TLE8261-2E [INFINEON]

Universal System Basis Chip; 通用系统基础芯片
TLE8261-2E
型号: TLE8261-2E
厂家: Infineon    Infineon
描述:

Universal System Basis Chip
通用系统基础芯片

驱动程序和接口 接口集成电路 光电二极管
文件: 总83页 (文件大小:1450K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet, Rev. 1.0, May 2009  
TLE8261-2E  
Universal System Basis Chip  
HERMES  
Rev. 1.0  
Automotive Power  
TLE8261-2E  
Table of Contents  
Table of Contents  
1
2
HERMES Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3
3.1  
3.2  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
4
4.1  
4.2  
State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
State Machine Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
5
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
5.1  
5.2  
5.3  
5.4  
6
Internal Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Internal Voltage Regulator Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Internal Voltage Regulator Modes with SBC Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
6.1  
6.2  
6.3  
6.4  
6.5  
7
External Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
External Voltage Regulator Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
External Voltage Regulator State by SBC Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
7.1  
7.2  
7.3  
7.4  
7.5  
8
High Speed CAN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
High-speed CAN Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
CAN Cell Mode with SBC Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Failure Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
SPLIT Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
9
WK Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Wake-Up Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
9.1  
9.2  
9.3  
10  
Supervision Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
10.1  
10.2  
10.3  
11  
Interrupt Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Interrupt Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Interrupt Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Interrupt Modes with SBC Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Interrupt Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
11.1  
11.2  
11.3  
11.4  
Data Sheet  
2
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Table of Contents  
11.5  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
12  
Limp Home . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Limp Home output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Activation of the Limp Home Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Release of the Limp Home Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
12.1  
12.2  
12.3  
12.4  
12.5  
12.6  
V
cc1µC undervoltage time-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
13  
13.1  
13.2  
Configuration Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Configuration select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Config Hardware Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
14  
Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
SPI Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Corrupted data in the SPI data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
SPI Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
SPI Output Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
SPI Data Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
SPI Output Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
14.1  
14.2  
14.3  
14.4  
14.5  
14.6  
14.7  
15  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
ZthJA Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Hints for SBC Factory Flash Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
ESD Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
15.1  
15.2  
15.3  
16  
17  
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Data Sheet  
3
Rev. 1.0, 2009-05-26  
Universal System Basis Chip  
HERMES  
TLE8261-2E  
Rev. 1.0  
1
HERMES Overview  
Scalable System Basis Chip Family  
Eight products for complete scalable application coverage  
Complete compatibility (hardware and software) across the family  
TLE8264-2E (3LIN), TLE8263-2E (2LIN) - 3 Limp Home outputs  
TLE8264E (3LIN), TLE8263E (2LIN) - 1 Limp Home output  
TLE8262-2E (1LIN), TLE8261-2E (no LIN) - 3 Limp Home outputs  
TLE8262E (1LIN), TLE8261E (no LIN) - 1 Limp Home output  
Basic Features  
Very low quiescent current in Stop and Sleep Modes  
Reset input, output  
PG-DSO-36-38  
Power on and scalable undervoltage reset generator  
Standard 16-bit SPI interface  
Overtemperature and short circuit protection  
Short circuit proof to GND and battery  
One universal wake-up input  
Wide input voltage and temperature range  
Cyclic wake in Stop Mode  
Green Product (RoHS compliant)  
AEC Qualified  
Description  
The devices of the SBC family are monolithic integrated circuits in an enhanced power package with identical  
software functionality and hardware features except for the number of LIN cells. The devices are designed for  
CAN-LIN automotive applications e.g. body controller, gateway applications.  
To support these applications, the System Basis Chip (SBC) provides the main functions, such as HS-CAN  
transceiver for data transmission, low dropout voltage regulators (LDO) for an external 5 V supply, and a 16-bit  
Serial Peripheral Interface (SPI) to control and monitor the device. Also implemented are a Time-out or a Window  
Watchdog circuit with a reset feature, Limp Home circuitry output, and an undervoltage reset feature.  
The devices offer low power modes in order to support application that are connected permanent to the battery.  
A wake-up from the low power mode is possible via a message on the buses or via the bi-level sensitive  
monitoring/wake-up input as well as from the SPI command. Each wake-up source can be inhibited.  
The device is designed to withstand the severe conditions of automotive applications.  
Type  
Package  
Marking  
TLE8261-2E  
PG-DSO-36-38  
TLE8261-2E  
Data Sheet  
4
Rev. 1.0, 2009-05-26  
TLE8261-2E  
HERMES Overview  
HS CAN Transceiver  
Compliant to ISO 11898-2 and 11898-5 as well as SAE J2284  
CAN data transmission rate up to 1 MBaud  
Supplied by dedicated input VccHSCAN  
Low power mode management  
Bus wake-up capability via CAN message  
Excellent EMC performance (very high immunity and very low emission)  
Bus pins are short circuit proof to ground and battery voltage  
8 kV ESD gun test on CANH / CANL / SPLIT  
Bus failure detection  
Voltage Regulators  
Low-dropout voltage regulator  
V
V
V
cc1µC, 200 mA, 5 V 2% for external devices, such as microcontroller and RF receiver  
cc2, 200 mA, 5 V 2% for external devices or the internal HS CAN cell  
cc3, current limitation by shunt resistor (up to 400 mA with 220 mshunt resistor), 5 V 4% with external PNP  
transistor; for example: to supply additional external CAN transceivers  
Vcc1µC, undervoltage Time-out  
Supervision  
Reset output with integrated pull-up resistor  
Time-out or Window Watchdog, SPI configured  
Watchdog Timer from 16 ms to 1024 ms  
Check sum bit for Watchdog configuration  
Reset due to Watchdog failure can be inhibited with Test pin (SBC SW Development Mode)  
Interrupt Management  
Complete enabling / disabling of interrupt sources  
Timing filter mechanism to avoid multiple / infinite Interrupt signals  
Limp Home  
Open drain Limp Home outputs  
Dedicated internal logic supply  
Maximum safety architecture for Safety Operation Mode  
Configurable Fail-Safe behavior  
Dedicated side indicators signal 1.25Hz 50% duty cycle  
Dedicated PWM signal 100Hz 20% duty cycle  
Data Sheet  
5
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Block Diagram  
2
Block Diagram  
The simplified block diagram illustrates only the basic elements of the SBC devices. Please refer to the information  
for each device in the product family for more specific hardware configurations.  
VS  
VS  
VS  
VS  
Vcc1µC  
Vcc2  
GND  
Vcc3  
Vint.  
Vint.  
SDI  
SDO  
CLK  
CSN  
SBC  
SPI  
LH_PL/test  
STATE  
Limp  
MACHINE  
Limp home  
LHO_SI  
Home  
INT  
Interrupt  
Control  
RO  
RESET  
GENERATOR  
VCCHSCAN  
Vs  
WK  
WK  
WAKE  
TxD CAN  
RxD CAN  
REGISTER  
CAN cell  
CAN_H  
SPLIT  
CAN_L  
Block diagram_TLE8261-2E.vsd  
GND  
Figure 1  
Simplified Block Diagram  
Data Sheet  
6
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignments  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
RO  
CSN  
CLK  
SDI  
SDO  
GND  
n.c.  
Vs  
Vs  
n.c.  
LH_PL/Test  
Limp home  
WK  
LH_SI  
n.c.  
GND  
n.c.  
n.c.  
n.c.  
n.c.  
n.c.  
n.c.  
RxDCAN  
TxDCAN  
GND  
CANL  
SPLIT  
CANH  
2
3
TLE8261-2E  
DSO 36 - Exposed Pad  
4
5
6
7
8
9
Exposed  
Die  
10  
11  
12  
13  
14  
Pad  
Vcc3shunt  
Vcc3  
base  
GND  
Vcc3REF  
INT 15  
Vcc1  
16  
µC  
Vcc2 17  
18  
VccHSCAN  
Pinout_8261_2E.vsd  
Figure 2  
Pin Configuration  
Data Sheet  
7
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Pin Configuration  
3.2  
Pin Definitions and Functions  
Pin  
1
Symbol  
RO  
Function  
Reset Input/Output; open drain output, integrated pull-up resistor; active low.  
2
CSN  
SPI Chip Select Not Input; CSN is an active low input; serial communication is  
enabled by pulling the CSN terminal low; CSN input should be set to low only when  
CLK is low; CSN has an internal pull-up resistor and requires CMOS logic level  
inputs.  
3
4
CLK  
SDI  
SPI Clock Input; clock input for shift register; CLK has an internal pull-down resistor  
and requires CMOS logic level inputs.  
SPI Data Input; receives serial data from the control device; serial data transmitted  
to SDI is a 16-bit control word with the Least Significant Bit (LSB) transferred first:  
the input has a pull-down resistor and requires CMOS logic level inputs; SDI will  
accept data on the falling edge of the CLK signal.  
5
SDO  
SPI Data Output; this tri-state output transfers diagnostic data to the control device;  
the output will remain tri-stated unless the device is selected by a low on Chip Select  
Not (CSN).  
6
7
8
GND  
n.c.  
Vs  
Ground  
Not connected  
Power Supply Input; block to GND directly at the IC with ceramic capacitor. Ensure  
to have no current flow from PIN8 to PIN9. PIN8 and PIN9 can be directly connected.  
9
Vs  
Power Supply Input; block to GND directly at the IC with ceramic capacitor. Ensure  
to have no current flow from PIN8 to PIN9. PIN8 and PIN9 can be directly connected.  
10  
11  
12  
13  
14  
15  
n.c.  
Not connected  
Vcc3 shunt  
Vcc3 base  
GND  
Vcc3REF  
INT  
PNP Shunt; External PNP emitter voltage.  
PNP Base; External PNP base voltage.  
Ground  
External PNP Output Voltage  
Interrupt Output, configuration Input; used as wake-up flag from SBC Stop Mode  
and indicating failures. Active low. Integrated pull up. During start-up used to set the  
SBC configuration. External Pull-up sets config 1/3, no external Pull-up sets config  
2/4.  
16  
17  
Vcc1 µc  
Vcc2  
Voltage Regulator Output; 5 V supply; to stabilize block to GND with an external  
capacitor.  
Voltage Regulator Output; 5 V supply; to stabilize block to GND with an external  
capacitor.  
18  
19  
20  
21  
22  
23  
24  
25  
26  
VccHSCAN  
CANH  
SPLIT  
CANL  
GND  
TxDCAN  
RxDCAN  
n.c.  
Supply Input; for the internal HS CAN cell.  
CAN High Line; High in dominant state.  
Termination Output; to support recessive voltage level of the bus lines.  
CAN Low Line; Low in dominant state.  
Ground  
CAN Transmit Data Input; integrated pull-up resistor.  
CAN Receive Data Output  
Not connected  
n.c.  
Not connected  
Data Sheet  
8
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Pin Configuration  
Pin  
27  
28  
29  
30  
31  
32  
33  
Symbol  
n.c.  
n.c.  
n.c.  
n.c.  
GND  
n.c.  
LH_SI  
Function  
Not connected  
Not connected  
Not connected  
Not connected  
Ground  
Not connected  
Limp Home side indicator; Side indicators 1.25Hz 50% duty cycle output; Open  
drain. Active LOW.  
34  
WK  
Monitoring / Wake-Up Input; bi-level sensitive input used to monitor signals  
coming from, for example, an external switch panel; also used as wake-up input;  
35  
36  
Limp Home  
LH_PL/Test  
Fail-Safe Function Output; Open drain. Active LOW.  
SBC SW Development Mode entry; Connect to GND for activation; Integrated pull-  
up resistor. Connect to VS or leave open for normal operation.  
Limp Home Pulsed Light output: Brake/rear light 100Hz 20% duty cycle output;  
Open drain. Active LOW.  
EDP  
-
Exposed Die Pad; For cooling purposes only, do not use it as an electrical ground.1)  
1) The exposed die pad at the bottom of the package allows better dissipation of heat from the SBC via the PCB. The exposed  
die pad is not connected to any active part of the IC and can be left floating or it can be connected to GND for the best EMC  
performance.  
Data Sheet  
9
Rev. 1.0, 2009-05-26  
TLE8261-2E  
State Machine  
4
State Machine  
4.1  
Block Description  
First battery connection  
(POR)  
AND  
config0 not active  
Condition / event  
SBC action  
SBC Init mode  
(256ms max after reset relaxation)  
Vcc1  
on  
Vcc2/3  
off  
WD  
conf  
SPI cmd  
SPI cmd  
CAN  
inact  
L.H.  
inact  
SPI cmd  
reset (initiated by SBC)  
SBC SW Flash mode  
SBC Normal mode  
Vcc1  
on  
Vcc2/3  
on/off  
WD  
Vcc1  
Vcc2/3  
on/off  
WD  
conf  
WD trig  
WD trig  
fixed  
on  
CAN  
CAN  
conf  
L.H.  
act/inact  
L.H.  
act/inact  
Tx/Rx  
SPI cmd  
SPI cmd  
OR  
SPI cmd  
SPI cmd  
WD failed  
NOT reset clamped  
(high or low)  
OR  
SBC Sleep mode  
SBC Stop mode  
NOT undervoltage  
at Vcc1  
Detection of falling edge at reset  
pin (any mode)  
Vcc2/3  
off  
WD  
off  
Vcc1  
off  
WD trig  
Vcc1  
Vcc2/3  
on/off  
WD  
OR  
WK event stored  
LH entry condition  
stored  
SPI cmd  
undervoltage reset at VCC1µC  
(any mode)  
fixed/off  
on  
CAN  
Wakable/  
off  
L.H.  
act/inact  
CAN  
wakable/  
off  
OR  
L.H.  
act/inact  
Restart entry  
condition stored  
Wake up event  
SBC Restart mode  
First battery connection  
1st (config1) or 2nd (config3) WD trig  
(POR)  
AND  
failure  
Vcc1  
Vcc2/3  
on/off  
Reset  
act.  
Init mode not successful  
Config 1/3:  
in Normal / Stop / SW Flash mode  
config0  
on  
Config 1/3:  
Reset clamped LOW (any  
mode)  
Reset clamped HIGH during restart/ init  
L.H.  
act/inact  
CAN  
waked or off  
SBC SW Development  
mode  
Vcc1  
Vcc2/3  
WD  
CAN, WK Wake-up  
OR  
Release of over temperature at Vcc1  
mode set mode set mode set  
(Wake-up event stored)  
(LH entry condition stored)  
L.H.  
CAN  
mode set mode set  
SBC Fail-Safe mode  
SBC Factory Flash mode  
Config 2/4:  
Reset clamped HIGH during Restart  
or Init mode  
1st (config2) or 2nd (config4) WD trig failure  
in Normal / Stop / SW Flash mode  
Vcc1  
Vcc2/3  
off  
WD  
off  
Vcc1  
ext.  
Vcc2/3  
off  
WD  
off  
off  
Config 2/4:  
Reset clamped LOW (any  
mode)  
Vcc1 over temperature shutdown  
OR  
L.H.  
act  
CAN  
L.H.  
CAN  
off  
sleep  
inact.  
V
S > VUV_ON & Undervoltage time  
out on VCC1  
Power mode managment8261.vsd  
Figure 3  
Power Mode Management  
Data Sheet  
10  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
State Machine  
4.2  
State Machine Description  
The System Basis Chip (SBC) offers ten operating modes: Power On Reset, Init, Normal, Restart, Software Flash,  
Sleep, Stop, Fail-Safe, Software Development, and Factory Flash Mode. The modes are controlled with one test  
pin and via three mode select bits MS2..0, within the SPI. Additionally, the SBC allows five configurations,  
accessed via two external pins and one SPI bit.  
4.2.1  
Configuration Description  
Table 1 provides descriptions and conditions for entry to the different configurations of the SBC.  
Table 1 SBC Configuration  
Configuration Description  
Test pin INT Pin WD to  
LH bit  
config 0  
config 1  
Software Development Mode  
0V  
n.a  
External  
pull-up  
n.a  
0
After missing the WD trigger for the first time, the state of Vcc1µC Open / VS  
remain unchanged, LH pin is active, SBC in Restart Mode  
config 2  
config 3  
After missing the WD trigger for the first time, Vcc1µC turns OFF,  
No ext.  
0
1
LH pin is active, SBC in Fail-Safe Mode  
pull-up  
After missing the WD trigger for the second time, the state of  
External  
pull-up  
V
cc1µC remain unchanged, LH pin is active, SBC in Restart  
Mode  
config 4  
After missing the WD trigger for the second time, Vcc1µC turns  
No ext.  
pull-up  
1
OFF, LH pin is active, SBC in Fail-Safe Mode  
In SBC SW Development Mode, Config 1 to 4 are accessible.  
4.2.2  
SBC Power ON Reset (POR)  
At VS > VUVON, the SBC starts to operate, by reading the test pin and then by turning ON Vcc1µC. When Vcc1µC  
reaches the reset threshold VRT1, the reset output remains activated for tRD1 and the SBC enters then the Init Mode.  
In the event that Vs decreases below VUVOFF, the device is completely disabled. For more details on the disable  
behavior of the SBC blocks, please refer to the chapter specific to each block.  
4.2.3  
SBC Init Mode  
At entering the SBC Init Mode, the SBC starts to read the Test pin. The SBC starts-up in SBC Init Mode, and, after  
powering-up, waits for the microcontroller to finish its startup and initialization sequences. Vcc2/3 are OFF and the  
Watchdog is configurable but not active. CAN is inactive and Limp Home output is inactive. From this transition  
mode, the SBC can be switched via SPI command to the desired operating mode, SBC Normal or Software Flash  
Mode. If the SBC does not receive any SPI command, or receive wrong SPI command (i.e. not send the device  
to SBC Normal or SBC SW Flash Mode) within a 256 ms time frame after the reset relaxation, it will enter into SBC  
Restart Mode and activate the Limp Home output.  
Note:In Init Mode it is recommended to send one SPI command that sets the device to Normal Mode, triggers the  
watchdog the first time and sets the required watchdog settings.  
Data Sheet  
11  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
State Machine  
4.2.4  
SBC Normal Mode  
SBC Normal Mode is used to transmit and receive CAN messages. In this mode, Vcc1µC is always “ON” Vcc2 and  
V
cc3 can be turned-on or off by SPI command. In Normal Mode the watchdog needs to be triggered. It can be  
configured via SPI, window watchdog and time-out watchdog is possible (default value is time-out 256 ms). All the  
wake-up sources can be inhibited in this mode. The Limp Home output can be enabled or disabled via SPI  
command. Via SPI command, the SBC can enter Sleep, Stop or Software Flash Mode. A reset is triggered by the  
SBC when entering the Software Flash Mode. It is recommended to send at first SPI command the watchdog  
setting. Please refer to Chapter 12.4.  
4.2.5  
SBC Sleep Mode  
During SBC Sleep Mode, the lowest power consumption is achieved by having the main and external voltage  
regulators switched-off. As the microcontroller is not supplied, the integrated Watchdog is disabled in Sleep Mode.  
The last Watchdog configuration is not stored. The CAN module is in Wake-capable or OFF modes and the Limp  
Home output is unchanged, as before entering the Sleep Mode. If a wake-up appears in this mode, the SBC goes  
into Restart Mode automatically. In Sleep Mode, not all wake-up sources should be inhibited, this is required to  
not program the device in a mode where it can not wake up. If all wake sources are inhibited when sending the  
SBC to Sleep Mode, the SBC does not go to Sleep Mode, the microcontroller is informed via the INT output, and  
the SPI bit “Fail SPI” is set. The first SPI output data when going to SBC Normal Mode will always indicate the  
wake up source, as well as the SBC Sleep Mode to indicate where the device comes from and why it left the state.  
Note:Do not change the transceiver settings in the same SPI command that sends the SBC to Sleep Mode.  
4.2.6  
SBC Stop Mode  
The Stop Mode is used as low power mode where the µC is supplied. In this mode the voltage regulator Vcc1µC  
remains active. The other voltage regulator (Vcc2/3) can be switched on or off.  
The watchdog can be used or switched off. If the watchdog is used the settings made in Normal Mode are also  
valid in Stop Mode and can not be changed.  
The CAN is not active. It can be selected to be off or used as wake-up source. If all wake up sources are disabled,  
(CAN, WK, cyclic wake) the watchdog can not be disabled, the SBC stays in Normal Mode and the watchdog  
continues with the old settings.  
If a wake-up event occurs the INT pin is set to low. The µC can react on the interrupt and set the device into Normal  
Mode via SPI. There is no automatic transition to SBC Normal Mode.  
There are 4 Options for SBC Stop Mode  
WD on (the watchdog needs to be served as in Normal Mode  
WD off (special sequence required see Chapter 10.2.4)  
Cyclic Wake up with acknowledge (interrupt is sent after set time and needs to be acknowledged by SPI read)  
Cyclic Wake-up, Watchdog off (interrupt is sent after set time)  
Cyclic Wake-Up Feature  
SBC Stop Mode supports the cyclic wake-up feature. By default, the function is OFF. It is possible to activate the  
cyclic wake-up via “Cyclic WK on/off” SPI bit. This feature is useful to monitor battery voltage, for example, during  
parking of the vehicle or for tracking RF data coming via the RF receiver. The Cyclic Wake-up feature sends an  
interrupt via the pin INT to the µC after the set time. The cyclic wake-up feature shares the same clock as the  
Watchdog. The time base set in the SPI for the Watchdog will be used for the cyclic wake-up. The timer has to be  
set before activating the function. With the cyclic wake-up feature the watchdog is not working as known from the  
other modes. In the case that both functions (Watchdog and cyclic wake-up) are selected, the cyclic wake-up is  
activated and each interrupt has to be acknowledged by reading the SPI Wake register before the next Cyclic  
Wake-Up comes. Otherwise, the SBC goes to SBC Restart Mode.  
Data Sheet  
12  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
State Machine  
4.2.7  
SBC Software Flash Mode  
SBC Software Flash Mode is similar to SBC Normal Mode regarding voltage regulators. In this mode, the Limp  
Home output can be set to active LOW via SPI and the communication on CAN is activated to receive flash data.  
The Watchdog configuration is fixed to the settings used before entering the SBC SW Flash Mode. When the  
device comes from SBC Normal Mode, a reset is generated at the transition.  
From the SBC Software Flash Mode, the SBC goes into SBC Restart Mode, the config setting has no influence  
on the behavior. A mode change to SBC Restart Mode can be caused by a SPI command, a time-out or Window  
Watchdog failure or an undervoltage reset. When leaving the SBC Software Flash Mode a reset is generated.  
4.2.8  
SBC Restart Mode  
They are multiple reasons to enter the SBC Restart Mode and multiple SBC behaviors described in Table 2.  
In any case, the purpose of the SBC Restart Mode is to reset the microcontroller.  
From SBC SW Flash Mode, it is used to start the new downloaded code.  
From SBC Normal, SBC Stop Mode and SBC SW Flash Mode it is reached in case of undervoltage on Vcc1µC  
or due to incorrect Watchdog triggering.  
,
From SBC Sleep Mode it is used to ramp up Vcc1µC after wake  
From SBC Init Mode, it is used to avoid the system to remain undefined.  
From SBC Fail-safe Mode it is used to ramp up Vcc1µC after wake or cool down of Vcc1µC.  
From SBC Restart Mode, the SBC goes automatically to SBC Normal Mode. The delay time tRDx is programmable  
by the “Reset delay” SPI bit. The Reset output (RO) is released at the transition. SBC Restart Mode is left  
automatically by the SBC without any microcontroller influence. The first SPI output data will provide information  
about the reason for entering Restart Mode. The reason for entering Restart Mode is stored and kept until the  
microcontroller reads the corresponding “LH0..2” or “RM0..1” SPI bits. In case of a wake up from Sleep Mode the  
wake source is seen at the interrupt bits (Configuration select 000), an interrupt is not generated.  
Entering or leaving the SBC Restart Mode will not result in deactivation of the Limp Home output (if activated).  
The first SPI output data when going to SBC Normal Mode will always indicate the reason for the SBC Restart  
event.  
Data Sheet  
13  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
State Machine  
Table 2  
SBC Restart Mode Entry Reasons and Actions  
SBC Mode and Configuration Entering reason  
Actions  
LH output  
ON  
Mode  
Config  
Vcc1µC  
remains ON LOW  
RO  
SPI Out Bits  
LH 0..2  
n.a  
Init Mode time-out  
Reset low from  
outside  
Init Mode  
n.a.  
Unchanged  
remains ON LOW  
RM 0..1  
config 1/3 Reset clamped  
ON  
unchanged  
ON  
remains ON LOW  
ramping up LOW  
LH 0..2  
RM 0..1  
LH 0..2  
n.a  
undervoltage reset  
config 1  
OFF after 1st  
ON after 2nd  
OFF after 1st  
RM 0..1 after 1st  
LH 0..2 after 2nd  
config 3  
config 4  
n.a.  
WD trigger failure  
remains ON LOW  
Normal1)  
RM 0..1 after 1st2)  
Reset low from  
outside  
Unchanged  
remains ON LOW  
RM 0..1  
config 1/3 Reset clamped  
ON  
remains ON LOW  
remains ON LOW  
remains ON LOW  
remains ON LOW  
LH 0..2  
RM 0..1  
RM 0..1  
RM 0..1  
n.a  
n.a  
n.a  
undervoltage reset  
SPI cmd  
WD trigger failure  
unchanged  
unchanged  
unchanged  
Software Flash  
Sleep  
Reset low from  
outside  
config 1/3 Reset clamped  
n.a.  
Unchanged  
remains ON LOW  
RM 0..1  
ON  
remains ON LOW  
ramping up LOW  
ramping up LOW  
LH 0..2  
WK bits register  
RM 0..1  
n.a  
n.a  
config 1  
Wake-up event  
undervoltage reset  
unchanged  
unchanged  
ON  
LH 0..2  
OFF after 1st  
ON after 2nd  
OFF after 1st  
RM 0..1 after 1st  
LH 0..2 after 2nd  
config 3  
config 4  
n.a.  
WD trigger failure  
remains ON LOW  
Stop1)  
RM 0..1 after 1st2)  
Reset low from  
outside  
Unchanged  
remains ON LOW  
RM 0..1  
config 1/3 Reset clamped  
ON  
ON  
unchanged  
remains ON LOW  
ramping up LOW  
ramping up LOW  
LH 0..2  
LH 0..2  
RM 0..1  
Fail-Safe  
n.a.  
n.a  
Wake-up event  
undervoltage reset  
Software  
Development  
Mode  
Reset low from  
outside  
config 1/3 Reset clamped  
n.a.  
Unchanged  
remains ON LOW  
RM 0..1  
LH 0..2  
ON  
remains ON LOW  
1) Config 2 will never enter Restart Mode in case of WD failure but directly Fail-Safe Mode  
2) Goes to Fail-Safe Mode after the second consecutive failure  
Data Sheet  
14  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
State Machine  
4.2.9  
SBC Fail-Safe Mode  
In SBC Fail-Safe Mode, all voltage regulators are OFF and the transceivers are in Wake-Capable Mode. The Limp  
Home output is active.  
Conditions to enter the SBC Fail-Safe Mode are:  
Watchdog trigger failure in configuration 2 or 4  
V
cc1µC undervoltage time-out in any configuration if VS is above VLHUV range.  
Temperature shutdown of Vcc1µC in any configuration.  
Reset clamped in Config. 2/4  
In case of Vcc1µC overtemperature shutdown, the SBC will latch and wait to cool down below the thermal hysteresis,  
and will go back to SBC Restart Mode.  
In case of a wake-up event, the SBC will go to SBC Restart Mode (not in case of Vcc1µC overtemperature  
shutdown), storing the wake-up event and resetting the Watchdog trigger failure counter. The first SPI output data  
when going to SBC Normal Mode will always indicate the reason for the SBC Fail-Safe Mode.  
4.2.10  
SBC Software Development Mode  
If the Test pin is connected to GND (Config 0 active) during powering-up, the SBC enters SBC Software  
Development Mode. SBC Software Development Mode is a super set of the other modes so it is possible to use  
all the modes of the SBC with the following difference. In SBC Software Development Mode, no reset is generated  
and VCC1µC is not switched off due to Watchdog trigger failure. If a Watchdog trigger failure occurs, it will be  
indicated by the INT output (reset bit). The SBC Fail-Safe Mode or SBC Restart Mode are not reached in case of  
wrong Watchdog trigger but the other reasons to enter these modes are still valid.  
4.2.11  
SBC Factory Flash Mode  
In this mode, the SBC is completely powered OFF and the microcontroller is supplied externally. The mode is  
detected when VCC1µC is powered from external and the voltage on Vs is not powered from external. The current  
flow out of Vs must be limited to the maximum rating. The external supply voltage should be below the absolute  
maximum rating stated in Chapter 5.1. The reset can be driven by an external circuit, or pulled high with a pull-up  
resistor.  
Note:Please respect the absolute maximum ratings when the device is in SBC Factory Flash Mode.  
Data Sheet  
15  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
General Product Characteristics  
5
General Product Characteristics  
5.1  
Absolute Maximum Ratings  
Absolute Maximum Ratings 1)  
Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Pos. Parameter  
Symbol  
Limit Values  
Unit Test Conditions  
Min.  
Max.  
Voltages  
5.1.1 Supply Voltage  
VS  
dVS/dt  
Vcc1µC/2/3 -0.3  
VCANH/L  
-0.3  
-0.5  
40  
5
5.5  
40  
40  
V
5.1.2 Supply Voltage Slew Rate  
5.1.3 Regulator Output Voltage  
5.1.4 CAN Bus Voltage (CANH, CANL)  
V/µs –  
V
V
V
-27  
-40  
5.1.5 Differential Voltage CANH, CANL, SPLIT VdiffESD  
CANH-CANL<|40 V|;  
CANH-SPLIT<|40 V|  
CANL-SPLIT<|40 V|;  
5.1.6 Input Voltage at VCCHSCAN  
5.1.7 Voltage at SPLIT, WK  
5.1.8 Voltage at LH_PL/Test  
5.1.9 Voltage at Vcc3base, Vcc3shunt, Vcc3REF  
5.1.10 Voltage at Limp Home (LH, LH_SI pin) VLH  
VCCHSCAN -0.3  
VSPLIT -27  
VTest,max -0.3  
5.5  
40  
40  
40  
40  
V
V
V
V
V
V
Vcc3base  
-0.3  
-0.3  
-0.3  
5.1.11 Logic Voltages Input Pin (SDI, CLK,  
VI  
VCC1µC  
+
+
0 V < VS < 28 V  
CSN, TxDCAN)  
0.3V  
0 V < VCC1µC < 5.5 V  
5.1.12 Logic Voltage Output PIN (SDO, RO,  
INT, RxDCAN)  
VDRI,RD  
-0.3  
VCC1µC  
V
0 V < VS < 28 V  
0.3V  
0 V < VCC1µC < 5.5 V  
Currents  
5.1.13 Reverse current on pin Vs  
-500  
mA VS < VCC  
IVS  
Temperatures  
5.1.14 Junction Temperature  
5.1.15 Storage Temperature  
ESD Susceptibility  
Tj  
Tstg  
-40  
-55  
150  
150  
°C  
°C  
5.1.16 Electrostatic Discharge Voltage at  
VESD  
VESD  
-6  
-2  
6
kV  
kV  
V
2) HBM (100 pF via  
CANH, CANL, SPLIT versus GND  
1.5 k)  
5.1.17 Electrostatic Discharge Voltage  
2
2) HBM (100 pF via  
1.5 k)  
3)  
5.1.18 Electrostatic Discharge CDM  
Corner Pins (Pin 1, 18, 19, 36)  
VESD_CDM -750  
_C  
750  
500  
3)  
Electrostatic Discharge CDM  
VESD_CDM -500  
V
1) Not subject to production test; specified by design  
2) ESD susceptibility Human Body Model “HBM” according to JESD22-A114  
3) ESD susceptibility Charged Device Model “CDM” according to ESDA STM5.3.1  
Note:Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Data Sheet  
16  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
General Product Characteristics  
Note:Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
5.2  
Functional Range  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Test Conditions  
Min.  
VUV OFF  
Max.  
28  
5.2.1  
5.2.2  
Supply Voltage  
Supply Voltage  
VS  
VS  
V
V
After VS rising above  
1)  
VUV ON  
;
2)  
VUV OFF  
40  
t
= 400 ms  
pulse  
40 V load dump;  
Ri = 2Ω  
5.2.3  
5.2.4  
5.2.5  
5.2.6  
5.2.7  
5.2.8  
SPI Clock Frequency  
SPI Clock Frequency  
Junction Temperature  
Undervoltage “OFF”  
Undervoltage “ON  
fclkSPI  
fclkSPI  
Tj  
VUV OFF  
VUV ON  
VS_LH  
-40  
3
4.5  
5.5  
4
1
150  
4
5.5  
40  
MHz  
MHz  
°C  
V
V
V
3)VS > 5.5 V  
If VUV ON> VS> VUV OFF;  
1)  
-
-
1)  
Supply Voltage for Limp Home  
Output Active  
Pull up to VS  
RLHO = 40kΩ  
1) In the case Vs < VUVOFF, the SBC is switched OFF and will restart in INIT Mode at next Vs rising.  
2) During load dump, the others pins remains in their absolute maximum ratings  
3) Not subject to production test, specified by design  
Note:Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics table.  
Data Sheet  
17  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
General Product Characteristics  
5.3  
Thermal Characteristics  
Pos.  
5.3.1  
Parameter  
Symbol  
Limit Values  
Unit  
Test Conditions  
Min.  
Typ.  
Max.  
Junction Ambient  
RthJA_1L  
RthJA_4L  
RthJSP  
40  
K/W  
K/W  
K/W  
1) 3) 300 mm2  
cooling area  
Junction Ambient  
25  
5
2) 3)2s2p + 600 mm2  
cooling area  
3)  
5.3.2  
Junction to Soldering Point  
Thermal Prewarning and Shutdown Junction Temperatures;  
3)  
5.3.3  
5.3.4  
5.3.5  
5.3.6  
5.3.7  
5.3.8  
5.3.9  
V
CC1µC, Thermal Pre-warning  
ON Temperature  
CC1µC, Thermal Prewarning  
Hysteresis  
TjPW  
120  
145  
25  
170  
°C  
K
-
3)  
3)  
3)  
3)  
3)  
3)  
V
TPW  
VCC1µC,  
V
CC2 Thermal Shutdown  
TjSDVcc  
TSDVcc  
150  
185  
35  
200  
°C  
K
Temperature  
VCC1µC, VCC2 Thermal Shutdown  
Hysteresis  
VCC1µC, Ratio of SD to PW  
Temperature  
CAN Transmitter Thermal  
Shutdown Temperature  
CAN Transmitter Thermal  
Shutdown Hysteresis  
TjSDVcc/  
1.20  
TjPW  
TjSDCAN  
150  
200  
°C  
K
TCAN  
10  
1) Specified Rthja value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 single layer. The product (chip +  
package) was simulated on a 76.4 x 114.3 x 1.5 mm board.  
2) According to Jedec JESD51-2,-5,-7 at natural convection on 2s2p board for 2W. Board: 76.2x114.3x1.5mm³ with 2 inner  
copper layers (35µm thick)., with thermal via array under the exposed pad contacted the first inner copper layer and  
600mm2 cooling are on the top layer (70µm)  
3) Not subject to production test; specified by design;  
Data Sheet  
18  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
General Product Characteristics  
5.4  
Current Consumption  
VS = 5.5 V to 28 V; all outputs open; Without VCC3; Tj = -40 °C to +150 °C; all voltages with respect to ground;  
positive current defined flowing into pin; unless otherwise specified.  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Test Condition  
Min.  
Typ.  
Max.  
Normal Mode;  
5.4.1  
5.4.2  
Current Consumption for IVS_logic  
2
mA  
SBC Normal Mode  
Internal Logic  
ICC1µC = ICC2 = 0mA;  
CAN OFF mode;  
Additional current  
Consumption for CAN Cell  
IVS_CAN  
10  
mA  
mA  
CAN Normal Mode;  
Recessive state; VCC2  
connected to VCCHSCAN  
V
TxD = Vcc1µC  
;
without RL  
12  
75  
CAN Normal Mode;  
dominant state; VCC2  
connected to VCCHSCAN  
V
TxD = low;  
without RL;  
Stop Mode  
5.4.3  
Current Consumption  
IVS  
58  
µA  
µA  
SBC Stop Mode;  
Vs = 13.5 V;  
V
V
CC1µC“ON”;  
CC2/3“OFF”  
CAN wake capable;  
Tj = 25°C  
65  
70  
85  
90  
Tj = 85°C1)  
SBC Stop Mode;  
Vs = 13.5 V;  
V
V
CC1µC/2“ON”;  
CC3“OFF”  
CAN wake capable;  
Tj = 25°C  
78  
100  
Tj = 85°C1)  
Data Sheet  
19  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
General Product Characteristics  
5.4  
Current Consumption (cont’d)  
VS = 5.5 V to 28 V; all outputs open; Without VCC3; Tj = -40 °C to +150 °C; all voltages with respect to ground;  
positive current defined flowing into pin; unless otherwise specified.  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Test Condition  
Min.  
Typ.  
Max.  
Sleep Mode  
5.4.4  
5.4.5  
Current consumption, all IVS_sleep_  
28  
40  
µA  
SBC Sleep Mode;  
Tj = 25°C  
Wake Up Sources  
SBC  
available.  
Vs = 13.5 V;  
V
CC1µC/2/3“OFF”  
CAN wake capable;  
32  
12  
50  
Tj = 85°C1)  
Quiescent Current  
Reduction when Wake  
Capable CAN Cell  
Disabled  
IVS_sleep_  
CAN  
5
µA  
1)SBC Sleep Mode;  
Tj = 25°C;  
VS = 13.,5 V;  
V
CC1µC/2/3“OFF”  
CAN OFF  
1) Not subject to production test; specified by design  
Data Sheet  
20  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Internal Voltage Regulator  
6
Internal Voltage Regulator  
6.1  
Block Description  
VCC1µC  
Vs  
VCC2  
Vref  
1
State  
Machine  
Overtemperature  
Bandgap  
Shutdown  
Reference  
INH  
1
Vref  
Charge  
Pump  
INTERNAL REGULATOR DIAGRAM.VSD  
GND  
Figure 4  
Functional Block Diagram  
The internal voltage regulators are dual low-drop voltage regulators that can supply loads up to ICC1µC/2_max. An  
input voltage up to VSMAX is regulated to Vcc1µC/2_nom = 5.0 V with a precision of 2%. Due to its integrated reset  
circuitry, featuring two SPI configurable power-on timing (tRDx) and three SPI configurable output voltages (VRTx  
)
monitoring, the device is well suited for microcontroller supply. The design enables stable operation even with  
ceramic output capacitors down to 470nF, with ESR < 1 @ f = 10 kHz. The device is designed for automotive  
applications, therefore it is protected against overload, short circuit, and overtemperature conditions. Figure 4  
shows the functional block diagram. If the VS voltage is lower than VUV_OFF, the DMOS of the voltage regulator is  
switched to high impedance. The body diodes of the DMOS might go into conduction when VCC1µC or VCC2 > VS  
(no reverse protection).  
6.2  
Internal Voltage Regulator Modes  
It is possible to turn Vcc1µC via SBC Modes and Vcc2 activity ON or OFF via SPI command or by entering SBC  
modes. The limiting current for the both regulators is ICC1µC_max/ICC2  
.
6.3  
Internal Voltage Regulator Modes with SBC Mode  
Depending on the SBC Mode in use, Vcc1µC and Vcc2 can be either ON or OFF by definition, Vcc2 can be also turned  
ON or OFF, via SPI. Table 3 identifies the possible states of the voltage regulators, based on the various SBC  
modes.  
Data Sheet  
21  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Internal Voltage Regulator  
Table 3  
SBC Mode  
Internal Voltage Regulators States  
Vcc1µC  
Vcc2  
INIT Mode  
ON  
ON  
OFF  
ON  
ON  
ON  
OFF  
OFF  
ON  
OFF  
unchanged  
ON  
Normal Mode  
Sleep Mode  
Restart Mode  
Software Flash Mode  
Stop Mode  
OFF  
OFF  
OFF  
ON  
OFF  
Fail-Safe Mode  
6.4  
Application information  
Timing Diagram  
6.4.1  
Figure 5 shows the ramp up and down of the VS, and the dependency of Vcc1µC. At the first ramp up from SBC Init  
Mode, the reset threshold VRT and time tRO are set to the default value. See Chapter 10.1  
Vs  
VUV ON  
VUV OFF  
t
t
Vcc1µC  
VRTx,r  
VRTx,f  
GND  
RO  
SBC OFF  
SBC Init  
Any mode  
SBC OFF  
t
Figure 5  
Ramp up / Down of Main Voltage Regulator  
An undervoltage time-out on Vcc1µC is implemented. Refer to Chapter 12 for more information on this function.  
6.4.2  
Under voltage detection at Vcc2  
The Vcc2 voltage regulator integrates an under voltage detection. When Vcc2 voltage goes below VUV_VCC2, the  
failure is indicated by an interrupt and the failure is reported into the diagnosis frame of the SPI.  
Data Sheet  
22  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Internal Voltage Regulator  
6.5  
Electrical Characteristics  
VS = 5.5 V to 28 V; CCC1µC = CCC2 = 470 nF; all outputs open; SBC Normal Mode;  
Tj = -40 °C to +150 °C; all voltages with respect to ground; positive current defined flowing into pin; unless  
otherwise specified.  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
Min.  
Typ.  
Max.  
Voltage Regulator; Pin Vcc1 µC  
6.5.1  
6.5.2  
6.5.3  
6.5.4  
6.5.5  
Output Voltage  
Line Regulation  
Load Regulation  
VCC1µC  
4.9  
5.0  
5.1  
20  
50  
V
0 mA <ICC1µC<200 mA;  
5.5 V < VS < 28 V;  
mV 6 V < VS < 16 V;  
CC1µC = 0 A  
VCC1µC,Li  
VCC1µC,Lo  
PSRR  
I
mV 5 mA <ICC1µC<200 mA;  
VS = 6 V  
Power Supply Ripple  
Rejection  
Output Current Limit  
40  
dB  
Vr = 1 Vpp;  
fr = 100 Hz;1)  
Icc1µC max  
200  
500  
mA  
Vcc1µC = 4.5 V;  
power transistor thermally  
monitored;  
6.5.6  
Drop Voltage  
VDR Vcc1µC  
0.5  
V
V
I
CC1µC = 150 mA; 2)  
Voltage Regulator; Pin Vcc2  
6.5.7  
6.5.8  
6.5.9  
6.5.10  
6.5.11  
Output Voltage  
Line Regulation  
Load Regulation  
VCC2  
4.9  
5.0  
5.1  
20  
50  
0 <ICC2<200 mA;  
5.5 V < VS < 28 V;  
VCC2,Li  
VCC2,Lo  
PSRR  
Icc2  
mV 6 V < VS < 16 V;  
I
CC2 = 0 A;  
mV 5 mA <ICC2<200 mA;  
VS = 6 V  
Power Supply Ripple  
Rejection  
Output Current Limit  
40  
dB  
Vr = 1 Vpp;  
fr = 100 Hz;1)  
200  
500  
mA  
Vcc2 = 4.5 V;  
power transistor thermally  
monitored;  
6.5.12  
6.5.13  
Drop Voltage  
Under voltage detection  
on Vcc2  
VDR_Vcc2  
VUV_VCC2  
4.5  
4.65  
0.5  
4.8  
V
V
I
CC2 = 150 mA;2)  
VCC2 falls until INT = LOW  
1) specified by design; not subject to production test.  
2) Measured when the output voltage has dropped 100 mV from the nominal Value obtained at Vs = 13.5 V. Specified drop  
voltage for Vs > 4 V.  
Data Sheet  
23  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
External Voltage Regulator  
7
External Voltage Regulator  
7.1  
Block Description  
V
cc3 is activated via SPI. The external voltage regulator circuitry is designed to drive an external PNP transistor to  
increase output current flexibility. Four pins are used: VS, Vcc3base, Vcc3shunt and Vcc3ref. One transistor is tested  
during production. An input voltage up to VSMAX is regulated to VQ,nom = 5.0 V with a precision of ±4%. The output  
current of the transistor is monitored via an external shunt resistor. The state of Vcc3 is reported in the diagnostic  
SPI register. When battery voltage is below the minimum operating battery voltage Vs < VVextUV, the external  
voltage regulator switches off. Figure 7 shows the behavior during this phase. The shunt is used for overcurrent  
limitation. If this feature is not needed, connect pins Vcc3shunt and Vs together.  
Since the junction temperature of the external PNP transistor cannot be read, it cannot be protected against over  
temperature by the SBC, and so the thermal behavior has to be checked by the application.  
VS  
Vcc3shunt  
Vcc 3base  
Vcc 3ref  
RBE  
VS-VCC3shunt  
>
ICC3base  
Vshunt_threshold  
+
-
VREF  
State machine  
External voltage diagram .vsd  
Figure 6  
Functional Block Diagram  
7.2  
External Voltage Regulator Mode  
It is possible to turn the Vcc3 ON or OFF via SPI command, depending on the SBC modes. Table 4 identifies the  
possible states, based on the different SBC modes.  
7.3  
External Voltage Regulator State by SBC Mode  
Table 4 shows the possible states of the Vcc3 external voltage regulator as a function of the SBC mode.  
Table 4  
External Voltage Regulator State by SBC Mode  
SBC Mode  
INIT Mode  
Vcc3  
OFF  
Normal Mode  
Sleep Mode  
ON  
OFF  
OFF  
Restart Mode  
SW Flash Mode  
Stop Mode  
Unchanged  
ON  
ON  
OFF  
OFF  
Fail-Safe Mode  
OFF  
Data Sheet  
24  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
External Voltage Regulator  
7.4  
Application Information  
Timing information  
7.4.1  
Figure 7 shows the typical timing, ramp up and ramp down of the External Voltage Regulator, in regards to the VS  
pin.  
Vs  
VVextUV  
VUV_OFF  
t
Vcc3  
Vcc3  
SPI  
GND  
t
Undervoltage Managment vcc 3.vsd  
Figure 7  
Supply Voltage Management  
7.4.2  
External Components  
During production test, the listed parameter are tested with the PNP transistor MJD253 from ON semi.  
Characterization is done with the BCP52-16 from Infineon (ICC3<200 mA). Other PNP transistors can be used.  
Function must be checked in the application.  
Figure 8 shows the hardware set up used.  
VS  
VCC3  
RSHUNT  
T1  
ICC3  
C2  
C1  
Vcc3shunt  
Vcc3ref  
VS  
Vcc3base  
RBE  
VS-VCC3shunt  
>
ICC3base  
Vshunt_threhold  
+
-
VREF  
State machine  
External voltage diagram_appli_note.vsd  
Figure 8  
Hardware Set Up  
Data Sheet  
25  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
External Voltage Regulator  
Table 5  
Device  
C2  
RSHUNT  
T1  
Bills of material for the VCC3 function  
Vendor  
Murata  
-
Reference / Value  
10µF/10V GCM31CR71AA106K  
220mΩ  
MJD253  
ON semi  
7.4.3  
Calculation of RSHUNT  
The maximum current ICC3max where the limit starts and the bit ICC3>ICC3max is set is determined by the shunt  
resistor RShunt and the Output Current Shunt Voltage Threshold Vshunt_threshold  
.
The resistor can be calculated as following  
U
shunt_threshold  
R
= --------------------------------------  
SHUNT  
I
CC3max  
7.4.4  
Unused Pins  
In case the Vcc3 is not used in the application, it is recommended to connect the unused pins of Vcc3 as followed.  
Connect Vcc1shunt to Vs. (It is also possible to leave the pin open)  
Leave Vcc3base open  
Leave Vcc3ref open  
Do not enable the Vcc3 via SPI as this leads to increased current consumption.  
Data Sheet  
26  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
External Voltage Regulator  
7.5  
Electrical Characteristics  
VS = 5.5 V to 28 V; SBC Normal Mode; all outputs open;  
Tj = -40 °C to +150 °C; all voltages with respect to ground; positive current defined flowing into pin; unless  
otherwise specified.  
Pos.  
Parameter  
Symbol Limit Values  
Unit  
Test Condition  
Min.  
Typ.  
Max.  
Parameters independent from test set-up  
7.5.1  
External Regulator  
Control Drive Current  
Capability  
Icc3base 20  
70  
mA  
V
CC3base = 28V  
7.5.2  
7.5.3  
Input Current Vcc3ref  
Icc3ref  
10  
25  
25  
50  
50  
µA  
µA  
V
V
cc3ref = 5 V  
cc3shunt = VS  
Input Current Vcc3 Shunt Icc3shunt 10  
Pin  
7.5.4  
7.5.5  
7.5.6  
7.5.7  
V
CC3 Undervoltage  
VCC3,UV 4.0  
VCC3,UV, 20  
4.25  
100  
110  
-
4.5  
250  
130  
5
V
Detection  
V
CC3 Undervoltage  
mV  
mV  
µs  
detection hysteresis  
hys  
1)  
Output Current Shunt  
Voltage Threshold  
Current increase  
regulation reaction time  
Vshunt_thr 88  
eshold  
trIinc  
-
V
cc3 = 6V to 0V;  
I
CC3base,50% = 20mA  
Figure 9  
cc3 = 0V to 6V; ICC3base,50%  
= 20mA Figure 9  
CC3base = VS  
Tj = 25°C  
CC3ref = 5V  
Tj = 25°C  
CC3shunt = VS  
Tj = 25°C  
7.5.8  
Current decrease  
trIdec  
-
-
-
5
5
2
5
µs  
V
regulation reaction time  
7.5.9  
Leakage current ofVcc3base Icc3base_lk  
-
µA  
µA  
µA  
V
when Vcc3 disabled  
7.5.10  
7.5.11  
Leakage current of Vcc3ref Icc3ref_lk -2  
0
-
V
when Vcc3 disabled  
Leakage current of  
Icc3shunt_l  
k
-
V
V
cc3shunt when Vcc3  
disabled  
7.5.12  
7.5.13  
7.5.14  
Base to emitter resistor  
RBE  
50  
100  
-
200  
5.5  
-
kΩ  
V
V
V
CC3base = VS - 0.3V  
CC3 OFF  
External regulator  
minimum Vs voltage  
External regulator  
minimum Vs voltage  
hysteresis  
VVextUV 4.5  
VVextUVhy  
s
-
0.2  
V
Parameters dependent on the test set-up, according to the Figure 8  
7.5.15  
External Regulator Output Vcc3  
4.8  
5
5.2  
V
0 mA <ICC3<400 mA;  
5.5 V < VS < 28 V;2)  
Voltage  
7.5.16  
7.5.17  
Load Regulation  
Line Regulation  
VCC3,Lo  
VCC3,Li  
-
-
-
-
50  
50  
mV  
mV  
2 mA <ICC3<200 mA;  
6 V < VS <16 V;  
1) Threshold at which the current limitation starts to operate.  
2) Tolerance includes load regulation and line regulation.  
Data Sheet  
27  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
External Voltage Regulator  
Timing diagram for regulator reaction time “current increase regulation reaction time” and “current decrease  
regulation reaction time”  
VCC3  
t
ICCbase  
ICC3base,50%  
trlinc  
trldec  
t
Figure 9  
Regulator Reaction Time  
Data Sheet  
28  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
High Speed CAN Transceiver  
8
High Speed CAN Transceiver  
8.1  
Block Description  
VccHSCAN  
VCC1µC  
SPI Mode  
Control  
RTD  
Driver  
CANH  
CANL  
Output  
Stage  
TxDCAN  
Temp.-  
Protection  
+
timeout  
To SPI diagnostic  
VccHS CAN  
RxD Diag  
VCC1µC  
RxDCAN  
MUX  
Receiver  
R SPLIT  
SPLIT  
GND  
Vs  
Wake  
Receiver  
V SPLIT  
can block .vsd  
Figure 10 Functional Block Diagram  
8.2  
High-speed CAN Description  
The Controller Area Network (CAN) transceiver part of the SBC provides high-speed (HS) differential mode data  
transmission (up to 1 Mbaud) and reception in automotive and industrial applications. It works as an interface  
between the CAN protocol controller and the physical bus lines compatible to ISO/DIS 11898-2 and 11898-5 as  
well as SAE J2284.  
The CAN transceiver offers low power modes to reduce current consumption. This supports networks with partially  
powered down nodes. To support software diagnostic functions, a CAN Receive-only Mode is implemented.  
It is designed to provide excellent passive behavior when the transceiver is switched off (mixed networks,  
clamp15/30 applications).  
A wake-up from the CAN Wake capable Mode is possible via a message on the bus. Thus, the microcontroller can  
be powered down or idled and will be woken up by the CAN bus activities.  
Refer to Figure 11 for a description of the matching of the transceiver modes with the SBC mode.  
The CAN transceiver is designed to withstand the severe conditions of automotive applications and to support  
12 V applications.  
Data Sheet  
29  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
High Speed CAN Transceiver  
8.2.1  
CAN Normal Mode  
To transfer the CAN transceiver into the CAN Normal Mode, an SPI word must be sent. This mode is designed for  
normal data transmission/reception within the HS CAN network. It can be accessed in Normal Mode of the SBC,  
as well as in SBC Software Flash Mode, and SBC Software Development Mode.  
Transmission  
The signal from the microcontroller is applied to the TxDCAN input of the SBC. The bus driver switches the  
CANH/L output stages to transfer this input signal to the CAN bus lines.  
Reduced Electromagnetic Emission  
To reduce electromagnetic emissions (EME), the bus driver controls CANH/L slopes symmetrically.  
Reception  
Analog CAN bus signals are converted into digital signals at RxD via the differential input receiver. In CAN Normal  
and CAN Receive Only Mode, the split pin is used to stabilize the Recessive Common Mode signal. The RxD pin  
is diagnosed and the detected failure is reported to the SPI diagnostic register.  
8.2.2  
CAN Wake Capable Mode  
This mode, which can be used in SBC Stop, Sleep, Restart and Normal Modes by programming via SPI and is  
automatically accessed in SBC Fail-Safe Mode, is used to monitor bus activities. A wake up signal on the bus  
results in different behavior of the SBC, as described in Table 6. After wake-up the transceiver can be switched  
to CAN Normal Mode for communication. To enable the CAN wakeable mode after a wake via CAN, the CAN  
transceiver must be switched to CAN Normal Mode, CAN Receive Only Mode or CAN Off, before switching to CAN  
Wakeable Mode again.  
Table 6  
SBC Mode  
Action Due to a CAN Wake Up  
SBC Mode after wake  
Vcc1µC  
INT  
RxD  
Int. Bit  
WK CAN  
Sleep Mode  
Stop Mode  
Restart Mode  
Fail-Safe Mode  
Normal Mode  
Restart Mode  
Stop Mode  
Restart Mode  
Restart Mode  
Normal Mode  
Ramping up  
ON  
Ramping up / ON  
Ramping up  
ON  
HIGH  
LOW1)  
HIGH  
HIGH  
LOW1)  
LOW  
LOW  
LOW  
LOW  
LOW  
1
1
1
1
1
1) When not masked via SPI  
Wake-Up in SBC Sleep Mode  
Wake-up is possible via a CAN message (filtering time t > tWU), it automatically transfers the SBC into the SBC  
Restart Mode and from there to Normal Mode the RxD pins in set to LOW, see Figure 11. The microcontroller is  
able to detect the low signal on RxD and to read the wake source out of the “Wake Register Interrupt” register  
(000) via SPI. No Interrupt is generated when coming out of Sleep Mode.  
Data Sheet  
30  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
High Speed CAN Transceiver  
CAN_H  
CAN_L  
WAKE  
Communication  
starts  
PATTERN  
BUS  
WAIT  
BUS  
OFF  
t
t
Vdiff  
Vcc1µC/  
HSCAN  
tWU  
t
RxD  
CAN Wake  
CAN Waked  
CAN Normal mode  
capable mode  
t
SPI command  
RO  
tROx  
SBC Restart  
SBC Sleep mode  
SBC Normal mode  
t
Application with sleep .vsd  
Figure 11 Timing during Transition from Sleep to Normal Mode  
Wake-Up in SBC Stop Mode  
In SBC Stop Mode, if a wake-up is detected, it is signaled by the INT output and by the “WK CAN” SPI bit. It is  
also signaled by RxDCAN put to low. The microcontroller should set the device to SBC Normal Mode, there is no  
automatic transition to Normal Mode. In Normal Mode the transceiver can be enabled via SPI.  
Wake-Up in SBC Restart or SBC Fail-Safe Mode  
In SBC Restart or SBC Fail-Safe Mode, if a wake-up is detected, it is signaled by the “WK CAN” SPI bit.  
Wake-Up in SBC Normal Mode  
In SBC Normal Mode, if a wake-up is detected, it is signaled by the “WK CAN” SPI bit and INT output, and RxD  
remains LOW.  
Data Sheet  
31  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
High Speed CAN Transceiver  
8.2.3  
CAN OFF Mode  
CAN OFF Mode, which can be accessed in the SBC Stop, Sleep, Restart and Normal modes, and automatically  
accessed in SBC Init and Factory Flash modes, is used to completely stop CAN activities. In CAN OFF Mode, a  
wake up event on the bus will be ignored.  
8.2.4  
CAN Receive Only Mode  
In CAN Receive Only Mode (RxD only), the driver stage is de-activated but reception is still operational. This mode  
is accessible by an SPI command.  
8.2.5  
CAN Cell in Disabled State  
During disable state, when Vs < VUV_OFF, the CAN cell does not have enough supply voltage. In this state, the  
CANH and CANL pins are set to high impedance, to guarantee passive behavior. The maximum current that can  
flow in the CANH and CANL pins in this mode are specified by ICANH,lk and ICANL,lk  
.
8.3  
CAN Cell Mode with SBC Mode  
Table 7 shows all the CAN modes accessible to the current SBC Mode. Automatic transition from one CAN mode  
to an other is only allowed in the same column.  
.
Table 7  
HS CAN States, Based on SBC modes  
SBC Mode  
INIT Mode  
CAN Mode  
OFF  
Normal Mode  
Stop Mode  
Sleep Mode  
Restart Mode  
Fail-Safe Mode  
SW Flash Mode  
OFF  
OFF  
OFF  
OFF  
Wake capable  
Normal  
Wake capable  
Wake capable  
Wake capable  
Wake capable  
Normal  
Receive only  
8.3.1  
SBC Normal Transition to Sleep or Stop Mode  
During the transition from SBC Normal to Sleep or Stop Modes, the receiver module is deactivated and replaced  
by the low power mode receiver for wake-up capability. The next message can be only a wake-up call. It is possible  
to set the SBC directly from SBC Normal Mode (with CAN Normal Mode) to SBC Sleep or Stop Mode, but this is  
not recommended, because a wake pattern on the CAN network that could occurs during SPI communication  
could get lost. It is preferable, in SBC Normal Mode to first send the CAN transceiver into CAN Wake Capable  
Mode, and then set the entire device to SBC Sleep or Stop Mode. In the unlikely case that the device would see  
a wake up call during the transmission order “SBC go to sleep”, the device will store this event and bypass the  
“SBC go to sleep” command to go back into SBC Restart Mode.  
Do not change the Transciever setting with the same SPI command that is used to sent the device to Sleep Mode.  
8.3.2  
Transition from SBC Sleep to other Modes  
In SBC Sleep Mode, a wake-up on the CAN cell will set the SBC to Restart Mode automatically if the CAN Wake  
Capable Mode of the SBC is selected via SPI. Figure 11 shows the typical timing.  
Data Sheet  
32  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
High Speed CAN Transceiver  
8.4  
Failure Detection  
All failures are reported in the SPI diagnostic encoder, the TxD time-out is reported as TxD shorted to GND. In  
case of local failure and Bus Dominat Clamped failure, the transceiver is automatically switched to the CAN  
Receive only Mode.  
8.4.1  
TxD Time-out Feature  
If the TxD signal is dominant for a time t > tTxD, the TxD time-out function deactivates the transmission of the signal  
at the bus. This is implemented to prevent the bus from being blocked permanently due to an error. The  
transmission is released after switching the CAN to Active Mode via SPI. Refer to Figure 12.  
TxD Time-out  
SPI setting: CAN  
Interrupt  
TxDCAN  
Normal Mode  
VCC1µC  
GND  
t
t
Vdiff  
tTxD_TO  
Txd timeout .vsd  
Figure 12 TxD Time-out diagram  
8.4.2  
Bus Dominant Clamping  
If the HS CAN bus signal in dominant for a time t > tBUS_TO, a bus dominant clamping is detected. The CAN  
transceiver is switched to Receive Only Mode. The failure is signaled via SPI. If the bits are not masked the INT  
pin is set to low. For operation the transceiver needs to be switched back to Normal Mode via SPI.  
8.4.3  
TxD to RxD Short Circuit Feature  
Similar to the TxD time-out, a TxD to RxD short circuit would also block the bus communication. To avoid this, the  
CAN transceiver provides TxD to RxD short circuit detection. In this case, it is recommended to switch OFF the  
SBC HS CAN supply (e.g. Vcc2) via SPI command to prevent disturbances on the CAN bus. This failure is reported  
into the diagnostic frame of the SPI. The INT pin is set LOW if not disabled via SPI. The transmitter is automatically  
inhibited and goes back to normal operation after a SPI command.  
8.4.4  
Overtemperature  
The driver stages are protected against overtemperature. Exceeding the shutdown temperature results in  
deactivation of the CAN transceiver. The CAN transceiver is activated gain after cooling down, the device stays in  
CAN Active Mode. To avoid a bit failure after cooling down, the signals can be transmitted again only after a  
dominant to recessive edge at TxD.  
Figure 13 shows how the transmission stage is deactivated and activated again. First, an overtemperature  
condition causes the CAN transceiver to be deactivated. After the overtemperature condition is no longer present,  
the transmission is released automatically after the TxD bus signal has changed to recessive level.  
Data Sheet  
33  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
High Speed CAN Transceiver  
Failure  
Overtemp  
ON  
Overtemperature  
OFF  
t
t
TxDCAN  
VCC1µC  
GND  
Vdiff  
R
Dominant  
D
Recessive  
t
Figure 13 Release of the Transmission after Overtemperature  
8.4.5  
Permanent RxD Recessive Clamping  
If the RxD signal is permanently recessive (such as shorted to Vcc1µC), although there is a message sent on the  
bus, the host microcontroller of this transceiver could start a message at any time because the bus appears to be  
idle. To prevent this node from disturbing communication on the bus, the SBC offers permanent RxD recessive  
clamping. If the RxD signal is permanently recessive, the failure is diagnosed and the transmitter is deactivated  
as long as the error occurs. The transmitter is reactivated after an SPI command.  
8.4.6  
VccHSCAN Undervoltage  
The CAN transceiver cell has no dedicated under voltage detection and use the VCC2 or VCC3 under voltage  
circuitry. The µC can switch of the CAN in case of undervoltage.  
8.4.7  
Bus failures  
In case one of the following bus failures is detected by the SBC the interrupt bit CAN BUS is set to “1” and an  
interrupt is generated, if not masked. The CAN transceiver does not change the mode due to a detected bus  
failure.  
Bus Failures  
CANH short to GND  
CANH short to Vs  
CANH short to Vcc  
CANL short to GND  
CANL short to Vs  
CANL short to Vcc  
A short of CANH to CANL is detected by the microcontroller as the signal sent on TxD is not received on RxD.  
8.5  
SPLIT Circuit  
SPLIT circuitry is activated during CAN Normal and Receive Only Mode and de-activated (SPLIT pin high ohmic)  
during CAN Wake Capable and OFF Modes. The SPLIT pin is used to stabilize the recessive common mode signal  
in Normal Mode and RxD Only Mode. This is achieved with a stabilized voltage of 0.5 x VccHSCAN typical at SPLIT.  
A correct application of the SPLIT pin is shown in Figure 14. The SPLIT termination for the left and right nodes is  
implemented with two 60 resistors and one 10 nF capacitor. The center node in this example is a stub node and  
the recommended value for the split resistances is 1.5 k.  
Data Sheet  
34  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
High Speed CAN Transceiver  
In the case the application doesn’t request the SPLIT pin feature, the pin has to be left open.  
CANH  
CANH  
60Ohm  
60Ohm  
TLE 6251 DS  
TLE 8264  
CAN  
Bus  
split  
termination  
split  
termination  
SPLIT  
SPLIT  
10nF  
10nF  
60Ohm  
60Ohm  
CANL  
CANL  
10nF  
1,5 kOhm  
split  
1,5 kOhm  
termination  
at stub  
CANH  
SPLIT  
CANL  
TLE 6251 G  
NERR  
Figure 14 Application example for the SPLIT Pin  
.
Data Sheet  
35  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
High Speed CAN Transceiver  
8.6  
Electrical Characteristics  
4.75 V < VccHSCAN < 5.25 V; VS = 5.5 V to 28 V; RL = 60 ; CAN Normal Mode; Tj = -40 °C to +150 °C; all voltages  
with respect to ground; positive current flowing into pin; unless otherwise specified.  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
Min.  
Typ.  
Max.  
CAN Bus Receiver  
8.6.1  
8.6.2  
Differential Receiver  
Vdiff,rd_N  
0.80  
0.90  
V
V
V
diff = VCANH - VCANL  
Threshold Voltage,  
recessive to dominant  
edge  
CAN Normal Mode  
Differential Receiver  
Threshold Voltage,  
dominant to recessive  
edge  
Vdiff,dr_N 0.50  
0.60  
Vdiff = VCANH - VCANL  
CAN Normal Mode  
8.6.3  
8.6.4  
Common Mode Range  
Differential Receiver  
Hysteresis  
CMR  
Vdiff,hys_N  
-12  
110  
12  
V
mV  
CAN Normal Mode  
8.6.5  
8.6.6  
8.6.7  
CANH, CANL Input  
Resistance  
Differential Input  
Resistance  
Wake-up Receiver  
Threshold Voltage,  
recessive to dominant  
edge  
Ri  
10  
20  
20  
40  
0.8  
30  
kΩ  
kΩ  
V
Recessive state  
Rdiff  
60  
Recessive state  
Vdiff, rd_W  
1.15  
CAN Wake Capable Mode  
8.6.8  
8.6.9  
Wake-up Receiver  
Threshold Voltage,  
dominant to recessive  
edge  
Wake-up Receiver  
Differential Receiver  
Hysteresis  
Vdiff, dr_W 0.4  
0.7  
V
CAN Wake Capable Mode  
CAN Wake Capable Mode  
Vdiff,  
120  
mV  
hys_W  
Data Sheet  
36  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
High Speed CAN Transceiver  
8.6  
Electrical Characteristics (cont’d)  
4.75 V < VccHSCAN < 5.25 V; VS = 5.5 V to 28 V; RL = 60 ; CAN Normal Mode; Tj = -40 °C to +150 °C; all voltages  
with respect to ground; positive current flowing into pin; unless otherwise specified.  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
Min.  
Typ.  
Max.  
CAN Bus Transmitter  
8.6.10  
8.6.11  
CANH/CANL Recessive  
Output Voltage  
VCANL/H 2.0  
3.0  
50  
V
CAN Normal Mode  
no load  
CANH, CANL Recessive Vdiff_r_N -500  
mV  
CAN Normal Mode  
V
TxD = Vcc1µC;  
Output Voltage Difference  
no load  
Vdiff = VCANH - VCANL  
8.6.12  
8.6.13  
8.6.14  
8.6.15  
CANL Dominant Output  
Voltage  
VCANL  
0.5  
2.25  
4.5  
3.0  
3.0  
V
V
V
V
CAN Normal Mode  
V
TxD = 0 V;  
V
ccHSCAN = 5 V  
CANH Dominant Output VCANH  
2.75  
CAN Normal Mode  
V
TxD = 0 V;  
ccHSCAN = 5 V  
Voltage  
V
CANH, CANL Dominant  
Output Voltage Difference  
Vdiff = VCANH - VCANL  
CANH, CANL Dominant  
Output Voltage Difference  
Vdiff = VCANH - VCANL  
Vdiff_d_N 1.5  
CAN Normal Mode  
V
TxD = 0 V;  
ccHSCAN = 5 V  
V
Vdiff_d_N 1.5  
CAN Normal Mode  
V
V
TxD = 0 V;  
ccHSCAN = 5 V  
RL = 50Ω  
8.6.16  
8.6.17  
8.6.18  
CANH Short Circuit  
Current  
CANL Short Circuit  
Current  
ICANHsc -200  
ICANLsc 50  
-80  
80  
2
-50  
200  
mA  
mA  
µA  
CAN Normal Mode  
V
CANHshort = 0 V  
CAN Normal Mode  
V
CANLshort = 18 V  
Leakage Current  
ICANH,lk  
ICANL,lk  
VS = VccHSCAN = 0 V;  
0 V < VCANH,L< 5 V  
SPLIT Termination Output; Pin SPLIT  
8.6.20  
8.6.21  
8.6.22  
SPLIT Output Voltage  
VSPLIT  
0.3 ×  
0.5 ×  
0.7 ×  
V
CAN Normal Mode  
VccHSCAN VccHSCAN VccHSCAN  
-500 µA < ISPLIT < 500 µA  
Leakage Current  
ISPLIT  
-5  
0
5
µA  
CAN Wake capable Mode;  
-27 V < VSPLIT < 40 V  
1)  
SPLIT Output Resistance RSPLIT  
600  
Receiver Output RxD  
8.6.23  
HIGH level Output Voltage VRxD,H  
0.8 ×  
V
V
CAN Normal Mode  
I
RxD(CAN) = -2 mA;  
VCC1µC  
8.6.24  
LOW Level Output  
Voltage  
VRxD,L  
0.2 ×  
Vcc1µC  
CAN Normal Mode  
RxD(CAN) = 2 mA;  
I
Transmission Input TxD  
8.6.26  
HIGH Level Input Voltage VTD,H  
0.7 ×  
V
V
CAN Normal Mode  
recessive state  
CAN Normal Mode  
dominant state  
Threshold  
Vcc1µC  
8.6.27  
LOW Level Input Voltage VTD,L  
0.3 ×  
Vcc1µC  
Threshold  
Data Sheet  
37  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
High Speed CAN Transceiver  
8.6  
Electrical Characteristics (cont’d)  
4.75 V < VccHSCAN < 5.25 V; VS = 5.5 V to 28 V; RL = 60 ; CAN Normal Mode; Tj = -40 °C to +150 °C; all voltages  
with respect to ground; positive current flowing into pin; unless otherwise specified.  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
Min.  
Typ.  
0.12 ×  
Vcc1µC  
Max.  
1)  
8.6.28  
8.6.29  
TxD Input Hysteresis  
VTD,hys  
RTD  
mV  
TxD Pull-up Resistance  
20  
40  
80  
kΩ  
Dynamic CAN-Transceiver Characteristics  
8.6.30  
Min. Dominant Time for  
tWU  
0.75  
3
5
µs  
ns  
CAN Wake capable Mode  
Bus Wake-up  
8.6.31  
Propagation Delay  
TxD-to-RxD LOW  
(recessive to dominant)  
td(L),TR  
150  
255  
CAN Normal Mode  
CL = 47 pF;  
RL = 60 ;  
V
ccHSCAN = 5 V;  
C
RxD = 15 pF  
8.6.32  
Propagation Delay  
TxD-to-RxD HIGH  
(dominant to recessive)  
td(H),TR  
150  
255  
ns  
CAN Normal Mode  
CL = 47 pF;  
RL = 60 ;  
V
ccHSCAN = 5 V;  
RxD = 15 pF  
C
8.6.33  
8.6.34  
8.6.35  
Propagation Delay  
td(L),T  
td(H),T  
td(L),R  
50  
120  
120  
135  
ns  
ns  
ns  
CAN Normal Mode  
CL = 47 pF;  
TxD LOW to bus dominant  
RL = 60 ;  
V
ccHSCAN = 5 V  
Propagation Delay  
TxD HIGH to bus  
recessive  
50  
CAN Normal Mode  
CL = 47 pF;  
RL = 60 ;  
V
ccHSCAN = 5 V  
Propagation Delay  
bus dominant to RxD LOW  
100  
CAN Normal Mode  
CL = 47 pF;  
RL = 60 ;  
V
ccHSCAN = 5 V;  
CRxD = 15 pF  
8.6.36  
Propagation Delay  
bus recessive to RxD  
HIGH  
td(H),R  
100  
135  
ns  
CAN Normal Mode  
CL = 47 pF;  
RL = 60 ;  
V
ccHSCAN = 5 V;  
RxD = 15 pF  
C
8.6.37  
8.6.38  
TxD Permanent Dominant tTxD_TO  
0.3  
0.6  
0.6  
1.0  
1.0  
ms  
ms  
CAN Normal Mode  
Time-out  
Bus Dominant Time-out  
tBUS_TO 0.3  
CAN Normal Mode1)  
1) Not subject to production test; specified by design.  
Data Sheet  
38  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
High Speed CAN Transceiver  
VTxD  
Vcc1µC  
GND  
t
t
VDIFF  
td(L),T  
td(H),T  
V diff, rd_N  
V diff, dr_N  
td(L),R  
td(H),R  
td(L),TR  
t
d(H),TR  
VRxD  
Vcc1µC  
0.8 x V cc1µC  
0.2 x V cc1µC  
GND  
t
CAN dynamic characteristics.vsd  
Figure 15 Timing Diagrams for Dynamic Characteristics  
Data Sheet  
39  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
WK Pin  
9
WK Pin  
9.1  
Block Description  
Internal supply  
IPU_MON  
IWK  
State  
machine  
IPD_MON  
Wake.vsd  
Figure 16 Functional Block Diagram  
The internal voltage regulator (Vcc1µC) and the entire SBC can wake up by changing the wake input voltage. The  
WK input pin is a bi-level sensitive input. This means that both transitions, HIGH to LOW and LOW to HIGH, result  
in a wake-up. The filtering time is tWK, f.The wake-up capability can be enabled or disabled via SPI command. In  
case of reverse polarity, no special protection must be set if the absolute maximum rating is respected. When the  
SBC is below the minimum VUVOFF, (SBC OFF Mode) the pin WK is at high impedance; a wake event will be  
ignored.  
The state of the WK pin (low or high) can always be read in Normal Mode, Stop Mode and SW Flash Mode at the  
bit WK State. When setting the bit “WK PIN on/off” to 1, the device wakes up from Sleep Mode with a high to low  
or low to high transition. From Fail-Safe Mode the device will always go to Restart Mode with a high to low or low  
to high transition. If the bit “WK PIN on/off” is set to 1 in Normal, Stop or SBC SW Flash Mode the interrupt bits  
“WK 0 WK pin” and/or “WK 1 WK pin” are set in case of a change on the WK pin and an interrupt is generated if  
not masked. With the bits “WK 0 WK pin” and “WK 1 WK pin” the interrupt for low to high transition and high to low  
transition can be masked separately.  
9.2  
Wake-Up Timing  
Figure 17 shows typical wake-up timing and parasitic filtering. The filtering time is tWK, f.. This is used to avoid a  
parasitic wake-up due to EMC disturbances. Specifically, the voltage transition on pin WK must be higher than the  
V
WK,TH and longer than tWK,f to be understood as a wake-up signal.  
Data Sheet  
40  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
WK Pin  
VWK  
VWK,th  
VWK,th  
t
tWK,f  
No Wake Event  
tWK,f  
Wake Event  
Wake Pin Diagram .vsd  
Figure 17 Wake-up Timing  
9.2.1  
Transition from Normal to Sleep Mode.  
The SBC can not be sent from Normal Mode to Sleep Mode with uncleared interrupt in the WK interrupt bits “WK  
0 WK pin” and “WK 1 WK pin”. This is implemented to avoid that a wake information from the WK pin gets lost  
during the transition from Normal to Sleep Mode. If a wake up appears during the µC sets the SBC to Sleep Mode,  
the SBC will wake up directly after going to Sleep Mode. There is no difference if the bits “WK 0 WK pin” or “WK  
1 WK pin” bit were set during the transition or were just not cleared before sending the SPI command for Sleep  
Mode, the SBC will wake-up after entering the Sleep Mode. Therefore it always needs to be ensured that the bits  
are cleared before sending the SBC to Sleep Mode.  
Data Sheet  
41  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
WK Pin  
9.3  
Electrical Characteristics  
VS = 5.5 V to 28 V; Tj = -40 °C to +150 °C; all voltages with respect to ground; positive current defined flowing into  
pin; unless otherwise specified.  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Test Condition  
Min.  
Typ.  
Max.  
9.3.1  
WK Input Threshold  
Voltage  
VWK,th  
2
3
4
V
9.3.2  
9.3.3  
9.3.4  
Input Hysteresis  
WK Filter Time  
Input Current  
VI, hys.  
tWK, f  
IWK  
0.1  
10  
-2  
0.7  
25  
2
V
µs  
µA  
V
WK = 0 V;  
WK > 5V  
V
9.3.5  
9.3.6  
WK pin pull up current  
WK pin pull down current I PD_MON  
I PU_MON -30  
-3  
30  
µA  
µA  
V
V
WK = 3.8 V  
WK = 2 V  
3
Data Sheet  
42  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Supervision Functions  
10  
Supervision Functions  
Reset Function  
10.1  
10.1.1  
Description  
The reset output pin RO provides information to the microcontroller, for example, in the event that the output  
voltage has fallen below the undervoltage threshold VRT1/2/3. When connecting the SBC to battery voltage, the  
reset signal remains LOW initially. When the output voltage Vcc1µC has reached the reset threshold VRT1,r, the reset  
output RO remains LOW for the reset delay time trd1. After that the RO is released to HIGH. A reset can also occur  
due to faulty Watchdog refresh.See Chapter 10.2. The reset threshold as well as the reset delay time can be  
adjusted via SPI. The RO pin has an integrated pull-up resistor.  
10.1.2  
Reset diagnosis  
The RO pin is diagnosed for both short circuit to Vccx and GND. Depending on the configuration, in case of RO  
failure, the SBC goes to SBC Fail-Safe or Restart Mode and activate the Limp Home output.  
In case of short circuit to GND, it is detected in any SBC mode except SBC Restart Mode. At the falling edge of  
the RO, when supposed to be HIGH, the SBC enters automatically the SBC Restart Mode. If after the trd and RO  
relaxation, the RO pin is still LOW, then the SBC detects the clamping to LOW failure. The microcontroller is in  
permanent reset.  
In case of short circuit to Vccx, the SBC cannot detect the short circuit before a reset should occur. So reset  
clamped is detected when the SBC goes to SBC Restart Mode or during Init Mode.  
10.1.3  
Reset Timing  
VCC  
VRTx  
t < tRR  
undervoltage  
t
tCW  
tOW  
tRD1  
tCW  
tLW  
tRDx  
tLW  
tCW  
tOW  
SPI  
RO  
SPI  
Init  
WD  
Trigger  
WD  
Trigger  
SPI  
Init  
t
t
tRR  
SBC Init  
SBC Normal  
SBC Restart  
SBC Normal  
Res_per_8264.vsd  
Figure 18 Reset Timing Diagram  
Data Sheet  
43  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Supervision Functions  
10.1.4  
Reset from Outside  
If the reset pin RO is pulled to low from outside while no reset low is issued by the SBC, the device goes to Restart  
Mode. In Restart Mode an reset is issued by the SBC, the RO pin is set to low for the time tRD1 or tRD2. If the RO  
pin is pulled to low for longer time Reset clamped is detected.  
10.2  
Watchdog  
Two different Watchdogs are possible in the SBC. It can be either a Window Watchdog or a Time-out Watchdog.  
The Watchdog can also be inhibited in SBC Stop Mode and SBC SW Flash Mode via SPI. The Watchdog timing  
is programmed via SPI command. As soon as the Watchdog is activated, the timer starts running and the  
Watchdog must be served. Please refer to Table 8 to match the SBC Modes with the Watchdog Modes.  
The default setting for the Watchdog is Time-out Watchdog with a 256 ms timer. The long open window allows the  
microcontroller to run its initialization sequences and then to trigger the Watchdog via the SPI.  
The Watchdog is served by a SPI bit and should toggle with the correct frequency. The default value is a 0, so the  
first trigger bit must be a 1.  
In case of a Watchdog reset, the Watchdog immediately starts with a long open window when entering SBC  
Normal Mode. With the reset the watchdog bit is set to 0, so the first watchdog trigger after reset is a change to 1.  
In SBC Software Development Mode, no reset is generated due to watchdog failure, if a watchdog failure occurs  
it is indicated by the SPI Reset bit and via INT pin. All watchdog modes are accessible in regards to the normal  
operation modes.  
Table 8  
SBC Mode  
INIT Mode  
Watchdog Functionality by SBC Modes  
Watchdog Mode  
Remarks  
Watchdog Programmable;  
Watchdog is not active.  
INIT Mode should be left in less than 256 ms (see  
Chapter 12)  
Normal Mode  
WD Programmable;  
Time-out or Window Watchdog  
Software Flash Mode  
Stop Mode  
Mode is fixed  
SBC retains the set-up as in the mode before entering  
the Software Flash Mode  
SBC retains the set up as in the mode before entering  
the Stop Mode  
Mode is fixed  
Sleep Mode  
Fail-Safe Mode  
Restart Mode  
OFF  
OFF  
OFF  
SBC does not retain the set-up.  
SBC does not retain the set-up  
SBC will start default Watchdog setting (256ms  
Time-out Watchdog) when entering Normal Mode.  
Data Sheet  
44  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Supervision Functions  
10.2.1  
Time-out Watchdog  
The Time-out Watchdog is an easier and less secure type of watchdog. Compared to the Window Watchdog there  
is no closed window existing. The watchdog trigger can be done any time within the watchdog time.  
A watchdog trigger is detected as a write access to the “WD Refresh” within the SPI control word. The bit needs  
to be toggle (transition HIGH to LOW or LOW to HIGH) within the watchdog window. The trigger is accepted when  
the CSN input becomes HIGH.  
A correct watchdog trigger starts a new window. The period is selected via the Window Watchdog timing bit field  
in the range of 16 ms to 1024 ms. For the safe trigger area the tolerance of the oscillator has to be taken into  
consideration, so the safe trigger time is below 90% of the programmed Watchdog time. It is possible to refresh  
the Watchdog with any SPI programming with the mode selection Normal, Stop, SW Flash or Read Only.  
Should the trigger signal not meet the window, depending on the configuration, the SBC will go to SBC Restart  
Mode or to Fail-Safe Mode. A watchdog reset is created by setting the reset output RO low. In config 1 and config  
3 the watchdog starts again in Normal Mode with the default watchdog setting (256ms Time-out Watchdog). The  
watchdog failure can be read at the bits RM0, RM1, LH0, LH1, LH2 via SPI.  
10.2.2  
Window Watchdog  
A Watchdog trigger is detected as a write access to the “WD Refresh” within the SPI control word. The bit needs  
to be toggle (transition HIGH to LOW or LOW to HIGH) in the open window. The trigger is accepted when the CSN  
input becomes HIGH.  
A correct Watchdog trigger results in starting the Window Watchdog by a closed window with a width of typically  
50% of the selected Window Watchdog reset period. This period, selected via the Window Watchdog timing bit  
field, is in the range of 16 ms to 1024 ms. This closed window is followed by an open window, with a width of typical  
50% of the selected period. From now on, the microcontroller must serve the Watchdog by periodically toggling  
the Watchdog bit. This bit toggling access must meet the open window. The tolerance of the oscillator has to be  
taken into consideration, so the safe window to trigger the Watchdog is from 55% to 90% of the programmed  
Window Watchdog time. It is possible to refresh the Watchdog with any SPI programming with the mode selection  
Normal, Stop, SW Flash or Read Only. A correct Watchdog service immediately results in starting the next closed  
window (see Figure 19, safe trigger area).  
Should the trigger signal not meet the open window, depending on the configuration the SBC will go to SBC  
Restart Mode or to Fail-Safe Mode. A watchdog reset is created by setting the reset output RO low (see  
Figure 20). In config 1 and config 3 the watchdog starts again in Normal Mode with the default watchdog setting  
(256ms Time-out Watchdog). The watchdog failure can be read at the bits RM0, RM1, LH0, LH1, LH2 via SPI.  
Data Sheet  
45  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Supervision Functions  
Window Watchdog Timing (SPI)  
tWD  
tCWmax  
tOWmax  
tCWmin  
tOWmin  
Un-  
closed window  
open window  
uncertainty  
certainty  
t / [tWDPER  
]
safe trigger area  
0.45  
0.55  
0.9  
1.0  
1.1  
Wd1_per .vsd  
Figure 19 Window Watchdog Definitions  
tCW  
tOW  
tLW  
tCW  
tCW  
tOW  
tCW  
tOW  
tLW  
tCW  
tOW  
tCW+tOW  
tLW  
WD  
Refresh  
bit  
tWDR  
t
t
RO  
Watchdog  
timer reset  
normal  
Time-out  
(too long)  
normal  
operation  
timeout  
normal  
operation  
(too short)  
operation  
Wd2_per.vsd  
Figure 20 Window Watchdog Timing Diagram for config 1 and config 3  
10.2.3  
Changing the Watchdog Settings  
The settings of the watchdog can be changed during the operation of the watchdog. The change is done with a  
SPI programming into the Watchdog Configuration Register. The new setting is programmed together with a valid  
watchdog trigger according to the old settings. The timer with the new settings starts with this SPI command. The  
toggling of the “WD Refresh” bit needs to be continued (transition HIGH to LOW or LOW to HIGH) with the new  
settings.  
If the new settings were not valid, the watchdog will continue with the old settings and generate a “Wrong WD Set”  
interrupt.  
Data Sheet  
46  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Supervision Functions  
10.2.4  
Inhibition of the watchdog  
During SBC Stop Mode and SBC SW Flash Mode, it is possible to deactivate the watchdog. To avoid unwished  
deactivation of the watchdog, a special protocol has to be followed, prior deactivating the watchdog. Please refer  
to Figure 21. In the case the exact process below is not respected, the SBC remains in the previous state, and an  
interrupt is generated (if not inhibited), and the Wrong WD set bit in the SPI is set.  
When the microcontroller requests the SBC to go back to SBC Normal Mode, the Watchdog is reactivated. The  
watchdog settings that were valid before entering Stop Mode with watchdog off are valid. The watchdog timer  
starts with entering Normal Mode. In case window watchdog was selected the watchdog starts with a closed  
window. When setting the WD Refresh bit to 0 for the command that sends the device to Normal Mode the first  
watchdog trigger is a change to 1. As in Stop Mode the watchdog settings can not be changed, it is also not  
possible to change the watchdog settings with the command that sets the SBC from Stop Mode into Normal Mode.  
First battery connection  
(POR)  
AND  
config0 not active  
SBC Init mode  
(256ms max after reset relaxation)  
WD conf  
WD not active  
SPI cmd  
WD trig  
SBC Normal mode  
WD conf  
Cyclic WK  
ON / OFF  
WD active  
SPI cmd =  
SBC SW Flash mode  
&,WD OFF  
SPI cmd =  
SBC Normal mode  
& WD OFF  
& WD Trigger  
SBC Normal mode  
WD active  
SPI cmd =  
SBC SW Flash mode  
&,WD OFF  
& WD Trigger  
SPI cmd =  
SBC Stop mode  
& WD OFF  
& WD Trigger  
SBC Stop mode  
SBC SW Flash mode  
WD OFF  
Cyclic WK  
ON / OFF  
WD OFF  
inhibition of the WD .vsd  
Figure 21 Inhibition of the watchdog  
During SBC Stop Mode, when the cyclic wake feature is used and the watchdog is not disabled, it is necessary  
that the microcontroller acknowledges the interrupt by reading the SPI Wake register before the next Cyclic Wake  
occures. Otherwise, a reset is performed by setting the SBC to SBC Restart Mode.  
Data Sheet  
47  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Supervision Functions  
10.3  
Electrical Characteristics  
VS = 5.5 V to 28 V; Tj = -40 °C to +150 °C; SBC Normal Mode; all voltages with respect to ground; positive current  
defined flowing into pin; unless otherwise specified.  
Pos.  
Parameter  
Symbol Limit Values  
Unit  
Test Condition  
Min.  
Typ.  
Max.  
Reset Generator; Pin RO  
10.3.1  
Reset Threshold Voltage, VRT1,f  
4.5  
4.6  
3.5  
3.6  
3.2  
4.65  
4.75  
3.65  
3.75  
3.35  
4.75  
4.85  
3,75  
3,85  
3.45  
V
V
V
V
V
default setting, Vcc falling  
default setting, Vcc rising  
SPI option;Vcc falling  
SPI option; Vcc rising  
VRT1,r  
VRT2,f  
VRT2,r  
VRT3,f  
SPI option;VS 4 V; Vcc  
falling  
VRT3,r  
3.3  
3.45  
3.55  
V
SPI option; VS 4 V, Vcc  
rising  
default setting1)  
SPI option;1)  
SPI option; VS 4 V 1)  
-
Reset Threshold Voltage VRT1_HR 250  
100  
200  
mV  
V
V
Headroom  
VRT2_HR 1.25  
VRT3_HR 1.55  
10.3.2  
10.3.3  
Reset Threshold  
Hysteresis  
VRT,hys  
20  
mV  
Reset Low Output Voltage VRO  
0.2  
0.4  
V
V
I
RO = 1 mA for  
CC1µC = VRT1/2/3  
RO = 200 µA for  
RT1/2/3> VCC1µC 1 V  
IRO = -20µA  
V
;
I
V
10.3.4  
Reset High Output  
Voltage  
VRO  
0.7 x  
VCC1µC  
VCC1µC  
+ 0.3 V  
10.3.5  
10.3.6  
Reset Pull-up Resistor  
Reset Reaction Time  
RRO  
tRR  
10  
4
20  
10  
40  
26  
kΩ  
µs  
V
V
RO = 0 V  
CC1µC < VRT1/2  
to RO = L  
10.3.7  
Reset Delay Time  
tRD1  
tRD2  
4.5  
5.0  
5.5  
ms  
µs  
default SPI setting;  
after Power-On-Reset  
450  
500  
550  
SPI setting option  
2)default setting  
Watchdog Generator  
10.3.8  
Internal Oscillator  
10.3.9  
Long Open Window  
tLW  
256  
0
ms  
%
Internal Oscillator  
tolerance  
fCLKSBC -10  
10  
1) Headroom between actual output voltage on VCC1µC and Reset Threshold Voltage for falling Vcc.  
2) Specified by design; not subject to production test. Tolerance defined by internal oscillator tolerance fCLKSBC  
.
Data Sheet  
48  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Interrupt Function  
11  
Interrupt Function  
11.1  
Interrupt Description  
The interrupt pin has a general purpose function to point out to the microcontroller either a wake up, a failure  
condition or the switch on of a voltage regulator. Table 9 shows the possible interrupt sources in the device, and  
Figure 22 gives the hardware set-up. The interrupt function is designed to inform the microcontroller of any wake-  
up event, overtemperature or overtemperature pre-warning as well as other failures. These events turn the INT  
pin to active LOW. All interrupt sources can be masked via a SPI bit, then no interrupt is generated for this event.  
For failures on under-voltage the interrupt is dual-sensitive. This means that an interrupt is generated when the  
failure appears, as well as when the failure disappears. For failures on over-temperature, communication failures  
and voltage regulator over current and undervoltage, the dedicated SPI interrupt bit indicated first the interrupt  
source and then the state of the device. So, the bit is set to failure 1 at the event, and remains latched at least until  
the microcontroller reads the bit. For the SBC failure (Wrong WD Setting, Reset, Fail SPI) and wake events, the  
INT indicates only an event and the bit is cleared with a dedicated SPI read.  
The INT pin is released when an SPI read is done to Interrupt Register 000 with a “Read Only” command, or after  
interrupt time out tINTTO. If the interrupt cause was a wake event, the interrupt bit can be read in Interrupt Register  
000 and the bit is cleared. If it was an other interrupt source the bit INT is set, and interrupt register 001 and 010  
need to be read. With a “Read Only“command the event triggered interrupt bits are cleared. The INT bit will be set  
to “0” when all bits in interrupt register 001 and 010 are set to “0”. If an interrupt is masked (bit set to “0”) only the  
interrupt does not occur, the interrupt bit in the SPI is shown.  
Figure 22 shows a simplified diagram of the INT output. In Init Mode before RO goes high the INT pin is used to  
set the configuration of the device to config 1/3 or config 2/4, see Chapter 13.  
Vcc1µC  
R
IN T  
INT  
Time  
Interrupt logic  
out  
INTERRUPT BLOCK.VSD  
Figure 22 Interrupt Block Diagram  
Table 9  
Interrupt sources  
Interrupt sources  
INT Activation  
SPI bit  
State  
Temperature  
Over temperature pre-warning VCC1µC  
Over temperature VCC2  
Over temperature HS CAN  
Communication failure  
CAN Failure  
Rising  
Rising  
Rising  
OTP VCC1µC  
OT VCC2  
OT HSCAN  
Event /  
State  
Rising  
CAN Failure 1..0  
CAN Bus  
Event/  
State  
Voltage regulator  
Data Sheet  
49  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Interrupt Function  
Table 9  
Interrupt sources  
Interrupt sources  
INT Activation  
SPI bit  
State  
Undervoltage at VCC2 (except during switch off1))  
Undervoltage at VCC3(except during switch off1))  
Over current at VCC3 (except during inhibition)  
Voltage at VCC2 (during switch on1))  
Voltage at VCC3 (during switch on1))  
SBC Failure  
Rising and falling UV_VCC2  
Rising and falling UV_VCC3  
Event /  
State  
Rising  
Rising  
Rising  
ICC3 > ICC3MAX  
UV_VCC2  
UV_VCC3  
Event  
SPI data corrupted  
Rising  
Rising  
Rising  
SPI Fail  
Reset  
Wrong WD set  
Reset (SBC SW Development only)  
Wrong watchdog setting  
Wake  
Event  
Wake at CAN  
Wake at WK  
Cyclic WK  
Rising  
Rising  
Rising  
WK CAN  
WK WK pin 1..0  
Cyclic WK  
Event  
1) When VCC2/3 is switched off no interrupt is generated due to the undervoltage at VCC2/3. When switching on VCC2/3 an  
interrupt is generated when the command is sent to the SBC via SPI.  
11.1.1  
Interrupt for switching on Vcc2 and Vcc3  
The Interrupt for Vcc2 and Vcc3 are generated when the SPI command for switching on the voltage regulator is  
executed. The interrupt bit is set to “1“ and can be cleared with a Read Only command after the under voltage  
threshold is reached. If the Read Only is done before the reset threshold is reached, the interrupt bit can not be  
cleared as the undervoltage condition is still present. In this case a second interrupt can be issued for releasing  
the undervoltage condition.  
In case of a short to GND on Vcc2 or Vcc3 the interrupt for switching on the voltage regulator is issued, but the  
µC can not clear the interrupt bit as the voltage regulator does not reach the undervoltage threshold.  
11.1.2  
Example of Interrupt Events and Read-out  
The examples show single interrupt events. SPI read is done with “Read Only”. The shown interrupts are not  
masked. Watchdog trigger is not shown in the examples.  
The interrupt UV_Vcc2 that is generated by switching on VCC2 is shown in Figure 23. The interrupt is sensitive on  
rising event only.  
Data Sheet  
50  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Interrupt Function  
Rising event(Vcc2 above limit) is shown  
Vcc2 switched off  
by SPI  
Vcc2 switched on  
by SPI  
Vcc2  
INT pin  
SPI DI programming  
Read Only  
optional  
required  
optional  
Mode Select Bits 111  
Conf. Select 000  
Conf. Select 001  
Conf. Select 002  
INT bit  
0
X
X
0
1
X
X
1
X
X
X
0
0
X
UV_VCC2  
Interrupt_SwitchOn_VCC2.vsd  
Figure 23 Interrupt Vcc2 switch-on.  
Data Sheet  
51  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Interrupt Function  
The interrupt UV_Vcc2 that is generated by an under-voltage on VCC2 is shown in Figure 24. The interrupt is  
sensitive on rising and falling event and the interrupt bit also shows the state of the device and function.  
Undervoltage  
on Vcc2  
Falling event(Vcc2 below limit), rising event(Vcc2  
above Limit) as well as state is shown  
Vcc2  
INT pin  
SPI DI programming  
Read Only  
required  
optional  
required  
optional  
Mode Select Bits 111  
Conf. Select 000  
Conf. Select 001  
Conf. Select 002  
INT bit  
1
X
X
1
X
X
X
1
1
X
1
X
X
1
X
X
X
0
0
X
UV_VCC2  
Interrupt_UV_VCC2.vsd  
Figure 24 Interrupt VCC2 under-voltage.  
The interrupt OT_Vcc2 that is generated by an over temperature on VCC2 is shown in Figure 25. The interrupt is  
sensitive on rising event and the interrupt bit also shows the state of the device and function.  
Overtemperature  
on Vcc2  
Rising event(apperance of overtemperature) is  
shown, as well as the state.  
OT_VCC2  
INT pin  
SPI DI programming  
Read Only  
required  
optional  
Mode Select Bits 111  
Conf. Select 000  
Conf. Select 001  
Conf. Select 002  
INT bit  
1
X
X
1
X
X
X
1
1
X
X
0
0
X
OT_VCC2  
Interrupt_OT_VCC2.vsd  
Figure 25 Interrupt Vcc2 Over Temperature.  
Data Sheet  
52  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Interrupt Function  
11.2  
Interrupt Timing  
Figure 26 illustrates the interrupt timing. The INT output is set LOW as soon as an interrupt condition occurs. The  
INT pin is released after a SPI interrupt buffer read out command, that is performed with a Read Only command  
(111) to register (000). In case consecutive interrupt sources are indicated before the SPI read out, only one INT  
LOW will be raised but the SPI read out will indicate the interrupt sources. A time-out feature is implemented. The  
INT pin can be active LOW only for the time tINTTO. Afterwards, the INT pin is released but the INT source is still  
valid or present in the SPI register. Between two activations of the INT, there is at least a delay of tINTTO. If an  
interrupt occurs in the meantime, the information is stored and the INT will go LOW after tINTO. The INT pulse width  
is at minimum tINT  
.
interrupt source 1  
active  
inactive  
t
interrupt source 2  
active  
inactive  
t
INT output  
t
INT  
tINTTO  
tINT TO  
tINTTO  
t
tINTTO  
interupt timing.vsd  
SPI read out  
SPI read out  
SPI read out  
SPI read out  
Figure 26 Interrupt Timing  
11.3  
Interrupt Modes with SBC Modes  
The interrupt function is possible only in SBC Normal and Stop Mode.  
After an SBC Restart Mode, all interrupt sources are enabled.  
11.4  
Interrupt Application Information  
By default, all interrupt sources are activated. Please refer to the dedicated chapter for the definition of the  
interrupt.  
The INT output is active for at least tINT, even if the corresponding interrupt register is read out immediately after  
the interrupt event occurs.  
If no SPI read is done after the interrupt is generated (INT pin low) the INT output becomes active (INT pin high)  
again after tINTTO  
.
If two interrupt cases occur after each other and the SPI read (with read-only) is done after the second interrupt  
case, both interrupt bits are cleared. Although the interrupt bits for both interrupt cases are cleared the second  
interrupt will be issued by INT pin Low. This can lead to an interrupt where all interrupt bits are read as “0”.  
Data Sheet  
53  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Interrupt Function  
11.5  
Electrical Characteristics  
.
VS = 5.5 V to 28 V; Tj = -40 °C to +150 °C; SBC Normal Mode; all voltages with respect to ground; positive current  
defined flowing into pin unless otherwise specified.  
Pos.  
Parameter  
Symbol Limit Values  
Unit  
Test Condition  
Min.  
Typ.  
Max.  
Interrupt output; Pin INT  
11.5.1  
11.5.2  
11.5.3  
11.5.4  
Interrupt delay Time-out  
INT pulse width  
INT Low Output Voltage VINTOL  
INT High Output Voltage VINTOH  
tINTTO  
tINT  
5.4  
10  
0.7 x  
VCC1µC  
6
0.2  
6.6  
0.4  
ms  
µs  
V
1)  
I
I
INT = 1 mA  
INT = -20µA  
VCC1µC  
V
+ 0.3 V  
11.5.5  
INT Pull-up Resistor  
RINT  
10  
20  
40  
kΩ  
V
INT = 0 V  
Configuration select; Pin INT  
11.5.6  
11.5.7  
11.5.8  
INT Config LOW input  
VCFGLO 0.3 x  
V
voltage  
Vcc1µC  
INT Config HIGH input  
voltage  
INT Config pull down  
VCFGHI  
RCFG  
0.7 x  
Vcc1µC  
V
250  
kΩ  
1) Not subject to production test, specified by design.  
Data Sheet  
54  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Limp Home  
12  
Limp Home  
12.1  
Description  
The Limp Home outputs are a very useful way to control safety critical functions independent of the microcontroller,  
such as turning on or off critical load during a microcontroller failure.  
12.2  
Limp Home output  
The Limp Home output is an active LOW open drain transistor, please refer to Figure 27; therefore, it is necessary  
to connect at least an external pull-up resistor at.  
The Limp Home output is activated due to a failure condition or via SPI, see Chapter 12.3. If Vs is below VLHUV  
,
the Limp Home cannot be activated and remains as a high impedance.  
Limp home  
Limp home logic  
LIMP HOME.VSD  
Figure 27 Limp Home block diagram  
12.2.1  
Limp Home side indicators output  
The LH_SI output is similar to the Limp Home output. The output is pulsed to fLHSI frequency with dSI and designed  
to provide the side indicators frequency. The LH_SI function is active when the Limp Home is active.  
Limp home  
LH_SI  
Limp home logic  
LIMP HOME_LHSI.VSD  
Figure 28 Limp Home LH_SI block diagram  
12.2.2  
LH_PL (Pulsed Light) output  
The LH_PL/Test pin is an output pin shared with the Test pin function. During SBC Init Mode, the pin is used as  
an input, in all other modes, the pin is an output.  
The output is pulsed to fLHPL frequency with a duty cycle of dPL (20% LOW, 80% high impedance), designed to dim  
the 27W stop lights into an 5W rear light. Refer to Figure 29. The LH_PL function is activated when the Limp Home  
is active. In SBC Init Mode, the LH_PL is inhibited, to avoid a wrong set of the SBC into SBC Software development  
Mode.  
Data Sheet  
55  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Limp Home  
T test  
VS  
SBC Init  
mode  
RLH_ PL  
LH_PL / test  
T LH_PL  
Limp home  
LH_PL_test.vsd  
Figure 29 LH_PL/ Test block diagram  
12.2.3  
Test Pin  
The Test pin is used to set the SBC chip into SBC Software Development Mode. When the Test pin is connected  
to GND, the SBC starts in SBC Software Development Mode. When the pin is left open, or connected to Vs the  
SBC starts into normal operation. Please refer to Figure 3. The Test pin has an integrated pull-up resistor  
(switched ON only during SBC Init Mode) to prevent the SBC device from starting in SBC Software Development  
Mode during normal life of the vehicle, as for example when the battery has been disconnected. To avoid  
disturbance, the Test pin is monitored during the Init Mode (from the time VS > VUVON until Init Mode is left). If the  
pin is low for the Init Mode time, Software Development Mode is reached. The mode is stored during the complete  
time where VS is above VUVOFF. It means to leave Software Development Mode, the SBC must go back to SBC  
OFF mode.  
Data Sheet  
56  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Limp Home  
12.3  
Activation of the Limp Home Output  
The reason to activate the Limp Home pins and the consequences are listed in Table 10 and Table 11.  
Table 10  
Limp Home, Function of the SBC Mode  
SBC Mode  
INIT Mode  
Limp Home Outputs  
OFF  
Normal Mode  
OFF  
ON via SPI  
ON if it was ON until the successful Watchdog  
setting and deactivation via SPI.  
Stop Mode  
Sleep Mode  
Restart Mode  
Fail-Safe Mode  
SW Flash Mode  
Unchanged  
Unchanged  
Unchanged  
ON  
Unchanged  
Table 11  
Automatic Activation of Limp Home Output  
Reason  
SBC Mode  
INIT Mode  
Normal Mode  
INIT time-out (tINITTO  
)
1st Watchdog failure (config 1/2)  
2nd Watchdog failure (config 3/4)  
Restart Mode  
Reset output permanent short circuit to Vcc1µC  
Reset output permanent short circuit to GND  
V
cc1µC undervoltage time-out  
If previously turned ON in SBC Normal Mode, via SPI command  
cc1µC thermal shutdown  
Any mode  
V
12.4  
Release of the Limp Home Output  
When Limp Home is activated via SPI command, then it is released via SPI command. This is useful for diagnosis  
purpose for example.  
Otherwise, the Limp Home outputs are released only in SBC Normal Mode with the following conditions: After the  
device has been set to SBC Restart Mode, automatically entering SBC Normal Mode, a successful Watchdog  
trigger must be sent via SPI. At this point, the Limp Home outputs remain active. Then the microcontroller needs  
to send by SPI command the deactivation of the Limp Home.  
12.5  
Vcc1µC undervoltage time-out  
A Vcc1µC undervoltage time-out condition is given, when  
1) the Vcc1µC output voltage is below the reset threshold (VRT1, VRT2, VRT3),  
2) VS is higher then the threshold (VSthUV1, VSthUV2, VSthUV3) and  
3) the condition is valid longer then the Vcc1µC under voltage time-out (tVcc1UVTO).  
A Vcc1µC undervoltage time-out will sent the device into Fail-Safe Mode. Limp Home output stag will be activated  
(for Vs > VLHUV  
)
Figure 30 gives an example of the Limp Home output activation, due to a Vcc1µC undervoltage time-out.  
Data Sheet  
57  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Limp Home  
Vs  
VSthUVx  
Vcc1µC  
t
t
VRTx  
VRTx  
GND  
RO  
tVcc1UVTO  
SBC Sleep  
SBC Restart  
SBC Normal  
SBC Restart  
SBC Fail safe  
t
tRR  
tRDx  
Wake Up  
Limp home  
GND  
t
undervoltage time out.vsd  
Figure 30  
Vcc1µC undervoltage time-out timing  
Data Sheet  
58  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Limp Home  
12.6  
Electrical Characteristics  
VS = 5.5 V to 28 V; Tj = -40 °C to +150 °C; SBC Normal Mode; all voltages with respect to ground; positive current  
defined flowing into pin unless otherwise specified.  
Pos.  
Parameter  
Symbol Limit Values  
Unit  
Test Condition  
Min.  
Typ.  
Max.  
Limp Home;  
12.6.1  
Watchdog edge count  
nLH  
1
With SPI set.  
difference to set Limp  
Home activated  
2
0.2  
Default Setting  
ILH = 1mA  
12.6.2  
12.6.3  
Limp Home low output  
voltage (active)  
Limp Home high output  
current (inactive)  
INIT Time-out  
Vcc1µC under voltage  
Time-out  
VLHLO  
ILHHI  
0
0.4  
2
V
µA  
VLH = 28V  
1)  
12.6.4  
12.6.5  
tINITTO  
tVcc1UVTO 900  
256  
1024  
ms  
ms  
1150  
12.6.6  
Vs threshold for Vcc1µC  
under voltage Time-out  
(Vs needs to be above, to  
activate Vcc1µC under  
voltage Time-out)  
VSthUV1 5.3  
6.3  
V
V
RT1 default setting  
VSthUV2 4.3  
VSthUV3 4.0  
5.3  
5.0  
V
V
V
V
RT2 SPI option  
RT3 SPI option  
12.6.7  
12.6.8  
Threshold for Limp Home VLHUV  
4.5  
5.5  
V
V
minimum Vs  
Limp Home Vs voltage  
VLHUVhys  
0.2  
hysteresis  
LH _SI;  
12.6.9  
Limp Home side indicator fLHSI  
1.125  
1.25  
50  
1,375  
Hz  
%
frequency  
12.6.10 Limp Home side indicator  
duty cycle  
dSI  
LH_PL/Test  
12.6.11 HIGH Level Input Voltage VTest,HI  
3
V
Threshold  
12.6.12 Input Hysteresis  
VTest,hys 100  
300  
700  
mV  
V
12.6.13 LOW Level Input Voltage VTest,LO  
1
Threshold  
12.6.14 Pull-up Resistor  
RTest  
fLH_PL  
dPL  
20  
90  
-
40  
80  
110  
-
kΩ  
Hz  
%
V
LH_PL/Test = 0V  
SBC Init Mode  
12.6.15 Limp Home pulsed light  
frequency  
100  
20  
12.6.16 Limp Home pulsed light  
duty cycle  
1) Not subject to production test, specified by design.  
Data Sheet  
59  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Configuration Select  
13  
Configuration Select  
13.1  
Configuration select  
The Configuration select is used to set the device for two different SBC behaviors; please refer to Chapter 4.2.1  
for detailed information. Depending on the requirements of the application, the Vcc1µC is switched off and the device  
goes to Fail-Safe Mode in case of watchdog fail (1 or 2 fail) or reset clamped. To turn Vcc1µC OFF (Config 2/4), the  
INT pin is not connected to a pull up resistor externally. In case the Vcc1µC is not switched off (Config 1/3) the INT  
pin is connected to Vcc1µC with a pull up resistor. The configuration is only read during Init Mode, after that the  
configuration is stored.  
13.2  
Config Hardware Descriptions  
In Init Mode before the RO pin goes high the INT pin is pulled to low with a weak pull down resistor RCFG, the pull  
up resistor RINT is switched off. When Vcc1µC is high, above the reset threshold VRT1 and before the RO pin goes  
high the level on the INT pin is monitored to select the configuration. With RO going high in Init Mode the pull up  
resistor RINT is switched on.  
Figure 31 gives the electrical equivalents to the configuration function of the INT pin.  
Vcc1µC  
Configuration logic  
RINT  
INT  
Time  
Interrupt logic  
out  
RCFG  
INTERRUPT BLOCK_CONFIG.VSD  
Figure 31 Config Logic Diagram  
Electrical characteristics are listed in chapter Chapter 11.5  
Data Sheet  
60  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Serial Peripheral Interface  
14  
Serial Peripheral Interface  
14.1  
SPI Description  
The 16-bit wide Control Input Word is read via the data input SDI, which is synchronized with the clock input CLK  
supplied by the microcontroller. The output word appears synchronously at the data output SDO (see Figure 32).  
The transmission cycle begins when the chip is selected by the input CSN (Chip Select Not), LOW active. After  
the CSN input returns from LOW to HIGH, the word that has been read in becomes the new control word. The  
SDO output switches to tri-state status (high impedance) at this point, thereby releasing the SDO bus for other use.  
The state of SDI is shifted into the input register with every falling edge on CLK. The state of SDO is shifted out of  
the output register after every rising edge on CLK. The number of received input clocks is supervised by a  
modulo-16 operation and the Input / Control Word is discarded in case of a mismatch. This error is flagged in the  
following SPI output by a “HIGH” at the data output (SDO pin, bit FO) before the first rising edge of the clock is  
received. The SPI of the SBC is not daisy chain capable.  
CSN high to low: SDO is enabled. Status information transferred to output shift register  
CSN  
time  
CSN low to high: data from shift register is transferred to output functions  
CLK  
time  
Actual data  
New data  
0 1  
FI  
-
SDI  
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  
FI  
+ +  
time  
SDI: will accept data on the falling edge of CLK signal  
Actual status  
New status  
0
+
1
+
FO  
-
SDO  
FO  
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  
time  
SDO: will change state on the rising edge of CLK signal  
Figure 32 SPI Data Transfer Timing  
14.2  
Corrupted data in the SPI data input  
When the microcontroller send a wrong SPI command to the SBC, the SBC ignores the information. Wrong SPI  
command can be either a number of bits different of 16, the mode selection (MS2..0) = 000 or requesting to go to  
an SBC mode which is not allowed by the state machine, for example from SBC Stop Mode to SBC SW Flash  
Mode. In that case, an interrupt is generated (if not inhibited) and the bit SPI Fail is set. Since the SPI data is  
corrupted, the next SPI output data will remain the former one (the information is then repeated).  
Data Sheet  
61  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Serial Peripheral Interface  
14.3  
SPI Input Data  
MSB  
LSB  
Input  
Data  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
WD  
CS2  
CS1  
CS0  
MS2  
MS1 MS0  
refresh  
Mode Selection  
Bits  
Configuration Select  
000  
Configuration Registers  
WK 1 WK 0  
WK  
000  
001  
Res. Res. Res.  
Res. Res. Res.  
not valid  
Restart  
SW Flash  
Normal  
Sleep  
WK pin WK pin  
CAN  
001  
010  
011  
Wrong  
WD set  
Fail  
ICC3  
>
UV  
UV  
OT  
OT  
OTP  
Reset  
SPI ICC3max Vcc3  
VCC2 VCC2  
Vcc1µC  
HS CAN  
INTERRUPT  
MASK  
CAN CAN  
CAN  
Bus  
010  
011  
Res. Res. Res. Res. Res. Res.  
failure failure  
1
0
Reserved  
Cyclic  
100  
101  
110  
111  
100  
101  
110  
111  
WK PIN  
On/off  
WD to  
LH  
L.H.  
VCC2  
VCC3 Reset  
On/off Delay  
WK  
RT1  
RT0  
On/off On/Off  
On/off  
CAN CAN  
Stop  
Res.  
CHK  
Res. Res.  
Res. Res. Res. Res.  
1
0
REGISTER  
Ti.  
Window/Time out Watchdog  
Timing Bit Position: 10 .. 6  
WD  
Set to  
1
Fail safe  
Read Only  
Out /  
Win.  
SUM On/Off  
Reserved  
SPI data input TLE8261.vsd  
Figure 33 16-Bit SPI Input Data / Control Word  
Data Sheet  
62  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Serial Peripheral Interface  
14.4  
SPI Output Data  
MSB  
LSB  
Output  
Data  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
CS2  
CS1  
CS0  
MS2  
MS1 MS0  
WK  
Mode Selection  
Bits  
Configuration Select  
000  
Configuration Registers  
state  
Cyclic WK 1 WK 0  
WK  
000  
001  
INT  
Res.  
Res. Res. Res.  
Init  
WK WK pin WK pin  
CAN  
001  
010  
011  
Wrong  
WD set  
Fail ICC3  
>
UV  
UV  
OT  
OT  
OTP  
Reset  
Status or  
Restart  
SW Flash  
Normal  
Sleep  
SPI ICC3max Vcc3  
VCC2  
VCC2  
Vcc1µC  
HS CAN  
INTERRUPT  
event  
CAN CAN  
CAN  
Bus  
010  
011  
Res. Res. Res. Res. Res. Res.  
failure failure  
1
0
Reserved  
Cyclic  
100  
101  
110  
111  
100  
101  
110  
111  
WK PIN  
On/off  
WD to  
LH  
L.H.  
VCC2  
VCC3 Reset  
On/off Delay  
WK  
RT1  
RT0  
On/off On/Off  
On/off  
CAN CAN  
Stop  
Res.  
CHK  
Res. Res.  
Res. Res. Res. Res.  
1
0
REGISTER  
Ti.  
Window/Time out Watchdog  
Timing Bit Position: 10 .. 6  
WD  
Set to  
1
Fail Safe  
Reserved  
Out /  
Win.  
SUM On/Off  
Res. RM1 RM0 LH 2 LH 1 LH 0 Test 2 Test 1 Test 0  
SPI_Settings_out_TLE8261.vsd  
14.5  
SPI Data Encoding  
14.5.1  
WD Refresh bit / WK state  
The WD Refresh bit is used to trigger the Watchdog. The first trigger should be a 1, and then a 0. For more details,  
please refer to Chapter 10.2.  
The WK state bit gives the voltage level at the WK pin. A 1 indicates a high level, a 0 a low level.  
Data Sheet  
63  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Serial Peripheral Interface  
14.5.2  
SBC Configuration Setting and Read Out  
14.5.2.1 Mode selection bits and configuration select  
Table 12 lists the encoding of the possible SBC mode. Except SBC Restart and Init Mode which are most of time  
entered automatically, all others SBC mode are accessible on request of the microcontroller. The microcontroller  
should send the correct mode selection bits to set the SBC in the respective mode. The output indicates the SBC  
mode where the SBC currently is or was, depending on the situation.  
Table 12  
Mode Selection Bits  
MS2 MS1 MS0 Data Input  
Data Output  
Not valid (the complete SPI word is ignored) Show the device was in Init previous SPI data  
0
0
0
0
0
1
Set the SBC to SBC Restart Mode.  
(In SW Flash mode only)  
Show the device was in Restart previous SPI  
data  
0
0
1
1
1
1
1
0
0
1
0
1
0
1
0
Set the SBC to Software Flash Mode  
Set the SBC to SBC Normal Mode  
Set the SBC to SBC Sleep Mode  
Set the SBC to SBC Stop Mode  
Set the SBC to SBC Fail-Safe Mode  
(In SBC Software Development mode only)  
Show the device is SBC Software Flash Mode  
Show the device is in SBC Normal Mode  
Show the device was in SBC Sleep Mode  
Show the device is in SBC Stop Mode  
Show the device was in SBC Fail-Safe Mode  
1
1
1
Set the SBC to Read Only SPI access. The Reserved  
configuration register needs to be selected.  
The SPI information on SDO is provided in  
the same SPI frame. No write access is  
done in this mode.  
Bit 15 (Watchdog) has to be served  
correctly.  
Table 13 lists the eight possible configuration selection. Some are related to event or state of the different part of  
the SBC, others are used to configure the SBC in the application specific set up.  
Table 13  
Configuration Select Encoder (for Data Input and Output)  
CS2  
0
0
0
0
1
1
1
1
CS1 CS0 Configuration Register Select  
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Wake Register Interrupt  
SBC Failure Interrupt  
Communication Failure Interrupt  
Reserved  
SBC Configuration Register  
Communication Setup Register  
Watchdog Configuration Register  
Limp Home / Diagnosis Register  
Data Sheet  
64  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Serial Peripheral Interface  
14.5.2.2 Interrupt Register Encoder  
Table 14 lists all interrupts the SBC can generates. The microcontroller should read the correct register to release  
the INT pin. By default, all interrupt sources are enabled. The microcontroller can decide to inhibit a specific  
interrupt source.  
Table 14  
CS Bit Name  
Interrupt Register encoder 1)  
Default Default Data Input  
Value Value  
(OUT)  
Data Output  
(INPUT)  
Configuration select 000 (Wake register interrupt)  
000 WK CAN  
1
0
Interrupt enabled (1) disabled Wake on CAN (1)  
(0) for wake event on CAN  
WK 1 WK pin  
WK 0 WK pin  
11  
00  
Interrupt enabled (1) disabled Wake on WK pin  
(0) for wake pin event.  
00 No interrupt  
00 No wake  
10 Interrupt for a LOW to HIGH  
10 Interrupt for a LOW to HIGH transition on WK  
transition on WK  
01 Interrupt for HIGH to LOW  
01 Interrupt for HIGH to LOW  
transition on WK  
transition on WK  
11 Interrupt for both HIGH to  
LOW and LOW to HIGH on WK  
11 Interrupt for both HIGH to  
LOW and LOW to HIGH on WK  
Cyclic WK  
INT  
n.a  
n.a  
0
0
n.a  
n.a  
Cyclic WK (1)  
Indicates that there is a status  
bit or uncleared event in  
configuration select 001 and/or  
010. If set read the two register  
Data Sheet  
65  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Serial Peripheral Interface  
Table 14  
CS  
Interrupt Register encoder (cont’d)1)  
Bit Name  
Default Default Data Input  
Data Output  
Value  
Value  
(OUT)  
(INPUT)  
Configuration select 001 (SBC Failure interrupt)  
001 OTP_Vcc1µC  
OT_HSCAN  
OT_Vcc2  
1
1
1
1
0
0
0
0
Interrupt enabled (1) disabled Vcc1µC temperature pre warning  
(0) for temperature pre-warning (1)  
Interrupt enabled (1) disabled HS CAN temperature shutdown  
(0) for temperature shutdown  
(1)  
Interrupt enabled (1) disabled Vcc2 temperature shutdown (1)  
(0) for temperature shutdown  
Interrupt enabled (1) disabled Undervoltage detection on Vcc3  
(0) for undervoltage detection (1)  
or due to back to normal voltage  
UV_Vcc3  
SPI Fail  
Reset  
1
1
0
0
Interrupt enabled (1) disabled SPI input corrupted data (1)  
(0) for SPI corrupted data.  
Interrupt enabled (1) disabled Reset (1)  
(0) for reset information  
(only in SBC Software  
Development Mode)  
(only in SBC Software  
Development Mode)  
Wrong WD set  
1
1
1
0
0
0
Interrupt enabled (1) disabled Incorrect WD programming for  
(0) for incorrect Watchdog  
setting  
data output  
UV Vcc2  
Interrupt enabled (1) disabled Under voltage detected at Vcc2  
(0) for undervoltage detection at  
Vcc2  
I
CC3 > ICC3max  
Interrupt enable (1) disabled (0) Over current detected at Vcc3  
for over current at Vcc3  
Configuration select 010 (Communication failure interrupt)  
010 CAN failure 1  
n.a  
1
0
0
Interrupt enabled (1) disabled CAN failure Refer to Table 15  
(0) for CAN failure  
CAN failure 0  
CAN Bus  
1
0
Interrupt enabled (1) disabled CAN bus failure detected (1)  
(0) for CAN bus failure  
1) A value of 0 will set the SBC into the opposite state.  
Data Sheet  
66  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Serial Peripheral Interface  
14.5.2.3 CAN failure encoder  
Table 15 describes the encoding of the possible internal CAN failures.  
Table 15  
CAN Failure Encoder  
CAN 1 Failure  
CAN 0 Failure  
Fault  
0
0
1
1
0
1
0
1
No failure  
TxD shorted to GND or bus dominant clamped  
RxD shorted to Vcc  
TxD shorted to RxD  
14.5.2.4 Configuration encoder  
Table 16 lists the configuration register of the SBC. The microcontroller can change the settings. If no settings are  
changed the default values are used. The current value can be read on the SPI Data Out.  
Table 16  
Configuration Encoder  
Configuration Bit Name  
Select  
Default Default State  
Value Value  
(INPUT) (OUT)  
Configuration select 100 (SBC Configuration Register)  
100  
RT10  
01  
01  
Reset threshold setting. Please refer to Table 17  
Reset delay  
1
1
Long reset window  
V
cc3 ON /OFF  
0
0
1
0
0
V
cc3 is activated (1)  
The wake pin will wake the SBC  
cc2 is activated (1)  
WK pin ON / OFF 1  
V
LH ON / OFF  
cc2 On / Off  
0
0
V
Limp Home output state. Activated (1) when entry  
condition is met.  
Cyclic WK On /  
Off  
0
1
0
1
Activation (1) of the cyclic wake  
WD to LH  
Watchdog failure to Limp Home active.  
0 = only one Watchdog failure brings to Limp Home  
activated.  
1 = two consecutive Watchdog failures bring to Limp  
Home activated.  
Data Sheet  
67  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Serial Peripheral Interface  
Table 16  
Configuration Encoder  
Configuration Bit Name  
Select  
Default Default State  
Value Value  
(INPUT) (OUT)  
Configuration select 101 (SBC communication set up register)  
CAN 1.0  
00  
00  
The CAN cell is in:  
00 = CAN OFF  
01 = CAN is Wake Capable  
10 = CAN Receive Only Mode  
11 = CAN Normal Mode  
Configuration select 110 (SBC Watchdog register)  
110  
Ti. Out / Win.  
Set to 1  
WD ON / OFF  
CHK SUM  
1
1
1
1
1
1
1
1
Time-out Watchdog is activated  
Bit is reserved and fix set to “1”. Set to 1 in SW.  
Watchdog is activated  
Check sum of the bit 13...6  
In case the CHK SUM is wrong, the device remains in  
previous valid state.  
CHKSUM = Bit13 ⊕ … ⊕ Bit6  
Configuration select 111 (Limp Home / Diagnosis register)  
111  
-
Reserved for input  
For output, refer to Table 19, Table 20 and Table 21  
14.5.2.5 Reset encoder  
Table 17 lists the three possible reset thresholds. Please also refer to Chapter 10.3 to get the exact voltage  
threshold.  
Table 17  
Reset Encoder  
RT1  
RT0  
Threshold Selected  
0
0
1
1
0
1
0
1
Not Valid. Device remains at previous threshold  
VRT1 (default setting at SBC Init),  
VRT2  
VRT3  
14.5.2.6 SBC Watchdog encoder  
Table 18 list the 32 possible watchdog timer.  
Table 18  
Bit 10...6  
00000  
00001  
00010  
...  
Watchdog Encoder  
Decimal calculation (ms)  
Timer (ms)  
16  
32  
48  
0
1
2
(n+1) × 16  
n = decimal value of  
setting  
...  
15  
...  
01111  
256 (default setting)  
Data Sheet  
68  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Serial Peripheral Interface  
Table 18  
Bit 10...6  
10000  
10001  
...  
Watchdog Encoder  
Decimal calculation (ms)  
Timer (ms)  
304  
352  
16  
17  
...  
n × 48 - 464  
...  
11110  
11111  
30  
31  
976  
1024  
14.5.3  
SBC Diagnostic encoder  
The SBC offers diagnostics information. The encoding of the different possible failures are listed in the following  
table. The description apply only to data output.  
14.5.3.1 Reason for restart and reset  
Reason for reset, without activation of the Limp Home and the way it is encoded are summed up in Table 19. The  
bits are cleared by reading the register with Read-Only command. When coming from Sleep Mode or Fail Safe  
Mode the bits are cleared.  
Table 19  
Reason to Enter SBC Restart Mode without Limp HomeLimp Home activation  
RM1  
RM0  
Cause for entering SBC Restart Mode  
0
0
1
1
0
1
0
1
No reset has occurred or Limp Home activated  
Undervoltage on Vcc1µC  
First Watchdog failure (config 3 and 4) or no acknowledge of the Cyclic Wake-up  
SPI command in SBC Software Flash Mode or reset low from outside  
Data Sheet  
69  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Serial Peripheral Interface  
14.5.3.2 Limp Home failure encoder  
Table 20 describes the encoding of all possible reason to activate automatically the Limp Home output. Bits are  
set back to “000” when switching Limp Home off via SPI.  
Table 20  
LH2  
0
Limp Home Failure Diagnosis  
LH1  
0
LH0  
0
Failure1)  
No failure  
0
0
1
Vcc1µC undervoltage Time-out  
0
0
1
1
1
0
0
1
0
One Watchdog failure (config 1 and 2)  
Two consecutive Watchdog failures (config 3 and 4)  
INIT Mode Time-out  
1
1
0
1
1
0
Temperature shutdown at Vcc1µC  
Reset clamped  
1
1
1
Reserved  
14.5.3.3 Test pin and failure to Limp Home configuration read out  
The SBC allows to read the hardware setting of the configuration that is done via the INT pin, as well as the test  
pin and the WD to LH bit. Table 21 describes the encoding of these informations.  
Table 21  
Test2  
Test pin and SBC Configuration  
Test1  
Test0  
Test Read Out1)  
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
V
V
V
V
cc1µC remains ON in SBC Restart Mode after one Watchdog failure (config 1)  
cc1µC is OFF in SBC Fail-Safe Mode after one Watchdog failure (config 2)  
cc1µC remains ON in SBC Restart Mode after two Watchdog failures (config 3)  
cc1µC is OFF in SBC Fail-Safe Mode after two Watchdog failures (config 4)  
Software Development Mode. In case of watchdog failure Vcc1µC remains ON, no  
reset is generated and Restart Mode or Fail-Safe Mode are not entered.  
1
1
1
0
1
1
1
0
1
Software Development Mode. In case of watchdog failure Vcc1µC remains ON, no  
reset is generated and Restart Mode or Fail-Safe Mode are not entered.  
Software Development Mode. In case of watchdog failure Vcc1µC remains ON, no  
reset is generated and Restart Mode or Fail-Safe Mode are not entered.  
Software Development Mode. In case of watchdog failure Vcc1µC remains ON, no  
reset is generated and Restart Mode or Fail-Safe Mode are not entered.  
1) Refer also to Chapter 4.2.1  
Data Sheet  
70  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Serial Peripheral Interface  
14.6  
SPI Output Data  
14.6.1  
First SPI output data  
Since the SPI output data is sent when the SBC is receiving data, the output data are dependent of the previous  
SPI command, if no Read Only command is used. Under some conditions there is no “previous command”.  
Table 22 gives the first SPI output data that is sent to the microcontroller when entering SBC Normal Mode,  
depending on the mode where the SBC was before receiving the first SPI command.  
.
Table 22  
First SPI output data frame  
Previous SBC mode  
Sleep mode  
Fail-Safe mode  
Mode selection bits (MS2...0) Configuration select (CS 2..0)  
Sleep mode  
Wake Register interrupt1)  
Limp Home register1)  
Fail-Safe mode  
Restart mode  
Restart mode when failure and config 1 / 3  
Limp Home register1)  
Restart mode when microcontroller has sent Restart mode  
to Restart mode  
SBC Configuration Register  
SBC Init mode  
Init mode  
SBC Configuration Register  
1) This does not clear the bits. It will be reset when the microcontroller requests the read out  
Data Sheet  
71  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Serial Peripheral Interface  
14.6.2  
Read Only command  
In the Mode Selection Bits a Read Only can be selected. The Read Only access clears the INT bits that are  
selected in the Configuration Select (some interrupt bits show a state, and can not be cleared with a SPI read).  
With this SPI command no write access is done to the SBC, and the mode of the SBC is not changed. The  
watchdog can also be triggered with a Read Only command.  
The Read Only command delivers the information requested with the Configuration Select in the same SPI  
command on the SDO pin. As all other SPI commands deliver the requested information with the next SPI  
command.  
Figure 34 shows an example of a Read Only access. The bits are shown with LSB first, on the left side in  
difference to the register description.  
DI  
DI  
0
1
2
3
4
5
6
x
7
x
8
9
10 11 12 13 14 15  
0
1
2
3
4
5
6
x
7
x
8
9
10 11 12 13 14 15  
MS0 MS1 MS2 CS0  
CS1  
CS2  
MS0 MS1 MS2 CS0  
CS1  
CS2  
Mode Selection  
WD  
Mode Selection  
WD  
Configuration Select  
Configuration Select  
Configuration Registers  
Configuration Registers  
refresh  
refresh  
Bits  
1
Bits  
1
1
1
0
0
0
x
x
x
x
x
x
x
x
1
0
1
1
1
x
x
x
x
x
x
x
x
DO  
DO  
0
1
2
3
4
5
6
x
7
x
8
9
10 11 12 13 14 15  
0
1
2
3
4
5
6
x
7
x
8
9
10 11 12 13 14 15  
MS0 MS1 MS2 CS0  
CS1  
CS2  
MS0 MS1 MS2 CS0  
CS1  
CS2  
Mode Selection  
WK  
Mode Selection  
WK  
Configuration Select  
Configuration Select  
Configuration Registers  
Configuration Registers  
state  
state  
Bits  
1
Bits  
1
1
0
0
0
0
x
x
x
x
x
x
x
x
1
0
1
0
0
x
x
x
x
x
x
x
x
TIME  
Figure 34 Read Only Command  
Figure 35 shows an example of an SPI write access in normal mode for comparison. The requested information  
is sent out with the next SPI command.  
DI  
DI  
0
1
2
3
4
5
6
x
7
x
8
9
10 11 12 13 14 15  
0
1
2
3
4
5
6
x
7
x
8
9
10 11 12 13 14 15  
MS0 MS1 MS2 CS0  
CS1  
CS2  
MS0 MS1 MS2 CS0  
CS1  
CS2  
Mode Selection  
WD  
Mode Selection  
WD  
Configuration Select  
Configuration Select  
Configuration Registers  
Configuration Registers  
refresh  
refresh  
Bits  
1
Bits  
1
1
0
0
0
0
x
x
x
x
x
x
x
x
1
0
1
1
1
x
x
x
x
x
x
x
x
DO  
DO  
0
1
2
3
4
5
6
x
7
x
8
9
10 11 12 13 14 15  
0
1
2
3
4
5
6
x
7
x
8
9
10 11 12 13 14 15  
MS0 MS1 MS2 CS0  
CS1  
CS2  
MS0 MS1 MS2 CS0  
CS1  
CS2  
Mode Selection  
WK  
Mode Selection  
WK  
Configuration Select  
Configuration Select  
Configuration Registers  
Configuration Registers  
state  
state  
Bits  
1
Bits  
1
1
0
1
0
0
x
x
x
x
x
x
x
x
1
0
0
0
0
x
x
x
x
x
x
x
x
TIME  
Figure 35 Write Command  
Data Sheet  
72  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Serial Peripheral Interface  
14.7  
Electrical Characteristics  
VS = 5.5 V to 28 V; Tj = -40 °C to +150 °C; SBC Normal Mode; all voltages with respect to ground; positive current  
defined flowing into pin; unless otherwise specified.  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Test Condition  
Min.  
SPI Interface; Logic Inputs SDI, CLK and CSN  
Typ.  
Max.  
14.7.1  
14.7.2  
14.7.3  
14.7.4  
14.7.5  
14.7.6  
H-input Voltage Threshold VIH  
0.7 x  
V
VCC1µC  
L-input Voltage Threshold VIL  
0.3 x  
VCC1µC  
V
1)  
Hysteresis of input  
Voltage  
VIHY  
0.12 x  
VCC1µC  
40  
40  
10  
V
Pull-up Resistance at pin RICSN  
20  
80  
80  
-
kΩ  
kΩ  
pF  
V
V
CSN = 0.7 × VCC1µC  
CSN  
Pull-down Resistance at RICLK/SDI 20  
SDI/CLK = 0.2 × VCC1µC  
pin SDI and CLK  
Input Capacitance  
at pin CSN, SDI or CLK  
CI  
-1)  
Logic Output SDO  
14.7.7  
14.7.8  
14.7.9  
H-output Voltage Level  
L-output Voltage Level  
Tri-state Leakage Current ISDOLK  
VSDOH  
V
CC1µC - VCC1µC - –  
V
I
I
DOH = -1.6 mA  
DOL = 1.6 mA  
0.4  
0.2  
0.2  
VSDOL  
0.4  
10  
15  
V
-10  
µA  
pF  
VCSN = VCC1µC;  
0 V < VDO < VCC1  
14.7.10 Tri-state Input  
Capacitance  
CSDO  
10  
1)  
Data Input Timing1)  
14.7.11 Clock Period  
tpCLK  
tCLKH  
tCLKL  
tbef  
250  
125  
125  
125  
250  
250  
125  
100  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
14.7.12 Clock High Time  
14.7.13 Clock Low Time  
14.7.14 Clock Low before CSN  
Low  
14.7.15 CSN Setup Time  
tlead  
tlag  
14.7.16 CLK Setup Time  
14.7.17 Clock Low after CSN High tbeh  
14.7.18 SDI Set-up Time  
14.7.19 SDI Hold Time  
tDISU  
tDIHO  
Data Sheet  
73  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Serial Peripheral Interface  
14.7  
Electrical Characteristics (cont’d)  
VS = 5.5 V to 28 V; Tj = -40 °C to +150 °C; SBC Normal Mode; all voltages with respect to ground; positive current  
defined flowing into pin; unless otherwise specified.  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Test Condition  
Min.  
Typ.  
Max.  
14.7.20 Input Signal Rise Time  
at pin SDI, CLK and CSN  
14.7.21 Input Signal Fall Time  
at pin SDI, CLK and CSN  
trIN  
tfIN  
tfIN  
50  
50  
10  
ns  
ns  
µs  
14.7.22 Delay Time for Mode  
Change from Normal  
Mode to Sleep Mode  
14.7.23 CSN High Time  
tCSN(high) 10  
µs  
-
Data Output Timing 1)  
14.7.24 SDO Rise Time  
14.7.25 SDO Fall Time  
14.7.26 SDO Enable Time  
14.7.27 SDO Disable Time  
14.7.28 SDO Valid Time  
trSDO  
tfSDO  
tENSDO  
tDISSDO  
tVASDO  
30  
30  
80  
80  
50  
50  
60  
ns  
ns  
ns  
ns  
ns  
CL = 100 pF  
CL = 100 pF  
low impedance  
high impedance  
CL = 100 pF  
1) Not subject to production test; specified by design  
23  
CSN  
14  
15  
16  
17  
12  
13  
CLK  
DI  
18  
LSB  
19  
MSB  
not defined  
26  
27  
28  
DO  
Flag  
LSB  
MSB  
Figure 36 SPI Timing Diagram  
Note:Numbers in drawing correlate to the last 2 digits of the Pos. number in the Electrical Characteristics table.  
Data Sheet  
74  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Application Information  
15  
Application Information  
Note:The following information is given only as a hint for the implementation of the device and should not be  
regarded as a description or warranty of a certain functionality, condition or quality of the device.  
VDD  
IC2  
VS  
T1  
VBAT  
VIO  
D1  
R1  
VCC  
VBAT  
C3  
C12  
GND  
C1  
C2  
IC3  
VCC  
C13  
GND  
VCC3ref  
VS  
VCC3shunt VCC3base  
VS  
VDD  
Vcc1µC  
C9  
C10  
R12  
TLE8261-2  
VDD  
CSN  
CLK  
SDO  
SDI  
CSN  
CLK  
SDI  
µC  
SDO  
TxD LIN 1  
RxD LIN 1  
TxD LIN 1  
RxD LIN1  
LOGIC  
State  
Machine  
TxD CAN  
RxD CAN  
TxD CAN  
RxD CAN  
VBAT  
S1  
INT  
RO  
INT  
VSS  
Reset  
VS  
VDD  
WK  
VCC2  
WK  
VBAT  
R9  
C7  
R10  
R5  
CAN cell  
C14  
VCCHSCAN  
VBB  
VDD  
C11  
CS  
SCLK  
SI  
VS  
CANH  
SPLIT  
CANL  
CANH  
CANL  
SO  
R7  
R8  
Limp Home  
IC1  
LHI  
IN0  
IN1  
IN2  
IN3  
IN4  
IN5  
C8  
T2  
VS  
LH_SI  
LH_PL/Test  
T3  
GND  
DEVICE GROUND  
VS  
GND  
D5  
S2  
T4  
Application _information  
_TLE8261 -2E.vsd  
Figure 37 Application Example for a Body Controller Module  
Data Sheet  
75  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Application Information  
Note:This is a very simplified example of an application circuit and bill of material. The function must be verified  
in the actual application.  
Table 23  
Ref.  
Bills of material  
Option Vendor  
Value  
Purpose  
Capacitance  
C1  
Y
68µF optional depending on  
application  
100nF  
10µF ceramic cap low ESR  
22nF 50V  
47nF OEM dependent  
10µF  
Cut off battery spike  
Kemet  
Murata  
C2  
C3  
C7  
C8  
C9  
Y
N
Y
Y
Y
EMC  
Stability of the VCC3  
EMC  
Improve SPLIT pin stability  
Buffer of the VCC1µC depending on load.  
(µC)  
C10  
C11  
C12  
C13  
C14  
N
N
Y
Y
Y
100nF  
Stability of the VCC1µC  
10µF CAN transceiver dependent  
Buffering of the VCC2 for CAN Transceiver  
Improve stability of the logic  
Improve stability of the logic  
Improve stability of the logic  
100nF  
100nF  
100nF  
Resistance  
R1  
N
220mΩ  
VCC3 current measurement for ICC3  
400mA max  
R5  
R7  
R8  
R9  
R10  
R12  
Y
Y
Y
Y
Y
Y
1kΩ  
Wetting current of the switch  
CAN bus termination  
CAN bus termination  
Limit the WK pin current in ISO pulses  
Insulation of the VDD supply  
Set config 1/3. If not connected config 2/4  
is selected  
60/ OEM dependent  
60/ OEM dependent  
10kΩ  
500Ω  
47kΩ  
Data Sheet  
76  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Application Information  
Table 23  
Ref.  
Bills of material  
Option Vendor  
Value  
Purpose  
Active components  
T1  
N
ON Semi MJD253  
Power element of VCC3  
Infineon  
BCP52-16  
Alternative power element of VCC3, current  
limit to be adapted R1 to be changed.  
T2  
T3  
T4  
D1  
µC  
IC1  
IC2  
IC3  
N
N
N
N
N
Y
Y
Y
Infineon  
Infineon  
Infineon  
Infineon  
Infineon  
Infineon  
Infineon  
Infineon  
BCR191W  
BCR191W  
BCR191W  
BAS 3010A  
XC2xxx  
SPOC - BTS5672E  
TLE 6254-3G  
TLE 6251DS  
High active Limp Home  
High active Limp Home  
High active Limp Home  
Reverse polarity protection  
micro-controller  
high side switches  
Low speed CAN  
High speed CAN  
Data Sheet  
77  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Application Information  
15.1  
ZthJA Curve  
60  
50  
40  
30  
20  
10  
0
Zth-JA(Ch4; 600)  
Zth-JA(Ch4; 300)  
Zth-JA(Ch4; 100)  
Zth-JA(Ch4; footprint)  
0,00001 0,0001  
0,001  
0,01  
0,1  
1
10  
100  
1000  
10000  
time (s)  
Zthja curves.vsd  
Figure 38 ZthJA Curve, Function of Cooling Area  
300mm² cooling area 100mm² cooling area  
minimum footprint  
600mm² cooling area  
PCB set up.vsd  
Figure 39 Board Set-up  
Board set-up is done according to JESD 51-3, single layer FR4 PCB 70 µm.  
Data Sheet 78  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Application Information  
15.2  
Hints for SBC Factory Flash Mode  
The mode is used during production of the module to flash the µC. The idea is that the µC is not supplied from the  
SBC but from an external 5V power supply. The reset of the µC that is connected to the RO pin of the SBC can  
be driven from an external source and the SBC does not give a reset signal. Also no interrupt at the pin INT and  
no signal on the SPI SDO pin is generated by the SBC. The SPI pins can be driven externally.  
The mode is reached by applying 5V to the VCC1µC pin and no voltage to the Vs pin. The Vs pin will show a voltage  
of about 4.5V because of the internal diode from VCC1µC to Vs. The current drawn at Vs must not exceed the  
maximum rating of Ivs,max = -500mA. The function is designed for ambient temperature.  
In case the Vs was supplied before going to FF Mode, the voltage on pin Vs must be set below 3 V before applying  
5V to VCC1µC (discharging the C)  
Not  
supplied  
Not  
supplied  
Reset  
signal  
5V  
Vs  
VCC1  
µC  
VBAT  
C
IVS  
Internal  
supply  
VDD  
CSN  
CLK  
SDO  
CSN  
CLK  
SDI  
The current  
flowing to other  
devices from  
Vs should be  
limited to not  
exceed the  
maximum  
µC  
SDI  
SDO  
Other  
Devices  
TxD LIN1  
RxD LIN1  
TxD LIN2  
RxD LIN2  
TxD LIN3  
RxD LIN3  
TxD CAN  
RxD CAN  
TxD LIN1  
RxD LIN1  
TxD LIN2  
RxD LIN2  
TxD LIN3  
RxD LIN3  
TxD CAN  
ratings.  
RxD CAN  
INT  
Reset  
INT  
RO  
VSS  
Application_FF_Mode_2.vsd  
Figure 40 Application Hint for Factor Flash Mode  
Data Sheet  
79  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Application Information  
Table 24  
Pin  
PIN in Factory Flash Mode  
Level  
Comment  
Vs  
typ. 4.5V  
Voltage output from SBC. No voltage applied from  
external.  
Vcc1µC  
RO  
INT  
5V 2%  
To be applied from external  
Can be driven from external  
Pull-up resistor  
Pull-up resistor  
High impedance  
High impedance  
Pull-down resistor  
Pull-up resistor  
Can be driven from external if required  
Can be driven from external if required  
Can be driven from external if required  
Can be driven from external if required  
Can be driven from external if required  
Can be driven from external if required  
LH  
SDO  
CLK, SDI  
CSN  
TxDCAN, TxDLIN1,  
TxDLIN2, TxDLIN3  
Pull-up resistor  
RxDCAN, RxDLIN1,  
RxDLIN2, RxDLIN3  
High impedance  
Can be driven from external if required  
15.3  
ESD Tests  
Tests for ESD robustness according to IEC61000-4-2 “gun test” (150pF, 330) have been performed. The results  
and test condition is available in a test report. The values for the test are listed in Table 25 below.  
Table 25  
Performed Test  
ESD “Gun test”  
Result  
Unit  
kV  
Remarks  
positive pulse1)  
ESD at pin CANH, CANL, > 8  
BUSx, Vs versus GND  
ESD at pin CANH, CANL, < -8  
BUSx, Vs versus GND  
kV  
negative pulse  
1) ESD susceptibility “ESD GUN” contact discharge (R=330Ohm C=150pF) (DIN EN 61000-4-2) tested according LIN EMC  
1.3 Test Specification and ICT EMC Evaluation of CAN Transceiver. Tested by external test house (IBEE Zwickau, EMC  
Test report Nr. 06-02-09a)  
Data Sheet  
80  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Package Outline  
16  
Package Outline  
0.35 x 45˚  
1)  
7.6-0.2  
+0.09  
0.23  
0.65  
0.2  
0.3  
0.7  
0.1  
36x  
C
C
10.3  
SEATING PLANE  
D
17 x 0.65 = 11.05  
2)  
0.08  
0.33  
M
0.17 A-B C  
36x  
D
Bottom View  
A
36  
19  
19  
36  
Exposed Diepad  
Ejector Mark  
1
18  
18  
1
Index Marking  
Ex  
B
1)  
12.8-0.2  
Index Marking  
Exposed Diepad Dimensions4)  
Package  
Leadframe  
Ex Ey  
PG-DSO-36-24, -41, -42 A6901-C001  
7
7
5.1  
5.1  
PG-DSO-36-38  
PG-DSO-36-38  
PG-DSO-36-50  
A6901-C003  
A6901-C007 5.2 4.6  
A6901-C008 6.0 5.4  
1) Does not include plastic or metal protrusion of 0.15 max. per side  
2) Does not include dambar protrusion of 0.05 max. per side  
3) Distance from leads bottom (= seating plane) to exposed diepad  
4) Excluding the mold flash allowance of 0.3 max per side  
PG-DSO-36-24, -38, -41, -42, -50-PO V09  
Figure 41 PG-DSO-36-38 (Leadframe A6901-003);)  
Note:For the SBC product family the package PG-DSO-36-38 with the leadframe A6901-C003 is used.  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with  
government regulations, the Universal System Basis Chip is available as a green product. Green products are  
RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-  
020).  
For information about packages and types of packing, refer to the  
Infineon Internet Page “Products”: http://www.infineon.com/products.  
Dimensions in mm  
Data Sheet  
81  
Rev. 1.0, 2009-05-26  
TLE8261-2E  
Revision History  
17  
Revision History  
Version Date  
Parameter Changes  
First Rev. of Data Sheet  
1.0  
2009-05-25  
Data Sheet  
82  
Rev. 1.0, 2009-05-26  
Edition 2009-05-26  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2009 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  

相关型号:

TLE8261E

Universal System Basis Chip HERMES Rev. 1.0

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE8261EXUMA1

Interface Circuit, PDSO36, GREEN, PLASTIC, DSO-36

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE8261EXUMA3

Interface Circuit, PDSO36, GREEN, PLASTIC, DSO-36

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE8262-2E

Universal System Basis Chip

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE8262E

Universal System Basis Chip HERMES Rev. 1.0

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE8263-2E

Universal System Basis Chip

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE82632EXUMA1

Interface Circuit, PDSO36, GREEN, PLASTIC, SOP-36

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE8263E

Universal System Basis Chip HERMES Rev. 1.0

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE8263EXT

Interface Circuit, PDSO36, GREEN, PLASTIC, DSO-36

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE8263EXUMA1

Interface Circuit, PDSO36, GREEN, PLASTIC, DSO-36

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE8264-2E

Universal System Basis Chip

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE82642EXUMA1

Interface Circuit, PDSO36, GREEN, PLASTIC, SOP-36

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON