TLE92108-232QX [INFINEON]

Infineon’s MOTIX™ multiple MOSFET driver can drive up to 16 external n-channel MOSFETs and provides a unique Adaptive MOSFET Control concept to eliminate end-of-line calibration to MOSFET characteristic spreads and guarantees an optimized balancing between power dissipation and EMC behavior. Outstanding low sleep current, advanced protection and diagnostic makes the device to an optimal solution for automotive applications like seat and power lift gate control and various use cases in body control module (BCM) as centralized door lock or washer pumps. An integrated motor brake function is furthermore increasing the reliability and protection for the system. Last but not least, it can control half-bridges with dual supply.;
TLE92108-232QX
型号: TLE92108-232QX
厂家: Infineon    Infineon
描述:

Infineon’s MOTIX™ multiple MOSFET driver can drive up to 16 external n-channel MOSFETs and provides a unique Adaptive MOSFET Control concept to eliminate end-of-line calibration to MOSFET characteristic spreads and guarantees an optimized balancing between power dissipation and EMC behavior. Outstanding low sleep current, advanced protection and diagnostic makes the device to an optimal solution for automotive applications like seat and power lift gate control and various use cases in body control module (BCM) as centralized door lock or washer pumps. An integrated motor brake function is furthermore increasing the reliability and protection for the system. Last but not least, it can control half-bridges with dual supply.

