TLE8881-2-TN [INFINEON]

Alternator Control IC with LIN Interface;
TLE8881-2-TN
型号: TLE8881-2-TN
厂家: Infineon    Infineon
描述:

Alternator Control IC with LIN Interface

文件: 总116页 (文件大小:5601K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE8881-2  
Alternator Control IC with LIN Interface  
Features  
Single-chip alternator control IC  
High-side n-channel DMOS output stage with RDSON of 60 mtyp. (at 25°C)  
/ 110 mmax.  
Excitation PWM duty cycle range from 0% up to 100%  
Full digital and fast PI regulator  
EEPROM for customization to the target application  
Compliant to both communication standard specifications LIN 2.1 (on  
physical layer and data link layer) and LIN 1.3 (on data link layer) with baudrate up to 19200 bit/s -  
selectable via EEPROM  
Compatible to several OEM specification variants  
Digital temperature setpoint compensation  
Excitation current limitation depending on LIN commands  
Extensive voltage measurement range of 8 V up to 24 V  
Very low stand-by current of less than 80 μA @ 25°C  
High ESD resistivity of 8 kV on all lines (ESD HBM)  
High temperature range of -40°C up to 175°C  
Green product (RoHS-compliant)  
Potential applications  
Voltage regulator for externally excited alternator/generator machine  
Product validation  
Qualified for automotive applications. Product validation according to AEC-Q100.  
Table 1  
Type  
Product Variants  
Sales code  
Package  
Marking  
n.a.  
TLE8881-2-CH  
TLE8881-2-TN  
TLE8881-2-CH  
TLE8881-2-TN  
Bare Die  
PG-TO-220-5-12 Straight Leads  
TLE8881-2  
Data Sheet  
www.infineon.com  
Rev. 1.00  
2019-05-29  
1
TLE8881-2  
Alternator Control IC with LIN Interface  
Description  
The device is based on Infineon’s power technology SPT which allows bipolar and CMOS control circuitry to  
be integrated with DMOS power devices on the same monolithic circuitry.  
The battery voltage is regulated at a precise value between 10.6 V and 16 V. In case of communication loss, the  
regulator is able to proceed with the voltage regulation by using adjustable default values. A fixed frequency  
PWM voltage is set at an output pin to excite the excitation coil of the alternator.  
The TLE8881-2 is equipped with special protection circuitry as well as circuitry to control the excitation  
voltage slew rate to reduce EMI. Therefore the device meets the specific ESD and EMC requirement of the harsh  
automotive environment.  
The following main features are implemented:  
Closed loop voltage control  
By controlling the excitation PWM duty cycle of the excitation output stage, the TLE8881-2 regulates the  
output voltage to an internal default voltage setpoint or to a voltage setpoint controlled by the engine  
management or energy management ECU via the LIN interface. The regulation is processed in a full digital and  
fast PI regulator.  
Load Response Control (LRC)  
The load response control (LRC) prevents engine speed hunting and vibration due to electrical loads which  
cause abrupt torque loading of the engine at low speeds.  
Self start detection  
The TLE8881-2 automatically wakes up the state machine if the frequency and amplitude of the phase signal  
is above a specific threshold. This allows the alternator to function in spite of interrupted or broken LIN  
communication.  
Pre-excitation  
The excitation coil is pre-energized with a small fixed excitation PWM duty cycle coming from the excitation  
output stage of the TLE8881-2 to provide a stable phase voltage input signal.  
Phase Signal Boost (PSB)  
The phase signal boost system of the TLE8881-2 maintains a proper phase signal for rotor speed  
measurement.  
Low Voltage Excitation Switch On (LEO)  
At very low battery voltage loading is immediately induced by increasing the current in the excitation coil until  
a minimal defined voltage is achieved.  
High Voltage Excitation Switch Off (HEO)  
At very high boardnet voltage, the excitation is immediately switched off in order to stop generating power.  
Excitation current measurement  
The measurement of the excitation current inside the rotor is used by the ECU to calculate and monitor the  
torque on the engine.  
Data Sheet  
2
Rev.1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Excitation current limitation  
The current limitation is used to set a boundary on the excitation current (meaning on the torque) via the LIN  
interface.  
Frequency-dependent Excitation Current Limitation (FEXLIM)  
The current limitation is used to set a boundary on the current (meaning on the torque) and is dependent on  
rotation speed.  
Temperature measurement  
The TLE8881-2 is able to send its own measured junction temperature to the ECU via the LIN interface.  
Temperature setpoint compensation  
The voltage setpoint is gradually compensated depending on the measured temperature.  
Voltage measurement  
The TLE8881-2 is able to send the measured voltage at VBA input via the LIN interface.  
Speed measurement  
The TLE8881-2 is able to send the measured rotor speed to the ECU via the LIN interface.  
Speed-dependent Ki-Kp parameter sets (KiKp)  
TLE8881-2 allows to use different regulation KiKp parameter sets for the regulation of the EXC duty cycle  
dependent on the rotation speed nR of the alternator. The device provides 4 different but fixed KiKp parameter  
sets which can be selected.  
F-para switching  
The PI controller’s parameter sets can be adjusted during operation. This function offers the possibility to  
adjust the parameters depending on the pre-programmed parameter set and the activation via a LIN frame.  
Voltage-dependent KiKp function (VoKiKp function)  
In order to avoid a slow reaction of the IC on relatively high VBA voltages compared to VSET, especially if slow  
KiKp parameter sets are chosen, the TLE8881-2 offers a voltage dependent KiKp function (VoKiKp).  
Speed-dependent Lowering of the HEO limit (LowHEO function)  
In order to optimize the reaction to high VBA voltages in case of a low rotation speed, the TLE8881-2 offers a  
function to lower the HEO limit in order to assure a fast reaction to high VBA voltages.  
LIN interface  
In addition to the classical functions of voltage regulation, this regulator offers a bi-directional serial data  
interface which is fully compliant to the standard specification LIN 2.1 (on the physical layer and the data link  
layer) and LIN 1.3 (on the data link layer) for communication with the engine management or energy  
management ECU. A dedicated EEPROM switch provides the possibility to change between LIN 1.3 or LIN 2.1  
on the data link layer.  
This communication link offers the following functions:  
Control of the voltage setpoint as regulation input  
Control of the LRC parameters  
Data Sheet  
3
Rev.1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Control of the excitation current limitation  
Control of what regulation loop parameter set is used for optimized behavior with and without battery  
Control of the temperature voltage compensation offset  
Different frame configurations for VDA-A, VDA-B, OEM1, OEM2  
Transmission of the excitation PWM duty cycle value at excitation output stage to ECU  
Transmission of the excitation current value (determined by excitation current measurement) to ECU  
Transmission of the voltage at VBA (determined by voltage measurement) to ECU  
Transmission of the chip junction temperature to ECU  
Transmission of the rotation speed (using speed measurement) to ECU  
Transmission of the alternator’s system supplier code to ECU  
Transmission of the alternator’s class code to ECU  
Transmission of the regulator identification code to ECU  
Transmission of diagnosis (defects detection) to ECU: high temperature (F-HT), rotor failure (F-ROT),  
electrical failure (F-EL, debounced)  
Transmission of the LIN diagnosis: communication error failure (F-CEF), communication time-out (F-CTO)  
Data Sheet  
4
Rev.1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Table of Contents  
1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2
Pin and pad configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.1  
Pin assignment for PG-TO-220-5-12 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Reduced operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.1  
3.2  
3.3  
3.4  
4
4.1  
4.2  
4.3  
Main control block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
State diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Rotational speed events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
LIN communication events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
State description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Feature priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
“Stand-by” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
State “ComActive” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
State “pre-excitation” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
State “normal operation” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
State “excitation off” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
State “default operation“ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
State “overtemperature” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Diagnostic flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
High-temperature diagnostic flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Mechanical error flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Electrical error flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.4  
4.4.1  
4.4.2  
4.4.3  
4.4.4  
4.4.5  
4.4.6  
4.4.7  
4.4.8  
4.5  
4.5.1  
4.5.2  
4.5.3  
5
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
Regulation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Control system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Excitation output driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Excitation current measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Limitation of Excitation Current (CLIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Temperature measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Temperature Setpoint Compensation (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Voltage measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Speed measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Low Voltage Excitation On (LEO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
High Voltage Excitation Off (HEO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Phase Signal Boost (PSB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Load Response Control (LRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Frequency-dependent Excitation Current Limitation (FEXLIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Parameters and limitation areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Function activation/deactivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
FEXLIM vs. RCLIM register value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Transition behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Function characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Behavior with restore state function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
5.8  
5.9  
5.10  
5.11  
5.12  
5.13  
5.13.1  
5.13.2  
5.13.3  
5.13.4  
5.13.5  
5.13.6  
Data Sheet  
5
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
5.14  
5.15  
5.16  
5.17  
Regulation parameters control via LIN (F-Para function) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Speed-dependent KiKp parameter sets (KiKp function) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Voltage-dependent KiKp function (VoKiKp function) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Speed-dependent lowering of the HEO limit (LowHEO function) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
6
6.1  
6.2  
6.3  
LIN interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Bus topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Signal specification (physical layer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Message frames (data link layer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
LIN frame structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
LIN frame identifier recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
LIN RX frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
LIN TX1 frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
LIN TX2 frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
LIN TX3 frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
LIN registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Register RVSET (voltage setpoint) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
RVSET reporting via LIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Registers LRC (load response control) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Register RCLIM (excitation current limitation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Register RFPARA (F-Para function) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Register RHT (adjustment of high temperature threshold) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Register RDI (response data indicator) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Register RDC (excitation PWM duty cycle) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Register RMC (measured excitation current) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Register RMT (measured temperature on chip) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Register RMV (measured voltage at VBA terminal) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Register RMS (measured speed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Register RSUPP and RCLASS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Default register content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Register output filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Filter for excitation PWM duty cycle (RDC filter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Filter for voltage measurement (RMV Filter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Excitation current filter (RMC filter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
LIN 2.1 diagnostic frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Node configuration / identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
NAD, supplier ID, function ID and variant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Assign frame ID range (LIN 2.1 service) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Read by identifier (LIN 2.1 service) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Programming Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Internal LIN timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
6.4  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
6.4.5  
6.4.6  
6.4.7  
6.4.8  
6.4.9  
6.4.10  
6.4.11  
6.4.12  
6.4.13  
6.5  
6.6  
6.6.1  
6.6.2  
6.6.3  
6.7  
6.7.1  
6.7.2  
6.7.3  
6.7.4  
6.8  
6.9  
7
Phase monitoring block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Self-start wake-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Speed detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Phase monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
7.1  
7.2  
7.3  
7.4  
8
Core functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Data Sheet  
6
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
8.1  
8.2  
8.3  
8.4  
8.5  
8.5.1  
8.5.2  
Voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Internal supply reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Restore state function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Supply micro-cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Restore state event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
9
9.1  
9.2  
9.2.1  
9.2.2  
Non-Volatile Memory (NVM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
NVM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
NVM register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
List overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Detailed description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
10  
10.1  
10.2  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
EMC and ESD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Further application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
11  
12  
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Data Sheet  
7
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Block diagram  
1
Block diagram  
The Alternator Control IC TLE8881-2 has a communication line to the ECU (LIN), 2 external alternator lines  
(VBA and GND) and 2 pins for the alternator-internal connections (EXC and PH). The device consists of several  
blocks to provide relating functions.  
The device consists of 6 main function blocks as shown in Figure 1.  
Regulation Block  
Current sense,  
Temperature sense  
Input filtering  
ADC  
VBA  
Digital Block  
Excitation Output Stage,  
Free-wheeling Diode,  
Over-Current Shut-Down,  
Exc<1V detection, Slope  
Control  
ADC Control,  
EXC  
Voltage / Current / Temperature / Speed measurement,  
Voltage Set-Point calculation,  
Excitation Current Limitation,  
PWM signal generation,  
LEO, HEO, PSB, LRC ...  
LIN Interface  
Main Control  
Register  
LIN Protocol-Handler  
GND  
State control,  
Voltage Setpoint, LRC configuration,  
Excitation Current, Excitation  
Frame receive,  
Diagnosis,  
error detection,  
Programming Mode,  
Speed Measurement  
Current Limitation, EWMA Filter,  
Diagnosis, Alternator Information  
data response generation  
Stator Monitoring  
Core Functions  
LIN Transceiver  
LIN wake-up, Filtering,  
Receiver, Transmitter,  
Over-Current Protection  
Voltage reference,  
EEPROM  
Speed detection,  
Phase voltage  
monitoring,  
Oscillator,  
Charge pump,  
Internal supply,  
Biasing  
Storage for  
customization switches/  
values  
Self-start wake-up  
PH  
LIN  
Figure 1  
Block diagram  
LIN interface  
The TLE8881-2 is controlled and monitored by a communication master device using the standard LIN  
interface. Therefore, TLE8881-2 always behaves as a LIN slave device. All the information exchange with the  
ECU is done via the bi-directional one-wire LIN connection.  
The LIN interface block is divided into two functional blocks: 1) the LIN transceiver which is used to handle the  
physical layer, and 2) the LIN protocol handler which is responsible for the data link layer processing. The LIN  
transceiver is also able to detect a LIN wake-up condition on the physical layer.  
Stator monitoring  
In the stator monitoring block, the frequency measurement for rotor speed information, phase wake-up, self  
start mechanism and the phase voltage measurement of the generator stator are processed.  
Main control  
The main control is the central logic of the system. Based on several parameters, this block determines in  
which state the system operates. Furthermore, this block is responsible for the system diagnosis.  
Data Sheet  
8
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Block diagram  
Register  
The TLE8881-2 configuration and monitoring information are stored in a set of internal registers. These  
registers can be set or read out via the LIN interface. Writable registers can be loaded either via LIN  
communication or via values stored in the EEPROM. In case of missing communication, a default setting is  
used by the TLE8881-2. Readable registers are loaded internally with its default values.  
Regulation block  
The excitation current in the rotor coil of the alternator which is adjusted by regulating the Excitation PWM  
Duty Cycle at the excitation output stage determines the field strength. The output voltage to the battery  
depends on the magnetic field strength and the rotor speed.  
The battery voltage at the alternator (terminal VBA) is filtered and converted to a digital value. Also, the  
excitation current and the junction temperature are filtered and converted to a digital value. These digital  
values feed the digital regulator which is responsible for the voltage regulation, current limitation and LRC  
(load response control). The generated digital duty cycle value (0 to 100%) can be modified by the LEO and  
HEO functions to avoid low or high voltage conditions on the board net. The phase signal boost (PSB) function  
triggers high-side DMOS to quickly re-generate the phase signal output if the amplitude of the phase signal is  
not high enough. The excitation current limitation (CLIM) can apply a limitation of the excitation current. The  
frequency-dependent excitation current limitation (FEXLIM) can apply a limitation of the excitation current  
depending on the measured rotor speed.  
An overcurrent detection and an overtemperature detection circuit switches the DMOS off to avoid  
destruction in case of an excitation pin shorted to ground or thermal overload.  
Core functions and EEPROM  
The core functions block consists of supporting circuitry such as the internal references, an oscillator, internal  
voltage supply, a charge pump for the high-side DMOS and the EEPROM (electrically erasable programmable  
read-only memory). The voltage reference for the output voltage regulation is generated within this block as  
well.  
Data Sheet  
9
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Pin and pad configuration  
2
Pin and pad configuration  
The Alternator Control IC TLE8881-2 is provided in industry standard PG-TO-220-5-12 Straight Leads package.  
2.1  
Pin assignment for PG-TO-220-5-12 package  
Figure 2 shows the pin assignment for the PG-TO-220-5-12 Straight Leads package.  
The related dimensions are provided in Chapter 11.  
3
1
3
5
2
4
Figure 2  
Pin configuration for PG-TO-220-5-12 Straight Leads  
Table 2  
Pin definitions and functions for PG-TO-220-5-12 Straight Leads  
Pin  
Symbol  
Function  
1
EXC  
Excitation output; output to be connected with the excitation coil of the  
generator.  
2
3
4
5
VBA  
GND  
LIN  
PH  
Supply voltage; connected to the battery  
Ground; signal ground  
LIN; terminal of the LIN interface  
Phase input; to be connected with one of the phases of the generator  
Cooling tab; Internally connected to GND  
Cooling Tab GND  
Data Sheet  
10  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
General product characteristics  
3
General product characteristics  
3.1  
Absolute maximum ratings  
Table 3  
Absolute maximum ratings1)  
All parameters are valid for: -40°C < TJ < 150°C; all voltages with respect to ground, positive current flowing into  
pin (unless otherwise specified):  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
Typ. Max.  
Voltages  
Supply input voltage  
(battery and alternator  
voltage)  
VBA  
VBA  
VBA  
-0.3  
40  
50  
V
V
V
static  
P_3.1.0.1  
Supply input voltage  
(battery and alternator  
voltage)  
dynamic: pulse ISO 2 P_3.1.0.2  
(ISO7637-2: 2004),  
clipped to 50 V;  
Supply input voltage  
(battery and alternator  
voltage)  
-2.7  
10 s; TJ = 25°C;  
P_3.1.0.3  
RthJA < 4 K/W  
Phase input voltage  
VPH  
-7.5  
-2.2  
-40  
35  
40  
40  
V
V
V
P_3.1.0.4  
P_3.1.0.5  
P_3.1.0.6  
Voltage on excitation pin  
VEXC  
Voltage difference VBA - LIN VLIN  
pin  
Temperature  
Junction temperature  
Storage temperature  
ESD susceptibility  
TJ  
-40  
175  
150  
°C  
°C  
P_3.1.0.7  
P_3.1.0.8  
TSTORAGE -45  
ESD resistivity  
pin to GND  
VESD  
-8  
-2  
8
2
kV  
kV  
HBM according to  
ANSI/ESDA/JEDEC JS-  
001  
P_3.1.0.9  
ESD resistivity  
all pins  
VESD  
HBM according to  
ANSI/ESDA/JEDEC JS-  
001  
P_3.1.0.10  
1) Not subject to production test.  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
Data Sheet  
11  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
General product characteristics  
3.2  
Functional range  
Table 4  
Functional range  
All parameters are valid for: -40°C < TJ < 150°C; VBA = 14.5 V, unless otherwise specified:  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Supply voltage for  
full operation  
VBA  
VBA  
6
18  
V
For full operation;  
BA decreasing  
P_3.2.0.1  
P_3.2.0.2  
V
Supply voltage for  
operation without  
LIN Communication  
5.5  
18  
V
VBA decreasing  
Supply voltage for  
jumpstart  
VBA  
27  
5.5  
80  
V
1); TJ = 25°C  
P_3.2.0.3  
P_3.2.0.4  
P_3.2.0.5  
Supply voltage for  
reduced operation  
VBA  
3.8  
V
see Chapter 3.41)  
Stand-by current  
IBA,standby  
60  
μA  
TJ = 25°C;  
VBA = 12.5 V;  
V
PH = 0 V;  
EXC open circuit;  
LIN = VBA  
V
Current  
consumptioninstate  
“COM active”  
IBA  
18  
24  
25  
mA  
mA  
VBA = 12.5 V;  
VPH = 0 V;  
EXC open circuit;  
P_3.2.0.6  
P_3.2.0.7  
V
LIN = VBA or  
LIN open circuit  
Current  
IBA  
VBA = 12.5 V;  
consumptioninstate  
“normal operation”  
EXC open circuit;  
V
LIN = VBA or  
LIN open circuit  
Operation  
temperature  
TJ  
TJ  
-40  
150  
°C  
°C  
P_3.2.0.8  
P_3.2.0.9  
Operation  
temperature  
150  
TSD  
1); fully functional.  
parameter  
deviations  
permissible.  
Overtemperature  
shut-down threshold  
TSD  
165  
185  
10  
°C  
P_3.2.0.10  
P_3.2.0.11  
1)  
Time to initialize the tpower-up  
system after  
ms  
power-up  
Data Sheet  
12  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
General product characteristics  
Table 4  
Functional range (cont’d)  
All parameters are valid for: -40°C < TJ < 150°C; VBA = 14.5 V, unless otherwise specified:  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Time to exit mode  
“stand-by”  
texit-stby  
200  
μs  
P_3.2.0.12  
P_3.2.0.14  
High-battery voltage VHIGHMAR 0.4  
threshold margin to  
the typ. VSETmax  
V
1); margin to the  
maximum set  
voltage VSET of  
16.0 V  
1) Not subject to production test.  
3.3  
Thermal resistance  
This thermal data was generated in accordance with JEDEC JESD51 standards.  
For more information, go to www.jedec.org.  
Table 5  
Thermal resistance  
Symbol  
Parameter  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Junction to case  
RthJC  
1.9  
K/W  
;
P_3.3.0.1  
TA = 125°C; PV = 7 W;  
only for packaged  
device  
1) Not subject to production test.  
3.4  
Reduced operating range  
If the voltage drops into the reduced operation range, all functions except the LIN communication of the  
TLE8881-2 are ensured, but parameters may be out of limit.  
The LIN communication voltage range is defined in Table 54.  
If coming from stand-by mode, a voltage above the reduced operation range must be reached to ensure that  
internal voltage is activated and the TLE8881-2 will safely wake up from stand-by mode.  
Data Sheet  
13  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Main control block  
4
Main control block  
4.1  
State diagram  
The functional behavior of the TLE8881-2 is described in the state diagram in Figure 3.  
The number in front of the state-change condition represents its priority in case multiple conditions are valid  
simultaneously (the lower number has higher priority).  
TLE8881-2 allows the following operating states:  
Stand-by  
ComActive  
Pre-excitation  
Normal operation  
Default operation  
Excitation-off  
Overtemperature  
Please refer to Figure 3 and the following chapters for state transitions and detailed state descriptions. The  
related rotation parameters and the respective rotational speed events are shown in Table 6 and Table 7.  
List of abbreviations:  
2: „Restore State“ and „Normal operation data flag“=0  
Default Operation 1)  
VSET:  
DC:  
CTO:  
TJ:  
Voltage Setpoint Register  
Excitation PWM Duty Cycle  
LIN Communiction Timeout  
Junction Temperature  
2: nR<nCUT1  
1: TJ > TSD  
DC regulated  
TSD  
PH=1:  
PH=0:  
:
Over Temperature Threshold  
Phase Signal detected  
Loss off Phase Signal  
EXC Toggling  
LIN ON  
Over-  
1: PH=0 or TJ < (TSD - 5°C)  
Temperature  
3: CTO=1  
3: Valid LIN frame  
Set CTO:=0  
Full digital  
Self-Reset  
EXC OFF  
LIN OFF  
3: (PH=0 and CTO=1)  
or LIN sleep command  
1: TJ > TSD  
1: TJ > TSD  
1: LIN wake-up  
Set CTO:=0  
Normal Operation 1)  
4: (VSET>10.6V and valid LIN RX frame)  
or (nR>nCUT2 and CTO=1)  
ComActive  
Pre-Excitation  
4: nR>nCUT1  
2: nR<nCUT1  
DC regulated  
Stand-by  
EXC Toggling  
LIN ON  
DC := 0%  
DC := NVM-PEXCDC  
2: Self-Start wake-up  
Set CTO:=1  
2: (CTO=0 and VSET=10.6V)  
or (PH=0 and CTO=1)  
or (PH=1 and LIN sleep command)  
EXC OFF  
LIN ON  
EXC Toggling  
LIN ON  
Power-Up  
4: VSET=10.6V  
and NVM-EOFF=1  
1: VSET>10.6V  
3: PH=0 and LIN sleep command  
Excitation-Off  
EXC OFF, LIN OFF  
1: „Restore State“ and „Normal operation data flag“=1  
DC := 0%  
2: CTO=1  
EXC OFF, LIN ON  
EXC OFF  
LIN ON  
EXC Toggling, LIN ON (no regulation)  
EXC Toggling, LIN ON (active regulation)  
1) The functions LRC (Load Response Control), PSB (Phase Signal Boost),  
LEO (Low voltage switch Excitation On) and HEO („High voltage switch  
Excitation Off“) are not shown in this state diagram.  
Figure 3  
State diagram  
Data Sheet  
14  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Main control block  
4.2  
Rotational speed events  
The rotational speed nR is determined by measuring the frequency of the phase input. The phase frequency  
depends on the rotor speed as well as on the alternator pole pairs. The alternator pole pairs are configurable  
via NVM-PP. The self-start speed can be configured in the NVM field NVM-SSS.  
The parameters as shown in Table 6 influence the rotational speed events.  
Table 6  
Parameter rotor speed measurement  
All parameters are valid for: -40°C < TJ < 150°C; VBA=14.5 V unless otherwise specified:  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Number  
Min.  
Max.  
1)  
Cut-in rotor speed 1 nCUT1  
(cranking speed  
threshold)  
500  
560  
610  
rpm  
P_5.2.0.1  
Cut-in rotor speed 2 nCUT2  
(self start detection  
threshold)  
Typ.  
value -  
10%  
Typ.  
value  
Typ.  
value  
+10%  
rpm  
rpm  
1); typ. value adjustable via P_5.2.0.2  
NVM-SSS  
LRC disable rotor  
speed  
nLRCDIS Typ.  
Typ.  
value  
Typ.  
value  
+10%  
1); typ. value adjustable via P_5.2.0.3  
RLRCDIS register  
(Chapter 6.4.3), or via  
NVM-LRCDIS  
value -  
10%  
1) Not subject to production test.  
The rotational speed nR influences several state-transition events. Such events are detected according to the  
conditions in Table 7.  
Table 7  
Event  
Rotational speed events and conditions  
Description  
Set condition  
(event is  
Clear condition  
(event is cleared)  
generated)  
“nCUT1” event  
“nCUT2” event  
Necessary event for normal operation;  
If the event is detected, TLE8881-2 changes measurements with measurements with  
from pre-excitation to the normal  
operation state)  
8 consecutive  
3 consecutive  
nR > nCUT1  
nR < nCUT1  
Related to self-start speed (emergency  
start-up);  
5 consecutive  
measurements with nR < nCUT2  
1 measurement with  
1)  
If the event is detected, TLE8881-2 changes nR > nCUT2  
from stand-by to the pre-excitation state  
without waiting for the command of  
VSET > 10.6 V  
“LRC disable”  
event  
Used by the LRC function, refer to  
Chapter 5.11  
5 consecutive  
measurements with measurements with  
3 consecutive  
nR > nLRCDIS  
nR < nLRCDIS  
1) No state transition associated.  
Data Sheet  
15  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Main control block  
4.3  
LIN communication events  
The “CTO” event in the state diagram indicates the state of the LIN communication time-out flag:  
CTO = 1: The LIN communication timer expired, no valid LIN frame received within tCTO time frame, or  
wake-up via phase signal detected  
CTO = 0: Valid LIN frame received or transmitted - LIN communication OK  
Valid LIN frames contain LIN IDs such as 0x3C and 0x3D as well as the related IDs for a LIN RX/TX1/TX2/TX3  
frame.  
Table 8  
Parameters for internal LIN timers  
All parameters are valid for: -40°C < TJ < 150°C; VBA = 14.5 V unless otherwise specified:  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
LIN Communication  
time-out  
tCTO  
2.7  
3
3.3  
s
1); If time is  
expired, then  
CTO := 1, else  
CTO := 0  
P_5.3.0.1  
1) Not subject to production test.  
4.4  
State description  
TLE8881-2 includes the following functions which are available in each state according to Table 9:  
Current Limitation (CLIM), refer to Chapter 5.4  
Low Excitation On (LEO), refer to Chapter 5.9  
High-Voltage Excitation Off (HEO), refer to Chapter 5.9  
Phase Signal Boost (PSB), refer to Chapter 5.11  
Load Response Control (LRC), refer to Chapter 5.12  
Frequency-dependent Excitation Current Limitation (FEXLIM), refer to Chapter 5.13  
Regulation Parameters Control via LIN (F-Para), refer to Chapter 5.14  
Speed-dependent KiKp parameter sets (KiKp function), refer to Chapter 5.15  
Voltage-dependent KiKp function (VoKiKp), refer to Chapter 5.16  
Speed-dependent lowering of the HEO limit (LowHEO), refer to Chapter 5.17  
4.4.1  
Feature priorities  
The availability of these mentioned features in the states of the state machine is shown in Table 9.  
Occasionally, some features can be enabled/disabled or adjusted via NVM fields. In addition to the  
information in Table 9, some features can be tuned using NVM fields.  
Table 9 also includes a column to represent the related priority, if more than the features’ conditions are  
fulfilled at the same time. Lower priority numbers have higher priorities.  
As an example: While the TLE8881-2 state machine is in normal operation mode and the conditions are fulfilled  
for high-voltage excitation off (VBA > 16.5 V) and phase signal boost (VPH < 7 V), only the high-voltage excitation  
off will be activated. This means that the excitation driver stage will be switched off completely (DC := 0%).  
Data Sheet  
16  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Main control block  
Table 9  
Feature  
Available features in state machine  
Priority States of state machine  
Com  
Pre-  
Normal  
Default  
Excitation- Overtem-  
active  
excitation operation operation off  
perature  
HEO / LowHEO  
PSB  
1
2
LEO  
3
41)  
CLIM  
FEXLIM  
5
51)2)  
LRC  
1) LRC and CLIM have the same priority. Excitation PWM duty cycle is limited by the lower limiting value.  
2) If LRC and CLIM/FEXLIM are active at the same time, the excitation PWM duty cycle is limited by the lower limiting  
value.  
Note: Load Response Control (LRC) may control the rising gradient of the excitation PWM duty cycle and can be  
overridden by the immediate switch-on of the excitation output stage if the conditions for LEO are fulfilled  
(VBA < NVM-LEO voltage).  
4.4.2  
“Stand-by”  
The TLE8881-2 is generally in stand-by mode when the engine of the vehicle is off. No voltage is induced into  
the stator because the rotor is standing still. The LIN communication is off. To avoid draining the battery, the  
stand-by mode current is defined to be very low. The only active circuits are “LIN wake-up” and “self-start  
detection”.  
There are three ways to wake-up and to transfer from state “stand-by” to state “ComActive”:  
On the communication line of the LIN interface, pulses are detected which are longer than the specified  
bus dominant time for LIN wake-up, tLINWK (refer to Table 54).  
The amplitude of the AC signal at the phase input surpasses the self-start wake-up threshold.  
Power-up at supply (from un-powered state).  
The TLE8881-2 will return to stand-by from the ComActive state if no valid communication is received for a  
certain period of time (CTO = 1) and if the signal at the phase input is below the self-start wake-up threshold,  
or a LIN sleep command has been received.  
For detailed definitions of all registers refer to Chapter 6.4.  
Table 10 State “stand-by” entry conditions  
Entry from state  
State entry condition  
ComActive  
(PH = 0 (loss of phase signal) AND CTO = 1 (no valid LIN frame received for tCTO)) OR LIN  
sleep command  
Pre-excitation  
PH = 0 (loss of phase signal) AND LIN sleep command  
Table 11 State “stand-by” exit conditions  
Exit to state  
State exit condition  
ComActive  
LIN activity (set CTO := 0)  
Data Sheet  
17  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Main control block  
Table 11 State “stand-by” exit conditions (cont’d)  
Exit to state  
ComActive  
ComActive  
State exit condition  
Self-start wake-up (set CTO := 1)  
Power-up  
Table 12 State “stand-by” behaviors  
Function  
Behavior mode  
0%  
Excitation PWM duty cycle  
LIN bus communication  
Restore state function  
Only wake-up detection  
Disabled  
4.4.3  
State “ComActive”  
While in ComActive state, the device is ready for communication, but the rotor coil of the alternator is not yet  
energized through the excitation output stage.  
Table 13 State “ComActive” entry conditions  
Entry from state  
-
State entry condition  
Power-up  
Every state  
Stand-by  
Logic reset  
LIN activity (set CTO = 0)  
Self-start wake-up (set CTO = 1)  
nR < nCUT1  
Stand-by  
Default operation  
Overtemperature  
PH = 0 (loss of phase signal) OR  
no overtemperature detected (TJ < (TSD - 5°C))  
Pre-excitation  
(CTO = 1 (no valid LIN frame received for tCTO) AND PH = 0 (loss of phase signal)) OR  
(VSET = 10.6 V AND CTO = 1 (valid LIN frame received)) OR  
(LIN sleep command AND PH = 1 (phase signal detected))  
Table 14 State “ComActive” exit conditions  
Exit to state State exit condition  
Normal operation1) Restore state information is valid AND “normal operation data bit flag” = 1  
(Chapter 8.5)  
Stand-by  
(PH = 0 (loss of phase signal) AND (CTO = 1 (no valid LIN frame received for tCTO)) OR LIN  
sleep command)  
Pre-excitation  
(Valid LIN RX frame received AND VSET > 10.6 V) OR  
(nR > nCUT2 AND CTO = 1 (no valid LIN frame received for tCTO  
)
Default operation1) Restore state information is valid AND “normal operation data bit flag” = 0  
1) In case of an inadvertent logic reset  
Data Sheet  
18  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Main control block  
Table 15 State “ComActive” behaviors  
Function  
Behavior mode  
Excitation PWM duty cycle  
LIN bus communication  
Restore state function  
0%  
Fully functional  
Inactive (register data not updated)  
4.4.4  
State “pre-excitation”  
Pre-excitation state is the entering state for normal and/or default operation state. The pre-excitation state is  
designed to energize the rotor coil of the alternator during the engine cranking phase. In this state, the  
alternator should generate almost no power to the output, but enough energy to have a proper phase signal.  
The pre-excitation state provides a fixed excitation PWM duty cycle at the excitation output stage which can  
be adjusted via NVM-PEXCDC.  
Table 16 State “pre-excitation” entry conditions  
Entry from state  
State entry condition  
ComActive  
(Valid LIN RX frame received AND VSET > 10.6 V) OR  
(nR > nCUT2 AND CTO = 1 (no valid LIN frame received for tCTO  
)
Normal operation  
nR < nCUT1  
Table 17 State “pre-excitation” exit conditions  
Exit to state  
ComActive  
State exit condition  
Logic reset  
Overtemperature  
Normal operation  
ComActive  
Overtemperature detected (TJ > TSD  
nR nCUT1  
)
(CTO = 1 (no valid LIN frame received for tCTO) AND PH = 0 (loss of phase signal)) OR  
(VSET = 10.6 V AND CTO = 0 (valid LIN frame received) OR  
(LIN sleep command AND PH = 1 (phase signal detected))  
IC in stand-by  
PH = 0 (loss of phase signal) AND  
(LIN sleep command)  
Table 18 State “pre-excitation” behaviors  
Function  
Behavior mode  
Excitation PWM duty cycle  
LIN bus communication  
Restore state function  
Fixed - adjustable in EEPROM  
Fully functional  
Inactive (register data not updated)  
4.4.5  
State “normal operation”  
The normal operation state is used to deliver power to the board net with control of the ECU. The entry and  
exit conditions are shown in the following tables.  
Data Sheet  
19  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Main control block  
Table 19 “Normal operation” entry conditions  
Entry from state  
State entry condition  
ComActive  
Restore state information is valid AND “normal operation data bit flag” = 1  
(Chapter 8.5)  
Pre-excitation  
Default operation  
Excitation off  
nR nCUT1  
Valid LIN frame received (CTO := 0)  
VSET > 10.6 V, if NVM-EOFF = 1B  
Table 20 State “normal operation” exit conditions  
Exit to state  
State exit condition  
Logic reset  
ComActive  
Overtemperature  
Pre-excitation  
Default operation  
Excitation off  
Overtemperature detected (TJ > TSD  
)
nR < nCUT1  
CTO = 1 (no valid LIN frame received for tCTO  
)
VSET = 10.6 V, if NVM-EOFF = 1B  
Table 21 State “normal operation” behaviors  
Function  
Behavior mode  
Excitation PWM duty cycle  
LIN bus communication  
Restore state function  
According to control characteristics (Table 36)  
Fully functional  
Active AND “normal operation data bit flag” = 1; (some  
register data is updated)  
4.4.6  
State “excitation off”  
The excitation-off state is used to quickly switch off the EXC output, setting the internal register VSET to 10.6 V  
via the LIN communication. This state is only available, if NVM-EOFF = 1B.  
Table 22 State “excitation off” entry conditions  
Entry from state  
State entry condition  
Normal operation  
VSET = 10.6 V, when NVM-EOFF = 1  
Table 23 State “excitation off” exit conditions  
Exit to state  
State exit condition  
ComActive  
Logic reset  
Normal operation  
Default operation  
VSET > 10.6 V, if NVM-EOFF = 1B  
CTO = 1 (no valid LIN frame received for tCTO  
)
Data Sheet  
20  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Main control block  
Table 24 State “excitation off” behaviors  
Function  
Behavior mode  
Excitation PWM duty cycle  
LIN bus communication  
Restore state function  
0%  
Fully functional  
Inactive (register data not updated)  
4.4.7  
State “default operation“  
The default operation state is defined for the case that no LIN communication and rotating alternator are  
available.  
The state machine will enter the default operation state if the LIN communication is not functional for more  
than tCTO. For this reason, while entering this state TLE8881-2 will reset the internal LIN RX registers to their  
default configuration.  
The TLE8881-2 will apply the default register values upon entry (see Chapter 6.5). As soon as a valid LIN frame  
is received, the TLE8881-2 will leave default operation and enter the normal operation state.  
Table 25 State “default operation” entry conditions  
Entry from state  
Normal operation  
Excitation off  
State entry condition  
CTO = 1 (no valid LIN frame received for tCTO  
CTO = 1 (no valid LIN frame received for tCTO  
)
)
ComActive  
Restore state information is valid AND “normal operation data bit flag” = 0  
(Chapter 8.5)  
Table 26 State “default operation” exit conditions  
Exit to state  
ComActive  
State exit condition  
Logic reset  
Overtemperature  
ComActive  
Overtemperature detected (TJ > TSD  
nR < nCUT1  
)
Normal operation  
Valid LIN frame received  
Table 27 State “default operation” behaviors  
Function  
Behavior mode  
Excitation PWM duty cycle  
LIN bus communication  
Restore state function  
According to control characteristics (Table 36)  
Available, but communication is timed out (CTO = 1)  
Active AND “normal operation data bit flag” = 0; (some  
register data is updated)  
4.4.8  
State “overtemperature”  
If the TLE8881-2 detects an overtemperature, a critical condition is generally assumed and all outputs are  
switched off and the internal power consumption is reduced to a minimum. After returning from an  
overtemperature state (hysteresis avoids toggling around TSD value), a self-reset is triggered and the default  
values are set.  
Data Sheet  
21  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Main control block  
Table 28 State “overtemperature” entry conditions  
Entry from state  
Pre-excitation  
State entry condition  
Overtemperature detected (TJ > TSD  
)
Normal operation  
Default operation  
Table 29 State “overtemperature” exit conditions  
Exit to state  
ComActive  
State exit condition  
Logic reset  
ComActive1)  
PH = 0 (loss of phase signal) OR  
no overtemperature detected (TJ < (TSD - 5°C))  
1) Additional action: Logic reset, all internal registers will be initialized (see Table 5)  
Table 30 State “overtemperature” behaviors  
Function  
Behavior mode  
Excitation PWM duty cycle  
LIN bus communication  
Restore state function  
0%  
Not available  
Inactive (register data not updated)  
4.5  
Diagnostic flags  
The TLE8881-2 supplies a set of status-, abnormality- and LIN communication error flags readable via the LIN  
interface. These error flags generally have specific root causes.  
The following diagnosis flags are available:  
F-HT, F-ROT, F-EL, F-CTO, F-CEF  
The LIN communication error flags are stated in Table 31. The LIN communication error flags such as F-CTO  
and F-CEF are cleared by a logic reset or by a LIN read-out via TX1 or TX3.  
Table 31 Diagnosis table for LIN communication error flags  
Abnormality  
Conditions  
Action  
LIN communication time-out detected  
No valid LIN frame detection for more than F-CTO := 1  
tCTO  
LIN 1.3 error detected  
At least one of these errors is detected:  
F-CEF := 1  
Parity error  
Sync field error  
Checksum error  
Bit error  
Frame error  
LIN 2.1 error detected  
At least one of these errors is detected:  
F-CEF := 1  
Checksum error  
Bit error  
Frame error  
Data Sheet  
22  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Main control block  
4.5.1  
High-temperature diagnostic flag  
The high-temperature diagnostic flag F-HT is set when the junction temperature of the chip reaches the TCOMP  
threshold. The F-HT flag is communicated without debouncing (refer to Chapter 5.6 for detailed information).  
Table 32 Error table: F-HT flag  
Failure case  
Conditions  
States  
ComActive  
Pre-  
excitation  
Normal  
operation  
Excitation-  
off  
No abnormality  
Normal conditions  
0
-
0
-
0
1
0
-
High temperature  
TJ > TCOMP  
Note: In some states the condition cannot be detected or it does not influence the value of the flag  
(indicated with “-”).  
4.5.2  
Mechanical error flag  
The mechanical error flag F-ROT can be configured in EEPROM via NVM-FROT_SEL, see Table 33.  
Table 33 Error table: F-ROT flag  
Failure case  
Conditions  
NVM settings States  
ComActive Pre-  
excitation  
Normal  
Excitation-  
operation off  
10.6 V VBA <  
< VSE VSET  
T  
VBA  
No abnormality1) Normal conditions NVM-  
FROT_SEL =  
0
1
1
1
1
0
0
0
1
00B (VDA)  
NVM-  
1
FROT_SEL =  
01B  
1) F-ROT flag is a state indicator and can be configured by NVM-FROT_SEL. A mechanical error is indicated by a  
unexpected state transition which can be detected with the F-ROT flag.  
4.5.3  
Electrical error flag  
The electrical error flag F-EL is debounced as specified in Table 35.  
The electrical error flag F-EL is set if one of the conditions described in Table 34 is detected for longer than the  
deglitch filter time tF-EL,Set (see Table 35).  
If none of the condition is detected for longer than the deglitch filter time tF-EL,Reset (see Table 35), the flag  
returns to the initial value described by the “normal conditions” row.  
All analogue protection functions (analogue HEO, over-current protection, over-temperature protection,  
watchdog monitoring) will trigger the conditions for “field voltage too low” or “loading error”. Thus, F-EL will  
be set according to these failure cases.  
Data Sheet  
23  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Main control block  
Table 34 Error table: F-EL flag  
Failure case  
Conditions  
NVM settings / States  
speed  
ComActive Pre-  
Normal  
Excitation  
excitation operation off  
No abnormality  
Normal conditions –  
0
0
0
0
Broken drive belt,  
phase circuit  
broken, EXC system VPH,max < 7 V or  
Phase signal  
error;  
nR < nCUT1  
-
-
-
-
-
-
-
nR > nCUT1  
1
broken, stalled  
alternator  
VPH,min > 1 V for 1  
PSB period  
(Chapter 5.11)  
EXC terminal short Continuous full  
1
-
-
-
-
1
1
1
1
-
to B+,  
field;  
excitation output  
VEXC > 1 V during  
stage in short circuit low-time of EXC  
PWM1)  
EXC terminal short Field voltage too  
to GND,  
low;  
free-wheeling diode VEXC < 1 V during  
in short circuit2)  
high-time of EXC  
PWM3)  
Excitation coil  
broken  
Loading error;  
DC = 100% and  
four  
-
-
measurements  
with IEXC < IEXC,100  
4)  
Double battery,  
battery charger,  
broken regulator  
EXC control  
VBA too high;  
NVM-  
HEO_ERR_EN  
-
-
-
-
V
HIGH < VBA  
(Chapter 5.10) or = 0B  
V
LowHEO < VBA if  
NVM-  
HEO_ERR_EN=  
1B  
1
1
1
1
LowHEO is active  
(Chapter 5.17)  
Overloading,  
broken rectifier  
system of  
alternator, broken  
stator system  
VBA too low;  
NVM-  
LEO_ERR_EN  
= 0B  
-
-
-
-
-
5)  
V
LOW > VBA  
,
(Chapter 5.9)  
NVM-  
LEO_ERR_EN =  
1
1
1
1B  
1) No detection of short to B+ if DC > 85%  
2) The same error reporting can be caused by internal error conditions like e.g. OT of excitation output stage or over  
current protection of excitation output stage.  
3) No detection of short to GND if DC < 15%  
4) Refer to Chapter 5.3 for information on the sample update rates.  
5) If the LEO function is activated. Refer to Chapter 5.9 for more details.  
Data Sheet  
24  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Main control block  
Note: In some states the condition cannot be detected or it does not influence the value of the flag  
(indicated with “-”).  
The F-EL debounce filter is active according to the selection in NVM-T_EL_ERR . The filter time is specified in  
Table 35.  
Table 35 Parameters for diagnostic flag delays  
All parameters are valid for: -40°C < TJ < 150°C; VBA = 14.5 V unless otherwise specified:  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Delay time to set  
diagnostic flag F-EL  
tF-EL,Set  
tF-EL,Set  
tF-EL,Reset  
150  
250  
350  
ms  
ms  
ms  
1); NVM-  
T_EL_ERR = 0B  
1); NVM-  
T_EL_ERR = 1B  
P_5.5.3.1  
P_5.5.3.3  
P_5.5.3.2  
Delay time to set  
diagnostic flag F-EL  
900  
20  
1000  
62.5  
1100  
100  
1)  
Delay time to reset  
diagnostic flag F-EL  
;
1) Not subject to production test.  
Data Sheet  
25  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Regulation functions  
5
Regulation functions  
5.1  
Control system  
Table 36 Parameter control system  
All parameters are valid for: -40°C < TJ < 150°C; VBA = 14.5 V unless otherwise specified:  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min.  
Typ. Max.  
1) 2) 3)  
Control accuracy VBA  
VSET - 0.2  
VSET + 0.2  
V
P_6.2.0.1  
of output voltage  
Closed loop operation;  
TSC function not limiting  
VSET;  
Control accuracy VBA  
at load variations  
-150  
-50  
150  
150  
mV 1) 3); Relative to static value P_6.2.0.2  
Test condition:  
5 A < IALT < 0.9 * IALTMAX  
;
nROT = 6000 rpm  
Control accuracy VBA  
at speed variations  
mV 1) 3); Relative to static value P_6.2.0.3  
Test condition:  
IALT = 5 A, TJ = +25°C  
2500 nROT < 18000 rpm  
Excitation PWM  
frequency  
fEXC  
220  
Hz  
Hz  
In state  
P_6.2.0.4  
“normal operation” and  
“default operation”. In  
state “pre-excitation”, if  
NVM-  
PREEXC_27HZ5_DIS = 1B  
See oscillator tolerance  
(Chapter 8.3)  
Excitation PWM  
frequency  
fEXC  
27  
In state “pre-excitation”, if P_6.2.0.5  
NVM-  
PREEXC_27HZ5_DIS = 0B  
See oscillator tolerance  
(Chapter 8.3)  
1) 4)  
Average excitation DC  
PWM duty cycle  
0%  
-
-
99.8%  
+ 10  
-
P_6.2.0.6  
8 bits resolution (= 0.39%)5)  
1)  
Excitation PWM  
duty cycle  
DCacc  
- 10  
%
;
P_6.2.0.8  
L
Load = 5mH;  
accuracy in state  
normal operation  
RLoad = 10 ;  
TJ = 25°C;  
6)  
Excitation PWM  
duty cycle in state  
pre-excitation  
DC  
Typ. value Typ. Typ. value  
-
P_6.2.0.7  
- 10%  
value + 10%  
Typ. value adjustable by  
NVM field NVM-PEXCDC  
1) Not subject to production test.  
Data Sheet  
26  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Regulation functions  
2) Test condition: IALT = 5 A, nR = 6000 rpm, VSET = 14.3 V  
3) VBA measured between BA terminal and GND terminal.  
4) Maximum average PWM duty cycle of 99.8% may not be completely applied to the excitation output stage because  
the current measurement function requires a periodic switch-off at the excitation pin which results in a reduced  
average PWM duty cycle (refer to Chapter 5.3).  
5) This value represents the internal accuracy of the digital circuit. Externally the duty-cycle accuracy is dependent on  
the applied load and may vary.  
6) The excitation PWM duty cycle in pre-excitation state should be adjusted in a way that the alternator provides an  
appropriate phase signal.  
5.2  
Excitation output driver  
The excitation output stage is protected with a dedicated overtemperature sensor and a dedicated  
overcurrent protection. The characteristics related to the excitation output stage are stated in Table 37.  
The excitation MOSFET is driven with a curve shaping technique in order to improve the EMC behavior.  
Depending on NVM-CSHT, the curve shaping can be deactivated at temperatures above 135°C.  
Table 37 Parameter “excitation output driver”  
All parameters are valid for: -40°C < TJ < 150°C; VBA = 14.5 V unless otherwise specified:  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
On resistance on die RDSON,DIE  
level  
53  
95  
60  
95  
65  
mΩ  
mΩ  
mΩ  
mΩ  
IEXC = 1 A; TJ = 25°C P_6.3.0.1  
On resistance on die RDSON,DIE  
level  
110  
IEXC = 1 A  
P_6.3.0.2  
P_6.3.0.3  
P_6.3.0.4  
P_6.3.0.5  
P_6.3.0.6  
P_6.3.0.7  
On resistance in  
package  
RDSON,PCK  
RDSON,PCK  
SLON  
IEXC = 1 A;  
TJ = 25°C  
On resistance in  
package  
110  
3
IEXC = 1 A  
Switch on slew rate  
0.8  
0.8  
V/μs Test condition:  
Resistive load only  
Switch off slew rate  
SLOFF  
3
V/μs Test condition:  
Resistive load only1)  
DMOS overcurrent  
IEXC  
typ. NVM- A  
CLIM  
TJ = -40°C  
protection threshold  
NVM field NVM-CLIM  
+1.5A  
DMOS overcurrent  
protection threshold  
IEXC  
IEXC  
typ. NVM- –  
CLIM  
A
A
TJ = 25°C  
NVM field NVM-CLIM  
P_6.3.0.8  
P_6.3.0.9  
DMOS overcurrent  
typ.  
TJ = 150°C  
protection threshold  
NVM-  
CLIM -  
1.0A  
NVM field NVM-CLIM  
Excitation free  
wheeling voltage  
VEXC  
-2.0  
-1.7  
V
IEXC = 8 A; TJ = 25°C, P_6.3.0.11  
measured between  
EXC terminal and  
GND terminal  
1) Not subject to production test.  
Data Sheet  
27  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Regulation functions  
5.3  
Excitation current measurement  
The excitation current flowing through the free-wheeling path is measured while the excitation DMOS is  
switched off by using a dedicated shunt resistor. The sampled excitation current is averaged over several  
excitation PWM duty cycle periods.  
The excitation current measurement functionality forces a single measurement cycle of the excitation current  
at least every 32 PWM periods. This single measurement cycle results in a maximum ON-time of the excitation  
PWM duty cycle of 93% and a minimum OFF-time of the excitation PWM duty cycle of 7% for one single PWM  
period.  
The TLE8881-2 attempts to achieve a good balance between the maximum average excitation PWM duty cycle  
and a good sample rate of the excitation current. For all target duty cycle values below 93%, a sampling of the  
excitation current will be performed in every excitation PWM cycle. Achieving higher duty cycle values is  
managed by decreasing the sampling rate of the excitation current measurement. In such cases, the  
measurement is executed at frequencies up to fEXC/32.  
If the excitation current limitation function (Chapter 5.4) as well as the LIN Filters (Chapter 6.6) are active, the  
excitation DMOS is forced off with a higher frequency (up to the nominal excitation PWM frequency fEXC) to  
perform new measurements more often.  
Table 38 Parameter excitation current measurement  
All parameters are valid for: -40°C < TJ < 150°C; VBA = 14.5 V, unless otherwise specified:  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Number  
Min.  
Max.  
Excitation current fCUPD  
update rate  
fEXC/32  
fEXC  
Hz  
P_6.4.0.1  
P_6.4.0.2  
Accuracy of the  
excitation current  
measurement  
IEXCACC  
IEXCACC  
IEXCACC  
250  
mA IEXC 5 A; resistive or  
inductive load for 0 A (no  
open EXC)  
Accuracy of the  
excitation current  
measurement  
5%  
10%  
-
-
-
5 A < IEXC 8 A  
P_6.4.0.3  
P_6.4.0.4  
P_6.4.0.5  
Accuracy of the  
excitation current  
measurement  
IEXC > 8 A  
Maximum average DCMAX,avg  
excitation PWM  
99.8%  
Current limitation  
disabled;  
duty cycle  
current measurement  
performed at minimum  
frequency of fEXC/32 (higher  
values possible)  
Data Sheet  
28  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Regulation functions  
Table 38 Parameter excitation current measurement (cont’d)  
All parameters are valid for: -40°C < TJ < 150°C; VBA = 14.5 V, unless otherwise specified:  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Number  
Min.  
Max.  
Maximum average DCMAX,avg  
excitation PWM  
duty cycle  
99.125%  
-
Active filter for excitation  
Current (RMC Filter),  
Chapter 6.6.3;  
P_6.4.0.6  
current measurement  
performed at minimum  
frequency of fEXC/8 (higher  
values possible)  
Maximum average DCMAX,avg  
excitation PWM  
duty cycle  
99.6%  
-
Enabled excitation current P_6.4.0.7  
limitation function (both  
CLIM or FEXLIM);  
current measurement  
performed at minimum  
frequency of fEXC/16 (higher  
values possible)  
5.4  
Limitation of Excitation Current (CLIM)  
The Excitation Current Limitation (short: CLIM) limits the average output current of the excitation output stage  
to an adjusted upper current threshold.  
CLIM can be active only in the normal and default operation states. The current thresholds are set differently  
according to the operation states in which TLE8881-2 is functioning, both via NVM or LIN fields. When changing  
the state from normal or excitation off mode to default mode, the excitation current limit (CLIM) is ramped to  
the new setting with 0.375A/s.  
In case multiple thresholds for the same function are active simultaneously, TLE8881-2 shall use the more  
restrictive one. Basically, the limitation value (parameter CLIM) can be configured via the LIN interface  
(TLE8881-2 register “RCLIM”). For the limitation values, refer to Chapter 6.4.4. Beside the LIN-controlled  
limitation value, the FEXLIM function can adjust a specific limitation value (refer to Chapter 5.13).  
If the excitation current limitation is activated, the configured voltage setpoint (VSET) may not be achieved,  
since the voltage regulator might require a higher excitation current.  
5.5  
Temperature measurement  
The junction temperature, TJ, is measured every 4.5 ms.  
A change of the temperature value is limited by the rise/fall gradient, TFRF, while in the normal and default  
operation states only. For other operation states, changes of the temperature values are immediately applied  
(no usage of rise/fall gradient, TFRF)  
The temperature value, which is driven by TFRF, is used for:  
F-HT diagnosis flag, or  
Temperature compensation of the voltage setpoint (VSET) in case of TJ > THT  
Frequency dependent excitation current limitation (FEXLIM)  
The detection of overtemperature, TSD, is always derived from the non-limited temperature value (no usage of  
rise/fall gradient, TFRF).  
Data Sheet  
29  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Regulation functions  
Table 39 Parameter temperature measurements  
All parameters are valid for: -40°C < TJ < 150°C; VBA = 14.5 V, unless otherwise specified:  
Parameter  
Symbol  
Values  
Typ.  
28  
Unit Note or Test Condition Number  
Min.  
Max.  
Temperature rise/fall  
gradient  
TFRF  
K/s  
Used in normal  
operation, default  
operation  
P_6.6.0.1  
P_6.6.0.2  
Junction temperature  
measurement tolerance  
ΔTJ  
ΔTJ  
-10  
-5  
+10  
+5  
K
K
Junction temperature  
measurement tolerance  
Device in “ComActive” at P_6.6.0.3  
25°C ambient  
temperature1)  
1) Only wafer test  
5.6  
Temperature Setpoint Compensation (TSC)  
The temperature compensation gradually decreases the voltage setpoint (VSET) based on the measured  
junction temperature of the device. To compensate the produced energy at the excitation output stage, VSET  
is decreased at higher temperatures.  
The behavior of the temperature compensation in normal operation can be adjusted via EEPROM and LIN  
frames. Figure 4 shows the behavior including the influence factors of the two parameters THT and the high-  
temperature gradient HTG.  
THT is the high-temperature threshold from where the temperature compensation would be activated if the  
voltage setpoint is set to 16 V. THT can be adjusted in EEPROM via NVM field NVM-THT and via HTADJ  
(modifiable via RHT register in LIN RX frame). The adjustment via EEPROM is an absolute threshold value,  
whereas the adjustment via LIN adds a relative offset (positive or negative) to the EEPROM adjustment of the  
absolute threshold value. NVM-HTG defines the gradient of the temperature compensation phase for the  
voltage setpoint of 16 V.  
The temperature compensation is activated as soon as the actual VSET intersects with the gradient HTG -  
intersection point is called TCOMP. Calculation of TCOMP (as shown in Figure 4), is stated in Equation (5.1)  
(5.1)  
VSET - 16 V  
= “NVM-THT“ + HTADJ +  
TComp  
“NVM-HTG“  
The lower the HTG gradient, the later the compensation will be activated. The higher the actual voltage  
setpoint, the earlier the compensation will be activated.  
As soon as TJ > TCOMP, the high-temperature diagnostic flag (F-HT) is set to 1.  
Data Sheet  
30  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Regulation functions  
Voltage Set-  
point  
16 V  
VSET  
“NVM-HTG“  
“NVM-THT“ +  
HTADJ  
10.6 V  
Temperature  
-42 °C  
20 °C  
THT  
TComp  
TSD  
Figure 4  
Temperature compensation example for specific values  
5.7  
Voltage measurement  
The voltage measurement is performed at the VBA terminal with reference to the GND (ground) terminal.  
TLE8881-2 has two different voltage measurement ranges:  
Measurement path with higher accuracy for the regulation range (10.6 V to 16 V).  
Measurement path with lower accuracy covering voltages outside the regulation range (8 V to 10.6 V and  
16 V to 24 V).  
The voltage measurement at the VBA terminal relative to the GND terminal is based on the accuracy as stated  
in Table 40.  
The overall voltage measurement is in the range between 8 V and 24 V.  
Table 40 Parameter voltage measurement  
All parameters are valid for: -40°C < TJ < 150°C; VBA = 14.5 V unless otherwise specified:  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Accuracy of  
voltage  
measurement  
VBATACC  
500  
mV  
mV  
mV  
VBA < 8.75 V  
P_6.8.0.1  
Accuracy of  
voltage  
measurement  
VBATACC  
400  
300  
8.75 V VBA < 9.5 V P_6.8.0.2  
9.5 V VBA < 10.0 V P_6.8.0.3  
Accuracy of  
voltage  
VBATACC  
measurement  
Data Sheet  
31  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Regulation functions  
Table 40 Parameter voltage measurement (cont’d)  
All parameters are valid for: -40°C < TJ < 150°C; VBA = 14.5 V unless otherwise specified:  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Accuracy of  
voltage  
measurement  
VBATACC  
250  
mV  
mV  
mV  
mV  
10.0 V VBA  
10.5 V  
<
P_6.8.0.4  
Accuracy of  
voltage  
measurement  
VBATACC  
VBATACC  
VBATACC  
200  
400  
700  
10.5 V VBA  
16.0 V  
<
P_6.8.0.5  
Accuracy of  
voltage  
measurement  
16 V VBA 16.5 V P_6.8.0.6  
16.5 V < VBA 24 V P_6.8.0.7  
Accuracy of  
voltage  
measurement  
5.8  
Speed measurement  
The measurable speed is limited in the range from 500 rpm to 25500 rpm. The determination of the speed is  
done by measuring the frequency of the signal at the phase terminal and normalizing to the alternator pole  
pairs (NVM field NVM-PP).  
The speed measurement is only available in the normal operation state.  
The representation of the speed measurement value is based on the accuracy as stated in Table 41 and on the  
register resolution (capability of lowest significant bits).  
Table 41 Parameter speed measurement  
All parameters are valid for: -40°C < TJ < 150°C; VBA = 14.5 V unless otherwise specified:  
Parameter  
Symbol  
Values  
Typ.  
10  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Accuracy of speed wmeasACC  
measurement  
%
P_6.9.0.1  
1) Not subject to production test.  
5.9  
Low Voltage Excitation On (LEO)  
At a very low battery voltage, loading of the excitation coil is immediately induced by providing the maximum  
excitation current (excitation PWM duty cycle set to 100%) at the excitation output stage, until a defined  
threshold (VLOW) is achieved. This feature is called Low-Voltage Excitation On (LEO).  
The enabling of the LEO function in normal mode depends on the NVM-LEOTIMERdis.  
If the NVM-LEOTIMERdis = 1B, the LEO function is enabled immediately after the Normal Operation is entered.  
If the LEO function gets activated, the excitation PWM duty cycle is set to 100%.  
If the NVM-LEOTIMERdis = 0B, a timer is started when VBA exceeds VLOW  
.
If VBA falls below VLOW while the timer is running, the timer is reset and starts to run as soon as VBA exceeds VLOW  
again.  
Data Sheet  
32  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Regulation functions  
If VBA stays above VLOW during the runtime of the timer, the LEO function is enabled when the timer expires after  
tLEODEL  
.
While LEO function is activated, the F-EL will be set with the respective debounce time, if NVM field NVM-  
LEO_ERR_EN set to 1B.  
While the LEO function is enabled, the regulation loop as well as any LRC ramp (Load Response Control  
specified in Chapter 5.12) continue their regular operation in the background.  
The behavior after deactivating the LEO function (VBA > VLOW) can be selected via NVM-LEOLRC. The TLE8881-  
2 will set the LRC value to 100% DC , if NVM-LEOLRC = 0B, or stays at the actual value if NVM-LEOLRC = 1B.  
LEO is not available for all states (refer to Table 9). For longer LEO periods the DC can be reduced for one PWM  
period in order to conduct a current measurement as mentioned in Chapter 5.3.  
Table 42 Parameter low-voltage excitation on  
All parameters are valid for: -40°C < TJ < 150°C; unless otherwise specified:  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
LEO threshold  
VLOW  
8.25  
8.75  
9.15  
V
V
V
V
V
V
V
;
P_6.10.0.1  
NVM field NVM-  
LEO = 000B;  
1)  
LEO threshold  
LEO threshold  
LEO threshold  
LEO threshold  
LEO threshold  
LEO threshold  
VLOW  
VLOW  
VLOW  
VLOW  
VLOW  
VLOW  
8.6  
9
9.4  
;
P_6.10.0.2  
P_6.10.0.3  
P_6.10.0.4  
P_6.10.0.5  
P_6.10.0.6  
P_6.10.0.7  
NVM field NVM-  
LEO = 001B  
1)  
8.85  
9.2  
9.25  
9.5  
9.65  
9.8  
;
NVM field NVM-  
LEO = 010B  
1)  
;
NVM field NVM-  
LEO = 011B  
1)  
9.45  
9.75  
10  
9.75  
10.0  
10.25  
10.05  
10.25  
10.5  
;
NVM field NVM-  
LEO = 100B  
1)  
;
NVM field NVM-  
LEO = 101B  
1)  
;
NVM field NVM-  
LEO = 110B  
Data Sheet  
33  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Regulation functions  
Table 42 Parameter low-voltage excitation on (cont’d)  
All parameters are valid for: -40°C < TJ < 150°C; unless otherwise specified:  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
LEO threshold  
VLOW  
10.3  
10.5  
10.7  
V
;
P_6.10.0.8  
NVM field NVM-  
LEO = 111B  
1)  
LEO enable timer  
tLEODEL  
425  
475  
525  
ms  
;
P_6.10.0.1  
0
(VBA > VLOW  
)
If NVM-  
LEOTIMERdis = 0B;  
Timer initiated  
after transition  
from Pre-  
Excitation to  
Normal Operation  
state  
1) Not subject to production test, specified by design and functional test.  
5.10  
High Voltage Excitation Off (HEO)  
At overshooting above a very high on-board power supply voltage level (VHIGH), the excitation output stage is  
immediately disabled (lock to DMOS switch-off). As soon as the voltage level is below this threshold, the DMOS  
lock is released (DMOS can switch-on and switch-off as requested by regulation loop). This feature is called  
High-Voltage Excitation Off (HEO).  
HEO is a safety feature to switch-off the excitation output stage at dangerous high voltage levels (e.g. caused  
by load dump in the on-board power supply). This feature has the highest priority above all other functions  
and is not available in all operation states (refer to Table 9).  
The HEO threshold, VHIGH, is stated in Table 43.  
The analogue HEO function can be activated/deactivated by NVM-HEO_ANdis. It is working independently  
parallel to the regular HEO function. It is not displayed with a LIN flag.  
Table 43 Parameter High Voltage Excitation OFF  
All parameters are valid for: -40°C < TJ < 150°C; VBA=14.5 V unless otherwise specified:  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition Number  
Min.  
Max.  
1)  
High-battery  
VHIGH  
16.1  
16.5  
16.9  
V
P_6.11.0.1  
voltage threshold  
Data Sheet  
34  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Regulation functions  
Table 43 Parameter High Voltage Excitation OFF (cont’d)  
All parameters are valid for: -40°C < TJ < 150°C; VBA=14.5 V unless otherwise specified:  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition Number  
Min.  
VHIGHan,en 16.4  
Max.  
Analogue HEO  
activation voltage  
threshold  
17.4  
18.7  
V
V
Operating in parallel to P_6.11.0.2  
digitally implemented  
Over-Voltage  
Excitationoff if NVM-  
HEO_ANdis = 0B  
Analogue HEO  
deactivation  
voltage threshold  
VHIGHan,dis 16.3  
17.4  
18.6  
Operating in parallel to P_5.11.0.1  
digitally implemented  
Over-Voltage  
Excitationoff if NVM-  
HEO_ANdis = 0B  
1) Not subject to production test.  
Data Sheet  
35  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Regulation functions  
5.11  
Phase Signal Boost (PSB)  
Phase Signal Boost (PSB) is an essential function to maintain a proper phase signal detection.  
Conditions and behavior  
The PSB is activated by default within the respective states (see Table 9). Deactivation will happen beyond  
those states. Enabling and disabling conditions as well as the behavior of the PSB function is described in the  
following.  
The PSB function is activated if the upper peak voltage of VPH is below the upper deactivation level or the lower  
peak voltage of VPH is above the lower deactivation level.  
The PSB function is deactivated if the upper peak voltage of VPH is above the upper deactivation level and the  
lower peak voltage of VPH is below the lower deactivation level.  
If the PSB Function is activated the EXC output is set to 100% duty cycle for the PSB ON-time.  
If the PSB Function is activated the EXC output is set to 0% duty cycle during the PSB OFF-time.  
If the PSB function is active for longer than tPSB,ON+tPSB,OFF, a “PSB error” event (Trigger condition: PSB enabled  
for longer than 1 PSB period) is emitted and an F-EL event is triggered (see Chapter 4.5).  
For the prioritization of different functions and their availability in different states see Table 9.  
Table 44 Parameter phase signal boost timer  
All parameters are valid for: -40°C < TJ < 150°C; VBA = 14.5 V unless otherwise specified:  
Parameter  
Symbol  
Values  
Typ.  
1
Unit Note or Test Condition  
Number  
Min.  
Max.  
Minimum required  
phase voltage level  
for PSB activation  
VPSB,on,min  
0.4  
1.3  
V
V
PSB is enabled as soon as P_6.12.0.1  
phase voltage level (VPH  
goes below the specified  
voltage level  
)
Maximum required  
phase voltage level  
for PSB activation  
VPSB,on,max 6.1  
7
7.6  
PSB is enabled as soon as P_6.12.0.2  
phase voltage level (VPH  
)
overshoots the specified  
voltage level  
1)  
ON time for PSB  
tPSB,ON  
Typical Typ.  
value - value value +  
Typical ms  
;
P_6.12.0.3  
P_6.12.0.4  
Typ. value depends on  
NVM register NVM-  
T_PSB_ON_MAX  
1)  
10%  
253  
10%  
311  
OFF time for PSB  
tPSB,OFF  
282  
ms  
1) Not subject to production test.  
5.12  
Load Response Control (LRC)  
Load Response Control (LRC) prevents engine speed hunting and vibration due to electrical loads which cause  
abrupt torque loading of the engine at lower speeds. This prevention is achieved by limiting the rise gradient  
of the excitation PWM duty cycle at the output stage.  
Data Sheet  
36  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Regulation functions  
Duty cycle  
[%]  
(seen at output DMOS)  
“Blind-zone“  
DC + α  
Blind-zone left  
Æ LRC activated  
(rising gradient)  
DC  
No LRC enabled  
LRC active  
No LRC enabled  
No LRC enabled  
Sample time [τ]  
Figure 5  
Principle of load response control  
If the LRC function is disabled, the targeted Duty Cycle (DC) will be directly set to the regulator output value.  
If the LRC function is enabled and the targeted DC of the internal regulator is higher than the sum of current  
DC and LRC blind-zone value, the LRC function applies a rising gradient to the duty cycle of the excitation  
Output Stage.  
The LRC blind-zone restrains the application of the LRC function for a defined range of DC changes. This  
prevents a continuous applied rise gradient of the DC especially for small DC changes and assures a better  
dynamic behavior.  
If the LRC function is enabled and the targeted DC of the internal regulator is lower than the subtraction of  
current DC and LRC blind-zone value, the LRC function internally calculates a falling gradient which is not  
applied to the excitation Output Stage and therefore not seen at the excitation DMOS. This internally  
calculated falling gradient is used as the starting point for next re-application of a LRC rising gradient (e.g. the  
targeted DC is higher than the sum of the current DC and the LRC blind-zone value). This assures a better  
dynamic behavior.  
Behavior of the LRC function after special conditions:  
If the state of the IC is restored to normal operation after an inadvertent reset, the LRC value is set to 100%.  
The behavior of the LRC function after an LEO event can be programmed by NVM-LEOLRC.  
Once LEO is deactivated, the LRC value is set to 100% if NVM-LEOLRC = 0B or stays at the actual value if  
NVM-LEOLRC = 1B  
The principle of LRC and the LRC blind-zone is shown in Figure 5.  
LRC rise-time (LRCRT)  
The rising gradient is given by the LRC rise time (parameter LRCRT). This parameter can be configured via LIN  
RX frames (RB in Data Byte 2, refer to Chapter 6.3.3) and in NVM via NVM-LRCRT for default operation. The  
LRC rise-time is defined as the ramp-up time to go from 0% to 100% DC value, while the LRC function is  
activated (nR < nLRCDIS and the positive DC change exceeds LRC blind-zone).  
Data Sheet  
37  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Regulation functions  
LRC fall-time (LRCFT)  
The falling gradient is given by the LRC fall time (parameter LRCFT). In contrast to LRCRT, this parameter can  
only be configured in NVM via NVM-LRCFT. It is defined as the ramp down time to go from 100% to 0% DC  
value, while the LRC function is activated (nR < nLRCDIS).  
LRC blind-zone (LRCBZ)  
The blind-zone is defined as the DC range, where the LRC function will not be activated. In case of a DC change  
which is higher than the blind-zone value (in percent of current DC), the LRC function will be activated for this  
DC change. This parameter can be configured via NVM-LRCBZ and NVM-LRCBZ_0_SEL.  
Table 45 Parameter Load Response Control (LRC)  
Parameter  
Symbol  
Values  
Typ.  
3%  
Unit Note or Test Condition  
Number  
Min.  
Max.  
1)  
Blind zone  
BZdigital  
3%  
4%  
-
-
-
;
P_6.13.0.1  
NVM-LRCBZ= 0B and NVM-  
LRCBZ_0_SEL= 0B  
1)  
Blind zone  
Blind zone  
BZdigital  
6.25% 6.25% 8%  
;
P_6.13.0.2  
P_6.13.0.3  
NVM-LRCBZ = 0B and NVM-  
LRCBZ_0_SEL= 1B  
1)  
BZdigital  
12%  
12%  
14%  
;
NVM-LRCBZ = 1B  
1) Not subject to production test. BZ is digitally implemented, so that the typical value can be targeted by design.  
Tolerances are related to DC changes on the middle of the PWM on-time.  
LRC disable speed (LRCDIS)  
If the measured rotor speed is high, the applied engine torque can be strong enough to overcome speed-  
hunting and vibration due to a DC change. Therefore, the LRC disable speed can deactivate the LRC depending  
on the rotor speed, if nR > nLRCDIS  
.
This parameter can be configured via LIN RX frames (RC in Data Byte 2) and for the default mode in NVM via  
NVM-LRCDIS.  
In summary, the LRC function is disabled in one or more of the following cases:  
nR > nLRCDIS and TLE8881-2 register RLRCDIS is not 1111B.  
TLE8881-2 register RLRCRT = 0000B.  
If the LRC is enabled by change of the registers LRCRT or LRCDIS, the limitation value starts on the actual  
excitation duty cycle value.  
5.13  
Frequency-dependent Excitation Current Limitation (FEXLIM)  
Preventing higher torque loads especially for low temperature ranges as well as preventing heat-up due to  
high current flow is an important protection feature. The Frequency-dependent Excitation Current Limitation  
(FEXLIM) feature provides the possibility to adjust the limit of the excitation current depending on the  
measured rotation speed of the alternator pulley.  
The FEXLIM feature limits the excitation current by adjusting the permanent current limitation (PCLIM) values.  
FEXLIM can operate in parallel to the excitation current limitation via LIN (Chapter 5.4), which limits the  
excitation current by adjusting the RCLIM values (RCLIM register).  
Data Sheet  
38  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Regulation functions  
By using the NVM bit field NVM-FEXLIM_EN in the EEPROM, the FEXLIM function can be enabled/disabled, see  
Table 47.  
FEXLIM feature is available for all device configurations (VDA-A, VDA-B, OEM2 and OEM1).  
5.13.1  
Parameters and limitation areas  
The frequency dependent current limitation (FEXLIM) has 2 limitation areas separated by a speed-dependent  
threshold. This threshold is stated in Table 48.  
Table 46 Excitation current limitation values within the different limitation areas  
Limitation area Conditions  
PCLIM value  
PCLIM1  
Area 1  
Area 4  
nR < SLM  
SLM < nR  
PCLIM2  
Figure 6 shows an overview of the limitation areas and the adjustment options.  
Perm.  
NVM-FEXLIM_PCLIM2  
Excitation  
Current Limits  
[A]  
Hysterisis SLM  
(while RCLIM >  
NVM-FEXLIM_PCLIM1  
PCLIMx)  
Hysterisis SLM  
Speed [rpm]  
SLM  
Figure 6  
Principle of frequency-dependent current limitation overview of FEXLIM limitation areas  
and adjustment options (adjustments are red-highlighted, fixed values are black-  
contrasting)  
5.13.2  
Function activation/deactivation  
A dedicated switch in the NVM is provided to activate/deactivate the FEXLIM function, NVM-FEXLIM_EN.  
Table 47 Activation/deactivation switch for FEXLIM function  
Activation/deactivation  
switch  
Description  
Behavior  
NVM-FEXLIM_EN = 0B  
Deactivate FEXLIM function  
CLIM (Excitation Current Limitation) is  
defined by the RCLIM register value via LIN  
only.  
NVM-FEXLIM_EN = 1B  
Activate FEXLIM function  
CLIM (Excitation Current Limitation) is  
defined by the RCLIM register value via LIN  
and by PCLIM via the FEXLIM feature.  
5.13.3  
FEXLIM vs. RCLIM register value  
Beside the FEXLIM limitation values (as specified in Table 46 and Table 48), LIN commands can limit the  
excitation current.  
Data Sheet  
39  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Regulation functions  
The LIN RX frame rewrites the RCLIM register value. The RCLIM register is used for applying the CLIM (Excitation  
Current Limitation) within the normal operation state (refer to Chapter 5.4). While in parallel operation with  
FEXLIM, priorities have to be defined which actual limitation values will be used for CLIM.  
Depending on the case, the following value for CLIM will be applied while RCLIM (0) is provided:  
If FEXLIM is enabled and RCLIM < PCLIM (as defined in Table 48), then CLIM is applied by RCLIM.  
If FEXLIM is enabled and RCLIM > PCLIM, then CLIM is applied by PCLIM (as defined in Table 48).  
CLIM [A]  
RCLIM1  
PCLIM  
RCLIM2  
Time [s]  
„RCLIM2“  
sent via LIN  
„RCLIM1“  
sent via LIN  
„RCLIM  
disbaled“  
sent via LIN  
NVM-FEXLIM_EN = 0  
NVM-FEXLIM_EN = 1  
Figure 7  
Priorities between FEXLIM and RCLIM  
5.13.4  
Transition behaviors  
Smooth transition ramps between different PCLIM values or RCLIM values avoid hunting or vibration due to  
torque changes.  
Any change of the PCLIM value over a speed threshold (e.g. PCLIM1 to PCLIM2 due to SLM threshold) will be  
handled by a smooth transition ramp, dtFSLOPE (static value of 0.375 A/s, refer to Table 48).  
Receiving of a RCLIM value which is different to the previous set RCLIM value can interrupt the transition ramp:  
Positive transition slopes (transition from a lower to a higher limitation value) are interrupted if a new  
RCLIM value is received. The new CLIM value to be adjusted for current limitation is defined by the static  
condition as described in Chapter 5.13.3 (The CLIM value is defined by the RCLIM value, if RCLIM < PCLIM,  
or the CLIM value is defined by PCLIM, if RCLIM > PCLIM).  
Negative transition slopes (transition from a higher to a lower limitation value) are interrupted if a new  
RCLIM value is received which is lower than the transient PCLIM value (current value on the transition  
ramp). The new CLIM value is defined by the received RCLIM value.  
Note: “New RCLIM” refers to a RCLIM value received via an RX LIN-Frame which is different to the RCLIM value  
received by an earlier RX LIN-Frame.  
If the state machine transfers from the normal to the default operation state and NVM-FEXLIM_EN = 0B  
(FEXLIM function deactivated), a smooth transition ramp, dtFSLOPE, from the last CLIM value to “no current  
limitation” (CLIM disabled) will be applied.  
5.13.5  
Function characteristics  
Table 48 provides all related characteristics of the FEXLIM function.  
Data Sheet  
40  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Regulation functions  
Table 48 FEXLIM characteristics  
All parameters are valid for: -40°C < TJ < 150°C; VBA = 14.5 V, unless otherwise specified.  
All parameter are not subject to production tests.  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ.  
Max.  
Excitation current PCLIM1  
limitation for lower  
speed range  
NVM-FEXLIM_PCLIM1  
NVM-FEXLIM_PCLIM2  
3400  
A
P_6.14.5.3  
Excitation current PCLIM2  
limitation for  
higher speed range  
A
P_6.14.5.4  
P_6.14.5.7  
Speed threshold  
SLM  
SLM  
rpm Dependent on  
hysteresis. Actual  
value is  
SLM ± ΔSLM  
Hysteresis SLM  
Transition ramp  
ΔSLM  
150  
rpm  
P_6.14.5.1  
0
dtFSLOPE  
0.375  
A/s Slope between  
PCLIM1, PCLIM2.  
VDA-A / VDA-B /  
OEM1 / OEM2  
P_6.14.5.1  
2
variants.  
5.13.6  
Behavior with restore state function  
In case of a restore state event (occurred due to micro-cut), the last PCLIM value can be restored. However, if  
micro-cuts occur during the drive of a transition slope, the targeted PCLIM value will be restored by the restore  
state function. An exemplary behavior is represented in Figure 8.  
„Micro-cut“  
VBA [V]  
PCLIM [A]  
Transition ramp  
PCLIM1  
PCLIM2  
Time [s]  
nR > SLM“ event  
Figure 8  
Example of the behavior of FEXLIM on restore state event  
Data Sheet  
41  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Regulation functions  
5.14  
Regulation parameters control via LIN (F-Para function)  
The TLE8881-2 makes use of a full digital PI regulator to control the excitation output stage. Both the Ki and  
the Kp parameter are significant factors for the regulation dynamic.  
Since the regulation dynamic may change depending on the application circumstances, the TLE8881-2 offers  
functionalities to change the set of regulation parameters.  
The TLE8881-2 offers the F-Para functionality for switching from the normal KiKp setting to a previously  
selected regulation parameter set by setting a dedicated bit in the LIN RX frame. As long as that LIN bit is set,  
the PI regulator uses that pre-selected set of Ki and Kp factors. As soon as the LIN bit is reset, the default Ki and  
Kp factors are used again. The pre-selection is adjusted by the NVM field NVM-RPARA_SEL.  
The pre-selection offers the possibility to either adjust a lower regulation dynamic or to not change the  
regulation dynamic.  
The pre-selected regulation parameter can be activated by the ECU via LIN data field RH in the LIN RX frame  
(Chapter 6.3.3).  
5.15  
Speed-dependent KiKp parameter sets (KiKp function)  
The TLE8881-2 allows to use different regulation KiKp parameter sets for the regulation of the EXC duty cycle  
dependent on the rotation speed nR of the alternator.  
The device provides 4 different KiKp parameter sets fixed which can be selected:  
“Normal” (default parameter)  
“slow”  
“slower”  
“slowest”  
The name of the parameter sets is derived from the reaction speed of the regulation.  
The behavior of the function is configured by the parameter NVM-KiKp. This is shown in Table 49.  
Table 49 Configuration of KiKp function  
Configuration switch  
NVM-KiKp= 00B  
Description  
KiKp function disabled  
NVM-KiKp = 01B  
NVM-KiKp = 10B  
NVM-KiKp = 11B  
Simple KiKp function with KiKp set to “slowest”  
Simple KiKp function with KiKp set to “slower”  
3-stage KiKp function  
The function can be operated as a simple KiKp function or a 3-stage KiKp described in Figure 9 and Figure 10  
Regelution  
KiKp active  
Slower or  
slowest  
Nswitch1  
N[RPM]  
Figure 9  
Simple KiKp function  
Data Sheet  
42  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Regulation functions  
KiKp active  
Regulation  
normal  
slow  
slower  
slowest  
Nswitch1  
Nswitch2  
Nswitch3  
N[RPM]  
Figure 10 3-stage KiKp function  
The selection of the different KiKp parameter sets is done based on the rotation speed nR. The function allows  
up to 3 different speed thresholds Nswitch1.... Nswitch3.  
These thresholds can be selected by the parameter NVM-Speed_TH(see Table 50). The table shows the upper  
threshold and the lower threshold for the implemented hysteresis.  
The change of the used KiKp parameter set is triggered by a KiKp Nswitch event. The criteria for this event are  
shown in Table 51.  
Table 50 Selection of Nswitch speed thresholds1)  
NVM-Speed_TH  
000B  
Nswitch1 [rpm]  
2000 / 1800  
2200 / 2000  
2400 / 2200  
2600 / 2400  
2800 / 2600  
3000 / 2800  
3200 / 3000  
3400 / 3200  
Nswitch2 [rpm]  
2400 / 2200  
2600 / 2400  
2800 / 2600  
3000 / 2800  
3200 / 3000  
3400 / 3200  
3600 / 3400  
3800 / 3600  
Nswitch3 [rpm]  
2800 / 2600  
3000 / 2800  
3200 / 3000  
3400 / 3200  
3600 / 3400  
3800 / 3600  
4000 / 3800  
4200 / 4000  
001B  
010B  
011B  
100B  
101B  
110B  
111B  
1) 2000 / 1800 rpm represent the upper and lower value of the hysteresis  
Table 51 KiKp Nswitch events and conditions  
Event  
Description  
Set condition  
(event is  
Clear condition  
(event is cleared)  
generated)  
“KiKp Nswitch”  
event  
Event used to trigger the selection of the  
KiKp parameter sets  
3 consecutive  
3 consecutive  
measurements with measurements with  
nR > Nswitch nR < Nswitch  
(upper threshold of (lower threshold of  
hysteresis) hysteresis)  
If the F-Para function is not active (set to 0 in the LIN-RX frame) and the KiKp function is activated in NVM-KiKp,  
the KiKp parameters requested by the KiKp function are applied.  
Data Sheet  
43  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Regulation functions  
If the F-Para function is not active (set to 0 in the LIN-RX frame) and the KiKp function is not activated, the  
normal regulation parameters are applied.  
If the F-Para function is active (set to 1 in the LIN-RX frame), the parameters requested by the F-Para function  
are applied.  
5.16  
Voltage-dependent KiKp function (VoKiKp function)  
In order to avoid slow reaction of the IC on relatively high VBA voltages compared to VSET, especially if slow  
KiKp parameter sets are chosen, the TLE8881-2 offers a voltage-dependent KiKp function (VoKiKp).  
The function and its parameters can be selected by the NVM parameter NVM-VoKiKp shown in Table 52  
Table 52 Configuration of VoKiKp function  
NVM-VoKiKp  
000B  
VoKiKp up threshold  
VoKiKp disabled  
0.35 V  
VoKiKp down threshold  
001B  
0.25 V  
010B  
0.5 V  
0.4 V  
011B  
0.65 V  
0.55 V  
100B  
0.8 V  
0.7 V  
101B  
+/- 0.5 V  
+/- 0.4 V  
+/- 0.65 V  
+/- 0.9 V  
110B  
+/- 0.75 V  
+/- 1 V  
111B  
If the VoKiKp function is active, it overrules the KiKp parameter set selection performed by the F-Para function  
or the KiKp function and forces the IC to use the KiKp parameter set “Normal”.  
The activation and deactivation of the function is shown in Figure 11.  
The function is activated if VBA is higher than VSET + VoKiKp up threshold and deactivated if VBA is lower than  
VSET + VoKiKp down threshold. For the values 101B, 110B and 111B the function is also activated if VBA is lower  
than VSET - VoKiKp up threshold and deactivated if VBA is higher than VSET - VoKiKp down threshold.  
VBa  
Measured  
voltage  
VoKiKp_up  
VoKiKp_ down  
Vset  
t
t
VoKiKp_active  
Figure 11 Voltage-dependent activation and deactivation of the VoKiKp function.  
Data Sheet  
44  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Regulation functions  
The VoKiKp function is deactivated as well if the rotation speed is high. The deactivation threshold depends  
on the KiKp configuration (Table 49).  
If the simple KiKp function is used or if the KiKp function is disabled, the VoKiKp function is deactivated if  
nR > Nswitch1.  
If the three stage KiKp function is used the VoKiKp function is deactivated if nR > Nswitch3.  
The speed dependence of the VoKiKp function can be activated/deactivated by the NVM parameter NVM-  
VoKiKp_low_HEO_speed.  
Data Sheet  
45  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Regulation functions  
5.17  
Speed-dependent lowering of the HEO limit (LowHEO function)  
In order to optimize the reaction to high VBA voltages in case of a low rotation speed, the TLE8881-2 offers a  
function to lower the HEO limit. This function is called LowHEO function.  
The function and its parameters can be selected by the NVM parameter NVM-LOW_HEO shown in Table 53  
Table 53 Configuration of the lowHEO function  
NVM-LOW_HEO  
LowHEO voltage VLowHEO  
00B  
01B  
10B  
11B  
15.5 V  
15.65 V  
15.75 V  
LowHEO function disabled (default HEO 16.5 V used)  
If the rotation speed nR is lower than Nswitch1, the HEO limit is reduced to the preconfigured value set in the  
NVM parameter NVM-LOW_HEO.  
In this situation, the VSET voltage is limited to the lower HEO limit -500 mV.  
The LowHEO function will trigger the F-EL diagnostic flag if nR < Nswitch1 and the battery voltage is higher than  
the LowHEO voltage.  
The speed dependence of the LowHEO function can be activated/deactivated by the NVM parameter NVM-  
VoKiKp_low_HEO_speed. If the speed dependence is disabled, NVM-LOW_HEO is applied for all rotation  
speeds.  
For example, if the lower HEO limit is set to 15.5 V, the VSET voltage is limited to 15 V.  
This function is shown in Figure 12.  
HEO voltage  
16.5V  
Low-HEO  
Nswitch1  
N[RPM]  
Figure 12 Speed-dependent lowering of the HEO limit  
Data Sheet  
46  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
6
LIN interface  
The protocol of the TLE8881-2 communication interface is implemented as LIN bus according to the LIN (Local  
Interconnect Network) specification. The physical layer is implemented according to the standard LIN 2.1  
specification. The physical layer specification LIN 2.1 is a super set of previous LIN specifications, such as  
versions of LIN 2.0 or LIN 1.3.  
The TLE8881-2 is qualified according to LIN 2.1 on the physical layer. Conformance test results are available  
on request.  
The data link layer is implemented according to LIN 1.3 as well as LIN 2.1 specification (selectable via NVM-  
LIN).  
The data exchange via the serial bi-directional LIN bus line follows the master-slave-principle, where the  
engine management ECU or the energy management ECU is arranged as master (LIN 1.3, or LIN 2.1) and the  
TLE8881-2 is designed as a slave node.  
6.1  
Bus topology  
The LIN bus line is connected to the LIN terminal of the TLE8881-2 and to any driver/receiver of the bus  
connection. VSUP is an internal voltage and supplies the pull-up resistor of the LIN bus line. This voltage is used  
for the definition of the voltage thresholds. A polarity protection diode between VSUP and VBA is described in  
the LIN standard and may be implemented in the LIN master. The TLE8881-2 uses an active polarity protection  
diode which is shorted in operational mode. Therefore, VSUP is more or less equal to VBA  
.
While in stand-by mode a wake-up circuitry detects signal pulses on the LIN bus line. If a pulse fulfills the wake-  
up pulse requirement, the TLE8881-2 will leave the stand-by mode and changes to ComActive state.  
The LIN terminal of the TLE8881-2 is protected against short circuit to the GND terminal or VBA terminal. The  
LIN driver is protected against overload.  
Battery shift voltage  
(specified in LIN 2.1 PL)  
VBA  
VBA  
´
Alternator IC - LIN 1.3/2.1 Slave  
(acc. to LIN 2.1 PL Spec)  
ECU - LIN 1.3/2.1 Master  
Closed when  
not in Stand-By  
VSUP  
VSUP,Master  
LIN-Tranceiver  
INH  
LIN  
Edge  
detection  
RLIN  
1k  
LIN-RXD  
ILIN  
LIN-BUS  
LIN  
RXD  
TXD  
Wake-up  
filter  
CLIN  
VLIN  
VLIN  
LIN-TXD  
Internal logic  
GND  
GND  
´
Ground shift voltage  
(specified in LIN 2.1 PL)  
Other LIN Slaves  
(second alternator)  
Figure 13 LIN bus configuration  
Data Sheet  
47  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
6.2  
Signal specification (physical layer)  
The transferred data bits are encoded with the value ‘0’ (dominant level, bus line is clamped to GND) or ‘1’  
(recessive, bus voltage is near to VBA). For a correct transmission of a bit the bus voltage must be on the  
respective voltage level (dominant or recessive) at the bit sampling time of the receiver. Propagation delays  
as well as slew rates according the LIN specification have to be considered (refer to Figure 14).  
TBIT  
TBIT  
TBIT  
LIN-TXD  
t
Voltage drop over the  
diodes in pull-up path  
VLIN  
tBus_rec  
VBAT  
VSUP  
Recessive  
0,6 x VSUP  
0,4 x VSUP  
VLIN,d2r  
VLIN,cnt  
VLIN,r2d  
Dominant  
GND  
t
t
tBus_dom  
LIN-RXD  
tRXPDF  
tRXPDR  
Figure 14 LIN signal specification  
The LIN bus communication speed (within the specified limits) is automatically detected by the receiver using  
the Synch Byte of the header (for LIN 1.3 and for LIN 2.1). In addition to the associated start bit and stop bit,  
the Synch Byte is coded as 55H (refer to Figure 15).  
The falling curve of the bus voltage VLIN (bit change from recessive to dominant) is mainly dependent on the  
driver implementation, while the rising curve of the bus voltage (bit change dominant to recessive) depends  
on the bus time constant tLIN = RLIN x CLIN. The bus time constant, tLIN, has to be between 1 μs and 5 μs.  
RLIN is the overall network impedance and its value is depending on the number of bus nodes. Because the  
number of nodes should not exceed a maximum of 16, the minimum value is never below RLIN = 500 . CLIN is  
the overall network capacitance and must not exceed 10 nF.  
CLIN is the overall network capacity and consists of the master capacity, slave node capacities as well as bus  
wire length.  
For more details concerning the bus line timing and characteristics, refer to the LIN 2.1 specification.  
Data Sheet  
48  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
Table 54 Parameter LIN signal characteristics  
All parameters are valid for: -40°C < TJ < 150°C; VBA = 14.5 V, unless otherwise specified:  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min.  
Typ. Max.  
Receiver input  
VLIN  
-3  
40  
V
Negative voltages could occur in P_7.2.0.1  
voltage for proper  
communication  
case of ground shift between  
master and slave1)  
Bit period  
TBIT  
51  
50  
423  
μs  
For LIN master: communication P_7.2.0.2  
speed between 2400 bit/s and  
19200 bit/s (master clock  
tolerance ± 0.5%)  
Bit period  
TBIT  
432  
μs  
For TLE8881-2 slave node:  
maximum clock tolerance for  
communication between master  
and slave after synchronization  
is ± 2%  
P_7.2.0.3  
Interbyte delay in  
response  
tBDEL  
0
μs  
μs  
TLE8881-2 is sending the  
response immediately  
P_7.2.0.4  
Bus dominant time tSYNBRK 13x TBIT  
for the synch-break  
TBIT is the bit time ascertained in P_7.2.0.5  
the synch-byte. Only whole-  
numbered (integer) multiples of  
T
BIT are applicable.  
ms tLINIDLE  
(25k x TBIT @ 19200 bit/s)  
Bus idle time-out  
tLINIDLE  
1300 –  
P_7.2.0.6  
only used for LIN 2.1  
conformance test  
Internal voltage for VSUP  
bus pull-up resistor  
supply  
VBA -1 V  
VBA  
V
V
1); maximum voltage drop  
(current dependent) on internal  
polarity protection diode is 1 V  
P_7.2.0.7  
P_7.2.0.8  
Receiver voltage  
threshold for  
VLIN,r2d  
0.4x  
VSUP  
LIN 2.1 Param 17 (Figure 6.2)  
LIN 2.1 Param 18 (Figure 6.2)  
LIN 2.1 Param 19 (Figure 6.2)  
bit recessive to bit  
dominant detection  
Receiver voltage  
threshold for  
VLIN,d2r  
0.6x  
VSUP  
V
P_7.2.0.9  
bit dominant to bit  
recessive detection  
Receiver center  
voltage  
VLIN,cnt  
0.475x 0.5x 0.525x  
VSUP  
V
P_7.2.0.10  
P_7.2.0.11  
P_7.2.0.12  
P_7.2.0.13  
VSUP VSUP  
Receiver hysteresis VLIN,hys  
0.07x  
VSUP  
0.1x 0.175x  
VSUP VSUP  
V
VLIN,hys = VLIN,d2r - VLIN,r2d  
LIN 2.1 Param 20  
LIN wake-up  
VLINWK  
0.4x  
VSUP  
0.6x  
VSUP  
V
threshold voltage  
Bus dominant time tLINWK  
30  
150  
μs  
for LIN wake-up  
Data Sheet  
49  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
Table 54 Parameter LIN signal characteristics (cont’d)  
All parameters are valid for: -40°C < TJ < 150°C; VBA = 14.5 V, unless otherwise specified:  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min.  
Typ. Max.  
Bus current  
ILINMAX  
40  
200  
mA In full VBA range;  
P_7.2.0.14  
limitation for  
dominant stat  
LIN 2.1 Param 12  
Bus leakage current ILINLEAK -1  
mA LIN-TXD = 1  
P_7.2.0.15  
(pull-down driver off),  
V
LIN = 0 V, VBA = 12 V  
LIN 2.1 Param 13  
Bus leakage current ILINLEAK -1  
(loss of ground)  
1
mA VLIN = -18 V to 0 V  
P_7.2.0.16  
P_7.2.0.17  
P_7.2.0.18  
GND open on TLE8881-2;  
LIN 2.1 Param 15  
Bus leakage current ILINLEAK  
(loss of battery)  
20  
20  
μA VLIN = 0 V to 18 V  
VBA open on TLE8881-2;  
LIN 2.1 Param 16  
Bus leakage current ILINLEAK  
μA VLIN = 8 V to 18 V  
(driver off)  
VBA = 8 V to 18 V  
VLIN > VBA  
LIN 2.1 Param 14  
Voltage drop on  
serial diode in pull up  
resistor path  
VLINDPU 0.4  
1
V
VBA = 6 V to 18 V,  
P_7.2.0.19  
V
LIN = 2 V  
Pull-up resistor for  
LIN slave node  
RLIN,Slave 20  
30  
60  
kLIN 2.1 Param 26  
P_7.2.0.20  
P_7.2.0.21  
P_7.2.0.22  
P_7.2.0.23  
P_7.2.0.24  
P_7.2.0.25  
P_7.2.0.26  
P_7.2.0.27  
P_7.2.0.28  
1)  
Internal capacity for CLIN.Slave 10  
LIN slave node  
80  
pF  
LIN 2.1 Param 37  
1) 2) 3)  
LIN bus duty cycle  
D1 for 20 kbit/s  
DCLIN  
DCLIN  
DCLIN  
DCLIN  
tRXPDR  
tRXPDF  
dtRXPD  
0.396  
LIN 2.1 Param 27  
1) 2) 4)  
LIN bus duty cycle  
D2 for 20 kbit/s  
0.581  
LIN 2.1 Param 28  
1) 2) 5)  
LIN bus duty cycle  
D3 for 10.4 kbit/s  
0.417  
LIN 2.1 Param 29  
1) 2) 6)  
LIN bus duty cycle  
D4 for 10.4 kbit/s  
0.590  
LIN 2.1 Param 30  
7)  
Rising receiver  
propagation delay  
6
6
2
μs  
LIN 2.1 Param 31  
7)  
Falling receiver  
propagation delay  
μs  
LIN 2.1 Param 31  
7)  
Receiver  
-2  
μs  
propagation delay  
symmetry (rising  
edge versus falling  
edge)  
LIN 2.1 Param 32  
Data Sheet  
50  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
1) Not subject to production test.  
2) Bus loading conditions (CLIN;RLIN) = (1 nF;1 k), (6.8 nF;660 ) and (10 nF;500 ). For signal specification, refer to  
Figure 14 “LIN signal specification” on Page 48.  
3) VLIN,d2r = 0.744x VSUP, VLIN,r2d = 0.581x VSUP, VSUP = 7 V to 18 V, TBIT = 50 μs  
4) VLIN,d2r = 0.284x VSUP, VLIN,r2d = 0.422x VSUP, VSUP = 7.6 V to 18 V, TBIT = 50 μs  
5) VLIN,d2r = 0.778x VSUP, VLIN,r2d = 0.616x VSUP, VSUP = 7 V to 18 V, TBIT = 96 μs  
6) VLIN,d2r = 0.389x VSUP, VLIN,r2d = 0.251x VSUP, VSUP = 7 V to 18 V, TBIT = 96 μs  
7) Wafer Test only  
6.3  
Message frames (data link layer)  
The TLE8881-2 can communicate with both a LIN 2.1 and a LIN 1.3 master. This is realized by implementing  
calculations for both a classic checksum and an enhanced checksum. The selection of the supported LIN  
protocol can be adjusted via NVM-LIN.  
Note: For backward compatibility reasons, a LIN 2.1 master is able to communicate with a LIN 1.3 slave but not  
vice versa. This backward compatibility is assured by the fact that the TLE8881-2 is designed according to  
LIN 2.1 on the physical layer, as recommended by the LIN consortium. Thus, and due to the NVM field  
switch, the TLE8881-2 can communicate with a master specified according to both LIN 2.1 as well as LIN  
1.3.  
Every data transfer is initiated from the master by sending a header. This header contains a synch-break field,  
a synch byte and a frame identifier byte (ID Byte, or labeled as Protected Identifier in the LIN 2.1 specification).  
The frame identifier byte defines the response which is sent by the master or the slave immediately after the  
LIN frame header. The response contains 1 to 8 data bytes as well as one checksum byte at the end of the LIN  
frame. In the communication protocol of the TLE8881-2 only 2, 4 and 8 data bytes are defined as valid  
responses.  
Except for the synch-break field, LIN frames are byte-oriented so that the LIN specification allows a delay  
between bytes (interbyte delay). Every byte in a single LIN frame is composed of a start bit, 8 data bits and one  
stop bit. The bits are encoded with the value ‘0’ (dominant) or ‘1’ (recessive). In a bit stream of one data byte,  
the least significant bit (lsb) is indicated as the first arriving bit on the LIN bus, whereas the most significant bit  
(msb) is the last bit, respectively.  
Figure 15 shows a complete LIN frame for an identifier using 4 data bytes in the response field. The synch-  
break field re-initializes the receiver and marks the start of a new LIN frame in any case.  
Data Sheet  
51  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
LIN Frame  
Response - sent from Master (=ECU) or Slave (=Alternator Control IC)  
Data1 Field Data2 Field Data3 Field Data4 Field Checksum Field  
Header - sent from Master (=ECU)  
Synch-Break  
Synch Field  
ID Field  
lsb  
ID0 ID1 ID2 ID3 ID4 ID5 P0  
msb  
P1  
0
1
Synchronization  
delimiter (tSYNDEL  
Interbyte space  
Frame Identifier Byte (= 00H to FFH  
)
)
ID Field  
lsb  
S0  
msb  
lsb  
D0  
msb  
D7  
0
S1  
S2  
S3  
S4  
S5  
S6  
S7  
1
0
D1  
D2  
D3  
D4  
D4  
D6  
1
Synch Byte (= 55H  
)
Data Byte (= 00H to FFH  
)
Synch Field  
Data Field - Data 1,2,4 or 8  
tSYNBRK  
lsb  
msb  
C7  
0
C0  
C1  
C2  
C3  
C4  
C5  
C6  
1
Checksum Byte (= 00H to FFH  
)
Synch-Break (min. 13x 0B)  
Checksum Field  
Figure 15 LIN frame  
If the bus is idle (recessive) for more than tLINIDLE, the receiver is re-initialized. That means that the  
synchronization delimiter or any interbyte space must not exceed tLINIDLE of 25.000 bit times of 19200 baud,  
which is 1300 ms. Otherwise the frame is lost.  
The TLE8881-2 sends its response immediately after the identifier and it will not generate any delay between  
bytes in the response field (which results in no interbyte space).  
6.3.1  
LIN frame structure  
Frame identifier byte / protected identifier  
On principle, the LIN frame identifier byte (also know as the frame identifier field, or ID field) consists of 6  
identifier bits plus 2 parity bits. The coverage of having no pattern with all bits recessive or dominant can be  
guaranteed by the 2 parity bits inside the frame identifier field (ID field). The first parity bit is calculated by the  
XOR-concatenation between ID bits as indicated in Equation (6.1).  
(6.1)  
P0 = ID0 ID1 ID2 ID4  
The second parity bit is computed by the inverse XOR-concatenation between ID bits as indicated in  
Equation (6.2).  
(6.2)  
P1 = ID1 ID3 ID4 ID5  
Thus, the frame identifier byte never consists of 0’s or 1’s only and can be distinguished easily from the synch-  
break.  
Data Sheet  
52  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
Checksum byte  
For the LIN 1.3 data link layer (EEPROM field NVM-LIN = 1B), a classic checksum calculation is used which  
means inverting the sum of modulo 256 (with carry) of all data bytes. An eight bit sum with carry is equivalent  
to the sum of all values from which 255 is substracted every time the sum is greater, or equal to 256.  
For the LIN 2.1 data link layer (EEPROM field NVM-LIN = 0B), an enhanced checksum calculation is used which  
additionally includes the Protected Identifier Field (Identifier Byte including parity bits) in the sum of all data  
bytes.  
According to the LIN specification, if the ID field is 3CH or 3DH, the classic checksum calculation will always be  
used.  
Examples for checksum calculation are given in the respective LIN specification documents.  
Data byte  
Every LIN frame is named with a unique symbol, starting with “R” for received frames (from the LIN master,  
also called request frames) and starting with “T” for transmitted frames (from the LIN master, also called  
response frames). The “P” indicates fields or frames only used if test mode is active.  
TLE8881-2 supports the following data byte structures which can be chosen in NVM via NVM-CFG:  
VDA-A variant  
VDA-B variant  
OEM1 variant  
OEM2 variant  
6.3.2  
LIN frame identifier recommendations  
The TLE8881-2 supports the flexible configuration of the LIN Frame Identifiers. The identifiers can be  
configured via an EEPROM configuration of the fields NVM-LINRX, NVM-LINTX1, NVM-LINTX2, NVM-LINTX3  
(refer to Chapter 9.2.1). Table 55 provides recommended examples of the EEPROM configuration for  
reference purposes. Since the parity can be calculated via Equation (6.1) and Equation (6.2), the EEPROM  
configuration excludes the parity bits from the resulting byte.  
The LIN identifier for diagnostic frames is ignored for LIN 1.3 (NVM-LIN =1B) if NVM-3Ddis= 1B. If the TLE8881-  
2 is configured for LIN 2.1 (NVM-LIN=0B), it will send the specified response (see Chapter 6.7).  
The frames NVM-LINTX1, NVM-LINTX2 and NVM-LINTX3 can be deactivated by programming the frame ID in  
the NVM to 0x3C. The TLE8881-2 will not answer to the TX frames and respond to 0x3C with the 0x3C diagnostic  
frame.  
Table 55 LIN frame identifier  
TLE8881-2 Symbol /  
Identifier byte  
Identifier bits  
Byte Bit Bit Bit Bit Bit Bit P0 P1  
Data bytes  
config-  
uration  
comment  
Parity  
Result Length Sent by  
byte  
0
1
2
3
4
5
All1)  
Diagnostic  
3CH  
0
0
1
1
1
1
0
1
0
0
3CH  
8
Master  
frame (sleep  
command /  
programming)  
All  
Diagnostic  
frame 2)  
3DH  
1
0
1
1
1
1
7DH  
8
TLE8881-2  
Data Sheet  
53  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
Table 55 LIN frame identifier (cont’d)  
TLE8881-2 Symbol /  
Identifier byte  
Identifier bits  
Byte Bit Bit Bit Bit Bit Bit P0 P1  
Data bytes  
config-  
uration  
comment  
Parity  
Result Length Sent by  
byte  
0
1
1
0
1
0
1
0
0
1
-
1
0
0
1
0
1
1
0
1
0
-
2
0
0
0
1
0
0
1
1
0
-
3
1
0
0
0
1
0
0
0
1
-
4
0
1
1
1
0
1
1
1
0
-
5
1
0
0
0
1
0
0
0
1
-
VDA-A  
config for  
regulator #1  
RX3)  
TX1  
29H  
11H  
12H  
15H  
2AH  
13H  
14H  
16H  
29H  
-
1
0
0
1
1
1
0
1
1
-
1
0
1
0
0
1
0
1
1
-
E9H  
11H  
92H  
55H  
6AH  
D3H  
14H  
D6H  
E9H  
-
4
2
2
4
4
2
2
4
4
Master  
TLE8881-2  
TLE8881-2  
TLE8881-2  
Master  
TX2  
TX33)  
RX3)  
TX1  
VDA-A  
config for  
regulator  
#24)  
TLE8881-2  
TLE8881-2  
TLE8881-2  
Master  
TX2  
TX33)  
RX3)  
TX1  
OEM1 /  
VDA-B  
config for  
regulator #1  
-
TX2  
12H  
15H  
2AH  
-
0
1
0
-
1
0
1
-
0
1
0
-
0
0
1
-
1
1
0
-
0
0
1
-
0
1
1
-
1
0
0
-
92H  
55H  
6AH  
-
2
4
4
TLE8881-2  
TLE8881-2  
Master  
TX33)  
RX3)  
TX1  
OEM1 /  
VDA-B  
config for  
regulator  
#24)  
-
TX2  
TX33)  
14H  
16H  
0
0
0
1
1
1
0
0
1
1
0
0
0
1
0
1
14H  
D6H  
2
4
TLE8881-2  
TLE8881-2  
OEM2  
config for  
regulator #1  
RX3)  
TX1  
29H  
-
1
-
0
-
0
-
1
-
0
-
1
-
1
-
1
-
E9H  
-
4
Master  
-
TX2  
-
-
-
-
-
-
-
-
-
-
-
TX33)  
RX3)  
TX1  
21H  
2AH  
-
1
0
-
0
1
-
0
0
-
0
1
-
0
0
-
1
1
-
1
1
-
0
0
-
61H  
6AH  
-
4
4
TLE8881-2  
Master  
-
OEM2  
config for  
regulator  
#24)  
TX2  
TX33)  
TLE88815) RX3)  
-
-
-
-
-
-
-
-
-
-
-
22H  
20H  
15H  
21H  
18H  
2AH  
13H  
11H  
16H  
0
0
1
1
0
0
1
1
0
1
0
0
0
0
1
1
0
1
0
0
1
0
0
0
0
0
1
0
0
0
0
1
1
0
0
0
0
0
1
0
1
0
1
1
1
1
1
0
1
0
1
0
0
0
1
0
1
1
1
1
1
0
1
1
0
0
0
1
0
1
0
1
E2H  
20H  
55H  
61H  
D8H  
6AH  
D3H  
11H  
D6H  
4
4
2
2
4
4
2
2
4
TLE8881-2  
Master  
TLE8881-2  
TLE8881-2  
TLE8881-2  
Master  
TLE8881-2  
TLE8881-2  
TLE8881-2  
config for  
TX1  
regulator #1  
TX2  
TX33)  
RX3)  
TLE8881  
config for  
regulator  
#24)  
TX1  
TX2  
TX33)  
1) The sleep mode command (ID byte = 3CH, data byte 1 = 00H) is only accepted by the TLE8881-2 in the states  
“ComActive” and “pre-excitation”.  
2) LIN identifier ignored for LIN 1.3 (NVM-LIN = 1B AND NVM-3Ddis = 1B). LIN identifier responded by TLE8881-2 for LIN  
2.1 (NVM-LIN = 0B).  
Data Sheet  
54  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
3) These frames are also used for test purposes and NVM programming.  
4) For the use in LIN networks with two alternators.  
5) The TLE8881-2 can be configured to have the same LIN ID as the legacy product TLE8881. For the same operation as  
the TLE8881, the NVM configuration has to be adapted to match the TLE8881 configuration.  
6.3.3  
LIN RX frame  
This chapter describes the content of the different LIN RX frames (request/command from the LIN master to  
the TLE8881-2). The mapping between the LIN frame content and the internal register assignments is  
described in Chapter 6.4.  
Except in case of a test mode entry detection, all bits in the frame RX which are not covered by any information  
field are ignored by the TLE8881-2.  
first data bit (after LIN ID)  
last data bit (before checksum)  
Frame RX (Master to Alternator Control IC)  
data byte 1  
data byte 2  
data byte 3  
data byte 4  
LIN frame Data Byte  
0
1
1
2
2
3
4
5
5
6
6
7
7
0
0
1
2
3
3
4
0
5
6
7
3
0
0
1
1
2
2
3
4
5
5
6
6
7
7
0
0
1
RE [2:0]  
1
2
2
3
RF  
0
4
5
RG [2:0]  
1
6
7
RH  
0
Bit in LIN frame Data Byte  
Information field symbol  
Bit in information field  
RA [7:0]  
RB [3:0]  
RC [3:0]  
RD [7:0]  
0
3
4
1
2
1
2
3
4
0
2
LSB  
MSB LSB  
MSB LSB  
MSB LSB  
MSB LSB  
MSB LSB LSB  
MSB LSB  
Figure 16 Frame RX  
Table 56 Information fields of the frame RX  
Symbol  
Bits Description  
TLE8881-2 register  
RA  
8
Regulation voltage setpoint for VDA-A and OEM2 variants  
RVSET[7:2] := RA[5:0]  
RVSET[1:0] := 00B  
Regulation voltage setpoint for VDA-B and OEM1 variants  
LRC rise time (positive gradient)  
RVSET[7:0] := RA[7:0]  
RLRCRT[3:0]  
RB  
RC  
RD  
4
4
8
LRC disable frequency  
RLRCDIS[3:0]  
Excitation current limitation for VDA-A variant  
RCLIM[4:0] := RD[4:0]  
RCLIM[7:5] := 000B  
Excitation current limitation for VDA-B and OEM1 variants  
Excitation current limitation for OEM2 variant  
RCLIM[6:0] := RD[7:1]  
RCLIM[7:0] := RD[7:0]  
RDI[2:0] := RE[2:0]  
RE  
3
Response data indicator for OEM1, VDA-A and VDA-B and  
variants (Chapter 6.4.7)  
Response data indicator for OEM2 variant (Chapter 6.4.7)  
RE[2:0] reserved1)  
RDI[2:0] := 000B  
RF  
1
3
LRC blind zone for OEM1, VDA-A and VDA-B variants  
LRC blind zone for OEM2 variant  
RLRCBZ := RF  
RF ignored  
(NVM-LRCBZ is used)  
RG  
Offset of the threshold for the high temperature regulation RHT[2:0] := RG[2:0]  
for OEM1, VDA-A and VDA-B variants  
Offset of the threshold for the high temperature regulation RG[2:0] ignored  
for OEM2 variant  
(RHT[2:0] := 000)  
RH  
1
Activation of F-Para function (Chapter 5.14).  
FPARA := RH  
1) Used for Test Mode  
Data Sheet  
55  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
6.3.4  
LIN TX1 frame  
The chapter describes the content of the LIN TX1 frame (information response from the TLE8881-2 to the LIN  
master). The mapping between the LIN frame content and the internal register assignments in described in  
Chapter 6.4.  
Frame TX1 (Alternator Control IC to Master)  
data byte 1  
data byte 2  
LIN frame Data Byte  
0
1
2
3
4
1
5
TD [4:0]  
2
6
3
7
0
1
1
2
3
4
4
5
6
7
Bit in LIN frame Data Byte  
Information field symbol  
Bit in information field  
TA TB TC  
TE [5:0]  
TF TG  
0
0
0
0
4
0
2
3
5
0
0
LSB LSB LSB LSB  
MSB LSB  
MSB LSB LSB  
first data bit (after LIN ID)  
last data bit (before checksum)  
Figure 17 Frame TX1  
Diagnosis flags F-HT, F-ROT, F-EL, F-CEF and F-CTO mentioned in Table 57 are described in Chapter 4.5.  
Table 57 Information fields of the frame TX1  
Symbol  
TA  
Bits  
1
Description  
TLE8881-2 register  
Diagnosis flag  
Diagnosis flag  
Diagnosis flag  
RDC[4:0]  
Diagnosis flag F-HT (high temperature indication flag)  
Diagnosis flag F-ROT (mechanical abnormality flag)  
Diagnosis flag F-EL (electrical abnormality flag)  
Duty cycle value of the excitation PWM (field monitoring)  
Measured excitation current  
TB  
1
TC  
1
TD  
5
TE  
6
RMC6[5:0]  
TF  
1
Diagnosis flag F-CEF (LIN communication error flag)  
Diagnosis flag F-CTO (LIN communication time-out flag)  
Diagnosis flag  
Diagnosis flag  
TG  
1
6.3.5  
LIN TX2 frame  
The chapter describes the content of the LIN TX2 frame (information response from the TLE8881-2 to the LIN  
master). The mapping between the LIN frame content and the internal register assignments in described in  
Chapter 6.4.  
Frame TX2 (Alternator Control IC to Master)  
data byte 1  
data byte 2  
LIN frame Data Byte  
0
0
1
TH [2:0]  
1
2
3
4
1
5
TI [4:0]  
2
6
3
7
0
1
1
2
2
3
4
5
5
6
6
7
Bit in LIN frame Data Byte  
Information field symbol  
Bit in information field  
TJ [7:0]  
2
0
4
0
3
4
7
LSB  
MSB LSB  
MSB LSB  
MSB  
first data bit (after LIN ID)  
last data bit (before checksum)  
Figure 18 Frame TX2  
Data Sheet  
56  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
Table 58 Information fields of the frame TX2  
Symbol  
TH  
Bits  
Description  
TLE8881-2 register  
3
5
3
5
Alternator supplier identification  
Alternator class identification  
Manufacturer ID: Infineon = 001B  
ASIC ID: B11, B12 = 00011B  
RSUPP[2:0]  
TI  
RCLASS[4:0]  
TJ [2:0]  
TJ [7:3]  
6.3.6  
LIN TX3 frame  
The chapter describes the content of the LIN TX3 frame (information response from the TLE8881-2 to the LIN  
master). The mapping between the LIN frame content and the internal register assignments in described in  
Chapter 6.4.  
first data bit (after LIN ID)  
last data bit (before checksum)  
Frame TX3 (Alternator Control IC to Master)  
data byte 1  
data byte 2  
data byte 3  
data byte 4  
LIN frame Data Byte  
0
1
2
3
4
5
TN [4:0]  
2
6
3
7
4
0
1
1
2
2
3
4
5
5
6
6
7
0
1
TP [2:0]  
1
2
3
4
5
6
7
0
0
1
1
2
2
3
4
5
5
6
6
7
Bit in LIN frame Data Byte  
Information field symbol  
Bit in information field  
TK TL TM  
TO [7:0]  
TQ TR TS TT TU  
TV [7:0]  
0
0
0
0
1
0
3
4
7
0
2
0
0
0
0
0
3
4
7
LSB LSB LSB LSB  
MSB LSB  
MSB LSB  
MSB LSB LSB LSB LSB LSB LSB  
MSB  
Figure 19 Frame TX3  
All bits in the LIN TX3 frame which are not covered by any information field are set to ‘0’ (dominant) by the  
TLE8881-2.  
The diagnosis flags F-HT, F-ROT, F-EL, F-CEF and F-CTO mentioned in Table 59 are described in Chapter 4.5.  
Table 59 Information fields of the frame TX3 for OEM1, VDA-A and VDA-B and variants  
Symbol  
TK  
Bits  
1
Description  
TLE8881-2 register  
Diagnosis flag  
Diagnosis flag  
Diagnosis flag  
RDC[4:0]  
Diagnosis flag F-HT (high temperature indication flag)  
Diagnosis flag F-ROT (mechanical abnormality flag)  
Diagnosis flag F-EL (electrical abnormality flag)  
Duty cycle value of the excitation PWM (field monitoring)  
Measured excitation current  
TL  
1
TM  
1
TN  
5
TO  
8
RMC8[7:0]  
TP  
3
Data Indicator for TX3 frame byte 4  
RDI[2:0]  
(Chapter 6.4.7)  
TQ  
TR  
TS  
TT  
TU  
TV  
1
1
1
1
1
8
Reserved; TQ := 0B  
Reserved; TR := 0B  
Reserved; TS := 0B  
Diagnosis flag F-CEF (LIN communication error flag)  
Diagnosis flag F-CTO (LIN communication time-out flag)  
Diagnosis flag  
Diagnosis flag  
Multiplex byte to represent measured voltage /  
Measured temperature /  
Measured speed /  
RMV[7:0] /  
RMT[7:0] /  
RMS[7:0] /  
RVSET [7:0]  
Voltage set point  
Data Sheet  
57  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
Table 60 Information fields of the frame TX3 for OEM2 variant  
Symbol  
TK  
Bits  
1
Description  
TLE8881-2 register  
Diagnosis flag  
Diagnosis flag  
Diagnosis flag  
RDC[4:0]  
Diagnosis flag F-HT (high temperature indication flag)  
Diagnosis flag F-ROT (mechanical abnormality flag)  
Diagnosis flag F-EL (electrical abnormality flag)  
Duty cycle value of the excitation PWM (field monitoring)  
Measured excitation current  
TL  
1
TM  
TN  
TO  
TP  
1
5
8
RMC8[7:0]  
3
Reserved; TP := 000B  
TQ  
TR  
1
Reserved; TQ := 0B  
1
Reserved; TR := 0B  
TS  
1
Reserved; TS := 0B  
TT  
1
Diagnosis flag F-CEF (LIN communication error flag)  
Diagnosis flag F-CTO (LIN communication time-out flag)  
Measured temperature  
Diagnosis flag  
Diagnosis flag  
RMT[7:0]  
TU  
1
TV  
6.4  
LIN registers  
The LIN registers are used as the data interface between the ECU and the TLE8881-2. The transmission of  
information from the data interface is done via the LIN interface. A specific set of registers is writable and  
defines the functional behavior of the TLE8881-2. Another set of registers is readable by the master and can be  
used to monitor some kind of information.  
For the register content after a wake-up from stand-by mode, after a logic reset and the state “default  
operation”, see Chapter 6.5.  
6.4.1  
Register RVSET (voltage setpoint)  
The writable internal register RVSET defines the setpoint of the regulation voltage (control parameter VSET).  
The operation range is between 10.6 V and 16 V. The ECU can modify this register by using the LIN data field  
RA. The actually applied voltage setpoint VSET can be limited by the Low HEO and TSC functions and does not  
always match the value in the RVSET register.  
While switching between the relevant states of the state machine, the VSET transition slopes are defined in  
Table 61 are applied.  
Table 61 Transition slopes of RVSET between states  
Exit from state  
Default operation  
Default operation  
Normal operation  
Excitation-Off  
Entry into state  
Normal operation  
Excitation-Off  
RVSET transition slope  
0 V/s (no transition slope)  
0 V/s (no transition slope)  
0.2 V/s  
Default operation  
Normal operation  
Default operation  
0 V/s (no transition slope)  
0.2 V/s  
Excitation-Off  
The LIN frame variants “VDA-B” and “OEM1” offer the full resolution of typically 25 mV (refer to Table 63). In  
the frame variants for “VDA-A” and “OEM2”, the most significant 2 bits of RA are always “00B”, so that  
RVSET[1:0] := 00B). Therefore this configuration only uses a setpoint resolution of typically 100 mV (refer to  
Table 62).  
Data Sheet  
58  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
For further information on the voltage regulation at high temperatures see Section 5.5.  
Table 62 Parameter “voltage setpoint” for “VDA-A” and “OEM2” variants  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min Typ.  
.
Max  
.
Voltage regulation  
setpoint  
VSET  
VSET  
VSET := 10.6 V +  
RVSET * 0.1 V  
V
V
TJ < THT and  
RVSET in range 0  
to 54  
P_7.4.1.1  
P_7.4.1.2  
Voltage regulation  
setpoint  
VSET := 16 V  
TJ < THT and  
RVSET > 54  
Table 63 Parameter “Voltage Setpoint” in “VDA-B” and “OEM1” variants  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min Typ.  
.
Max  
.
Voltage regulation  
setpoint  
VSET  
VSET  
VSET := 10.6 V +  
RVSET * 0.025 V  
V
V
TJ < THT and  
RVSET in range 0  
to 216  
P_7.4.1.3  
P_7.4.1.4  
Voltage regulation  
setpoint  
VSET := 16 V  
TJ < THT and  
RVSET > 216  
6.4.2  
RVSET reporting via LIN  
The VSET can be reported in the LIN frame TX3.  
The VSET reporting via LIN can be selected:  
The VSET received by the LIN command is reported if NVM-VSET_report = 0B  
The applied VSET for the internal regulation is reported if NVM-VSET_report = 1B  
The applied VSET can be lower than the VSET sent via LIN if the TSC function reduces the setpoint due to high  
temperatures.  
6.4.3  
Registers LRC (load response control)  
The writable internal registers RLRCBZ, RLRCRT and RLRCDIS define the behavior of the LRC function and can  
be modified by the ECU via the LIN interface. For a detail description of the LRC (Load Response Control) refer  
to Chapter 5.12.  
The ECU can modify these registers by using the LIN data fields RB, RC and RF, respectively.  
Register implementation for LRC blind zone is indicated in Table 64.  
Data Sheet  
59  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
Table 64 Parameter “LRC blind zone”  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ.  
Max  
.
LRC blind zone  
LRC blind zone  
LRCBZ  
LRCBZ  
Register  
RLRCBZ = 0  
Blind zone = 3%/6.25%, P_7.4.2.1  
depending on NVM  
option “LRCBZ_0_SEL”  
Register  
Blind zone = 12%  
P_7.4.2.2  
RLRCBZ = 1  
The register implementation for the LRC Rise Time for the “VDA-A” LIN frame variant is shown in Table 65,  
whereas for “VDA-B”, “OEM2” and “OEM1” it is stated in Table 66.  
Table 65 Parameter “LRC rise time” in “VDA-A” variant  
Parameter  
Symbol  
Values  
Min. Typ.  
Unit Note or  
Test Condition  
Number  
Max.  
LRC rise time(0% up to  
100%)  
LRCRT  
LRCRT  
LRCRT  
LRCRT  
LRCRT  
LRCRT  
LRCRT  
LRCRT  
LRCRT  
LRCRT  
LRCRT  
LRCRT  
LRCRT  
LRCRT  
LRC disabled  
s
s
s
s
s
s
s
s
s
s
s
s
s
s
0000  
P_7.4.2.3  
P_7.4.2.4  
P_7.4.2.5  
P_7.4.2.6  
P_7.4.2.7  
P_7.4.2.8  
P_7.4.2.9  
P_7.4.2.10  
P_7.4.2.11  
P_7.4.2.12  
P_7.4.2.13  
P_7.4.2.14  
P_7.4.2.15  
P_7.4.2.16  
LRC rise time(0% up to  
100%)  
1
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
LRC rise time(0% up to  
100%)  
2
LRC rise time(0% up to  
100%)  
3
LRC rise time(0% up to  
100%)  
4
LRC rise time(0% up to  
100%)  
5
LRC rise time(0% up to  
100%)  
6
LRC rise time(0% up to  
100%)  
7
LRC rise time(0% up to  
100%)  
8
LRC rise time(0% up to  
100%)  
9
LRC rise time(0% up to  
100%)  
10  
11  
12  
13  
LRC rise time(0% up to  
100%)  
LRC rise time(0% up to  
100%)  
LRC rise time(0% up to  
100%)  
Data Sheet  
60  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
Table 65 Parameter “LRC rise time” in “VDA-A” variant (cont’d)  
Parameter  
Symbol  
Values  
Min. Typ.  
Unit Note or  
Test Condition  
Number  
Max.  
LRC rise time(0% up to  
100%)  
LRCRT  
LRCRT  
14  
s
1110  
P_7.4.2.17  
P_7.4.2.18  
LRC rise time(0% up to  
100%)  
15  
s
1111  
Table 66 Parameter “LRC rise time” in “VDA-B”, “OEM2” and “OEM1” variants  
Parameter  
Symbol  
Values  
Min. Typ.  
Unit Note or  
Test Condition  
Number  
Max.  
LRC rise time(0% up to  
100%)  
LRCRT  
LRCRT  
LRCRT  
LRCRT  
LRCRT  
LRCRT  
LRCRT  
LRCRT  
LRCRT  
LRCRT  
LRCRT  
LRCRT  
LRCRT  
LRCRT  
LRCRT  
LRCRT  
LRC disabled  
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
0000  
P_7.4.2.19  
P_7.4.2.20  
P_7.4.2.21  
P_7.4.2.22  
P_7.4.2.23  
P_7.4.2.24  
P_7.4.2.25  
P_7.4.2.26  
P_7.4.2.27  
P_7.4.2.28  
P_7.4.2.29  
P_7.4.2.30  
P_7.4.2.31  
P_7.4.2.32  
P_7.4.2.33  
P_7.4.2.34  
LRC rise time(0% up to  
100%)  
0.28  
0.5  
0.75  
1
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
LRC rise time(0% up to  
100%)  
LRC rise time(0% up to  
100%)  
LRC rise time(0% up to  
100%)  
LRC rise time(0% up to  
100%)  
2
LRC rise time(0% up to  
100%)  
3
LRC rise time(0% up to  
100%)  
4
LRC rise time(0% up to  
100%)  
5
LRC rise time(0% up to  
100%)  
6
LRC rise time(0% up to  
100%)  
7
LRC rise time(0% up to  
100%)  
8
LRC rise time(0% up to  
100%)  
9
LRC rise time(0% up to  
100%)  
10  
12  
15  
LRC rise time(0% up to  
100%)  
LRC rise time(0% up to  
100%)  
Data Sheet  
61  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
Register implementation for LRC disable speed is indicated in Table 67.  
Table 67 Parameter “LRC disable speed”  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ.  
Max.  
LRC disable rotor  
speed  
nLRCDIS  
nLRCDIS  
nLRCDIS  
nLRCDIS  
nLRCDIS  
nLRCDIS  
nLRCDIS  
nLRCDIS  
nLRCDIS  
nLRCDIS  
nLRCDIS  
nLRCDIS  
nLRCDIS  
nLRCDIS  
nLRCDIS  
nLRCDIS  
2400  
2530  
2670  
2830  
3000  
3200  
3430  
3690  
4000  
4360  
4790  
5320  
5990  
6860  
8010  
rpm  
rpm  
rpm  
rpm  
rpm  
rpm  
rpm  
rpm  
rpm  
rpm  
rpm  
rpm  
rpm  
rpm  
rpm  
rpm  
0000  
P_7.4.2.35  
P_7.4.2.36  
P_7.4.2.37  
P_7.4.2.38  
P_7.4.2.39  
P_7.4.2.40  
P_7.4.2.41  
P_7.4.2.42  
P_7.4.2.43  
P_7.4.2.44  
P_7.4.2.45  
P_7.4.2.46  
P_7.4.2.47  
P_7.4.2.48  
P_7.4.2.49  
P_7.4.2.50  
LRC disable rotor  
speed  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
LRC disable rotor  
speed  
LRC disable rotor  
speed  
LRC disable rotor  
speed  
LRC disable rotor  
speed  
LRC disable rotor  
speed  
LRC disable rotor  
speed  
LRC disable rotor  
speed  
LRC disable rotor  
speed  
LRC disable rotor  
speed  
LRC disable rotor  
speed  
LRC disable rotor  
speed  
LRC disable rotor  
speed  
LRC disable rotor  
speed  
LRC disable rotor  
speed  
LRC not disabled –  
by rotor speed  
6.4.4  
Register RCLIM (excitation current limitation)  
The writable internal register RCLIM defines the limitation value of the excitation current.  
While switching between the relevant states of the state machine, RCLIM transition slopes as defined in  
Table 68 are applied.  
Data Sheet  
62  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
Table 68 Transition slopes of RCLIM between states  
Exit from state  
Entry into state  
RCLIM transition slope  
Normal operation  
Default operation  
0.375 A/s  
If the limitation is removed or increased, a positive jump of the duty cycle value can occur. If LRC is enabled,  
LRC becomes active to avoid changes of torque.  
The mapping between RCLIM and CLIM for the “VDA-A” variant is stated in Table 69, whereas for the “VDA-B”  
and “OEM1” variants it is given in Table 70. The “OEM2” variant is stated in Table 71.  
Table 69 Parameter “excitation current limitation” for “VDA-A” variant  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ.  
Max.  
Register current  
limitation  
RCLIM  
CLIM  
CLIM  
CLIM  
CLIM  
0
31  
-
P_7.4.3.1  
Excitation current  
limitation  
RCLIM disabled  
2 A  
A
A
A
A
Normal operation P_7.4.3.2  
and RCLIM = 01)  
Excitation current  
limitation  
Normal operation P_7.4.3.3  
and RCLIM < 91)  
Excitation current  
limitation  
CLIM :=  
RCLIM * 0.25 A  
Normal operation P_7.4.3.4  
and 9 RCLIM 311)  
Excitation current  
limitation  
No current  
limitation  
Default operation1) P_7.4.3.5  
1) The shown values don’t include the current measurement tolerance.  
Table 70 Parameter “excitation current limitation” for “VDA-B” and “OEM1” variants  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min Typ.  
.
Max  
.
Register current  
limitation  
RCLIM  
CLIM  
CLIM  
CLIM  
CLIM  
0
127  
-
P_7.4.3.6  
P_7.4.3.7  
P_7.4.3.8  
P_7.4.3.9  
Excitation current  
limitation  
RCLIM disabled  
A
A
A
A
Normal operation  
and RCLIM = 01)  
Excitation current  
limitation  
CLIM :=  
RCLIM * 0.1 A  
Normal operation  
and 0 < RCLIM 1101)  
Excitation current  
limitation  
No current  
limitation  
Normal operation  
and RCLIM > 1101)  
Excitation current  
limitation  
No current  
limitation  
Default operation1) P_7.4.3.10  
1) The shown values don’t include the current measurement tolerance.  
Data Sheet  
63  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
Table 71 Parameter “excitation current limitation” for “OEM2” variant  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ.  
Max.  
Register current  
limitation  
RCLIM  
CLIM  
CLIM  
CLIM  
0
255  
-
P_7.4.3.11  
P_7.4.3.12  
P_7.4.3.13  
Excitation current  
limitation  
RCLIM disabled  
A
A
A
Normal operation  
and RCLIM = 01)  
Excitation current  
limitation  
CLIM :=  
RCLIM * 0.04 A  
Normal operation  
and 0 < RCLIM 2551)  
Excitation current  
limitation  
No current  
limitation  
Default operation1) P_7.4.3.14  
1) The shown values don’t include the current measurement tolerance.  
6.4.5  
Register RFPARA (F-Para function)  
The writable internal register RFPARA allows the activation of the pre-selected regulation parameter set (Ki  
and Kp factors of the PI regulation loop) as defined in NVM-RPARA_SEL. During normal operation state (LIN  
communication available), the ECU can modify this register by using the LIN data field RH in the LIN RX frame.  
For a detailed description of this function refer to Chapter 5.14.  
Table 72 Parameter “F-Para regulation parameters”  
Parameter  
Symbol  
Values  
Min. Typ.  
Unit Note or Test Condition  
Number  
Max.  
F-Para regulation FPARA  
parameters  
RFPARA  
Normal dynamic regulation  
behavior:  
RFPARA = 0;  
P_7.4.4.1  
F-Para regulation FPARA  
parameters  
RFPARA  
Normal dynamic regulation  
behavior:  
RFPARA = 1;  
P_7.4.4.2  
P_7.4.4.3  
P_7.4.4.4  
P_7.4.4.5  
NVM-RPARA_SEL = 11B  
F-Para regulation FPARA  
parameters  
RFPARA  
RFPARA  
RFPARA  
Slow dynamic regulation  
behavior:  
RFPARA = 1;  
NVM-RPARA_SEL = 10B  
F-Para regulation FPARA  
parameters  
Slower dynamic regulation  
behavior:  
RFPARA = 1;  
NVM-RPARA_SEL = 01B  
F-Para regulation FPARA  
parameters  
Slowest dynamic regulation  
behavior:  
RFPARA = 1;  
NVM-RPARA_SEL = 00B  
Data Sheet  
64  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
6.4.6  
Register RHT (adjustment of high temperature threshold)  
The writable internal register RHT allows an adjustment of the THT high temperature behavior as mentioned  
in the Temperature Setpoint Compensation (see Chapter 5.6).  
The related mapping is stated in Table 73.  
Table 73 Parameter “HT adjustment”  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or  
Test Condition  
Number  
Min.  
Max.  
HT adjustment  
HT adjustment  
HT adjustment  
HT adjustment  
HT adjustment  
HT adjustment  
HT adjustment  
HT adjustment  
HTADJ  
HTADJ  
HTADJ  
HTADJ  
HTADJ  
HTADJ  
HTADJ  
HTADJ  
0
°C  
°C  
°C  
°C  
°C  
°C  
°C  
°C  
Register  
RHT[2:0] := 000  
P_7.4.5.1  
P_7.4.5.2  
P_7.4.5.3  
P_7.4.5.4  
P_7.4.5.5  
P_7.4.5.6  
P_7.4.5.7  
P_7.4.5.8  
-16  
-12  
-8  
Register  
RHT[2:0] := 001  
Register  
RHT[2:0] := 010  
Register  
RHT[2:0] := 011  
-4  
Register  
RHT[2:0] := 100  
+4  
+8  
+12  
Register  
RHT[2:0] := 101  
Register  
RHT[2:0] := 110  
Register  
RHT[2:0] := 111  
6.4.7  
Register RDI (response data indicator)  
The data field TV[7:0] in the LIN frame TX3 is dependant on the data response indicator RDI sent in the LIN  
frame RX.  
Table 74 Response Data Indicator Coding  
LIN frame Function  
RX, RE[2:0]  
LIN frame TX3, LIN frame TX3, TV[7:0]  
TP[2:0]  
000B  
001B  
010B  
011B  
100B  
101B  
LRCBZ, RHT and F-Para set to default1)  
000B  
001B  
010B  
011B  
100B  
101B  
00000000B  
As requested in RX-Frame  
As requested in RX-Frame  
As requested in RX-Frame  
As requested in RX-Frame  
RVSET (see Chapter 6.4.1)  
RMV (see Chapter 6.4.11)  
RMT (see Chapter 6.4.10)2)  
RMS (see Chapter 6.4.12)  
00000000B  
Reserved for Infineon; Function settings as  
requested in the last valid RX-Frame.  
110B  
111B  
Used for special PRX frame;  
LRCBZ, RHT and F-Para set to default1)  
110B  
111B  
00000000B  
00000000B  
1) If RDI=000B or RDI=111B, the F-Para function is set to default (“0”) and any F-PARA=”1” in the LIN-RX frame is ignored.  
Data Sheet  
65  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
2) RDI internally adjusted to 011B, if OEM2 variant is active (NVM-CFG = 11B). However, via LIN communication,  
RDI := 000B is reported.  
6.4.8  
Register RDC (excitation PWM duty cycle)  
The readable internal register RDC shows the excitation PWM duty cycle (DC). The ECU can monitor this  
register by using the LIN data fields TD and TN.  
The register RDC as provided via LIN can be filtered using a dedicated EWMA filter (refer to Chapter 6.6.1).  
Table 75 Parameter “excitation duty cycle”  
Parameter Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ.  
Max.  
Excitation DC  
PWM duty  
cycle  
n * 100%/32 DC < (n+1) * 100%/32 –  
-
Register  
RDC[4:0] = n  
P_7.4.7.1  
6.4.9  
Register RMC (measured excitation current)  
The readable internal register RMC[7:0] shows the measured excitation current.  
The ECU can monitor this register by using the respective LIN data fields TE[5:0] (RMC6) in LIN TX1 frame as  
well as TO[7:0] (RMC8) in LIN TX3 frame.  
The register RMC as provided via LIN can be filtered using a dedicated EWMA filter (refer to Chapter 6.6.3).  
Table 76 Parameter “measured excitation current” in “VDA-A” variant  
Parameter  
Symbol  
Values  
Typ.  
RMC6 * 0.125  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Measured excitation MC  
current  
A
0 RMC6 63  
P_7.4.8.1  
Table 77 Parameter “measured excitation current” in “OEM1” and “VDA-B” variants  
Parameter  
Symbol  
Values  
Typ.  
RMC8 * 0.05  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Measured excitation  
current  
MC  
A
0 RMC8 255 P_7.4.8.3  
Table 78 Parameter “measured excitation current” in “OEM2” variant  
Parameter Symbol Values Unit Note or  
Test Condition  
Number  
Min.  
Typ.  
Max.  
Measured excitation MC  
current  
RMC8 * 0.04 0 RMC8 255 P_7.4.8.5  
A
6.4.10  
Register RMT (measured temperature on chip)  
The readable internal register RMT[7:0] shows the measured chip temperature. For the OEM2 variant, RMT is  
always given in the LIN TX3 frame (Data Byte 4). For all variants except of OEM2 (VDA-A, VDA-B, OEM1), the  
selection of RDI[2:0] is required to choose the output of the measured temperature in the LIN TX3 frame.  
Data Sheet  
66  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
The ECU can monitor this register by using the LIN data field TV of TX3.  
Table 79 Parameter “measured temperature on chip” for OEM1, VDA-A and VDA-B variants  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ.  
Max  
.
Register measured  
temperature on chip  
RMT  
0
63  
All LIN frame variants P_7.4.9.1  
1)  
Measured temperature MT  
-42 + RMT *  
°C  
P_7.4.9.2  
4 TJ < -38 + RMT *  
4
1) The shown values for the measured temperature on chip do not include the temperature measurement tolerance.  
Table 80 Parameter “measured temperature on chip” for OEM2 variant  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ.  
Max  
.
Register measured  
temperature on chip  
RMT  
0
255  
All LIN frame variants P_7.4.9.3  
1)  
Measured temperature MT  
-42 + RMT TJ < -41 –  
°C  
P_7.4.9.4  
+ RMT  
1) The shown values for the measured temperature on chip do not include the temperature measurement tolerance.  
6.4.11  
Register RMV (measured voltage at VBA terminal)  
The readable internal register RMV[7:0] shows the measured voltage VBA. It is necessary to address RDI[2:0] to  
select the output of the measured voltage in the LIN TX3 frame. This is only possible for the OEM1, VDA-A and  
VDA-B variants.  
The ECU can monitor this register by using the LIN data field TV of TX3. The measurable voltage is constrained  
to the range of 8 V to 24 V.  
The register RMV as provided via LIN can be filtered using a dedicated EWMA filter (refer to Chapter 6.6.2).  
Table 81 Parameter “measured voltage at terminal VBA”  
Parameter  
Symbol  
Values  
Typ.  
Uni Note or  
Number  
t
Test Condition  
Min.  
Max.  
Register “measured  
voltage at VBA terminal”  
Measured voltage at VBA MV1)  
terminal  
RMV  
0
255  
-
All LIN frame  
variants  
P_7.4.10.1  
P_7.4.10.2  
Typ.value 8V+ RMV Typ.value mV 0 RMV < 161  
- 50 mV  
* 100 mV + 50 mV  
Measured voltage at VBA MV  
terminal  
24  
V
161 RMV < 255 P_7.4.10.3  
1) The shown values for the voltage on terminal BA don’t include the voltage measurement tolerance.  
Data Sheet  
67  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
6.4.12  
Register RMS (measured speed)  
The readable internal register RMS[7:0] shows the measured speed of the alternator in RPM. It is necessary to  
address RDI[2:0] to select the output of the measured speed in the LIN TX3 frame. This is only possible for the  
OEM1, VDA-A and VDA-B variants.  
The ECU can monitor this register by using the LIN data field TV of TX3. The measurable speed is constrained  
to the range of 500 rpm to 25600 rpm.  
There are two options to report the measured speed:  
The speed is reported in the classical way shown in Table 82 if NVM-RMS_report = 0B.  
The speed is reported with a linear function if NVM-RMS_report = 1B.  
In this case RMS = measured rotation speed [rpm] / 100 rpm.  
1)  
Table 82 Parameter “measured speed” for NVM-RMS_report = 0B  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
<567  
567  
569  
571  
574  
576  
578  
581  
583  
585  
588  
590  
593  
595  
598  
600  
603  
605  
608  
610  
613  
615  
618  
621  
623  
626  
629  
rpm  
rpm  
rpm  
rpm  
rpm  
rpm  
rpm  
rpm  
rpm  
rpm  
0
P_7.4.11.1  
P_7.4.11.2  
P_7.4.11.3  
P_7.4.11.4  
P_7.4.11.5  
P_7.4.11.6  
P_7.4.11.7  
P_7.4.11.8  
P_7.4.11.9  
P_7.4.11.10  
P_7.4.11.11  
P_7.4.11.12  
P_7.4.11.13  
P_7.4.11.14  
P_7.4.11.15  
P_7.4.11.16  
P_7.4.11.17  
P_7.4.11.18  
P_7.4.11.19  
P_7.4.11.20  
P_7.4.11.21  
P_7.4.11.22  
P_7.4.11.23  
P_7.4.11.24  
P_7.4.11.25  
P_7.4.11.26  
P_7.4.11.27  
1
2
3
4
5
6
7
8
9
rpm 10  
rpm 11  
rpm 12  
rpm 13  
rpm 14  
rpm 15  
rpm 16  
rpm 17  
rpm 18  
rpm 19  
rpm 20  
rpm 21  
rpm 22  
rpm 23  
rpm 24  
rpm 25  
rpm 26  
Data Sheet  
68  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
1)  
Table 82 Parameter “measured speed” (cont’d) for NVM-RMS_report = 0B  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
632  
634  
637  
640  
643  
646  
649  
652  
655  
658  
661  
664  
667  
670  
673  
676  
679  
682  
686  
689  
692  
696  
699  
702  
706  
709  
713  
716  
720  
724  
727  
731  
735  
738  
742  
746  
750  
rpm 27  
rpm 28  
rpm 29  
rpm 30  
rpm 31  
rpm 32  
rpm 33  
rpm 34  
rpm 35  
rpm 36  
rpm 37  
rpm 38  
rpm 39  
rpm 40  
rpm 41  
rpm 42  
rpm 43  
rpm 44  
rpm 45  
rpm 46  
rpm 47  
rpm 48  
rpm 49  
rpm 50  
rpm 51  
rpm 52  
rpm 53  
rpm 54  
rpm 55  
rpm 56  
rpm 57  
rpm 58  
rpm 59  
rpm 60  
rpm 61  
rpm 62  
rpm 63  
P_7.4.11.28  
P_7.4.11.29  
P_7.4.11.30  
P_7.4.11.31  
P_7.4.11.32  
P_7.4.11.33  
P_7.4.11.34  
P_7.4.11.35  
P_7.4.11.36  
P_7.4.11.37  
P_7.4.11.38  
P_7.4.11.39  
P_7.4.11.40  
P_7.4.11.41  
P_7.4.11.42  
P_7.4.11.43  
P_7.4.11.44  
P_7.4.11.45  
P_7.4.11.46  
P_7.4.11.47  
P_7.4.11.48  
P_7.4.11.49  
P_7.4.11.50  
P_7.4.11.51  
P_7.4.11.52  
P_7.4.11.53  
P_7.4.11.54  
P_7.4.11.55  
P_7.4.11.56  
P_7.4.11.57  
P_7.4.11.58  
P_7.4.11.59  
P_7.4.11.60  
P_7.4.11.61  
P_7.4.11.62  
P_7.4.11.63  
P_7.4.11.64  
Data Sheet  
69  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
1)  
Table 82 Parameter “measured speed” (cont’d) for NVM-RMS_report = 0B  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
754  
758  
762  
766  
770  
774  
778  
783  
787  
791  
796  
800  
804  
809  
814  
818  
823  
828  
832  
837  
842  
847  
852  
857  
862  
867  
873  
878  
883  
889  
894  
900  
906  
911  
917  
923  
929  
rpm 64  
rpm 65  
rpm 66  
rpm 67  
rpm 68  
rpm 69  
rpm 70  
rpm 71  
rpm 72  
rpm 73  
rpm 74  
rpm 75  
rpm 76  
rpm 77  
rpm 78  
rpm 79  
rpm 80  
rpm 81  
rpm 82  
rpm 83  
rpm 84  
rpm 85  
rpm 86  
rpm 87  
rpm 88  
rpm 89  
rpm 90  
rpm 91  
rpm 92  
rpm 93  
rpm 94  
rpm 95  
rpm 96  
rpm 97  
rpm 98  
rpm 99  
rpm 100  
P_7.4.11.65  
P_7.4.11.66  
P_7.4.11.67  
P_7.4.11.68  
P_7.4.11.69  
P_7.4.11.70  
P_7.4.11.71  
P_7.4.11.72  
P_7.4.11.73  
P_7.4.11.74  
P_7.4.11.75  
P_7.4.11.76  
P_7.4.11.77  
P_7.4.11.78  
P_7.4.11.79  
P_7.4.11.80  
P_7.4.11.81  
P_7.4.11.82  
P_7.4.11.83  
P_7.4.11.84  
P_7.4.11.85  
P_7.4.11.86  
P_7.4.11.87  
P_7.4.11.88  
P_7.4.11.89  
P_7.4.11.90  
P_7.4.11.91  
P_7.4.11.92  
P_7.4.11.93  
P_7.4.11.94  
P_7.4.11.95  
P_7.4.11.96  
P_7.4.11.97  
P_7.4.11.98  
P_7.4.11.99  
P_7.4.11.100  
P_7.4.11.101  
Data Sheet  
70  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
1)  
Table 82 Parameter “measured speed” (cont’d) for NVM-RMS_report = 0B  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
935  
rpm 101  
rpm 102  
rpm 103  
rpm 104  
rpm 105  
rpm 106  
rpm 107  
rpm 108  
rpm 109  
rpm 110  
rpm 111  
rpm 112  
rpm 113  
rpm 114  
rpm 115  
rpm 116  
rpm 117  
rpm 118  
rpm 119  
rpm 120  
rpm 121  
rpm 122  
rpm 123  
rpm 124  
rpm 125  
rpm 126  
rpm 127  
rpm 128  
rpm 129  
rpm 130  
rpm 131  
rpm 132  
rpm 133  
rpm 134  
rpm 135  
rpm 136  
rpm 137  
P_7.4.11.102  
P_7.4.11.103  
P_7.4.11.104  
P_7.4.11.105  
P_7.4.11.106  
P_7.4.11.107  
P_7.4.11.108  
P_7.4.11.109  
P_7.4.11.110  
P_7.4.11.111  
P_7.4.11.112  
P_7.4.11.113  
P_7.4.11.114  
P_7.4.11.115  
P_7.4.11.116  
P_7.4.11.117  
P_7.4.11.118  
P_7.4.11.119  
P_7.4.11.120  
P_7.4.11.121  
P_7.4.11.122  
P_7.4.11.123  
P_7.4.11.124  
P_7.4.11.125  
P_7.4.11.126  
P_7.4.11.127  
P_7.4.11.128  
P_7.4.11.129  
P_7.4.11.130  
P_7.4.11.131  
P_7.4.11.132  
P_7.4.11.133  
P_7.4.11.134  
P_7.4.11.135  
P_7.4.11.136  
P_7.4.11.137  
P_7.4.11.138  
941  
947  
954  
960  
966  
973  
980  
986  
993  
1000  
1007  
1014  
1021  
1029  
1036  
1043  
1051  
1059  
1067  
1075  
1083  
1091  
1099  
1106  
1116  
1125  
1134  
1143  
1152  
1161  
1171  
1180  
1190  
1200  
1210  
1220  
Data Sheet  
71  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
1)  
Table 82 Parameter “measured speed” (cont’d) for NVM-RMS_report = 0B  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
1231  
1241  
1252  
1263  
1274  
1286  
1297  
1309  
1321  
1333  
1346  
1358  
1371  
1385  
1398  
1412  
1426  
1440  
1455  
1469  
1485  
1500  
1516  
1532  
1548  
1565  
1582  
1600  
1618  
1636  
1655  
1674  
1694  
1714  
1735  
1756  
1778  
rpm 138  
rpm 139  
rpm 140  
rpm 141  
rpm 142  
rpm 143  
rpm 144  
rpm 145  
rpm 146  
rpm 147  
rpm 148  
rpm 149  
rpm 150  
rpm 151  
rpm 152  
rpm 153  
rpm 154  
rpm 155  
rpm 156  
rpm 157  
rpm 158  
rpm 159  
rpm 160  
rpm 161  
rpm 162  
rpm 163  
rpm 164  
rpm 165  
rpm 166  
rpm 167  
rpm 168  
rpm 169  
rpm 170  
rpm 171  
rpm 172  
rpm 173  
rpm 174  
P_7.4.11.139  
P_7.4.11.140  
P_7.4.11.141  
P_7.4.11.142  
P_7.4.11.143  
P_7.4.11.144  
P_7.4.11.145  
P_7.4.11.146  
P_7.4.11.147  
P_7.4.11.148  
P_7.4.11.149  
P_7.4.11.150  
P_7.4.11.151  
P_7.4.11.152  
P_7.4.11.153  
P_7.4.11.154  
P_7.4.11.155  
P_7.4.11.156  
P_7.4.11.157  
P_7.4.11.158  
P_7.4.11.159  
P_7.4.11.160  
P_7.4.11.161  
P_7.4.11.162  
P_7.4.11.163  
P_7.4.11.164  
P_7.4.11.165  
P_7.4.11.166  
P_7.4.11.167  
P_7.4.11.168  
P_7.4.11.169  
P_7.4.11.170  
P_7.4.11.171  
P_7.4.11.172  
P_7.4.11.173  
P_7.4.11.174  
P_7.4.11.175  
Data Sheet  
72  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
1)  
Table 82 Parameter “measured speed” (cont’d) for NVM-RMS_report = 0B  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
1800  
1823  
1846  
1870  
1895  
1920  
1946  
1973  
2000  
2028  
2057  
2087  
2118  
2149  
2182  
2215  
2250  
2286  
2323  
2361  
2400  
2441  
2483  
2526  
2571  
2618  
2667  
2717  
2769  
2824  
2880  
2939  
3000  
3064  
3130  
3200  
3273  
rpm 175  
rpm 176  
rpm 177  
rpm 178  
rpm 179  
rpm 180  
rpm 181  
rpm 182  
rpm 183  
rpm 184  
rpm 185  
rpm 186  
rpm 187  
rpm 188  
rpm 189  
rpm 190  
rpm 191  
rpm 192  
rpm 193  
rpm 194  
rpm 195  
rpm 196  
rpm 197  
rpm 198  
rpm 199  
rpm 200  
rpm 201  
rpm 202  
rpm 203  
rpm 204  
rpm 205  
rpm 206  
rpm 207  
rpm 208  
rpm 209  
rpm 210  
rpm 211  
P_7.4.11.176  
P_7.4.11.177  
P_7.4.11.178  
P_7.4.11.179  
P_7.4.11.180  
P_7.4.11.181  
P_7.4.11.182  
P_7.4.11.183  
P_7.4.11.184  
P_7.4.11.185  
P_7.4.11.186  
P_7.4.11.187  
P_7.4.11.188  
P_7.4.11.189  
P_7.4.11.190  
P_7.4.11.191  
P_7.4.11.192  
P_7.4.11.193  
P_7.4.11.194  
P_7.4.11.195  
P_7.4.11.196  
P_7.4.11.197  
P_7.4.11.198  
P_7.4.11.199  
P_7.4.11.200  
P_7.4.11.201  
P_7.4.11.202  
P_7.4.11.203  
P_7.4.11.204  
P_7.4.11.205  
P_7.4.11.206  
P_7.4.11.207  
P_7.4.11.208  
P_7.4.11.209  
P_7.4.11.210  
P_7.4.11.211  
P_7.4.11.212  
Data Sheet  
73  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
1)  
Table 82 Parameter “measured speed” (cont’d) for NVM-RMS_report = 0B  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
3349  
3429  
3512  
3600  
3692  
3789  
3892  
4000  
4114  
4235  
4364  
4500  
4645  
4800  
4966  
5143  
5333  
5538  
5760  
6000  
6261  
6545  
6857  
7200  
7579  
8000  
8471  
9000  
9600  
10266  
11077  
12000  
13091  
14400  
16000  
18000  
20571  
rpm 212  
rpm 213  
rpm 214  
rpm 215  
rpm 216  
rpm 217  
rpm 218  
rpm 219  
rpm 220  
rpm 221  
rpm 222  
rpm 223  
rpm 224  
rpm 225  
rpm 226  
rpm 227  
rpm 228  
rpm 229  
rpm 230  
rpm 231  
rpm 232  
rpm 233  
rpm 234  
rpm 235  
rpm 236  
rpm 237  
rpm 238  
rpm 239  
rpm 240  
rpm 241  
rpm 242  
rpm 243  
rpm 244  
rpm 245  
rpm 246  
rpm 247  
rpm 248  
P_7.4.11.213  
P_7.4.11.214  
P_7.4.11.215  
P_7.4.11.216  
P_7.4.11.217  
P_7.4.11.218  
P_7.4.11.219  
P_7.4.11.220  
P_7.4.11.221  
P_7.4.11.222  
P_7.4.11.223  
P_7.4.11.224  
P_7.4.11.225  
P_7.4.11.226  
P_7.4.11.227  
P_7.4.11.228  
P_7.4.11.229  
P_7.4.11.230  
P_7.4.11.231  
P_7.4.11.232  
P_7.4.11.233  
P_7.4.11.234  
P_7.4.11.235  
P_7.4.11.236  
P_7.4.11.237  
P_7.4.11.238  
P_7.4.11.239  
P_7.4.11.240  
P_7.4.11.241  
P_7.4.11.242  
P_7.4.11.243  
P_7.4.11.244  
P_7.4.11.245  
P_7.4.11.246  
P_7.4.11.247  
P_7.4.11.248  
P_7.4.11.249  
Data Sheet  
74  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
1)  
Table 82 Parameter “measured speed” (cont’d) for NVM-RMS_report = 0B  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
Measured speed  
nR  
nR  
nR  
nR  
nR  
nR  
nR  
rpm 249  
rpm 250  
rpm 251  
rpm 252  
rpm 253  
rpm 254  
rpm 255  
P_7.4.11.250  
P_7.4.11.251  
P_7.4.11.252  
P_7.4.11.253  
P_7.4.11.254  
P_7.4.11.255  
P_7.4.11.256  
1) Speed values represent the threshold for switching to the coding shown in the table. The shown values do not include  
the speed measurement tolerance.  
Table 83 Parameter “measured speed” for NVM-RMS_report = 1B  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Register “Measured  
speed”  
RMS  
6
-
255  
P_7.4.12.1  
P_7.4.12.3  
1)  
Measured speed  
nR  
RMS*100  
rpm 6RMS255  
1) The shown values for the measured speed do not include the speed measurement tolerance.  
6.4.13  
Register RSUPP and RCLASS  
The readable internal register RSUPP[2:0] contains the alternator supplier code. The ECU can monitor this  
register by using the LIN data field TH.  
The readable internal register RCLASS[4:0] contains the alternator class code. The ECU can monitor this  
register by using the LIN data field TI.  
The registers RSUPP and RCLASS are loaded from the EEPROM.  
6.5  
Default register content  
The registers shown in table Table 84 are writable registers. Therefore, these registers will be set by the device  
if:  
a logic reset occurs, or  
the TLE8881-2 wakes up from stand-by, or  
the state machine enters the state “default operation”.  
Data Sheet  
75  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
Table 84 Default writable register content  
TLE8881-2 register Description  
Reference  
RVSET[7:0]  
Dependent on NVM-VSET.  
Register RVSET (voltage setpoint),  
Without NVM modification (default values):  
VSET = 14.3 V  
Section 6.4.1  
VDA-A/OEM2: RVSET[7:2] := 100010B (= 34)  
VDA-B/OEM1: RVSET[7:0] := 10001000B (= 136)  
RLRCBZ  
Dependent on NVM-LRCBZ and NVM-  
LRCBZ_0_SEL.  
Registers LRC (load response  
control), Section 6.4.3  
Without NVM modification (default values):  
LRCBZ = 3 %  
RLRCBZ := 0B  
RLRCRT[3:0]  
RLRCDIS[3:0]  
Dependent on NVM-LRCRT and NVM-LRCRT_1s. Registers LRC (load response  
Without NVM modification (default values):  
LRCRT = 5 s  
control), Section 6.4.3  
VDA-A: RLRCRT[3:0] := 0011B (= 3)  
VDA-B/OEM1/OEM2: RLRCRT[3:0] := 0110B (= 6)  
Dependent on NVM-LRCDIS.  
Without NVM modification: nLRCDIS = 4000 rpm  
RLRCDIS[3:0] := 1000B  
Registers LRC (load response  
control), Section 6.4.3  
RCLIM[7:0]  
RDI[2:0]  
Excitation current limitation disabled:  
RCLIM[7:0] := 00000000B (= 0)  
Register RCLIM (excitation current  
limitation), Section 6.4.4  
Request data indicator  
RDI[2:0] := 000B  
Register RDI (response data  
indicator), Section 6.4.7  
RHT[2:0]  
THT = 160°C  
RHT[2:0] := 000B (0°C temperature delta to THT)  
Register RHT (adjustment of high  
temperature threshold),  
Section 6.4.6  
RFPARA  
RFPARA = 0B  
Register RFPARA (F-Para  
function), Section 6.4.5  
The registers shown in Table 85 are readable registers. These register will be initialized if:  
a logic reset occurs, or  
the TLE8881-2 wakes up from stand-by state.  
Table 85 Default readable register content  
TLE8881-2  
register  
Description  
Reference  
RDC[4:0]  
RMC6[5:0]  
RMC8[7:0]  
RMV[7:0]  
Excitation PWM duty cycle DC = 0%  
RDC[4:0] := 00000B  
Register RDC (excitation PWM duty cycle),  
Section 6.4.8  
Measured excitation current MC = 0 A  
RMC6[5:0] := 000000B (= 0)  
Register RMC (measured excitation current),  
Section 6.4.9  
Measured excitation current MC = 0 A  
RMC8[7:0] := 00000000B (= 0)  
Register RMC (measured excitation current),  
Section 6.4.9  
Measured voltage MV = 8 V  
RMV[7:0] := 00000000B (= 0)  
Register RMV (measured voltage at VBA  
terminal), Section 6.4.11  
Data Sheet  
76  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
Table 85 Default readable register content (cont’d)  
TLE8881-2  
register  
Description  
Reference  
RMT[7:0]  
VDA-A/VDA-B/OEM1:  
Register RMT (measured temperature on  
Measured temperature MT = 24…28°C  
RMT[7:0] := 00010010B (= 18)  
OEM2:  
chip), Section 6.4.10  
Measured temperature MT = 31°C  
RMT[7:0] := 01001001B (= 73)  
RMS[7:0]  
RMS[7:0] := 00000000B (< 560 rpm)  
Register RMS (measured speed),  
Section 6.4.12  
RCLASS[4:0]  
RSUPP[2:0]  
Without NVM modification: 11111B (= 31)  
Register RSUPP and RCLASS, Section 6.4.13  
Without NVM modification: 0000001B (= 1) Register RSUPP and RCLASS, Section 6.4.13  
Diagnosis flags  
F-HT := 0  
-
F-EL := 0  
F-ROT := 0  
F-CEF := 0  
F-CTO depends on state machine (refer to  
Chapter 4.4)  
6.6  
Register output filters  
The TLE8881-2 includes Exponentially Weighted Moving Average (EWMA) filters of the first-order with its cut-  
off frequency fFILT at τ = 63%. These filters are used for the output of some internal registers which are  
communicated via LIN TX frames. The filtered values are not applied to the excitation output stage and  
excitation DMOS.  
6.6.1  
Filter for excitation PWM duty cycle (RDC filter)  
The excitation PWM duty cycle calculated by the TLE8881-2 during the regulation activity is readable via LIN  
at the register RDC of the TX1 and TX3 commands after the EWMA filtering (see Chapter 6.4.8). The filtered  
value is not applied to the excitation output stage.  
The activation of the filter and its characteristics are configurable via NVM-DC_EWMA_K and depend on NVM-  
CFG.  
If the PSB (Phase Signal Boost) function is active, leading to switching between 100% (on-time) and 0% (off-  
time) of the excitation PWM duty cycle, the input of the filter is regulated by the NVM-DC_EWMA_MODE.  
PSB is an internal function to maintain the phase signal and is not relevant for computation models inside  
ECU. The duty cycle which is communicated via LIN TX frames is used as input for most computation models.  
With the NVM-DC_EWMA_MODE parameter, a different input value during an activated PSB function can be  
selected to blank out this internal maintenance.  
With the DC_EWMA_mode_DC0 parameter, the input value of the filter during activated PSB function can be  
forced to zero. This parameter has priority over any setting in NVM-DC_EWMA_MODE.  
Data Sheet  
77  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
Table 86 Parameter for “RDC filter” if NVM-CFG = 10B  
All parameters are valid for: -40°C < TJ < 150°C; VBA = 14.5 V unless otherwise specified:  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
RDC filter deactivated fDCF  
Hz  
Hz  
Hz  
Hz  
1); NVM-  
DC_EWMA_K = 00B  
1); NVM-  
DC_EWMA_K = 01B  
1); NVM-  
DC_EWMA_K = 10B  
1); NVM-  
P_7.6.1.5  
P_7.6.1.1  
P_7.6.1.2  
P_7.6.1.3  
RDC filter time  
RDC filter time  
RDC filter time  
fDCF  
fDCF  
fDCF  
0.5  
3
1
1.5  
7
5
7
10  
13  
DC_EWMA_K = 11B  
1) Not subject to production test  
Table 87 Parameter for “RDC filter” if NVM-CFG 10B  
All parameters are valid for: -40°C < TJ < 150°C; VBA=14.5 V unless otherwise specified:  
Parameter Symbol Values Unit Note or  
Test Condition  
Number  
Min.  
Typ.  
Max.  
1)  
Duty cycle filter time tDCF  
-15%  
NVM-  
+15%  
ms  
P_7.6.1.4  
DC_EWMA_K  
1) Not subject to production test  
6.6.2  
Filter for voltage measurement (RMV Filter)  
The measured voltage at the VBA pin is readable via LIN at the register RMV after the EWMA filtering (see  
Chapter 6.4.11).  
The activation of the filter and its characteristics are configurable via the NVM field NVM-MV_EWMA_K.  
Table 88 Parameter for “RMV filter”  
All parameters are valid for: -40°C < TJ < 150°C; unless otherwise specified:  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
RMV filter deactivated fMVF  
Hz  
Hz  
Hz  
Hz  
1); NVM-  
MV_EWMA_K = 00B  
1); NVM-  
MV_EWMA_K = 01B  
1); NVM-  
MV_EWMA_K = 10B  
1); NVM-  
P_7.6.2.4  
P_7.6.2.1  
P_7.6.2.2  
P_7.6.2.3  
RMV filter time  
RMV filter time  
RMV filter time  
fMVF  
fMVF  
fMVF  
0.5  
3
1
1.5  
7
5
7
10  
13  
MV_EWMA_K = 11B  
1) Not subject to production test  
Data Sheet  
78  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
6.6.3  
Excitation current filter (RMC filter)  
The measured current is readable via LIN at the register RMC after the EWMA filtering (see Chapter 6.4.9).  
The activation of the excitation current filter and its characteristics are configurable via the NVM field NVM-  
MC_EWMA_K.  
Table 89 Parameter for “RMC filter”  
All parameters are valid for: -40°C < TJ < 150°C; VBA = 14.5 V unless otherwise specified:  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
RMC filter deactivated fMCF  
Hz  
Hz  
Hz  
Hz  
1); NVM-  
MC_EWMA_K = 00B  
1); NVM-  
MC_EWMA_K= 01B  
1); NVM-  
MC_EWMA_K = 10B  
1); NVM-  
P_7.6.3.1  
P_7.6.3.1  
P_7.6.3.2  
P_7.6.3.3  
RMC filter time  
RMC filter time  
RMC filter time  
fMCF  
fMCF  
fMCF  
0.5  
3
1
1.5  
7
5
7
10  
13  
MC_EWMA_K = 11B  
1) Not subject to production test  
Data Sheet  
79  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
6.7  
LIN 2.1 diagnostic frames  
Diagnostic frames are part of the LIN 2.1 data link layer specification only.  
The TLE8881-2 is defined as a Class-1 device in the LIN 2.1 network.  
By design, the TLE8881-2 supports two dedicated LIN 2.1 services:  
Assign frame ID range (Chapter 6.7.3)  
Read by identifier (Chapter 6.7.4)  
6.7.1  
Node configuration / identification  
If the frame identifier 3CH or 3DH is identified, the upcoming frames are going to carry configuration and  
identification data. It has to be distinguished between the Master Request Frame (MRF) and the Slave  
Response Frame (SRF), whereas the respective frame are notified by:  
Master Request Frame (MRF): 3CH  
Slave Response Frame (SRF): 3DH  
The requests are executed by the slave device as soon as the MRF is received and found to be valid (i.e. no bit  
errors, checksum ok, etc).  
MRF and SRF may be interleaved with an unconditional frame, e.g. MRF RX SRF.  
As defined in the LIN specification MRF with NAD = 00H (where the following data is neglected) is interpreted  
as a go-to-sleep command, regardless of the frame’s data bytes.  
6.7.2  
NAD, supplier ID, function ID and variant  
In order to enable the LIN 2.1 services, the device’s node address (NAD) and at least the wildcard values of the  
function ID and the supplier ID should be known. The NAD is used in the MRF and SRF frames to address one  
particular slave node in a cluster, or to indicate the source of a response. The supplier ID is assigned to one  
supplier by the LIN Consortium. Distinguishing between the different application functions of distinct devices  
can handled by the function ID. The wildcard values are defined in the LIN 2.1 Protocol Specification. The  
specific values for the TLE8881-2 are given in Table 90.  
Table 90 Overview of LIN2.1 diagnostic frames identification codings  
Message Type  
Identification  
0066H  
7007H  
00H  
Wildcard / broadcast NAD  
7FFFH (Wildcard)  
FFFFH (Wildcard)  
-
Supplier ID  
Function ID  
Variant  
Alternator 1 NAD (if NVM-ALT = 0B)  
Alternator 2 NAD (if NVM-ALT = 1B)  
46H  
7FH (Broadcast NAD)  
7FH (Broadcast NAD)  
47H  
All values are hard-wired. The NAD is implemented as a metal option (8 bit) and can be changed via NVM-ALT.  
Wildcards (= broadcasts) are fully supported by the TLE8881-2.  
Beside these fixed supplier ID, function ID and variant, the TLE8881-2 offers the alternator’s supplier ID  
(3 bits), the alternator class ID (5 bits), the ASIC Manufacturer ID (001B for Infineon) and the ASIC ID (5 bits) in  
the TX2 frame, as given in Chapter 6.4.13.  
It has to be considered that the LIN master is responsible for collision-avoidance (e.g. requests for SRF after  
broadcast MRF).  
Data Sheet  
80  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
Broadcast NAD  
Broadcast NAD will be used to send one MRF Frame to multiple LIN slaves in parallel. A LIN frame containing a  
broadcast NAD is sent to all LIN 2.1 slave nodes in the LIN network. In case of multiple responses (e.g. collisions  
on the bus), the LIN slave will detect a bit-error, abort the transmission and set the F-CEF flag.  
NAD = 00H is used for go-to-sleep.  
Support for diagnostic NAD (7EH)  
Diagnostic NAD is only used for functional addressing for the transport layer. The TLE8881-2 is defined as a  
Class-1 device. Class-1 devices do not need to support the transport layer diagnostics.  
Therefore, the TLE8881-2 does not support this feature.  
6.7.3  
Assign frame ID range (LIN 2.1 service)  
This supported service allows the LIN master to reconfigure the frame identifiers (also called PID in LIN 2.1  
specification) of the slave. In order to ensure a proper behavior after start-up, the PIDs are set to their default  
values. By sending the correct assign-frame-ID-range command, a LIN master could change the PIDs to new  
values. Attention has to be paid to the fact that the TLE8881-2 will not check the newly assigned PIDs for  
correctness. This function is implemented to be LIN 2.1 compliant.  
As the OEM might not want to use the assign frame ID function, it can be deactivated in EEPROM via NVM-  
AFIDen.  
An assign-frame-ID-range command comprises of a kind of header, containing the NAD of the addressed  
device, the protocol control information (PCI) and a service identifier (SID). These three bytes follow after the  
actual LIN header containing synch-break, synch-byte and PID. The respective bytes are given in Table 91.  
Table 91 Assign frame ID range service codings  
Byte name  
Master Request Frame (MRF) PCI  
Byte content  
06H  
B7H  
01H  
F7H  
SID  
Slave Response Frame (SRF)  
PCI  
RSID  
The NAD, PCI and SID are then followed by 5 data bytes. The first byte indicates the starting index (e.g. first PID  
to modify), and the following 4 bytes indicate the new PID values. Refer to Figure 20 for an overview picture.  
Valid values for PIDs are FFH for “don't care”, i.e. do not modify this frame’s PID, 00H for “unset” which trigger  
the frame inactive, and any valid PID value between 00H and 3BH. For the TLE8881-2, the command could  
change the PIDs of the frames RX, TX1, TX2 and TX3 (in the respective order regarding the incrementing index).  
The MRF and SRF (frames 3CH and 3DH) are hard-wired, thus their PIDs cannot be changed. The request (if  
correct) is processed immediately after the reception of the Master Request Frame (MRF) is complete.  
Data  
(Index)  
Data  
(Index+1)  
Data  
(Index+2)  
Data  
(Index+3)  
LIN header  
NAD  
PCI  
SID  
Index  
Figure 20 Assign-frame-ID-range MRF layout (NAD = 46H/47H, PCI = 06H, SID = B7H)  
After processing an assign-frame-ID-range command, the TLE8881-2 responds to a consecutive SRF only if the  
command is processed correctly. There is no error-response to this service.  
Data Sheet  
81  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
If the command was processed by the device, it sends the following response upon receiving an SRF (refer to  
Figure 21).  
unused  
LIN header  
NAD  
PCI  
RSID  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
Figure 21 Assign-frame-ID-range SRF layout (NAD = 46H/47H, PCI = 01H, RSID = F7H)  
6.7.4  
Read by identifier (LIN 2.1 service)  
This service is used by a master to obtain specific information about a LIN slave device. Since the TLE8881-2 is  
configured as a Class-1 device, it only supports a query of function ID, supplier ID and variant.  
Just like the assign-frame-ID-range service, the command for this service consists of a kind of header  
containing the slave’s NAD, a PCI and a SID.  
The respective bytes are given in Table 92.  
Table 92 Read by identifier service codings  
Byte name  
PCI  
Byte content  
Master Request Frame (MRF)  
Slave Response Frame (SRF)  
06H  
B2H  
06H  
F2H  
SID  
PCI  
RSID  
Afterwards follows an Identifier which defines the query. The TLE8881-2 only supports identifier=0 followed  
by 4 data bytes containing the supplier ID and function ID (either the actual values or wildcards). Refer to  
Figure 22 for an overview picture. If the values for the supplier and/or function ID do not match the LIN slave’s  
IDs, the TLE8881-2 will not send a response. If the slave’s IDs are not known to the master, the usage of  
wildcard values for function and supplier IDs is possible for those fields.  
Supplier ID Supplier ID Function ID Function ID  
LIN header  
NAD  
PCI  
SID  
Identifier  
(LSB)  
(MSB)  
(LSB)  
(MSB)  
Figure 22 Read by identifier MRF layout (NAD = 46H/47H, PCI = 06H, SID = B2H)  
The response consists of a header followed by the supplier ID, function ID and the variant (last byte). This  
response layout is shown in Figure 23.  
Supplier ID Supplier ID Function ID Function ID  
LIN header  
NAD  
PCI  
RSID  
Variant  
(LSB)  
(MSB)  
(LSB)  
(MSB)  
Figure 23 Read by identifier SRF layout (NAD = 46H/47H, PCI = 06H, SID = F2H)  
6.8  
Programming Mode  
For details regarding programming the device please contact your sales representative or the Technical  
Assistance Center (TAC).  
Data Sheet  
82  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
LIN interface  
6.9  
Internal LIN timers  
A set of internal timers is implemented in the core to support several functions for the LIN communication  
(refer to Table 93).  
All timings are directly dependant on the internal oscillator (Chapter 8.3).  
Table 93 Parameters for internal LIN timers  
All parameters are valid for: -40°C < TJ < 150°C; VBA = 14.5 V unless otherwise specified:  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Delay time to reset  
diagnosis flag F-EL  
tF-EL,Reset  
20  
62.5  
100  
ms  
P_7.9.0.1  
P_7.9.0.8  
1)  
Test mode entry timer tTMSTART  
130  
9.1  
145  
160  
ms  
;
After wake-up or logic  
reset  
1)  
Test mode deactivation tTMOFF  
10.3  
11.5  
s
;
P_7.9.0.9  
timer  
After wake-up or logic  
reset  
1) Not subject to production test.  
Table 94 Modified timers in test mode  
Timer  
tCTO  
Parameter name  
Acceleration factor  
No valid LIN communication timer  
Diagnosis flag debounce timer  
256  
32  
tF-EL  
Data Sheet  
83  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Phase monitoring block  
7
Phase monitoring block  
7.1  
Block diagram  
Self-start  
Wakeup  
Detection  
self-start  
wakeup  
PH  
speed for  
frequency  
measurement  
Speed  
Detection  
Phase Voltage  
Monitoring  
Phase Signal  
detected  
Figure 24 Phase monitoring block  
7.2  
Self-start wake-up  
Table 95 Parameter “self-start wake-up  
All parameters are valid for: -40°C < TJ < 150°C; VBA = 14.5 V unless otherwise specified:  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Self-start wake-up VDET  
voltage threshold  
100  
200  
350  
mVpp VPH,CM = 1 V; fPH, = 600 Hz;  
TJ = 27 °C;  
P_8.2.0.1  
Phase voltage (peak-to-peak)  
for self-start wake-up in state  
“stand-by”  
Data Sheet  
84  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Phase monitoring block  
7.3  
Speed detection  
Table 96 Parameter “speed detection”  
All parameters are valid for: -40°C < TJ < 150°C; VBA = 14.5 V unless otherwise specified:  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Number  
Min.  
Max.  
Peak-to-peak  
speed detection  
threshold  
VDET  
200  
mVpp Phase voltage (peak-to-  
peak) for speed detection in  
states “ComActive” and  
“default operation”  
P_8.3.0.1  
Peak-to-peak  
speed detection  
threshold  
VDET  
800  
mVpp Phase voltage (peak-to-  
peak) for speed detection in  
state “pre-excitation” and  
CTO = 0 (no LIN  
P_8.3.0.2  
P_8.3.0.3  
communication time-out)  
Peak-to-peak  
speed detection  
threshold  
VDET  
800  
mVpp Phase voltage (peak-to-  
peak) for speed detection in  
state “normal operation”.  
7.4  
Phase monitoring  
The phase voltage monitoring block monitors the voltage at the phase input PH. The voltage is used for the  
phase signal boost function (Chapter 5.11) and for the engine stop detection.  
Table 97 Parameter phase monitoring  
All parameters are valid for: -40°C < TJ < 150°C; VBA = 14.5 V unless otherwise specified:  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Pull down resistor at RPHRD  
terminal PH  
20  
33  
50  
kΩ  
kΩ  
ms  
In state  
“pre-excitation”  
P_8.4.0.1  
Pull down resistor at RPHRD  
terminal PH  
60  
15  
100  
60  
165  
120  
All states except “pre- P_8.4.0.2  
excitation”  
1);2);  
Phase Signal time-out tPH,TO  
P_8.4.0.3  
1) Not subject to production test.  
2) In case of phase signal loss, an event is generated after a time-out tPH,TO. This event is used by the state machine to  
ensure that in case of no valid LIN communication and too low rotor speed, the TLE8881-2 goes to stand-by mode.  
Data Sheet  
85  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Core functions  
8
Core functions  
8.1  
Voltage reference  
A band gap reference is used for internal comparisons to achieve calibrated results.  
8.2  
Internal supply reference  
The TLE8881-2 is equipped with the following voltage sources:  
internal 5 V supply for analogue circuitry  
internal 3.3 V supply for the CMOS logic circuitry  
8.3  
Oscillator  
The oscillator generates the clock signal required by the logic functions (main control, regulation block,  
TLE8881-2 registers and LIN protocol handler).  
Table 98 Parameter oscillator  
All parameters are valid for: -40°C < TJ < 150°C; VBA = 14.5 V unless otherwise specified:  
Parameter  
Symbol  
Values  
Typ.  
1.8  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Oscillator frequency  
fOSC  
1.62  
1.98  
MHz Value is trimmed P_9.3.0.1  
at 25°C  
8.4  
Charge pump  
The charge pump is required for the excitation high-side driver. The charge pump does not require any  
external energy storage capacitor.  
Data Sheet  
86  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Core functions  
8.5  
Restore state function  
During the operation of the TLE8881-2, a supply micro-cut can occur. The restore state function as  
implemented restores the operation state as well as essential register values to avoid a perceptible disruption  
in operation.  
8.5.1  
Supply micro-cut  
Table 99 Parameter micro-cut  
All parameters are valid for: -40°C < TJ < 150°C; VBA = 14.5 V unless otherwise specified:  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Supply micro-cut  
repetition period  
TMC1  
TMC2  
TMC3  
TMC4  
10  
ms  
μs  
μs  
μs  
1); VBA > 0 V  
1); VBA > 0 V  
1); VBA > 0 V  
1); VBA > 0 V  
P_9.5.1.1  
P_9.5.1.2  
P_9.5.1.3  
P_9.5.1.4  
Supply micro-cut  
duration  
5
5
100  
50  
Supply micro-cut fall  
time  
Supply micro-cut rise  
time  
50  
1) Not subject to production test.  
TMC1  
VBA  
90%  
10%  
time  
TMC3  
TMC2  
TMC4  
Figure 25 Supply micro-cut  
Data Sheet  
87  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Core functions  
8.5.2  
Restore state event  
If a logic inadvertent reset occurs in the state normal operation or default operation, the following information  
is stored for at least (TMC2+TMC3+TMC4) and restored after reset:  
Normal operation data bit (fast startup in normal operation or default operation)  
Regulation voltage setpoint (VSET) with a resolution of 100 mV  
LRC rise time (LRCRT)  
Targeted FEXLIM region  
F-Para function activation (as requested via the LIN RX frame)  
After the reset the following actions are executed if a valid restore state condition is detected:  
The stored register information is restored, all other registers are initialized (like after wake-up).  
The LRC duty cycle is set to 100%.  
Dependent on the stored information, the state machine continues either on the state “normal operation”  
or “default operation”.  
The restore state function does not store information related to the assign frame ID range service (refer to  
Chapter 6.7.3). This means that any previously assigned LIN IDs have to be re-assigned after inadvertent  
reset.  
Data Sheet  
88  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Non-Volatile Memory (NVM)  
9
Non-Volatile Memory (NVM)  
Throughout this chapter the terms NVM (Non-Volatile Memory) and EEPROM are used as synonyms,  
disregarding the fact that NVM describes a broader class of memories, where the described EEPROM is only a  
special case.  
With the available NVM field-set, the TLE8881-2 offers the tuning, activation and deactivation of specific  
functions so that a wide range of applications are addressable with one single device properly configured.  
After every regular power-up, on stand-by wake-up, or after internal logic reset, the NVM content is transferred  
into the internal registers within tpower-up (see P_3.2.0.11).  
9.1  
NVM characteristics  
The required characteristics to program and verify the NVM are given in Table 9-1.  
Table 9-1 Parameter NVM  
All parameters are valid for: -40 °C < TJ < 150 °C; VBA = 14.5 V unless otherwise specified:  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Maximum Number  
of program and erase  
cycles  
NPECyc  
100  
P_10.1.0.1  
1)  
Temperature range  
for program and erase  
TPE  
0
25  
80  
40  
°C  
V
P_10.1.0.2  
P_10.1.0.3  
Voltage level at VBA  
during program and  
erase  
VBAPE  
32  
Set voltage for “under-  
voltage condition”  
during program and  
erase  
VBAfailPE 27  
32  
V
P_10.1.0.4  
1) Not subject to production test.  
Attention: Programming and verification requires at least 32 V supply at VBA (refer to Table 9-1).  
Data Sheet  
89  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Non-Volatile Memory (NVM)  
9.2  
NVM register description  
The register descriptions of the NVM - which can be accessed via the programming mode - are presented and  
described in this chapter.  
9.2.1  
List overview  
Table 9-2 to Table 9-5 show a listed overview of all accessible NVM fields.  
Data Sheet  
90  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Non-Volatile Memory (NVM)  
Table 9-2 List overview of accessible NVM fields (sorted by placement in the EEPROM)  
Address Section Field  
Short name  
00H  
00H  
00H  
00H  
00H  
00H  
01H  
01H  
0
0
0
1
1
2
0
0
NVM-LINRX  
NVM-ALT  
LIN RX frame ID  
Alternator number in vehicle LIN network  
LIN version  
NVM-LIN  
NVM-LINTX1  
NVM-RPARA_SEL  
NVM-CFG  
LIN TX1 frame ID  
Selection of parameter set for F-PARA  
OEM configuration  
NVM-LINTX2  
NVM-LRCBZ_0_SEL  
LIN TX2 frame ID  
LRC blind zone “0” selection  
Table 9-3 List overview of accessible NVM fields (NVM-LIN=0B)  
Address Section Field  
Short name  
01H  
01H  
01H  
1
1
1
NVM-LINTX3  
NVM-LEOLRC  
NVM-AFIDen  
LINTX3 frame ID  
LRC after LEO function  
“Assign frame ID” service disable  
Table 9-4 List overview of accessible NVM fields (NVM-LIN=1B)  
Address Section Field  
Short name  
01H  
01H  
01H  
1
1
1
NVM-LINTX3  
NVM-LEOLRC  
NVM-3Ddis  
LINTX3 frame ID  
LRC after LEO function  
Enable/disable 3D frame for LIN1.3  
Table 9-5 List overview of accessible NVM fields (sorted by placement in the EEPROM)  
Address Section Field  
Short name  
01H  
02H  
02H  
02H  
2
0
0
1
NVM-EOFF  
Activation of excitation-off state  
Alternator supplier  
Alternator class  
NVM-SUPP  
NVM-CLASS  
NVM-DC_EWMA_MODE  
Excitation duty cycle filter mode during Phase Signal Boost  
(PSB)  
02H  
02H  
02H  
02H  
02H  
03H  
03H  
03H  
03H  
1
1
1
1
2
0
0
0
1
NVM-DC_EWMA_K  
NVM-RMS_report  
NVM-MC_EWMA_K  
NVM-MV_EWMA_K  
NVM-PP  
Excitation duty cycle filter coefficients  
RMS reporting  
Excitation current filter coefficients  
Measurement voltage filter coefficients  
Alternator pole pairs  
NVM-HEO_ANdis  
NVM-LRCRT  
Disable analogue HEO function  
LRC rise-time for default operation  
LEO (Low-Voltage Excitation On) function disable switch  
Type of VSET reporting selection  
NVM-LEOTIMERdis  
NVM-VSET_report  
Data Sheet  
91  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Non-Volatile Memory (NVM)  
Table 9-5 List overview of accessible NVM fields (sorted by placement in the EEPROM) (cont’d)  
Address Section Field  
Short name  
03H  
03H  
03H  
03H  
04H  
04H  
04H  
04H  
04H  
04H  
1
1
1
2
0
0
0
0
0
1
NVM-PREEXC_27HZ5_DIS Pre-excitation duty cycle selection  
NVM-PEXCDC  
NVM-LRCBZ  
Duty cycle in pre-excitation state  
Selection of the LRC blind zone in default operation state  
Self-start speed threshold  
NVM-SSS  
NVM-LEO  
Default VLOW for LEO function (Low Voltage Excitation ON)  
LEO/F-EL interaction setting  
NVM-LEO_ERR_EN  
NVM-T_EL_ERR  
NVM-HEO_ERR_EN  
NVM-FROT_SEL  
NVM-THT  
Debounce time of electrical error flag (F-EL)  
Overvoltage error flag switch  
Configuration for the mechanical error flag F-ROT  
Absolute threshold for high-temperature voltage  
compensation  
04H  
04H  
04H  
05H  
1
1
2
0
NVM-HTG  
Gradient for high-temperature voltage compensation  
Excitation overcurrent protection threshold  
NVM-CLIM  
NVM-T_PSB_ON_MAX  
NVM-FEXLIM_PCLIM1  
Maximum ON-time for PSB (Phase Signal Boost) function  
Frequency dependent current limitation (FEXLIM) feature:  
PCLIM1 region  
05H  
05H  
0
0
NVM-FEXLIM_EN  
Enable/disable frequency dependent current limitation  
(FEXLIM) function  
NVM-FEXLIM_PCLIM2  
Frequency dependent current limitation (FEXLIM) feature:  
PCLIM2 region  
05H  
05H  
06H  
06H  
06H  
1
2
0
0
0
Reserved  
Reserved  
Reserved  
Reserved  
NVM-LRCRT_1s  
NVM-VSET  
Enable 1s option for the default LRC rise time  
Voltage set-point for default operation  
DC_EWMA_mode_DC0  
Excitation duty cycle filter mode during Phase Signal Boost  
(PSB)  
06H  
06H  
06H  
1
1
1
NVM-CSHT  
Disable curve shaping at high temperature  
LRC fall-time  
NVM-LRCFT  
NVM-IEXC100  
Minimum excitation current at 100% DC to avoid open load  
detection  
06H  
07H  
2
0
Reserved  
Reserved  
NVM-Speed_TH  
Speed-dependent KiKp parameter sets (KiKp function) Speed  
threshold - upper value of hysteresis  
07H  
07H  
0
1
NVM-LRCDIS  
NVM-VoKiKp  
Rotor speed to disable LRC for default operation  
Voltage dependent KiKp function (VoKiKp function)  
configuration Enabling and VoKiKp up threshold  
07H  
07H  
1
1
NVM-  
Voltage dependent KiKp function (VoKiKp) speed  
VoKiKp_low_HEO_speed dependency  
NVM-KiKp KiKp function configuration  
Data Sheet  
92  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Non-Volatile Memory (NVM)  
Table 9-5 List overview of accessible NVM fields (sorted by placement in the EEPROM) (cont’d)  
Address Section Field  
Short name  
07H  
1
NVM-LOW_HEO  
Speed-dependent lowering of the HEO limit (LowHEO  
function) Enabling and LowHEO voltage selection  
07H  
2
NVM-LOCK_EN  
Enable NVM Lock  
Data Sheet  
93  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Non-Volatile Memory (NVM)  
9.2.2  
Detailed description  
NVM_A00_S0  
Address 00H - Section 0  
(00H)Reset Value: 00H  
7
6
5
4
3
2
1
0
NVM-LIN  
NVM-ALT  
NVM-LINRX  
rw  
rw  
rw  
Field  
Bits  
Type Description  
NVM-LINRX  
5:0  
rw  
LIN RX frame ID  
Default LIN RX frame ID (refer to Chapter 6.3.2).  
NVM-ALT  
6
7
rw  
Alternator number in vehicle LIN network  
Defines the alternator number in the vehicle LIN network. This switch  
in independent from configuration of the LIN IDs, but relates to the LIN  
2.1 NAD (refer to Chapter 6.7.2).  
0B Device is configured to be regulator #1 in implemented LIN  
network (NAD=46H),  
1B Device is configured to be regulator #2 in implemented LIN  
network (NAD=47H),  
NVM-LIN  
rw  
LIN version  
Selection of the compliance for the LIN communication standard  
specification. This selection includes the usage of the classic or  
enhanced checksum and the related protocol features.  
(refer to Chapter 6.3.1)  
0B LIN 2.1,  
1B LIN 1.3,  
Data Sheet  
94  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Non-Volatile Memory (NVM)  
NVM_A00_S1  
Address 00H - Section 1  
(00H)Reset Value: 00H  
7
6
5
4
3
2
1
0
NVM-RPARA_SEL  
NVM-LINTX1  
rw  
rw  
Field  
Bits  
Type Description  
NVM-LINTX1  
5:0  
rw  
LIN TX1 frame ID  
Defines the LIN Identifier bits for the LIN TX1 frame. The relating parity  
bits are calculated internally (refer to Chapter 6.3.2).  
NVM-  
RPARA_SEL  
7:6  
rw  
Selection of parameter set for F-PARA  
The F-Para function can be activated by sending respective code “1” in  
LIN RX frame. If the F-Para function is active, a parameter set  
with changed regulation dynamic is used (refer to Chapter 5.14).  
00B Slowest dynamic,  
01B Slower dynamic,  
10B Slow dynamic,  
11B Normal dynamic,  
NVM_A00_S2  
Address 00H - Section 2  
(00H)Reset Value: 00H  
7
6
5
4
3
2
1
0
Reserved  
NVM-CFG  
r
rw  
Field  
Bits  
Type Description  
rw OEM configuration  
NVM-CFG  
Reserved  
1:0  
Dedicated LIN frame layouts for the LIN RX/TX3/TX4 frame and internal  
registers (e.g. default rise-time for the LRC function) can be adjusted by  
using this switch (refer to Chapter 6.3.1).  
00B VDA-A,  
01B VDA-B,  
10B OEM1,  
11B OEM2,  
7:2  
r
Reserved  
Reserved read-only area.  
Data Sheet  
95  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Non-Volatile Memory (NVM)  
NVM_A01_S0  
Address 01H - Section 0  
(00H)Reset Value: 00H  
7
6
5
4
3
2
1
0
NVM-  
Reserved LRCBZ_0_SE  
L
NVM-LINTX2  
r
rw  
rw  
Field  
Bits  
Type Description  
NVM-LINTX2  
5:0  
rw  
LIN TX2 frame ID  
Defines the LIN Identifier bits for the LIN TX2 frame. The relating parity  
bits are calculated internally (refer to Chapter 6.3.2).  
NVM-  
6
rw  
LRC blind zone “0” selection  
LRCBZ_0_SEL  
The blind zone of the LRC function can be adjusted via the LIN RX  
frame. Depending on this NVM field, setting the blind zone code to “0”  
inside the LIN RX frame (RF=0B in LIN RX frame) invokes respective blind  
zone values (refer to Chapter 5.12).  
0B 3%, Code “0” of the blind zone command invokes 3% blind zone  
usage for the LRC function.  
1B 6.25%, Code “0” of the blind zone command invokes 6.25% blind  
zone usage for the LRC function.  
Reserved  
7
r
Reserved  
Reserved read-only area  
NVM_A01_S1 for NVM-LIN = 0B  
Address 01H - Section 1  
(00H)Reset Value: 00H  
7
6
5
4
3
2
1
0
NVM-AFIDen NVM-LEOLRC  
NVM-LINTX3  
rw  
rw  
rw  
Field  
Bits  
Type Description  
NVM-LINTX3  
5:0  
rw  
LINTX3 frame ID  
Defines the LIN Identifier bits for the LIN TX3 frame. The relating parity  
bits are calculated internally (refer to Chapter 6.3.2).  
NVM-LEOLRC  
6
rw  
LRC after LEO function  
Defines the behavior of the LRC function when returning to regulation  
after a LEO activation (refer to Chapter 5.12).  
0B  
100% DC after LEO till Vset is reached,  
1B Enable LRC after LEO,  
Data Sheet  
96  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Non-Volatile Memory (NVM)  
Field  
Bits  
Type Description  
rw “Assign frame ID” service disable  
NVM-AFIDen  
7
“Assign frame ID” service is a dedicated LIN 2.1 service to re-assign  
identifier for a LIN frame (refer to Chapter 6.7.3).  
Note:  
It is not recommended to use this service inside the real  
application, since micro-cuts of the voltage supply would  
lead to complete reset of the device including the reassign  
frame identifier.  
0B Assign frame ID disabled , for LIN 2.1 (recommended for higher  
robustness)  
1B Assign frame ID enabled, for LIN 2.1  
NVM_A01_S1 for NVM-LIN = 1B  
Address 01H - Section 1  
(00H)Reset Value: 00H  
7
6
5
4
3
2
1
0
NVM-3Ddis NVM-LEOLRC  
NVM-LINTX3  
rw  
rw  
rw  
Field  
Bits  
Type Description  
NVM-LINTX3  
5:0  
rw  
LINTX3 frame ID  
Defines the LIN Identifier bits for the LIN TX3 frame. The relating parity  
bits are calculated internally (refer to Chapter 6.3.2).  
NVM-LEOLRC  
6
7
rw  
LRC after LEO function  
Defines the behavior of the LRC function when returning to regulation  
after a LEO activation (refer to Chapter 5.12).  
0B 100% DC after LEO till Vset is reached,  
1B Enable LRC after LEO,  
NVM-3Ddis  
rw  
Enable/disable 3D frame for LIN1.3  
“3D disable” service is a dedicated LIN 1.3 service and used to  
enable/disable the 3D special LIN frame (refer to Chapter 6.3.2).  
0B 3D frame enabled, for LIN 1.3  
1B 3D frame disabled, for LIN 1.3  
NVM_A01_S2  
Address 01H - Section 2  
(00H)Reset Value: 00H  
7
6
5
4
3
2
1
0
Reserved  
NVM-EOFF  
r
rw  
Data Sheet  
97  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Non-Volatile Memory (NVM)  
Field  
Bits  
Type Description  
rw Activation of excitation-off state  
NVM-EOFF  
0
State machine can trigger the excitation-off state (EXC output stage is  
switched off, DC=0%), if the command VSET=10.6 V is sent via LIN while  
normal operation state is active. If this trigger activation is disabled,  
the chip regulates to 10.6 V instead of changing to excitation-off state.  
(refer to Chapter 4.4.6)  
0B Deactivate, excitation-off state deactivated and VSET=10.6 V  
does not trigger state change from normal operation to  
excitation-off.  
1B Activate, excitation-off state activated and enabled, if command  
VSET=10.6 V is sent via LIN.  
Reserved  
7:1  
r
Reserved  
Reserved read-only area  
NVM_A02_S0  
Address 02H - Section 0  
(00H)Reset Value: 00H  
7
6
5
4
3
2
1
0
NVM-CLASS  
NVM-SUPP  
rw  
rw  
Field  
Bits  
Type Description  
NVM-SUPP  
2:0  
rw  
Alternator supplier  
Free-configurable 3-bit value to set alternator supplier  
NVM-CLASS  
7:3  
rw  
Alternator class  
Free-configurable 5-bit value to set alternator class  
NVM_A02_S1  
Address 02H - Section 1  
(00H)Reset Value: 00H  
7
6
5
4
3
2
1
0
NVM-  
DC_EWMA_M  
ODE  
NVM-  
RMS_report  
NVM-MV_EWMA_K  
NVM-MC_EWMA_K  
NVM-DC_EWMA_K  
rw  
rw  
rw  
rw  
rw  
Data Sheet  
98  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Non-Volatile Memory (NVM)  
Field  
Bits  
Type Description  
rw Excitation duty cycle filter mode during Phase Signal Boost (PSB)  
NVM-  
0
DC_EWMA_MO  
DE  
PSB is an internal function to maintain the phase signal and is not  
relevant for computation models inside ECU. DC is used as model input  
for most computations models, which is communicated via LIN TX  
frames. If the phase signal falls below the PSB threshold (e.g. due to  
voltage set-point below battery voltage level), the PSB function is  
activated until phase signal has been backed up again. The EWMA  
mode can be used to blank out this internal maintenance by using a  
different input value during an activated PSB function (refer to  
Chapter 6.6.1).  
The option Input := 0 can be selected by DC_EWMA_mode_DC0.  
0B Filter Input := DC from regulation, the EWMA filter will be fed  
with DC from calculations coming out of the PI regulation (e.g. 0%  
DC, if VSET < VBA ).  
1B Filter Input := DC from pre-excitation, the EWMA filter will be  
fed with a fixed DC as controlled by NVM-PEXCDC.  
NVM-  
DC_EWMA_K  
2:1  
rw  
Excitation duty cycle filter coefficients  
Enable/disable and cut-off frequency of the EWMA filter of the PWM  
duty cycle (refer to Chapter 6.6.1).  
00B None, (EWMA filter disabled)  
01B 1 Hz, if NVM-CFG is “OEM1”  
10B 5 Hz, if NVM-CFG is “OEM1”  
11B 10 Hz, if NVM-CFG is “OEM1”  
00B 35 ms, if NVM-CFG is not “OEM1”  
01B 70 ms, if NVM-CFG is not “OEM1”  
10B 140 ms, if NVM-CFG is not “OEM1”  
11B 210 ms, if NVM-CFG is not “OEM1”  
NVM-  
RMS_report  
3
rw  
rw  
RMS reporting  
Selection of the RMS reporting style (refer to Chapter 6.4.12).  
0B Classic reporting style,  
1B Linear RMS reporting,  
NVM-  
MC_EWMA_K  
5:4  
Excitation current filter coefficients  
Enable/disable and cut-off frequency of the EWMA filter of the  
excitation current (refer to Chapter 6.6.3).  
00B None, (EWMA filter disabled)  
01B 1 Hz,  
10B 5 Hz,  
11B 10 Hz,  
NVM-  
MV_EWMA_K  
7:6  
rw  
Measurement voltage filter coefficients  
Enable/disable and cut-off frequency of the EWMA filter of the  
measured voltage (refer to Chapter 6.6.2).  
00B None, (EWMA filter disabled)  
01B 1 Hz,  
10B 5 Hz,  
11B 10 Hz,  
Data Sheet  
99  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Non-Volatile Memory (NVM)  
NVM_A02_S2  
Address 02H - Section 2  
(00H)Reset Value: 00H  
7
6
5
4
3
2
1
0
Reserved  
NVM-PP  
r
rw  
Field  
Bits  
Type Description  
rw Alternator pole pairs  
NVM-PP  
1:0  
Number of pole pairs of the alternator, required to calculate the speed  
of the alternator pulley (refer to Chapter 4.2).  
00B 5 pole pairs,  
01B 6 pole pairs,  
10B 7 pole pairs,  
11B 8 pole pairs,  
Reserved  
7:2  
r
Reserved  
Reserved read-only area  
NVM_A03_S0  
Address 03H - Section 0  
(00H)Reset Value: 00H  
7
6
5
4
3
2
1
0
NVM-  
LEOTIMERdis  
NVM-  
HEO_ANdis  
Reserved  
NVM-LRCRT  
Reserved  
rw  
r
rw  
rw  
r
Field  
Bits  
Type Description  
Reserved  
1:0  
r
Reserved  
Reserved read-only area  
NVM-  
HEO_ANdis  
2
rw  
Disable analogue HEO function  
(refer to Chapter 5.10)  
0B Enabled,  
1B Disabled,  
NVM-LRCRT  
5:3  
rw  
LRC rise-time for default operation  
If the LIN communication is absent for longer than 3 seconds, the state  
machine switches to default operation and uses the default LRC rise-  
time setting (refer to Chapter 6.5).  
The option 1 s can be selected by NVM-LRCRT_1s.  
000B Disabled,  
001B 2 s,  
010B 3 s,  
011B 4 s,  
100B 5 s,  
101B 6 s,  
110B 7 s,  
111B 8 s,  
Data Sheet  
100  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Non-Volatile Memory (NVM)  
Field  
Bits  
Type Description  
Reserved  
6
r
Reserved  
Reserved read-only area  
NVM-  
LEOTIMERdis  
7
rw  
LEO (Low-Voltage Excitation On) function disable switch  
To avoid charging a defective battery, a LEO start-up timer checks the  
battery voltage and deactivates the LEO function in case of a  
constantly low VBA (refer to Chapter 5.9).  
0B LEO start-up timer enabled,  
1B LEO start-up timer disabled,  
NVM_A03_S1  
Address 03H - Section 1  
(00H)Reset Value: 00H  
7
6
5
4
3
2
1
0
NVM-  
PREEXC_27H  
Z5_DIS  
NVM-  
VSET_report  
NVM-LRCBZ  
NVM-PEXCDC  
Reserved  
rw  
rw  
rw  
rw  
r
Field  
Bits  
Type Description  
Reserved  
1:0  
r
Reserved  
Reserved read-only area  
NVM-  
VSET_report  
2
3
rw  
Type of VSET reporting selection  
(refer to Chapter 6.4.2)  
0B RX_LIN-VSET is reported,  
1B Applied VSET is reported,  
NVM-  
PREEXC_27HZ5  
_DIS  
rw  
rw  
Pre-excitation duty cycle selection  
While in pre-excitation state, a fixed duty cycle at the excitation output  
stage is driven as adjusted in the NVM field NVM-PEXCDC. The carrying  
frequency can be adjusted by using this switch (refer to Chapter 5.1).  
0B 27 Hz, Pre-excitation duty cycle  
1B 220 Hz, Pre-excitation duty cycle  
NVM-PEXCDC  
6:4  
Duty cycle in pre-excitation state  
Applied fixed duty cycle (RDC) while in pre-excitation state. The fixed  
output frequency can be adjusted by the NVM field NVM-  
PREEXC_27HZ5_DIS (refer to Chapter 4.4.4).  
000B 5%,  
001B 7.5%,  
010B 10%,  
011B 12.5%,  
100B 15%,  
101B 17.5%,  
110B 20%,  
111B 25%,  
Data Sheet  
101  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Non-Volatile Memory (NVM)  
Field  
Bits  
Type Description  
rw Selection of the LRC blind zone in default operation state  
NVM-LRCBZ  
7
Selection of the desired LRC blind zone while in default operation state  
(refer to Chapter 5.12).  
0B 3% / 6.25%, depending on NVM field NVM-LRCBZ_0_SEL  
1B 12%,  
NVM_A03_S2  
Address 03H - Section 2  
(00H)Reset Value: 00H  
7
6
5
4
3
2
1
0
Reserved  
NVM-SSS  
r
rw  
Field  
Bits  
Type Description  
rw Self-start speed threshold  
NVM-SSS  
1:0  
In case of absent LIN communication, an emergency start function  
assures proper operation of the regulator, if the TLE8881-2 is still in  
standby mode (no alternator rotation). The detection threshold of this  
emergency start function can be adjusted with this NVM field (physical  
parameter: nCUT2) (refer to Chapter 4.2).  
00B 2000 rpm,  
01B 3000 rpm,  
10B 4000 rpm,  
11B 5000 rpm,  
Reserved  
7:2  
r
Reserved  
Reserved read-only area  
NVM_A04_S0  
Address 04H - Section 0  
(00H)Reset Value: 00H  
7
6
5
4
3
2
1
0
NVM-  
NVM-  
NVM-  
NVM-FROT_SEL  
NVM-LEO  
HEO_ERR_EN T_EL_ERR LEO_ERR_EN  
rw  
rw rw rw  
rw  
Data Sheet  
102  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Non-Volatile Memory (NVM)  
Field  
Bits  
Type Description  
NVM-LEO  
2:0  
rw  
Default VLOW for LEO function (Low Voltage Excitation ON)  
(refer to Chapter 5.9)  
000B 8.75 V,  
001B 9.0 V,  
010B 9.25 V,  
011B 9.5 V,  
100B 9.75 V,  
101B 10.0 V,  
110B 10.25 V,  
111B 10.5 V,  
NVM-  
LEO_ERR_EN  
3
4
5
rw  
rw  
LEO/F-EL interaction setting  
Enable/disable interaction of LEO and the electrical error flag F-EL  
(refer to Chapter 4.5.3).  
0B Deactivate, LEO cannot set to the F-EL flag.  
1B Activate, LEO can set to the F-EL flag.  
NVM-T_EL_ERR  
Debounce time of electrical error flag (F-EL)  
Sets the debounce time for the electrical error flag (refer to  
Chapter 4.5.3).  
0B 250 ms,  
1B 1000 ms,  
NVM-  
HEO_ERR_EN  
rw  
rw  
Overvoltage error flag switch  
(refer to Chapter 4.5.3)  
0B Deactivate, HEO does not set F-EL flag.  
1B Activate, HEO sets the error flag F-EL, if active.  
NVM-FROT_SEL 7:6  
Configuration for the mechanical error flag F-ROT  
(refer to Chapter 4.5.2)  
00B F-ROT set in pre-excitation,  
01B F-ROT set in ComActive, pre-excitation and EXC-OFF,  
10B Reserved,  
11B Reserved,  
NVM_A04_S1  
Address 04H - Section 1  
(00H)Reset Value: 00H  
7
6
5
4
3
2
1
0
NVM-CLIM  
NVM-HTG  
NVM-THT  
rw  
rw  
r
Data Sheet  
103  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Non-Volatile Memory (NVM)  
Field  
Bits  
Type Description  
NVM-THT  
2:0  
r
Absolute threshold for high-temperature voltage compensation  
This absolute threshold can be fine-tuned with relative adjustments by  
LIN RX frame commands. This threshold marks the point to start the  
high-temperature voltage compensation relatively to the 16 V  
setpoint. For VSET < 16 V, the voltage setpoint will be compensated by  
matching the compensation gradient (NVM field NVM-HTG) (refer to  
Chapter 5.6).  
000B 125°C,  
001B 130°C,  
010B 135°C,  
011B 140°C,  
100B 145°C,  
101B 150°C,  
110B 155°C,  
111B 160°C,  
NVM-HTG  
5:3  
rw  
Gradient for high-temperature voltage compensation  
As soon as the high-temperature threshold has been exceeded,  
relatively to the 16 V setpoint a negative compensation gradient is  
applied to the actual voltage setpoint (refer to Chapter 5.6).  
000B -50 mV/K,  
001B -100 mV/K,  
010B -150 mV/K,  
011B -200 mV/K,  
100B -250 mV/K,  
101B -300 mV/K,  
110B -350 mV/K,  
111B -400 mV/K,  
NVM-CLIM  
7:6  
rw  
Excitation overcurrent protection threshold  
Current threshold for the activation of the overcurrent limitation  
feature (refer to Chapter 5.2).  
00B 9 A,  
01B 10 A,  
10B 11 A,  
11B 12 A,  
NVM_A04_S2  
Address 04H - Section 2  
(00H)Reset Value: 00H  
7
6
5
4
3
2
1
0
Reserved  
NVM-T_PSB_ON_MAX  
r
rw  
Data Sheet  
104  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Non-Volatile Memory (NVM)  
Field  
Bits  
Type Description  
rw Maximum ON-time for PSB (Phase Signal Boost) function  
NVM-  
1:0  
T_PSB_ON_MA  
X
Relating to Chapter 5.11, the phase signal boost function has a fixed  
OFF-time and an adjustable ON-time (DC = 100%). The PSB function  
helps to recover a low phase signal to assure a proper measurement of  
the phase signal.  
00B 155 ms,  
01B 100 ms,  
10B 45 ms,  
11B 27 ms,  
Reserved  
7:2  
r
Reserved  
Reserved read-only area  
NVM_A05_S0  
Address 05H - Section 0  
(00H)Reset Value: 00H  
7
6
5
4
3
2
1
0
NVM-  
FEXLIM_EN  
Reserved  
NVM-FEXLIM_PCLIM2  
NVM-FEXLIM_PCLIM1  
r
rw  
rw  
Field  
Bits  
Type Description  
NVM-  
2:0  
rw  
Frequency dependent current limitation (FEXLIM) feature:  
FEXLIM_PCLIM  
1
PCLIM1 region  
(refer to Chapter 5.13)  
000B 5.5 A,  
001B 6 A,  
010B 6.5 A,  
011B 7 A,  
100B 7.5 A,  
101B 8 A,  
110B 8.5 A,  
111B 9 A,  
NVM-  
3
rw  
Enable/disable frequency dependent current limitation (FEXLIM)  
FEXLIM_EN  
function  
(refer to Chapter 5.13)  
0B FEXLIM is disabled,  
1B FEXLIM is enabled,  
Data Sheet  
105  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Non-Volatile Memory (NVM)  
Field  
Bits  
Type Description  
Frequency dependent current limitation (FEXLIM) feature:  
NVM-  
6:4  
FEXLIM_PCLIM  
2
PCLIM2 region  
(refer to Chapter 5.13)  
000B 5.5 A,  
001B 6 A,  
010B 6.5 A,  
011B 7 A,  
100B 7.5 A,  
101B 8 A,  
110B 8.5 A,  
111B 9 A,  
Reserved  
7
r
Reserved  
Reserved read-only area  
NVM_A05_S1  
Address 05H - Section 1  
(00H)Reset Value: 00H  
7
6
5
4
3
2
2
2
1
1
1
0
0
0
Reserved  
r
Field  
Bits  
Type Description  
Reserved  
Reserved  
7:0  
r
Reserved read-only area  
NVM_A05_S2  
Address 05H - Section 2  
(00H)Reset Value: 00H  
7
6
5
4
3
Reserved  
r
Field  
Bits  
Type Description  
Reserved  
Reserved  
7:0  
r
Reserved read-only area  
NVM_A06_S0  
Address 06H - Section 0  
(00H)Reset Value: 00H  
7
6
5
4
3
DC_EWMA_m  
ode_DC0  
NVM-  
LRCRT_1s  
Reserved  
NVM-VSET  
r
rw  
rw  
rw  
Data Sheet  
106  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Non-Volatile Memory (NVM)  
Field  
Bits  
Type Description  
NVM-LRCRT_1s  
0
rw  
Enable 1s option for the default LRC rise time  
Additional option for LRCRT (refer to NVM-LRCRT)  
0B  
1B  
LRC default rise time defined by NVM-LRCRT,  
1 s,  
NVM-VSET  
3:1  
rw  
Voltage set-point for default operation  
If the LIN communication is absent for longer than 3 seconds, the state  
machine switches to default operation and uses the default voltage  
setpoint setting, VSET (refer to Chapter 6.5).  
000B 13.5 V,  
001B 13.7 V,  
010B 13.9 V,  
011B 14.1 V,  
100B 14.3 V,  
101B 14.5 V,  
110B 14.7 V,  
111B 14.9 V,  
DC_EWMA_mod 4  
e_DC0  
rw  
r
Excitation duty cycle filter mode during Phase Signal Boost (PSB)  
Additional option for the DC_EWMA_mode (refer to NVM-  
DC_EWMA_MODE)  
0B Filter input controlled by DC_EWMA_mode,  
1B Filter input = 0, EWMA filter will be fed with 0% DC during PSB  
Reserved  
7:5  
Reserved  
Reserved read-only area  
NVM_A06_S1  
Address 06H - Section 1  
(00H)Reset Value: 00H  
7
6
5
4
3
2
1
0
NVM-LRCFT  
NVM-IEXC100  
rw  
NVM-CSHT  
Reserved  
rw  
rw  
r
Field  
Bits  
Type Description  
Reserved  
2:0  
r
Reserved  
Reserved read-only area  
NVM-CSHT  
3
rw  
Disable curve shaping at high temperature  
(refer to Chapter 5.2)  
0B  
1B  
Curve shaping at Tj > 135°C enabled,  
Curve shaping at Tj > 135°C disabled,  
Data Sheet  
107  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Non-Volatile Memory (NVM)  
Field  
Bits  
Type Description  
NVM-IEXC100  
5:4  
rw  
Minimum excitation current at 100% DC to avoid open load  
detection  
(refer to Chapter 5.2)  
00B 0.75 A,  
01B 1 A,  
10B 1.25 A,  
11B 1.50 A,  
NVM-LRCFT  
7:6  
rw  
LRC fall-time  
The falling gradient is defined as the ramp-down time to go from 100%  
to 0% DC value. The falling gradient is not seen at the output DMOS, but  
is only calculated internally (refer to Chapter 5.12).  
00B 1 s,  
01B 2 s,  
10B 2.5 s,  
11B 3 s,  
NVM_A06_S2  
Address 06H - Section 2  
(00H)Reset Value: 00H  
7
6
5
4
3
2
1
0
Reserved  
r
Field  
Bits  
Type Description  
Reserved  
Reserved  
7:0  
r
Reserved read-only area  
NVM_A07_S0  
Address 07H - Section 0  
(00H)Reset Value: 00H  
7
6
5
4
3
2
1
0
Reserved  
NVM-LRCDIS  
NVM-Speed_TH  
r
rw  
rw  
Data Sheet  
108  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Non-Volatile Memory (NVM)  
Field  
Bits  
Type Description  
NVM-Speed_TH 2:0  
rw  
Speed-dependent KiKp parameter sets (KiKp function)  
Speed threshold - upper value of hysteresis  
Nswitch2 = Nswitch1 + 400 rpm;  
Nswitch3 = Nswitch1 + 800 rpm;  
lower limit of hysteresis 200 rpm (refer to Chapter 5.15)  
000B Nswitch1 = 2000 rpm,  
001B Nswitch1 = 2200 rpm,  
010B Nswitch1 = 2400 rpm,  
011B Nswitch1 = 2600 rpm,  
100B Nswitch1 = 2800 rpm,  
101B Nswitch1 = 3000 rpm,  
110B Nswitch1 = 3200 rpm,  
111B Nswitch1 = 3400 rpm,  
NVM-LRCDIS  
4:3  
rw  
Rotor speed to disable LRC for default operation  
If the LIN communication is absent for longer than 3 seconds, the state  
machine switches to default operation and uses the default speed  
setting to disable the LRC function (physical parameter: nLRCDIS, refer to  
Chapter 5.12).  
00B 3000 rpm,  
01B 4000 rpm,  
10B 4800 rpm,  
11B 6000 rpm,  
Reserved  
7:5  
r
Reserved  
Reserved read-only area  
NVM_A07_S1  
Address 07H - Section 1  
(00H)Reset Value: 00H  
7
6
5
4
3
2
1
0
NVM-  
VoKiKp_low_  
HEO_speed  
NVM-VoKiKp  
NVM-KiKp  
NVM-LOW_HEO  
rw  
rw  
rw  
rw  
Field  
Bits  
Type Description  
rw  
NVM-LOW_HEO 1:0  
Speed-dependent lowering of the HEO limit (LowHEO function)  
Enabling and LowHEO voltage selection  
For Nswitch1 = 0 (refer to Chapter 5.17)  
00B 15.5 V,  
01B 15.65 V,  
10B 15.75 V,  
11B Low HEO function is disabled,  
Data Sheet  
109  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Non-Volatile Memory (NVM)  
Field  
Bits  
Type Description  
NVM-KiKp  
3:2  
rw  
KiKp function configuration  
(refer to Chapter 5.15)  
00B KiKp disabled,  
01B Simple KiKp function with KiKp set = slowest,  
10B Simple KiKp function with KiKp set = slower,  
11B Three stage KiKp function,  
NVM-  
VoKiKp_low_H  
EO_speed  
4
rw  
rw  
Voltage dependent KiKp function (VoKiKp) speed dependency  
Activates / deactivates the speed dependency for the VoKiKp and  
LowHEO functions (refer to Chapter 5.16).  
0B Speed dependency enabled,  
1B Speed dependency disabled,  
NVM-VoKiKp  
7:5  
Voltage dependent KiKp function (VoKiKp function) configuration  
Enabling and VoKiKp up threshold  
The VoKiKp down threshold is 0.1 V lower. For options 101B, 110B and  
111B the VoKiKp down threshold is 0.1V lower than the positive value  
and 0.1V higher than the negative value (refer to Chapter 5.16).  
000B VoKiKp disabled,  
001B 0.35 V,  
010B 0.5 V,  
011B 0.65 V,  
100B 0.8 V,  
101B +/- 0.5V, VoKiKp is activated for an upper and lower threshold  
110B +/- 0.75V, VoKiKp is activated for an upper and lower threshold  
111B +/- 1V, VoKiKp is activated for an upper and lower threshold  
NVM_A07_S2  
Address 07H - Section 2  
(00H)Reset Value: 00H  
7
6
5
4
3
2
1
0
NVM-  
LOCK_EN  
Reserved  
Reserved  
rw  
r
Field  
Bits  
Type Description  
Reserved  
0
r
Reserved  
Reserved read-only area  
NVM-LOCK_EN  
1
rw  
Enable NVM Lock  
Setting this NVM field makes the NVM write-protected and protect it  
from any modification afterwards.  
Note:  
Once this bit is set, the NVM will get write-protected. It is not  
possible to release the write-protection once it has been set.  
0B NVM can be programmed,  
1B NVM is locked,  
Data Sheet  
110  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Non-Volatile Memory (NVM)  
Field  
Bits  
Type Description  
Reserved  
Reserved  
7:2  
Reserved read-only area  
Data Sheet  
111  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Application information  
10  
Application information  
Note: The following information is given as a hint for the implementation of the device only and shall not be  
regarded as a description or warranty of a certain functionality, condition or quality of the device.  
This is the description how the TLE8881-2 is used in its alternator environment.  
B+A  
B+A  
Vehicle  
Loads  
Battery  
PH  
VBA  
EXC  
Alternator  
Control IC  
GND  
LIN  
Alternator  
Alternator  
speed  
BUS  
GND  
Engine  
LIN  
interface  
ECU (Engine or Energy Control Unit)  
Figure 26 Application diagram  
Note: This is a very simplified example of an application circuit. The function must be verified in the real  
application.  
The TLE8881-2 regulates the alternator output to an adjustable reference voltage. The regulation is achieved  
by varying the magnetization in the alternator. The magnetization is dependent on the current in the rotor  
winding (excitation). The current is dependent on the duty cycle of the excitation high-side output (terminal  
EXC).  
The TLE8881-2 supply (VBA) is connected to the alternator output. The filtered supply voltage is the feedback  
voltage used by the control circuit.  
One of three stator winding voltages (PH) is connected to the TLE8881-2. The phase input is used for the rotor  
speed measurement and stator monitoring, as well as the self-start detection.  
Data Sheet  
112  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Application information  
10.1  
EMC and ESD  
ISO and ESD pulses are applied to the alternator. The TLE8881-2 does not see all disturbances at its pins due  
to connectors, the alternator and the diodes. The sensitivity depends on the TLE8881-2 and the complete  
alternator system.  
B+A  
B+A  
ALTERNATOR  
VBA  
PH  
LIN  
Alternator Control IC  
EXC  
BRUSHHOLDER  
GND  
GND  
Figure 27 Application overview for EMC  
The stated intend is to ensure all EMC and ESD requirements without any TLE8881-2 external devices.  
The external passive devices indicate their possible use only.  
In the car system, the TLE8881-2 will be used as a LIN-Slave.  
The device will be tested or referenced according to the VDA Test Spec “2009-12-02 Common EMC-  
requirements on LIN-Interfaces” at IBEE Zwickau.  
10.2  
Further application information  
For further information you may contact https://www.infineon.com  
Data Sheet  
113  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Package information  
11  
Package information  
0.2  
10  
A
0.2  
9.9  
B
8.51)  
4.4  
3.7 -0.15  
1.27 0.1  
0...0.3  
0.05  
2.4  
C
0.1  
0.5  
0...0.15  
4 x 1.7  
2.4  
0.1  
5 x 0.8  
M
0.25  
A B C  
1)  
Typical  
Metal surface min. X = 7.25, Y = 12.3  
All metal surfaces tin plated, except area of cut.  
Figure 28 PG-TO-220-5-12 Straight Leads1)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
Further information on packages  
https://www.infineon.com/packages  
1) Dimensions in mm  
Data Sheet  
114  
Rev. 1.00  
2019-05-29  
TLE8881-2  
Alternator Control IC with LIN Interface  
Revision history  
12  
Revision history  
Revision  
Date  
Changes  
1.00  
2019-05-29 Datasheet released  
Data Sheet  
115  
Rev. 1.00  
2019-05-29  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2019-05-29  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2019 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
Document reference  
Doc_Number  

相关型号:

TLE8881-2TN

Flexible LIN alternator regulator IC family
INFINEON

TLE88812TNAKSA1

Analog Circuit,
INFINEON

TLE8881TN

Flexible LIN alternator regulator IC family
INFINEON

TLE8881TNAKSA1

Flexible LIN alternator regulator IC family
INFINEON

TLE8886TN

Flexible LIN alternator regulator IC family
INFINEON

TLE8886TNAKSA1

Flexible LIN alternator regulator IC family
INFINEON

TLE8886TNAKSA2

Flexible LIN alternator regulator IC family
INFINEON

TLE8888-1QK

Engine Management System IC for 4 Cylinder Cars
INFINEON

TLE8888-1QK_15

Engine Management System IC for 4 Cylinder Cars
INFINEON

TLE8888-2QK

It contains all necessary items for an electronic control unit for 4 cylinder automotive engine management systems. TLE8888 includes state of the art communication interfaces, ECU and sensor supply functions and the output drivers for solenoids, injectors, relays and stepper motors. In addition to that there are advanced diagnosis features and functions implemented into the TLE8888 for optimum use in a modern engine management system.
INFINEON

TLE8888QK

It contains all necessary items for an electronic control unit for 4 cylinder automotive engine management systems. TLE8888 includes state of the art communication interfaces, ECU and sensor supply functions and the output drivers for solenoids, injectors, relays and stepper motors. In addition to that there are advanced diagnosis features and functions implemented into the TLE8888 for optimum use in a modern engine management system.
INFINEON

TLE888X

Flexible LIN alternator regulator IC family
INFINEON