADDR1 Size Type Purpose  
OUT  
n = 7 to 0  
0000B  
00B  
n
r/w  
Power output control register  
bits OUT.OUTn  
0B (default) Output is OFF  
1B Output is ON  
BIM  
0000B  
0001B  
01B  
00B  
8
r/w  
r/w  
Bulb Inrush Mode  
bits BIM.OUTn  
0B (default) Output latches OFF in case of errors  
1B Output restarts automatically in case of errors  
MAPIN0  
n
Input Mapping (Input Pin 0)  
n = 7 to 0  
bits MAPIN0.OUTn  
0B (default) The output is not connected to the input  
pin  
1B The output is connected to the input pin  
Note: Channel 2 has the corresponding bit set to “1” by  
default  
Datasheet  
64  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Serial Peripheral Interface (SPI)  
Table 18 Register addressing space (cont’d)  
Register name ADDR0 ADDR1 Size Type Purpose  
MAPIN1  
0001B  
01B  
n
r/w  
Input Mapping (Input Pin 1)  
n = 7 to 0  
bits MAPIN1.OUTn  
0B (default) The output is not connected to the input  
pin  
1B The output is connected to the input pin  
Note: Channel 3 has the corresponding bit set to “1” by  
default  
INST  
0001B  
10B  
8
r
Input Status Monitor  
bit TER  
0B Previous transmission was successful  
(modulo 16 + n*8 clocks received, where n = 0, 1, 2...)  
1B (default) Previous transmission failed  
bits INST.RES(6:2) - reserved  
bits INST.INn(1:0)  
0B (default) The input pin is set to “low”  
1B The input pin is set to “high”  
First register transmitted after a reset of the logic  
DIAG_IOL  
n = 7 to 0  
0010B  
0010B  
0010B  
00B  
01B  
10B  
n
n
8
r/w  
Open Load diagnostic current control  
bits DIAG_IOL.OUTn  
0B (default) Diagnosis current not enabled  
1B Diagnosis current enabled  
DIAG_OSM  
n = 7 to 0  
r
r
Output Status Monitor  
bits DIAG_OSM.OUTn  
0B (default) VOUT_S < VOUT_S(OL)  
1B VOUT_S > VOUT_S(OL)  
DIAG_OLON  
Open Load at ON monitor  
bits DIAG_OLON.OUTn  
0B (default) normal operation or diagnosis performed  
on channel OFF  
1B Open Load at ON detected  
This feature is active only on  
Datasheet  
65  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Serial Peripheral Interface (SPI)  
Table 18 Register addressing space (cont’d)  
Register name ADDR0 ADDR1 Size Type Purpose  
DIAG_OLONEN 0010B  
11B  
8
r/w  
Open Load at ON diagnostic control  
bits (7:4) - reserved  
bits DIAG_OLONEN.MUX(3:0)  
0000B Open Load at ON diagnostic active on channel 0  
0001B Open Load at ON diagnostic active on channel 1  
0010B Open Load at ON diagnostic active on channel 2  
0011B Open Load at ON diagnostic active on channel 3  
0100B Open Load at ON diagnostic active on channel 4  
0101B Open Load at ON diagnostic active on channel 5  
0110B Open Load at ON diagnostic active on channel 6  
0111B Open Load at ON diagnostic active on channel 7  
1000B (reserved)  
1001B (reserved)  
1010B Open Load at ON diagnosis loop start  
1011B (reserved)  
1100B (reserved)  
1101B (reserved)  
1110B (reserved)  
1111B (default) Open Load at ON diagnostic not active  
HWCR  
0011B  
00B  
8
r/w  
Hardware Configuration Register  
bit HWCR.ACT(7) (Active Mode)  
0B (default) Normal operation or device leaves Active  
Mode  
1B Device enters Active Mode  
(see Chapter 6.1 for a description of the possible  
operative mode transitions)  
bit HWCR.RST(6) (Reset)  
0B (default) Normal operation  
1B Execute Reset command (self clearing)  
bits HWCR.PAR(3:0) (channels operating in parallel)  
0B (default) Normal operation  
1B two neighbour channels have Over Load and Over  
Temperature synchronized (see Chapter 7.3 for  
more details)  
bits 5:4 - reserved (default: 0B)  
HWCR_OCL  
0011B  
01B  
n
w
Output Clear Latch  
n = 7 to 0  
bits HWCR_OCL.OUTn  
0B (default) Normal operation  
1B Clear the error latch for the selected output  
Datasheet  
66  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Serial Peripheral Interface (SPI)  
Table 18 Register addressing space (cont’d)  
Register name ADDR0 ADDR1 Size Type Purpose  
HWCR_PWM  
0011B  
10B  
8
r/w  
PWM Configuration Register  
bits HWCR_PWM.ADJ(7:4)  
0000B (reserved)  
0001B base frequency fINT - 37.2%  
0010B base frequency fINT - 31.9%  
0011B base frequency fINT - 26.9%  
0100B base frequency fINT - 21.0%  
0101B base frequency fINT - 15.5%  
0110B base frequency fINT - 10.9%  
0111B base frequency fINT - 5.8%  
1000B (default) base frequency fINT  
1001B base frequency fINT + 4.3%  
1010B base frequency fINT + 8.9%  
1011B base frequency fINT + 14.0%  
1100B base frequency fINT + 19.5%  
1101B base frequency fINT + 25.6%  
1110B base frequency fINT + 32.4%  
1111B base frequency fINT + 40.0%  
bits HWCR_PWM.PWM1(1)  
0B (default) PWM Generator 1 not active  
1B PWM Generator 1 active  
bits HWCR_PWM.PWM0(0)  
0B (default) PWM Generator 0 not active  
1B PWM Generator 0 active  
bits HWCR_PWM.RES(3:2) - reserved  
PWM_CR0  
0100B  
10  
r/w  
PMW Generator Configuration 0  
bits PWM_CR0.FREQ(9:8)  
00B (default) internal clock divided by 1024  
01B internal clock divided by 512  
10B internal clock divided by 256  
11B 100% duty cycle  
bits PWM_CR0.DC(7:0) (resolution: 0.39%)  
00000000B, PWM generator is OFF  
11111111B, PWM generator is ON (99.61% duty cycle)  
PWM_CR1  
0101B  
10  
r/w  
PMW Generator Configuration 1  
bits PWM_CR1.FREQ(9:8)  
00B (default) internal clock divided by 1024  
01B internal clock divided by 512  
10B internal clock divided by 256  
11B 100% duty cycle  
bits PWM_CR1.DC(7:0) (resolution: 0.39%)  
00000000B, PWM generator is OFF  
11111111B, PWM generator is ON (99.61% duty cycle)  
Datasheet  
67  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Serial Peripheral Interface (SPI)  
Table 18 Register addressing space (cont’d)  
Register name ADDR0 ADDR1 Size Type Purpose  
PWM_OUT  
1001B  
00B  
8
r/w  
PWM Generator Output Control  
bits PWM_OUT.OUTn  
0B (default) The selected output is not driven by one of  
the two PWM Generators  
1B The selected output is connected to a PWM  
Generator  
PWM_MAP  
1001B  
01B  
8
r/w  
PWM Generator Output Mapping  
bits PWM_MAP.OUTn  
0B (default) The selected output is connected to PWM  
Generator 0  
1B The selected output is connected to PWM Generator  
1
It is necessary to set the PWM_OUT register to activate the  
PWM Generator control for the outputs.  
10.6.3  
Register summary  
All registers with addresses not mentioned in Table 19 and Table 20 have to be considered as “reserved”.  
“Read” operations performed on those registers return the Standard Diagnosis. The column “Default”  
indicates the content of the register (8 or 10 bits) after a reset.  
Table 19 Addressable registers (basic functions)  
15  
14 13-10  
9
8
7
6
5
4
3
2
1
0
Default  
r = 0 r = 1 0000  
w = 1 w = 0  
00  
00  
01  
OUT.OUTn  
00H  
04H  
08H  
r = 0 r = 1 0001  
w = 1 w = 0  
MAPIN0.OUTn  
MAPIN1.OUTn  
r = 0 r = 1 0001  
w = 1 w = 0  
0
1
0001  
10  
00  
TER  
(reserved)  
INST.INn  
00H  
00H  
r = 0 r = 1 0010  
w = 1 w = 0  
DIAG_IOL.OUTn  
0
1
0010  
01  
00  
DIAG_OSM.OUTn  
00H  
00H  
r = 0 r = 1 0011  
w = 1 w = 0  
HWC HWC (reserved)  
R.ACT R.RST  
HWCR.PAR  
r = 0 r = 1 0011  
w = 1 w = 0  
01  
HWCR_OCL.OUTn  
00H  
Table 20 Addressable registers (advanced functions)  
15 14 13-10  
9
8
7
6
5
4
3
2
1
0
Default  
r = 0 r = 1 0000  
w = 1 w = 0  
01  
BIM.OUTn  
00H  
Datasheet  
68  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Serial Peripheral Interface (SPI)  
Table 20 Addressable registers (advanced functions)  
15  
14 13-10  
9
8
7
6
5
4
3
2
1
0
Default  
r = 0 r = 1 0010  
w = 1 w = 0  
10  
11  
10  
DIAG_OLON.OUTn  
00H  
r = 0 r = 1 0010  
w = 1 w = 0  
(reserved)  
DIAG_OLONEN.MUX  
0FH  
r = 0 r = 1 0011  
w = 1 w = 0  
HWCR_PWM.ADJ  
(reserved)  
HWC HWC 80H  
R_PW R_PW  
M.PW M.PW  
M1  
M0  
r = 0 r = 1 0100  
w = 1 w = 0  
PWM_CR0.FR PWM_CR0.DC  
EQ  
000H  
000H  
00H  
r = 0 r = 1 0101  
w = 1 w = 0  
PWM_CR1.FR PWM_CR1.DC  
EQ  
r = 0 r = 1 1001  
w = 1 w = 0  
00  
PWM_OUT.OUTn  
r = 0 r = 1 1001  
w = 1 w = 0  
01  
PWM_MAP.OUTn  
00H  
10.6.4  
SPI command quick list  
A summary of the most used SPI commands (read and write operations on all registers) is shown in Table 21  
Table 21 SPI command quick list  
Register  
OUT  
“read” command”  
4002H  
“write” command  
80XXH  
content written  
XXH = xxxxxxxxB  
XXH = xxxxxxxxB  
XXH = xxxxxxxxB  
XXH = xxxxxxxxB  
BIM  
4102H  
81XXH  
MAPIN0  
4402H  
84XXH  
MAPIN1  
4502H  
85XXH  
INST  
4602H  
n.a. (read-only)  
88XXH  
DIAG_IOL  
DIAG_OSM  
DIAG_OLON  
DIAG_OLONEN  
HWCR  
4802H  
XXH = xxxxxxxxB  
4902H  
n.a. (read-only)  
8AXXH  
4A02H  
XXH = xxxxxxxxB  
XXH = xxxxxxxxB  
XXH = xxxxxxxxB  
XXH = xxxxxxxxB  
XXH = xxxxxxxxB  
0XXH = 00xxxxxxxxB  
1XXH = 01xxxxxxxxB  
2XXH = 10xxxxxxxxB  
3XXH = 11xxxxxxxxB  
4B02H  
8BXXH  
4C02H  
8CXXH  
HWCR_OCL  
HWCR_PWM  
PWM_CR0  
4D02H  
8DXXH  
4E02H  
8EXXH  
5002H  
90XXH  
91XXH  
92XXH  
93XXH  
Datasheet  
69  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Serial Peripheral Interface (SPI)  
Table 21 SPI command quick list (cont’d)  
Register  
“read” command”  
“write” command  
94XXH  
content written  
0XXH = 00xxxxxxxxB  
1XXH = 01xxxxxxxxB  
2XXH = 10xxxxxxxxB  
3XXH = 11xxxxxxxxB  
XXH = xxxxxxxxB  
PWM_CR1  
5402H  
95XXH  
96XXH  
97XXH  
PWM_OUT  
PWM_MAP  
6402H  
6502H  
A4XXH  
A5XXH  
XXH = xxxxxxxxB  
Datasheet  
70  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Application Information  
11  
Application Information  
Note:  
The following information is given as a hint for the implementation of the device only and shall not  
be regarded as a description or warranty of a certain functionality, condition or quality of the device.  
VBA TT  
VDD  
RVDD  
CVDD  
CVS  
VBA TT1  
VBA TT2  
IN0_LH  
IN1_LH  
VDD  
VDD  
VS  
GPO  
GPO  
GPO  
IN0  
RIN  
RIN  
VS1  
IN1  
OUT0_HS  
OUT2_HS  
OUT4_HS  
OUT6_HS  
IDLE  
RIDLE  
RLH  
ZVS  
LI MP HO ME  
VS2  
OUT1_HS  
OUT3_HS  
OUT5_HS  
OUT7_HS  
GPO  
GPO  
GPO  
GPI  
CSN  
SCLK  
SI  
RCSN  
RSCLK  
RSI  
SO  
RSO  
GND  
GND  
Application_8HS.emf  
Figure 38 TLE75080-ESH Application Diagram  
Note:  
This is a very simplified example of an application circuit. The function must be verified in the real  
application.  
Table 22 Suggested Component values  
Reference  
Value  
Purpose  
RIN  
4.7 kΩ  
Protection of the micro-controller during Over Voltage and Reverse Polarity  
Guarantee TLE75080-ESH channels OFF during Loss of Ground  
RIDLE  
4.7 kΩ  
Protection of the micro-controller during Over Voltage and Reverse Polarity  
Guarantee TLE75080-ESH channels OFF during Loss of Ground  
RCSN  
RSCLK  
RSI  
500 Ω  
500 Ω  
500 Ω  
500 Ω  
100 Ω  
Protection of the micro-controller during Over Voltage and Reverse Polarity  
Protection of the micro-controller during Over Voltage and Reverse Polarity  
Protection of the micro-controller during Over Voltage and Reverse Polarity  
Protection of the micro-controller during Over Voltage and Reverse Polarity  
Logic supply voltage spikes filtering  
RSO  
RVDD  
Datasheet  
71  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Application Information  
Table 22 Suggested Component values (cont’d)  
Reference  
CVDD  
Value  
100 nF  
68 nF  
Purpose  
Logic supply voltage spikes filtering  
Analog supply voltage spikes filtering  
CVS  
ZVS  
P6SMB30 Protection of device during Over Voltage. Zener diode  
10 nF Protection of TLE75080-ESH against ESD and BCI  
COUT  
11.1  
Further Application Information  
Please contact us for information regarding the Pin FMEA  
For further information you may contact http://www.infineon.com/  
Datasheet  
72  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Package Outlines  
12  
Package Outlines  
Figure 39 PG-TSDSO-24 Package drawing  
Figure 40 TLE75080-ESH Package pads and stencil  
Datasheet  
73  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Package Outlines  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further information on alternative packages, please visit our website:  
http://www.infineon.com/packages.  
Dimensions in mm  
Datasheet  
74  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Revision History  
13  
Revision History  
Page or Item  
Changes since previous revision  
Rev. 1.10, 2020-09-02  
All  
Package name updated  
Table 2  
Updated ESD susceptibility footnotes for HBM and CDM  
Updated backcover  
Rev.1.00, 2017-11-23  
All  
Datasheet released  
TLE75080-ESH  
LED package  
Datasheet  
75  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
Table of Contents  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2
2.1  
2.2  
Block Diagram and Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3
3.1  
3.2  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
4
4.1  
4.2  
4.3  
4.3.1  
4.3.2  
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
PCB set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5
Control Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Input pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
IDLE pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Electrical Characteristics Control Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5.1  
5.2  
5.3  
6
6.1  
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Power-up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Idle mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Active mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Limp Home mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Definition of Power Supply modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Reset condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Undervoltage on VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Low Operating Power on VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Electrical Characteristics Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
6.1.6  
6.2  
6.2.1  
6.2.2  
6.3  
7
7.1  
7.1.1  
7.1.2  
7.1.3  
7.2  
7.3  
7.4  
7.5  
7.6  
Power Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Output ON-state resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Switching Resistive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Inductive Output Clamp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Maximum Load Inductance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Inverse Current Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Switching Channels in parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
“Bulb Inrush Mode” (BIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Automatic PWM Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Electrical Characteristics Power Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
8
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Over Load Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Over Temperature Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Over Temperature and Over Load Protection in Limp Home mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Over Voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Electrical Characteristics Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
Datasheet  
76  
Rev. 1.10  
2020-09-02  
TLE75080-ESH  
SPIDER+ 12V  
9
Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
9.1  
9.2  
9.3  
9.3.1  
9.3.2  
9.3.3  
9.4  
Over Load and Over Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Output Status Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Open Load at ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Open Load at ON - direct channel diagnosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Open Load at ON - diagnosis loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
OLON bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Electrical Characteristics Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
10  
10.1  
10.2  
10.3  
10.4  
10.5  
10.6  
10.6.1  
10.6.2  
10.6.3  
10.6.4  
Serial Peripheral Interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
SPI Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Daisy Chain Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
SPI Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
SPI Registers Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Standard Diagnosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Register structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Register summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
SPI command quick list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
11  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
11.1  
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
12  
13  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Datasheet  
77  
Rev. 1.10  
2020-09-02  
Please read the Important Notice and Warnings at the end of this document  
Trademarks of Infineon Technologies AG  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2020-09-02  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2020 Infineon Technologies AG.  
All Rights Reserved.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
Except as otherwise explicitly approved by Infineon  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Technologies in  
a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  

相关型号:

TLE75080EMD

SPI Driver for Enhanced Relay Control
INFINEON

TLE75080EMH

SPI Driver for Enhanced Relay Control
INFINEON

TLE75242ESDXUMA1

Buffer/Inverter Based Peripheral Driver,
INFINEON

TLE75242ESHXUMA1

Buffer/Inverter Based Peripheral Driver,
INFINEON

TLE75602-ESD

TLE75602-ESD 是一款采用 PG-TSDSO-24-21 封装的八通道低边和高边电源开关,提供嵌入式保护功能。它专门用于控制汽车和工业应用中的继电器和 LED。利用串行外设接口(SPI)控制和诊断设备的负载。对于直接控制和 PWM,在默认情况下有两个输入引脚连接到两个输出。可通过相同的输入引脚(可通过 SPI 编程)控制其他或不同的输出。
INFINEON

TLE75620-EST

TLE75620-EST 是采用 PG-TSDSO-24-21 封装的八通道配置和高边电源开关,提供嵌入式保护功能。它专门用于控制汽车和工业应用中的继电器和 LED。
INFINEON

TLE7714G

Sensor/Transducer
INFINEON

TLE7719

Airbag Satellite Receive IC (SatRIC)
INFINEON

TLE7719-T

暂无描述
INFINEON

TLE7809G

Integrated double low-side switch, high-side/LED driver, hall supply, wake-up inputs and LIN communication with embedded MCU (16kB Flash)
INFINEON

TLE7810G

Integrated double low-side switch, high-side/LED driver, hall supply, wake-up inputs and LIN communication with embedded MCU (16kB Flash)
INFINEON

TLE7824G

Integrated double low-side switch, high-side/LED driver, hall supply, wake-up inputs and LIN communication with embedded MCU (24kB Flash)
INFINEON