文件: 总155页 (文件大小:4130K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE92108-232QX  
Multiple MOSFET Driver IC  
1
Overview  
Features  
Eight half-bridge gate drivers for external N-channel MOSFETs  
Control of reverse battery protection MOSFET  
Adaptive MOSFET gate control  
Improved electromagnetic emission  
Reduced switching losses in PWM mode  
24-bit Serial Peripheral Interface  
Two current sense amplifiers with configurable gain  
High-side and low-side capable for protection and diagnosis  
Drain-source monitoring for short circuit detection  
Overtemperature warning and shutdown  
Timeout watchdog  
Detailed off-state diagnostic (open load, short circuit to battery or short circuit to GND) via SPI  
Three PWM inputs  
High-side and low-side PWM capable  
Active free-wheeling  
Up to 25 kHz PWM frequency  
Low current consumption in sleep mode  
Configurable low-side 1-4 brake with short circuit detection in sleep mode and normal mode  
Configurable VS overvoltage detection in sleep mode  
Leadless power package with support of optical lead tip inspection  
Green Product (RoHS compliant)  
AEC Qualified  
Potential applications  
Seat control and extended functions (steering column adjustment, gas pedal adjustment)  
Power lift gate  
Central door lock  
Body control module (cargo cover, washer pump, window lift, rear wiper ...)  
Datasheet  
www.infineon.com  
Rev. 1.0  
2019-08-29  
1
TLE92108-232QX  
Multiple MOSFET Driver IC  
Overview  
Product validation  
Qualified for automotive applications. Product validation according to AEC-Q100.  
Description  
The TLE92108-232QX is a Multi-MOSFET driver IC dedicated to control up to sixteen n-channel MOSFETs. It  
includes eight half-bridges for DC motor control applications such as automotive power seat control or other  
applications.  
A 24-bit Serial Peripheral Interface (SPI) is used to configure the TLE92108-232QX and to control the half-  
bridges. It also allows the read out of the status registers for diagnostic purpose.  
The TLE92108-232QX offers a wide range of diagnostic features such as the monitoring of the supply voltage,  
the charge pump voltage, temperature warning and over-temperature shutdown. Each gate driver monitors  
independently its external MOSFET drain-source voltage for fault conditions.  
The device is housed in a VQFN-48 with exposed pad supporting lead tip inspection. The package provides a  
good thermal performance and minimizes the required PCB space.  
Type  
Package  
Marking  
TLE92108-232QX  
PG-VQFN-48  
TLE92108-232QX  
Datasheet  
2
Rev.1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Table of contents  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.1  
Voltage and current definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3
3.1  
3.2  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin definitions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
4
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.1  
4.2  
4.3  
5
5.1  
5.2  
5.2.1  
5.2.2  
5.2.3  
5.3  
5.4  
5.5  
General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Operation modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Normal mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Fail Safe Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Reset behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Frequency modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Electrical characteristics: supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Electrical characteristics: logic inputs PWMx, EN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Electrical characteristics charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
5.6  
5.6.1  
5.6.2  
5.6.3  
6
6.1  
6.2  
6.2.1  
6.2.2  
6.2.3  
6.3  
6.3.1  
6.3.2  
6.3.3  
6.3.3.1  
6.3.3.2  
6.3.3.3  
6.3.3.4  
6.3.3.5  
6.3.3.6  
6.3.4  
6.3.4.1  
6.3.4.2  
6.3.5  
6.3.6  
6.4  
Floating gate drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
MOSFET control with bridge driver in active mode (BD_PASS = 0 and EN = High) . . . . . . . . . . . . . . . 25  
Static activation with bridge driver in active mode (BD_PASS = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Static activation of a high-side MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Static activation of a low-side MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Turn-off of the high-side and low-side MOSFETs of a half-bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
PWM operation with bridge driver in active mode (BD_PASS = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Determination of the active and free-wheeling MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Configuration in PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
PWM operation with adaptive gate control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
High-side PWM with adaptive gate control, motor operating as load . . . . . . . . . . . . . . . . . . . . . . 37  
Low-side PWM with adaptive gate control, motor operating as load . . . . . . . . . . . . . . . . . . . . . . 44  
High-side PWM with adaptive gate control, motor operating as generator . . . . . . . . . . . . . . . . . 45  
Low-side PWM with adaptive gate control, motor operating as generator . . . . . . . . . . . . . . . . . 47  
Status bits for regulation of turn-on and turn-off delay times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Precharge and predischarge phases with EN_DEEP_AD = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
PWM operation without adaptive gate control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
PWM operation without adaptive gate control, AGC[1:0] = (0,0) . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
PWM operation without adaptive gate control, AGC[1:0] = (0,1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
PWM operation at high and low duty cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Gate driver current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Passive discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Datasheet  
3
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
6.5  
6.6  
Bridge driver in passive mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Electrical characteristics gate driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
7
7.1  
7.2  
7.3  
7.4  
7.5  
7.5.1  
7.5.2  
7.5.3  
7.6  
Protections and diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Reverse polarity protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Safe switch (optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Drain-source voltage monitoring with bridge driver in active mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Drain-source voltage monitoring with bridge driver in passive mode . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Cross-current protection and drain-source overvoltage blank time . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Cross-current protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Drain-source overvoltage blank time in bridge driver active mode . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Mapping of cross-current protection and blank times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
OFF-state diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Temperature monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
VS overvoltage and undervoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
VS undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
VS overvoltage with bridge driver in active mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
VS overvoltage with bridge driver in passive mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
7.7  
7.8  
7.8.1  
7.8.2  
7.8.3  
7.8.4  
7.8.5  
7.9  
7.10  
7.11  
7.11.1  
7.11.2  
7.11.3  
7.11.4  
7.11.5  
7.12  
V
DD undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Charge pump undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Switching parameters of MOSFETs in PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Timeout watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Current sense amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Unidirectional and bidirectional operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Gain configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
High-side and low-side setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Overcurrent detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
CSO outputs capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Electrical characteristics protections and diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
8
Serial Peripheral Interface - SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
SPI protocol with independent slave selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Global Error Flag (GEF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Global status byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
SPI error detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Daisy chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
SPI electrical characteristics: timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
9
9.1  
9.1.1  
9.1.2  
9.2  
Register specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
General Control Registers and Protection Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Half-bridge control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
General status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
9.2.1  
10  
11  
12  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Package outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Datasheet  
4
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Block diagram  
2
Block diagram  
Temperature warning  
and shutdown  
Charge Pump  
DH  
GH1  
SH1  
CSIN1  
VS  
VCP  
UV & OV  
Detection  
VDS  
Monitoring  
GL1  
GH2  
SH2  
GL2  
EN  
Internal Supply  
VDD  
GH3  
SH3  
Control Logic  
SDI  
SDO  
SCLK  
24-bit SPI  
GL3  
GH4  
CSN  
SH4  
GL4  
PWM1  
PWM2  
PWM3  
PWMx  
Mapping  
GH5  
SH5  
EN  
MOSFET  
Control  
GL5  
GH6  
Watchdog  
Diagnostic  
SH6  
GL6  
GH7  
SH7  
GL7  
GH8  
SH8  
Protections  
CS Gain Config.  
GL8  
Prog. Gain  
SL  
CSIP1  
CSIN1  
CSO1  
CSO2  
CSA1  
Prog. Gain  
CSIP2  
CSIN2  
CSA2  
GND  
Figure 1  
Block diagram  
Datasheet  
5
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Block diagram  
2.1  
Voltage and current definition  
Figure 2 shows terms used in this datasheet, with associated convention for positive value.  
VS  
IS  
VS  
ICSIPx  
ICSOx  
CSIPx  
CSINx  
ICSINx  
ICP  
ICPCxP  
ICPCxN  
IDH  
IGHx  
ISHx  
VCSIPx  
VCSINx  
VCP  
VCPCxP  
VCPCxN  
VDH  
VGHx  
VSHx  
VGLx  
VSL  
CSOx  
PWMx  
VDD  
VCSOx  
VPWM x  
VDD  
VSDO  
VSDI  
VCSN  
VSCLK  
IPWM x  
IDD  
CP  
CPCxP  
CPCxN  
DH  
ISDO  
SDO  
SDI  
MULTIPLE GATE  
DRIVER  
ISDI  
ICSN  
CSN  
SCLK  
ISCLK  
GHx  
SHx  
IEN  
IGLx  
EN  
GLx  
SL  
VEN  
ISL  
GND  
IGND  
Figure 2  
Voltage and current definition  
Datasheet  
6
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Pin configuration  
3
Pin configuration  
3.1  
Pin assignment  
GH3 37  
SH3 38  
CSIP1 39  
24 SH6  
23 GH6  
22 CSN  
21 SDO  
CSIN1 40  
PWM2 41  
GL4 42  
GL3 43  
GL2 44  
GL1 45  
PWM1 46  
GH2 47  
SH2 48  
20 EN  
19 GL5  
18 GL6  
17 GL7  
16 GL8  
15 SL  
14 SH7  
13 GH7  
Figure 3  
Pin configuration TLE92108-232QX  
Datasheet  
7
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Pin configuration  
3.2  
Pin definitions and functions  
Table 1  
Pin configuration TLE92108-232QX  
Pin  
Symbol  
Function  
1
GH1  
Gate high-side 1  
Analog I/O pin to turn on/off high-side MOSFET 1. Connect to the gate of high-  
side MOSFET 1.  
2
SH1  
Source high-side 1  
Connection to source of high-side MOSFET 1.  
3
4
5
PWM3  
CP  
PWM input 3  
Charge Pump Output  
VS  
Supply Voltage  
Device supply voltage. Connect this pin to the supply (battery) voltage with a  
reverse battery protection circuit.  
6
CPC1N  
CPC1P  
CPC2P  
CPC2N  
DH  
Negative connection to Charge Pump Capacitor 1  
Positive connection to Charge Pump Capacitor 1  
Positive connection to Charge Pump Capacitor 2  
Negative connection to Charge Pump Capacitor 2  
7
8
9
10  
Drain input for high-sides  
Input for the drains of high-side MOSFETs. Refer to Chapter 7.3.  
11  
12  
13  
14  
15  
GH8  
SH8  
GH7  
SH7  
SL  
Gate high-side 8  
Source high-side 8  
Gate high-side 7  
Source high-side 7  
Source low-side  
Common connection to the source of the low-side MOSFETs.  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
GL8  
Gate low-side 8  
GL7  
Gate low-side 7  
GL6  
Gate low-side 6  
GL5  
Gate low-side 5  
EN  
Enable input with internal pull-down  
Serial Data Output  
SDO  
CSN  
GH6  
SH6  
GH5  
SH5  
CSIP2  
CSIN2  
SCLK  
CSO2  
Chip Select Not with internal pull-up  
Gate high-side 6  
Source high-side 6  
Gate high-side 5  
Source high-side 5  
Non-Inverting input of the Current Sense Amplifier 2  
Inverting input of the Current Sense Amplifier 2  
Serial Clock Input with internal pull-down  
Current Sense Amplifier Output 2  
Datasheet  
8
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Pin configuration  
Table 1  
Pin  
31  
Pin configuration TLE92108-232QX  
Symbol  
VDD  
Function  
Logic supply  
32  
GND  
CSO1  
SDI  
Ground connection  
33  
Current Sense Amplifier Output1  
Serial Data Input with internal pull-down  
Gate high-side 4  
34  
35  
GH4  
36  
SH4  
Source high-side 4  
37  
GH3  
Gate high-side 3  
38  
SH3  
Source high-side 3  
39  
CSIP1  
CSIN1  
Non-inverting input of the Current Sense Amplifier 1  
40  
Inverting input of the Current Sense Amplifier 1 . This pin can be used as  
reference for the high-side MOSFET drain if CSA1 is configured as high-side. Refer  
to Chapter 7.3  
41  
42  
43  
44  
45  
46  
47  
48  
PWM2  
GL4  
PWM input 2  
Gate low-side 4  
Gate low-side 3  
Gate low-side 2  
Gate low-side 1  
PWM input 1  
GL3  
GL2  
GL1  
PWM1  
GH2  
SH2  
E.P.  
Gate high-side 2  
Source high-side 2  
Exposed pad  
For cooling purpose only, do not use as electrical GND1).  
1) The exposed pad at the bottom of the package allows better power dissipation from TLE92108-232QX via the PCB.  
The exposed pad must be left floating or connected to GND (recommended) for best EMC and thermal performance.  
Datasheet  
9
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
General product characteristics  
4
General product characteristics  
4.1  
Absolute maximum ratings  
Table 2  
Absolute maximum ratings1)  
Tj = -40°C to 150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Voltages  
Supply voltage  
VS  
-0.3  
-0.3  
40  
V
V
P_4.1.1  
P_4.1.2  
PWM input voltages (PWMx)  
VPWMx  
VDD  
0.3  
+
+
+
|I |< 10 mA  
Logic input voltages (SDI, SCLK, VSDI, VSCLK  
CSN, EN)  
,
-0.3  
-0.3  
VDD  
0.3  
V
V
V
V
|I |< 10 mA  
P_4.1.3  
P_4.1.4  
P_4.1.5  
P_4.1.21  
V
CSN, VEN  
Voltage range and SDO  
VSDO  
VDD  
0.3  
|I |< 10 mA  
Voltage range at CSIPx and  
CSINx  
VCSIP, VCSIN -8.0  
40  
Differential input voltage range VCSIDiff  
-8.0  
8.0  
CSIPx - CSINx  
Voltage range at DH  
Voltage range at SL  
Voltage range at SHx  
Voltage range at GHx  
Voltage range at GLx  
VDH  
VSL  
VSH  
VGH  
VGL  
-0.3  
-8.0  
-8.0  
-8.0  
-8.0  
-0.3  
40  
6.0  
48  
48  
24  
16  
V
V
V
V
V
V
P_4.1.6  
P_4.1.7  
P_4.1.8  
P_4.1.9  
P_4.1.10  
P_4.1.11  
Voltage difference between GLx VGS_LS  
and SL  
2)  
Voltage difference between GHx VGS_HS  
and SHx  
-1.0  
16  
V
V
P_4.1.23  
P_4.1.12  
P_4.1.22  
Voltage range at charge pump VCP  
pins CP  
VS-0.3  
VCP-0.3  
VS+15  
Voltage range at charge pump VCPCx  
pins CPC1N, CPC1P, CPC2N,  
CPC2P  
VCP+0.3 V  
Logic supply voltage  
Voltage at CSOx  
VDD  
-0.3  
-0.3  
5.5  
V
V
P_4.1.13  
P_4.1.14  
VCSOx  
VDD +  
0.3  
Temperatures  
Junction temperature  
Storage temperature  
Tj  
-40  
-55  
150  
150  
°C  
°C  
Tstg  
P_4.1.16  
Datasheet  
10  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
General product characteristics  
Table 2  
Absolute maximum ratings1) (cont’d)  
Tj = -40°C to 150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
ESD susceptibility  
ESD susceptibility all pins  
VESDHBM1  
-2  
-4  
2
4
kV  
kV  
HBM3)  
HBM3)  
P_4.1.17  
P_4.1.18  
ESD susceptibility of VS and DH VESDHBM2  
pins versus GND  
ESD susceptibility all pins  
VESDCDM1  
VESDCDM2  
-500  
-750  
500  
750  
V
V
CDM4)  
CDM4)  
P_4.1.19  
P_4.1.20  
ESD susceptibility pin corner  
pins  
1) Not subject to production test, specified by design.  
2) GS_GH may be between -1.0 and -0.3V only if the current injected into SHx is below 4 mA  
V
3) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS001 (1.5 k, 100 pF).  
4) ESD susceptibility, Charged Device Model “CDM” according JEDEC JESD22-C101.  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
4.2  
Functional range  
Table 3  
Functional range  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Numbe  
r
Min.  
Max.  
Supply voltage range for  
normal operation  
VS(nor)  
VS(ext)  
6.0  
28  
V
P_4.2.1  
Extended supply voltage  
range  
5.5  
28  
6
V
1) Parameter  
deviations  
possible  
1) Parameter  
deviations  
possible  
1)  
P_4.2.7  
Extended supply voltage  
range  
VS(ext)  
VSOV_OFF2  
V
P_4.2.2  
P_4.2.3  
(max)  
Supply voltage transients dVS/dt -10  
10  
V/µs  
slew rate  
Logic supply voltage  
SPI logic input voltage  
VDD  
VSDI  
3.0  
0
5.5  
V
V
P_4.2.4  
P_4.2.5  
,
VDD  
VSCLK  
VCSN  
,
Junction temperature  
Tj  
-40  
150  
°C  
P_4.2.6  
Datasheet  
11  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
General product characteristics  
1) Not subject to production test, specified by design.  
Note:  
Within the functional or operating range, the IC operates as described in the circuit description. The  
electrical characteristics are specified within the conditions given in the Electrical Characteristics  
table.  
Datasheet  
12  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
General product characteristics  
4.3  
Thermal resistance  
Note:  
This thermal data was generated in accordance with JEDEC JESD51 standards. For more  
information, go to www.jedec.org.  
Table 4  
Thermal resistance  
Parameter  
Symbol  
Values  
Typ.  
4.4  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Junction to case  
RthJC  
RthJA  
K/W  
K/W  
1)2)  
Junction to ambient  
27  
1) Not subject to production test, specified by design.  
2) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product  
(Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm board with 2 inner copper layers (2 × 70 mm Cu,  
2 × 35 mm Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.  
Datasheet  
13  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
General description  
5
General description  
5.1  
Power supply  
The Multiple MOSFET Driver IC requires two power supplies: VS and VDD  
DD supplies the I/O buffers (including the SPI pins) and the internal voltage regulator for the logic. VDD allows  
the flexibility of a 3.3 V or a 5.0 V logic interface.  
.
V
VS supplies the charge pump for the MOSFET gate drivers. The VS pin must be connected to the battery through  
a reverse battery protection.  
Both supplies are separated so that the information stored in the logic remains intact in the event of voltage  
drop on VS. VDD and VS should be decoupled with ceramic capacitors connected close to the supply and ground  
planes.  
5.2  
Operation modes  
EN = High  
Sleep Mode  
EN = Low  
Low current  
consumption  
Gate Drivers OFF  
Normal Mode  
EN = High  
EN = Low  
EN = Low  
Watchdog continuously  
retriggered  
Watchdog Error  
Fail Safe Mode  
EN = High  
1. GENSTAT register is cleared  
2. WDTRIG bit set to 1  
3. WDTRIG bit set to 0 within the watchdog period  
FS = 1  
External MOSFETs  
are turned OFF  
Figure 4  
State diagram  
Note:  
The state diagram is valid for VS and VDD within the nominal operating range. For VS and VDD outside  
of the nominal range, refer to Chapter 7.8, respectively Chapter 5.2.2.  
5.2.1  
Normal mode  
The TLE92108-232QX enters Normal Mode by setting EN pin to High and waiting for the SPI setup time tSET_SPI  
.
In normal mode, the MOSFET gate drivers are enabled and can be configured through the SPI interface,  
Datasheet  
14  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
General description  
provided that the voltages applied to VDD and VS are within the operating range. The watchdog must be  
retriggered correctly in order to stay in Normal Mode (see Chapter 7.10).  
5.2.2  
Sleep mode  
The Multiple MOSFET Driver IC enters Sleep Mode by setting EN pin to Low. The transition to the sleep mode  
1)  
is delayed by tDSLEEP (max tCCP of active half-bridges + 3 µs) in order to actively turn-off the external  
MOSFETs. In this mode, the internal regulator and the internal circuitry are deactivated, and the SPI registers  
are reset.  
The current consumption of VDD is reduced to IDD_Q. The current consumption of VS is reduced to ISQ or ISQ  
ISQ_BRAKE  
+
.
The VS current consumption is ISQ if:  
PASS_MOD = 00B and PASS_VDS = 0B while entering sleep mode  
and VS never drops below VSLEEP_SET after entering sleep mode  
The VS current consumption is ISQ + ISQ_BRAKE if:  
PASS_MOD = 01B, 10B, 11B or PASS_VDS = 1B while entering sleep mode  
or VS has recovered from a voltage below VSLEEP_SET (i.e. VS has ramped up from a voltage below VSLEEP_SET  
or VS has dropped below VSLEEP_SET  
)
The internal resistors RGGND between GHx/GLx and GND are activated to discharge the gate of the external  
MOSFETs.  
Note:  
If EN is set to Low for a duration shorter than (tENL_FILT, 8 µs max.), and EN is set to High again, then  
device does not go in sleep mode and the registers are not reset. The half-bridges are reactivated  
according to the settings of the control registers when EN is High.  
5.2.3  
Fail Safe Mode  
In case of watchdog error (see Chapter 7.10), the device enters Fail Safe Mode, FS bit is set (see Global status  
byte) and the external MOSFETs are actively discharged with the static discharge current (Chapter 6.2) during  
the max. configured tHBxCCP active (Chapter 7.5.1). Then the bridge driver is set to passive mode (the passive  
discharge path is activated,Chapter 6.4, all external MOSFETs are latched off, and the charge pump is  
deactivated). To resume Normal Mode the microcontroller must execute the following sequence2):  
1. Clear GENSTAT register.  
2. Write WDTRIG bit to 1 (GENCTRL1) within the watchdog period.  
3. Write WDTRIG bit to 0 within the watchdog period3).  
In fail safe mode, the control registers are frozen to their default value, at the exception of WDTRIG, CCSO,  
PASS_VDS, PASS_MOD, CSA1L, CSA2L. Any write command (except for WDTRIG bit) or clear command  
(except for GENSTAT) will be discarded in this mode and sets SPIE bit (Global status byte).  
A clear command to GENSTAT in fail safe mode does not reset any failure flag reported by this status register.  
1) SPI Frames are ignored during tDSLEEP  
.
2) The exit sequence must be strictly followed to leave fail safe mode. If a SPI frame not belonging to the sequence is added, then the  
device stays in fail safe mode and the microcontroller must restart the complete sequence to enter normal mode.  
3) During Fail Safe Mode, the charge pump is deactivated and CPUV is set. Therefore, recovering from Fail Safe Mode, GENSTAT must  
be cleared again at the end of the Fail Safe exit sequence to re-activate of the gate drivers.  
Datasheet  
15  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
General description  
The control and status registers can be read in this mode before the start of the exit sequence without SPIE bit  
being set.  
5.3  
Reset behavior  
The following events trigger a Power On Reset:  
VDD undervoltage reset:  
If VDD < VDD PoffR the digital block is deactivated and the outputs are switched off. The digital block is reset once  
VDD > VDD POR. Then NPOR bit (negated power-on reset bit, see Global status byte) is reset to 0 to report the  
reset condition.  
Reset on EN pin:  
If the EN pin is pulled low, the logic content is reset and the device enters sleep mode. Once the device enters  
Normal Mode (after tSET_SPI with EN = high and VDD > VDD POR), the NPOR bit is reset to 0 to report the reset  
condition.  
NPOR is set to 1 when GENSTAT is cleared.  
Datasheet  
16  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
General description  
5.4  
Charge pump  
A dual-stage charge pump supplies the gate drivers for the high-side and low-side MOSFETs. It requires three  
external capacitors connected between CPC1N and CPC1P, CPC2N and CPC2P, VS and CP.  
CCP ≥ 470 nF  
CCP1  
CCP2  
VS  
CP  
Single/dual stage  
charge pump  
Precharge  
Logic  
Figure 5  
Charge pump  
CPSTGA = 0 (default, see GENCTRL2), the device operates with the dual-stage charge pump.  
If CPSTGA = 1 (GENCTRL2), the device switches automatically to single-stage or dual-stage charge pump  
automatically:  
If VS > VCPSO DS: the TLE92108-232QX switches from a dual-stage to a single-stage charge pump.  
If VS < VCPSO SD: the TLE92108-232QX switches from single-stage to dual-stage charge pump.  
The operation with the single-stage charge pump reduces the current consumption from the VS pin.  
5.5  
Frequency modulation  
A modulation of the charge pump frequency can be activated to reduce the peak emission. The modulation  
frequency can be selected based on the resolution bandwidth of the peak detector during EMC testing.  
The modulation frequency is set by the control bit FMODE in GENCTRL1  
FMODE = 0: No modulation.  
FMODE = 1: Modulation frequency = 15.6 kHz (default).  
Datasheet  
17  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
General description  
5.6  
Electrical characteristics  
5.6.1  
Electrical characteristics: supply  
Table 5  
Electrical characteristics: supply  
VS = 6.0 V to 18 V if VSOVTH = 0, VS = 6.0 V to 28 V if VSOVTH = 1; VDD = 3.0 V to 5.5 V, Tj = -40°C to 150°C, all voltages  
with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Current consumption, EN = LOW)  
Supply quiescent current  
Supply quiescent current  
ISQ  
2
5
5
5
µA  
µA  
µA  
Tj < 85°C, VS= 13.5 V P_5.5.1  
PASS_MOD=00B,  
PASS_VDS=0B  
ISQ2  
7
Tj < 85°C, VS< 25 V P_5.5.61  
PASS_MOD=00B,P  
ASS_VDS=0B  
Additional supply quiescent ISQ_BRAKE  
current, brake enabled  
7.5  
Tj < 85°C,  
P_5.5.60  
VS = 13.5 V 1)  
PASS_MOD=01B or  
10Bor 11B or  
PASS_VDS=1B  
Logic Supply quiescent  
current  
IDD_Q  
1
3
3
8
µA  
µA  
Tj < 85°C  
P_5.5.3  
Total quiescent current  
IDD_Q + ISQ  
Tj < 85°C, VS= 13.5 V P_5.5.5  
PASS_MOD=00B,  
PASS_VDS  
EN Low filter time  
tDSLEEP  
Max.  
tCCP +  
3 µs  
µs  
2)3)BD_PASS = 0  
P_5.5.49  
2)  
EN Low filter time  
VS for LS1-4 setting  
tENL_FILT  
1
8
µs  
V
P_5.5.51  
P_5.5.63  
VSLEEP_SET  
5.5  
Current consumption, EN = HIGH  
Supply current  
IS1  
45  
83  
55  
mA  
mA  
HBxVDSTH = 001B, P_5.5.6  
BD_PASS = 0,  
ICP = 0 mA  
Supply current  
IS2  
100  
8 V < VS < 28 V  
P_5.5.7  
HBxVDSTH = 001B,  
BD_PASS = 0,  
ICP = -12 mA,  
dual stage CP  
Datasheet  
18  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
General description  
Table 5  
Electrical characteristics: supply (cont’d)  
VS = 6.0 V to 18 V if VSOVTH = 0, VS = 6.0 V to 28 V if VSOVTH = 1; VDD = 3.0 V to 5.5 V, Tj = -40°C to 150°C, all voltages  
with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
55  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Supply current  
IS3  
70  
mA  
mA  
18 V < VS < 28 V  
HBxVDSTH = 001B,  
BD_PASS = 0,  
P_5.5.56  
I
CP = -12 mA2),  
single stage CP  
Supply current  
IS4  
55  
70  
VS = 6 V,  
P_5.5.57  
HBxVDSTH = 001B,  
BD_PASS = 0,  
I
CP = - 6 mA2)  
Supply current  
IS_BD_PASS  
IDD1  
10  
3
20  
4
mA  
mA  
HBxMODE=00B,  
BD_PASS = 1  
P_5.5.54  
P_5.5.8  
Logic supply current  
SPI not active,  
CSA1 and CSA2 off,  
all IPDDiag off,  
BD_PASS=0  
Logic supply current  
Logic supply current  
IDD2  
3
2
3.8  
2.8  
mA  
mA  
4) Additional VDD P_5.5.52  
current per CSA on,  
VCSOx = 4.5 V,  
LS shunt, CCSO = 1  
CSAxL = 0,  
IPDDiag off  
IDD3  
4) Additional VDD P_5.5.55  
current per CSA on,  
CCSO = 0,  
VCSOx = 4.5 V,  
LS shunt,  
CSAxL = 0,  
I
PDDiag off  
Logic supply current  
Logic supply current  
IDD4  
6
7
mA  
mA  
5) Additional VDD P_5.5.58  
current per CSA on,  
VCSOx = 4.5 V,  
HS shunt,  
VSOVTH = 1  
CSAxL = 1,  
I
PDDiag off  
IDD5  
4.2  
5.2  
5) Additional VDD P_5.5.59  
current per CSA on,  
VSOVTH = 0,  
VCSOx = 4.5 V,  
HS shunt,  
CSAxL = 1,  
IPDDiag off  
Datasheet  
19  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
General description  
Table 5  
Electrical characteristics: supply (cont’d)  
VS = 6.0 V to 18 V if VSOVTH = 0, VS = 6.0 V to 28 V if VSOVTH = 1; VDD = 3.0 V to 5.5 V, Tj = -40°C to 150°C, all voltages  
with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
1.5  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Additional logic supply  
current pull-down  
IDD_PDDiag  
2
mA  
Additional VDD  
current when all  
P_5.5.53  
IPDDiag are on  
VS with active bridge driver (BD_PASS = 0)  
UV switch ON voltage  
UV switch OFF voltage  
UV ON/OFF hysteresis  
VSUV ON  
VSUV OFF  
VSUV HY  
5.5  
5.0  
V
V
V
V
VS increasing  
VS decreasing  
VSUV ON - VSUV OFF  
VS increasing  
P_5.5.11  
P_5.5.12  
P_5.5.13  
P_5.5.14  
4.0  
4.5  
0.5  
2)  
OV switch OFF voltage  
VSOVTH = 0  
VSOV OFF1  
19  
21  
OV switch ON voltage  
VSOVTH = 0  
VSOV ON1  
VSOV OFF2  
VSOV ON2  
VSOV HY  
18  
29  
28  
20  
31  
30  
V
V
V
VS decreasing  
VS increasing  
VS decreasing  
P_5.5.15  
P_5.5.16  
P_5.5.17  
OV switch OFF voltage  
VSOVTH = 1  
OV switch ON voltage  
VSOVTH = 1  
2)  
OV ON/OFF hysteresis  
1
V
VSUV ON - VSUV OFF  
1)  
P_5.5.18  
P_5.5.47  
P_5.5.48  
P_5.5.50  
VS undervoltage filter time tVSUV_FILT  
7
10  
10  
16  
13  
13  
19.2  
µs  
µs  
µs  
2)  
2)  
VS overvoltage filter time  
tVSOV_FILT  
tD_CPVSOV  
7
CP turn-off delay after VS  
overvoltage detection  
12.8  
VDD  
VDD Power-On-Reset  
VDD Power-Off-Reset  
VDD Power-On-Reset  
VDD POR  
2.40  
2.30  
2.60  
2.50  
0.1  
2.80  
2.70  
V
V
V
VDD increasing  
VDD decreasing  
VDD POR - VDD POffR  
P_5.5.19  
P_5.5.20  
P_5.5.21  
VDD POffR  
VDD POR HY  
2)  
Hysteresis  
1) Additional quiescent current if VS drops below VSLEEP_SET  
.
2) Not subject to production test, specified by design.  
3) Max. cross-current protection time of the active half-bridges.  
4) Parameter independent of VSOVTH.  
5) Parameter independent of CCSO.  
Datasheet  
20  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
General description  
5.6.2  
Electrical characteristics: logic inputs PWMx, EN  
Table 6  
Electrical characteristics: PWMx, EN  
VS = 6.0 V to 18 V if VSOVTH = 0, VS = 6.0 V to 28 V if VSOVTH = 1; VDD = 3.0 V to 5.5 V, Tj = -40°C to 150°C, all voltages  
with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
EN high voltage  
EN low voltage  
EN hysteresis  
VENH  
VENL  
0.7 ×  
VDD  
V
V
V
P_5.5.22  
P_5.5.23  
P_5.5.24  
0.3 ×  
VDD  
1)  
VENHY  
0.12 ×  
VDD  
EN pull-down resistor  
PWMx high voltage  
RPD_EN  
VPWMH  
30  
40  
50  
k  
P_5.5.25  
P_5.5.26  
0.7 ×  
V
VDD  
PWMx low voltage  
PWMx hysteresis  
VPWML  
0.3 ×  
VDD  
V
P_5.5.27  
P_5.5.28  
P_5.5.29  
1)  
VPWMHY  
0.12 ×  
VDD  
V
PWMx pull-down resistor  
RPD_PWMx  
30  
40  
50  
kΩ  
1) Not subject to production test, specified by design.  
5.6.3  
Electrical characteristics charge pump  
Table 7  
Electrical characteristics: charge pump  
VS = 6.0 V to 18 V if VSOVTH = 0, VS = 6.0 V to 28 V if VSOVTH = 1; VDD = 3.0 V to 5.5 V, Tj = -40°C to 150°C, all voltages  
with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
250  
Unit  
Note or  
Test Condition  
Number  
Min.  
Max.  
3)  
Charge Pump Frequency  
Output Voltage VCP vs. VS  
fCP  
kHz  
V
P_5.5.30  
P_5.5.31  
VCPmin  
8.5  
VS = 6 V,  
I
CP = - 6 mA  
8 V < VS < 28 V,  
CP = - 12 mA  
18 V < VS < 28 V,  
CP = - 12 mA  
Regulated output voltage  
VCP vs. VS, CPSTGA = 0  
VCP1  
11  
12  
10  
10  
10  
15  
15  
40  
60  
40  
17  
17  
80  
100  
80  
V
P_5.5.32  
P_5.5.41  
P_5.5.34  
P_5.5.35  
P_5.5.36  
I
Regulated output voltage  
VCP vs. VS, CPSTGA = 1  
VCP2  
V
I
Turn-on time, CPSTGA = 0  
tON_VCP1  
tRISE_VCP1  
tON_VCP2  
µs  
µs  
µs  
8 V < VS < 28 V  
(25%)1)2)3)4)  
Rise time, CPSTGA = 0  
8 V < VS < 28 V  
(25%-75%)1)2)3)4)  
Turn-on time, CPSTGA = 1  
18 V < VS < 28 V  
(25%)1)2)3)5)  
Datasheet  
21  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
General description  
Table 7  
Electrical characteristics: charge pump  
VS = 6.0 V to 18 V if VSOVTH = 0, VS = 6.0 V to 28 V if VSOVTH = 1; VDD = 3.0 V to 5.5 V, Tj = -40°C to 150°C, all voltages  
with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
60  
Unit  
Note or  
Test Condition  
Number  
Min.  
Max.  
Rise time, CPSTGA = 1  
tRISE_VCP2  
10  
100  
µs  
V
18 V < VS < 28 V  
P_5.5.37  
P_5.5.38  
P_5.5.42  
P_5.5.43  
P_5.5.44  
P_5.5.45  
P_5.5.39  
(25%-75%)1)2)3)5)  
Charge Pump Undervoltage VCPUV1  
(referred to VS)  
5.5  
7
6
6.5  
8
CPUVTH = 0,  
VCP falling  
Charge Pump Undervoltage VCPUV2  
(referred to VS)  
7.5  
17  
16.5  
0.5  
64  
V
CPUVTH = 1,  
VCP falling  
Automatic switch over dual VCPSO DS  
to single stage charge pump  
16  
15.5  
18  
17.5  
V
CPSTGA = 1  
CPSTGA = 1  
3) CPSTGA = 1,  
Automatic switch oversingle VCPSO SD  
to dual stage charge pump  
V
Charge pump switch over  
hysteresis  
VCPSO HY  
V
V
CPSO DS - VCPSO SD  
3)  
Charge Pump Undervoltage tCPUV  
Filter Time  
51  
77  
µs  
mA  
mA  
Charge pump minimum  
output current  
ICPOC1  
ICPOC2  
-12  
-12  
2)3)4) VS = 13.5 V;  
CPSTGA = 0  
2)3)5) VS = 18 V;  
CPSTGA = 1  
Charge pump minimum  
output current  
1) Parameter dependent on the capacitance CCP.  
2) CPC1 = CCPC2 = 220 nF, CCP = 470 nF, ICP = 0 mA.  
C
3) Not subject to production test, specified by design.  
4) Dual stage charge pump.  
5) Single stage charge pump.  
Datasheet  
22  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
6
Floating gate drivers  
The TLE92108-232QX integrates sixteen floating gate drivers capable of controlling a wide range of n-channel  
MOSFETs. They are configured as eight high-sides and low-sides, building eight half-bridges.  
This section describes the MOSFET control by the gate drivers.  
After power-on reset, the bridge driver is in passive mode (default value of BD_PASS = 1 and all  
HBxMODE=00B). Refer to Chapter 6.4 and Chapter 6.5.  
The bridge driver is in active mode by setting BD_PASS to 0. Chapter 6.1, Chapter 6.2 and Chapter 6.3  
describes the static and PWM control in active mode.  
Attention: It is highly recommended to have all HBxMODE bits set to 00B or 11B before setting BD_PASS to  
0 in order to avoid wrong drain-source overvoltage detection.  
Table 8  
EN  
Operating modes of the gate driver  
BD_PASS HBxMODE[1:0] Gate driver  
Comment  
Chapter  
High  
0
x
Active1)  
Chapter 6.1  
Chapter 6.2  
Chapter 6.3  
High  
1
One HBxMODE =  
01B or 10B  
Active1)  
Equivalent to EN=High and  
BD_PASS = 0  
Chapter 6.1  
Chapter 6.2  
Chapter 6.3  
High  
Low  
1
x
All HBxMODE=00B Passive  
or 11B  
Chapter 6.5  
x
Passive  
Chapter 6.5  
1) Provided that no VS overvoltage, VS undervoltage, CP undervoltage or overtemperature failure are detected, and  
TLE92108-232QX is not in Fail Safe Mode.  
Datasheet  
23  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
CP  
DH /  
CSIN1  
GHx  
SHx  
Highside  
Gate-Driver  
VDSMONTH  
Current-Steering  
DACs  
VSHH  
High-Speed  
Comparators  
VSHL  
VCP  
GLx  
Lowside  
Gate-Driver  
VDSMONTH  
Current-Steering  
DACs  
SL  
Figure 6  
Block diagram - Gate driver for one half-bridge  
Datasheet  
24  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
6.1  
MOSFET control with bridge driver in active mode (BD_PASS = 0 and EN = High)  
Depending on the configuration bits HBxMODE[1:0] (HBMODE, Table 9 and Table 11), each high-side and low-  
side MOSFETs can be:  
deactivated  
activated (statically, no PWM)  
activated in PWM mode (Chapter 6.3, PWMSET)  
Table 9  
Half-bridge mode selection  
HBxMODE[1:0]1) Configuration of HSx/LSx1)  
00B  
01B  
10B  
LSx and HSx MOSFETs are actively kept OFF (default)  
LSx MOSFET is ON (static or PWM, refer to Table 11), HSx MOSFET is actively kept OFF  
HSx MOSFET is ON (static or PWM, refer to Table 11), LSx MOSFET is actively kept OFF  
Reserved - LSx and HSx MOSFETs are actively kept OFF  
11B  
1) x = 1 … 8.  
6.2  
Static activation with bridge driver in active mode (BD_PASS = 0)  
In this section, we consider the static activation of the high-side and low-side MOSFET of the half-bridge x,  
x = 1…8. Refer to Table 11 for the setting of a high-side or low-side in the static or PWM operation.  
If HBx is not mapped to any activated PWM channel, the low-side or high-side MOSFET of HBx is statically  
activated (no PWM) by setting HBxMODE[1:0] to respectively (0,1) or (1,0).  
The configured cross-current protection and the Drain-Source overvoltage blank times for the Half-Bridge x  
are noted tHBxCCP Active and tHBxBLANK Active (refer to Chapter 7.5).  
The charge and discharge currents applied to the static controlled Half-Bridge x are noted ICHGSTx  
(ST_ICHG).  
IHARDOFF is the maximum current that the gate drivers can sink. It corresponds to the discharge current when  
IDCHGx[4:0] = 31D (See PWM_IDCHG_ACT). This current is used to the keep a MOSFET off, when the opposite  
MOSFET of the same half-bridge is being turned on. This feature avoids parasitic cross-current conduction.  
ICHGSTx is the current sourced, respectively sunk, by the gate driver to turn-on the high-side x or low-side x.  
ICHGSTx is configured in the control register ST_ICHG.  
Table 10  
Static charge and discharge currents  
ICHGSTx[3:0]1)  
Nom. charge current  
[mA]2)  
Nom. discharge current Max. deviation to typ.  
[mA]3)  
1.0  
values  
0000B  
0001B  
0010B  
0011B  
0100B  
0101B  
1.0  
+/- 60%  
+/- 60 %  
+/- 60 %  
+/- 38 %  
+/- 38 %  
+/- 38 %  
2.0  
2.8  
4.5  
5.7  
8.0  
9.4  
12.5  
17.8  
14.2  
19.7  
Datasheet  
25  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
Table 10  
Static charge and discharge currents  
ICHGSTx[3:0]1)  
Nom. charge current  
[mA]2)  
Nom. discharge current Max. deviation to typ.  
[mA]3)  
26.0  
32.0  
39.5  
46.8  
54.7  
62.5  
70.6  
78.5  
87.0  
95.0  
values  
0110B  
0111B  
1000B  
1001B  
1010B  
1011B  
1100B  
1101B  
1110B  
23.9  
30.0  
37.1  
44.3  
52.3  
60.2  
68.3  
76.8  
86.0  
96.0  
+/- 38 %  
+/- 28 %  
+/- 28 %  
+/- 28 %  
+/- 28 %  
+/- 28 %  
+/- 28 %  
+/- 28 %  
+/- 28 %  
+/- 25 %  
1111B  
1) Refer to ST_ICHG  
2) VS 8V and VGS VGS(ON)1 if ICHGSTx 7D, VS 8V and VGS VGS(ON)2 if ICHGSTx 8D  
3) VGS VGS(OFF)1 if ICHGSTx 7D, VGS VGS(OFF)2 if ICHGSTx 8D  
IHOLD is the hold current used to keep the gate of the external MOSFETs in the desired state. This parameter  
is configurable with the IHOLD control bit in GENCTRL2.  
If IHOLD = 0:  
the MOSFETs are kept ON with the current ICHG8 (12.5 mA typ.)  
the MOSFETs are kept OFF with the current IDCHG8 (14.2 mA typ.)  
If IHOLD = 1:  
the MOSFETs are kept ON with the current ICHG12 (23.9 mA typ.)  
the MOSFETs are kept with the current IDCHG12 (26.0 mA typ.)  
The static discharge current is applied to turn off the MOSFETs when the bridge driver is in active mode  
when the following failures occur:  
VS undervoltage/overvoltage  
Overtemperature  
V
DS overvoltage  
Charge pump undervoltage  
Overcurrent if OCEN = 1  
6.2.1  
Static activation of a high-side MOSFET  
Turn-on with cross-current protection  
If LSx is ON (HBxMODE[1:0] = 01B), before the activation of HSx (HBxMODE[1:0] = 10B) then the high-side  
MOSFET is turned on after a cross-current protection time (refer to Figure 7):  
after the CSN rising edge and for the duration tHBxCCP Active:  
the high-side MOSFET is kept OFF with the current -ICHGSTx  
the gate of the low-side MOSFET is discharged with the current -ICHGSTx  
Datasheet  
26  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
at the end of tHBxCCP Active and for the duration tHBxBLANK Active + tFVDS:  
the gate of the high-side MOSFET is charged with the current ICHGSTx  
low-side MOSFET is kept OFF with the current -IHARDOFF (hard off phase)  
at the end of tFVDS  
:
the drive current of the high-side MOSFET is reduced to IHOLD  
the drive current of the low-side MOSFET is set to -IHOLD  
SPI Frame accepted  
Turn on HSx  
CSN  
Previous State  
HSx OFF  
LSx ON  
Æ
Æ
Æ
New State  
HSx ON  
LSx OFF  
t
VS  
tHBxCCP  
Active  
tHBxBLANK  
Active  
IGHx  
tFVDS  
ICHGSTx  
HSx  
GHx  
0
t
IGHx  
HSx internal  
drive signal  
SHx  
ICHGSTx  
LSx  
GLx  
SL  
IHOLD  
-IHOLD  
IGLx  
t
-ICHGSTx  
IGLx  
t
-ICHGSTx  
LSx internal  
drive signal  
IHOLD  
-IHOLD  
t
-ICHGSTx  
Hard off  
-IHARDOFF  
Figure 7  
Turn-on of a high-side MOSFET with cross-current protection  
Note:  
The CSN rising edge must be synchronized with the device logic. Therefore SPI commands are  
executed with a delay of up to 3 µs after the CSN rising edge.  
Datasheet  
27  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
Turn-on without cross-current protection  
If LSx is OFF (HBxMODE[1:0] = 00B), before the activation of HSx (HBxMODE[1:0] = 10B), then the high-side  
MOSFET is turned on without cross-current protection (refer to Figure 8):  
after the CSN rising edge and for a duration tHBxBLANK Active + tFVDS:  
the gate of the high-side MOSFET is charged with the current ICHGSTx  
the low-side MOSFET is kept OFF with the current -IHARDOFF  
at the end of tFVDS  
:
the drive current of the high-side MOSFET is reduced to IHOLD  
the drive current of the low-side MOSFET is set to -IHOLD  
SPI Frame accepted  
Turn on HSx  
CSN  
Previous State  
HSx OFF  
LSx OFF  
Æ
Æ
Æ
New State  
HSx ON  
LSx OFF  
t
tHBxBLANK  
Active  
IGHx  
tFVDS  
ICHGSTx  
0
t
HSx internal  
drive signal  
ICHGSTx  
VS  
IHOLD  
-IHOLD  
t
HSx  
GHx  
IGHx  
IGLx  
0
SHx  
t
LSx  
GLx  
SL  
IGLx  
LSx internal  
drive signal  
IHOLD  
-IHOLD  
t
Hard off  
-IHARDOFF  
Figure 8  
Turn-on of a high-side MOSFET without cross-current protection  
Note:  
The CSN rising edge must be synchronized with the device logic. Therefore SPI commands are  
executed with a delay of up to 3 µs after the CSN rising edge.  
Datasheet  
28  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
6.2.2  
Static activation of a low-side MOSFET  
The description of the static activation of a low-side x differs from the description of Chapter 6.2.1 only by  
exchanging high-side x and low-side x.  
6.2.3  
Turn-off of the high-side and low-side MOSFETs of a half-bridge  
When the TLE92108-232QX receives a SPI to turn-off both the high-side and low-side MOSFETs of the half-  
bridge x (HBxMODE[1:0] = (0,0) or (1,1)):  
the gate of HSx and LSx are discharged with the current -ICHGSTx for the duration tHBxCCP Active (Figure 9)  
at the end of tHBxCCP Active, the drive current of HSx and LSx are reduced to -IHOLD  
SPI Frame accepted  
Turn off HSx and LSx  
VS  
CSN  
HSx  
t
GHx  
IGHx  
IGHx  
SHx  
0
LSx  
t
GLx  
-ICHGSTx  
IGLx  
SL  
HSx internal  
drive signal  
tHBxCCP  
IHOLD  
-IHOLD  
t
t
-ICHGSTx  
IGLx  
LSx internal  
drive signal  
t
-IHOLD  
-ICHGSTx  
Figure 9  
Turn-off of the high-side and low-side MOSFETs of a half-bridge  
Note:  
The CSN rising edge must be synchronized with the device logic. Therefore SPI commands are  
executed with a delay of up to 3 µs after the CSN rising edge.  
Datasheet  
29  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
6.3  
PWM operation with bridge driver in active mode (BD_PASS = 0)  
The TLE92108-232QX integrates three PWM channels. The pins PWM1,PWM2 and PWM3 provide the PWM  
signal for each PWM channel.  
One half-bridge can be mapped to one of the PWM channels according to the settings of the control registers  
HBMODE and PWMSET (see Table 11):  
PWMxEN in PWMSET, enables or disables the PWM channel x  
The control bits PWMx_HB[2:0] in PWMSET select the half-bridge  
The control bits HBMODE[1:0] (HBMODE) of the half-bridge selected by PWMx_HB[2:0] configures the low-  
side or the high-side MOSFET in PWM mode  
Example: the following bits must be set to map the low-side of HB3 to the PWM channel 2 (start sequence with  
PWM):  
1. Set HB3MODE[1:0] to (0,0): HB3 is in high impedance  
2. Set PWM2_HB[2:0] to (0,1,0) and set PWM2EN to 1 (HB3 stays in high impedance, independently from the  
signal present at the PWM2 pin)  
3. Set HB3MODE[1:0] to (0,1): PWM2 is applied to the low-side of HB3  
Table 11  
PWMxEN1)  
PWM channel settings  
PWMx_HB[2:0] HByMODE[1:0]2) PWMx channel setting1)  
1)  
0B  
don’t care  
don’t care  
don’t care  
000B  
don’t care  
00B  
no PWM operation  
don’t care  
no PWM operation on the selected HB  
no PWM operation on the selection HB  
Low-side of HB1 is mapped to PWMx  
Low-side of HB2 is mapped to PWMx  
Low-side of HB3 is mapped to PWMx  
Low-side of HB4 is mapped to PWMx  
Low-side of HB5 is mapped to PWMx  
Low-side of HB6 is mapped to PWMx  
Low-side of HB7 is mapped to PWMx  
Low-side of HB8 is mapped to PWMx  
High-side of HB1 is mapped to PWMx  
High-side of HB2 is mapped to PWMx  
High-side of HB3 is mapped to PWMx  
High-side of HB4 is mapped to PWMx  
High-side of HB5 is mapped to PWMx  
High-side of HB6 is mapped to PWMx  
High-side of HB7 is mapped to PWMx  
High-side of HB8 is mapped to PWMx  
don’t care  
11B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
01B  
001B  
01B  
010B  
01B  
011B  
01B  
100B  
01B  
101B  
01B  
110B  
01B  
111B  
01B  
000B  
10B  
001B  
10B  
010B  
10B  
011B  
10B  
100B  
10B  
101B  
10B  
110B  
10B  
1B  
111B  
10B  
1) x = 1…3  
2) the half-bridge y is selected by the PWMx_HB[2:0] bits  
Datasheet  
30  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
Note:  
An SPI error is reported if one half-bridge is mapped to several activated PWM channels. In this case  
the external MOSFETs of the impacted half-bridge are turned-off and the corresponding status bit  
(HBxPWME) of the HBVOUT_PWMERR register is set.  
6.3.1  
Determination of the active and free-wheeling MOSFET  
An active free-wheeling is automatically implemented when a half-bridge is activated in PWM mode to reduce  
the power dissipation of the free-wheeling (FW) MOSFET: If the active MOSFET is OFF, the opposite (free-  
wheeling) MOSFET of the same half-bridge is actively turned on. See Figure 11, Figure 12, Figure 13,  
Figure 14, .  
If EN_GEN_CHECK = 0: the PWM MOSFET is considered as the active MOSFET and the opposite MOSFET of the  
same half-bridge is considered as the free-wheeling MOSFET.  
If EN_GEN_CHECK = 1: At the end of the cross-current protection times (tHBxCCP Active, tHBxCCP FW) of each  
MOSFET (both MOSFETs are supposed to be off) the device detects which MOSFET of the half-bridge is the  
active MOSFET and which MOSFET is the FW MOSFET (Figure 10).  
If VSHx > VSHH: The high-side MOSFET is the FW MOSFET and the low-side MOSFET is the active MOSFET  
If VSHx < VSHL: Then the low-side MOSFET is the FW MOSFET and the high-side MOSFET is the active MOSFET  
If VSHL < VSHx < VSHH: No clear distinction between the FW MOSFET and the active MOSFET. The MOSFET to  
be turned on is considered as the active MOSFET.  
HS and LS off  
Freewheeling through  
high-side MOSFET body diode  
VSHx > VS – VSHH  
HS and LS are off  
Freewheeling through  
low-side MOSFET body diode  
VSHx < VSHL  
HS = FW MOSFET  
LS = Active MOSFET  
LS = FW MOSFET  
HS = Active MOSFET  
CP  
CP  
DH or  
CSIN1  
DH or  
CSIN1  
GHx  
GHx  
Highside  
Highside  
Gate-Driver  
Gate-Driver  
SHx  
SHx  
VSHH  
VSHH  
High-Speed  
Comparators  
High-Speed  
Comparators  
VSHL  
VSHL  
VCP  
VCP  
GLx  
GLx  
Lowside  
Lowside  
Gate-Driver  
Gate-Driver  
SL  
SL  
Figure 10 Detection principle of the active and freewheeling MOSFET  
Datasheet  
31  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
Note:  
Note:  
The PWM signal is applied to the MOSFET selected by HBxMODE[1:0], independently from the free-  
wheeling and the active MOSFET.  
It is not possible to determine the active or FW MOSFET if the PWM on-time is shorter than tHBxCCP  
FW, or if the PWM-off-time is shorter than tHBxCCP Active (Refer to Chapter 6.3.5). In this case, the  
PWM MOSFET is considered as the active MOSFET. In other words, it is assumed that the motor  
operates as load.  
Figure 11, Figure 12 show examples of free-wheeling and active MOSFET when the motor operates as load.  
VS  
PWM  
HS1  
Active  
MOSFET  
Time  
VOUT1  
VOUT2  
HS2 OFF  
PWM  
Time  
Time  
AFW  
AFW  
AFW  
OUT1  
OUT2  
M
LS1: FW  
MOSFET  
LS2 ON  
AFW: Active Free-wheeling  
LS1 ON  
Current Flow PWM = High  
Current Flow PWM = Low  
Figure 11 Active freewheeling on HB1: PWM1EN = 1. PWM applied to HS1 (HB1MODE[1:0] = 10B).  
The motor operates as load: HS1 is the active MOSFET, LS1 is the FW MOSFET.  
VS  
PWM  
Time  
HS2  
FW MOSFET  
VOUT2  
AFW  
AFW AFW  
HS1 ON  
LS1 OFF  
Time  
Time  
VOUT1  
M
OUT1  
OUT2  
LS2  
Active MOSFET  
PWM  
AFW: Active Free-wheeling  
HS2 ON  
Current Flow PWM = High  
Current Flow PWM = Low  
Figure 12 Active freewheeling on HB2: PWM1EN = 1. PWM applied to LS2 (HB2MODE[1:0] = 01B).  
Datasheet  
32  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
The motor operates as load: LS2 is the active MOSFET, HS2 is the FW MOSFET.  
Figure 13 and Figure 14 show examples of free-wheeling and active MOSFET when the motor operates as  
generator.  
VS  
PWM  
HS1: FW  
MOSFET  
Time  
VOUT1  
VOUT2  
HS2 OFF  
PWM  
AFW  
AFW  
AFW  
Time  
Time  
OUT1  
OUT2  
M
LS1: Active  
MOSFET  
LS2 ON  
AFW: Active Free-wheeling  
HS1 ON  
Current Flow PWM = High  
Current Flow PWM = Low  
Figure 13 Active freewheeling on HB1: PWM1EN = 1. PWM applied to HS1 (HB1MODE[1:0] =  
10B).The motor operates as generator: LS1 is the active MOSFET, HS1 is the FW MOSFET.  
VS  
PWM  
Time  
HS2  
Active MOSFET  
VOUT2  
HS1 ON  
LS1 OFF  
AFW  
AFW AFW  
Time  
Time  
VOUT1  
M
OUT1  
OUT2  
LS2  
FW MOSFET  
PWM  
Current Flow PWM = High  
Current Flow PWM = Low  
AFW: Active Free-wheeling  
LS2 ON  
Figure 14 Active freewheeling on HB2: PWM1EN = 1. PWM applied to LS2 (HB2MODE[1:0] = 01B).  
The motor operates as generator: HS2 is the active MOSFET, LS2 is the FW MOSFET.  
Datasheet  
33  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
6.3.2  
Configuration in PWM mode  
The following sections describe the different control schemes in PWM mode. They differ during the pre-charge  
and pre-discharge phases (Figure 15):  
Adaptive gate control (AGC[1:0] = (1,0) or (1,1), GENCTRL2): in this mode a pre-charge current and a pre-  
discharge current are applied to the gate of the PWM MOSFET. These currents are used to regulate the  
effective turn-on and turn-off delays to the respective target values. Refer to Chapter 6.3.3.  
No adaptive gate control (AGC[1;0] = (0,0)): in this mode, the pre-charge and pre-discharge phases are  
deactivated. Refer to Chapter 6.3.4.1.  
No adaptive gate control (AGC[1;0] = (0,1)). In this mode:  
the pre-charge phase is deactivated  
during the pre-discharge phase, the gate of the PWM MOSFET mapped to the PWM channel x, x = 1…3,  
is discharged with the configured current IPCHGINIT (Refer to PWM_PCHG_INIT and Chapter 6.3.4.2)  
Synchronized  
PWMz  
t
IGS  
PWM MOSFET  
Precharge  
Post-charge  
tPCHGx  
Predischarge  
ICHGMAXx  
IPRECHGx  
tPDCHGx  
ICHGx  
0
t
tHBxCPP  
- IDCHGx  
tBLANK for PWM MOSFET  
Cross-current  
protection  
Symmetrization  
- IPREDCHGx  
tHBxCPP  
delay  
tHBxCPP for symmetry  
PWM_Control_Scheme_Overview_AFW.emf  
Figure 15 PWM overview showing pre-charge, pre-discharge and post charge phases, AGC[1:0] = 10B  
or 11B, POCHGDIS = 1B.  
Datasheet  
34  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
6.3.3  
PWM operation with adaptive gate control  
This section describes the MOSFETs control during high-side or low-side PWM operation when the adaptive  
gate control is enabled (AGC[1:0] = (1,0) or (1,1), GENCTRL2).  
Note:  
Unless otherwise specified, the description of the regulation of the pre-charge and pre-discharge  
currents are applicable for  
Refer to Chapter 6.3.1 for the definition of the active and of the freewheeling MOSFET according to the setting  
of AGC.  
Assumption: a high-side or low-side MOSFET driver is mapped to the PWM channel z, z = 1,2 or 3.  
Refer to Figure 16 for high-side PWM and Figure 19 for low-side PWM for the description of the switching  
phase.  
The TLE92108-232QX adapts the pre-charge current, respectively the pre-discharge current, in order to match  
the effective turn-on delay (tDON) and turn-off delay (tDOFF) to the configured values.  
The configured turn-on and turn-off delays of the respective PWM MOSFETs are set by the registers  
TDON_OFF1, TDON_OFF2, TDON_OFF3.  
The effective turn-on and turn-off delays of the respective active MOSFETs are read out from the status  
registers EFF_TDON_OFF1, EFF_TDON_OFF2, EFF_TDON_OFF3.  
Table 12  
Abbreviation  
Suffix x  
Abbreviations for adaptive turn-on and turn-off phases in PWM configuration  
Definition  
Related to the half-bridge x (x = 1 … 8)  
Suffix z  
Related to the PWM channel z (z = 1,2 or 3)  
Gate-Source voltage of high-side MOSFET x  
VGS_HSx  
IGS_HSx  
Gate current of high-side MOSFET x  
IGS_HSx is positive when the current flows out of GHx.  
VGS_LSx  
IGS_LSx  
Gate-Source voltage of low-side MOSFET x  
Gate current of low-side MOSFET x  
IGS_LSx is positive when the current flows out of GLx.  
tHBxCCP ACTIVE  
Active cross-current protection time of HBx. See control registers CCP_BLK1,  
CCP_BLK2_ACT, PWM_ICHGMAX_CCP_BLK3_ACT and Chapter 7.5.  
tHBxBLANK ACTIVE Active Drain-source overvoltage blank time of HBx. See control registers CCP_BLK1,  
CCP_BLK2_ACT, PWM_ICHGMAX_CCP_BLK3_ACT and Chapter 7.5.  
tHBxCCP FW  
Freewheeling cross-current protection time of HBx. See control registers CCP_BLK1,  
CCP_BLK2_FW, PWM_ICHGMAX_CCP_BLK3_FW and Chapter 7.5  
tHBxBLANK FW  
Freewheeling drain-source overvoltage blank time of HBx. See control registers  
CCP_BLK1, CCP_BLK2_FW, PWM_ICHGMAX_CCP_BLK3_FW and Chapter 7.5  
PWMz  
External PWM signal applied to the input pin PWMz.  
ICHGMAXz  
Maximum drive current of the half-bridge mapped to PWM channel z during the pre-  
charge and pre-discharge phases. See control registers  
PWM_ICHGMAX_CCP_BLK3_ACT and PWM_ICHGMAX_CCP_BLK3_FW  
ICHGMAXz is also the drive current for the post-charge phase  
IPRECHGz and IPREDCHGz are limited to ICHGMAXz.  
Datasheet  
35  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
Table 12  
Abbreviations for adaptive turn-on and turn-off phases in PWM configuration  
Abbreviation  
IPRECHGz  
Definition  
Pre-charge current sourced by the gate driver mapped to the PWM channel z during  
tPCHGz.  
Internal and self-adaptive parameter (if AGC = (1,0) or (1,1), GENCTRL2)  
IPRECHGz is clamped between ICHG0 and ICHGMAXz.  
IPCHGINITz  
IPREDCHGz  
Initial value of IPRECHGz. Refer to PWM_PCHG_INIT  
Pre-discharge-current sunk by the gate driver mapped to the PWM channel z during  
tPDCHGz.  
Internal and self-adaptive parameter. (AGC = (1,0) or (1,1), GENCTRL2)  
IPREDCHGz is clamped between IDCHG0 and IDCHGMAXz.  
IPDCHGINITz  
ICHGz  
Initial value of IPREDCHGz. Refer to PWM_PDCHG_INIT  
Current sourced by the gate driver mapped to the PWM channel z during the charge  
phase. See control register PWM_ICHG_ACT.  
IDCHGz  
ICHGFWz  
tPCHGz  
Current sunk by the gate driver mapped to the PWM channel z during the discharge  
phase. See control register PWM_IDCHG_ACT.  
Current source or sunk by the gate driver to turn on / turn off the freewheeling MOSFET  
of the half-bridge mapped to the PWM channel z. See PWM_ICHG_ACT.  
Duration of the pre-charge phase of PWM channel z.  
tPCHGz is configurable by SPI. See control register TPRECHG, configuration bits  
TPCHGz[1:0].  
tPDCHGz  
tDONz  
Duration of the pre-discharge phase of PWM channel z.  
tPDCHGz is configurable by SPI. See control register TPRECHG, configuration bits  
TPDCHGz[1:0].  
Turn-on delay of the PWM MOSFET mapped to the PWM channel z:  
for high-side PWM: time between the end of the cross-current protection and when  
VSHx increases to VSHL (Figure 17).  
for low-side PWM: time between the end of the cross-current protection and when  
VSHx decreases to VSHH  
.
tDOFFz  
Turn-off delay of the PWM MOSFET mapped to the PWM channel z:  
for high-side PWM: time between the end of the symmetrization delay (tHBxCCP) and  
when VSHx decreases to VSHH (Figure 18).  
for low-side PWM: time between the end of the symmetrization delay (tHBxCCP) and  
when VSHx increases to VSHL.  
IHOLD  
Hold current sourced or sunk by the gate driver to keep the MOSFET in the desired  
state. See IHOLD control bit in GENCTRL2.  
IHARDOFF  
TFVDS  
IHARDOFF is the maximum current that the gate drivers can sink. It corresponds to the  
discharge current when IDCHGx[4:0] = 31D (100 mA typ.).  
Drain-Source overvoltage filter time. See GENCTRL2.  
Datasheet  
36  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
6.3.3.1 High-side PWM with adaptive gate control, motor operating as load  
The following section describes the MOSFET control when the PWM signal is applied to the high-side MOSFET  
of one half-bridge while the motor operates .  
Assumption: the PWM channel z, z = 1,2 or 3, is applied to the high-side MOSFET of the half-bridge x, x = 1 … 8.  
Current Flow PWMz = High  
VS  
Current Flow PWMz = Low  
HSx: Active  
MOSFET  
IDS_HSx  
HSx  
IGS_HSx  
HSy OFF  
PWMz  
VGS_HSx  
SHx  
SHy  
M
LSx: FW  
MOSFET  
LSx  
IGS_LSx  
LSy ON  
VGS_LSx  
Figure 16 PWM channel z is mapped to high-side x, motor operating as load  
Datasheet  
37  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
External  
PWMz  
Synchronized  
intern. PWMz  
t
t
tPWM_SYNCH  
Charge  
phase  
Postcharge Phase  
IGS_HSx  
tPCHGx  
ICHGMAXx  
IPRECHGx  
ICHGx  
0
t
tHBxBLANK Active  
tHBxCCP FW  
HSx internal  
drive signal  
tFVDS  
ICHGMAXx  
IPRECHGx  
IHOLD  
IHOLD  
ICHGx  
ICHGx  
t
0
-
IHOLD  
VGS_HSx  
t
t
tRISEx  
VSHx  
VS  
VSHH  
VSHH  
tDONx  
VSHL  
VSHL  
IDS_HSDx  
IMOTOR  
t
t
IGS_LSx  
-
ICHGFWx  
LSx internal  
drive signal  
IHOLD  
tFVDS  
t
-
IHOLD  
-
IHOLD  
-
ICHGFWx  
Hard off  
-
IHARDOFF  
Figure 17 Adaptive turn-on, high-side PWM, AGC[1:0] = (1,0) or (1,1), motor operating as load  
Datasheet  
38  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
Adaptive turn-on during high-side PWM  
The turn-on of the high-side MOSFET is done in four phases (Refer to Figure 17):  
1. Cross-current protection phase: The cross-current protection tHBxCCP FW starts at the rising edge of the  
internal PWMz signal1). During tHBxCCP FW, the low-side MOSFET x is turned off with the discharge current  
- ICHGFWx, while the high-side MOSFET x is kept off. .  
2. Pre-charge: Once tHBxCCP FW has elapsed, the gate of the high-side MOSFET x is pre-charged with the  
current IPRECHGz for a duration tPCHGz. IPRECHGz2) is an internal parameter, which is self-adaptive (see  
next phase).  
3. Charge: After tPCHGz, the charge current is decreased from IPRECHGz down to ICHGz. The effective  
tDONz3) is measured and compared to the configured tDONz for the automatic adaptation of IPRECHGz  
(see Adaptive control of pre-charge current). The charge phase ends up when VSHx reaches VSHH  
.
4. Post-charge: After the charge phase, the control signal for the charge current of HSx is increased by one  
current step every 62.5 ns typ. to ICHGMAXx.  
Note:  
The postcharge phase is deactivated by setting POCHGDIS to 1. Refer to GENCTRL2.  
Adaptive control of pre-charge current  
Refer to Chapter 6.3.6 for information on the pre-discharge currents.  
The pre-charge current IPRECHGz is a self-adaptive parameter if AGC[1:0] = (1,0) or (1,1) (see GENCTRL2). It is  
applied during tPCHGz (see TPRECHG). The TLE92108-232QX adapts IPRECHGz to match the effective tDONz  
to the configured value.  
IPRECHGz is clamped between ICHG0 (1 mA typ.) and ICHGMAXz (see PWM_ICHGMAX_CCP_BLK3_ACT).  
IPRECHGz is initialized to min(IPCHGINITz, ICHGMAXz) (refer to PWM_PCHG_INIT) when the TLE92108-232QX  
receives an SPI command setting PWMz_EN to 1 (see PWMSET).  
The following adaptive schemes can be selected:  
AGCFILT = 0 (GENCTRL2): No filter is applied  
If the effective tDONz is longer than the configured tDONz, then IPRECHGz is increased during the next pre-  
charge phase.  
If the effective tDONz is shorter than the configured tDONz, then IPRECHGz is decreased during the next  
pre-charge phase.  
The pre-charge current is increased or decreased by one, respectively by two current steps (Chapter 6.3.6)  
if the control bit IPCHGADT in the control register GENCTRL1 is set to 0 respectively 1.  
AGCFILT = 1: The filter is applied  
If the effective tDONz of the last two PWM cycles are longer than the configured tDONz, then IPRECHGz is  
increased during the next pre-charge phase.  
1) The external PWMz signal is synchronized with the internal device clock, resulting in the delay tPWM_SYNCH between the internal and  
the external PWMz signals.  
2) IPRECHGz is clamped between ICHGMAXz and ICHG0  
.
3) The effective tDON can be read out. Refer to EFF_TDON_OFF1,EFF_TDON_OFF2, EFF_TDON_OFF3  
Datasheet  
39  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
If the effective tDONz of the last two PWM cycles are shorter than the configured tDONz, then IPRECHGz  
is decreased during the next pre-charge phase.  
The pre-charge current is increased or decreased by one, respectively by two current steps (Chapter 6.3.6)  
if the control bit IPCHGADT in the control register GENCTRL1 is set to 0 respectively 1.  
If none of the two cases are applicable, then IPRECHGz is unchanged during the next pre-charge phase.  
Datasheet  
40  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
External  
PWMz  
t
t
tPWM_SYNCH  
Synchronized  
intern. PWMz  
IGS_HSx  
Discharge phase  
tPDCHGx  
t
0
- IDCHGx  
- IPREDCHGx  
tHBxCCP FW for  
symmetrisation  
tHBxCCP Active for cross current  
protection  
HSx internal  
drive signal  
IHOLD  
0
t
-
IHOLD  
- IDCHGx  
- IHOLD  
- IDCHGx  
- IPREDCHGx  
Hard off  
-
IHARDOFF  
tFVDS  
VGS_HSx  
t
t
tFALLx  
VSHx  
tDOFFx  
VS  
VSHH  
VSHH  
VSHL  
VSHL  
IDS_HSDx  
IMOTOR  
t
t
IGS_LSx  
ICHGFWx  
tHBxBLANK FW  
LSx internal  
drive signal  
tFVDS  
ICHGFWx  
IHOLD  
IHOLD  
t
-
IHOLD  
Figure 18 Adaptive turn-off, high-side PWM, AGC[1:0] = (1,0) or (1,1), motor operating as load  
Adaptive turn-off during high-side PWM  
Datasheet  
41  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
The turn-off of the high-side MOSFET is done in four phases (Refer to Figure 18):  
1. Turn-off delay time for symmetrization of the PWM signal: The turn-off of HSx is delayed by tHBxCCP FW  
after the falling edge of the internal PWMz signal1), in order to compensate the distortion caused by the  
cross-current protection time at turn-on.  
2. Pre-discharge: once tHBxCCP FW for symmetrization has elapsed, the gate of the high-side MOSFET x is  
pre-discharged with the current - IPREDCHGz for a duration tDPCHGz. IPREDCHGz is a device internal  
parameter, which is self-adaptive (See next phase).  
3. Discharge: After tPREDCHGz, the pre-discharge current is decreased in absolute value from IPREDCHGz2)  
down to IDCHGz. The effective tDOFF3) is measured and compared to the configured tDOFFz for the  
automatic adaptation of IPREDCHGz (see Adaptive control of pre-discharge current). The discharge  
phase ends up at expiration of tHBxCCP active for cross-current protection.  
4. Cross-current protection phase: The cross-current protection is concurrent to the pre-discharge and  
discharge of the high-side MOSFET. The cross-current protection phase starts when the turn-off delay for  
symmetrization ends up. It has the duration tHBxCCP active. During tHBxCCP active, the low-side  
MOSFETx is kept OFF. When tHBxCCP active has elapsed, the gate of the low-side MOSFET x is charged with  
the current ICHGFWz until the end of tFVDS, provided that VSHx < VSHL  
.
Adaptive control of pre-discharge current  
Refer to Chapter 6.3.6 for information on the pre-discharge currents.  
The pre-discharge current IPREDCHGz is a self-adaptive parameter if AGC[1:0] = (1,0) or (1,1) (see GENCTRL2).  
The TLE92108-232QX adapts the IPREDCHGz to match the measured tDOFFz to the configured value.  
IPREDCHGz is clamped between IDCHG0 (1 mA typ.) and ICHGMAXz (see PWM_ICHGMAX_CCP_BLK3_ACT).  
IPREDCHGz is initialized to min(IPDCHGINITz, ICHGMAXz) (refer to PWM_PDCHG_INIT) when the TLE92108-  
232QX receives a SPI command setting PWMz_EN to 1 (see PWMSET)  
The pre-discharge current is increased or decreased by one, respectively by two current steps (Chapter 6.3.6)  
if the control bit IPCHGADT in the control register GENCTRL1 is set to 0 respectively 1.  
The following adaptive schemes can be selected:  
AGCFILT = 0 (GENCTRL2): No filter is applied  
If the effective tDOFFz is longer than the configured tDOFFz, then IPREDCHGz is increased during the next  
pre-discharge phase  
If the effective tDOFFz is shorter than the configured tDOFFz, then IPREDCHGz is decreased during the next  
pre-discharge phase  
The pre-charge current is increased or decreased by one, respectively by two current steps (Chapter 6.3.6)  
if the control bit IPCHGADT in the control register GENCTRL1 is set to 0 respectively 1.  
AGCFILT = 1: The filter is applied  
1) The external PWMz signal is synchronized with the internal device clock, resulting in the delay tPWM_SYNCH between the internal and  
the external PWMz signals.  
2) IPREDCHGz is clamped between ICHGMAXz and IDCHG0  
.
3) The effective tDOFF can be read out. Refer to EFF_TDON_OFF1,EFF_TDON_OFF2, EFF_TDON_OFF3.  
Datasheet  
42  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
If the effective tDOFFz of the last two PWM cycles are longer than the configured tDOFFz, then IPREDCHGz  
is increased during the next pre-charge phase.  
If the effective tDOFFz of the last two PWM cycles are shorter than the configured tDOFFz, then  
IPREDCHGz is decreased during the next pre-charge phase.  
If none of the two cases are applicable, then IPRECHGz is unchanged during the next pre-charge phase.  
The pre-charge current is increased or decreased by one, respectively by two current steps if the control  
bit IPCHGADT is set to 0 respectively 1.  
Datasheet  
43  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
6.3.3.2 Low-side PWM with adaptive gate control, motor operating as load  
The following section describes the MOSFET control when the PWM signal is applied to the low-side MOSFET  
of one half-bridge.  
Assumption: the PWM channel z, z = 1,2 or 3, is applied to the low-side MOSFET of the half-bridge x, x = 1 … 8  
(Figure 19).  
Current Flow PWM = High  
VS  
Current Flow PWM = Low  
HSx: FW MOSFET  
IGS_HSx  
HSy ON  
VGS_HSx  
SHy  
SHx  
M
LSx: Active MOSFET  
IDS_LSx  
LSx  
IGS_LSx  
LSy OFF  
PWMz  
VGS_LSx  
Figure 19 PWM Channel z is mapped to low-side x, motor operating as load  
The description of the control of the PWM half-bridge differs from the description of Chapter 6.3.3.1 only by  
exchanging high-side x and low-side x and the thresholds VSHH and VSHL  
.
Datasheet  
44  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
6.3.3.3 High-side PWM with adaptive gate control, motor operating as generator  
The control scheme during high-side PWM in generator mode (refer to Figure 20) is equivalent to low-side  
MOSFET in load mode with the complementary signal of the external PWM input.  
The turn-on, turn-off delay times and the rise and fall times are applied and measured for the active MOSFET.  
Current Flow PWMz = High  
Current Flow PWMz = Low  
VS  
HSx: FW  
MOSFET  
IDS_HSx  
HSx  
PWMz  
IGS_HSx  
HSy OFF  
VGS_HSx  
SHx  
SHy  
M
LSx: Active  
MOSFET  
LSx  
IGS_LSx  
LSy ON  
VGS_LSx  
Figure 20 PWM input z is mapped to high-side x, the motor operating as generator  
Datasheet  
45  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
External  
PWMz  
t
t
tPWM_SYNCH  
Synchronized  
intern. PWMz  
IGS_LSx  
Discharge phase  
tPDCHGx  
t
0
- IDCHGx  
- IPREDCHGx  
tHBxCCP FW for  
symmetrisation  
tHBxCCP Active for cross current  
protection  
LSx internal  
drive signal  
IHOLD  
0
t
-
IHOLD  
- IDCHGx  
- IHOLD  
- IDCHGx  
- IPREDCHGx  
Hard off  
-
IHARDOFF  
tFVDS  
VGS_LSx  
t
VSHx  
tDOFFx tFALLx  
VS  
VSHH  
VSHH  
VSHL  
VSHL  
t
t
IDS_LSDx  
- IMOTOR  
IGS_HSx  
ICHGFWx  
t
tHBxBLANK FW  
HSx internal  
drive signal  
tFVDS  
ICHGFWx  
IHOLD  
IHOLD  
t
-
IHOLD  
Figure 21 Adaptive turn-on, high-side PWM, AGC[1:0] = (1,0) or (1,1), motor operating as generator  
Datasheet  
46  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
6.3.3.4 Low-side PWM with adaptive gate control, motor operating as generator  
The control scheme during high-side PWM in generator mode (refer to Figure 20) is equivalent to low-side  
PWM in load mode with the complementary signal of the external PWM input.  
The turn-on, turn-off delay times and the rise and fall times are applied and measured for the active MOSFET.  
Current Flow PWM = High  
VS  
Current Flow PWM = Low  
HSx: Active MOSFET  
IGS_HSx  
HSy ON  
VGS_HSx  
SHy  
SHx  
M
LSx: FW MOSFET  
IDS_LSx  
LSx  
IGS_LSx  
LSy OFF  
PWMz  
VGS_LSx  
Figure 22 PWM input z is mapped to low-side x, the motor operating as generator  
Datasheet  
47  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
External  
PWMz  
Synchronized  
intern. PWMz  
t
t
tPWM_SYNCH  
Charge  
phase  
Postcharge Phase  
IGS_LSx  
tPCHGx  
ICHGMAXx  
IPRECHGx  
ICHGx  
0
t
tHBxBLANK Active  
tHBxCCP FW  
LSx internal  
drive signal  
tFVDS  
ICHGMAXx  
IPRECHGx  
IHOLD  
IHOLD  
ICHGx  
ICHGx  
t
0
-
IHOLD  
VGS_LSx  
VSHx  
t
t
tRISEx  
VSHH  
VS  
VSHH  
tDONx  
VSHL  
VSHL  
IDS_LSDx  
t
t
- IMOTOR  
IGS_HSx  
-
ICHGFWx  
HSx internal  
drive signal  
tFVDS  
IHOLD  
t
-
IHOLD  
-
IHOLD  
-
ICHGFWx  
Hard off  
-
IHARDOFF  
Figure 23 Adaptive turn-off with high-side PWM, AGC[1:0] = (1,0) or (1,1), motor operating as  
generator  
Datasheet  
48  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
6.3.3.5 Status bits for regulation of turn-on and turn-off delay times  
The control bits TDREGx (GENSTAT) indicate if tDONx and tDOFFx of the PWM channel x using the adaptive  
gate control scheme (AGC[1:0] = 10B or 11B) is in regulation.  
The PWM channel is considered in regulation if one of the following conditions are met:  
the effective turn-on and turn-off delays are equal to the configured delays for at least eight consecutive  
PWM cycles  
the error between the effective and configured delay changes its sign at least three times during the last  
8 PWM cycles  
6.3.3.6 Precharge and predischarge phases with EN_DEEP_AD = 1  
This section is valid if EN_DEEP_AD = 1. Enabling this feature leads to a lower granularity of the resulting  
precharge and and predischarge currents.  
This principle is illustrated with an example during the precharge phase on Figure 24. The same principle is  
applied to the predischarge phase.  
If EN_DEEP_AD = 1:  
The precharge phase can be divided in two parts, during which different precharge current steps are  
applied  
The predischarge phase can be divided in two parts, during which different predischarge current steps are  
applied  
The device exits the “deep adaptation mode” if tDON, respectively tDOFF, cannot be regulated and the resolution  
of the precharge time cannot be further divided. Then, one single current step is applied during the precharge  
time (Figure 25).  
Datasheet  
49  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
TDON adaptation  
with two current  
steps (IPCHGADT =  
1)  
Current i+2  
No  
3 consecutive sign changes of (TDON  
EFF- TDON TARGET) or No error for 3  
consecutive PWM cycles  
Current i  
Yes  
tPCHG  
tPCHG  
TDON adaptation  
with one current step  
i+1  
i
No: TDON EFF =  
TDON TARGET  
3 consecutive sign changes  
of (TDON EFF- TDON  
TARGET)  
tPCHG  
tPCHG  
Yes  
i+1  
i
Precharge phase splitted in 2  
sub-phases  
50% 50%  
tPCHG  
Yes  
TDON EFF = TDON  
TARGET  
No  
Precharge splitted:  
75%-25% if TDON EFF > TDON TARGET  
25%-75% if TDON EFF < TDON TARGET  
i+1  
i
i+1  
i
or  
25%  
75%  
75%  
tPCHG  
25%  
tPCHG  
Yes  
TDON EFF = TDON  
TARGET  
No  
Precharge splitted:  
E.g 87.5%-12.5%  
Etc...  
Figure 24 Example of precharge current modulation during the precharge phase, EN_DEEP_AD = 1  
Datasheet  
50  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
tPCHG = 250 ns  
TDON adaptation  
with two current  
steps (IPCHGADT =  
1)  
Current i+2  
No  
3 consecutive sign changes of (TDON  
EFF- TDON TARGET) or No error for 3  
consecutive PWM cycles  
Current i  
Yes  
tPCHG  
tPCHG  
TDON adaptation  
with one current step  
i+1  
i
No  
3 consecutive sign changes  
of (TDON EFF- TDON  
TARGET)  
tPCHG  
tPCHG  
Yes  
Time modulation entered  
Precharge phase splitted in 2  
sub-phases  
i+1  
i
50% 50%  
tPCHG  
Yes  
TDON EFF = TDON  
TARGET  
No  
Precharge splitted:  
75%-25% if TDON EFF > TDON TARGET  
25%-75% if TDON EFF < TDON TARGET  
i+1  
i
i+1  
i
or  
25%  
75%  
75%  
tPCHG  
25%  
Yes  
tPCHG  
No  
TDON EFF = TDON TARGET  
1) Exit time modulation: the resolution of  
tPCHG cannot be further divided: one  
single current is applied during tPCHG  
Figure 25 Criteria to exit the time modulation, EN_DEEP_AD = 1  
Datasheet  
51  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
6.3.4  
PWM operation without adaptive gate control  
The adaptive gate control is disabled if AGC[1:0] is set to (0,0) or (0,1). The effective turn-on and turn -off delays  
of the PWM MOSFETs are not regulated. Two modes can be selected.  
The target turn-on and turn-off delay times of PWM MOSFETs (configured in TDON_OFF1,  
TDON_OFF2,TDON_OFF3) are no longer regulated. Nevertheless the status registers EFF_TDON_OFF1,  
EFF_TDON_OFF2, EFF_TDON_OFF3 still report the effective turn-on and turn-off times of the PWM MOSFET.  
6.3.4.1 PWM operation without adaptive gate control, AGC[1:0] = (0,0)  
When AGC[1:0] = (0,0) (see GENCTRL2), the control of the gate drivers in PWM mode differs from the  
description of Chapter 6.3.3, PWM operation with adaptive gate control, only by the suppression of the pre-  
charge and pre-discharge phases.  
Datasheet  
52  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
6.3.4.2 PWM operation without adaptive gate control, AGC[1:0] = (0,1)  
When AGC[1:0] = (0,1) (see GENCTRL2), the control of the gate drivers in PWM mode differs from the  
description of Chapter 6.3.4.1, PWM operation without adaptive gate control, AGC[1:0] = (0,0), only by the  
addition of a pre-discharge phase. During tPDCHGz, the gate of the PWM MOSFET mapped to the PWM channel  
z is discharged with the current -IPDCHGINITz (Refer to PWM_PDCHG_INIT).  
Refer to Figure 26 for the turn-off of the PWM MOSFET with high-side PWM.  
Datasheet  
53  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
PWMz  
t
IGS_HSx  
Discharge phase  
tPDCHGz  
t
0
- IDCHGz  
- IPDCHGINITz  
tHBxCCP for symmetrisation  
tHBxCCP for cross current protection  
HSx internal  
drive signal  
IHOLD  
0
t
-
IHOLD  
- IDCHGz  
- IHOLD  
- IDCHGz  
- IPDCHGINITz  
Hard off  
-
IHARDOFF  
tFVDS  
VGS_HSx  
t
t
tFALLz  
VSHx  
tDOFFz  
VS  
VSHH  
VSHH  
VSHL  
VSHL  
IDS_HSDx  
IMOTOR  
t
t
IGS_LSx  
ICHGMAXz  
tHBxBLANK  
LSx internal  
drive signal  
tFVDS  
ICHGMAXz  
IHOLD  
IHOLD  
t
-
IHOLD  
Figure 26 High-side PWM operation - turn-off without adaptive gate control, AGC[1:0] = (0,1)  
Datasheet  
54  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
6.3.5  
PWM operation at high and low duty cycles  
This section describes the internal PWM signal of the active and FW MOSFET when the motor operates as load  
or generator. In particular, at low and high duty cycles, the active free-wheeling is disabled.  
Note:  
Note:  
It is recommended to clear EN_GEN_CHECK (EN_GEN_CHECK to 0) at very high and very low duty  
cycles: tON > tHBxCCP FW and tOFF < tHBxCCP active. Under these conditions, a generator mode  
cannot be correctly detected. The control scheme of the active MOSFET and of the freewheeling  
MOSFET can therefore be inverted.  
The device cannot measure the switching times tDON, tDOFF, tRISE and tFALL at very high and very  
low duty cycles: tON > tHBxCCP FW and tOFF < tHBxCCP active.  
General case, motor operating as load, tON > tHBxCCP FW and tOFF > tHBxCCP active  
Figure 27 shows the internal control signals of the PWM MOSFETs and the freewheeling MOSFET while the  
motor operates as load :  
tON is longer than the FW cross-current protection time (tHBxCCP FW)  
tOFF is longer than the active cross-current protection time (tHBxCCP Active)  
tHBxCCP3  
active  
tHBxCCP2  
FW (sym)  
tHBxCCP1  
FW  
External PWMx signal  
tON  
time  
time  
Control signal for  
Active MOSFET  
Control signal for  
free-wheeling MOSFET  
time  
Figure 27 Internal signals for PWM operation - General case tON > tHBxCCP FW, tOFF > tHBxCCP  
active, motor operating as load  
General case, motor operating as generator, tOFF > tHBxCCP FW and tON > tHBxCCP active  
Figure 28 shows the internal control signals of the PWM MOSFETs and the freewheeling MOSFET while the  
motor operates as generator:  
tOFF is longer than the FW cross-current protection time (tHBxCCP FW)  
tON is longer than the active cross-current protection time (tHBxCCP Active)  
Datasheet  
55  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
External PWMx  
signal  
tOFF  
time  
tHBxCCP3  
active  
tHBxCCP2  
FW (sym)  
tHBxCCP1  
FW  
Inverted ext.  
PWMx signal  
time  
time  
Control signal for  
Active MOSFET  
Control signal for  
free-wheeling MOSFET  
time  
Figure 28 Internal signals for PWM operation - General case: tOFF > tHBxCCP FW, tON > tHBxCCP  
active, motor operating as generator  
Datasheet  
56  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
High duty cycle: tOFF < tHBxCCP active  
No distinction between active MOSFET and FW MOSFET is possible, when the OFF-time of the external PWM  
signal is shorter than the configured active cross-current protection time. Therefore the PWM MOSFET  
(selected by HBxMODE[1:0]) is controlled as the active MOSFET. In other words, it is assumed that the motor  
operates as load. The control signal of the PWM MOSFET is shifted by one FW cross-current protection time  
compared to the external PWM signal. The MOSFET opposite to the PWM MOSFET stays OFF (passive FW). Refer  
to Figure 29.  
tHBxCCP2  
FW (sym)  
tHBxCCP1  
FW  
External PWMx signal  
time  
tOFF  
Control signal for  
PWM MOSFET  
time  
Control signal for  
MOSFET opposite  
to PWM MOSFET  
time  
Figure 29 Internal signals for PWM operation at high duty cycle, tOFF < tHBxCCP active  
Low duty cycle: tON < tHBxCCP FW  
No distinction between active MOSFET and FW MOSFET is possible, when the ON-time of the external PWM  
signal is shorter than the configured FW cross-current protection time. Therefore the PWM MOSFET (selected  
by HBxMODE[1:0]) is controlled as the active MOSFET. In other words, it is assumed that the motor operates  
as load. The control signal of the PWM MOSFET is shifted by one cross-current protection time compared to  
the external PWM signal. The MOSFET opposite to the PWM MOSFET stays off (passive FW). Refer to Figure 30.  
tHBxCCP  
FW2 (sym)  
tHBxCCP  
Active 3  
tHBxCCP  
FW 1  
External PWMx signal  
time  
tON  
Control signal for  
PWM MOSFET  
time  
Control signal for  
MOSFET opposite  
time  
to PWM MOSFET  
Figure 30 Internal signals for PWM operation at low duty cycle, tON < tHBxCCP FW  
Datasheet  
57  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
6.3.6  
Gate driver current  
Each gate driver is able to source and sink currents from 1.0 mA to 100 mA, with 32 steps according to  
Figure 31 and Figure 32.  
The charge and discharge currents of the active and the FW MOSFETs are configured separately by:  
The REG_BANK bit (GENCTRL1)  
The control registers PWM_ICHG_ACT, PWM_IDCHG_ACT, PWM_ICHG_FW  
The charge current of the active MOSFETs are configured by PWM_ICHG_ACT (REG_BANK = 0)  
The discharge current of the active MOSFETs are configured by PWM_IDCHG_ACT (REG_BANK = 0)  
The charge and discharge current of the FW MOSFET are configured by PWM_ICHG_FW (REG_BANK = 1)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
5
10  
15  
20  
25  
30  
ICHGx[4:0]dec  
Figure 31 Configurable charge currents in PWM operation  
Datasheet  
58  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
Table 13  
Charge currents in PWM operation  
ICHGx[4:0], ICHGxFW[4:0],  
IPCHGINITx[4:0]  
Nom. charge current  
[mA]1)  
Max. deviation to nominal  
values [%]  
00000B  
00001B  
00010B  
00011B  
00100B  
00101B  
00110B  
00111B  
01000B  
01001B  
01010B  
01011B  
01100B  
01101B  
01110B  
01111B  
10000B  
10001B  
10010B  
10011B  
10100B  
10101B  
10110B  
10111B  
11000B  
11001B  
11010B  
11011B  
11100B  
11101B  
11110B  
11111B  
1.0  
+/- 60 %  
+/- 60 %  
+/- 60 %  
+/- 60 %  
+/- 60 %  
+/- 60 %  
+/- 38 %  
+/- 38 %  
+/- 38 %  
+/- 38 %  
+/- 38 %  
+/- 38 %  
+/- 38 %  
+/- 38 %  
+/- 28 %  
+/- 28 %  
+/- 28 %  
+/- 28 %  
+/- 28 %  
+/- 28 %  
+/- 28 %  
+/- 28 %  
+/- 28 %  
+/- 28 %  
+/- 28 %  
+/- 28 %  
+/- 28 %  
+/- 28 %  
+/- 28 %  
+/- 28 %  
+/- 25 %  
+/- 25 %  
1.5  
2.0  
3.2  
4.5  
6.3  
8.0  
10.3  
12.5  
15.1  
17.8  
20.8  
23.9  
27.0  
30.0  
33.5  
37.1  
40.7  
44.3  
48.3  
52.3  
56.2  
60.1  
64.2  
68.3  
72.5  
76.8  
81.4  
86.0  
91.0  
96.0  
100  
1) VS 8V and VGS VGS(ON)1 if ICHGx/ICHGxFW 14D, VS 8V and VGS VGS(ON)2 if ICHGx/ICHGxFW 15D  
Datasheet  
59  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
5
10  
15  
20  
25  
30  
IDCHGx[4:0]dec  
Figure 32 Configurable discharge currents in PWM operation  
Datasheet  
60  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
Table 14  
Discharge currents in PWM operation  
IDCHGx[4:0], IDCHGxFW[4:0],  
IPDCHGINITx[4:0]  
Nom. charge current  
[mA]1)  
Max. deviation to nominal  
values [%]  
00000B  
00001B  
00010B  
00011B  
00100B  
00101B  
00110B  
00111B  
01000B  
01001B  
01010B  
01011B  
01100B  
01101B  
01110B  
01111B  
10000B  
10001B  
10010B  
10011B  
10100B  
10101B  
10110B  
10111B  
11000B  
11001B  
11010B  
11011B  
11100B  
11101B  
11110B  
11111B  
1.0  
+/- 60 %  
+/- 60 %  
+/- 60 %  
+/- 60 %  
+/- 60 %  
+/- 60 %  
+/- 38 %  
+/- 38 %  
+/- 38 %  
+/- 38 %  
+/- 38 %  
+/- 38 %  
+/- 38 %  
+/- 38 %  
+/- 28 %  
+/- 28 %  
+/- 28 %  
+/- 28 %  
+/- 28 %  
+/- 28 %  
+/- 28 %  
+/- 28 %  
+/- 28 %  
+/- 28 %  
+/- 28 %  
+/- 28 %  
+/- 28 %  
+/- 28 %  
+/- 28 %  
+/- 28 %  
+/- 25 %  
+/- 25 %  
1.9  
2.8  
4.3  
5.7  
7.5  
9.4  
11.8  
14.2  
17.0  
19.7  
22.9  
26.0  
29.0  
32.0  
35.8  
39.5  
43.1  
46.8  
50.8  
54.7  
58.6  
62.5  
66.6  
70.6  
74.6  
78.5  
82.8  
87.0  
91.0  
95.0  
100  
1) VGS VGS(OFF)1 if IDCHGx 14D, VGS VGS(OFF)2 if IDCHGxFW 15D  
Datasheet  
61  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
6.4  
Passive discharge  
Resistors (RGGND) between the gate of GHx and GND, and between GLx and GND, ensure that the external  
MOSFETs are turned off, when EN = Low or when VDD < VDDPOffR  
.
During normal mode with BD_PASS bit reset (GENCTRL2) without failure causing the deactivation of the gate  
drivers, these pull-down resistors are switched off. The MOSFET are actively kept off with the discharge  
current IHOLD.  
During normal mode with failure leading to the deactivation of the gate drivers (charge pump undervoltage,  
VS undervoltage and overvoltage, thermal shutdown) or in fail safe mode, RGGND are activated, independently  
from the setting of BD_PASS.  
Gate driver power down  
The gate driver is deactivated in normal mode with BD_PASS set to 1 and all HBxMODE[1:0]=00 or 11. The  
current consumption of the VS input is reduced to IS_BD_PASS and RGGND are activated.  
6.5  
Bridge driver in passive mode  
The low-side MOSFETs LS1, LS2, LS3 and LS4 can be controlled when the bridge driver in the passive mode. All  
the other MOSFETs kept off by the passive discharge.  
The bridge driver is in passive mode:  
If BD_PASS = 1 in normal mode and all HBxMODE[1:0]=00B or 11B.  
In sleep mode (EN = Low).  
If VDD < VDD POffR  
.
When the bridge driver is in passive mode, then the state of the low-side MOSFETs LS1-LS4 is configured by  
PASS_MOD.1)  
If PASS_MOD[1:0] = 00B : LS1, LS2, LS3 and LS4 are off (passive discharge).  
If PASS_MOD[1:0] = 01B : LS1, LS2, LS3 and LS4 are on (static brake).  
If PASS_MOD[1:0] = 10B : LS1, LS2, LS3 and LS4 are turned on if VS > VSOV PASS OFF (overvoltage brake). The  
PWM3 pin is pulled down by an internal open drain (RPWM3_OD).  
If PASS_MOD[1:0] = 11B : LS1, LS2, LS3 and LS4 are turned on if PWM1 = High and VS > VSOV PASS OFF  
(overvoltage brake conditioned by PWM1). The PWM3 pin is pulled down by an internal open drain  
(RPWM3_OD).  
LS1, LS2, LS3 and LS4 MOSFETs with an input capacitor up to 10 nF are turned on within tON_BD_PASS  
.
The setting of LS1-LS4 according to PASS_MOD in sleep mode or if VDD < VDD POffR is valid only if VS stays above  
SLEEP_SET. If VS drops below VSLEEP_SET, then LS1-LS4 behave as if PASS_MOD = 10B, the latter setting is kept  
V
even after a VS recovery. Note that the quiescent current is changed accordingly.  
1) If BD_PASS = 0, the setting by PASS_MOD[1:0] is effective only when EN= 0 or VDD < VDD POffR  
Datasheet  
62  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
6.6  
Electrical characteristics gate driver  
The electrical characteristics related to the gate driver are valid for VCP > VS + 8.5 V.  
Table 15  
Electrical characteristics: gate drivers  
VS = 6.0 V to 18 V if VSOVTH = 0, VS = 6.0 V to 28 V if VSOVTH = 1; VDD = 3.0 V to 5.5 V, Tj = -40°C to 150°C  
VCP > VS + 8.5 V, all voltages with respect to ground. Positive current flowing into pin except for IGLx and IGHx  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Comparators  
SHx High Threshold  
SHx Low Threshold  
SHx comparator delay  
MOSFET Driver Output  
VSHH  
VSHL  
tSHx  
VS - 2.5  
5
VS - 2.0  
2.5  
V
P_6.5.1  
P_6.5.2  
P_6.5.26  
2
V
Referred to GND  
1)  
30  
ns  
High Level Output Voltage  
GHx vs. SHx and GLx vs. SL,  
CPSTGA= 0  
VGH1  
10  
12  
V
VS > 8 V  
P_6.5.3  
CLoad = 10 nF  
ICP = - 12 mA2)  
High Level Output Voltage  
GHx vs. SHx and GLx vs. SL,  
CPSTGA= 0  
VGH3  
7
V
VS > 6.0 V  
P_6.5.5  
CLoad = 10 nF  
I
CP = - 6 mA2)  
High Level Output Voltage  
GHx vs. SHx and GLx vs. SL,  
CPSTGA= 1  
VGH4  
10  
12  
V
1) VS > 18 V,  
P_6.5.6  
C
Load = 10 nF ICP = -  
12 mA2)  
Charge current  
Charge current  
Charge current  
Charge current  
Discharge current  
Discharge current  
Discharge current  
ICHG0  
0.4  
5.0  
21.6  
72  
1.0  
8.0  
30.0  
96  
1.6  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
ICHG = 0D  
P_6.5.30  
P_6.5.31  
P_6.5.33  
P_6.5.35  
P_6.5.36  
P_6.5.37  
P_6.5.39  
CLoad = 10 nF  
VGS VGS(ON)1  
ICHG6  
11.0  
38.4  
120  
-0.4  
-5.8  
-23.0  
ICHG = 6D  
CLoad = 10 nF  
V
GS VGS(ON)1  
ICHG = 14D  
Load = 10 nF  
ICHG14  
ICHG30  
IDCHG0  
IDCHG6  
IDCHG14  
C
VGS VGS(ON)1  
ICHG = 30D  
CLoad = 10 nF  
V
GS VGS(ON)2  
IDCHG = 0D  
Load = 10 nF  
GS VGS(OFF)1  
IDCHG = 6D  
Load = 10 nF  
-1.6  
-13.0  
-41.0  
-1.0  
-9.4  
-32.0  
C
V
C
VGS VGS(OFF)1  
IDCHG = 14D  
CLoad = 10 nF  
VGS VGS(OFF)1  
Datasheet  
63  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Floating gate drivers  
Table 15  
Electrical characteristics: gate drivers (cont’d)  
VS = 6.0 V to 18 V if VSOVTH = 0, VS = 6.0 V to 28 V if VSOVTH = 1; VDD = 3.0 V to 5.5 V, Tj = -40°C to 150°C  
VCP > VS + 8.5 V, all voltages with respect to ground. Positive current flowing into pin except for IGLx and IGHx  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Typ.  
-95  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Discharge current  
IDCHG30  
-119  
-71  
mA  
IDCHG = 30D  
Load = 10 nF  
P_6.5.41  
C
VGS VGS(OFF)2  
1)  
Passive discharge  
resistancebetweenGHx/GLx  
and GND  
RGGND  
10  
20  
30  
kΩ  
P_6.5.11  
1)  
Resistor between SHx and RSHGND  
GND  
10  
20  
22  
30  
40  
kΩ  
P_6.5.12  
P_6.5.13  
Low RDSON mode  
RONCCP  
VS = 13.5 V  
VCP = VS + 14 V  
ICHG = IDCHG = 31  
(max)  
Gate Drivers Dynamic Parameters  
External MOSFET gate-to-  
source voltage - ON  
VGS(ON)1  
VGS(ON)2  
VGS(OFF)1  
VGS(OFF)2  
9
7
2
5
V
V
V
V
1) VS 8V  
ICHGx 14D  
1) VS 8V  
ICHGx 15D  
P_6.5.50  
P_6.5.51  
P_6.5.53  
P_6.5.53  
External MOSFET gate-to-  
source voltage - ON  
External MOSFET gate-to-  
source voltage - OFF  
1) IDCHGx 14D  
External MOSFET gate-to-  
source voltage - OFF  
1) IDCHGx 15D  
1)  
PWM synchronization delay tPWM_SYNCH 50  
150  
150  
300  
600  
1200  
150  
300  
600  
1200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
P_6.5.46  
P_6.5.18  
P_6.5.19  
P_6.5.20  
P_6.5.21  
P_6.5.22  
P_6.5.23  
P_6.5.24  
P_6.5.25  
Pre-charge time  
Pre-charge time  
Pre-charge time  
Pre-charge time  
Pre-discharge time  
Pre-discharge time  
Pre-discharge time  
Pre-discharge time  
tPCHG00  
tPCHG01  
tPCHG10  
tPCHG11  
tDPCHG00  
tDPCHG01  
tDPCHG01  
tDPCHG01  
100  
200  
400  
800  
100  
200  
400  
800  
125  
250  
500  
1000  
125  
250  
500  
1000  
1) TPCHG = 00B  
1) TPCHG = 01B  
1) TPCHG = 10B  
1) TPCHG = 11B  
1) TDPCHG = 00B  
1) TDPCHG = 01B  
1) TDPCHG = 10B  
1) TDPCHG = 11B  
1) Not subject to production test, specified by design.  
2) ICHGx[4:0] = 11111B (100 mA typ.)  
Datasheet  
64  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Protections and diagnostics  
7
Protections and diagnostics  
7.1  
Reverse polarity protection  
The output of the charge pump (CP pin) can be used to supply an external n-channel MOSFET, building an  
active reverse polarity protection. Refer to Figure 50.  
7.2  
Safe switch (optional)  
The output of the charge pump (CP pin) can be used to supply an optional external n-channel MOSFET,  
operating as safe switch. The safe switch can be actively turned off for example by the microcontroller or a  
safety logic, in order to disconnect the MOSFET supply, independently from the TLE92108-232QX. Refer to  
Figure 50.  
7.3  
Drain-source voltage monitoring with bridge driver in active mode  
When EN =High and BD_PASS = 0 (bridge driver in active mode), voltage comparators monitor the activated  
MOSFETs to protect the high-side MOSFETs and low-side MOSFETs against a short circuit respectively to  
ground and to the battery during ON-state.  
If a Drain-Source overvoltage is detected, the corresponding half-bridge is latched off.  
If HBxD = 0, x =1..8 (VDS1 and VDS2): The half-bridge x is latched off if the voltage difference between DH and  
VSHx exceeds the threshold voltage configured by VDS1, and VDS2 (see Table 16).  
If HBxD = 1, x =1..8 (see VDS1 and VDS2): The half-bridge x is latched off if the voltage difference between CSIN1  
and VSHx exceeds the threshold voltage configured by VDS1, and VDS2 (see Table 16).  
Short circuits of low-side MOSFETs to VS are detected by monitoring the voltage difference between VSHx and  
SL (see Table 16).  
Table 16  
HBxVDSTH1)[2:0]  
Drain-Source overvoltage threshold, EN = High, BD_PASS= 0  
Drain-Source overvoltage threshold for HSx and LSx1) (typical)  
000B  
001B  
010B  
011B  
100B  
101B  
110B  
150 mV  
200 mV (default)  
250 mV  
300 mV  
400 mV  
500 mV  
600 mV  
2 V  
111B  
1) x = 1 … 8.  
Attention: HBxVDSTH[2:0] = 111B (2 V threshold) is dedicated for the diagnostic in off-state. It is highly  
recommended to select another drain-source overvoltage threshold once the routine of the  
diagnostic in off-state has been performed to avoid additional current consumption from VS  
and from the charge pump.  
Datasheet  
65  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Protections and diagnostics  
The device reports a Drain-Source overvoltage error if both conditions are met:  
After expiration of the blank time.  
If the Drain-Source voltage monitoring exceeds the configured threshold for a duration longer than the  
configured filter time (refer to Table 17 and GENCTRL2 TFVDS bits).  
Note:  
Exception with static activated MOSFETs when the short circuit is applied before the expiration of  
the blank time: the MOSFETs are turned off after the blank time + 2 x tFVDS  
Table 17  
TFVDS[1:0]  
00B  
Drain-Source overvoltage filter time  
Drain-Source overvoltage filter time (typical)  
0.5 µs (default)  
01B  
1 µs  
2 µs  
3 µs  
10B  
11B  
If a short circuit is detected by the Drain-Source voltage monitoring:  
The impacted half-bridge is latched off.  
The discharge current is according to the settings of ST_ICHG, as if the MOSFET was previously  
statically activated.  
The corresponding bit in the status register DSOV is set.  
The VDSE in Global Status Register Global status byte is set.  
If a Drain-Source overvoltage is detected for one of the MOSFETs, then the status register DSOV must be  
cleared in order to re-enable the faulty half-bridge.  
7.4  
Drain-source voltage monitoring with bridge driver in passive mode  
LS1 to LS4 can be activated when the bridge driver is in passive mode (refer to Chapter 6.5).  
A drain-source overvoltage monitoring of LS1, LS2, LS3 and LS4 MOSFETs is enabled if PASS_VDS is set.  
The drain-source monitoring (VSHx - VSL, x = 1 to 4) is ignored for tBLK_BD_PASS (blank time) after beginning of  
the activation of LS1, LS2, LS3 and LS4 MOSFETs.  
The drain-source monitoring filter time is tDSMON_FILT_BD_PASS and the VDS threshold is VVDSMON_BD_PASS (370 mV  
typ).  
If a drain-source overvoltage is detected, then:  
The LS1, LS2, LS3 and LS4 MOSFETs are turned off.  
PASS_VDSOV and the corresponding status bit in DSOV are set.  
LS1-4 can be reactivated by clearing DSOV. Clearing DSOV also clears PASS_VDSOV.  
7.5  
Cross-current protection and drain-source overvoltage blank time  
All gate drivers feature a cross-current protection time and a Drain-Source overvoltage blank times.  
The cross-current protection avoids the simultaneous activation of the high-side and the low-side MOSFETs  
of the same half-bridge.  
Datasheet  
66  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Protections and diagnostics  
During the blank time, the drain-source overvoltage detection is disabled, to avoid a wrong fault detection  
during the activation phase of a MOSFET.  
Notes  
1. The setting of the cross-current protection and of the blank times may be changed by the microcontroller only  
if all PWMx_EN bits are reset, x = 1 … 3.  
2. Changing the Drain-Source overvoltage of a half-bridge x (HBx) in on-state (HBxMODE[1:0]=(0,1) or (1,0)) may  
result in a wrong VDS overvoltage detection on HBx. Therefore it is highly recommended to change this  
threshold when HBxMODE[1:0]=(0,0) or (1,1).  
7.5.1  
Cross-current protection  
Four pairs of cross-current protection and blank times ((tCCPx, tBLANKx), x = 1…4) can be mapped to each  
half-bridge with the control register CCP_BLK1.  
The cross-current protection time of the active MOSFET of the FW MOSFETs are set independently.  
The cross-current protection times of the active MOSFETs are configured by the control bits TCCPx_ACT  
(CCP_BLK2_ACT, PWM_ICHGMAX_CCP_BLK3_ACT) and CCP_BLK1  
The cross-current protection times of the free-wheeling MOSFETs are configured by the control bits  
TCCPx_FW (CCP_BLK2_FW, PWM_ICHGMAX_CCP_BLK3_FW) and CCP_BLK1  
Table 18  
Cross-current protection time  
TCCPx_ACT[2:0],  
Cross-current protection time tCCPx_ACT/tCCPx_FW, x = 1…4 (typical)  
TCCPx_FW[2:0],x = 1…4  
000B  
001B  
010B  
011B  
100B  
101B  
110B  
111B  
375 ns  
625 ns  
1 µs  
1.5 µs  
2 µs (default)  
3 µs  
4 µs  
16 µs1)  
1) When applying a cross-current protection time of 16 µs to a half-bridge, the max. drive current used for this half-  
bridge must be set below 30 mA to avoid an overheating of the gate driver.  
7.5.2  
Drain-source overvoltage blank time in bridge driver active mode  
A configurable blank time (refer to Table 19) for the Drain-Source monitoring is applied at the turn-on of the  
MOSFETs. During the blank time, a Drain-Source overvoltage error is masked.  
The blank time of the active MOSFET of the FW MOSFETs are set independently:  
The blank times of the active MOSFETs are configured by the control bits TBLANKx_ACT (CCP_BLK2_ACT,  
PWM_ICHGMAX_CCP_BLK3_ACT) and CCP_BLK1  
The blank times of the free-wheeling MOSFETs are configured by the control bits TBLANKx_FW  
(CCP_BLK2_FW, PWM_ICHGMAX_CCP_BLK3_FW) and CCP_BLK1  
Datasheet  
67  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Protections and diagnostics  
Half-bridges in PWM mode  
If the detection of the generator mode is disabled (EN_GEN_CHECK = 0):  
The blank time of the PWM MOSFET starts at the expiration of the cross-current protection time of the FW  
MOSFET (tHBxCCP FW). Refer to Figure 33.  
The blank time of the FW MOSFET starts after expiration of the cross-current protection time at turn-off of  
the PWM MOSFET (tHBxCCP Active). Refer to Figure 33.  
PWM  
t
IGS_PWM  
MOSFET  
Post-charge  
tPCHGz  
ICHGMAXz  
tPDCHGz  
IPRECHGz  
ICHGz  
0
t
- IDCHGz  
tBLANK for  
PWM MOSFET  
tHBxCPP  
Active  
- IPREDCHGz  
tHBxCPP for  
symmetrisation  
tHBxCPP FW  
IGS Freewheeling  
MOSFET  
ICHGFWz  
t
tBLANK for  
freewheeling MOSFET  
-
ICHGFWz  
Figure 33 Blank time for half-bridges in PWM oper
G
a
E
N
t
C
i
H
o
EC
K
n, detection of generator mode disabled  
tBLANK PWM AGC
 
EN  
0 emf  
(EN_GEN_CHECK = 0)  
If the detection of the generator mode is enabled (EN_GEN_CHECK = 1):  
The blank time of the Active MOSFET starts at the expiration of the cross-current protection time of the FW  
MOSFET (tHBxCCP FW). Refer to Figure 34 and Figure 35.  
The blank time of the FW MOSFET starts after expiration of the cross-current protection time at turn-off of  
the Active MOSFET (tHBxCCP Active). Refer to Figure 34 and Figure 35.  
PWM  
t
IGS_Active  
MOSFET  
Post-charge  
tPCHGz  
ICHGMAXz  
tPDCHGz  
IPRECHGz  
ICHGz  
0
t
- IDCHGz  
tBLANK active for  
PWM MOSFET  
- IPREDCHGz  
tHBxCPP FW for  
symmetrisation  
tHBxCPP FW  
tHBxCPP Active  
IGS Freewheeling  
MOSFET  
ICHGFWz  
t
tBLANK for  
freewheeling MOSFET  
-
ICHGFWz  
Figure 34 Blank time for half-bridges in PWM operation, detection of generator mode enabled  
(EN_GEN_CHECK = 1), motor operating as load  
Datasheet  
68  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Protections and diagnostics  
PWM  
t
Inverted  
PWM  
t
IGS_Active  
MOSFET  
Post-charge  
tPCHGz  
ICHGMAXz  
IPRECHGz  
tPDCHGz  
ICHGz  
0
t
- IDCHGz  
tBLANK for  
Active MOSFET  
- IPREDCHGz  
tHBxCPP FW for  
symmetrisation  
tHBxCPP FW  
tHBxCPP Active  
IGS Freewheeling  
MOSFET  
ICHGFWz  
t
tBLANK for  
freewheeling MOSFET  
-
ICHGFWz  
Figure 35 Blank time for half-bridges in PWM operation, detection of generator mode enabled  
(EN_GEN_CHECK = 1), motor operating as generator  
For statically activated half-bridges, the blank time starts:  
Case 1: At expiration of the active cross-current protection (Figure 7), if the opposite MOSFET was  
previously activated.  
Case 2: Right after the decoding of the SPI command to turn on a MOSFET, if the half-bridge was in high  
impedance (Figure 8).  
The blank times can be configured with the control registers CCP_BLK2_ACT and  
PWM_ICHGMAX_CCP_BLK3_ACT  
for  
the  
active  
MOSFETs  
and  
CCP_BLK2_FW  
and  
PWM_ICHGMAX_CCP_BLK3_FW for the freewheeling MOSFETs.  
Datasheet  
69  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Protections and diagnostics  
Table 19  
Drain-source overvoltage blank time  
TBLANKx[2:0], x = 1…4  
Drain-Source overvoltage blank time tBLANKx, x = 1…4 (typical)  
000B  
001B  
010B  
011B  
100B  
101B  
110B  
111B  
625 ns  
1 µs  
1.25 µs  
1.5 µs  
2 µs (default)  
3 µs  
4 µs  
16 µs1)  
1) When applying a blank time of 16 µs to a half-bridge, the max. drive current used for this half-bridge must be set  
below 30 mA , to avoid an overheating of the gate driver.  
Note:  
The blank time is implemented at every new activation of a MOSFET, including a recovery from VS  
undervoltage, VS overvoltage.  
7.5.3  
Mapping of cross-current protection and blank times  
One of the pairs of cross-current protection and blank times are mapped to each half-bridge according to  
Table 20, by configuring the control register CCP_BLK1.  
Table 20  
Mapping of tCCP and tBLANK to the half-bridges  
HBxCCPBLK[1:0], x =1..8  
tCCP and tBLANK applied to HBx  
(tCCP1,tBLANK1) are mapped to HBx1)  
(tCCP2,tBLANK2) are mapped to HBx  
(tCCP3,tBLANK3) are mapped to HBx  
(tCCP4,tBLANK4) are mapped to HBx  
00B  
01B  
10B  
11B  
1) Example: (tHBxCCP, tHBxBLANK) = (tCCP1, tBLANK1), x = 1 … 4.  
7.6  
OFF-state diagnostic  
In order to support the off-state diagnostic, the gate driver of each MOSFET provides pull-up (450 µA typ.) and  
a pull-down currents (1250 µA typ.) at the SHx pins when the driver driver is active (BD_PASS = 0). Under these  
conditions, the pull-up current sources are active.  
Attention: The off-state diagnostic is possible only when the bridge driver is active (BD_PASS=0) and the  
corresponding half-bridge is off (HBxMODE = 00b or 11b).  
The pull-down current of each gate driver are activated by the control bits HBxIDIAG (HBIDIAG register).  
During the off-state diagnostic routine performed by the microcontroller, the drain-source overvoltage  
threshold of the relevant half-bridges must be set to 2 V nominal. Refer to Table 16. Once the routine is  
finished, it is highly recommended to decrease the drain-source overvoltage threshold to a lower value,  
avoiding additional current consumption from the VS input.  
The following failures can be detected:  
Datasheet  
70  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Protections and diagnostics  
MOSFET short circuit to GND.  
MOSFET short circuit the battery.  
Open load (disconnected motor).  
The status of the output voltages VOUTx, with x = 1 … 8, can be read back with status bit HBxVOUT (register  
HBVOUT_PWMERR) when the corresponding half-bridge is in off-state (HBxMODE[1:0] = 00 or 11).  
Note:  
HBxVOUT = 0 if the half-bridge x is not in off-state (HBxMODE[1:0] = (0,1) or (1,0)).  
Refer to Application information, Chapter 10 for off-state diagnostic when the shunt resistor is in the motor  
phase.  
Datasheet  
71  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Protections and diagnostics  
7.7  
Temperature monitoring  
Temperature sensors are integrated in the device. The temperature monitoring circuit compares the  
measured temperature to the warning and shutdown thresholds.  
Temperature warning  
If the temperature sensor reaches TjW, then TW is set (see GENSTAT). This bit is latched and reset by clearing  
GENSTAT if the thermal warning condition has disappeared. The outputs stages however remain activated.  
Refer to Figure 36.  
Temperature shutdown  
If the temperature sensor reaches TjSD all gate drivers are latched off, the charge pump is deactivated ; the  
SUPE bit (Supply Error bit, see Global status byte), TSD (Thermal Shutdown bit) and CPUV (Charge Pump  
Undervoltage) are set (see GENSTAT). All outputs remain deactivated until the temperature shutdown  
condition has disappeared and GENSTAT is cleared. See Figure 36.  
The discharge current is according to the settings of ST_ICHG, as if the MOSFET was previously statically  
activated.  
To resume normal functionality of the gate drivers (in the event the overtemperature condition disappears, or  
to verify if the failure still exists) the microcontroller shall clear GENSTAT.  
Datasheet  
72  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Protections and diagnostics  
Tj  
TjSD  
TjW  
t
t
Gate Driver x  
Gate drivers are switched off if  
ON  
T
jSD is reached, can be reactivated  
if TSD bit is cleared  
High Z  
no error  
TW error bit  
High  
TW is latched, can be  
cleared via SPI  
Low  
t
no error  
TSD error bit  
High  
TSD is latched, can be  
cleared via SPI  
Low  
t
no error  
Figure 36 Overtemperature behavior  
Datasheet  
73  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Protections and diagnostics  
7.8  
VS overvoltage and undervoltage shutdown  
The power supply rails VS and VDD are monitored for supply fluctuations. The VS supply is monitored for under-  
and over-voltage conditions whereas the VDD supply is monitored for under-voltage conditions.  
7.8.1  
VS undervoltage  
If VS drops below VSUV OFF, then all external MOSFETs are latched off, however, the logic information remains  
intact and uncorrupted provided that VDD > VDD POR  
.
SUPE (Supply Error bit, see Global status byte), VSUV and CPUV bits (see GENSTAT), are set and latched.  
The VSUV bit is reset by clearing GENSTAT to re-enable the MOSFETs.  
The VSUV bit is reset if the following conditions are fulfilled:  
VS > VSUV ON (See Figure 37).  
The TLE92108-232QX receives a clear command to GENSTAT.  
7.8.2  
VS overvoltage with bridge driver in active mode  
If VS rises above the switch-off voltage (VSOV OFF1 if VSOVTH= 0, VSOV OFF2 if VSOVTH= 1) all external MOSFETs are  
latched off, and the charge pump is deactivated. SUPE bit (see Global status byte) , VSOV bit (VS over-voltage  
bit, see GENSTAT), and CPUV bit are set and latched. If VS decreases below VSOV ON,then the charge pump is  
reactivated automatically. The VSOV bit must be reset to re-enable the MOSFETs.  
The VSOV bit is reset if the following conditions are fulfilled:  
VS < VSOV ON (See Figure 37).  
The TLE92108-232QX receives a clear command to GENSTAT.  
The discharge current is according to the settings of ST_ICHG, as if the MOSFET was previously statically  
activated.  
Datasheet  
74  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Protections and diagnostics  
VS  
VSOV HY  
VSOV OFF  
VSOV ON  
VSUV HY  
VSUV ON  
VSUV OFF  
t
SPI command:  
Clear GENSTAT  
SPI command  
Clear GENSTAT  
VSUV / SUPE error bit  
VSOV / SUPE error bit  
High  
Lo w  
High  
Lo w  
t
t
t
MOSFET  
reactivated  
MOSFET  
reactivated  
MOSFET  
MOSFET  
ON  
ON  
OFF  
OFF  
t
Figure 37 Output behavior during Over- and Undervoltage VS condition  
7.8.3  
VS overvoltage with bridge driver in passive mode  
When the bridge driver is in passive mode (refer to Chapter 6.5):  
If PASS_MOD[1:0] = 10B : LS1, LS2, LS3 and LS4 are turned on if VS > VSOV PASS OFF (overvoltage brake). The  
PWM3 pin is pulled down by an internal open drain (RPWM3_OD).  
If PASS_MOD[1:0] = 11B : LS1, LS2, LS3 and LS4 are turned on if VS > VSOV PASS OFF and PWM1 = High  
(overvoltage brake conditioned upon PWM1). The PWM3 pin is pulled down by an internal open drain  
(RPWM3_OD).  
7.8.4  
VDD undervoltage  
If the VDD logic supply decreases below the undervoltage threshold, VDD POffR, the SPI interface shall no longer  
be functional. The digital block will be reset and the gate drivers are switched off.The undervoltage reset is  
released once VDD voltage is above the undervoltage threshold, VDD POR  
.
7.8.5  
Charge pump undervoltage  
The voltage of the charge pump output (VCP) is monitored in order to ensure a correct control of the external  
MOSFETs.  
If VCP falls below the configured charge pump undervoltage threshold:  
The external MOSFETs are actively discharged for the duration tHBxCCP with the current ICHGSTx, then  
the gate drivers are turned off.  
Datasheet  
75  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Protections and diagnostics  
CPUV (GENSTAT), SUPE bits (Global status byte) and the Global Error Flag (Chapter 8.2) are set and  
latched.  
The CPUV and SUPE bits are reset and the normal operation is resumed if GENSTAT is cleared, and VCP >  
VCPUV.1)  
Notes  
1. A charge pump undervoltage event is reported after a power-on reset, when the charge time of the capacitor  
connected to VCP exceeds tCPUV  
.
2. The charge pump is is deactivated after a VS undervoltage, a VS overvoltage and a thermal shutdown,  
causing a charge pump undervoltage condition. Consequently CPUV and SUPE bits are set together with  
VSOV, VSUV or TSD bits (see GENSTAT).  
7.9  
Switching parameters of MOSFETs in PWM mode  
The effective switching parameters of the active MOSFETs (EN_GEN_CHECK =1) or of the PWM MOSFET  
(EN_GEN_CHECK =0) can be read out with dedicated status registers:  
The turn-on and turn off delays, noted tDON and tDOFF, are reported by the status register  
EFF_TDON_OFF1, EFF_TDON_OFF2, EFF_TDON_OFF3.  
The rise and fall times, noted tRISE and tFALL, are reported by the status register TRISE_FALL1,  
TRISE_FALL2, TRISE_FALL3.  
Refer to Chapter 6.3 for the definition of tDON, tDOFF, tRISE and tFALL.  
If tHBxBLANK active has elapsed in motor mode, before the measurement of the effective tDON , the device  
reports an effective tDON corresponding to tHBxBLANK active.  
If tHBxCCP active has elapsed while EN_GEN_CHECK =02), before the measurement of the effective tDOFF, the  
device reports an effective tDOFF corresponding to tHBxCCP active.  
7.10  
Timeout watchdog  
An integrated timeout watchdog supervises the integrity of the communication with the microcontroller.  
The watchdog period is programmable by the WDPER bit (refer to GENCTRL1).  
After a Power-On Reset, the watchdog timer starts and the microcontroller must invert the logic value of the  
WDTRIG bit of the control register GENCTRL1. The default value of WDTRIG is 0. A correct trigger of the  
watchdog immediately resets the watchdog counter and starts the next cycle.  
A watchdog failure is reported by the device if:  
The watchdog trigger bit is not served within the watchdog period (watchdog timeout event). See  
Figure 383).  
The microcontroller writes the WDTRIG bit with the same value. In other words, if the WDTRIG value is 0  
and the microcontroller re-writes WDTRIG to 0, or the WDTRIG is 1, and the microcontroller re-writes  
WDTRIG to 1, then a watchdog error is reported.  
1) Recovering from VS under/overoltage and thermal shutdown, CPUV bit can be cleared only after 64 µs  
2) If EN_GEN_CHECK= 1 and tDOFF cannot be measured until the expiration of tHBxCCP, then the device considers that the motor  
operate as as generator  
3) WDMON[1:0] (GENSTAT) is not reset after a WD timeout when the WD period is configured to 50 ms  
Datasheet  
76  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Protections and diagnostics  
If a watchdog failure is detected, then the FS bit (see Global Status Byte) is set and latched, and the control  
registers are frozen to their default values. Consequently all external MOSFETs are actively turned off.  
In order to resume normal operation, the microcontroller must: 1. clear GENSTAT. 2. Set WDTRIG to 1 within  
the watchdog period, 3. Set WDTRIG to 0 within the watchdog period1).  
The watchdog period is configurable by SPI to TWDPER1 or TWDPER2 (refer to WDPER).  
Monitoring the watchdog timer  
The status bits WDMON[1:0] report the relative position of the watchdog timer to the watchdog period. Refer  
to Table 21 and Figure 38. This allows the detection of a potential latent failure associated to the watchdog  
timer: the microcontroller can indeed verify that the watchdog timer is running.  
Table 21  
Monitoring of the watchdog timer  
WDMON[1:0]  
Position of the watchdog timer  
00B  
01B  
10B  
11B  
watchdog timer is between [0%, 25%[ of the watchdog period  
watchdog timer is between [25%, 50%[ of the watchdog period  
watchdog timer is between [50%, 75%[ of the watchdog period  
watchdog timer is between [75%, 100%[ of the watchdog period  
WD Timer / WD Period  
WD trigger  
WD timeout  
WD trigger  
100%  
75%  
50%  
25%  
0%  
t
00B  
01B  
00B  
01B  
10B 11B  
00B  
01B  
10B  
11B  
00B  
WDMON[1:0]  
Figure 38 Example of watchdog monitoring and watchdog timeout  
1) The exit sequence must be strictly followed to leave fail safe mode. If a SPI frame not belonging to the sequence is added (incl. a  
read command), then the device stays in fail safe mode and the microcontroller must restart the complete sequence to enter  
normal mode.  
Datasheet  
77  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Protections and diagnostics  
Disabling the watchdog  
The watchdog is enabled by default.  
It is disabled only if the following SPI sequence is sent:  
First frame: Set UNLOCK bit to ‘1’ (GENCTRL1). Note: UNLOCK is automatically reset to ‘0’ at the end of the  
following frame.  
Following frame: Set WDDIS bit to ‘1’ (GENCTRL2).  
The watchdog is directly re-enabled by setting WDDIS to ‘0’.  
7.11  
Current sense amplifier  
Two current sense amplifiers allow to monitor the motor currents. The differential input stage measures the  
voltage drop across an external shunt resistor.  
The input common mode range allows current sensing in high-side, in low-side configuration or in the motor  
phase.  
7.11.1  
Unidirectional and bidirectional operation  
The current sense amplifiers (CSA) can work either as unidirectional or bi-directional CSA. See CSD1 and CSD2.  
Unidirectional operation CSDx = 0  
In unidirectional operation, the CSAx, x = 1 or 2, is optimized to measure the current flowing through the  
external shunt resistor when VCSIPx VCSINx.  
VCSOx = VREF Unidir + (VCSIPx - VCSINx + VOS) x GDIFF, provided that VCSOx is in the linear range1) 2)  
.
Bidirectional operation CSDx = 1  
In bidirectional operation, the CSAx, x = 1 or 2, measures the current flowing through the external shunt  
resistor in both directions: VCSIPx VCSINx or VCSIPx VCSINx.  
The output CSOx works at half-scale range: VCSOx = VREF Bidir+ (VCSIPx - VCSINx + VOS) x GDIFF provided that  
VCSOx is in the linear range 2).  
When the current sense amplifiers are deactivated (VS undervoltage, VS overvoltage, CP undervoltage or  
Overtemperature, or CSAx_OFF = 1), CSOx is pulled Low (between GND to 150 mV)  
7.11.2  
Gain configuration  
The gain of the current sense amplifier is configurable by the configuration bits CSAGx bits. Refer to Table 22  
and GENCTRL1.  
Table 22  
CSAGx[1:0]  
00B  
Configuration of the current sense amplifier gain  
Typical current sense amplifier gain GDIFF  
10 V/V  
20 V/V  
01B  
1) Valid if 0.5 V VCSOx VDD - 0.5 V.  
2) VCSOx is clamped between VDD and GND.  
Datasheet  
78  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Protections and diagnostics  
Table 22  
CSAGx[1:0]  
10B  
Configuration of the current sense amplifier gain  
Typical current sense amplifier gain GDIFF  
40 V/V  
80 V/V  
11B  
7.11.3  
High-side and low-side setting  
The CSA can be used either in high-side configuration or in low-side configuration within the specified  
common mode range.  
The control bits CSA1L and CSA2L (HBIDIAG) optimize the VDD current consumption by informing the device  
about the common mode voltage of the CSA inputs:  
CSAxL must be set to 0 if the shunt is in low-side configuration (i.e. connected to GND or to an output with  
an activated low-side).  
CSAxL must be set to 1 if the shunt is in high-side configuration (i.e.connected to VS or to an output with an  
activated high-side).  
Notes  
1. A proper information from the CSA output is not ensured if the external shunt resistor is in high-side  
configuration while its CSAxL bit is set to 0.  
2. The external shunt resistor may be in low-side configuration while its CSAxL bit is set to 1. The current  
consumption from VDD is however higher than if CSAxL is set to 0.  
7.11.4  
Overcurrent detection  
A comparator at CSOx detects overcurrent conditions. The overcurrent threshold is configurable with the  
OCTHx bits. Refer to Table 23 for unidirectional operation and Table 24 for bidirectional operation.  
Table 23  
OCTHx[1:0]  
00B  
Overcurrent detection thresholds in unidirectional operation (CSDx = 0)  
Typical Overcurrent Detection Threshold  
VCSOx > VDD/2  
01B  
VCSOx > VDD/2 + VDD/10  
10B  
VCSOx > VDD/2 + 2 x VDD/10  
VCSOx > VDD/2 + 3 x VDD/10  
11B  
Datasheet  
79  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Protections and diagnostics  
CSOx unidirectional overcurrent detection threshold  
VCSOx  
VDD  
OCTHx[1:0]  
(1,1)  
VDD / 2 + 3 x VDD / 10  
VDD / 2 + 2 x VDD / 10  
VOCTH4 Unidir  
VOCTH3 Unidir  
(1,0)  
(0,1)  
(0,0)  
VDD / 2 + VDD / 10  
VDD / 2  
VOCTH2 Unidir  
VOCTH1 Unidir  
VREF Unidir = VDD/5  
0V  
Figure 39 Overcurrent detection thresholds in unidirectional operation (CSDx = 0)  
Datasheet  
80  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Protections and diagnostics  
Table 24  
OCTHx[1:0]  
00B  
Overcurrent detection thresholds in bidirectional operation (CSDx = 1)  
Typical Overcurrent Detection Threshold  
VCSOx > VDD/2 + 2 x VDD/20 or VCSOx< VDD/2 -2 x VDD/20  
VCSOx > VDD/2 + 4 xVDD/20 or VCSOx< VDD/2 - 4 x VDD/20  
VCSOx > VDD/2+ 5 xVDD/20 or VCSOx< VDD/2 - 5 x VDD/20  
VCSOx > VDD/2+ 6 x VDD/20 or VCSOx< VDD/2 - 6 x VDD/20  
01B  
10B  
11B  
VCSOx  
VDD  
CSOx bidirectional overcurrent detection threshold  
OCTHx[1:0]  
VOCTH4 BidirH  
VOCTH3 BidirH  
VOCTH2 BidirH  
VDD / 2 + 6 x VDD / 20  
VDD / 2 + 5 x VDD / 20  
VDD / 2 + 4 x VDD / 20  
(1,1)  
(1,0)  
(0,1)  
VOCTH1 BidirH (0,0)  
VDD / 2 + 2 x VDD / 20  
VREF Bidir = VDD /2  
VOCTH1 BidirL (0,0)  
VDD / 2 - 2 x VDD / 20  
VOCTH2 BidirL  
VOCTH3 BidirL  
VOCTH4 BidirL  
(0,1)  
VDD / 2 - 4 x VDD / 20  
VDD / 2 - 5 x VDD / 20  
VDD / 2 - 6 x VDD / 20  
(1,0)  
(1,1)  
0V  
Figure 40 Overcurrent detection thresholds in bidirectional operation (CSDx = 1)  
It is possible to program the device behavior when an overcurrent condition is detected:  
OCEN bit = 0 (see GENCTRL1): the device only reports the overcurrent event (OC, OC1 or OC2 in GENSTAT  
and Global Error Flag are set), without any change of the gate driver states  
If the overcurrent condition is not present for more than tFOC, then the overcurrent status bits are  
automatically cleared by the device.  
OCEN bit = 1 (see GENCTRL1): the device reports the overcurrent event (OC, OC1 or OC2 in GENSTAT and  
Global Error Flag are set) and turns off all MOSFETs with their static discharge current.  
The MOSFETs can be reactivated by clearing GENSTAT or by resetting the OCEN bit.  
The overcurrent status bits are reset only if the overcurrent condition is no longer present and the  
microcontroller clears GENSTAT.  
The overcurrent filter time is configurable (refer to tFOC) by the control bits OCxFILT(refer to HBIDIAG).  
FOC refers to the output of the current sense amplifier. The CSO settling time (2 µs max, tSET) and the analog  
propagation delay (< 1 µs) are not taken into account by the overcurrent filter time.  
t
7.11.5  
CSO outputs capacitor  
The capacitor directly connected to CSOx (CCSOx) must be between 10 pF and 400 pF (refer to Chapter 10).  
Datasheet  
81  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Protections and diagnostics  
The control bit CCSO (see PWM_IDCHG_ACT, PWM_PDCHG_INIT) optimizes the VDD current consumption for  
CCSOx < 100 pF or CCSOx > 100 pF.  
Datasheet  
82  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Protections and diagnostics  
7.12  
Electrical characteristics protections and diagnostics  
The specified drain-source monitoring thresholds, the overcurrent thresholds and the electrical  
characteristics related to the current sense amplifiers are valid for VCP > VS + 8 V  
Table 25  
VS = 6.0 V to 18 V if VSOVTH = 0, VS = 6.0 V to 28 V if VSOVTH = 1; VDD = 3.0 V to 5.5 V, Tj = -40°C to 150°C  
CP > VS + 8 V  
All voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Electrical characteristics:  
V
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Watchdog  
Watchdog period 1  
Watchdog period 2  
TWDPER1  
TWDPER2  
40  
50  
60  
ms  
ms  
1) WDPER = 0  
1) WDPER = 1  
P_7.11.52  
P_7.11.53  
160  
200  
240  
Off-state Open load diagnosis  
1)  
1)  
Pull-up diagnosis current  
IPUDiag  
-630  
900  
2.5  
-450  
1250  
3.0  
-270  
1600  
µA  
µA  
P_7.11.1  
P_7.11.2  
P_7.11.77  
Pull-down diagnosis current IPDDiag  
Diagnosis current ratio  
IDiag_ratio  
Ratio  
IPDDiag/IPUDiag  
Drain source monitoring threshold  
Drain-source monitoring  
thresholds  
VVDSMONTH0 0.12  
VVDSMONTH1 0.16  
VVDSMONTH2 0.20  
VVDSMONTH3 0.24  
VVDSMONTH4 0.32  
VVDSMONTH5 0.40  
VVDSMONTH6 0.48  
VVDSMONTH7 1.6  
0.15  
0.20  
0.25  
0.30  
0.40  
0.50  
0.60  
2.0  
0.18  
0.24  
0.30  
0.36  
0.48  
0.62  
0.72  
2.4  
V
V
V
V
V
V
V
V
HBxVDSTH[2:0] = P_7.11.3  
000B  
Drain-source monitoring  
thresholds  
HBxVDSTH[2:0] = P_7.11.4  
001B  
Drain-source monitoring  
thresholds  
HBxVDSTH[2:0] = P_7.11.5  
010B  
Drain-source monitoring  
thresholds  
HBxVDSTH[2:0] = P_7.11.6  
011B  
Drain-source monitoring  
thresholds  
HBxVDSTH[2:0] = P_7.11.7  
100B  
Drain-source monitoring  
thresholds  
HBxVDSTH[2:0] = P_7.11.8  
101B  
Drain-source monitoring  
thresholds  
HBxVDSTH[2:0] = P_7.11.9  
110B  
Drain-source monitoring  
thresholds  
HBxVDSTH[2:0] = P_7.11.54  
111B  
Drain-source monitoring blank time  
DS monitoring blank time  
DS monitoring blank time  
DS monitoring blank time  
tDSMON_BLK0 500  
tDSMON_BLK1 0.8  
tDSMON_BLK2  
625  
1
850  
1.2  
1.5  
ns  
µs  
µs  
TBLANKx[2:0] = P_7.11.10  
000B  
1)  
TBLANKx[2:0] = P_7.11.11  
1)  
001B  
1
1.25  
TBLANKx[2:0] = P_7.11.12  
1)  
010B  
Datasheet  
83  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Protections and diagnostics  
Table 25  
Electrical characteristics: (cont’d)  
VS = 6.0 V to 18 V if VSOVTH = 0, VS = 6.0 V to 28 V if VSOVTH = 1; VDD = 3.0 V to 5.5 V, Tj = -40°C to 150°C  
VCP > VS + 8 V  
All voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
1.5  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
DS monitoring blank time  
DS monitoring blank time  
DS monitoring blank time  
DS monitoring blank time  
DS monitoring blank time  
tDSMON_BLK3 1.2  
tDSMON_BLK4 1.6  
tDSMON_BLK5 2.4  
tDSMON_BLK6 3.2  
tDSMON_BLK7 12.8  
1.8  
µs  
µs  
µs  
µs  
µs  
TBLANKx[2:0] = P_7.11.13  
011B  
1)  
2
2.4  
3.6  
TBLANKx[2:0] = P_7.11.57  
1)  
100B  
3
TBLANKx[2:0] = P_7.11.58  
1)  
101B  
4
4.8  
TBLANKx[2:0] = P_7.11.59  
1)  
110B  
16  
19.2  
TBLANKx[2:0] = P_7.11.60  
1)  
111B  
Drain-source monitoring filter time  
DS monitoring filter time  
DS monitoring filter time  
DS monitoring filter time  
DS monitoring filter time  
tDSMON_FILT0 0.4  
0.5  
1
0.85  
1.4  
2.4  
3.6  
µs  
µs  
µs  
µs  
TFVDS[1:0] =  
00B  
P_7.11.14  
P_7.11.15  
P_7.11.16  
P_7.11.17  
1)  
tDSMON_FILT1 0.8  
tDSMON_FILT2 1.6  
tDSMON_FILT3 2.4  
TFVDS[1:0] =  
1)  
01B  
2
TFVDS[1:0] =  
1)  
10B  
3
TFVDS[1:0] =  
1)  
11B  
Cross-current protection time  
Cross current protection  
time  
tHBxCCP0  
300  
500  
0.8  
1.2  
1.6  
2.4  
3.2  
12.8  
375  
625  
1
450  
750  
1.2  
1.8  
2.4  
3.6  
4.8  
19.2  
ns  
ns  
µs  
µs  
µs  
µs  
µs  
µs  
THBxCCP[2:0] = P_7.11.18  
000B  
1)  
Cross current protection  
time  
tHBxCCP1  
tHBxCCP2  
tHBxCCP3  
tHBxCCP4  
tHBxCCP5  
tHBxCCP6  
tHBxCCP7  
THBxCCP[2:0] = P_7.11.19  
1)  
001B  
Cross current protection  
time  
THBxCCP[2:0] = P_7.11.20  
1)  
010B  
Cross current protection  
time  
1.5  
2
THBxCCP[2:0] = P_7.11.21  
1)  
011B  
Cross current protection  
time  
THBxCCP[2:0] = P_7.11.22  
1)  
100B  
Cross current protection  
time  
3
THBxCCP[2:0] = P_7.11.23  
1)  
101B  
Cross current protection  
time  
4
THBxCCP[2:0] = P_7.11.24  
1)  
110B  
Cross current protection  
time  
16  
THBxCCP[2:0] = P_7.11.25  
1)  
111B  
Bridge driver passive mode: BD_PASS = 1 and all HBxMODE[1:0] = 00B or 11B, or EN = Low or VDD< VDD POR  
Datasheet  
84  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Protections and diagnostics  
Table 25  
Electrical characteristics: (cont’d)  
VS = 6.0 V to 18 V if VSOVTH = 0, VS = 6.0 V to 28 V if VSOVTH = 1; VDD = 3.0 V to 5.5 V, Tj = -40°C to 150°C  
VCP > VS + 8 V  
All voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
VSOV PASS OFF 28  
Max.  
Passive VS overvoltage  
31.5  
35  
V
VS increasing  
PASS_MOD=10B  
1)  
P_7.11.66  
P_7.11.67  
Passive VS overvoltage  
VSOV PASS HY  
1
2.5  
4
V
hysteresis  
PWM3 open drain resistance RPWM3_OD  
4
-
5.5  
4.5  
7
kΩ  
P_7.11.68  
P_7.11.69  
Passive turn-on time  
Passive Turn-off time  
Passive LS gate voltage  
tON_BD_PASS  
tOFF_BD_PASS  
VGLx_BRAKE  
10  
µs  
1) Cap = 10 nF,  
VCap = 5 V,  
VS > 8 V  
1) Cap = 10 nF,  
VCap down to  
1.5 V, VS > 8 V  
-
0.7  
2
µs  
V
P_7.11.70  
P_7.11.71  
5
2
10  
VGLx - VSL,  
x = 1 to 4, VS > 8 V  
1)  
Passive turn-on blank time tBLK_BD_PASS  
6
10  
µs  
V
P_7.11.72  
P_7.11.73  
PWM1 high voltage, bridge VPWM1H_BD_P 0.5  
1.3  
2.0  
driver passive  
ASS  
1)  
Passive VDS filter time  
tDSMON_FILT_B 0.5  
1
2
µs  
V
P_7.11.74  
P_7.11.75  
D_PASS  
Passive drain-source  
monitoring thresholds  
VVDSMON_BD_ 0.30  
0.37  
0.44  
PASS_VDS=1B  
PASS  
Current sense amplifier  
Operating common mode  
input voltage range referred  
to GND (CSIPx - GND) or  
(CSINx - GND)  
VCM  
-2.0  
28  
V
P_7.11.26  
P_7.11.27  
Common Mode Rejection  
Ratio  
CMRR  
69  
75  
81  
81  
dB  
CSAG = (0,0)  
CSAG = (0,1)  
CSAG = (1,0)  
CSAG = (1,1)  
DC to 50 kHz  
V
CM = -2 … 28 V  
1)  
1)  
V
= VCSINx  
CSIPx  
Settling time to 98%  
tSET  
1500  
2000  
5000  
ns  
ns  
P_7.11.28  
P_7.11.65  
Settling time to 98% after  
gain change  
tSET_GAIN  
1) After gain  
change from CSN  
rising edge  
Input Offset voltage  
VOS  
-1.5  
9.9  
0
1.5  
mV  
V/V  
P_7.11.29  
P_7.11.30  
Current Sense Amplifier DC GDIFF10  
10  
10.1  
CSAG = (0,0)  
Gain (uncalibrated)  
Datasheet  
85  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Protections and diagnostics  
Table 25  
Electrical characteristics: (cont’d)  
VS = 6.0 V to 18 V if VSOVTH = 0, VS = 6.0 V to 28 V if VSOVTH = 1; VDD = 3.0 V to 5.5 V, Tj = -40°C to 150°C  
VCP > VS + 8 V  
All voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
20  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Current Sense Amplifier DC GDIFF20  
Gain (uncalibrated)  
19.8  
20.2  
V/V  
V/V  
V/V  
%
CSAG = (0,1)  
CSAG = (1,0)  
CSAG = (1,1)  
P_7.11.31  
P_7.11.32  
P_7.11.33  
Current Sense Amplifier DC GDIFF40  
Gain (uncalibrated)  
39.6  
79.2  
-0.5  
0.5  
40  
80  
40.4  
80.8  
0.5  
Current Sense Amplifier DC GDIFF80  
Gain (uncalibrated)  
Gain drift  
GDRIFT  
1) Gain drift after P_7.11.34  
calibration  
1)  
CSOx single ended output  
voltage range (linear range)  
VCSOx  
VDD  
-
V
P_7.11.35  
0.5  
Reference voltage for  
unidirectional CSAx  
VREF Unidir  
VREF Bidir  
-1%  
-1%  
VDD/5 +1%  
VDD/2 +1%  
V
CSDx = 0  
CSIPx = VCSINx  
CSDx = 1  
CSIPx = VCSINx  
P_7.11.36  
P_7.11.37  
V
Reference voltage for  
bidirectional CSAx  
V
V
Overcurrent detection  
Overcurrent filter time  
tFOC  
4
7
40  
85  
6
8
µs  
OCxFILT = 00B  
OCxFILT = 01B  
OCxFILT = 10B  
P_7.11.38  
10  
50  
100  
13  
60  
115  
OCxFILT = 11B  
1)2)  
OC threshold, unidirectional VOCTH1 Unidir -4%  
OC threshold, unidirectional VOCTH2 Unidir -4%  
OC threshold, unidirectional VOCTH3 Unidir -4%  
VDD/2 +4%  
VDD/2 + +4%  
V
V
V
CSDx = 0,  
OCTH[1:0]= 00B  
P_7.11.39  
P_7.11.40  
P_7.11.41  
CSDx = 0,  
OCTH[1:0]= 01B  
V
DD/10  
VDD/2 + +4%  
CSDx = 0,  
2x  
OCTH[1:0]= 10B  
V
DD/10  
OC threshold, unidirectional VOCTH4 Unidir -4%  
VDD/2 + +4%  
3x  
V
V
V
V
CSDx = 0,  
OCTH[1:0]= 11B  
P_7.11.42  
P_7.11.43  
P_7.11.44  
P_7.11.45  
V
DD/10  
High OC threshold,  
bidirectional  
VOCTH1 BidirH -4%  
VOCTH2 BidirH -4%  
VOCTH3 BidirH -4%  
VDD/2 + +4%  
2x  
CSDx = 1,  
OCTH[1:0]= 00B  
V
DD/20  
High OC threshold,  
bidirectional  
VDD/2 + +4%  
4x  
CSDx = 1,  
OCTH[1:0]= 01B  
V
DD/20  
High OC threshold,  
bidirectional  
VDD/2 + +4%  
5x  
CSDx = 1,  
OCTH[1:0]= 10B  
V
DD/20  
Datasheet  
86  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Protections and diagnostics  
Table 25  
Electrical characteristics: (cont’d)  
VS = 6.0 V to 18 V if VSOVTH = 0, VS = 6.0 V to 28 V if VSOVTH = 1; VDD = 3.0 V to 5.5 V, Tj = -40°C to 150°C  
VCP > VS + 8 V  
All voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
High OC threshold,  
bidirectional  
VOCTH4 BidirH -4%  
VOCTH1 BidirL -4%  
VOCTH2 BidirL -4%  
VOCTH3 BidirL -4%  
VOCTH4 BidirL -4%  
VDD/2 + +4%  
6x  
V
V
V
V
V
CSDx = 1,  
OCTH[1:0]= 11B  
P_7.11.46  
V
DD/20  
Low OC threshold,  
bidirectional  
VDD/2 - +4%  
2x  
CSDx = 1,  
OCTH[1:0]= 00B  
P_7.11.61  
P_7.11.62  
P_7.11.63  
P_7.11.64  
V
DD/20  
Low OC threshold,  
bidirectional  
VDD/2 - +4%  
4x  
CSDx = 1,  
OCTH[1:0]= 01B  
V
DD/20  
Low OC threshold,  
bidirectional  
VDD/2 - +4%  
5x  
CSDx = 1,  
OCTH[1:0]= 10B  
V
DD/20  
Low OC threshold,  
bidirectional  
VDD/2 - +4%  
6x  
CSDx = 1,  
OCTH[1:0]= 11B  
V
DD/20  
Thermal warning and shutdown  
Thermal warning junction  
temperature  
TjW  
120  
160  
140  
180  
10  
160  
200  
°C  
°C  
°C  
See Figure 361) P_7.11.48  
See Figure 361) P_7.11.49  
Thermal shutdown junction TjSD  
temperature  
1)  
Thermal shutdown  
hysteresis  
TjHYS  
P_7.11.50  
1)  
Ratio of TjSD to TjW  
TjSD / TjW  
7
7
1.20  
10  
P_7.11.51  
1)  
Thermal warning filter time tjW_FILT  
13  
13  
µs  
µs  
P_7.11.55  
1)  
Thermal shutdown filter  
time  
tjSD_FILT  
10  
P_7.11.56  
1) Not subject to production test, specified by design.  
2) FOC refers to the output of the current sense amplifier. The CSO settling time (2 µs max, tSET) and the analog  
propagation delay (< 1 µs)are not taken into account by the overcurrent filter time.  
t
Datasheet  
87  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Serial Peripheral Interface - SPI  
8
Serial Peripheral Interface - SPI  
The 24-bit Serial Peripheral Interface (SPI) enables the communication between the microcontroller and the  
TLE92108-232QX. It allows to configure and control the device, and to read out the status registers for  
diagnostic purpose.The MOSFET driver IC acts as a SPI-slave while the microcontroller acts as a SPI-master.  
The interface has a serial data input pin (SDI) to transfer data to the device, a serial data output pin (SDO) for  
reading data back from the device, and a serial clock pin (SCLK) for clocking data into and out of the device. A  
chip select pin (CSN) enables or disables the serial interface.  
The SPI frame starts with the falling edge of CSN. During the falling edge of CSN, SCLK must be low (Clock  
Polarity CPOL = 0). Received data on SDI are shifted in on the falling edge of SCLK. Transmitted data by SDO  
are shifted out on the rising edge of SCLK (Clock Phase CPHA = 1). Refer to Figure 42.  
The Most Significant Bit (MSB, bit 23) is shifted in/out first.  
Write and clear commands are executed at the rising edge of CSN.  
The SPI protocol supports both independent slave selection and daisy chain configurations.  
8.1  
SPI protocol with independent slave selection  
With individual slave selection, the microcontroller controls the CSN pin of each SPI slave individually  
(Figure 41).  
Microcontroller  
TLE9210x  
SPI  
Device2  
SPI  
Device3  
SPI  
SDI  
SDO  
SDI2  
SDO2 SDI3  
SDO3  
MCSN1  
MCSN2  
MCSN3  
MCLK  
MOSI  
MISO  
Figure 41 Individual slave selection with three slave devices  
A SPI communication consists of 24-bit frame (Figure 42):  
SDI receives one address byte followed by two data bytes.  
SDO transmits the Global Error Flag and the Global Status Byte followed by two response bytes.  
Datasheet  
88  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Serial Peripheral Interface - SPI  
CSN high to low: SDO is enabled . Status information transferred to output shift register  
CSN  
time  
CSN low to high: data from shift register is transferred to output functions  
SCLK  
SDI  
time  
time  
MSB  
23 22 21 20 19 18 17  
Actual data  
LSB  
New data  
23+ 22+  
4
3
2
1
0
SDI: will accept data on the falling edge of SCLK signal  
MSB  
GEF 23 22 21 20 19 18 17  
LSB  
Actual status  
New status  
SDO  
GEF+ 23+ 22+  
time  
4
3
2
1
0
SDO will change state on the rising edge of SCLK signal  
Figure 42 SPI Data Transfer  
The MSB of the address byte must be set to ‘1’.  
The address byte specifies (see Figure 43):  
the target register (A[4:0])  
the type of operation:  
For control registers:  
Read only: OP bit1) = ‘0’  
Read and write: OP bit = ‘1’  
For status registers:  
Read only: OP bit = ‘0’  
Read and clear: OP bit = ‘1’  
With individual slave selection, the Last Address Byte Token (LABT) must be set to ‘1’.  
In-frame response  
The SPI protocol incorporates an in-frame response: The content of the addressed register is shifted out by  
SDO within the same SPI frame. This feature reduces the SPI bus load during the read out of the control or  
status registers.  
1) OP bit is the least significant bit of the address byte, see Figure 43  
Datasheet  
89  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Serial Peripheral Interface - SPI  
Address Byte  
Data High Byte  
SDI  
Data Low Byte  
MSB  
23  
LSB  
0
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
LABT  
= 1  
1
A4  
A3  
A2  
A1  
A0  
OP  
D15 D14 D13 D12 D11 D10 D9 D8  
D7 D6 D5 D4 D3 D2 D1 D0  
Response corresponding to the incoming address byte  
Response High Byte  
SDO  
Global Status Byte  
LSB  
0
Response Low Byte  
MSB  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
NPOR  
SUPE VDSE OC SPIE R15 R14 R13 R12 R11 R10 R9 R8  
0
FS  
TE  
R7 R6 R5 R4 R3 R2 R1 R0  
Time  
MSB is sent first in SPI message  
Figure 43 In-frame response with individual slave selection  
8.2  
Global Error Flag (GEF)  
The Global Error Flag (GEF) is reported on SDO between the CSN falling edge and the first SCLK rising edge.  
GEF is set if a fault condition is detected or if the device comes from a Power On Reset (POR). It is therefore  
possible to have a quick device diagnostic without any SPI clock pulse (Figure 44).  
CSN  
time  
0
SCLK  
time  
0
SDI  
time  
High Impedance  
High Impedance  
Global Error Flag  
SDO  
time  
Figure 44 GEF - Diagnostic with 0-clock cycle  
8.3  
Global status byte  
The SDO shifts out during the first eight SCLK cycles the Global Status Byte. This register provides an overview  
of the device status. The following error conditions are reported in this byte:  
Fail Safe (FS bit).  
Temperature error (TE bit): logical OR combination between Thermal Warning (TW) and Thermal  
shutdown (TSD).  
Negated Power ON Reset (NPOR bit, refer to Chapter 5.3 for reset conditions).  
Datasheet  
90  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Serial Peripheral Interface - SPI  
Supply Error (SUPE bit): logical OR combination between VS undervoltage shutdown (VSUV), VS  
overvoltage shutdown (VSOV) and charge pump undervoltage (CPUV).  
VDS monitoring Error (VDSE bit): logical OR combination between the bits of the DSOV register.  
Overcurrent (OC bit): logical OR combination between OC1 and OC2 status bits (GENSTAT register).  
SPI protocol Error (SPIE bit).  
Note:  
The Global Error Flag is a logic OR combination of every bit of the Global Status Byte and of TDREGx:  
GEF = (FS) OR (TE) OR (NOT(NPOR)) OR (SUPE) OR (VDSE) OR (OC) OR (SPIE) OR (NOT(TDREGx) AND  
(PWMx_EN =1) AND (NOT (MSKTDREG))), x = 1 ... 3.  
The following table shows how failures are reported in the Global Status Byte and the error Flag:  
Table 26  
Failure reported in the global status byte and global error flag  
Type of Error  
Failure reported in the Global  
Status Byte  
Global Error Flag  
Fail safe  
FS = 1  
1
1
1
1
1
1
1
Thermal error  
TE = 1  
Power ON reset  
NPOR = 0  
SUPE = 1  
VDSE = 1  
OC = 1  
SPIE = 1  
-
Supply error  
Drain source voltage monitoring  
Overcurrent  
SPI protocol error  
TDREGx, x = 1 ... 31) (see GENSTAT)  
1 if MSKTDREG = 02)  
0 if MSKTDREG = 12)  
No error and no power ON reset  
SPIE = 0  
OC = 0  
0
VDSE = 0  
SUPE= 0  
NPOR = 1  
TE = 0  
FS = 0  
TDREGx = 0,  
1) See status register GENSTAT.  
2) See control register GENCTRL2.  
Note:  
The default value (after Power ON Reset) of NPOR is 0, therefore the default value of GEF is 1.  
In fail safe mode, the control registers are frozen to their default value, with the exception of the WDTRIG bit  
(refer to Chapter 5.2.3). Any write access (except for WDTRIG bit) in fail safe mode will be discarded and the  
SPIE bit will set.  
Datasheet  
91  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Serial Peripheral Interface - SPI  
8.4  
SPI error detection  
The SPI incorporates an error flag in the Global Status Byte (SPIE) to supervise and preserve the data integrity.  
If an SPI protocol error is detected during a given frame, the SPIE bit is set in the next SPI communication.  
The SPIE bit is set in the following error conditions:  
The number of SCLK clock pulses received when CSN is Low is (protocol error):  
not zero  
or less than 24  
or more than 24 but not a multiple of 8  
The microcontroller sends an SPI command to an unused address (protocol error).  
A clock polarity error is detected (see Figure 45 Case 2 and Case 3): the incoming clock signal was High  
during CSN rising or falling edges (protocol error).  
No address byte or no last address byte are detected (protocol error).  
In daisy chain: the microcontroller does not send in sequence the first address byte until the last address  
byte (i.e. with gaps between two address bytes). In this case, the SDO signal is set to ‘0’ during the  
remaining part of the SPI frame1), in order to prevent other devices from executing wrong commands  
(protocol error).  
A clear command to address 0x1F (Device ID register, Offset address = 0x1F).  
The same half-bridge is allocated to several activated PWM channels.  
Any write or clear command received in fail safe mode and not belonging to the exit sequence (refer to  
Chapter 5.2.3).  
Note:  
SPI commands to activate a half-bridge mapped to several PWM channels are ignored.  
In fail safe mode, the control registers may not be accessed, except for writing WDTRIG. An invalid write  
command in this mode sets the SPIE bit.  
For a correct SPI communication:  
SCLK must be Low for a minimum tBEF before CSN falling edge and tlead after CSN falling edge.  
SCLK must be Low for a minimum tlag before CSN rising edge and tBEH after CSN rising edge.  
1) Provided that the SPI frame has a correct polarity  
Datasheet  
92  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Serial Peripheral Interface - SPI  
Case 1: Correct SCLK signal  
Correct incoming clock signal  
Correct clock during CSN rising edge  
CSN  
time  
time  
tBEF  
tlead  
tlag tBEH  
SCLK  
Case 2: Erroneous incoming clock signal  
CSN  
time  
time  
SCLK is High with CSN falling edge  
SCLK  
Case 3: Erroneous clock signal during CSN rising edge  
CSN  
time  
time  
Clock is High with CSN rising edge  
SCLK  
Figure 45 Clock polarity error  
The reset condition of the SPIE bit depends on the cause of error:  
In normal mode:  
The microcontroller must clear HBVOUT_PWMERR if one half-bridge has been allocated to several  
PWM channels.  
The microcontroller must send a correct SPI frame for the other errors reported by SPIE.  
If SPIE has been set in fail safe mode, the device must enter normal mode first.  
8.5  
Daisy chain  
In daisy chain configuration the master output / slave input (noted MOSI) is connected to a slave SDI. The first  
slave SDO is connected to the next slave SDI in the chain. The SDO of the final in the chain is connected to the  
master input / slave output (noted MISO). In daisy chain configuration, the microcontroller MCSN is connected  
to all the slave CSN inputs (Figure 46).  
Datasheet  
93  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Serial Peripheral Interface - SPI  
To support daisy chain configurations, the TLE92108-232QX accepts SPI frames with more than 24 bits,  
provided that the number of bits is a multiple of 8, and the structure of the address byte is respected.  
In daisy chain, the TLE92108-232QX works as follows:  
1. The TLE92108-232QX operates as a 8-bit shift register until it receives the first address byte. This first  
received address byte is considered by the device as its own address byte.  
2. The TLE92108-232QX copies directly SDI to SDO until the last address byte is detected.  
3. The TLE92108-232QX shifts out the response high byte and low byte corresponding to the address byte.  
4. After the last address byte, the TLE92108-232QX operates as a 16-bit shift register until the end of the SPI  
frame.  
Microcontroller  
TLE9210x_1  
SPI  
TLE9210x_2  
SPI  
TLE9210x_3  
SPI  
SDI1  
SDO1 SDI2  
SDO2 SDI3  
SDO3  
MOSI  
MCSN  
MCLK  
MISO  
Figure 46 Daisy chain configuration with three TLE9210x devices  
In daisy chain configuration (Figure 46), the microcontroller must send the address and data bytes in the  
following order (Figure 47):  
1. The address bytes altogether are sent first:  
Address byte 1 (for TLE9210x_1) is sent first, followed by address byte 2 (for TLE9210x_2), followed by  
address byte 3 (for TLE9210x_3).  
The LABT bit of the last address byte must be ‘1’, while the LABT bit of all the other address bytes must  
be ‘0’.  
2. The data bytes are sent altogether in reverse order once the address bytes are transmitted:  
The data high byte for the TLE9210x_3 is sent first followed by the data low byte for the TLE9210x_3.  
Then the data high byte for the TLE9210x_2 is sent followed by the data low byte for the TLE9210x_2.  
Then the data high byte for the TLE9210x_1 is sent followed by the data low byte for the TLE9210x_1.  
The Master Input / Slave Output (MISO), which is connected to SDO of the last device in the daisy chain,  
receives:  
1. A logic OR combination of all Global Error Flags (GEF) at the beginning of the SPI frame, between CSN  
falling edge and the first SCLK rising edge.  
2. The Global Status Byte of each TLE9210x in reverse order:  
Datasheet  
94  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Serial Peripheral Interface - SPI  
The Global Status Byte 3 (GSB3) corresponding to the TLE9210x_3 is received first, followed by GSB2  
(corresponding to the TLE9210x_2), and finally the GSB1 (corresponding to the TLE9210x_1) is  
received.  
3. The response of each TLE9210x in reverse order:  
The response high byte of the TLE9210x_3 is received first followed by the response low byte of the  
TLE9210x_3.  
Then the response high byte of the TLE9210x_2 is received followed by the response low byte of the  
TLE9210x_2.  
Then the response high byte of the TLE9210x_1 is received followed by the response low byte of the  
TLE9210x_1.  
Datasheet  
95  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Serial Peripheral Interface - SPI  
Figure 47 SPI Frame in daisy chain configuration with three TLE9210x devices  
Datasheet  
96  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Serial Peripheral Interface - SPI  
8.6  
SPI electrical characteristics: timings  
Table 27  
Electrical characteristics: SPI interface  
VS = 6.0 V to 18 V if VSOVTH = 0, VS = 6.0 V to 28 V if VSOVTH = 1; VDD = 3.0 V to 5.5 V, Tj = -40°C to 150°C, all voltages  
with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
4
SPI frequency  
1)  
1)  
Maximum SPI frequency  
fSPI,max  
P_8.6.1  
Delay from EN rising edge to first SPI frame  
SPI interface setup time2)  
tSET_SPI  
SPI interface, logic inputs SDI, SCLK, CSN  
150  
µs  
P_8.6.32  
High input voltage threshold VIH  
Low input voltage threshold VIL  
Hysteresis of input voltage VIHY  
0.7 x  
VDD  
V
V
V
P_8.6.2  
P_8.6.3  
P_8.6.4  
P_8.6.5  
0.3 x  
VDD  
1)  
0.12 x  
VDD  
Pull up resistor at pin CSN  
RPU_CSN  
20  
20  
40  
40  
80  
80  
kΩ  
kΩ  
VCSN = 0.7 x VDD  
Pull down resistor at pin SDI, RPD_SDI,  
VSDI, VSCLK = 0.2 x P_8.6.6  
SCLK  
RPD_SCLK  
VDD  
Input capacitance at pin  
CSN, SDI or SCLK  
CI  
10  
pF  
1) 0 V < VDD < 5.5 V P_8.6.7  
Input interface, logic outputs SDO  
H-output voltage level  
L-output voltage level  
Tri-state Leakage Current  
VSDOH  
VSDOL  
ISDOLK  
0.8 x  
VDD  
V
ISDOH = -1.6 mA  
P_8.6.8  
P_8.6.9  
P_8.6.10  
P_8.6.11  
0.2 x  
VDD  
V
ISDOL = 1.6 mA  
1)  
-10  
10  
µA  
pF  
V
= VDD;  
CSN  
0 V < VSDO < VDD  
1)  
Tri-state input capacitance CSDO  
10  
15  
Data input timing. See Figure 41  
1)  
1)  
SCLK Period  
tpCLK  
250  
ns  
P_8.6.12  
P_8.6.13  
SCLK High Time  
tSCLKH  
0.45 x  
0.55 x ns  
tpCLK  
tpCLK  
1)  
SCLK Low Time  
tSCLKL  
0.45 x  
0.55 x ns  
P_8.6.14  
tpCLK  
tpCLK  
1)  
1)  
1)  
1)  
1)  
SCLK Low before CSN Low tBEF  
125  
250  
250  
125  
100  
ns  
ns  
ns  
ns  
ns  
P_8.6.15  
P_8.6.16  
P_8.6.17  
P_8.6.18  
P_8.6.19  
CSN Setup Time  
tlead  
SCLK Setup Time  
SCLK Low after CSN High  
SDI Setup Time  
tlag  
tBEH  
tSDI_setup  
Datasheet  
97  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Serial Peripheral Interface - SPI  
Table 27  
Electrical characteristics: SPI interface (cont’d)  
VS = 6.0 V to 18 V if VSOVTH = 0, VS = 6.0 V to 28 V if VSOVTH = 1; VDD = 3.0 V to 5.5 V, Tj = -40°C to 150°C, all voltages  
with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
50  
Typ.  
Max.  
1)  
SDI Hold Time  
tSDI_hold  
ns  
ns  
P_8.6.20  
P_8.6.21  
1)  
Input Signal Rise Time at pin trIN  
50  
SDI, SCLK, CSN  
1)  
1)  
1)  
Input Signal Fall Time at pin tfIN  
SDI, SCLK, CSN  
3
50  
6
ns  
µs  
µs  
P_8.6.22  
P_8.6.23  
P_8.6.24  
Delay time from EN falling  
edge to standby mode  
tDMODE  
Minimum CSN High Time  
tCSNH  
Data output timing. See Figure 42.  
1)  
1)  
SDO Rise Time  
SDO Fall Time  
trSDO  
tfSDO  
30  
30  
80  
80  
50  
ns  
ns  
ns  
C
C
= 100 pF  
= 100 pF  
P_8.6.25  
P_8.6.26  
P_8.6.27  
load  
load  
SDO Enable Time after CSN tENSDO  
1) Low  
falling edge  
Impedance  
SDO Disable Time after CSN tDISSDO  
rising edge  
50  
55  
50  
ns  
%
1) High  
Impedance  
1)  
P_8.6.28  
P_8.6.29  
Duty cycle of incoming clock dutySCLK  
at SCLK  
45  
1)  
SDO Valid Time for VDD = 5V tVASDO5  
ns  
V
< 0.2 x VDD P_8.6.31  
SDO  
VSDO > 0.8 x VDD  
Cload = 100 pF  
1) Not subject to production test, specified by design  
2) Delay required between EN rising edge and the moment when the device can accept SPI commands  
Datasheet  
98  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Serial Peripheral Interface - SPI  
tlead  
tlag  
tCSNH  
tpCLK  
0.8VDD  
0.2VDD  
CSN  
tSCLKH  
tSCLKL  
0.8VDD  
0.2VDD  
SCLK  
tSDI_hold  
tSDI _s etup  
0.8VDD  
0.2VDD  
SDI  
tENSDO  
tVASDO  
tDISSDO  
0.8VDD  
0.2VDD  
SDO  
Figure 48 SPI timing parameters  
EN  
EN  
tSET  
SPI  
SPI  
A) SPI message ignored  
B) SPI message accepted  
Figure 49 Setup time from EN rising edge to first SPI communication  
Datasheet  
99  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
9
Register specification  
9.1  
Control registers  
Table 28 Register Overview  
Register Short Name Register Long Name  
Offset Address  
Reset Value  
GENCTRL1  
GENCTRL2  
VDS1  
General control register 1  
0x00 and REG_BANK = 0 or 1 0x0026  
0x01 and REG_BANK = 0 or 1 0x4180  
0x02 and REG_BANK = 0 or 1 0x0249  
0x03 and REG_BANK = 0 or 1 0x0249  
0x04 and REG_BANK = 0 or 1 0x0000  
General control register 2  
Drain-source monitoring HB1-4  
Drain-source monitoring HB5-8  
VDS2  
CCP_BLK1  
Cross current protection and  
blank times setting 1  
CCP_BLK2_ACT  
CCP_BLK2_FW  
Cross current protection and  
blank times setting for active  
MOSFETs1)  
0x05 and REG_BANK = 0  
0x05 and REG_BANK = 1  
0x4924  
0x4924  
Cross current protection and  
blank times setting for FW  
MOSFETs1)  
HBMODE  
PWMSET  
TPRECHG  
Half-bridge mode  
0x06 and REG_BANK = 0 or 1 0x0000  
0x07 and REG_BANK = 0 or 1 0x6C60  
0x08 andREG_BANK = 0 or 1 0x0000  
Setting of PWM channels  
PWM pre-charge and pre-  
discharge time  
HBIDIAG  
ST_ICHG  
Half-bridge diagnostic current  
control  
0x09 and REG_BANK = 0 or 1 0xC000  
Charge current for static half-  
bridges  
0x0A and REG_BANK = 0  
0x0044  
PWM_PCHG_INIT  
PWM_ICHG_ACT  
Precharge current initialization  
0x0A and REG_BANK = 1  
0x18C6  
0x18C6  
Charge current for half-bridges in 0x0B and REG_BANK = 0  
PWM (active MOSFETs1))  
PWM_ICHG_FW  
Charge current for half-bridges in 0x0B and REG_BANK = 1  
PWM (FW MOSFETs1))  
0x18C6  
0x1CE7  
PWM_IDCHG_ACT  
PWM_PDCHG_INIT  
Discharge current of active  
MOSFETs1) in PWM operation  
0x0C and REG_BANK = 0  
Predischarge current initialization 0x0C and REG_BANK = 1  
0x318C  
0x4900  
PWM_ICHGMAX_CCP_ Max. pre-charge / pre-discharge  
BLK3_ACT  
0x0D and REG_BANK =0  
currents for half-bridges in PWM2),  
tCCP and tBLANK setting for  
active MOSFETS1)  
PWM_ICHGMAX_CCP_ Max. pre-charge / pre-discharge  
BLK3_FW  
0x0D and REG_BANK =1  
0x4900  
currents for half-bridges in PWM2),  
tCCP and tBLANK setting for FW  
MOSFETS1)  
Datasheet  
100  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Table 28 Register Overview (cont’d)  
Register Short Name Register Long Name  
Offset Address  
Reset Value  
TDON_OFF1  
TDON_OFF2  
TDON_OFF3  
Turn-on and turn-off delays for  
PWM channel1  
0x0E and REG_BANK = 0 or 1 0x0A0A  
0x0F and REG_BANK = 0 or 1 0x0A0A  
0x10 and REG_BANK = 0 or 1 0x0A0A  
Turn-on and turn-off delays for  
PWM channel2  
Turn-on and turn-off delays for  
PWM channel3  
1) Refer to Chapter 6.3.1 for the definition of the active and the free-wheeling MOSFETs, depending on the setting of  
AGC  
2) ICHGMAX is also the current applied to the Active MOSFET during post-discharge.  
Datasheet  
101  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
9.1.1  
General Control Registers and Protection Settings  
General control register 1  
GENCTRL1  
General Control Register 1 (0 0000B)Reset Value: 0000 0000 0010 0110B  
15  
14  
CSAG2  
rw  
13  
12  
11  
CSAG1  
rw  
10  
9
8
7
6
5
4
3
2
1
0
REG_ VSOV UNLO Reser FMOD Reser IPCHG  
BANK TH  
WDPE WDTR  
R
CSD2  
CSD1  
OCEN  
CK  
ved  
E
ved ADT  
IG  
rw  
rw  
rw rw  
rw  
r
rw  
r
rw  
rw  
rw  
rw  
Field  
CSD2  
Bits  
Type  
Description  
Direction of the current sense amplifier 2  
15  
rw  
0B The current sense is unidirectional (default)  
1B The current sense is bidirectional  
CSAG2  
14:13  
rw  
Gain of the current sense amplifier 2  
00B 10 V/V (default)  
01B 20 V/V  
10B 40 V/V  
11B 80 V/V  
CSD1  
12  
rw  
rw  
Direction of the current sense amplifier 1  
0B The current sense is unidirectional (default)  
1B The current sense is bidirectional  
CSAG1  
11:10  
Gain of the current sense amplifier 1  
00B 10 V/V (default)  
01B 20 V/V  
10B 40 V/V  
11B 80 V/V  
REG_BANK  
9
rw  
Register banking  
0B (Default) refer to CCP_BLK2_ACT,  
PWM_ICHGMAX_CCP_BLK3_ACT, PWM_ICHG_ACT,  
ST_ICHG, PWM_IDCHG_ACT  
1B  
Refer to CCP_BLK2_FW, PWM_ICHGMAX_CCP_BLK3_FW,  
PWM_ICHG_FW,PWM_PDCHG_INIT,PWM_PCHG_INIT  
VSOVTH  
UNLOCK  
8
7
rw  
rw  
VS Overvoltage threshold  
0B VSOV OFF = VSOV OFF1 (min. 19 V, default)  
1B VSOV OFF = VSOV OFF2 (min. 29V)  
Unlock bit to disable the watchdog  
0B WDDIS cannot be reset (default)  
1B WDDIS (GENCTRL2) can be reset in the following SPI frame  
Reserved  
FMODE  
6
5
r
Reserved. Always read as ‘0’  
rw  
Frequency modulation  
0B No modulation  
1B Modulation frequency 15.6 kHz (default)  
Reserved  
4
r
Reserved. Always read as ‘0’  
Datasheet  
102  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Field  
Bits  
Type  
Description  
IPCHGADT  
3
rw  
Adaptation of the pre-charge and pre-discharge current  
0B 1 current step (default)  
1B 2 current steps  
OCEN  
2
1
0
rw  
rw  
rw  
Overcurrent shutdown Enable  
0B Disabled  
1B Enabled (default)  
WDPER  
WDTRIG  
Watchdog period  
0B 50 ms  
1B 200 ms (default)  
Watchdog trigger bit  
This bit must be inverted within a watchdog period. After power on  
reset, the default value is 0.  
Attention: Any write access to this register must invert the WDTRIG bit. Otherwise, the device enters fail  
safe mode. Refer to Chapter 5.2.3.  
Datasheet  
103  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
General control register 2  
GENCTRL2  
General Control Register 2 (0 0001B)Reset Value: 0100 0001 1000 0000B  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
POCH BD_P AGCFI  
WDDI MSKT CPUV CPST  
AGC  
IHOLD  
TFVDS  
rw  
OCTH2  
rw  
OCTH1  
rw  
GDIS ASS  
LT  
S
DREG TH  
GA  
rw  
rw  
rw  
rw  
rw  
rw  
rw rw  
rw  
Field  
Bits  
Type  
Description  
Postcharge disable bit  
POCHGDIS 15  
rw  
0B The postcharge phase is enabled during PWM (default)  
1B The postcharge phase is disabled during PWM  
BD_PASS  
AGCFILT  
14  
13  
rw  
rw  
Bridge driver passive mode  
0B Bridge driver is in active mode  
1B Bridge driver is in passive mode (Default)  
Filter for adaptive gate control  
Note:  
Refer to Adaptive control of pre-charge current and  
Adaptive control of pre-discharge current  
0B No filter applied (default)  
1B Filter applied  
AGC  
12:11  
rw  
Adaptive gate control  
00B (default) Adaptive gate control disabled, pre-charge and pre-  
discharge disabled  
01B Adaptive gate control disabled, precharge is disabled,  
predischarge is enabled with IPREDCHG = IPDCHGINIT (Refer  
to PWM_PCHG_INIT)  
10B Adaptive gate control enabled, IPRECHG and IPREDCHG are  
self adapted  
11B Reserved. Adaptive gate control enabled, IPRECHG and  
IPREDCHG are self adapted  
IHOLD  
WDDIS  
10  
9
rw  
rw  
Gate driver hold current IHOLD  
0B (default) Charge: ICHG8 (12.5 mA typ.), discharge IDCHG8 (14.2  
mA typ.)  
1B  
Charge: ICHG12 (23.9 mA typ.), discharge: IDCHG12 (26.0 mA typ.)  
Watchdog disable bit  
0B the watchdog is enabled (default)  
1B the watchdog is disabled if the previous SPI frame has set  
UNLOCK bit (GENCTRL1)  
Once the watchdog is disabled, it is directly re-enabled by resetting  
WDDIS  
Datasheet  
104  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Field  
Bits  
Type  
Description  
MSKTDREG  
8
rw  
Masking of the turn-on/off delay error in the Global Error Flag  
0B Turn-on/off delay error is reported in the GEF  
1B Turn-on/off delay error is masked in the GEF (default)  
CPUVTH  
CPSTGA  
7
6
rw  
rw  
Charge pump undervoltage detection threshold  
0B VCPUV (referred to VS) = 6.0V typ.  
1B VCPUV (referred to VS)= 7.5 V typ. (default)  
Automatic switch-over between dual and single charge pump  
stage  
0B Automatic switch over deactivated (default)  
1B Automatic switch over activated  
TFVDS  
OCTH2  
5:4  
3:2  
rw  
rw  
Filter time of drain-source voltage monitoring  
00B 0.5 µs (default)  
01B 1 µs  
10B 2 µs  
11B 3 µs  
Overcurrent detection threshold of CSO2 with CSD2 = 0  
00B VCSO2 > VDD/2(default)  
01B VCSO2 > VDD/2 + VDD/10  
10B VCSO2 > VDD/2 + 2 x VDD/10  
11B VCSO2 > VDD/2 + 3 x VDD/10  
Overcurrent detection threshold of CSO2 with CSD2 = 1  
00B VCSO2 > VDD/2 + 2 x VDD/20 or VCSO2 < VDD/2 - 2 x VDD/20 (default)  
01B VCSO2 > VDD/2+ 4 x VDD/20 or VCSO2 < VDD/2 - 4 x VDD/20  
10B VCSO2 > VDD/2+ 5 x VDD/20 or VCSO2 < VDD/2 - 5 xVDD/20  
11B VCSO2 > VDD/2+ 6 x VDD/20 or VCSO2 < VDD/2 - 6 x VDD/20  
OCTH1  
1:0  
rw  
Overcurrent detection threshold of CSO1 with CSD1 = 0  
00B VCSO1 > VDD/2 (default)  
01B VCSO1 > VDD/2 + VDD/10  
10B VCSO1 > VDD/2 + 2 x VDD/10  
11B VCSO1 > VDD/2 + 3x VDD/10  
Overcurrent detection threshold of CSO1 with CSD1 = 1  
00B VCSO1 > VDD/2+2 x VDD/20 or VCSOx< VDD/2 - 2x VDD/20 (default)  
01B VCSO1 > VDD/2+ 4x VDD/20 or VCSOx< VDD/2 - 4x VDD/20  
10B VCSO1 > VDD/2+ 5 x VDD/20 or VCSOx< VDD/2 - 5 xVDD/20  
11B VCSO1 > VDD/2+ 6x VDD/20 or VCSOx< VDD/2 - 6x VDD/20  
Datasheet  
105  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Drain-source monitoring threshold HB1-4  
VDS1  
Drain-source monitoring threshold HB1-4(0 0010B)Reset Value:0000 0010 0100 1001B  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
HB4D HB3D HB2D HB1D  
HB4VDSTH  
HB3VDSTH  
HB2VDSTH  
HB1VDSTH  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
Field  
Bits  
Type  
Description  
HS4 Drain-source monitoring1)  
HB4D  
15  
rw  
0B Drain-source monitoring: DH - VSH4 (default)  
1B Drain-source monitoring: CSIN1 - VSH4  
HB3D  
HB2D  
HB1D  
14  
13  
12  
rw  
rw  
rw  
rw  
HS3 Drain-source monitoring1)  
0B Drain-source monitoring: DH - VSH3 (default)  
1B Drain-source monitoring: CSIN1 - VSH3  
HS2 Drain-source monitoring1)  
0B Drain-source monitoring: DH - VSH2 (default)  
1B Drain-source monitoring: CSIN1 - VSH2  
HS1 Drain-source monitoring1)  
0B Drain-source monitoring: DH - VSH1 (default)  
1B Drain-source monitoring: CSIN1 - VSH1  
HB4VDSTH 11:9  
HB4 drain-source overvoltage threshold  
000B 0.15 V  
001B 0.20 V (default)  
010B 0.25 V  
011B 0.30 V  
100B 0.40 V  
101B 0.50 V  
110B 0.60 V  
111B 2.0 V  
HB3VDSTH 8:6  
rw  
HB3 drain-source overvoltage threshold  
000B 0.15 V  
001B 0.20 V (default)  
010B 0.25 V  
011B 0.30 V  
100B 0.40V  
101B 0.50 V  
110B 0.60 V  
111B 2.0 V  
Datasheet  
106  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Field  
Bits  
Type  
Description  
HB2VDSTH 5:3  
rw  
HB2 drain-source overvoltage threshold  
000B 0.15 V  
001B 0.20 V (default)  
010B 0.25 V  
011B 0.30 V  
100B 0.40 V  
101B 0.50 V  
110B 0.60 V  
111B 2.0 V  
HB1VDSTH 2:0  
rw  
HB1 drain-source overvoltage threshold  
000B 0.15 V  
001B 0.20 V (default)  
010B 0.25 V  
011B 0.30 V  
100B 0.40 V  
101B 0.50 V  
110B 0.60 V  
111B 2.0 V  
1) Applicable for HSx. The Drain-Source overvoltage for LSx is done by monitoring VSHx - VSL.  
Datasheet  
107  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Drain-source monitoring threshold HB5-8  
VDS2  
Drain-source monitoring threshold HB5-8(0 0011B)Reset Value: 0000 0010 0100 1001B  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
HB8D HB7D HB6D HB5D  
HB8VDSTH  
HB7VDSTH  
HB6VDSTH  
HB5VDSTH  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
Field  
Bits  
Type  
Description  
HS8 Drain-source monitoring1)  
HB8D  
15  
rw  
0B Drain-source monitoring: DH - VSH8 (default)  
1B Drain-source monitoring: CSIN1 - VSH8  
HB7D  
HB6D  
HB5D  
14  
13  
12  
rw  
rw  
rw  
rw  
HS7 Drain-source monitoring1)  
0B Drain-source monitoring: DH - VSH7 (default)  
1B Drain-source monitoring: CSIN1 - VSH7  
HS6 Drain-source monitoring1)  
0B Drain-source monitoring: DH - VSH6 (default)  
1B Drain-source monitoring: CSIN1 - VSH6  
HS5 Drain-source monitoring1)  
0B Drain-source monitoring: DH - VSH5 (default)  
1B Drain-source monitoring: CSIN1 - VSH5  
HB8VDSTH 11:9  
HB8 drain-source overvoltage threshold  
000B 0.15 V  
001B 0.20 V (default)  
010B 0.25 V  
011B 0.30 V  
100B 0.40 V  
101B 0.50 V  
110B 0.60 V  
111B 2.0 V  
HB7VDSTH 8:6  
rw  
HB7 drain-source overvoltage threshold  
000B 0.15 V  
001B 0.20 V (default)  
010B 0.25 V  
011B 0.30 V  
100B 0.40 V  
101B 0.50 V  
110B 0.60 V  
111B 2.0 V  
Datasheet  
108  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Field  
Bits  
Type  
Description  
HB6VDSTH 5:3  
rw  
HB6 drain-source overvoltage threshold  
000B 0.15 V  
001B 0.20 V (default)  
010B 0.25 V  
011B 0.30 V  
100B 0.40 V  
101B 0.50 V  
110B 0.60 V  
111B 2.0 V  
HB5VDSTH 2:0  
rw  
HB5 drain-source overvoltage threshold  
000B 0.15 V  
001B 0.20 V (default)  
010B 0.25 V  
011B 0.30 V  
100B 0.40 V  
101B 0.50 V  
110B 0.60 V  
111B 2.0 V  
1) Applicable for HSx. The Drain-Source overvoltage for LSx is done by monitoring VSHx - VSL.  
Datasheet  
109  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Cross current protection and blank time setting 1  
CCP_BLK1  
CCP and Blank times setting 1(0 0100B)Reset Value: 0000 0000 0000 0000B  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
HB8CCPBLK HB7CCPBLK HB6CCPBLK HB5CCPBLK HB4CCPBLK HB3CCPBLK HB2CCPBLK HB1CCPBLK  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
Field  
Bits  
Type  
Description  
HB8CCPBLK 15:14  
HB7CCPBLK 13:12  
HB6CCPBLK 11:10  
HB5CCPBLK 9:8  
HB4CCPBLK 7:6  
HB3CCPBLK 5:4  
HB2CCPBLK 3:2  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
Cross-current protection and blank times applied to HB8  
00B (tHB8CCP, tHB8BLANK) = (tCCP1, tBLANK1) (default)  
01B (tHB8CCP, tHB8BLANK) = (tCCP2, tBLANK2)  
10B (tHB8CCP, tHB8BLANK) = (tCCP3, tBLANK3)  
11B (tHB8CCP, tHB8BLANK) = (tCCP4, tBLANK4)  
Cross-current protection and blank times applied to HB7  
00B (tHB7CCP, tHB7BLANK) = (tCCP1, tBLANK1) (default)  
01B (tHB7CCP, tHB7BLANK) = (tCCP2, tBLANK2)  
10B (tHB7CCP, tHB7BLANK) = (tCCP3, tBLANK3)  
11B (tHB7CCP, tHB7BLANK) = (tCCP4, tBLANK4)  
Cross-current protection and blank times applied to HB6  
00B (tHB6CCP, tHB6BLANK) = (tCCP1, tBLANK1) (default)  
01B (tHB6CCP, tHB6BLANK) = (tCCP2, tBLANK2)  
10B (tHB6CCP, tHB6BLANK) = (tCCP3, tBLANK3)  
11B (tHB6CCP, tHB6BLANK) = (tCCP4, tBLANK4)  
Cross-current protection and blank times applied to HB5  
00B (tHB5CCP, tHB5BLANK) = (tCCP1, tBLANK1) (default)  
01B (tHB5CCP, tHB5BLANK) = (tCCP2, tBLANK2)  
10B (tHB5CCP, tHB5BLANK) = (tCCP3, tBLANK3)  
11B (tHB5CCP, tHB5BLANK) = (tCCP4, tBLANK4)  
Cross-current protection and blank times applied to HB4  
00B (tHB4CCP, tHB4BLANK) = (tCCP1, tBLANK1) (default)  
01B (tHB4CCP, tHB4BLANK) = (tCCP2, tBLANK2)  
10B (tHB4CCP, tHB4BLANK) = (tCCP3, tBLANK3)  
11B (tHB4CCP, tHB4BLANK) = (tCCP4, tBLANK4)  
Cross-current protection and blank times applied to HB3  
00B (tHB3CCP, tHB3BLANK) = (tCCP1, tBLANK1) (default)  
01B (tHB3CCP, tHB3BLANK) = (tCCP2, tBLANK2)  
10B (tHB3CCP, tHB3BLANK) = (tCCP3, tBLANK3)  
11B (tHB3CCP, tHB3BLANK) = (tCCP4, tBLANK4)  
Cross-current protection and blank times applied to HB2  
00B (tHB2CCP, tHB2BLANK) = (tCCP1, tBLANK1) (default)  
01B (tHB2CCP, tHB2BLANK) = (tCCP2, tBLANK2)  
10B (tHB2CCP, tHB2BLANK) = (tCCP3, tBLANK3)  
11B (tHB2CCP, tHB2BLANK) = (tCCP4, tBLANK4)  
Datasheet  
110  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Field  
Bits  
Type  
Description  
HB1CCPBLK 1:0  
rw  
Cross-current protection and blank times applied to HB1  
00B (tHB1CCP, tHB1BLANK) = (tCCP1, tBLANK1) (default)  
01B (tHB1CCP, tHB1BLANK) = (tCCP2, tBLANK2)  
10B (tHB1CCP, tHB1BLANK) = (tCCP3, tBLANK3)  
11B (tHB1CCP, tHB1BLANK) = (tCCP4, tBLANK4)  
Refer  
to  
CCP_BLK2_ACT,  
PWM_ICHGMAX_CCP_BLK3_ACT,  
CCP_BLK2_FW  
and  
PWM_ICHGMAX_CCP_BLK3_FW for the setting of (tCCPx, tBLANKx), x = 1 … 4.  
Datasheet  
111  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Cross current protection and blank time setting 2 for active MOSFETs  
Attention: This register is accessed with REG_BANK = 0 and the offset adress 0 0101B. tCCP and tBLANK are  
applicable to the active MOSFETs.  
CCP_BLK2_ACT  
Active CCP and Blank times setting 2(0 0101B)Reset Value: 0100 1001 0010 0100B  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reser  
ved  
TCCP3_ACT  
TBLANK2_ACT  
TCCP2_ACT  
TBLANK1_ACT  
TCCP1_ACT  
r
rw  
rw  
rw  
rw  
rw  
Field  
Bits  
Type  
r
Description  
Reserved. Always read as ‘0’  
Reserved  
15  
TCCP3_ACT 14:12  
rw  
Cross-current protection - tCCP3 Active  
Refer to Table 29  
Default: 100B: typ. 2000 ns  
TBLANK2_A 11:9  
CT  
rw  
rw  
rw  
rw  
Blank time - tBLANK2 Active  
Refer to Table 30  
Default: 100B: typ. 2000 ns  
TCCP2_ACT 8:6  
Cross-current protection - tCCP2 Active  
Refer to Table 29  
Default: 100B: typ. 2000 ns  
TBLANK1_A 5:3  
CT  
Blank time - tBLANK1 Active  
Refer to Table 30  
Default: 100B: typ. 2000 ns  
TCCP1_ACT 2:0  
Cross-current protection - tCCP1 Active  
Refer to Table 29  
Default: 100B: typ. 2000 ns  
Table 29 Cross-current protection time for active MOSFETs  
TCCPx_ACT[2:0], x = 1…4 Active cross-current protection HBx, x = 1…4 (typical)  
000B  
001B  
010  
011  
100  
101  
110  
111  
375 ns  
625 ns  
1 µs  
1.5 µs  
2 µs (default)  
3 µs  
4 µs  
16 µs1)  
1) When applying a cross-current protection time of 16 µs to a half-bridge, the max. drive current used for this half-  
bridge must be set below 30 mA , to avoid an overheating of the gate driver. Refer to register ST_ICHG for static  
controlled half-bridges and PWM_IDCHG_ACT for half-bridges controlled in PWM.  
Datasheet  
112  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Table 30 Drain-Source overvoltage blank time for active MOSFETs  
TBLANKx_ACT[2:0], x =  
1…4  
Active drain-Source overvoltage blank time tBLANKx, x = 1…4 (typical)  
000B  
001B  
010B  
011B  
100B  
101B  
110B  
111B  
625 ns  
1 µs  
1.25 µs  
1.5 µs  
2 µs (default)  
3 µs  
4 µs  
16 µs1)  
1) When applying a drain-source overvoltage blank time of 16 µs to a half-bridge, the max. drive current used for this  
half-bridge must be set below 30 mA , to avoid an overheating of the gate driver. Refer to register ST_ICHG for static  
controlled half-bridges and PWM_ICHG_ACT for half-bridges controlled in PWM.  
Refer to PWM_ICHGMAX_CCP_BLK3_ACT for the setting of tBLANK4, tCCP4 and tBLANK3 for the active  
MOSFETs.  
Refer to CCP_BLK1 for the mapping of (tCCPx,tBLANKx) to the half-bridges.  
Datasheet  
113  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Cross current protection and blank time setting 2 for FW MOSFETs  
Attention: This register is accessed with REG_BANK = 1 and the offset address 0 0101B . tCCP and tBLANK  
are applicable to the FW MOSFETs.  
CCP_BLK2_FW  
FW CCP and Blank times setting 2(0 0101B)Reset Value: 0100 1001 0010 0100B  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reser  
ved  
TCCP3_FW  
TBLANK2_FW  
TCCP2_FW  
TBLANK1_FW  
TCCP1_FW  
r
rw  
rw  
rw  
rw  
rw  
Field  
Bits  
Type  
r
Description  
Reserved. Always read as ‘0’  
Reserved  
15  
TCCP3_FW 14:12  
rw  
Cross-current protection - tCCP3 Freewheeling  
Refer to Table 31  
Default: 100B: typ. 2000 ns  
TBLANK2_F 11:9  
W
rw  
rw  
rw  
rw  
Blank time - tBLANK2 Freewheeling  
Refer to Table 32  
Default: 100B: typ. 2000 ns  
TCCP2_FW 8:6  
Cross-current protection - tCCP2 Freewheeling  
Refer to Table 31  
Default: 100B: typ. 2000 ns  
TBLANK1_F 5:3  
W
Blank time - tBLANK1 Freewheeling  
Refer to Table 32  
Default: 100B: typ. 2000 ns  
TCCP1_FW 2:0  
Cross-current protection - tCCP1 Freewheeling  
Refer to Table 31  
Default: 100B: typ. 2000 ns  
Table 31 Cross-current protection time for FW MOSFETs  
TCCPx_FW[2:0], x = 1…4  
FW cross-current protection HBx, x = 1…4 (typical)  
000B  
001B  
010  
011  
100  
101  
110  
111  
375 ns  
625 ns  
1 µs  
1.5 µs  
2 µs (default)  
3 µs  
4 µs  
16 µs1)  
1) When applying a cross-current protection time of 16 µs to a half-bridge, the max. drive current used for this half-  
bridge must be set below 30 mA , to avoid an overheating of the gate driver. Refer to register ST_ICHG for static  
controlled half-bridges and PWM_ICHG_FW for half-bridges controlled in PWM.  
Datasheet  
114  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Table 32 Drain-Source overvoltage blank time for FW MOSFETs  
TBLANKx_FW[2:0], x = 1…4 FW Drain-Source overvoltage blank time tBLANKx, x = 1…4 (typical)  
000B  
001B  
010B  
011B  
100B  
101B  
110B  
111B  
625 ns  
1 µs  
1.25 µs  
1.5 µs  
2 µs (default)  
3 µs  
4 µs  
16 µs1)  
1) When applying a drain-source overvoltage blank time of 16 µs to a half-bridge, the max. drive current used for this  
half-bridge must be set below 30 mA , to avoid an overheating of the gate driver. Refer to register ST_ICHG for static  
controlled half-bridges and PWM_ICHG_FW for half-bridges controlled in PWM.  
Refer to PWM_ICHGMAX_CCP_BLK3_FW for the setting of tBLANK4, tCCP4 and tBLANK3 for the FW MOSFETs.  
Refer to CCP_BLK1 for the mapping of (tCCPx,tBLANKx) to the half-bridges.  
Datasheet  
115  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
9.1.2  
Half-bridge control  
Half-bridge mode  
HBMODE  
Half-bridge mode  
(0 0110B)Reset Value: 0B  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
HB8MODE  
HB7MODE  
HB6MODE  
HB5MODE  
HB4MODE  
HB3MODE  
HB2MODE  
HB1MODE  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
Field  
Bits  
Type  
Description  
HB8MODE  
HB7MODE  
HB6MODE  
HB5MODE  
HB4MODE  
HB3MODE  
HB2MODE  
15:14  
13:12  
11:10  
9:8  
rw  
Half-bridge output 8 mode selection  
00B HB8 is in high impedance (default)  
01B LS8 is ON  
10B HS8 is ON  
11B Reserved - HB8 is in high impedance  
rw  
rw  
rw  
rw  
rw  
rw  
Half-bridge output 7 mode selection  
00B HB7 is in high impedance (default)  
01B LS7 is ON  
10B HS7 is ON  
11B Reserved - HB7 is in high impedance  
Half-bridge output 6 mode selection  
00B HB6 is in high impedance (default)  
01B LS6 is ON  
10B HS6 is ON  
11B Reserved - HB6 is in high impedance  
Half-bridge output 5 mode selection  
00B HB5 is in high impedance (default)  
01B LS5 is ON  
10B HS5 is ON  
11B Reserved - HB5 is in high impedance  
7:6  
Half-bridge output 4 mode selection  
00B HB4 is in high impedance (default)  
01B LS4 is ON  
10B HS4 is ON  
11B Reserved - HB4 is in high impedance  
5:4  
Half-bridge output 3 mode selection  
00B HB3 is in high impedance (default)  
01B LS3 is ON  
10B HS3 is ON  
11B Reserved - HB3 is in high impedance  
3:2  
Half-bridge output 2 mode selection  
00B HB2 is in high impedance (default)  
01B LS2 is ON  
10B HS2 is ON  
11B Reserved - HB2 is in high impedance  
Datasheet  
116  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Field  
Bits  
Type  
Description  
HB1MODE  
1:0  
rw  
Half-bridge output 1 mode selection  
00B HB1 is in high impedance (default)  
01B LS1 is ON  
10B HS1 is ON  
11B Reserved - HB1 is in high impedance  
Datasheet  
117  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
PWM channel settings  
PWMSET  
PWM channel settings  
(0 0111B)Reset Value: 0110 1100 0110 0000B  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reser PASS_  
ved VDS  
PWM3  
_EN  
PWM2  
_EN  
PWM1  
_EN  
PASS_MOD  
PWM3_HB  
PWM2_HB  
PWM1_HB  
r
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
Field  
Bits  
Type  
r
Description  
Reserved. Always read as ‘0’  
Reserved  
15  
PASS_VDS 14  
rw  
Drain-Source monitoring in bridge passive mode  
0B DS monitoring in bridge passive mode disabled  
1B DS monitoring in bridge passive mode enabled (Default)  
PASS_MOD 13:12  
rw  
Settings for bridge driver passive mode  
00B LS1-4 are always off  
Note: Changing PASS_MOD from 00B to any other value  
requires to clear DSOV1) first before writing PASS_MOD,  
01B LS1-4 are always on (static brake)  
10B LS1-4 are activated if passive VS OV is detected (overvoltage  
brake) (Default)  
11B LS1-4 are activated if passive VS OV is detected and PWM1 =  
High (overvoltage brake conditioned by PWM1)  
PWM3_HB 11:9  
rw  
Allocation of the PWM channel 3  
000B HB1  
001B HB2  
010B HB3  
011B HB4  
100B HB5  
101B HB6  
110B HB7 (default)  
111B HB8  
PWM3_EN  
8
rw  
rw  
PWM channel 3 enable  
0B PWM3 is disabled (default)  
1B PWM3 is enabled  
PWM2_HB 7:5  
Allocation of the PWM channel 2  
000B HB1  
001B HB2  
010B HB3  
011B HB4 (Default)  
100B HB5  
101B HB6  
110B HB7  
111B HB8  
Datasheet  
118  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Field  
Bits  
Type  
Description  
PWM2_EN  
4
rw  
PWM channel 2 enable  
0B PWM2 is disabled (default)  
1B PWM2 is enabled  
PWM1_HB 3:1  
rw  
Allocation of the PWM channel 1  
000B HB1 (default)  
001B HB2  
010B HB3  
011B HB4  
100B HB5  
101B HB6  
110B HB7  
111B HB8  
PWM1_EN  
0
rw  
PWM channel 1 enable  
0B PWM1 is disabled (default)  
1B PWM1 is enabled  
1) If DSOV is not cleared first, the value of PASS_MOD stays at 00B  
If the same half-bridge is mapped to several activated PWM channels, then a SPI error is reported and the  
impacted half-bridge is in high-impedance.  
Datasheet  
119  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
PWM pre-charge and pre-discharge time  
TPRECHG  
Charge and pre-charge time  
(0 1000B) Reset Value: 0B  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
EN_GE  
N_CH TPDCHG3  
ECK  
Reser EN_DE Reser  
ved EP_AD ved  
TPCHG3  
TPDCHG2  
TPCHG2  
TPDCHG1  
TPCHG1  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
Field  
Bits  
Type  
Description  
Reserved  
15  
rw  
rw  
Reserved. To be programmed as ‘0’.  
EN_DEEP_A 14  
Deep adaptation enabled  
D
0B Deep adaptation disabled (default)  
1B Deep adaptation enabled. Refer to Chapter 6.3.3.6.  
Reserved  
13  
rw  
rw  
Reserved. This bits must be set to ‘0’  
EN_GEN_CH 12  
Enable generator check  
ECK  
0B Detection of generator mode disabled (default)  
1B Detection of generator mode enabled.  
TPDCHG3  
TPCHG3  
11:10  
rw  
rw  
rw  
rw  
rw  
Pre-discharge time of PWM channel 3  
00B 125 ns (default)  
01B 250 ns  
10B 500 ns  
11B 1000 ns  
9:8  
7:6  
5:4  
3:2  
Pre-charge time of PWM channel 3  
00B 125 ns (default)  
01B 250 ns  
10B 500 ns  
11B 1000 ns  
TPDCHG2  
TPCHG2  
Pre-discharge time of PWM channel 2  
00B 125 ns (default)  
01B 250 ns  
10B 500 ns  
11B 1000 ns  
Pre-charge time of PWM channel 2  
00B 125 ns (default)  
01B 250 ns  
10B 500 ns  
11B 1000 ns  
TPDCHG1  
Pre-discharge time of PWM channel 1  
00B 125 ns (default)  
01B 250 ns  
10B 500 ns  
11B 1000 ns  
Datasheet  
120  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Field  
Bits  
Type  
Description  
TPCHG1  
1:0  
rw  
Pre-charge time of PWM channel 1  
00B 125 ns (default)  
01B 250 ns  
10B 500 ns  
11B 1000 ns  
Datasheet  
121  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Half-bridge diagnostic current control  
HBIDIAG  
Half-bridge diagnostic current control(0 1001B)Reset Value: 1100 0000 0000 0000B  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CSA2_ CSA1_ HB8ID HB7ID HB6ID HB5ID HB4ID HB3ID HB2ID HB1ID  
CSA2L CSA1L OC2FILT  
OC1FILT  
OFF OFF IAG  
IAG  
IAG  
IAG  
IAG  
IAG  
IAG  
IAG  
rw  
rw  
rw  
rw  
rw rw rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
Field  
Bits  
Type  
Description  
CSA2L  
15  
rw  
rw  
rw  
Level of CSA2  
0B CSA2 is configured as low-side  
1B CSA2 is configured as high-side (default)  
CSA1L  
14  
Level of CSA1  
0B CSA1 is configured as low-side  
1B CSA1 is configured as high-side (default)  
OC2FILT  
13:12  
11:10  
Overcurrent filter time for CSO2  
00B 6 µs (default)  
01B 10 µs  
10B 50 µs  
11B 100 µs  
OC1FILT  
rw  
Overcurrent filter time for CSO1  
00B 6 µs (default)  
01B 10 µs  
10B 50 µs  
11B 100 µs  
CSA2_OFF  
CSA1_OFF  
HB8IDIAG  
HB7IDIAG  
HB6IDIAG  
HB5IDIAG  
9
8
7
6
5
4
rw  
rw  
rw  
rw  
rw  
rw  
Disable of CSA2  
0B CSA2 enabled(default)  
1B CSA2 disabled  
Disable of CSA1  
0B CSA1 enabled (default)  
1B CSA1 disabled  
Control of HB8 off-state current source and current sink  
0B Pull-down deactivated (default)  
1B Pull-down activated  
Control of HB7 off-state current source and current sink  
0B Pull-down deactivated (default)  
1B Pull-down activated  
Control of HB6 off-state current source and current sink  
0B Pull-down deactivated (default)  
1B Pull-down activated  
Control of HB5 off-state current source and current sink  
0B Pull-down deactivated (default)  
1B Pull-down activated  
Datasheet  
122  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Field  
Bits  
Type  
Description  
HB4IDIAG  
3
rw  
Control of HB4 off-state current source and current sink  
0B Pull-down deactivated (default)  
1B Pull-down activated  
HB3IDIAG  
HB2IDIAG  
HB1IDIAG  
2
1
0
rw  
rw  
rw  
Control of HB3 off-state current source and current sink  
0B Pull-down deactivated (default)  
1B Pull-down activated  
Control of HB2 off-state current source and current sink  
0B Pull-down deactivated (default)  
1B Pull-down activated  
Control of HB1 pull-down for off-state diagnostic  
0B Pull-down deactivated (default)  
1B Pull-down activated  
Datasheet  
123  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Static charge and discharge current selection  
Attention: This register is accessed only if REG_BANK = 0 with the corresponding offset address.  
ST_ICHG  
Static charge and discharge current selection(0 1010B)Reset Value: 0000 0000 0100 0100B  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
HB8IC HB7IC HB6IC HB5IC HB4IC HB3IC HB2IC HB1IC  
HGST HGST HGST HGST HGST HGST HGST HGST  
ICHGST2  
ICHGST1  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
Field  
Bits  
Type  
Description  
HB8 Selection of charge and discharge currents  
HB8ICHGST 15  
HB7ICHGST 14  
HB6ICHGST 13  
HB5ICHGST 12  
HB4ICHGST 11  
HB3ICHGST 10  
rw  
0B The static charge/discharge current 1 is applied to the half-  
bridge 8 (default).  
1B The static charge/discharge current 2 is applied to the half-  
bridge 8.  
rw  
rw  
rw  
rw  
rw  
HB7 Selection of charge and discharge currents  
0B The static charge/discharge current 1 is applied to the half-  
bridge 7 (default).  
1B The static charge/discharge current 2 is applied to the half-  
bridge 7.  
HB6 Selection of charge and discharge currents  
0B The static charge/discharge current 1 is applied to the half-  
bridge 6 (default).  
1B The static charge/discharge current 2 is applied to the half-  
bridge 6.  
HB5 Selection of charge and discharge currents  
0B The static charge/discharge current 1 is applied to the half-  
bridge 5 (default).  
1B The static charge/discharge current 2 is applied to the half-  
bridge 5.  
HB4 Selection of charge and discharge currents  
0B The static charge/discharge current 1 is applied to the half-  
bridge 4 (default).  
1B The static charge/discharge current 2 is applied to the half-  
bridge 4.  
HB3 Selection of charge and discharge currents  
0B The static charge/discharge current 1 is applied to the half-  
bridge 3 (default).  
1B The static charge/discharge current 2 is applied to the half-  
bridge 3.  
Datasheet  
124  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Field  
Bits  
Type  
Description  
HB2ICHGST  
9
rw  
HB2 Selection of charge and discharge currents  
0B The static charge/discharge current 1 is applied to the half-  
bridge 2 (default).  
1B The static charge/discharge current 2 is applied to the half-  
bridge 2.  
HB1ICHGST  
8
rw  
HB1 Selection of charge and discharge currents  
0B The static charge/discharge current 1 is applied to the half-  
bridge 1 (default).  
1B The static charge/discharge current 2 is applied to the half-  
bridge 1.  
ICHGST2  
ICHGST1  
7:4  
3:0  
rw  
rw  
Static gate driver charge and discharge currents 2  
Refer to Table 10  
Default: 0100B - Charge 12.5 mA typ., discharge 14.2 mA typ.  
Static gate driver charge and discharge currents 1  
Refer to Table 10  
Default: 0100B - charge 12.5 mA typ., discharge 14.2 mA typ.  
Datasheet  
125  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
PWM Active MOSFET precharge current initialization  
Attention: This register is accessed only if REG_BANK = 1 with the corresponding offset address.  
PWM_PCHG_INIT  
Initial PWM precharge current selection(0 1010B)Reset Value: 0001 1000 1100 0110B  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reser  
ved  
PCHGINIT3  
PCHGINIT2  
PCHGINIT1  
r
rw  
rw  
rw  
Field  
Bits  
Type  
r
Description  
Reserved. Always read as ‘0’  
Reserved  
15  
PCHGINIT3 14:10  
PCHGINIT2 9:5  
PCHGINIT1 4:0  
rw  
Initial precharge current of PWM Channel 3  
Refer to Table 13  
Default: 00110B: typ. 8.0 mA  
rw  
rw  
Initial precharge current of PWM Channel 2  
Refer to Table 13  
Default: 00110B: typ. 8.0 mA  
Initial precharge current of PWM Channel 1  
Refer to Table 13  
Default: 00110B: typ. 8.0 mA  
Datasheet  
126  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
PWM charge current of active MOSFETs  
Attention: This register is accessed with REG_BANK = 0 and the offset address 0 1011B. The charge currents  
are applied to the active MOSFET (ICHG1-3).  
PWM_ICHG_ACT  
Active PWM charge current (0 1011B)Reset Value:0001 1000 1100 0110B  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reser  
ved  
ICHG3  
ICHG2  
ICHG1  
r
rw  
rw  
rw  
Field  
Bits  
15  
Type  
r
Description  
Reserved. Always read as ‘0’  
Reserved  
ICHG3  
14:10  
rw  
Gate driver charge current of PWM Channel 3 (Active MOSFET)  
Refer to Table 13  
Default: 00110B: typ. 8.0 mA  
ICHG2  
ICHG1  
9:5  
4:0  
rw  
rw  
Gate driver charge current of PWM Channel 2 (Active MOSFET)  
Refer to Table 13  
Default: 00110B: typ. 8.0 mA  
Gate driver charge current of PWM Channel 1 (Active MOSFET)  
Refer to Table 13  
Default: 00110B: typ. 8.0 mA  
Datasheet  
127  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
PWM charge/discharge currents of FW MOSFETs  
Attention: This register is accessed with REG_BANK = 1 and the offset address 0 1011B. The charge and  
discharge currents are applied to the freewheeling MOSFETs (ICHGFW1-3).  
PWM_ICHG_FW  
FW PWM charge/discharge currents (0 1011B) Reset Value:0001 1000 1100 0110B  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reser  
ved  
ICHG3_FW  
ICHG2_FW  
ICHG1_FW  
r
rw  
rw  
rw  
Field  
Bits  
Type  
r
Description  
Reserved. Always read as ‘0’  
Reserved  
15  
ICHG3_FW 14:10  
ICHG2_FW 9:5  
ICHG1_FW 4:0  
rw  
Gate driver charge and discharge currents of PWM Channel 3  
(FW MOSFET)  
Refer to Table 13, Table 14  
Default: 00110B. Typ. charge 8.0 mA, typ. discharge: 9.4 mA  
rw  
rw  
Gate driver charge and discharge currents of PWM Channel 2  
(FW MOSFET)  
Refer to Table 13, Table 14  
Default: 00110B. Typ. charge 8.0 mA, typ. discharge: 9.4 mA  
Gate driver charge and discharge currents of PWM Channel 1  
(FW MOSFET)  
Refer to Table 13, Table 14  
Default: 00110B. Typ. charge 8.0 mA, typ. discharge: 9.4 mA  
Note:  
The selected currents are applied to the turn-on and the turn-off of the FW MOSFETs.  
Datasheet  
128  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
PWM discharge current for active MOSFETs  
Attention: This register is accessed only if REG_BANK = 0 with the corresponding offset address.  
PWM_IDCHG_ACT  
PWM discharge current  
(0 1100B)Reset Value: 0001 1100 1110 0111B  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CCSO  
IDCHG3  
IDCHG2  
IDCHG1  
rw  
rw  
rw  
rw  
Field  
Bits  
Type  
Description  
CCSO  
15  
rw  
Capacitor connected to the current sense amplifier outputs  
0B Capacitor connected to CSO < 100 pF (default)  
1B Capacitor connected to CSO < 400 pF  
IDCHG3  
IDCHG2  
IDCHG1  
14:10  
9:5  
rw  
rw  
rw  
Discharge current for PWM Channel 3 (Active MOSFET)  
Refer to Table 14  
Default: 00111B: typ. 11.8 mA  
Discharge current for PWM Channel 2 (Active MOSFET)  
Refer to Table 14  
Default: 00111B: typ. 11.8 mA  
4:0  
Discharge current of PWM Channel 1 (Active MOSFET)  
Refer to Table 14  
Default: 00111B: typ. 11.8 mA  
Datasheet  
129  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
PWM Active MOSFET predischarge current initialization  
Attention: This register is accessed only if REG_BANK = 1 with the corresponding offset address.  
PWM_PDCHG_INIT  
Initial PWM predischarge current selection(0 1100B)Reset Value: 0011 0001 1000 1100B  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CCSO  
PDCHGINIT3  
PDCHGINIT2  
PDCHGINIT1  
rw  
rw  
rw  
rw  
Field  
Bits  
15  
Type  
Description  
CCSO  
rw  
Capacitor connected to the current sense amplifier outputs  
0B Capacitor connected to CSO < 100 pF (default)  
1B Capacitor connected to CSO < 400 pF  
PDCHGINIT 14:10  
3
rw  
rw  
rw  
Initial predischarge current of PWM Channel 3  
Refer to Table 14  
Default: 01100B: typ. 26.0 mA  
PDCHGINIT 9:5  
2
Initial predischarge current of PWM Channel 2  
Refer to Table 14  
Default: 01100B: typ. 26.0 mA  
PDCHGINIT 4:0  
1
Initial predischarge current of PWM Channel 1  
Refer to Table 14  
Default: 01100B: typ. 26.0 mA  
Datasheet  
130  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
PWM maximum drive current selection and active tCCP4, tBLANK 3/4  
Attention: This register is accessed with REG_BANK = 0 and the offset address 0 1101B. tCCP and tBLANK  
are applicable to the active MOSFETs.  
PWM_ICHGMAX_CCP_BLK3_ACT  
PWM max. drive current  
(0 1101B)Reset Value: 0100 1001 0000 0000B  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reser  
ved  
TBLANK4_ACT  
TCCP4_ACT  
TBLANK3_ACT  
ICHGMAX3  
ICHGMAX2  
ICHGMAX1  
r
rw  
rw  
rw  
rw  
rw  
rw  
Field  
Bits  
Type  
r
Description  
Reserved  
15  
Reserved. Always read as ‘0’  
TBLANK4_A 14:12  
CT  
rw  
Blank time 1) - tBLANK4 Active  
Refer to Table 30  
Default: 100B: typ. 2000 ns  
TCCP4_ACT 11:9  
rw  
rw  
rw  
Cross-current protection1) - tCCP4 Active  
Refer to Table 29  
Default: 100B: typ. 2000 ns  
Blank time1) - tBLANK3 Active  
Refer to Table 30  
Default: 100B: typ. 2000 ns  
TBLANK3_A 8:6  
CT  
ICHGMAX3 5:4  
ICHGMAX2 3:2  
ICHGMAX1 1:0  
Maximum drive current of half-bridge mapped to PWM channel  
3 during the pre-charge phase and pre-discharge phases2)  
00B (default) charge: typ. 18.8 mA, discharge: typ. 19.7 mA  
01B charge: typ. 41mA, discharge: typ. 43 mA  
10B charge: typ. 77 mA, discharge: typ. 79 mA  
11B charge: typ. 100 mA, discharge: typ. 100 mA  
rw  
rw  
Maximum drive current of half-bridge mapped to PWM channel  
2 during the pre-charge phase and pre-discharge phases2)  
00B (default) charge: typ. 18.8 mA, discharge: typ. 19.7 mA  
01B charge: typ. 41 mA, discharge: typ. 43 mA  
10B charge: typ. 77 mA, discharge: typ. 79 mA  
11B charge: typ. 100 mA, discharge: typ. 100 mA  
Maximum drive current of half-bridge mapped to PWM channel  
1 during the pre-charge and pre-discharge phases2)  
00B (default) charge: typ. 18.8 mA, discharge: typ. 19.7 mA  
01B charge: typ. 41 mA, discharge: typ. 43 mA  
10B charge: typ. 77 mA, discharge: typ. 79 mA  
11B charge: typ. 100 mA, discharge: typ. 100 mA  
1) Refer to CCP_BLK1 for the mapping of (tCCPx,tBLANKx) to the half-bridges.  
2) ICHGMAX is also the current applied during the post-charge of the PWM MOSFET Refer to Table 12.  
Datasheet  
131  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
PWM maximum drive current selection and FW tCCP4, tBLANK 3/4  
Attention: This register is accessed with REG_BANK = 1 and the offset address 0 1101B. tCCP and tBLANK  
are applicable to the FW MOSFETs.  
PWM_ICHGMAX_CCP_BLK3_FW  
PWM max. drive current  
(0 1101B)Reset Value: 0100 1001 0000 0000B  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reser  
ved  
TBLANK4_FW  
TCCP4_FW  
TBLANK3_FW  
ICHGMAX3  
ICHGMAX2  
ICHGMAX1  
r
rw  
rw  
rw  
rw  
rw  
rw  
Field  
Bits  
Type  
r
Description  
Reserved  
15  
Reserved. Always read as ‘0’  
TBLANK4_F 14:12  
W
rw  
Blank time 1) - tBLANK4 Freewheeling  
Refer to Table 32  
Default: 100B: typ. 2000 ns  
TCCP4_FW 11:9  
rw  
rw  
rw  
Cross-current protection1) - tCCP4 Freewheeling  
Refer to Table 31  
Default: 100B: typ. 2000 ns  
Blank time1) - tBLANK3 Freewheeling  
Refer to Table 32  
Default: 100B: typ. 2000 ns  
TBLANK3_F 8:6  
W
ICHGMAX3 5:4  
ICHGMAX2 3:2  
ICHGMAX1 1:0  
Maximum drive current of half-bridge mapped to PWM channel  
3 during the pre-charge phase and pre-discharge phases2)  
00B (default) charge: typ. 19 mA, discharge: typ. 19 mA  
01B charge: typ. 41mA, discharge: typ. 43 mA  
10B charge: typ. 77 mA, discharge: typ. 79 mA  
11B charge: typ. 100 mA, discharge: typ. 100 mA  
rw  
rw  
Maximum drive current of half-bridge mapped to PWM channel  
2 during the pre-charge phase and pre-discharge phases2)  
00B (default) charge: typ. 19 mA, discharge: typ. 19 mA  
01B charge: typ. 41mA, discharge: typ. 43 mA  
10B charge: typ. 77 mA, discharge: typ. 79 mA  
11B charge: typ. 100 mA, discharge: typ. 100 mA  
Maximum drive current of half-bridge mapped to PWM channel  
1 during the pre-charge and pre-discharge phases2)  
00B (default) charge: typ. 19 mA, discharge: typ. 19 mA  
01B charge: typ. 41mA, discharge: typ. 43 mA  
10B charge: typ. 77 mA, discharge: typ. 79 mA  
11B charge: typ. 100 mA, discharge: typ. 100 mA  
1) Refer to CCP_BLK1 for the mapping of (tCCPx,tBLANKx) to the half-bridges.  
2) ICHGMAX is also the current applied during the post-charge of the PWM MOSFET Refer to Table 12.  
Datasheet  
132  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Selection MOSFET turn-on and turn-off delay for PWM channel 1  
TDON_OFF1  
MOSFET turn-on/off delay of PWM channel1 (0 1110B)Reset Value:0000 1010 0000 1010B  
15  
14  
13  
12  
TDOFF1  
rw  
11  
10  
9
8
7
6
5
4
3
2
1
0
TDON1  
rw  
Field  
Bits  
Type  
Description  
TDOFF1  
15:8  
rw  
Turn-off delay time of PWM Channel 1.  
Typical TDOFF1 = 62.5 x TDOFF1[7:0]D ns  
Default: 0000 1010B: 625 ns typ.  
TDON1  
7:0  
rw  
Turn-on delay time of PWM Channel 1.  
Typical TDON1 = 62.5 x TDON1[7:0]D ns  
Default: 0000 1010B: 625 ns typ.  
Datasheet  
133  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Selection MOSFET turn-on and turn-off delay for PWM channel 2  
TDON_OFF2  
MOSFET turn-on/off delay of PWM channel2 (0 1111B)Reset Value: 0000 1010 0000 1010B  
15  
14  
13  
12  
TDOFF2  
rw  
11  
10  
9
8
7
6
5
4
3
2
1
0
TDON2  
rw  
Field  
Bits  
Type  
Description  
TDOFF2  
15:8  
rw  
Turn-off delay time of PWM Channel 2.  
Typical TDOFF2 = 62.5 x TDOFF2[7:0]D ns  
Default: 0000 1010B: 625 ns typ.  
TDON2  
7:0  
rw  
Turn-on delay time of PWM Channel 2.  
Typical TDON2 = 62.5 x TDON2[7:0]D ns  
Default: 0000 1010B: 625 ns typ.  
Datasheet  
134  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Selection MOSFET turn-on and turn-off delay for PWM channel 3  
TDON_OFF3  
MOSFET turn-on/off delay of PWM channel3 (1 0000B)Reset Value: 0000 1010 0000 1010B  
15  
14  
13  
12  
TDOFF3  
rw  
11  
10  
9
8
7
6
5
4
3
2
1
0
TDON3  
rw  
Field  
Bits  
Type  
Description  
TDOFF3  
15:8  
rw  
Turn-off delay time of PWM Channel 3.  
Typical TDOFF3 = 62.5 x TDOFF3[7:0]D ns  
Default: 0000 1010B: 625 ns typ.  
TDON3  
7:0  
rw  
Turn-on delay time of PWM Channel 3.  
Typical TDON3 = 62.5 x TDON3[7:0]D ns  
Default: 0000 1010B: 625 ns typ.  
Datasheet  
135  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
9.2  
Status register  
Table 33 Register Overview  
Register Short Name Register Long Name  
Offset Address Reset Value  
GENSTAT  
General status register  
Drain-source overvoltage  
Half-Bridge output voltage  
11H  
12H  
13H  
0H  
0H  
0H  
0H  
DSOV  
HBVOUT_PWMERR  
EFF_TDON_OFF1  
Effective MOSFET turn-on and turn-off delays for 14H  
PWM Channel 1  
EFF_TDON_OFF2  
EFF_TDON_OFF3  
TRISE_FALL1  
TRISE_FALL2  
TRISE_FALL3  
DEVID  
Effective MOSFET turn-on and turn-off delays for 15H  
PWM Channel 2  
0H  
0H  
0H  
0H  
0H  
01H  
Effective MOSFET turn-on and turn-off delays for 16H  
PWM Channel 3  
Effective MOSFET rise and fall times for PWM  
Channel 1  
17H  
18H  
19H  
1FH  
Effective MOSFET rise and fall times for PWM  
Channel 2  
Effective MOSFET rise and fall times for PWM  
Channel 3  
Device identifier  
Datasheet  
136  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
9.2.1  
General status register  
General status register  
GENSTAT  
General Status Register  
(1 0001B)Reset Value: 0B  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PASS_  
VDSO  
V
PWM3 PWM2 PWM1 TDRE TDRE TDRE  
WDMON  
TSD  
TW  
OC2 OC1 VSOV VSUV CPUV  
rc rc rc rc rc  
STAT STAT STAT G3  
G2  
G1  
r
r
r
r
r
rc  
rc  
rc  
rc  
rc  
Field  
Bits  
Type  
Description  
DS overvoltage while the bridge driver is in passive mode  
PASS_VDSO 15  
r
V
0B No overvoltage on drain-source of any low-sides (default)  
1B Overvoltage on drain-source of one of the low-side is  
detected.  
WDMON  
14:13  
r
Watchdog Monitoring  
00B WD Timer is between [0%;25%[ of the WD period (default)  
01B WD Timer is between [25%;50%[ of the WD period  
10B WD Timer is between [50%;75%[ of the WD period  
11B WD Timer is between [75%;100 %[ of the WD period  
PWM3STAT 12  
PWM2STAT 11  
PWM1STAT 10  
r
Status of PWM3 input  
0B PWM3 is low (default)  
1B PWM3 is high  
r
Status of PWM2 input  
0B PWM2 is low (default)  
1B PWM2 is high  
r
Status of PWM1 input  
0B PWM1 is low (default)  
1B PWM1 is high  
TDREG3  
TDREG2  
TDREG1  
9
8
7
6
rc  
PWM channel 3 - Regulation of turn-on and turn-off delays  
0B the turn-on delay or the turn-off delay are not in regulation  
(default)  
1B the turn-on and turn-off delays are in regulation  
rc  
rc  
rc  
PWM channel 2 - Regulation of turn-on and turn-off delays  
0B the turn-on delay or the turn-off delay are not in regulation  
(default)  
1B the turn-on and turn-off delays are in regulation  
PWM channel 1 - Regulation of turn-on and turn-off delays  
0B the turn-on delay or the turn-off delay are not in regulation  
(default)  
1B the turn-on and turn-off delays are in regulation  
TSD  
Thermal Shutdown  
0B No thermal shutdown is detected (default)  
1B A thermal shutdown is detected 2)  
Datasheet  
137  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Field  
TW  
Bits  
Type  
Description  
5
rc  
Thermal Warning  
0B No thermal warning is detected (default)  
1B A thermal warning is detected  
OC2  
4
3
2
1
0
rc  
rc  
rc  
rc  
rc  
Overcurrent detection of CSO2  
0B No overcurrent detection on CSO2 (default)  
1B Overcurrent detected on CSO21)  
OC1  
Overcurrent detection of CSO1  
0B No overcurrent detection on CSO1 (default)  
1B Overcurrent detected on CSO11)  
VSOV  
VSUV  
CPUV  
VS Overvoltage  
0B No overvoltage on VS detected (default value)  
1B Overvoltage on VS detected2)  
VS Undervoltage  
0B No undervoltage on VS detected (default value)  
1B Undervoltage on VS detected2)  
Charge Pump Undervoltage  
0B No charge pump undervoltage (default)  
1B A charge pump undervoltage is detected2)  
1) The state of the external MOSFETs depends on the setting of OCEN bit (see GENCTRL1).  
2) The error is latched and the external MOSFETs are turned off.  
Datasheet  
138  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Drain-Source Overvoltage 1  
DSOV  
Drain-Source Overvoltage  
(1 0010B)Reset Value: 0B  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
LS8DS HS8D LS7DS HS7D LS6DS HS6D LS5DS HS5D LS4DS HS4D LS3DS HS3D LS2DS HS2D LS1DS HS1D  
OV  
SOV  
OV  
SOV  
OV  
SOV  
OV  
SOV  
OV  
SOV  
OV  
SOV  
OV  
SOV  
OV  
SOV  
rc  
rc  
rc  
rc  
rc  
rc  
rc  
rc  
rc  
rc  
rc  
rc  
rc  
rc  
rc  
rc  
Field  
Bits  
Type  
Description  
Drain-Source overvoltage on low-side 8  
LS8DSOV  
HS8DSOV  
LS7DSOV  
HS7DSOV  
LS6DSOV  
HS6DSOV  
LS5DSOV  
HS5DSOV  
LS4DSOV  
HS4DSOV  
LS3DSOV  
15  
rc  
0B No overvoltage on drain-source of low-side 8 (default)  
1B Overvoltage on drain-source of low-side 8 detected.  
14  
13  
12  
11  
10  
9
rc  
rc  
rc  
rc  
rc  
rc  
rc  
rc  
rc  
rc  
Drain-Source overvoltage on high-side 8  
0B No overvoltage on drain-source of high-side 8 (default)  
1B Overvoltage on drain-source of high-side 8 detected.  
Drain-Source overvoltage on low-side 7  
0B No overvoltage on drain-source of low-side 7(default)  
1B Overvoltage on drain-source of low-side 7detected.  
Drain-Source overvoltage on high-side 7  
0B No overvoltage on drain-source of high-side 7 (default)  
1B Overvoltage on drain-source of high-side 7 detected.  
Drain-Source overvoltage on low-side 6  
0B No overvoltage on drain-source of low-side 6 (default)  
1B Overvoltage on drain-source of low-side 6 detected.  
Drain-Source overvoltage on high-side 6  
0B No overvoltage on drain-source of high-side 6 (default)  
1B Overvoltage on drain-source of high-side 6 detected.  
Drain-Source overvoltage on low-side 5  
0B No overvoltage on drain-source of low-side 5 (default)  
1B Overvoltage on drain-source of low-side 5 detected.  
8
Drain-Source overvoltage on high-side 5  
0B No overvoltage on drain-source of high-side 5 (default)  
1B Overvoltage on drain-source of high-side 5 detected.  
7
Drain-Source overvoltage on low-side 4  
0B No overvoltage on drain-source of low-side 4 (default)  
1B Overvoltage on drain-source of low-side 4 detected.  
6
Drain-Source overvoltage on high-side 4  
0B No overvoltage on drain-source of high-side 4 (default)  
1B Overvoltage on drain-source of high-side 4 detected.  
5
Drain-Source overvoltage on low-side 3  
0B No overvoltage on drain-source of low-side 3 (default)  
1B Overvoltage on drain-source of low-side 3 detected.  
Datasheet  
139  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Field  
Bits  
Type  
Description  
HS3DSOV  
4
rc  
Drain-Source overvoltage on high-side 3  
0B No overvoltage on drain-source of high-side 3 (default)  
1B Overvoltage on drain-source of high-side 3 detected.  
LS2DSOV  
HS2DSOV  
LS1DSOV  
HS1DSOV  
3
2
1
0
rc  
rc  
rc  
rc  
Drain-Source overvoltage on low-side 2  
0B No overvoltage on drain-source of low-side 2 (default)  
1B Overvoltage on drain-source of low-side 2 detected.  
Drain-Source overvoltage on high-side 2  
0B No overvoltage on drain-source of high-side 2 (default)  
1B Overvoltage on drain-source of high-side 2 detected.  
Drain-Source overvoltage on low-side 1  
0B No overvoltage on drain-source of low-side 1 (default)  
1B Overvoltage on drain-source of low-side 1 detected.  
Drain-Source overvoltage on high-side 1  
0B No overvoltage on drain-source of high-side 1 (default)  
1B Overvoltage on drain-source of high-side 1 detected.  
Note:  
The impacted MOSFET is latched off if a Drain-Source overvoltage is detected.  
Datasheet  
140  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Half-bridge Output Voltage Status  
HBVOUT_PWMERR  
Half-bridge output voltage and PWM Error(1 0011B)Reset Value: 0B  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
HB8P HB7P HB6P HB5P HB4P HB3P HB2P HB1P HB8V HB7V HB6V HB5V HB4V HB3V HB2V HB1V  
WME WME WME WME WME WME WME WME OUT OUT OUT OUT OUT OUT OUT OUT  
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
Field  
Bits  
Type  
Description  
PWM Error on HB8  
HB8PWME 15  
HB7PWME 14  
HB6PWME 13  
HB5PWME 12  
HB4PWME 11  
HB3PWME 10  
r
0B No PWM error (default)  
1B More than one activated PWM channels is mapped to HB81)  
r
r
r
r
r
r
r
r
PWM Error on HB7  
0B No PWM error (default)  
1B More than one activated PWM channels is mapped to HB71)  
PWM Error on HB6  
0B No PWM error (default)  
1B More than one activated PWM channels is mapped to HB61)  
PWM Error on HB5  
0B No PWM error (default)  
1B More than one activated PWM channels is mapped to HB51)  
PWM Error on HB4  
0B No PWM error (default)  
1B More than one activated PWM channels is mapped to HB41)  
PWM Error on HB3  
0B No PWM error (default)  
1B More than one activated PWM channels is mapped to HB31)  
HB2PWME  
HB1PWME  
HB8VOUT  
9
8
7
PWM Error on HB2  
0B No PWM error (default)  
1B More than one activated PWM channels is mapped to HB21)  
PWM Error on HB1  
0B No PWM error (default)  
1B More than one activated PWM channels is mapped to HB11)  
Voltage level at SH8 when HB8MODE[1:0] = (0,0) or (1,1):  
0B Low: |VDH - VSH8| >VVDSMONTHx 2)if HB8D = 0  
|VCSIN1 - VSH8| >VVDSMONTHx if HB8D = 1  
1B High: |VDH - VSH8| <VVDSMONTHx if HB8D = 0;  
|VCSIN1 - VSH8| < VVDSMONTHx if HB8D = 1  
Note: HB8VOUT = 0 if HB8MODE[1:0]= (0,1) or (1,0)  
Datasheet  
141  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Field  
Bits  
Type  
Description  
HB7VOUT  
6
r
Voltage level at SH7 when HB7MODE[1:0] = (0,0) or (1,1):  
0B Low: |VDH - VSH7| >VVDSMONTHx 2)if HB7D = 0  
|VCSIN1 - VSH7| >VVDSMONTHx if HB7D = 1  
1B High: |VDH - VSH7| <VVDSMONTHx if HB7D = 0;  
|VCSIN1 - VSH7| < VVDSMONTHx if HB7D = 1  
Note: HB7VOUT = 0 if HB7MODE[1:0]= (0,1) or (1,0)  
HB6VOUT  
HB5VOUT  
HB4VOUT  
HB3VOUT  
HB2VOUT  
5
4
3
2
1
r
r
r
r
r
Voltage level at SH6 when HB6MODE[1:0] = (0,0) or (1,1):  
0B Low: |VDH - VSH6| >VVDSMONTHx 2)if HB6D = 0  
|VCSIN1 - VSH6| >VVDSMONTHx if HB6D = 1  
1B High: |VDH - VSH6| <VVDSMONTHx if HB6D = 0;  
|VCSIN1 - VSH6| < VVDSMONTHx if HB6D = 1  
Note: HB6VOUT = 0 if HB6MODE[1:0]= (0,1) or (1,0)  
Voltage level at SH5 when HB5MODE[1:0] = (0,0) or (1,1):  
0B Low: |VDH - VSH5| >VVDSMONTHx 2)if HB5D = 0  
|VCSIN1 - VSH5| >VVDSMONTHx if HB5D = 1  
1B High: |VDH - VSH5| <VVDSMONTHx if HB5D = 0;  
|VCSIN1 - VSH5| < VVDSMONTHx if HB5D = 1  
Note: HB5VOUT = 0 if HB5MODE[1:0]= (0,1) or (1,0)  
Voltage level at SH4 when HB4MODE[1:0] = (0,0) or (1,1):  
0B Low: |VDH - VSH4| >VVDSMONTHx 2)if HB4D = 0  
|VCSIN1 - VSH4| >VVDSMONTHx if HB4D = 1  
1B High: |VDH - VSH4| <VVDSMONTHx if HB4D = 0;  
|VCSIN1 - VSH4| < VVDSMONTHx if HB4D = 1  
Note: HB4VOUT = 0 if HB4MODE[1:0]= (0,1) or (1,0)  
Voltage level at SH3 when HB3MODE[1:0] = (0,0) or (1,1):  
0B Low: |VDH - VSH3| >VVDSMONTHx 2)if HB3D = 0  
|VCSIN1 - VSH3| >VVDSMONTHx if HB3D = 1  
1B High: |VDH - VSH3| <VVDSMONTHx if HB3D = 0;  
|VCSIN1 - VSH3| < VVDSMONTHx if HB3D = 1  
Note: HB3VOUT = 0 if HB3MODE[1:0]= (0,1) or (1,0)  
Voltage level at SH2 when HB2MODE[1:0] = (0,0) or (1,1):  
0B Low: |VDH - VSH2| >VVDSMONTHx2) if HB2D = 0  
|VCSIN1 - VSH2| >VVDSMONTHx if HB2D = 1  
1B High: |VDH - VSH2| <VVDSMONTHx if HB2D = 0;  
|VCSIN1 - VSH2| < VVDSMONTHx if HB2D = 1  
Note: HB2VOUT = 0 if HB2MODE[1:0]= (0,1) or (1,0)  
Datasheet  
142  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Field  
Bits  
Type  
Description  
HB1VOUT  
0
r
Voltage level at SH1 when HB1MODE[1:0] = (0,0) or (1,1):  
0B Low: |VDH - VSH1| >VVDSMONTHx2) if HB1D = 0;  
|VCSIN1 - VSH1| >VVDSMONTHx if HB1D = 1  
1B High: |VDH - VSH1| <VVDSMONTHx if HB1D = 0;  
|VCSIN1 - VSH1| < VVDSMONTHx if HB1D = 1  
Note: HB1VOUT = 0 if HB1MODE[1:0]= (0,1) or (1,0)  
1) The bit is reset only if one PWM channel or no PWM channel is mapped to the half-bridge (refer to PWMSET).  
2) VVDSMONTHx is the drain-source monitoring threshold selected for the corresponding half-bridge.  
Datasheet  
143  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Effective MOSFET turn-on and turn-off delay of PWM1  
EFF_TDON_OFF1  
Effective MOSFET turn-on/off delay PWM1(1 0100B)Reset Value: 0B  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TDOFF1EFF  
TDON1EFF  
r
r
Field  
Bits  
Type  
Description  
TDOFF1EFF 15:8  
r
Effective MOSFET turn-off delay of PWM Channel 1  
Effective turn-off delay = 62.5 x TDOFF1EFF[7:0]D ns  
Default: 0B  
TDON1EFF 7:0  
r
Effective MOSFET turn-on delay of PWM Channel 1  
Effective turn-on delay = 62.5 x TDON1EFF[7:0]D ns  
Default: 0B  
Datasheet  
144  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Effective MOSFET turn-on and turn-off delay of PWM2  
EFF_TDON_OFF2  
Effective MOSFET turn-on/off delay PWM2(1 0101B)Reset Value: 0B  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TDOFF2EFF  
TDON2EFF  
r
r
Field  
Bits  
Type  
Description  
TDOFF2EFF 15:8  
r
Effective MOSFET turn-off delay of PWM Channel 2  
Effective turn-off delay = 62.5 x TDOFF2EFF[7:0]D ns  
Default: 0B  
TDON2EFF 7:0  
r
Effective MOSFET turn-on delay of PWM Channel 2  
Effective turn-on delay = 62.5 x TDON2EFF[7:0]D ns  
Default: 0B  
Datasheet  
145  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Effective MOSFET turn-on and turn-off delay of PWM3  
EFF_TDON_OFF3  
Effective MOSFET turn-on/off delay PWM3(1 0110B)Reset Value: 0B  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TDOFF3EFF  
TDON3EFF  
r
r
Field  
Bits  
Type  
Description  
TDOFF3EFF 15:8  
r
Effective MOSFET turn-off delay of PWM Channel 3  
Effective turn-off delay = 62.5 x TDOFF3EFF[7:0]D ns  
Default: 0B  
TDON3EFF 7:0  
r
Effective MOSFET turn-on delay of PWM Channel 3  
Effective turn-on delay = 62.5 x TDON3EFF[7:0]D ns  
Default: 0B  
Datasheet  
146  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Effective MOSFET rise and fall times of PWM channel 1  
TRISE_FALL1  
Effective PWM MOSFET rise and fall times PWM1 (1 0111B)Reset Value: 0B  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TFALL1  
TRISE1  
r
r
Field  
Bits  
Type  
Description  
MOSFET fall time of PWM Channel 1  
TFALL1  
15:8  
r
MOSFET fall time = 62.5 x TFALL1[7:0]D ns  
Default: 0B  
TRISE1  
7:0  
r
MOSFET rise time of PWM Channel 1  
MOSFET rise time = 62.5 x TRISE1[7:0]D ns  
Default: 0B  
Datasheet  
147  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Effective MOSFET rise and fall times of PWM channel 2  
TRISE_FALL2  
Effective PWM MOSFET rise and fall times PWM2 (1 1000B)Reset Value: 0B  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TFALL2  
TRISE2  
r
r
Field  
Bits  
Type  
Description  
MOSFET fall time of PWM Channel 2  
TFALL2  
15:8  
r
MOSFET fall time = 62.5 x TFALL2[7:0]D ns  
Default: 0B  
TRISE2  
7:0  
r
MOSFET rise time of PWM Channel 2  
MOSFET rise time = 62.5 x TRISE2[7:0]D ns  
Default: 0B  
Datasheet  
148  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Effective MOSFET rise and fall times of PWM channel 3  
TRISE_FALL3  
Effective PWM MOSFET rise and fall times PWM3 (1 1001B)Reset Value: 0B  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TFALL3  
TRISE3  
r
r
Field  
Bits  
Type  
Description  
MOSFET fall time of PWM Channel 3  
TFALL3  
15:8  
r
MOSFET fall time = 62.5 x TFALL3[7:0]D ns  
Default: 0B  
TRISE3  
7:0  
r
MOSFET rise time of PWM Channel 3  
MOSFET rise time = 62.5 x TRISE3[7:0]D ns  
Default: 0B  
Datasheet  
149  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Register specification  
Device Identifier  
DEVID  
Device Identifier  
(1 1111B)Reset Value: 0000 0001B  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reser  
ved  
Reser  
ved  
Reserved  
Reserved  
Reserved  
DEV_ID  
r
r
r
r
r
r
Field  
Bits  
Type  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
DEV_ID  
15  
r
r
r
r
r
r
Reserved. Always read as ‘0’  
Reserved. Always read as ‘0’  
Reserved. Always read as ‘0’.  
Reserved.  
14:8  
7
6:5  
4:3  
2:0  
Reserved.  
Device derivative identifier  
000B Reserved  
001B TLE92108-232  
010B Reserved  
011B TLE92108-231  
100B Reserved  
101B Reserved  
110B Reserved  
111B Reserved  
Datasheet  
150  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Application information  
10  
Application information  
Note:  
The following information is given as a hint for the implementation of the device only and shall not  
be regarded as a description or warranty of a certain functionality, condition or quality of the device.  
EMC Filter  
VBAT  
Optional  
Safe Switch  
CSIP1  
CSIN1  
Temperature warning  
and shutdown  
CSIN1  
Charge Pump  
DH  
GH1  
SH1  
VS  
VCP  
GH2  
SH2  
UV & OV  
Detection  
VDS  
Monitoring  
M
Voltage Regulator / System Basis  
Chip  
GL1  
GH2  
GL2  
VCC1  
SH2  
GL2  
CSIN1  
EN  
VDD  
Internal Supply  
GH3  
SH3  
GH4  
SH4  
Control Logic  
M
SDI  
SDO  
SCLK  
CSN  
GL3  
GH4  
GL4  
24-bit SPI  
SH4  
GL4  
CSIP2  
CSIN2  
PWM1  
PWMx  
Mapping  
PWM2  
PWM3  
GH5  
SH5  
GL5  
GH6  
DH  
EN  
Watchdog  
GH6  
SH6  
SH6  
GL6  
MOSFET  
Control  
M
M
GH7  
SH7  
GL6  
Microcontroller  
Diagnostic  
DH  
GL7  
GH8  
SH8  
Protections  
GH8  
SH8  
GL8  
CS Gain Config.  
GL8  
SL  
Prog. Gain  
Not required  
CSIN1  
RCSO1  
CSO1  
CSA1  
CSIP1  
CSIN2  
CSIP2  
CCSO1  
RCSO2  
Prog. Gain  
Optional external  
components  
CSO2  
CSA2  
CCSO2  
GND  
Not required  
Figure 50 Application diagram TLE92108-232QX  
Note:  
This is a simplified example of an application circuit. The function must be verified in the real  
application.  
The charge pump buffer capacitor between VS and CP must have a capacitance equal or higher than 470 nF  
for a stable operation. A higher capacitance can be used to reduce the voltage ripples caused by the charge of  
the gate of the external MOSFETs during PWM operation.  
The flying capacitors between CPC1N/CPC1P and CPC2N/CPC2P must be as close as possible to the TLE92108-  
232QX.  
The decoupling capacitors between VS/GND and VDD/GND must be as close as possible to the TLE92108-  
232QX and short PCB tracks to the GND plane.  
A resistor (RCSOx) and a capacitor (CCSOx) can be placed (not mandatory) at the output of the current sense  
amplifiers.  
Datasheet  
151  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Application information  
The device does not need any resistor at the output of the current sense amplifiers. However, if a resistor is  
used by the application, RCSOx must be higher than 1 k. This resistor causes additional current consumption  
from VDD, which is not taken into account in the electrical characteristics of the datasheet.  
CCSOx must be between 10 pF and 400 pF. For a fast reaction time of the CSA output, it is recommended to  
keep CCSOx to 10 pF.  
If a filter is used at the inputs of the current sense amplifier, the serial resistor may not exceed 5 .  
It is possible that the MOSFET gate voltage goes below the source voltage during the commutation of a half-  
bridge. This depends on the stray inductances at the drain and the source of the MOSFET, the speed of the  
commutation and the ratio between the MOSFET Gate-Source and Gate-Drain capacitances.  
If VGATE - VSOURCE < -0.6 V, a series resistor (e.g. 4.7 ) in series to GHx and GLx are recommended to limit current  
delivered by the gate driver during the commutation.  
Shunt resistor in the motor phase  
When the shunt resistor is placed in the motor phase, it is highly recommended to apply the PWM to the half-  
bridge which is not connected to the shunt resistor (Figure 51). This avoids a high common mode swing at the  
inputs of the current sense amplifier.  
The drain-source monitoring of the monitoring of the drain-source overvoltage of the high-side MOSFETs  
must be set to DH - VSHx. Refer to VDS1, VDS2, HBxD bits.  
VS  
VS  
DH  
DH  
ON  
PWM  
M
M
ON  
PWM  
CSIP1  
CSIN1  
CSIP1  
CSIN1  
Figure 51 PWM with Shunt resistance in the motor phase  
For a proper off-state diagnostic for with the shunt resistor in the motor phase, the corresponding current  
sense amplifier (CSA) must be deactivated. Otherwise, the activated CSA draws current from its inputs,  
preventing the internal pull-up source to set the SHx pin to high.  
Datasheet  
152  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Package outlines  
11  
Package outlines  
0ꢀ9 MAXꢀ  
(0ꢀ65)  
11 x 0ꢀ5 = 5ꢀ5  
0ꢀ5  
0ꢀ1  
7
A
0ꢀ03  
6ꢀ8  
0ꢀ1  
+0ꢀ031)  
2)  
37  
B
36  
25  
24  
48x  
0ꢀ08  
48  
13  
1
12  
Index Marking  
48x  
0ꢀ1  
0ꢀ4 x 45°  
0ꢀ05  
Index Marking  
0ꢀ23  
(0ꢀ35)  
M
A B C  
(0ꢀ2)  
0ꢀ05 MAXꢀ  
(5ꢀ2)  
(6)  
C
1) Vertical burr 0ꢀ03 maxꢀ, all sides  
2) These four metal areas have exposed diepad potential  
PG-VQFN-48-29, -31-PO V05  
Figure 52 PG-VQFN-481)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
1) Dimmensions in mm  
Datasheet  
153  
Rev. 1.0  
2019-08-29  
TLE92108-232QX  
Multiple MOSFET Driver IC  
Revision History  
12  
Revision History  
Revision Date  
Changes  
1.0  
2019-08-29 First release  
Datasheet  
154  
Rev. 1.0  
2019-08-29  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2019-08-29  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2019 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
Document reference  

相关型号:

TLE9221SX

FlexRay Transceiver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9221SXXUMA2

Interface Circuit, PDSO16, SSOP-16

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9221SX_15

FlexRay Transceiver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9222

FlexRay Transceiver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9222LC

FlexRay Transceiver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9222PX

FlexRay Transceiver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9222PXXUMA1

Interface Circuit, PDSO14, TSSOP-14

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9222PX_15

Material Content Data Sheet

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9222_15

FlexRay Transceiver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9222_17

FlexRay Transceiver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9241QU

Two gate drive outputs are included for controlling a reverse polarity protected high-side switch typically used to switch off power to the control module while the module is in a sleep state. Two high-side gate drive channels are also included for controlling two “safety” switches. These switches are typically used to provide power to the transmission solenoids. The device also provides interfaces for eight two-wire Hall Effect sensors, four of which can be used with position sensors and four which can be used with either position or speed sensors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9243QK

The TLE9243QK is an application specific multiple output system supply for transmission applications supplying 5V-μC, transceivers, and sensors by an efficient and flexible pre-/post-regulator concept over a wide input voltage range.

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON