TLE9853QX [INFINEON]

TLE9853QX is part of the MOTIX™ TLE985x Infineon;
TLE9853QX
型号: TLE9853QX
厂家: Infineon    Infineon
描述:

TLE9853QX is part of the MOTIX™ TLE985x Infineon

文件: 总151页 (文件大小:3881K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE9853QX  
Arm® Cortex®-M0 Microcontroller with LIN and H-Bridge NFET  
Driver for Automotive Applications  
AD-Step  
1
Overview  
Features  
32-bit Arm® Cortex®*-M0 Core  
up to 40 MHz clock frequency  
one clock per machine cycle architecture  
single cycle multiplier  
On-chip memory  
48 KB Flash (including EEPROM)  
4 KB EEPROM (emulated in Flash)  
512 bytes 100 Time Programmable Memory (100TP)  
4 KB RAM  
Boot ROM for startup firmware and Flash routines  
Math Co-Processor Unit with Divider Unit for signed and unsigned 32-bit division operations  
On-chip OSC and PLL for clock generation  
PLL loss-of-lock detection  
MOSFET Driver including charge pump for H-Bridge motor applications  
Current Sense Amplifier  
High-Side Switch with cyclic sense option and PWM functionality, e.g. for supplying LEDs or switch panels  
(min. 150 mA)  
4 High Voltage Monitor Input pins for wake-up and with cyclic sense with analog measurement option  
10 General-purpose I/O Ports (GPIO)  
5 Analog input Ports  
10-Bit A/D Converter with 5 analog inputs + VBAT_SENSE + VS + 4 high voltage monitoring inputs  
8-Bit A/D Converter with 9 inputs for voltage and temperature supervision  
Measurement unit with 12 channels together with the onboard 10-Bit A/D converter and data post  
processing  
16-Bit timers - GPT12, Timer 2 and Timer 21  
*
Arm and Cortex are registered trademarks of Arm Limited, UK  
Datasheet  
www.infineon.com  
1
Rev. 1.0  
2019-07-26  
TLE9853QX  
Overview  
Capture/compare unit for PWM signal generation (CCU6)  
2 full duplex serial interfaces (UART1, UART2), UART1 with LIN support  
2 synchronous serial channels (SSC1, SSC2)  
On-chip debug support via 2-wire SWD  
1 LIN 2.2 transceiver  
Single power supply VS = 5.5 V to 28 V  
Extended supply voltage range VS = 3 V to 28 V  
Low-dropout voltage regulators (LDO)  
5 V voltage supply VDDEXT for external loads (e.g. Hall-sensor)  
Core logic supply at 1.5 V  
Programmable window watchdog (WDT1) with independent on-chip clock source  
Power saving modes:  
Micro Controller Unit slow-down mode  
Sleep Mode with cyclic sense option  
Cyclic wake-up during Sleep Mode  
Stop Mode with cyclic sense option  
Power-on and undervoltage/brownout reset generator  
Overtemperature protection incl. shutdown  
Short circuit protection for all voltage regulators and actuators (High Side Switch)  
Loss of clock detection with fail safe mode for power switches  
Temperature Range Tj = -40°C to +150°C  
Package VQFN-48-31 with LTI feature  
Green package (RoHS compliant)  
AEC Qualified  
Potential applications  
Window lift  
Sunroof  
Single-phase DC pumps and fans, e.g. HVAC blower  
Single-phase BLDC pumps and fans, e.g. single-phase water pump  
... and other LIN addressed motor control applications  
Product validation  
Qualified for Automotive Applications. Product Validation according to AEC-Q100/101  
Description  
TLE985x devices integrate an Arm® Cortex®-M0 processor and peripherals for motor control, power supply and  
communication. Two integrated measurement units (analog-to-digital converters) for monitoring  
temperature, battery voltage and four monitoring inputs help to save pins. These inputs can be operated  
directly with battery voltage, which saves costs on additional components such as external voltage dividers or  
Datasheet  
2
Rev. 1.0  
2019-07-26  
TLE9853QX  
Overview  
shutdown transistors. Furthermore, the chips are equipped with two full duplex serial interfaces (UART) with  
LIN support.  
A new feature in the TLE985x family is its adaptive MOSFET driver. The control algorithm is able to compensate  
MOSFET parameter spread in the system by automatically adjusting the gate current according to required  
switching times. This allows an optimization of the system concerning EME (electro-magnetic emissions, slow  
slew rates) as well as power dissipation (short dead times) simultaneously.  
The product family includes several devices with different flash sizes (48 - 96KB) and temperature ranges (Tj  
up to 175°C). In addition, different numbers of half-bridge drivers for uni- or bidirectional DC motor  
applications are offered.  
All TLE985x products are based on the same hardware and software platform as Infineon's other Embedded  
Power products (TLE984x, TLE986x and TLE987x), thus enabling design synergies and allowing customers to  
reuse parts of the software. The devices come in a leadless VQFN package with a footprint of 7x7 mm.  
Type  
Package  
Marking  
TLE9853QX  
VQFN-48-31  
TLE9853QX  
Datasheet  
3
Rev. 1.0  
2019-07-26  
TLE9853QX  
Table of Contents  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2
3
3.1  
3.2  
General Device Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Pin Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4
Modes of Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5
5.1  
5.2  
5.2.1  
5.2.2  
5.3  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
Power Management Unit (PMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
PMU Modes Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Power Supply Generation (PGU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Voltage Regulator 5.0V (VDDP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Voltage Regulator 1.5V (VDDC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
External Voltage Regulator 5.0V (VDDEXT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Power-on Reset Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
6
6.1  
6.2  
6.2.1  
6.3  
6.3.1  
6.3.2  
6.3.2.1  
6.3.2.2  
6.3.3  
System Control Unit - Digital Modules (SCU-DM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Clock Generation Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Low Precision Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
High Precision Oscillator Circuit (OSC_HP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
External Input Clock Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
External Crystal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Clock Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
7
System Control Unit - Power Modules (SCU-PM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
7.1  
7.2  
7.2.1  
8
Arm® Cortex®-M0 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
8.1  
8.2  
8.2.1  
9
Address Space Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Memory Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
10  
Datasheet  
4
Rev. 1.0  
2019-07-26  
TLE9853QX  
10.1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
10.2  
10.2.1  
10.3  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
NVM Module (Flash Memory) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
11  
Interrupt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
11.1  
11.2  
11.2.1  
12  
Math Divider Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
12.1  
12.2  
12.3  
13  
13.1  
13.2  
Watchdog Timer (WDT1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
14  
14.1  
14.2  
14.2.1  
14.2.2  
14.3  
14.3.1  
14.3.1.1  
14.3.1.2  
14.3.1.3  
GPIO Ports and Peripheral I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Port 0 and Port 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Alternate Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Port 0 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Port 1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Port 2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
15  
15.1  
General Purpose Timer Units (GPT12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Features Block GPT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Features Block GPT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Block Diagram GPT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Block Diagram GPT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
15.1.1  
15.1.2  
15.2  
15.2.1  
15.2.2  
16  
Timer2 and Timer21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Timer2 and Timer21 Modes Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
16.1  
16.2  
16.2.1  
17  
Capture/Compare Unit 6 (CCU6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Feature Set Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
17.1  
17.2  
17.2.1  
18  
UART1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
UART Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
18.1  
18.2  
18.2.1  
18.3  
Datasheet  
5
Rev. 1.0  
2019-07-26  
TLE9853QX  
19  
LIN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
19.1  
19.2  
19.2.1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
20  
High-Speed Synchronous Serial Interface SSC1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
20.1  
20.2  
20.2.1  
21  
Measurement Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
21.1  
21.2  
21.2.1  
22  
Measurement Core Module (incl. ADC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
22.1  
22.2  
22.2.1  
23  
Analog Digital Converter ADC10B (ADC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
23.1  
23.2  
23.2.1  
24  
High-Voltage Monitor Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
24.1  
24.2  
24.2.1  
25  
High-Side Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
25.1  
25.2  
25.2.1  
25.2.2  
26  
26.1  
26.2  
Bridge Driver (incl. Charge Pump) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Flexible Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Current-Driven Output Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Switch-On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Switch-Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Control Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Adjustable Cross-Conduction Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
High-Current Discharge Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Passive Pull-Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Brake Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Hold Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Timing Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
26.2.1  
26.2.2  
26.2.3  
26.2.3.1  
26.2.3.2  
26.2.3.3  
26.2.3.4  
26.2.4  
26.2.5  
26.2.6  
26.2.7  
26.2.8  
26.2.9  
Datasheet  
6
Rev. 1.0  
2019-07-26  
TLE9853QX  
26.2.10  
26.2.11  
26.2.12  
26.2.13  
26.2.14  
26.2.15  
Adaptive Control Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Integrated 2-Stage Charge Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Adjustable Voltage Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Adjustable Short Circuit Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Open-Load Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Overtemperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
27  
Current Sense Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
27.1  
27.2  
27.2.1  
28  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Window-Lift Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Connection of unused pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Connection of P0.2 for SWD debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Connection of TMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
ESD Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
28.1  
28.2  
28.3  
28.4  
28.5  
29  
29.1  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
General Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Power Management Unit (PMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
PMU Input Voltage VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
PMU I/O Supply Parameters VDDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
PMU Core Supply Parameters VDDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
VDDEXT Voltage Regulator 5.0V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
VPRE Voltage Regulator (PMU Subblock) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Load Sharing Scenario of VPRE Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Power Down Voltage Regulator (PMU Subblock) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
System Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Electrical Characteristics Oscillators and PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
External Clock Parameters XTAL1, XTAL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Flash Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Flash Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Parallel Ports (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Description of Keep and Force Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
DC Parameters Port 0, Port 1, TMS, Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
DC Parameters Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
LIN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
High-Speed Synchronous Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
SSC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Measurement Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
29.1.1  
29.1.2  
29.1.3  
29.1.4  
29.1.5  
29.2  
29.2.1  
29.2.2  
29.2.3  
29.2.4  
29.2.5  
29.2.5.1  
29.2.6  
29.3  
29.3.1  
29.3.2  
29.4  
29.4.1  
29.5  
29.5.1  
29.5.2  
29.5.3  
29.6  
29.6.1  
29.7  
29.7.1  
29.8  
29.8.1  
Datasheet  
7
Rev. 1.0  
2019-07-26  
TLE9853QX  
29.8.2  
29.8.2.1  
29.9  
29.9.1  
29.10  
29.10.1  
29.11  
29.11.1  
29.12  
Central Temperature Sensor Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
ADC1 (10-Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Electrical Characteristics ADC1 (10-Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
High-Voltage Monitoring Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
High Side Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
MOSFET Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
29.12.1  
29.13  
29.13.1  
30  
31  
32  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Datasheet  
8
Rev. 1.0  
2019-07-26  
TLE9853QX  
Block Diagram  
2
Block Diagram  
TMS  
P0.0  
DEBUG  
INTERFACE  
Arm(R)  
FLASH  
SRAM  
slave  
ROM  
slave  
Cortex(R)-M0  
systembus  
slave  
Multilayer AHB Matrix  
slave  
PBA0  
slave  
PBA1  
* P2.0, ...P2.7  
(AN0, … AN7)  
VS  
MON 1...4  
ADC10B  
DPP1  
VBAT_SENSE  
P0.0 – P0.x  
P1.0 – P1.x  
P2.0 – P2.x  
UART1  
GPIO  
UART2  
GPT12  
LIN  
GNDLIN  
LIN-  
Transceiver  
OP1  
OP2  
SSC1  
SSC2  
CSA  
ADC8B  
DPP2  
T2  
MEASUNIT  
HS  
High Side  
T21  
PMU  
Power  
Control  
&
System  
Functions  
VS  
VSD  
RESET  
VDDEXT  
VDDP  
VDDC  
OSC+PLL  
CP1L  
CP1H  
CP2L  
CP2H  
VCP  
WDT  
SCU_DM  
Charge  
Pump  
CCU6  
1- 4 MON  
MON 1...4  
WDT1  
SCU_PM  
MON 1...4  
VDH  
GH2  
SH2  
GH1  
SH1  
GL2  
GL1  
FET Driver  
SL  
* P2.0, P2.1, P2.2, P2.3, P2.7  
(AN0, AN1, AN2, AN3, AN7)  
Figure 1  
Block Diagram TLE9853QX  
Datasheet  
9
Rev. 1.0  
2019-07-26  
TLE9853QX  
General Device Information  
3
General Device Information  
3.1  
Pin Configurations  
24 P0.0  
P2.7 37  
P2.3 38  
23 TMS/DAP1  
22 P0.1  
EP  
P2.1 39  
21 GNDP  
20 MON4  
19 MON3  
18 MON2  
17 MON1  
16 VDH  
P2.2 / XTAL2 40  
P2.0 / XTAL1 41  
VDDC 42  
TLE 985x  
GNDA 43  
VDDP 44  
VDDEXT 45  
VS 46  
15 VSD  
14 CP1H  
13 CP1L  
VBAT_SENSE 47  
LIN 48  
TLE985x V.02  
Low Voltage Pin  
High Voltage Pin  
Figure 2  
Pin Configuration VQFN-48, TLE9853QX  
Datasheet  
10  
Rev. 1.0  
2019-07-26  
TLE9853QX  
General Device Information  
3.2  
Pin Definitions and Functions  
After reset, all pins are configured as input (except supply and LIN pins) with one of the following settings:  
Pull-up enabled only (PU)  
Pull-down enabled only (PD)  
Input with both pull-up and pull-down disabled (I)  
Output with output stage deactivated = high impedance state (Hi-Z)  
The functions and default states of the TLE9853QX external pins are provided in the following table.  
Type: indicates the pin type.  
I/O: Input or output  
I: Input only  
O: Output only  
P: Power supply  
Not all alternate functions listed, see Chapter 14.  
Table 1  
Symbol  
Pin Definitions and Functions  
Pin  
Type Reset Function  
Number  
State  
P0  
Port 0  
Port 0 is a 6-Bit bidirectional general purpose I/O port.  
Alternate functions can be assigned and are listed in the Port  
description. Main function is listed below.  
P0.0  
24  
I/O  
I/PU  
SWD_CLK  
GPIO  
Serial Wire Debug Clock  
General Purpose IO  
Alternate function mapping see Table 7  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P1  
22  
26  
27  
28  
29  
I/O  
I/O  
I/O  
I/O  
I/O  
I/PU  
I/PD  
I/PU  
I/PU  
I/PU  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
Port 1  
General Purpose IO  
Alternate function mapping see Table 7  
General Purpose IO  
Alternate function mapping see Table 7  
General Purpose IO  
Alternate function mapping see Table 7  
General Purpose IO  
Alternate function mapping see Table 7  
General Purpose IO  
Alternate function mapping see Table 7  
Port 1 is a 4-Bit bidirectional general purpose I/O port.  
Alternate functions can be assigned and are listed in the Port  
description. Main function is listed below.  
P1.0  
P1.1  
P1.2  
31  
32  
33  
I/O  
I/O  
I/O  
I
I
I
GPIO  
GPIO  
GPIO  
General Purpose IO  
Alternate function mapping see Table 8  
General Purpose IO  
Alternate function mapping see Table 8  
General Purpose IO  
Alternate function mapping see Table 8  
Datasheet  
11  
Rev. 1.0  
2019-07-26  
TLE9853QX  
General Device Information  
Table 1  
Symbol  
Pin Definitions and Functions (cont’d)  
Pin  
Type Reset Function  
State  
Number  
P1.4  
34  
I/O  
I
GPIO  
General Purpose IO  
Alternate function mapping see Table 8  
P2  
Port 2  
Port 2 is a 5-Bit general purpose input-only port.  
Alternate functions can be assigned and are listed in the Port  
description. Main function is listed below.  
P2.0  
41  
I
I
I
I
AN0  
ADC1 analog input channel 6  
External oscillator input  
Alternate function mapping see Table 9  
XTAL11)  
P2.1  
P2.2  
39  
40  
AN1  
ADC1 analog input channel 7  
Alternate function mapping see Table 9  
I
O
I
AN2  
ADC1 analog input channel 8  
External oscillator output  
Hi-Z  
XTAL21)  
Alternate function mapping see Table 9  
P2.3  
P2.7  
38  
37  
I
I
I
I
AN3  
AN7  
ADC1 analog input channel 9  
Alternate function mapping see Table 9  
ADC1 analog input channel 12  
Alternate function mapping see Table 9  
Power Supply  
VS  
46  
44  
P
P
Battery supply input  
VDDP  
I/O port supply (5.0 V). Do not connect external loads. For  
buffer and bypass capacitors.  
VDDC  
42  
P
Core supply (1.5 V during Active Mode,  
0.9 V during Stop Mode). Do not connect external loads. For  
buffer/bypass capacitor.  
VDDEXT  
GNDP  
45  
P
P
P
P
External voltage supply output (5.0 V, 40 mA)  
Core supply ground  
21, 30  
43  
GNDA  
Analog supply ground  
GNDLIN  
Monitor Inputs  
MON1  
1
LIN ground  
17  
18  
19  
20  
I
I
I
I
I
I
I
I
High Voltage Monitor Input 1  
High Voltage Monitor Input 2  
High Voltage Monitor Input 3  
High Voltage Monitor Input 4  
MON2  
MON3  
MON4  
High Side Switch Outputs  
HS  
2
O
Hi-Z  
PU  
High Side Switch output  
LIN Interface  
LIN  
48  
14  
I/O  
P
LIN bus interface input/output  
Charge Pump  
CP1H  
Charge Pump Capacity 1 High, connect external C  
Datasheet  
12  
Rev. 1.0  
2019-07-26  
TLE9853QX  
General Device Information  
Table 1  
Symbol  
Pin Definitions and Functions (cont’d)  
Pin  
Type Reset Function  
State  
Number  
CP1L  
CP2H  
CP2L  
VCP  
13  
11  
10  
12  
15  
P
P
P
P
P
Charge Pump Capacity 1 Low, connect external C  
Charge Pump Capacity 2 High, connect external C  
Charge Pump Capacity 2 Low, connect external C  
Charge Pump Capacity  
VSD  
Battery supply input for Charge Pump  
MOSFET Driver  
VDH  
16  
3
P
P
P
P
P
P
P
P
Voltage Drain High Side MOSFET Driver  
Gate High Side FET 1  
GH1  
GH2  
9
Gate High Side FET 2  
SH1  
4
Source High Side FET 1  
Source High Side FET 2  
Gate Low Side FET 1  
SH2  
8
GL1  
5
GL2  
7
Gate Low Side FET 2  
SL  
6
Source Low Side FETs  
Others  
TMS  
23  
25  
I
I/PD  
TMS  
DAP1  
test mode select input  
RESET  
I/O  
I/O/PU Bidirectional reset input/output, not available during Sleep  
Mode  
VBAT_SENSE 47  
I
I
Battery supply voltage sense input  
Negative current sense amplifier input  
Positive current sense amplifier input  
Exposed Pad, connect to GND  
OP1  
OP2  
EP  
35  
36  
I
I
1) configurable by user  
Datasheet  
13  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Modes of Operations  
4
Modes of Operations  
This highly integrated circuit contains analog and digital functional blocks. For system and interface control  
an embedded 32-Bit Arm® Cortex®-M0 microcontroller is included. For internal and external power supply  
purposes, on-chip low drop-out regulators are existent. An internal oscillator (no external components  
necessary) provides a cost effective and suitable clock in particular for LIN slave nodes. As communication  
interface, a LIN transceiver and several High Voltage Monitor Inputs with adjustable threshold and filters are  
available. Furthermore one High-Side Switch (e.g. for driving LEDs or powering of switches), a driver for 4 n-  
channel MOSFETs including a two-stage charge pump and several general purpose input/outputs (GPIO) with  
pulse-width modulation (PWM) capabilities are available.  
The Micro Controller Unit supervision and system protection including reset feature is controlled by a  
programmable window watchdog. A cyclic wake-up circuit, supply voltage supervision and integrated  
temperature sensors are available on-chip.  
All relevant modules offer power saving modes in order to support terminal 30 connected automotive  
applications. A wake-up from the power saving mode is possible via a LIN bus message, via the monitoring  
inputs or repetitive with a programmable time period (cyclic wake-up).  
The integrated circuit is available in a VQFN-48-31 package with 0.5 mm pitch and is designed to withstand the  
challenging conditions of automotive applications.  
The TLE9853QX has several operational modes mainly to support low power consumption requirements. The  
low power modes and state transitions are depicted in Figure 3 below.  
Reset  
Transition by software Transition by external event  
Safety Fallback Transition by internal event  
Active Mode  
Stop Mode  
Sleep Mode  
PMU_System_Modes.vsd  
Figure 3  
Power Control State Diagram  
Datasheet  
14  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Modes of Operations  
Reset Mode  
The Reset Mode is a transition mode e.g. during power-up of the device after a power-on reset. In this mode  
the on-chip power supplies are enabled and all other modules are initialized. Once the core supply VDDC is  
stable, the Active Mode is entered . In case the watchdog timer WDT1 fails for more than four times, a fail-safe  
transition to the Sleep Mode is done.  
Active Mode  
In Active Mode all modules are activated and the TLE9853QX is fully operational.  
Stop Mode  
The Stop Mode is one out of two major low power modes. The transition to the low power modes is done by  
setting the respective Bits in the mode control register. In Stop Mode the embedded microcontroller is still  
powered allowing faster wake-up reaction times, but not clocked. A wake-up from this mode is possible by LIN  
bus activity, the High Voltage Monitor Input pins or the respective 5V GPIOs.  
Sleep Mode  
The Sleep Mode is a major low-power mode. The transition to the low-power modes is done by setting the  
respective Bits in the Micro Controller Unit mode control register. The sleep time is configurable. In Sleep  
Mode the embedded microcontroller power supply is deactivated, allowing the lowest system power  
consumption, but the wake-up time is longer compared to the Stop Mode. In this mode a 64 bit wide buffer for  
data storage is available. A wake-up from this mode is possible by LIN bus activity or the High Voltage Monitor  
Input pins and cyclic wake. A wake-up from Sleep Mode behaves similar to a power-on reset. While changing  
into Sleep Mode, no incoming wake-requests are lost (i.e. no dead-time). It is possible to enter sleep-mode  
even with LIN dominant.  
Cyclic Wake-up Mode  
The cyclic wake-up mode is a special operating mode of the Sleep Mode and the Stop Mode. The transition to  
the cyclic wake-up mode is done by first setting the respective Bits in the mode control register followed by  
the SLEEP or STOP command. Additional to the cyclic wake-up behavior (wake-up after a programmable time  
period), the wake-up sources of the normal Stop Mode and Sleep Mode are available.  
Cyclic Sense Mode  
The cyclic sense mode is a special operating mode of the Sleep Mode and the Stop Mode. The transition to the  
cyclic sense mode is done by first setting the respective Bits in the mode control register followed by the STOP  
or SLEEP command. In cyclic sense mode the High Side Switch can be switched on periodically for biasing  
some switches for example. The wake-up condition is configurable, when the sense result of defined monitor  
inputs at a window of interest changed compared to the previous wake-up period or reached a defined state  
respectively. In this case the Active Mode is entered immediately.  
The following table shows the possible power mode configurations of each major module or function  
respectively.  
Table 2  
Power Mode Configurations  
Module/function  
VPRE, VDDP, VDDC  
VDDEXT  
Active Mode Sleep Mode  
Stop Mode  
ON  
Comment  
ON  
OFF  
ON/OFF  
ON/OFF  
OFF  
cyclic ON/OFF  
cyclic ON/OFF  
HS  
cyclic ON/OFF  
cyclic sense  
Datasheet  
15  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Modes of Operations  
Table 2  
Power Mode Configurations (cont’d)  
Module/function  
Bridge Driver  
LIN TRx  
Active Mode Sleep Mode  
Stop Mode  
OFF1)  
Comment  
ON/OFF  
ON/OFF  
OFF1)  
wake-up only / OFF wake-up only/  
OFF  
MONx (wake-up)  
MONx (measurement)  
VS sense  
n.a.  
disabled/static/  
cyclic  
disabled/static/ cyclic: combined with  
cyclic  
HS=on  
ON/OFF  
OFF  
OFF  
available on all  
channels  
ON/OFF  
brownout  
detection  
brownout detection brownout  
detection  
brownout det. done  
in PCU  
VBAT_SENSE  
GPIO 5V  
ON/OFF  
ON  
OFF  
OFF  
OFF  
OFF  
ON  
WDT1  
ON  
OFF  
CYCLIC WAKE  
n.a.  
cyclic wake-up/  
cyclic sense/OFF  
cyclic wake-up/ cyclic sense with HS;  
cyclic sense/OFF wake-up needs MC  
for enter Sleep Mode  
again  
Measurement  
ON2)  
OFF  
OFF  
OFF  
OFF  
Micro Controller Unit  
ON/slow-  
down/STOP  
CLOCK GEN (MC)  
ON  
ON  
ON  
OFF  
OFF  
ON  
OFF  
OFF  
ON  
LP_CLK (fLP_CLK  
)
WDT1  
LP_CLK2 (fLP_CLK2  
)
for cyclic wake-up  
1) Bridge Driver “Hold Mode” is available in sleep mode and stop mode.  
2) May not be switched off due to safety reasons  
Wake-up Source Prioritization  
All wake-up sources have the same priority. In order to handle the asynchronous nature of the wake-up  
sources, the first wake-up signal will initiate the wake-up sequence. Nevertheless all wake-up sources are  
latched in order to provide all wake-up events to the application software. The software can clear the wake-  
up source flags. It is ensured, that no wake-up event is lost.  
As default wake-up sources, MON inputs and cyclic wake are activated after power-on reset, LIN is disabled as  
wake-up source by default.  
Wake-up Levels and Transitions  
The wake-up can be triggered by rising, falling or both signal edges for each monitor input individually.  
Datasheet  
16  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Power Management Unit (PMU)  
5
Power Management Unit (PMU)  
5.1  
Features  
System modes control (startup, sleep, stop and active)  
Power management (cyclic wake, cyclic sense)  
Control of system voltage regulators with diagnosis (overload, short, overvoltage)  
Fail safe mode detection and operation in case of system errors  
Wake-up sources configuration and management (LIN, MON, GPIOs)  
System error logging  
5.2  
Introduction  
The purpose of the power management unit is to ensure the fail safe behavior of the system IC. Therefore the  
power management unit controls all system modes including the corresponding transitions. The power  
management unit is responsible for generating all needed voltage supplies for the embedded MCU (VDDC,  
VDDP) and the external supply (VDDEXT). Additionally, the PMU provides well defined sequences for the  
system mode transitions and generates hierarchical reset priorities. The reset priorities control the reset  
behavior of all system functionalities especially the reset behavior of the embedded MCU. All these functions  
are controlled by finite state machines. The system master functionality of the PMU requires the generation of  
an independent logic supply and system clock. Therefore the PMU has a module internal logic supply and  
system clock which works independently of the MCU clock.  
Datasheet  
17  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Power Management Unit (PMU)  
5.2.1  
Block Diagram  
The following figure shows the structure of the Power Management Unit. Table 3 describes the submodules  
more detailed.  
VS  
Power Down Supply  
VDDP  
VDDC  
Power Supply Generation Unit  
(PGU)  
I
N
T
E
R
N
A
L
e.g. for WDT 1  
LP_CLK  
Peripherals  
LDO for External Supply  
VDDEXT  
VDDEXT  
e.g. for cyclic  
wake and sense  
LP_CLK2  
B
U
S
PMU-PCU  
PMU-SFR  
MON1...4  
LIN  
P0. 0... P0.4  
P1. 0... P1.4  
PMU-CMU  
PMU-RMU  
PMU-WMU  
RESET  
PMU-Control  
Power Management Unit  
Power_Management_985x.vsd  
Figure 4  
Table 3  
Power Management Unit Block Diagram  
Description of PMU Submodules  
Mod.  
Modules  
Functions  
Name  
Power Down Independent Supply Voltage  
This supply is dedicated to the PMU to ensure an  
independent operation from generated power supplies  
(VDDP, VDDC).  
Supply  
Generation for PMU  
LP_CLK  
(= fLP_CLK  
- Clock Source for all PMU  
submodules  
This ultra low power oscillator generates the clock for  
the PMU.  
)
- Backup Clock Source for System This clock is also used as backup clock for the system in  
(can be selected as fsys clock  
source through  
case of PLL Clock failure and as independent clock  
source for WDT1.  
SCU_APCLK.SYSCLKSEL)  
- Clock Source for WDT1  
LP_CLK2  
(= fLP_CLK2  
Clock Source for PMU  
This ultra low power oscillator generates the clock for  
the PMU in Stop Mode and in the cyclic modes.  
)
Datasheet  
18  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Power Management Unit (PMU)  
Table 3  
Description of PMU Submodules (cont’d)  
Mod.  
Modules  
Functions  
Name  
Peripherals  
Peripheral Blocks of PMU  
These blocks include the analog peripherals to ensure a  
stable and fail safe PMU startup and operation  
(bandgap, bias).  
Power Supply Voltage regulators for VDDP and  
This block includes the voltage regulators for the pad  
supply (VDDP) and the core supply (VDDC).  
Generation  
Unit (PGU)  
VDDC  
VDDEXT  
Voltage regulator for VDDEXT to  
supply external modules (e.g.  
Sensors)  
This voltage regulator is a dedicated supply for external  
modules.  
PMU-SFR  
PMU-PCU  
All PMU relevant Extended Special This module contains all PMU relevant registers, which  
Function Registers  
are needed to control and monitor the PMU.  
Power Control Unit of the PMU  
This block is responsible for controlling all power  
related actions within the PGU Module.It also contains  
all regulator related diagnosis like under- and  
overvoltage detection, overcurrent and short circuit  
diagnoses.  
PMU-WMU  
PMU-CMU  
PMU-RMU  
Wake-up Management Unit of the This block is responsible for controlling all Wake-up  
PMU  
related actions within the PMU Module.  
Cyclic Management Unit of the  
PMU  
This block is responsible for controlling all actions  
within cyclic mode.  
Reset Management Unit of the PMU This block generates resets triggered by the PMU like  
undervoltage or short circuit reset, and passes all resets  
to the relevant modules and their register. A reset status  
register with every reset source is available.  
Datasheet  
19  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Power Management Unit (PMU)  
5.2.2  
PMU Modes Overview  
The following state diagram shows the available modes of the device.  
VS > 4V and VS ramp up  
or  
VS  
< 3V and V  
S
ramp down  
LIN-wake or  
MON-wake or  
cyclic -wake  
start-up  
VDDC =stable and  
error_supp<5  
VDDC / VDDP = fail  
(short circuit )  
à error_supp ++  
error_supp = 5  
sleep  
active  
Sleep command (from MCU ) or  
WDT1_SEQ_FAIL = 1 (à error_wdt = 5) or  
VDDC / VDDP = overload  
LIN-wake or  
MON-wake or  
GPIO-wake or  
cyclic_wake or  
PMU_PIN = 1 or  
SUP_TMOUT = 1  
PMU_PIN = 1 or  
PMU_SOFT = 1 or  
(PMU_Ext_WDT = 1 and  
WDT1_SEQ_FAIL = 0  
à error_wdt ++)  
cyclic sense  
Stop  
command  
(from MCU)  
stop  
cyclic sense  
Figure 5  
Power Management Unit System Modes  
Datasheet  
20  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Power Management Unit (PMU)  
5.3  
Power Supply Generation (PGU)  
5.3.1  
Voltage Regulator 5.0V (VDDP)  
This module represents the 5 V voltage regulator, which provides the pad supply for the parallel port pins and  
other 5 V analog functions (e.g. LIN Transceiver).  
Features  
5 V low-drop voltage regulator  
Overcurrent Monitoring and Shutdown with MCU signalling (Interrupt)  
Overvoltage monitoring with MCU signalling (Interrupt)  
Undervoltage monitoring with MCU signalling (Interrupt)  
Undervoltage monitoring with Reset (UnderVoltage Reset, VDDPUV  
Overtemperature Shutdown with MCU signalling (Interrupt)  
Pre-Regulator for VDDC Regulator  
)
GPIO Supply  
Pull Down Current Source at the output for Sleep Mode only  
The output capacitor CVDDP is mandatory to ensure a proper regulator functionality.  
Datasheet  
21  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Power Management Unit (PMU)  
VDDP Regulator  
VS  
VDDP  
VPRE  
A
CVDDP  
V
GND  
I
5V LDO  
LDO Supervision  
LDO_block_external .vsd  
Figure 6  
Module Block Diagram of VDDP Voltage Regulator  
Datasheet  
22  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Power Management Unit (PMU)  
5.3.2  
Voltage Regulator 1.5V (VDDC)  
This module represents the 1.5 V voltage regulator, which provides the supply for the microcontroller core,  
digital peripherals and other chip internal analog 1.5 V functions (e.g. ADC).  
Features  
1.5 V low-drop voltage regulator  
Overcurrent monitoring and Shutdown with MCU signalling (Interrupt)  
Overvoltage monitoring with MCU signalling (Interrupt)  
Undervoltage monitoring with MCU signalling (interrupt)  
Undervoltage monitoring with reset  
Overtemperature Shutdown with MCU signalling (Interrupt)  
Pull Down Current Source at the output for Sleep Mode only  
The output capacitor CVDDC is mandatory to ensure a proper regulator functionality.  
VDDC Regulator  
VDDP (5V)  
VDDC (1.5V)  
A
V
CVDDP  
CVDDC  
I
1.5V LDO  
LDO Supervision  
1.5VLDOblockexternal.vsd  
Figure 7  
Module Block Diagram of VDDC Voltage Regulator  
Datasheet  
23  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Power Management Unit (PMU)  
5.3.3  
External Voltage Regulator 5.0V (VDDEXT)  
This module represents the 5 V voltage regulator, which serves as a supply for external circuits. It can be used  
e.g. to supply an external sensor, LEDs or potentiometers.  
Features  
Switchable (by software) 5 V low-drop voltage regulator  
Switch-on undervoltage blanking time in order to drive small capacitive loads  
Intrinsic current limitation  
Undervoltage monitoring and shutdown with MCU signalling (Interrupt)  
Overtemperature Shutdown with MCU signalling (Interrupt)  
Resistive discharge path at the output if the regulator is off  
Cyclic sense option together with GPIOs  
Low current mode available to ensure reduced stop mode current consumption. In this mode current  
capability is reduced to IVDDEXT_LCM  
The output capacitor CVDDEXT is mandatory to ensure a proper regulator functionality.  
VDDEXTRegulator  
VS  
VDDEXT (5V)  
CVDDEXT  
V
CVS  
V
VDDEXTLDO  
Supervision  
HALL_LDOblockexternal.vsd  
Figure 8  
Module Block Diagram  
Datasheet  
24  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Power Management Unit (PMU)  
5.3.4  
Power-on Reset Concept  
Vs  
ca. 4V  
1.5V  
Power Down RESET_N  
LP_Clk  
VDDP  
5V  
ca. 3.5V  
3V  
VDDC  
1.5V  
fail  
stable  
ok  
SUPPLY_STATUS  
RESET_PIN  
PMU_RESET_STS  
xxh  
80h  
Down  
Start-up  
Active  
SYSTEM_STATE  
Figure 9  
Power-on Reset Concept  
Datasheet  
25  
Rev. 1.0  
2019-07-26  
TLE9853QX  
System Control Unit - Digital Modules (SCU-DM)  
6
System Control Unit - Digital Modules (SCU-DM)  
6.1  
Features  
Flexible clock configuration features  
Reset management of all system resets  
System modes control for all power modes (active, power down, sleep)  
Interrupt enabling for many system peripherals  
General purpose input output control  
Debug mode control of system peripherals  
6.2  
Introduction  
The System Control Unit (SCU) supports all central control tasks in the TLE9853QX. The SCU is made up of the  
following sub-modules:  
Clock System and Control (CGU)  
Reset Control (RCU)  
Power Management (PCU)  
Interrupt Management (ICU)  
General Port Control  
Flexible Peripheral Management  
Module Suspend Control  
Watchdog Timer (WDT)  
Error Detection and Correction in Data Memory  
Miscellaneous Control  
Register Mapping  
Datasheet  
26  
Rev. 1.0  
2019-07-26  
TLE9853QX  
System Control Unit - Digital Modules (SCU-DM)  
6.2.1  
Block Diagram  
on signalsto digital  
peripherals;  
statussignalsfrom  
digital peripherals  
AHB  
PMCU  
WDT  
ICU  
fPCLK  
I
N
T
E
R
N
A
L
XTAL1  
CGU  
fOSC  
OSC_HP  
PLL  
XTAL2  
LP_CLK  
NMI  
fSYS  
fPLL  
fPCLK  
MI_CLK  
INTISR <23:0>  
CG  
f
fTFILT _CLK  
B
U
S
PMU_1V5DidPOR  
PMU_PIN  
PMU_ExtWDT  
PMU_IntWDT  
PMU_SOFT  
RCU  
MISC Control  
MODPISELx  
PMU_Wake  
RESET_TYPE_3  
RESET_TYPE_4  
P0_POCONy.PDMx  
P1_POCONy.PDMx  
PortControl  
System Control Unit -Digital Modules  
SCU_DM_Block_Diagram_Cust.vsd  
Figure 10 System Control Unit - Digital Modules Block Diagram  
IO description of SCU_DM:  
CGU:  
f
sys; system clock  
LP_CLK; low-power backup clock  
RCU:  
1V5DidPOR; Undervoltage reset of power down supply  
PMU_PIN; Reset generated by reset pin  
PMU_ExtWDT; WDT1 reset  
PMU_IntWDT; WDT (SCU) reset  
Datasheet  
27  
Rev. 1.0  
2019-07-26  
TLE9853QX  
System Control Unit - Digital Modules (SCU-DM)  
PMU_SOFT; Software reset  
PMU_Wake; Stop Mode exit with reset  
Reset_Type_3; Peripheral reset (contains all resets)  
Reset_Type_4; Peripheral reset (without SOFT and WDT reset)  
Port Control:  
P0_POCONy.PDMx; driver strength control  
P1_POCONy.PDMx; driver strength control  
MISC:  
MODPISELx; Mode selection registers for UART (source selection) and Timer (trigger or count selection)  
WDT (Watchdog Timer in SCU-DM): fSYS; System clock  
Datasheet  
28  
Rev. 1.0  
2019-07-26  
TLE9853QX  
System Control Unit - Digital Modules (SCU-DM)  
6.3  
Clock Generation Unit  
The Clock Generation Unit (CGU) provides a flexible clock generation for TLE9853QX. During user program  
execution the frequency can be programmed for an optimal ratio between performance and power  
consumption. Therefore the power consumption can be adapted to the actual application state.  
The CGU in the TLE9853QX consists of one oscillator circuit (OSC_HP), a Phase-Locked Loop (PLL) module  
including an internal oscillator (OSC_PLL) and a Clock Control Unit (CCU). The CGU can convert a low-  
frequency input/external clock signal to a high-frequency internal clock.  
The system clock fSYS is generated out of the following selectable clocks:  
PLL clock output fPLL  
Direct clock from oscillator OSC_HP fOSC  
Direct output of internal Oscillator fINTOSC  
Low precision clock fLP_CLK (HW-enabled for startup after reset and during power-down wake-up sequence)  
The following sections describe the different parts of the CGU.  
6.3.1  
Low Precision Clock  
The clock source LP_CLK is a low-precision RC oscillator (LP-OSC, see fLP_CLK) that is enabled by hardware as  
an independent clock source for the TLE9853QX startup after reset and during the power-down wake-up  
sequence. There is no user configuration possible on fLP_CLK  
.
6.3.2  
High Precision Oscillator Circuit (OSC_HP)  
The high precision oscillator circuit, designed to work with both an external crystal oscillator or an external  
stable clock source, consists of an inverting amplifier with XTAL1 as input, and XTAL2 as output.  
Figure 11 shows the recommended external circuitries for both operating modes, External Crystal Mode and  
External Input Clock Mode.  
6.3.2.1 External Input Clock Mode  
When supplying the clock signal directly, not using an external crystal and bypassing the oscillator, the input  
frequency needs to be equal to or greater than 4 MHz if the PLL VCO part is used.  
When using an external clock signal it must be connected to XTAL1. XTAL2 is left open (unconnected).  
6.3.2.2 External Crystal Mode  
When using an external crystal, its frequency can be within the range of 4 MHz to 16 MHz. An external oscillator  
load circuitry must be used, connected to both pins, XTAL1 and XTAL2. It consists normally of the two load  
capacitances C1 and C2, for some crystals a series damping resistor might be necessary. The exact values and  
related operating range are dependent on the crystal and have to be determined and optimized together with  
the crystal vendor using the negative resistance method. As starting point for the evaluation, the following  
load cap values may be used:  
Table 4  
External CAP Capacitors  
Fundamental Mode Crystal Frequency (approx., MHz) Load Caps C1, C2 (pF)  
4
33  
18  
12  
10  
8
12  
16  
Datasheet  
29  
Rev. 1.0  
2019-07-26  
TLE9853QX  
System Control Unit - Digital Modules (SCU-DM)  
V
V
DDP  
DDP  
External Clock  
Signal  
XTAL1  
OSC_HP  
f
XTAL1  
OSC_HP  
f
OSC  
OSC  
4 - 16  
MHz  
XTAL2  
XTAL2  
C1  
C2  
Fundamental  
Mode Crystal  
V
V
SS  
SS  
External Input Clock Mode  
External Crystal Mode  
VSS = GND = PIN 43  
Figure 11 TLE9853QX External Circuitry for the OSC_HP  
Datasheet  
30  
Rev. 1.0  
2019-07-26  
TLE9853QX  
System Control Unit - Digital Modules (SCU-DM)  
6.3.3  
Clock Control Unit  
The Clock Control Unit (CCU) receives the clock from the PLL fPLL, the external input clock fOSC, the internal  
input clock fINTOSC, or the low-precision input clock fLP_CLK. The system frequency is derived from one of these  
clock sources.  
CCU  
SYSCON0.SYSCLKSEL  
fPLL  
fOSC  
M
U
fSYS  
f
X
INTOSC  
fLP_CLK  
CCU_block  
Figure 12 Clock Inputs to Clock Control Unit  
The CCU generates all necessary clock signals within the microcontroller from the system clock. It consists of:  
Clock slow down circuitry  
Centralized enable/disable circuit for clock control  
In normal running mode, the main module frequencies (synchronous unless otherwise stated) are as follows:  
System frequency, fSYS = up to 40 MHz (measurement interface clock MI_CLK is derived from this clock)  
CPU clock (CCLK, SCLK) = up to 40 MHz (divide-down of NVM access clock)  
NVM access clock (NVMACCCLK) = up to 40 MHz  
Peripheral clock (PCLK, PCLK2, NVMCLK) = up to 40 MHz (equals CPU clock; must be same or higher)  
Some peripherals are clocked by PCLK, others clocked by PCLK2 and the NVM is clocked by both NVMCLK and  
NVMACCCLK. During normal running mode, PCLK = PCLK2 = NVMCLK = CCLK. On wake-up from power-down  
mode, PCLK2 is restored similarly like NVMCLK, whereas PCLK is restored only after PLL is locked.  
For optimized NVM access (read/write) with reduced wait state(s) and with respect to system requirements on  
CPU operational frequency, bit field NVMCLKFAC is provided for setting the frequency factor between the NVM  
access clock NVMACCCLK and the CPU clock CCLK.  
For the slow down mode, the operating frequency is reduced using the slow down circuitry with clock divider  
setting at the bit field CLKREL. Bit field CLKREL is only effective when slow down mode is enabled via SFR bit  
PMCON0.SD bit. Note that the slow down setting of bit field CLKREL correspondingly reduces the NVMACCCLK  
clock. Slow down setting does not influence the erase and write cycles for the NVM.  
Peripherals UART1, UART2, T2 and T21 are not influenced by CLKREL and either not by NVMCLKFAC, to  
allow functional LIN communication in slow down mode.  
Datasheet  
31  
Rev. 1.0  
2019-07-26  
TLE9853QX  
System Control Unit - Digital Modules (SCU-DM)  
Analog Subsystem/  
PBA0 / PBA1  
UART 1/2,  
Timer 2/21,  
Baudgen 1/2  
fSYS  
ADC1_CLK  
PCLK2  
ADC1_CLK_DIV  
DPP1_CLK_DIV  
DPP1_CLK  
DPP1  
SFR  
BRDRV_TFILT_DIV  
BRDRV_TFILT_CLK  
BRDRV_CLK_DIV  
APCLK2FAC  
Bridge Driver  
BRDRV_CLK  
PCLK2  
Clock  
Control Unit  
SFR  
TFILT_CLK  
TFILT_CLK  
Analog  
Peripherals  
MI_CLK  
PCLK2  
APCLK1FAC  
SFR  
MI_CLK  
Measurement  
Interface  
MI_CLK  
PCLK2  
PCLK  
Peripherals  
Peripherals  
CLKREL  
NVMCLKFAC  
fPLL  
SCLK  
CCLK  
fOSC  
f
f
CORE  
M
U
X
SYS  
CCLK  
fINTOSC  
f
LP_CLK  
NVMCLK  
NVM  
NVMACCCLK  
PBA0CLKREL  
Peripherals  
Peripherals  
COREL  
TLEN  
Toggle  
Latch  
CLKOUT  
COUTS1  
Figure 13 Clock Generation from fsys; CLKOUT Generation  
Datasheet  
32  
Rev. 1.0  
2019-07-26  
TLE9853QX  
System Control Unit - Power Modules (SCU-PM)  
7
System Control Unit - Power Modules (SCU-PM)  
7.1  
Features  
Clock Watchdog Unit (CWU): supervision of all power modules relevant clocks with NMI signalling.  
Interrupt Control Unit (ICU): all system relevant interrupt flags and status flags.  
Power Control Unit (PCU): takes over control when device enters and exits Sleep and Stop Mode.  
External Watchdog (WDT1): independent system watchdog to monitor system activity  
7.2  
Introduction  
7.2.1  
Block Diagram  
The System Control Unit of the power modules consists of the sub-modules in the figure shown below:  
on signals to analog  
peripherals;  
status signals from  
analog peripherals  
AMBA AHB  
I
N
T
PCU  
WDT1  
LP_CLK  
E
R
N
A
L
fsys  
MI_CLK  
PREWARN_SUP_NMI  
PREWARN_SUP_INT  
INT<n:0>  
B
U
S
CWU  
ICU  
TFILT_CLK  
System ControlUnit -Power Modules  
SCU_PM_Block_Diagram_Cust.vsd  
Figure 14 Block diagram of System Control Unit - Power Modules  
IO description of SCU_PM:  
CWU:  
check of fsys = system frequency: output of PLL  
check of MI_CLK = measurement interface clock (analog clock): derived out of fsys by division factors  
1/2/3/4  
check of TFILT_CLK = clock used for digital filters: derived out of fsys by configurable division factors  
Datasheet  
33  
Rev. 1.0  
2019-07-26  
TLE9853QX  
System Control Unit - Power Modules (SCU-PM)  
ICU:  
PREWARN_SUP_NMI = generation of Prewarn-Supply NMI  
PREWARN_CLK_INT = generation of Prewarn-Clock Watchdog NMI  
INT = generation of MISC interrupts  
Datasheet  
34  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Arm® Cortex®-M0 Core  
8
Arm® Cortex®-M0 Core  
8.1  
Features  
The key features of the Arm® Cortex®-M0 implemented are listed below.  
Processor Core. A low gate count core, with low latency interrupt processing:  
Thumb® + Thumb-2® Instruction Set  
Banked stack pointer (SP) only  
Handler and thread modes  
Thumb and debug states  
Interruptible-continued instructions LDM/STM, Push/Pop for low interrupt latency  
Automatic processor state saving and restoration for low latency Interrupt Service Routine (ISR) entry and  
exit  
Arm® architecture v6-M Style  
Arm®v6 unaligned accesses  
Systick (typ. 1ms)  
Nested Vectored Interrupt Controller (NVIC) closely integrated with the processor core to achieve low  
latency interrupt processing:  
External interrupts, configurable from 1 to 24  
7 interrupt priority registers for levels from 0 up to 192 in steps of 64  
Dynamic repriorization of interrupts  
Priority grouping. This enables selection of pre-empting interrupt levels and non pre-empting interrupt  
levels  
Support for tail-chaining and late arrival of interrupts. This enables back-to-back interrupt processing  
without the overhead of state saving and restoration between interrupts.  
Processor state automatically saved on interrupt entry, and restored on interrupt exit, with no instruction  
overhead  
Bus interfaces  
Advanced High-performance Bus-Lite (AHB-Lite) interfaces  
8.2  
Introduction  
The Arm® Cortex®-M0 processor is a leading 32-bit processor and provides a high-performance and cost-  
optimized platform for a broad range of applications including microcontrollers, automotive body systems  
and industrial control systems. Like the other Arm® Cortex® family processors, the Arm® Cortex®-M0 processor  
implements the Thumb®-2 instruction set architecture. With the optimized feature set the Arm® Cortex®-M0  
delivers 32-bit performance in an application space that is usually associated with 8- and 16-bit  
microcontrollers.  
8.2.1  
Block Diagram  
Figure 15 shows the functional blocks of the Arm® Cortex®-M0.  
Datasheet  
35  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Arm® Cortex®-M0 Core  
Arm(R) Cortex(R)-M0 Processor  
Nested Vectored  
Interrupt  
Breakpoint  
Arm(R) Cortex(R)-M0  
Interrupt and  
Power Control  
and  
watchpoint  
unit  
processor  
core  
Controller  
(NVIC)  
Serial-Wire  
Debug Access Port  
(SW-DP)  
Bus matrix  
Debugger interface  
AHB-Lite interface  
Serial-Wire Debug  
Interface  
Figure 15 Arm® Cortex®-M0 Block Diagram  
Datasheet  
36  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Address Space Organization  
9
Address Space Organization  
The TLE9853QX manipulates operands in the following memory spaces:  
48 KB of Flash memory in code space  
24 KB Boot ROM memory in code space (used for boot code and IP storage)  
4 KB RAM memory in Arm® Cortex®-M0 code region (RAM can be fetched, read/written as program memory)  
Special function registers (SFRs) in peripheral linear address space  
The on-chip memory modules available in the TLE9853QX are:  
00000000H / 00005FFFH  
BROM, 24K  
reserved  
11000000H / 1100BFFFH  
1100C000H / 17FFFFFFH  
Flash, 48K  
reserved  
18000000H / 18000FFFH  
18001000H / 3FFFFFFFH  
SRAM, 4K  
reserved  
PBA0  
40000000H / 47FFFFFFH  
48000000H / 5FFFFFFFH  
PBA1  
60000000H/ DFFFFFFFH  
E0000000H / E00FFFFFH  
E01FFFFFH / FFFFFFFFH  
reserved  
Private Peripheral Bus  
reserved  
Figure 16 TLE9853QX Memory Map  
Datasheet  
37  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Memory Control Unit  
10  
Memory Control Unit  
10.1  
Features  
Provides Memory access to ROM, RAM, NVM, Config Sector through AHB-Lite Interface  
MBIST for RAM  
MBIST for ROM  
NVM Configuration with Special Function Registers through AHB-Lite Interface  
Hardware Memory Protection Logic  
Stack overflow detection  
10.2  
Introduction  
10.2.1  
Block Diagram  
The Memory Control Unit (MCU) is divided in the following sub-modules:  
NVM Memory module (embedded Flash Memory)  
RAM memory module  
BootROM memory module  
Memory protection Unit (MPU) module  
Datasheet  
38  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Memory Control Unit  
NVM  
S0  
RAM  
S1  
ROM  
S2  
PBA0  
S3  
Memory Protection  
Unit  
Sx: BusSlave  
Mx: Bus Master  
M0  
M1  
M2  
M3  
Bus Matrix  
MCU_Block_Diagram_overview.vsd  
Figure 17 Memory Control Unit Block View  
Functional Features for RAM  
4 KB RAM  
Error correction code (ECC) for detection of single bit and double bit errors and dynamic correction of  
single bit errors  
Single byte access  
Datasheet  
39  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Memory Control Unit  
10.3  
NVM Module (Flash Memory)  
The Flash memory provides an embedded user-programmable non-volatile memory, allowing fast and  
reliable storage of user code and data.  
Features  
In-System Programming via LIN (Flash mode) and SWD  
Error Correction Code (ECC) for detection of single Bit and double Bit errors and dynamic correction of  
single Bit errors on Data Block (Double words, 64 bits).  
Interrupt and signaling of double bit error by NMI, address of double bit error readable by FW API user  
routine  
Possibility of checking single bit error occurrence by ROM routines  
Program width of 128 Byte (page)  
Minimum erase width of 128 Byte (page)  
Integrated hardware support for EEPROM emulation  
8 Byte read access  
Physical read access time: max. 75 ns  
Code read access acceleration integrated (read buffer)  
Page program time: typ. 3 ms  
Page erase (128 bytes) and sector erase (4K bytes) time: typ. 4 ms  
4 individual protection passwords for NVM customer BSL region, code region, data linear region, and data  
mapped region  
Security option to protect read out via debug interface in application run mode  
Write/erase access to 100TP (e.g. option bytes) is possible via the debug interface  
Note:  
The user has to ensure that no flash operations which change the content of the flash get interrupted  
at any time.  
The clock for the NVM is supplied with the system frequency fsys. Integrated firmware routines are provided to  
ease NVM, and other operations including EEPROM emulation.  
Datasheet  
40  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Interrupt System  
11  
Interrupt System  
11.1  
Features  
23 interrupt nodes for on-chip peripherals  
8 NMI nodes for critical system events  
Maximum flexibility (resp. priority and node grouping) for all interrupt nodes  
11.2  
Introduction  
11.2.1  
Overview  
The TLE9853QX supports 24 interrupt vectors with 4 priority levels. 21 of these interrupt vectors are assigned  
to the on-chip peripherals: GPT12, SSC1, SSC2, CCU6, High-Side Switch, WAKEUP, Bridge Driver, Charge Pump,  
Differential Unit, Math Divider, GPIOs, MONs, CSA and A/D Converter are each assigned to one dedicated  
interrupt vector; while UART1 and Timer2 or UART2, External Interrupt 2 and Timer21 share interrupt vectors.  
Two vectors are dedicated for External Interrupt 0 and 1.  
Table 5  
Interrupt Vector Table  
Service Request  
GPT1  
Node ID  
Description  
0
GPTimer 1 Interrupt  
GPT2  
1
GPTimer 2 Interrupt  
MU  
2
MU interrupt / ADC2, VBG interrupt  
ADC10 Bit interrupt  
ADC1  
3
CCU0  
4
CCU6 node 0 interrupt  
CCU1  
5
CCU6 node 1 interrupt  
CCU2  
6
CCU6 node 2 interrupt  
CCU3  
7
CCU6 node 3 interrupt  
SSC1  
8
SSC1 interrupt (receive, transmit, error)  
SSC2 interrupt (receive, transmit, error)  
UART1 interrupt (receive, transmit), Timer2, LIN sync, LIN  
SSC2  
9
UART1  
UART2  
10  
11  
UART2 interrupt (receive, transmit), Timer21, External Interrupt  
(EINT2)  
EXINT0  
EXINT1  
WAKEUP  
Math Div  
rfu  
12  
13  
14  
15  
16  
17  
18  
External interrupt (EINT0), wake-up  
External interrupt (EINT1)  
Wake-up interrupt (generated by a wake-up event)  
Hardware Divider Unit Interrupt  
Reserved for future use  
CP  
Charge Pump  
BDRV  
Bridge Driver  
Datasheet  
41  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Interrupt System  
Table 5  
Interrupt Vector Table (cont’d)  
Service Request  
Node ID  
Description  
HS  
19  
20  
21  
22  
23  
High Side Interrupt  
CSA  
Current Sense Amplifier Overcurrent Measurement  
Differential Unit - DPP1  
MONx Interrupt  
DU  
MONx  
Port 2.x  
Port 2.x - DPP1  
Table 6  
NMI Interrupt Table  
Service Request  
Node  
NMI  
Description  
Watchdog Timer NMI  
Watchdog Timer overflow  
MI_CLK Watchdog Timer Overflow  
MI_CLK Watchdog  
Timer NMI  
NMI  
PLL NMI  
NMI  
PLL Loss-of-Lock  
Overtemperature NMI NMI  
System Overtemperature  
Oscillator Watchdog  
Oscillator Watchdog  
NMI  
NMI  
NVM Map Error NMI  
ECC Error NMI  
NMI  
NMI  
NVM Map Error  
RAM / NVM Uncorrectable ECC Error  
Supply Prewarning  
Supply Prewarning NMI NMI  
Stack overflow  
NMI  
Stack Overflow  
Datasheet  
42  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Math Divider Module  
12  
Math Divider Module  
12.1  
Features  
The MATH Coprocessor includes the following features:  
Divide function with operand pre-processing and result post-processing  
AHB-Interface supports Byte/half word/ word Register access  
Supports fast execution kernel clock faster than interface clock  
12.2  
Introduction  
The MATH Coprocessor (MATH) module supports the CPU in math-intensive computations with a Divider Unit  
(DIV) for signed and unsigned 32-bit division operations.  
12.3  
Block Diagram  
Figure 18 shows a block diagram of the MATH Coprocessor.  
MATH Coprocessor  
PCLK  
MCLK  
System  
Clock  
Control  
DIV  
Kernel  
Interface Block  
DIV Registers  
Address  
Decoder  
Global Registers  
Interrupt  
Control  
Figure 18 MATH Coprocessor Block Diagram  
Datasheet  
43  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Watchdog Timer (WDT1)  
13  
Watchdog Timer (WDT1)  
13.1  
Features  
In Active Mode, the WDT1 acts as a windowed watchdog timer, which provides a highly reliable and safe way  
to recover from software or hardware failures.  
The WDT1 is always enabled in Active Mode. In Sleep Mode, Stop Mode and Debug Mode the WDT1 is disabled.  
Functional Features  
Watchdog Timer is operating with a from the system clock (fSYS) independent clock source (fLP_CLK)  
Windowed Watchdog Timer with programmable timing (16, 32, 48, …, 1008ms period) in Active Mode  
Long open window (200 ms) after power-up, reset, wake-up  
Short open window (30 ms) to facilitate Flash programming  
System safety shutdown to Sleep Mode after 5 missed WDT1 services  
Watchdog is disabled in Debug Mode  
Watchdog cannot be deactivated in Normal Mode  
Watchdog reset is stored in reset status register  
Datasheet  
44  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Watchdog Timer (WDT1)  
13.2  
Introduction  
The behavior of the Watchdog Timer in Active Mode is depicted in Figure 19.  
Power-up  
Reset  
RESET  
always  
Timeout  
Timeout  
RESET  
Trigger SOW  
Maximum number  
of count_SOW  
Timeout  
or  
Trigger in closed window  
RESET  
Long  
Open Window  
Trigger&  
count_SOW = 0  
Trigger SOW&  
count_SOW++  
Normal  
„windowed“  
operation  
Short  
open window  
& SOW  
Trigger &  
count_SOW = 0  
Trigger SOW &  
count_SOW++  
Trigger&  
count_SOW = 0  
Figure 19 Watchdog Timer Behavior  
Datasheet  
45  
Rev. 1.0  
2019-07-26  
TLE9853QX  
GPIO Ports and Peripheral I/O  
14  
GPIO Ports and Peripheral I/O  
The TLE9853QX has 15 port pins organized into three parallel ports: Port 0 (P0), Port 1 (P1) and Port 2 (P2). Each  
port pin has a pair of internal pull-up and pull-down devices that can be individually enabled or disabled. P0  
and P1 are bidirectional and can be used as general purpose input/output (GPIO) or to perform alternate  
input/output functions for the on-chip peripherals. When configured as an output, the open drain mode can  
be selected. On Port 2 (P2) analog inputs are shared with general purpose input.  
14.1  
Features  
10 GPIOs and 5 analog inputs.  
Strong pull-up at Reset-pin and Hall-inputs (except P2.x)  
Bidirectional Port Features (P0, P1)  
Configurable pin direction  
Configurable pull-up/pull-down devices  
Configurable open drain mode  
Configurable drive strength  
Transfer of data through digital inputs and outputs (general purpose I/O)  
Possible readback of pin status when GPIO is configured as output (short detection)  
Alternate input/output for on-chip peripherals  
Analog Port Features (P2)  
Configurable pull-up/pull-down devices  
Transfer of data through digital inputs  
Alternate inputs for on-chip peripherals  
Datasheet  
46  
Rev. 1.0  
2019-07-26  
TLE9853QX  
GPIO Ports and Peripheral I/O  
14.2  
Introduction  
14.2.1  
Port 0 and Port 1  
Figure 20 shows the block diagram of an TLE9853QX bidirectional port pin. Each port pin is equipped with a  
number of control and data bits, thus enabling very flexible usage of the pin.  
PUDSEL  
Pull-up / Pull-down  
Select Register  
Pull-up / Pull-down  
Control Logic  
PUDEN  
Pull-up / Pull-down  
Enable Register  
TCCR  
Temperature Compensation  
Control Register  
Px_POCONy  
Port Output  
Driver Control Registers  
I
N
OD  
T
E
R
N
A
L
Open Drain  
Control Register  
DIR  
Direction Register  
ALTSEL0  
Alternate Select  
Register 0  
B
U
S
ALTSEL1  
Alternate Select  
Register 1  
Pull Device  
AltDataOut 3  
AltDataOut 2  
AltDataOut 1  
11  
10  
Output  
Driver  
01  
00  
Out  
In  
Data  
Data Register  
Input  
Driver  
AltDataIn  
AnalogIn  
Schmitt  
Trigger  
Pad  
Port_Block_Diagram.vsd  
Figure 20 General Structure of Bidirectional Port  
Datasheet  
47  
Rev. 1.0  
2019-07-26  
TLE9853QX  
GPIO Ports and Peripheral I/O  
14.2.2  
Port 2  
Figure 21 shows the structure of an input-only port pin. Each P2 pin can only function in input mode. Register  
P2_DIR is provided to enable or disable the input driver. When the input driver is enabled, the actual voltage  
level present at the port pin is translated into a logic 0 or 1 via a Schmitt-Trigger device and can be read via the  
register P2_DATA. Each pin can also be programmed to activate an internal weak pull-up or pull-down device.  
Register P2_PUDSEL selects whether a pull-up or the pull-down device is activated while register P2_PUDEN  
enables or disables the pull device. The analog input (AnalogIn) bypasses the digital circuitry and Schmitt-  
Trigger device for direct feed-through to the ADC input channel.  
PUDSEL  
Pull-up / Pull-down  
SelectRegister  
Pull-up / Pull-down  
Control Logic  
I
N
T
E
R
N
A
L
PUDEN  
Pull-up / Pull-down  
Enable Register  
Pull Device  
B
U
S
Input  
Driver  
In  
Data  
Data Register  
Schmitt  
Trigger  
Pad  
AltDataIn  
AnalogIn  
Port_Input_Diagram.vsd  
Figure 21 General Structure of Input Port  
14.3  
Functional Description  
An overview of the available alternate functions of the GPIOs is provided in Chapter 14.3.1.  
Datasheet  
48  
Rev. 1.0  
2019-07-26  
TLE9853QX  
GPIO Ports and Peripheral I/O  
14.3.1  
Alternate Functions  
The following chapters describe the Portx.y mapping to their alternate functions.  
14.3.1.1 Port 0 Functions  
Port 0 alternate function mapping according Table 7  
Table 7  
Port Pin  
P0.0  
Port 0 Input/Output Functions  
Input/Output  
Select  
GPI  
Connected Signal(s)  
P0_DATA.P0  
T12HR_0  
From/to Module  
Input  
INP1  
INP2  
INP3  
INP4  
INP5  
GPO  
ALT1  
ALT2  
ALT3  
GPI  
CCU6  
GPT12  
Timer 2  
SWD  
T4INA  
T2_0  
SWD_CLK  
EXINT2_3  
P0_DATA.P0  
T3OUT_0  
EXF21_0  
SCU  
Output  
Input  
GPT12  
Timer 21  
UART2  
UART2_RXDO  
P0_DATA.P1  
T13HR_0  
P0.1  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
INP7  
INP8  
INP9  
GPO  
ALT1  
ALT2  
ALT3  
CCU6  
UART1_RXD  
T2EX_1  
UART1  
Timer 2  
Timer 21  
SCU  
T21_0  
EXINT0_3  
T4INC  
GPT12  
GPT12  
SSC1/2  
CCU6  
CAPINA  
SSC12_S_SCK_0  
CC62_0  
Output  
P0_DATA.P1  
T6OUT_0  
CC62_0  
GPT12  
CCU6  
SSC12_M_SCK  
SSC1/2  
Datasheet  
49  
Rev. 1.0  
2019-07-26  
TLE9853QX  
GPIO Ports and Peripheral I/O  
Table 7  
Port Pin  
P0.2  
Port 0 Input/Output Functions (cont’d)  
Input/Output  
Select  
GPI  
Connected Signal(s)  
P0_DATA.P2  
T2EUDA  
From/to Module  
Input  
INP1  
INP2  
INP3  
INP4  
INP5  
GPO  
ALT1  
ALT2  
ALT3  
GPI  
GPT12  
CCU6  
CTRAP_0  
SSC12_M_MRST_0  
T21EX_0  
SSC1/2  
Timer 21  
SCU  
EXINT1_3  
Output  
Input  
P0_DATA.P2  
SSC12_S_MRST  
UART1_TXD  
EXF2_0  
SSC1/2  
UART1  
Timer 2  
P0.3  
P0_DATA.P3  
SSC1_S_SCK  
T4EUDA  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
GPO  
ALT1  
ALT2  
ALT3  
GPI  
SSC1  
GPT12  
GPT12  
SCU  
CAPINB  
EXINT1_2  
T3EUDD  
GPT12  
CCU6  
CCPOS0_1  
P0_DATA.P3  
SSC1_M_SCK  
T6OFL  
Output  
Input  
SSC1  
GPT12  
GPT12  
T6OUT_1  
P0.4  
P0_DATA.P4  
SSC1_S_MTSR  
CC60_0  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
GPO  
ALT1  
ALT2  
ALT3  
SSC1  
CCU6  
Timer 21  
SCU  
T21_2  
EXINT2_2  
T3EUDA  
GPT12  
CCU6  
CCPOS1_1  
P0_DATA.P4  
SSC1_M_MTSR  
CC60_0  
Output  
SSC1  
CCU6  
SCU  
CLKOUT_0  
Datasheet  
50  
Rev. 1.0  
2019-07-26  
TLE9853QX  
GPIO Ports and Peripheral I/O  
Table 7  
Port Pin  
P0.5  
Port 0 Input/Output Functions (cont’d)  
Input/Output  
Select  
GPI  
Connected Signal(s)  
P0_DATA.P5  
SSC1_M_MRST  
EXINT0_0  
From/to Module  
Input  
INP1  
INP2  
INP3  
INP4  
INP5  
GPO  
ALT1  
ALT2  
ALT3  
SSC1  
SCU  
T21EX_2  
Timer 21  
GPT12  
CCU6  
T5INA  
CCPOS2_1  
Output  
P0_DATA.P5  
SSC1_S_MRST  
COUT60_0  
SSC1  
CCU6  
LIN  
LIN_RXD  
Datasheet  
51  
Rev. 1.0  
2019-07-26  
TLE9853QX  
GPIO Ports and Peripheral I/O  
14.3.1.2 Port 1 Functions  
Port 1 alternate function mapping according Table 8  
Table 8  
Port Pin  
P1.0  
Port 1 Input / Output Functions  
Input/Output  
Select  
GPI  
Connected Signal(s)  
P1_DATA.P0  
T3INC  
From/to Module  
Input  
INP1  
INP2  
INP3  
INP4  
GPO  
ALT1  
ALT2  
ALT3  
GPI  
GPT12  
CCU6  
SSC2  
CC61_0  
SSC2_S_SCK  
T4EUDB  
GPT12  
Output  
Input  
P1_DATA.P0  
SSC2_M_SCK  
CC61_0  
SSC2  
CCU6  
UART2  
UART2_TXD  
P1_DATA.P1  
T6EUDA  
P1.1  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
GPO  
ALT1  
ALT2  
ALT3  
GPI  
GPT12  
GPT12  
GPT12  
SSC2  
T5INB  
T3EUDC  
SSC2_S_MTSR  
T21EX_3  
Timer 21  
UART2  
UART2_RXD  
P1_DATA.P1  
SSC2_M_MTSR  
COUT61_0  
EXF21_1  
Output  
Input  
SSC2  
CCU6  
Timer 21  
P1.2  
P1_DATA.P2  
EXINT0_1  
INP1  
INP2  
INP3  
INP4  
INP5  
GPO  
ALT1  
ALT2  
ALT3  
SCU  
T21_1  
Timer 21  
GPT12  
SSC2  
T2INA  
SSC2_M_MRST  
CCPOS2_2  
P1_DATA.P2  
SSC2_S_MRST  
COUT63_0  
T3OUT_1  
CCU6  
Output  
SSC2  
CCU6  
GPT12  
Datasheet  
52  
Rev. 1.0  
2019-07-26  
TLE9853QX  
GPIO Ports and Peripheral I/O  
Table 8  
Port Pin  
P1.4  
Port 1 Input / Output Functions (cont’d)  
Input/Output  
Select  
GPI  
Connected Signal(s)  
P1_DATA.P4  
EXINT2_1  
From/to Module  
Input  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
GPO  
ALT1  
ALT2  
ALT3  
SCU  
T21EX_1  
Timer 21  
GPT12  
GPT12  
SSC1/2  
CCU6  
T2INB  
T5EUDA  
SSC12_S_MTSR_0  
CCPOS1_2  
Output  
P1_DATA.P4  
CLKOUT_1  
SCU  
COUT62_0  
CCU6  
SSC1/2  
SSC12_M_MTSR  
Datasheet  
53  
Rev. 1.0  
2019-07-26  
TLE9853QX  
GPIO Ports and Peripheral I/O  
14.3.1.3 Port 2 Functions  
Port 2 alternate function mapping according Table 9  
Table 9  
Port Pin  
P2.0  
Port 2 Input Functions  
Input/Output  
Select  
Connected Signal(s)  
P2_DATA.P0  
EXINT1_1  
CCPOS0_2  
T5EUDB  
From/to Module  
Input  
GPI  
INP1  
INP2  
INP3  
INP4  
ANALOG  
IN  
SCU  
CCU6  
GPT12  
CCU6  
ADC  
T13HR_2  
AN0  
XTAL (in)1)  
P2_DATA.P1  
CCPOS0_0  
EXINT1_0  
T12HR_1  
CC61_1  
XTAL  
P2.1  
Input  
GPI  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
INP7  
INP8  
ANALOG  
GPI  
CCU6  
SCU  
CCU6  
CCU6  
GPT12  
Timer2  
LIN  
T4EUDD  
T2EX_3  
LIN_TXD  
SSC12_S_SCK_1  
AN1  
SSC1/2  
ADC  
P2.2  
Input / Output  
P2_DATA.P2  
T6EUDB  
INP1  
INP2  
INP3  
INP4  
ANALOG  
OUT  
GPT12  
Timer 2  
CCU6  
CCU6  
ADC  
T2EX_0  
T12HR_2  
CTRAP_2  
AN2  
XTAL (out)1)  
XTAL  
Datasheet  
54  
Rev. 1.0  
2019-07-26  
TLE9853QX  
GPIO Ports and Peripheral I/O  
Table 9  
Port Pin  
P2.3  
Port 2 Input Functions (cont’d)  
Input/Output  
Select  
GPI  
Connected Signal(s)  
P2_DATA.P3  
CCPOS1_0  
EXINT0_2  
CTRAP_1  
T3IND  
From/to Module  
Input  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
INP7  
INP8  
INP9  
ANALOG  
GPI  
CCU6  
SCU  
CCU6  
GPT12  
CCU6  
GPT12  
Timer2  
Timer2  
SSC1/2  
ADC  
CC60_1  
T2EUDB  
T2_2  
T2EX_2  
SSC12_S_MTSR_1  
AN3  
P2.7  
Input  
P2_DATA.P7  
CCPOS2_0  
EXINT2_0  
T13HR_1  
CC62_1  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
INP7  
INP8  
ANALOG  
CCU6  
SCU  
CCU6  
CCU6  
GPT12  
GPT12  
Timer2  
SSC1/2  
ADC  
T3EUDB  
T4EUDC  
T2_1  
SSC12_M_MRST_1  
AN7  
1) configurable by user  
Datasheet  
55  
Rev. 1.0  
2019-07-26  
TLE9853QX  
General Purpose Timer Units (GPT12)  
15  
General Purpose Timer Units (GPT12)  
15.1  
Features  
15.1.1  
Features Block GPT1  
The following list summarizes the supported features:  
fGPT/4 maximum resolution  
3 independent timers/counters  
Timers/counters can be concatenated  
4 operating modes:  
Timer Mode  
Gated Timer Mode  
Counter Mode  
Incremental Interface Mode  
Reload and Capture functionality  
Shared interrupt: Node 0  
15.1.2  
Features Block GPT2  
The following list summarizes the supported features:  
fGPT/2 maximum resolution  
2 independent timers/counters  
Timers/counters can be concatenated  
3 operating modes:  
Timer Mode  
Gated Timer Mode  
Counter Mode  
Extended capture/reload functions via 16-bit capture/reload register CAPREL  
Shared interrupt: Node 1  
15.2  
Introduction  
The General Purpose Timer Unit blocks GPT1 and GPT2 have very flexible multifunctional timer structures  
which may be used for timing, event counting, pulse width measurement, pulse generation, frequency  
multiplication, and other purposes.  
They incorporate five 16-bit timers that are grouped into the two timer blocks GPT1 and GPT2. Each timer in  
each block may operate independently in a number of different modes such as Gated timer or Counter Mode,  
or may be concatenated with another timer of the same block.  
Each block has alternate input/output functions and specific interrupts associated with it. Input signals can  
be selected from several sources by register PISEL.  
The GPT module is clocked with clock fGPT. fGPT is a clock derived from fSYS  
.
Datasheet  
56  
Rev. 1.0  
2019-07-26  
TLE9853QX  
General Purpose Timer Units (GPT12)  
15.2.1  
Block Diagram GPT1  
Block GPT1 contains three timers/counters: The core timer T3 and the two auxiliary timers T2 and T4. The  
maximum resolution is fGPT/4. The auxiliary timers of GPT1 may optionally be configured as reload or capture  
registers for the core timer.  
T3CON.BPS1  
2n : 1  
Basic clock  
fGPT  
InterruptRequest  
(T2IRQ)  
Aux. Timer T2  
Core Timer T3  
Aux. Timer T4  
U/D  
T2IN  
T2  
Mode  
Control  
Capture  
Reload  
T2EUD  
Toggle Latch  
T3  
Mode  
Control  
T3IN  
T3OTL  
T3OUT  
U/D  
T3EUD  
InterruptRequest  
(T3IRQ)  
Capture  
Reload  
T4IN  
T4  
Mode  
Control  
T4EUD  
InterruptRequest  
(T4IRQ)  
U/D  
MC _GPT0101_bldiax1.vsd  
Figure 22 GPT1 Block Diagram (n = 2 … 5)  
Datasheet  
57  
Rev. 1.0  
2019-07-26  
TLE9853QX  
General Purpose Timer Units (GPT12)  
15.2.2  
Block Diagram GPT2  
Block GPT2 contains two timers/counters: The core timer T6 and the auxiliary timer T5. The maximum  
resolution is fGPT/2. An additional Capture/Reload register (CAPREL) supports capture and reload operation  
with extended functionality.  
T6CON.BPS2  
fGPT  
2n : 1  
Basic clock  
Toggle FF  
T5  
Mode  
Control  
U/D  
Interrupt Request  
(T5IR)  
T5IN  
GPT2 Timer T5  
Clear  
T5EUD  
Capture  
CAPIN  
CAPREL  
Mode  
Control  
GPT2 CAPREL  
T3IN/  
T3EUD  
Interrupt Request  
(CRIR)  
Reload  
Interrupt Request  
(T6IR)  
Clear  
U/D  
T6  
Mode  
Control  
GPT2 Timer T6  
T6OTL  
T6OUT  
T6OUF  
T6IN  
T6EUD  
MC_GPT0108_bldiax4.vsd  
Figure 23 GPT2 Block Diagram  
Datasheet  
58  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Timer2 and Timer21  
16  
Timer2 and Timer21  
16.1  
Features  
16-bit auto-reload mode  
selectable up or down counting  
One channel 16-bit capture mode  
Baud-rate generator for U(S)ART  
16.2  
Introduction  
Two functionally identical timers are implemented: Timer 2 and 21. The description refers to Timer 2 only, but  
applies to Timer 21 as well.  
The timer modules are general purpose 16-bit timer. Timer 2 can function as a timer or counter in each of its  
modes. As a timer, it counts with an input clock of fsys/12 (if prescaler is disabled). As a counter, Timer 2 counts  
1-to-0 transitions on pin T2. In the counter mode, the maximum resolution for the count is fsys/24 (if prescaler  
is disabled).  
Datasheet  
59  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Timer2 and Timer21  
16.2.1  
Timer2 and Timer21 Modes Overview  
Table 10  
Mode  
Port Registers  
Description  
Up/Down Count Disabled  
Auto-reload  
Count up only  
Start counting from 16-Bit reload value, overflow at FFFFH  
Reload event configurable for trigger by overflow condition only, or by  
negative/positive edge at input pin T2EX as well  
Programmable reload value in register RC2  
Interrupt is generated with reload events.  
Auto-reload  
Up/Down Count Enabled  
Count up or down, direction determined by level at input pin T2EX  
No interrupt is generated  
Count up  
Start counting from 16-Bit reload value, overflow at FFFFH  
Reload event triggered by overflow condition  
Programmable reload value in register RC2  
Count down  
Start counting from FFFFH, underflow at value defined in register RC2  
Reload event triggered by underflow condition  
Reload value fixed at FFFFH  
Count up only  
Channel capture  
Start counting from 0000H, overflow at FFFFH  
Reload event triggered by overflow condition  
Reload value fixed at 0000H  
Capture event triggered by falling/rising edge at pin T2EX  
Captured timer value stored in register RC2  
Interrupt is generated with reload or capture event  
Datasheet  
60  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Capture/Compare Unit 6 (CCU6)  
17  
Capture/Compare Unit 6 (CCU6)  
17.1  
Feature Set Overview  
This section gives an overview over the different building blocks and their main features.  
Timer 12 Block Features  
Three capture/compare channels, each channel can be used either as capture or as compare channel  
Generation of a three-phase PWM supported (six outputs, individual signals for High Side and low-side  
switches)  
16-bit resolution, maximum count frequency = peripheral clock  
Dead-time control for each channel to avoid short-circuits in the power stage  
Concurrent update of T12 registers  
Center-aligned and edge-aligned PWM can be generated  
Single-shot mode supported  
Start can be controlled by external events  
Capability of counting external events  
Multiple interrupt request sources  
Hysteresis-like control mode  
Timer 13 Block Features  
One independent compare channel with one output  
16-bit resolution, maximum count frequency = peripheral clock  
Concurrent update of T13 registers  
Can be synchronized to T12  
Interrupt generation at period-match and compare-match  
Single-shot mode supported  
Start can be controlled by external events  
Capability of counting external events  
Additional Specific Functions  
Block commutation for Brushless DC-drives implemented  
Position detection via Hall-sensor pattern  
Noise filter supported for position input signals  
Automatic rotational speed measurement and commutation control for block commutation  
Integrated error handling  
Fast emergency stop without CPU load via external signal (CTRAP)  
Control modes for multi-channel AC-drives  
Output levels can be selected and adapted to the power stage  
Datasheet  
61  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Capture/Compare Unit 6 (CCU6)  
17.2  
Introduction  
The CCU6 unit is made up of a Timer T12 Block with three capture/compare channels and a Timer T13 Block  
with one compare channel. The T12 channels can independently generate PWM signals or accept capture  
triggers, or they can jointly generate control signal patterns to drive AC-motors or inverters.  
A rich set of status bits, synchronized updating of parameter values via shadow registers, and flexible  
generation of interrupt request signals provide means for efficient software-control.  
Note:  
The capture/compare module itself is named CCU6 (capture/compare unit 6). A capture/compare  
channel inside this module is named CC6x.  
Datasheet  
62  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Capture/Compare Unit 6 (CCU6)  
17.2.1  
Block Diagram  
The Timer T12 can work in capture and/or compare mode for its three channels. The modes can also be  
combined (e.g. a channel works in compare mode, whereas another channel works in capture mode). The  
Timer T13 can work in compare mode only. The multi-channel control unit generates output patterns which  
can be modulated by T12 and/or T13. The modulation sources can be selected and combined for the signal  
modulation.  
CCU6 Module Kernel  
Compare  
CC60  
CC61  
CC62  
1
1
1
T12SUSP  
T13SUSP  
Dead-  
Time  
Control  
Multi-  
channel  
Control  
Debug  
Suspend  
Trap  
Control  
T12  
T13  
fCC 6  
Clock  
Control  
CC63  
1
3
2
2
2
3
1
SR[3:0]  
Interrupt  
Control  
Input / Output Control  
Port Control  
CCU6_MCB05506.vsd  
P0.x  
P1.x  
P2.x  
Figure 24 CCU6 Block Diagram  
Datasheet  
63  
Rev. 1.0  
2019-07-26  
TLE9853QX  
UART1/2  
18  
UART1/2  
18.1  
Features  
Full-duplex asynchronous modes  
8-Bit or 9-Bit data frames, LSB first  
fixed or variable baud rate  
Receive buffered (1 Byte)  
Multiprocessor communication  
Interrupt generation on the completion of a data transmission or reception  
Baud-rate generator with fractional divider for generating a wide range of baud rates, e.g. 9.6kBaud,  
19.2kBaud, 115.2kBaud, 125kBaud, 250kBaud, 500kBaud  
Hardware logic for break and sync byte detection  
for UART1: LIN support: connected to timer channel for synchronization to LIN baud rate  
In all modes, transmission is initiated by any instruction that uses SBUF as a destination register. Reception is  
initiated in the modes by the incoming start bit if REN = 1.  
The serial interface also provides interrupt requests when transmission or reception of the frames has been  
completed. The corresponding interrupt request flags are TI or RI, respectively. If the serial interrupt is not  
used (i.e., serial interrupt not enabled), TI and RI can also be used for polling the serial interface.  
18.2  
Introduction  
The UART1/2 provide a full-duplex asynchronous receiver/transmitter, i.e., it can transmit and receive  
simultaneously. They are also receive-buffered, i.e., they can commence reception of a second byte before a  
previously received byte has been read from the receive register. However, if the first byte still has not been  
read by the time reception of the second byte is complete, the previous byte will be lost. The serial port receive  
and transmit registers are both accessed at Special Function Register (SFR) SBUF. Writing to SBUF loads the  
transmit register, and reading SBUF accesses a physically separate receive register.  
Datasheet  
64  
Rev. 1.0  
2019-07-26  
TLE9853QX  
UART1/2  
18.2.1  
Block Diagram  
UART disreq from SCU_DM  
RI  
TXD  
RXD  
TXD  
SCU_D  
M
Interrupt  
Control  
RXD_0  
RXD_1  
TI  
URIOS  
SCU_DM  
P0.x  
P1.x  
P2.x  
UART  
Module  
(Kernel)  
PortControl  
fUART2  
Clock  
Control  
Baud Rate  
Generator  
f
BR  
Address  
Decoder  
RXDO _2  
SCU_DM  
AHB Interface  
SSC Module  
GPIOs  
Figure 25 UART Block Diagram  
18.3  
UART Modes  
The UART1/2 can be used in four different modes. In mode 0, it operates as an 8-Bit shift register. In mode 1, it  
operates as an 8-Bit serial port. In modes 2 and 3, it operates as a 9-Bit serial port. The only difference between  
mode 2 and mode 3 is the baud rate, which is fixed in mode 2 but variable in mode 3. The variable baud rate is  
set by the underflow rate on the dedicated baud-rate generator.  
The different modes are selected by setting bits SM0 and SM1 to their corresponding values, as shown in  
Table 11.  
Mode 1 example: 8 data bits, 1 start bit, 1 stop bit, no parity selection, 16 times oversampled, receive &  
transmit register double buffered, Tx/Rx IRQ(s).  
Table 11  
UART Modes  
SM1  
SM0  
Operating Mode  
Mode 0: 8-Bit shift register  
Baud Rate  
0
0
1
1
0
1
0
1
f
sys/2  
Variable  
sys/64 or fsys/32  
Variable  
Mode 1: 8-Bit shift UART  
Mode 2: 9-Bit shift UART  
Mode 3: 9-Bit shift UART  
f
Datasheet  
65  
Rev. 1.0  
2019-07-26  
TLE9853QX  
LIN Transceiver  
19  
LIN Transceiver  
19.1  
Features  
General Functional Features  
Compliant to LIN2.2 Standard, backward compatible to LIN1.3, LIN2.0 and LIN 2.1  
Compliant to SAE J2602 (Slew Rate, Receiver hysteresis)  
Special Features  
Measurement of LIN Master baudrate via Timer 2  
LIN can be used as Input/Output with SFR bits.  
TxD Timeout Feature (optional, on by default)  
Overcurrent limitation and overtemperature protection  
LIN module fully resettable via global enable bit  
Operation Modes Features  
LIN Sleep Mode (LSLM)  
LIN Receive-Only Mode (LROM)  
LIN Normal Mode (LNM)  
High Voltage Input / Output Mode (LHVIO)  
Slope Modes Features  
Normal Slope Mode (20 kbit/s)  
Low Slope Mode (10.4 kbit/s)  
Fast Slope Mode (62.5 kbit/s)  
Flash Mode (115 kbit/s, 250 kbit/s)  
Wake-Up Features  
LIN Bus wake-up  
19.2  
Introduction  
The LIN Module is a transceiver for the Local Interconnect Network (LIN) compliant to the LIN2.2 Standard,  
backward compatible to LIN1.3, LIN2.0 and LIN2.1. It operates as a bus driver between the protocol controller  
and the physical network. The LIN bus is a single wire, bi-directional bus typically used for in-vehicle networks,  
using baud rates between 2.4 kBaud and 20 kBaud. Additionally baud rates up to 62.5 kBaud are  
implemented.  
The LIN Module offers several different operation modes, including a LIN Sleep Mode and the LIN Normal  
Mode. The integrated slope control allows to use several data transmission rates with optimized EMC  
performance. For data transfer at the end of line, a Flash Mode up to 115 kBaud is implemented. This Flash  
Mode can be used for data transfer under special conditions for up to 250 kbit/s (in production environment,  
point-to-point communication with reduced wire length and limited supply voltage).  
Datasheet  
66  
Rev. 1.0  
2019-07-26  
TLE9853QX  
LIN Transceiver  
19.2.1  
Block Diagram  
VS  
LIN Transceiver  
30 k  
LIN_CTRL_STS  
LIN-FSM  
LIN  
CTRL  
Driver +  
Curr. Limit. +  
TSD  
TxD_1  
from UART  
STATUS  
GND_LIN  
Transmitter  
PMU_LIN_WAKE_EN.LIN_EN  
Filter  
RxD_1  
to UART  
Filter  
Receiver  
LIN_Wake  
Sleep Comparator  
LIN_Block_Diagram_Customer.vsd  
GND_LIN  
Figure 26 LIN Transceiver Block Diagram  
Datasheet  
67  
Rev. 1.0  
2019-07-26  
TLE9853QX  
High-Speed Synchronous Serial Interface SSC1/2  
20  
High-Speed Synchronous Serial Interface SSC1/2  
Features  
20.1  
Master and Slave Mode operation  
Full-duplex or half-duplex operation  
Transmit and receive double buffered  
Flexible data format  
Programmable number of data bits: 2 to 16 bits  
Programmable shift direction: Least Significant Bit (LSB) or Most Significant Bit (MSB) shift first  
Programmable clock polarity: idle low or high state for the shift clock  
Programmable clock/data phase: data shift with leading or trailing edge of the shift clock  
Variable baud rate, e.g. 250kBaud - 8MBaud  
Compatible with Serial Peripheral Interface (SPI)  
Interrupt generation  
On a transmitter empty condition  
On a receiver full condition  
On an error condition (receive, phase, baud rate, transmit error)  
On a transfer complete condition  
Port direction selection, see Chapter 14  
20.2  
Introduction  
The High-Speed Synchronous Serial Interface (SSC) supports both full-duplex and half-duplex serial  
synchronous communication. The serial clock signal can be generated by the SSC internally (master mode),  
using its own 16-Bit baud-rate generator, or can be received from an external master (slave mode). Data width,  
shift direction, clock polarity, and phase are programmable. This allows communication with SPI-compatible  
devices or devices using other synchronous serial interfaces.  
Data is transmitted or received on lines TXD and RXD, which are normally connected to the pins MTSR  
(MasterTransmit/Slave Receive) and MRST (Master Receive/Slave Transmit). The clock signal is output via line  
MS_CLK (Master Serial Shift Clock) or input via line SS_CLK (Slave Serial Shift Clock). Both lines are normally  
connected to the pin SCLK. Transmission and reception of data are double-buffered.  
Datasheet  
68  
Rev. 1.0  
2019-07-26  
TLE9853QX  
High-Speed Synchronous Serial Interface SSC1/2  
20.2.1  
Block Diagram  
Figure 27 shows all functional relevant interfaces associated with the SSC Kernel.  
MRSTA  
MRSTB  
EIR  
MTSR  
SCU_DM  
Interrupt  
Control  
RIR  
TIR  
MTSRA  
MTSRB  
P0.x  
P1.x  
P2.x  
SSC  
Port  
Control  
Module  
(Kernel)  
MRST  
fhw_clk  
Clock  
Control  
SCLKA  
SCLKB  
Address  
Decoder  
SCLK  
AHB Interface  
Module  
ProductInterface  
SSC_interface_overview.vsd  
Figure 27 SSC Interface Diagram  
Datasheet  
69  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Measurement Unit  
21  
Measurement Unit  
21.1  
Features  
1 x 10-bit ADC with 12 inputs  
Supply Voltage Attenuators with attenuation of VBAT_SENSE, VS, MONx, P2.x, CSA.  
1 x 8-bit ADC with 9 inputs  
Supply Voltage Attenuators with attenuation of VS, VDDEXT, VSD, VCP, VDDP, VBG, VDDC, T_SENSE1  
(Central Temperature Sensor), T_SENSE2 (Bridge Driver Charge Pump Temperature Sensor).  
Monitoring of PMU bandgap by 8-bit ADC to support functional safety requirements.  
Temperature Sensor to monitor the chip temperature and Bridge Driver Charge Pump temperature.  
Supplement Block with Reference Voltage Generation, Bias Current Generation, Voltage Buffer for NVM  
Reference Voltage, Voltage Buffer for Analog Module Reference Voltage and Test Interface.  
21.2  
Introduction  
The measurement unit is a functional unit that comprises the following associated sub-modules:  
Table 12  
Measurement functions and associated modules  
Module  
Name  
Modules  
Functions  
CentralFunctions Bandgap reference circuit +  
Unit current reference circuit  
The bandgap-reference sub-module provides two  
reference voltages  
1. an accurate reference voltage for the 10-bit and 8-  
bit ADCs. A local dedicated bandgap circuit is  
implemented to avoid deterioration of the reference  
voltage caused e.g. by crosstalk or ground voltage  
shift.  
2. the reference voltage for the NVM module  
10-bit ADC (ADC1) 10-bit ADC module with 12  
multiplexed analog inputs  
VBAT_SENSE, VS and MONx measurement.  
Five (5V) analog inputs from Port 2.x  
8-bit ADC (ADC2) 8-bit ADC module with 9  
multiplexed inputs  
VS/VDDEXT/VSD/VCP/VDDP/VBG/VDDC/BDrv CP  
Temperature Sensor and Central Temperature  
Sensor measurement.  
Temperature  
Sensor  
Temperature sensor readout  
amplifier with two multiplexed  
ΔVbe-sensing elements  
Generates output voltage which is a linear function of  
the local chip (Tj) temperature.  
Measurement  
Core Module  
Digital signal processing and ADC 1. Generates the control signal for the 8-bit ADC 2 and  
control unit  
the synchronous clock for the switched capacitor  
circuits (temperature sensor)  
2. Performs digital signal processing functions and  
provides status outputs for interrupt generation.  
Datasheet  
70  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Measurement Unit  
21.2.1  
Block Diagram  
The Structure of the Measurement Functions Module is shown in the following figure.  
VS  
VDDC  
ATT  
ATTVBAT_SENSE  
ATTVS  
VBAT_SENSE  
CH0  
CH1  
ATTVMONx  
ATTVMONx  
CH2  
CH3  
CH4  
CH5  
CH6  
MON1  
MON2  
MON3  
MON4  
P2.0  
ATTVMONx  
ATTVMONx  
ATT2.x  
VBG  
DPP1  
ADC 1  
MUX  
P2.1  
P2.2  
P2.3  
ATT2.x  
ATT2.x  
CH7  
CH8  
CH9  
10  
/
SFR  
A
D
ATT2.x  
CH10  
CH11  
CH12  
CH13  
rfu  
rfu  
ATT2.x  
P2.7  
OP1  
OP2  
OPA  
ATTOPA  
10 Bit ADC + DPP  
ATT  
ATTVS_ADC2  
CH0  
CH1  
VBG  
ATTVSD_ADC2  
ATTVCP_ADC2  
ATTVDDEXT  
ATTVDDP  
VSD  
VCP  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
CH8  
DPP2  
VDDEXT  
VDDP  
8
/
MUX  
SFR  
A
D
PMU VBG  
ATTPMUVBG  
ATTVDDC  
ATTVTEMP  
ATTVTEMP  
VDDC  
ADC 2  
BDrv CP TS  
Central TS  
8 Bit ADC + DPP  
Measurement-Unit – TLE985x  
Measurement_Unit_Overview_Cus_TLE985x_2.vsd  
Figure 28  
Measurement Unit-Overview  
Datasheet  
71  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Measurement Core Module (incl. ADC2)  
22  
Measurement Core Module (incl. ADC2)  
22.1  
Features  
9 individually programmable channels split into two groups of user configurable and non user  
configurable  
Individually programmable channel prioritization scheme for measurement unit  
Two independent filter stages with programmable low-pass and time filter characteristics for each  
channel  
Two channel configurations:  
Programmable upper- and lower trigger thresholds comprising a fully programmable hysteresis  
Two individually programmable trigger thresholds with limit hysteresis settings  
Status for all channel thresholds  
Operation down to reset threshold of entire system  
22.2  
Introduction  
The basic function of this block is the digital postprocessing of several analog digitized measurement signals  
by means of filtering, level comparison and interrupt generation. The measurement postprocessing block is  
built of nine identical channel units attached to the outputs of the 9-channels 8-bit ADC (ADC2). It processes  
nine channels, where the channel sequence and prioritization is programmable within a wide range.  
Datasheet  
72  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Measurement Core Module (incl. ADC2)  
22.2.1  
Block Diagram  
4
/
MUX_SEL<3:0>  
Channel Controller  
(Sequencer)  
ADC2 - SFR  
CH0  
VSD  
CH1  
1st Order IIR  
1
/
VCP  
VDDEXT  
CH2  
+
-
8 Bit ADC  
UP_X_STS  
+ / -  
+ / -  
THy_z_UPPER.  
CHx  
Calibration Unit:  
y= a + (1+b)*x  
CH3  
8
/
10  
/
8
/
VDDP  
CH4 MUX  
CH5  
A
D
1
/
THy_z_LOWER.  
CHx  
PMU-VBG  
-
LOW_X_STS  
+
VDDC  
CH6  
BDrv CP Temp. Sens.  
Central Temp. Sens.  
CH7  
Digital Signal Processing  
CH8  
TSENSE  
Measurement Core Module  
Figure 29 Module Block Diagram  
Datasheet  
73  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Analog Digital Converter ADC10B (ADC1)  
23  
Analog Digital Converter ADC10B (ADC1)  
23.1  
Features  
The basic function of this block is the digital postprocessing of several analog digitized measurement signals  
by means of filtering, level comparison and interrupt generation. The measurement postprocessing block is  
built of the same number of identical channel units attached to the outputs of the 10-bit ADC. It processes  
allchannels, where the channel sequence and prioritization is programmable within a wide range.  
Functional Features  
10 Bit SAR ADC with conversion time of 17 clock cycles  
programmable clock divider for sequencer and ADC  
12 individually programmable channels:  
6 HV Channels: VS, VBAT_SENSE, MON1...MON4  
5 LV Channels: P2.0, P2.1, P2.2, P2.3, P2.7  
1 Current-Sense Amplifier Channel  
all channels are fully calibrated; calibration can be enabled/disabled by user  
individually programmable channel prioritization scheme for digital postprocessing (dpp)  
two independent filter stages with programmable low-pass and time filter characteristics for each channel  
two channel configurations:  
programmable upper- and lower trigger thresholds comprising a fully programmable hysteresis  
two individually programmable trigger thresholds with limit hysteresis settings  
individually programmable upper threshold and lower threshold interrupts and status for all channel  
thresholds  
one additional differential channel (MON1-MON2) with postprocessing and interrupt generation  
ADC voltage reference completely integrated  
Note:  
In case the MONx should be evaluated by the ADC1, it is recommended to add 6.8nF capacitors close  
to the MONx pin of the device, in order to build an external RC filter to limit the bandwidth of the input  
signal.  
Datasheet  
74  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Analog Digital Converter ADC10B (ADC1)  
23.2  
Introduction  
23.2.1  
Block Diagram  
5
/
MUX_SEL<4:0>  
Channel Controller  
(Sequencer)  
SOS à EOC  
ADC - SFR  
ADC1_PP_MAPxxx  
ADC1_THxxx  
ADC1_CNTxxx  
ADC1_CTRL_STS  
ADC1_CTRL2  
ADC1_CTRL5  
VBAT_SENSE  
CH 0  
CH 1  
CH 2  
CH 3  
VS  
MON1  
MON2  
MON3  
MON4  
P2.0  
P2.1  
P2.2  
P2.3  
rfu  
12  
12  
/
/
FILT_OUT_CHx  
FILT_OUT_CHx  
1st Order IIR  
PP_CHx_UP  
CH 4  
CH 5  
1
/
+
-
10 Bit ADC  
PP_CHx_UP_STS  
PP_CHx_LO_STS  
+ / -  
+ / -  
CH 6  
Calibration Unit:  
MUX  
10  
/
12  
/
CH 7  
A
D
/
8
y= a + (1+b)*x  
MUX  
CH 8  
1
/
-
CH 9  
+
CH 10  
CH 11  
CH 12  
CH 13  
rfu  
PP_CHx_LOW  
Digital Signal Processing  
P2.7  
OPA  
Figure 30 Module Block Diagram  
Datasheet  
75  
Rev. 1.0  
2019-07-26  
TLE9853QX  
High-Voltage Monitor Input  
24  
High-Voltage Monitor Input  
24.1  
Features  
Four High-voltage inputs with VS/2 threshold voltage  
Wake capability for system stop mode and system sleep mode  
Edge sensitive wake-up feature configurable for transitions from low to high, high to low or both directions  
MON inputs can also be evaluated with ADC in Active Mode, using adjustable threshold values  
Selectable pull-up and pull-down current sources available  
24.2  
Introduction  
This module is dedicated to monitor external voltage levels above or below a specified threshold. Each MONx  
pin can further be used to detect a wake-up event by detecting a level change by crossing the selected  
threshold. This applies to any power mode. Further more each MONx pin can be sampled by the ADC as analog  
input.  
24.2.1  
Block Diagram  
VS  
MON  
+
-
Filter  
to internal  
circuitry  
MON  
Logic  
SFR  
MONx_Input_Circuit_ext.vsd  
Figure 31 Monitoring Input Block Diagram  
Datasheet  
76  
Rev. 1.0  
2019-07-26  
TLE9853QX  
High-Side Switch  
25  
High-Side Switch  
25.1  
Features  
The high-side switch is optimized for driving resistive loads. Only small line inductances are allowed. Typical  
applications are single or multiple LEDs of a dashboard, switch illumination or other loads that require a high-  
side switch.  
A cyclic switch activation during Sleep Mode or Stop Mode of the system is also available.  
Functional Features  
Multi purpose high-side switch for resistive load connections (only small line inductances are allowed)  
Overcurrent limitation  
Selectable current capability (25 mA/50 mA/100 mA/150 mA) by adjustable overcurrent detection with  
automatic shutdown  
Overtemperature detection and automatic shutdown  
Open load detection in on mode with open load current of typ. 1.4 mA  
Interrupt signalling of overcurrent, overtemperature and open load condition  
Cyclic switch activation in Sleep Mode and Stop Mode with cyclic sense support and reduced driver  
capability: max. 40 mA  
PWM capability up to 25 kHz  
Internal connection to System-PWM Generator (CCU6)  
Slew rate control for low EMI characteristic  
Applications hints  
The voltage at HSx must not exceed the supply voltage by more than 0.3V to prevent a reverse current from  
HSx to VS.  
Datasheet  
77  
Rev. 1.0  
2019-07-26  
TLE9853QX  
High-Side Switch  
25.2  
Introduction  
25.2.1  
Block Diagram  
VS  
25 mA  
50 mA  
100 mA  
150 mA  
OC_SEL  
OC-Detection  
Cyclic-  
Driver  
SFR  
ON  
Driver  
HS  
OL-Detection  
High Side  
Figure 32 High-Side Module Block Diagram (incl. subblocks)  
25.2.2  
General  
The high-side switch can generally be controlled in three different ways:  
In normal mode the output stage is fully controllable through the SFR Registers HSx_CTRL. Protection  
functions as overcurrent, overtemperature and open load detection are available.  
The PWM Mode can also be enabled by a HSx_CTRL - SFR bit. The PWM configuration has to be done in the  
corresponding PWM Module. All protection functions are also available in this mode. The maximum PWM  
frequency must not exceed 25 kHz (disabled slew rate control only).  
The high-side switch provides also the possibility of cyclic switch activation in all low power modes (Sleep  
Mode and Stop Mode). In this configuration it has limited functionality with limited current capability.  
Diagnostic functions are not available in this mode.  
Datasheet  
78  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Bridge Driver (incl. Charge Pump)  
26  
Bridge Driver (incl. Charge Pump)  
26.1  
Features  
The Bridge Driver is intended to drive external normal-level MOSFETs in bridge configuration and provides  
many diagnostic possibilities to detect faults.  
Functional Features  
Flexible control by SFRs of Bridge Driver module or PWM output signals of CCU6 module  
Current-driven output stages to control external n-channel MOSFET gates with flexibly programmable  
gate current profile  
Adjustable cross-conduction protection  
High-current discharge mode to reduce dead times and to keep external MOSFETs off during fast  
transients  
Passive pull-down mode to keep external MOSFETs off if the Bridge Driver is disabled  
Brake mode with reduced current consumption to statically switch on external MOSFETs  
Hold mode with low current consumption to switch on external low-side MOSFETs if the Bridge Driver is  
disabled  
Timing measurements of on/off delays and on/off slope durations  
Adaptive control mode with automatic adjustment of gate current values  
Integrated 2-stage charge pump for low-voltage operation and statical MOSFET gate control  
Adjustable voltage monitoring of Bridge Driver supply voltage (VSD) and charge pump output voltage  
(VCP)  
Adjustable short-circuit detection in on and off state  
Open-load detection in off state  
Overtemperature detection and shutdown  
Datasheet  
79  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Bridge Driver (incl. Charge Pump)  
26.2  
Introduction  
26.2.1  
Block Diagram  
VDH VCP  
CP1H CP1L CP2H CP2L  
PWM-Unit  
CCU6  
(not part of the module)  
2-Stage  
Charge Pump  
VSD  
Pre-Driver  
BDRV_TRIM_DRVx.  
HSDRV_DS_TFILT_SEL LS_HS_BT_TFILT_SEL  
BDRV_TRIM_DRVx.  
BDRV_CTRL3.  
DSMONVTH  
+
Spike  
Filter  
Blank  
Filter  
VDS  
High Side  
Driver  
-
GHx  
1
0
RGG ND  
VDSMO NVTH  
BDRV_CTRL1.HSx_PWM  
SFR  
SHx  
GLx  
1
0
Low Side  
Driver  
BDRV_CTRL1.LSx_PWM  
+
Spike  
Filter  
Blank  
Filter  
VDS  
RGG ND  
-
VDSMO NVTH  
BDRV_TRIM_DRVx.  
LSDRV_DS_TFILT_SEL LS_HS_BT_TFILT_SEL  
BDRV_TRIM_DRVx.  
BDRV_CTRL3.  
DSMONVTH  
SL  
Figure 33 Driver Module Block Diagram (incl. System Connections)  
26.2.2  
Flexible Control  
Each gate driver of the Bridge Driver module can be switched on and off in two different ways:  
Static Mode: The gate drivers are statically switched on or off by the Bridge Driver module SFRs.  
PWM Mode: The gate drivers are PWM-controlled by the System PWM Module (CCU6). The interconnection  
from the CCU6 output channels to the gate drivers is set up by the Bridge Driver module SFRs.  
In both modes all diagnostic and protection functions (short-circuit, open-load, and overtemperature  
detection) are available.  
Datasheet  
80  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Bridge Driver (incl. Charge Pump)  
26.2.3  
Current-Driven Output Stages  
The Bridge Driver output stages generate source and sink currents to charge and discharge the gates of the  
external n-channel MOSFETs. The gate current values are programmable to vary the slew rate at the bridge  
output.  
26.2.3.1 Overview  
Figure 34 shows an overview of one switching cylce of an external MOSFET.  
Control  
Signal  
OFF  
ON  
OFF  
ON  
I
Gate  
Current  
*)  
Igate  
t
VDS  
V
External  
MOSFET  
Voltages  
VGS  
t
Pre-Charge  
Post-Charge  
Pre-Discharge  
Post-Discharge  
On Slope  
Off Slope  
Off  
On  
Off  
*) positive current flowing out of Gx pin  
Figure 34 Switching cycle  
The control input signal sets the gate driver either in charge or discharge mode, i.e. it generates a source  
current flowing out of the driver to charge the gate of an external MOSFET or a sink current flowing into the  
driver to discharge the gate of an external MOSFET.  
Based on the changes on the drain-to-source voltage of the external MOSFET the charging and discharging  
phases can each be divided into three subphases.  
Subphases of the charging phase:  
pre-charge subphase: the gate of the external MOSFET is pre-charged without change on VDS; the external  
MOSFET is still off  
on slope subphase: the gate of the external MOSFET is further charged while the external MOSFET turns on  
and generates the on slope at VDS  
Datasheet  
81  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Bridge Driver (incl. Charge Pump)  
post-charge subphase: the gate of the external MOSFET is post-charged until the maximum VGS the gate  
driver is able to provide; the external MOSFET is on and its RDS(on) decreases to its minimum value  
Subphases of the discharging phase:  
pre-discharge subphase: the gate of the external MOSFET is pre-discharged without significant change on  
DS; the external MOSFET is still on, but its RDS(on) increases  
V
off slope subphase: the gate of the external MOSFET is further discharged while the external MOSFET turns  
off and generates the off slope at VDS  
post-discharge subphase: the gate of the external MOSFET is post-charged until VGS is equal to 0V; the  
external MOSFET is off and is kept off  
26.2.3.2 Switch-On  
Figure 35 shows the detailed behavior of the gate driver output stage in the switch-on phase and the  
corresponding electrical characteristic parameters.  
Control  
Signal  
OFF  
ON  
SRon_SHx = 0  
SRon_SHx 0, VGS<VGS(on)  
tdly(on)  
Ichgx  
trise(on)  
I
max.  
typ.  
Gate  
Charge  
Current  
ΔIchg_avg_%  
*)  
min.  
Igate  
20%  
t
V
VDS  
max.  
VGxxy  
min.  
VGS=VGS(on)  
External  
MOSFET  
Voltages  
tsat(on)  
VGS  
t
Pre-Charge  
Post-Charge  
On Slope  
Off  
On  
*) positive current flowing out of Gx pin  
Figure 35 Detailed behavior of the gate driver output stage in the switch-on phase  
After an initial turn-on delay time tdly(on) the gate charge current Igate rises and after additional trise(on) reaches  
its specified minimum limit Ichgx,min and stays stable until the gate-to-source voltage of the external MOSFET  
reaches VGS = VGS(on). During the slope at the corresponding SHx pin (i.e. SRon_SHx 0) the average gate current  
deviates less than ΔIchg_avg_% from the original set point Ichgx. The gate of the external MOSFET is further  
charged to the high-level output voltage of the gate driver VGxxy. The time from exceeding VGS = VGS(on) and  
reaching VGxxy,min is defined by tsat(on)  
.
Datasheet  
82  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Bridge Driver (incl. Charge Pump)  
26.2.3.3 Switch-Off  
Figure 36 shows the detailed behavior of the gate driver output stage in the switch-off phase and the  
corresponding electrical characteristic parameters.  
Control  
Signal  
ON  
OFF  
SRoff_SHx = 0  
SRoff_SHx 0, VGS>VGS(off)  
tdly(off)  
Idischgx  
trise(off)  
I
Gate  
Discharge  
Current  
max.  
typ.  
ΔIdischg_avg_%  
*)  
min.  
Igate  
20%  
t
V
External  
MOSFET  
Voltages  
VDS  
VGS  
VGS=VGS(off)  
t
Pre-Discharge  
Post-Discharge  
Off Slope  
On  
Off  
*) positive current flowing into Gx pin  
Figure 36 Detailed behavior of the gate driver output stage in the switch-off phase  
After an initial turn-off delay time tdly(off) the gate discharge current Igate rises and reaches its specified  
minimum limit Idischgx,min after trise(off) and stays stable until the gate-to-source voltage of the external MOSFET  
reaches VGS = VGS(off). During the slope at the corresponding SHx pin (i.e. SRoff_SHx 0) the average gate discharge  
current deviates less than ΔIdischg_avg_% from the original set point Idischgx  
.
26.2.3.4 Control Modes  
There are two basic modes to program the gate current set point values of the output stages: constant mode  
and sequencer mode.  
In constant mode a simple gate current profile is defined by SFRs where the gate charging phase and the  
gate discharging phase each have two current set point values and one duration value. The second current  
set point value remains valid until the driver changes from charge mode to discharge mode or vice versa  
and is intended to statically keep on or off the external MOSFET at a reduced gate current level to be robust  
against external shorts at the gate pin.  
Datasheet  
83  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Bridge Driver (incl. Charge Pump)  
In sequencer mode an advanced gate current profile is defined by SFRs where the gate charging phase and  
the gate discharging phase each are split into consecutive sub phases with individual current set point  
values and duration values (see Figure 37):  
For the gate charging phase 5 current set point values (ix(on)) and 4 duration values (tx(on)) are defined by  
SFRs.  
The fifth current setpoint value I5(on) remains valid until the driver changes to discharge mode. This  
charge current is intended to statically keep on the external MOSFET (e.g. driving an external RGS) at a  
reduced gate current level to be robust against external gate-to-source shorts.  
For the gate discharging phase 5 current set point values (ix(off)) and 4 duration values (tx(off)) are defined  
by SFRs.  
The fifth current setpoint value I5(off) remains valid until the driver changes to charge mode. This  
discharge current is intended to statically keep off the external MOSFET (e.g. during fast voltage  
transients or EMI) at a reduced gate current level to be robust against external gate-to-drain shorts.  
At the transition between two gate current set points the actual gate driver output current settles  
within tset(seq) to the new gate current set point (see Figure 38).  
Control  
Signal  
OFF  
ON  
OFF  
ON  
t1(on)  
t2(on)  
t3(on)  
i4(on)  
t4(on)  
I
i1(on)  
Gate  
Current  
*)  
i3(on)  
i2(on)  
i5(on)  
i5(off)  
t
i3(off)  
i2(off)  
i1(off)  
i4(off)  
t(3)off  
t(1)off  
t(2)off  
t(4)off  
VDS  
V
External  
MOSFET  
Voltages  
VGS  
t
Pre-Charge Slope  
Post-Charge  
Pre-Discharge  
Slope Post-Discharge  
*) positive current flowing out of Gx pin  
Figure 37 Gate current set point values generated by the sequencer  
Datasheet  
84  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Bridge Driver (incl. Charge Pump)  
Gate Current  
in-1  
in  
in+1  
Set Point  
tn-1  
tn  
tn+1  
Gate Current  
Duration  
tset(seq)  
I
max.  
in  
typ.  
Gate Current  
min.  
Profile  
Igate  
max.  
in-1  
typ.  
min.  
max.  
typ.  
in+1  
tset(seq)  
min.  
t
Figure 38 Gate current settling time  
26.2.4  
Adjustable Cross-Conduction Protection  
The Bridge Driver protects half bridges of external MOSFETs against cross conduction. After switching off one  
of the MOSFETs of a half bridge the complementary MOSFET cannot be switched on for an optionally  
programmable time defined by SFRs.  
26.2.5  
High-Current Discharge Mode  
The high-current discharge mode provides a low-ohmic path between the Gx and Sx pins to do a fast discharge  
of the external MOSFET gate and keep the external MOSFET off during fast voltage transients at its drain or  
source terminals.  
The high-current discharge mode is activated in the following situations:  
in the case of an emergency shutdown after detection of an error condition,  
if the complementary external MOSFET is switched on to avoid cross conduction in the external half bridge.  
If the adjustable cross-conduction protection feature is enabled the high-current discharge mode is delayed  
and activated at the same time than the switch-on control signal of the complementary MOSFET.  
26.2.6  
Passive Pull-Down Mode  
If the Bridge Driver module is disabled the passive pull-down mode activates resistors RGGND between the Gx  
pins and ground to passively keep discharged the gates of the external MOSFETs. During normal operation  
these pull-down resistors are switched off.  
Datasheet  
85  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Bridge Driver (incl. Charge Pump)  
26.2.7  
Brake Mode  
In Brake Mode either both external high-side MOSFETs or both external low-side MOSFETs are statically  
switched on to short circuit the motor coil to brake the motor or keep it actively blocked during standstill.  
Since in brake mode no PWM capability is needed the charge pump is set into low-power mode to reduce the  
current consumption IVSD_BK from the VSD pin.  
26.2.8  
Hold Mode  
In Hold Mode the external low-side MOSFETs can be switched to an auxiliary gate voltage VGxx_HM to terminate  
the motor pins in all cases where the Bridge Driver and its charge pump is disabled (including stop mode and  
sleep mode where the Bridge Driver is disabled by default). This leads to low current consumption IVSD_SMHM  
and IVSD_STPMHM from the VSD pin. The Hold Mode is configured by SFRs in the Power Management Unit where  
the behavior during stop or sleep mode is defined. The configuration includes the channel-individual  
selection between static and cyclic activation of the Hold mode and programmable timing.  
Note:  
In Hold Mode the monitoring and protection of the Bridge Driver is not available.  
26.2.9  
Timing Measurements  
The Bridge Driver provides fast comparators with low propagation delay tcdly at the SHx pins to measure on  
and off delays tsdly(on) and tsdly(off) between changes on the control signals and the corresponding slopes at the  
SHx pins. Additionally, these comparators are able to measure the on and off slope durations tsdur(on) and  
tsdur(off) at the SHx pins. The measured values are stored in SFRs for further evaluation by software or by the  
adaptive control mode (see Chapter 26.2.10).  
Figure 39 shows the thresholds VSH(high) and VSH(low) and propagation delay tcdly of the fast comparators and the  
measured slope timing parameters tsdly(on), tsdur(on), tsdly(off), and tsdur(off) during PWM actuation of the external  
low-side MOSFET.  
Low-Side  
Control  
Signal  
OFF  
ON  
OFF  
ON  
V
VVDH  
VSH(high)  
Half-Bridge  
Voltages  
VSHx  
VSH(low)  
t
tcdly  
tcdly  
SH_high  
SH_low  
Comparator  
Output  
Signals  
tcdly  
tsdur(on)  
tcdly  
tsdly(off)  
tsdly(on)  
tsdur(off)  
Figure 39 Comparator thresholds and timing parameters during low-side PWM  
Datasheet  
86  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Bridge Driver (incl. Charge Pump)  
Figure 40 shows the thresholds VSH(high) and VSH(low) and propagation delay tcdly of the fast comparators and the  
measured slope timing parameters tsdly(on), tsdur(on), tsdly(off), and tsdur(off) during PWM actuation of the external  
high-side MOSFET.  
High-Side  
Control  
Signal  
OFF  
ON  
OFF  
ON  
V
VVDH  
VSH(high)  
Half-Bridge  
Voltages  
VSHx  
VSH(low)  
t
tcdly  
tcdly  
SH_high  
SH_low  
Comparator  
Output  
Signals  
tcdly  
tsdly(on)  
tcdly  
tsdly(off)  
tsdur(on)  
tsdur(off)  
Figure 40 Comparator thresholds and timing parameters during high-side PWM  
For plausibility checks of the fast comparators and the assigned timing measurement counters there is an  
additional channel on/off delay measurement counter which can be switched to each channel’s control  
signals and the corresponding drain-to-source voltage monitoring comparator outputs.  
26.2.10 Adaptive Control Mode  
The Bridge Driver provides an optional adaptive control mode if the output stages are controlled by the  
sequencer mode. The target values for on and off delays are defined by SFRs. In order to reach these target  
values, the adaptive control algorithm reads the results from the timing measurement and adjusts the current  
set point of the first gate charging sub phase i1(on) and the first gate discharging sub phase i1(off) accordingly.  
26.2.11 Integrated 2-Stage Charge Pump  
The Bridge Driver is supplied by an integrated 2-stage charge pump which provides a stable voltage VCP above  
the battery voltage. This enables the Bridge Driver to operate down to low battery voltage values and to  
statically switch on the external MOSFETs.  
The charge pump output voltage is programmable by SFRs. The charge pump frequency is continously varied  
between two boundary frequencies defined by SFRs.  
Datasheet  
87  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Bridge Driver (incl. Charge Pump)  
26.2.12 Adjustable Voltage Monitoring  
The supply voltages of the Bridge Driver (VSD and VCP) are monitored by the Measurement Unit. The Bridge  
Driver including the charge pump can be optionally disabled at undervoltage or overvoltage of the monitored  
signals.  
26.2.13 Adjustable Short Circuit Detection  
For short circuit detection the drain-to-source comparators of the Bridge Driver are used to compare the  
voltage drops across the external MOSFETs to the programmable threshold voltage VDSMONVTH. During  
transitions from off to on and vice versa the comparator output signals are ignored for a programmable blank  
time defined by SFRs.  
In on state the external MOSFETs are switched off automatically if a stable short-circuit condition is detected  
for a SFR programmable filter time and an interrupt is generated. It can be selected by SFR if all MOSFETs are  
switched off or only the one where the short-circuit condition was detected.  
In off state the motor phases can be pulled up or pulled down by the diagnostic currents IPUDiag and IPDDiag. The  
drain-to-source comparator output signals can be read by SFRs to check if the motor phase voltages change  
according to the activated diagnostic currents.  
26.2.14 Open-Load Detection  
For open-load detection in off state the pull-up diagnostic current IPUDiag of one half bridge and the pull-down  
diagnostic current IPDDiag of the other half bridge are activated. The pull-down diagnostic current IPDDiag is able  
to overdrive the pull-up diagnostic current IPUDiag (by IPDDiag_OD). Therefore, in the case of a connected motor,  
both motor phase voltages are pulled-down. In the case of an disconnected motor, one motor phase voltage  
is pulled down while the other is pulled up according to the diagnostic current settings. The reaction of the  
motor phase voltages can be checked by the drain-to-source comparators of the Bridge Driver and their  
corresponding SFR status bits.  
26.2.15 Overtemperature  
The temperature of the Bridge Driver Charge Pump is monitored by a dedicated temperature sensor of the  
Measurement Unit for temperature warning signalling and overtemperature shutdown of the Bridge Driver.  
Datasheet  
88  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Current Sense Amplifier  
27  
Current Sense Amplifier  
27.1  
Features  
Main Features  
Programmable gain settings: G = 10, 20, 40, 60  
Differential input voltage: ± 1.5V / G  
Wide common mode input range ± 2 V  
Low settling time < 1.4 µs  
27.2  
Introduction  
The current sense amplifier in Figure 41 can be used to measure near ground differential voltages via the 10-  
bit ADC. Its gain is digitally programmable through internal control registers.  
Linear calibration has to be applied to achieve high gain accuracy, e.g. end-of-line calibration including the  
shunt resistor.  
Figure 41 shows how the current sense amplifier can be used as a low-side current sense amplifier where the  
motor current is converted to a voltage by means of a shunt resistor RSH. A differential amplifier input is used  
in order to eliminate measurement errors due to voltage drop across the stray resistance RStray and differences  
between the external and internal ground. If the voltage at one or both inputs is out of the operating range it  
has to be taken into account that the input circuit is overloaded and needs a certain specified recovery time.  
In general, the external low pass filter should provide suppression of EMI.  
Datasheet  
89  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Current Sense Amplifier  
27.2.1  
Block Diagram  
VBAT  
M
V
ZERO – Generation:  
BG * 1.652  
V
BG=1,211V  
VZE RO = V  
Motor  
Current  
Amplifier  
configurable  
LP Filter  
ROPAFILT  
OP2  
OP1  
Gain: 10, 20, 40, 60  
VP  
Vzero + (VOP2 -VOP1) * G  
10  
/
* 0,273 10-bit ADC  
ADC1_OUT_CH13  
COPAFILT  
ROPAFILT  
RSH  
VN  
CSA_CTRL  
RStray  
Ext. GND  
Current_Sense_Amplifier.vsd  
Figure 41 Simplified Application Diagram  
VBAT  
M
V
ZERO – Generation:  
VZERO = VBG * 1.652  
VBG = 1.211V  
Amplifier  
configurable  
PP_CHx_UP  
Motor  
Current  
LP Filter  
ROPAFILT  
Gain: 10, 20, 40, 60  
1
OP2  
OP1  
+
UP_X_STS  
+ / -  
/
VP  
-
10  
/
8
/
Vzero + (VOP2 -VOP1) * G  
* 0,273  
COPAFILT  
ROPAFILT  
10-bit ADC  
RSH  
ADC1_OUT_CH13  
1
/
-
+ / -  
LOW_X_STS  
VN  
+
CSA_CTRL  
RStray  
2 bit Gain  
Control  
PP_CHx_LOW  
ADC1  
DPP1  
Ext. GND  
CSA_OC_Det_Int.vsd  
Figure 42 Simplified Application Diagram for Softshort Detection  
Datasheet  
90  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Application Information  
28  
Application Information  
Note:  
28.1  
The following information is given as a hint for the implementation of the device only and shall not  
be regarded as a description or warranty of a certain functionality, condition or quality of the device.  
Window-Lift Application Diagram  
Rev. Polarity Protection  
LPF  
ILT  
VBAT  
CPF  
CPF  
ILT  
ILT  
CVDDP2  
CVDDP1  
CVDDC1  
CVDDC2  
EMC Filter  
RSWITCH1  
RSWI TCH2  
DVS  
VDDP VDDC  
VS  
CP1H  
CP1L  
CP2H  
CCPS1  
CVS 2  
CVS 1  
Switch3  
Switch4  
CCPS2  
CP2L  
VCP  
RVB AT _SE NSE  
VBAT_SENSE  
RVS D  
CVCP  
CVB AT _SE NSE  
VSD  
CVS D  
RVDH  
VDH  
LIN  
LIN  
CVDH  
CLIN  
GND_LIN  
D
S
D
S
VDDEXT  
RGATE  
G
G
CVDDEXT2  
CVDDEXT1  
GH1  
TH1  
CPH 1  
TH2  
CPH 2  
Speed  
Direction  
RGS  
CGS  
RGS  
CGS  
Double Hall  
Sensor  
e.g. TLE4966  
P0.4 (CC60)  
P1.0 (CC61)  
RGATE  
GH2  
SH2  
RMON1  
MON1  
CSH  
CMON1  
CMON2  
CMON3  
CMON4  
M
RMON2  
RMON3  
RMON4  
SH1  
GL1  
TLE985x  
CSH  
MON2  
MON3  
MON4  
D
S
D
S
RGATE  
G
G
TL1  
TL2  
RGS  
RGATE  
CGS  
RGS  
CGS  
GL2  
SL  
RHS  
HS  
RSWI TCH3  
RSWI TCH4  
DHS  
CHS  
ROPAFIL  
T
Switch1  
Switch2  
OP2  
OP1  
RShunt  
COPAFIL  
T
Temp Sensor  
P2.2  
ROPAFIL  
T
TMS  
P0.0  
DebugConnector  
P0.x  
P2.x  
P1.x  
GND  
RTM  
S
GND  
Figure 43 Simplified Application Diagram Example  
Note:  
This is a very simplified example of an application circuit and bill of material. The function must be  
verified in the actual application.  
Table 13  
Symbol  
CVS1  
External Component (BOM)  
Function  
Component  
22 µF1)  
100 nF2)3)  
Capacitor 1 at VS pin  
Capacitor 2 at VS pin  
Reverse-polarity protection diode  
CVS2  
DVS  
Datasheet  
91  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Application Information  
Table 13  
Symbol  
CVDDEXT1  
CVDDEXT2  
CVDDC1  
CVDDC2  
CVDDP1  
CVDDP2  
RMONx  
External Component (BOM) (cont’d)  
Function  
Component  
470 nF3)  
470 nF  
100 nF3)  
330nF  
470 nF3)  
470 nF  
1 kΩ  
Capacitor 1 at VDDEXT pin  
Capacitor 2 at VDDEXT pin  
Capacitor 1 at VDDC pin  
Capacitor 2 at VDDC pin  
Capacitor 1 at VDDP pin  
Capacitor 2 at VDDP pin  
Resistor at MONx pin  
Capacitor at MONx pin  
Resistor at VBAT_SENSE pin  
Capacitor at VBAT_SENSE pin  
Capacitor at LIN pin  
CMONx  
10 nF  
RVBAT_SENSE  
CVBAT_SENSE  
CLIN  
1 kΩ  
10 nF  
220 pF  
160 4)  
RHS  
Resistor at HS pin  
CHS  
Capacitor at HS pin  
6.8 nF or 33 nF (dependant on ESD GUN  
requirements)  
DHS  
LED  
RVSD  
Limitation of reverse currents due 2 Ω  
to transients (-2V, 8ms)  
CVSD  
Filter C for charge pump and driver 1 µF  
CCPS1  
CCPS2  
CVCP  
Charge pump flying capacitor 1  
Charge pump flying capacitor 2  
Charge pump storage capacitor  
Resistor  
220 nF  
220 nF  
470 nF  
RVDH  
1 kΩ  
CVDH  
Capacitor  
1 nF  
CPH1  
DC-link buffer capacitor phase 1  
DC-link buffer capacitor phase 2  
Shunt resistor  
220 µF  
CPH2  
220 µF  
RShunt  
ROPAFILT  
COPAFILT  
CSH  
5 mΩ  
Resistor  
12 Ω  
Capacitor  
100 nF  
Capacitor  
1 nF  
RGATE  
RGS  
Resistor  
optional  
Resistor  
100 kΩ  
CGS  
Capacitor  
4.7 nF (depends on MOSFET CGS)  
LPFILT  
CPFILT  
RSWITCHx  
RTMS  
PI filter inductor  
PI filter capacitor  
Resistor  
10 µF  
Resistor  
1) to be dimensioned according to application requirements  
2) to reduce the effect of fast voltage transients of Vs, these capacitors should be placed close to the device pin  
3) ceramic capacitor  
Datasheet  
92  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Application Information  
4) calculated for 24V (jump start)  
28.2  
Connection of unused pins  
Table 14 shows recommendations how to connect pins, in case they are not needed by the application.  
Table 14  
type  
Recommendation for connecting unused pins  
pin number  
recommendation 1  
(if unused)  
recommendation 2  
(if unused)  
LIN  
48  
open  
VS  
HS  
2
open  
MON  
GPIO  
17, 18, 19, 20  
GND  
open + configure internal PU/PD  
22, 24, 26, 27, 28, 29, 31, GND  
32, 33, 34, 37, 38, 39, 40,  
41  
external PU/PD  
or  
open + configure internal PU/PD  
TMS  
23  
25  
40  
41  
45  
47  
GND  
open  
open  
GND  
open  
VS  
RESET  
P2/XTAL out  
P2/XTAL in  
VDDEXT  
VBAT_SENSE  
28.3  
Connection of P0.2 for SWD debug mode  
To enter the SWD debug mode, P0.2 needs to be 0 at the rising edge of the reset signal.  
P0.2 has an internal pulldown, so it just needs to be ensured that there is no external 1 at P0.2 when the debug  
mode is entered.  
28.4  
Connection of TMS  
For the debug mode, the TMS pin needs to be 1 at the rising edge of the reset signal. This is controlled by the  
debugger. The TMS pin has an internal PD.  
To avoid the device entering the debug mode unintendedly in the final application, adding an external pull-  
down additionally is recommended.  
28.5  
ESD Tests  
Note:  
Tests for ESD robustness according to IEC61000-4-2 “gun test” (150pF, 330) were performed. The  
results and test condition will be available in a test report. The target values for the test are listed in  
Table 15 below.  
Datasheet  
93  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Application Information  
Table 15  
ESD “Gun Test”  
Performed Test  
Result  
>6  
Unit  
kV  
Remarks  
ESD at pin LIN, versus GND  
ESD at pin LIN, versus GND  
1)positive pulse  
1)negative pulse  
1)2)positive pulse  
< -6  
kV  
ESD at pin VS, VBAT_SENSE, MONx, >6  
HS, versus GND  
kV  
ESD at pin VS, VBAT_SENSE, MONx, < -6  
HS, versus GND  
kV  
1)2)negative pulse  
1) ESD susceptibility “ESD GUN”, tested by external test house (IBEE Zwickau, EMC Test report Nr. 07-01-19), according  
to “LIN Conformance Test Specification Package for LIN 2.1, October 10th, 2008” and “Hardware Requirements for  
LIN, CAN and FlexRay Interfaces in Automotive Application - AUDI, BMW, Daimler, Porsche, Volkswagen - Revision 1.3  
/ 2012”  
2) With external circuit as shown in Figure 43.  
Datasheet  
94  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
29  
Electrical Characteristics  
This chapter includes all relevant Electrical Characteristics of the product TLE9853QX.  
29.1  
General Characteristics  
29.1.1  
Absolute Maximum Ratings  
Table 16  
Voltages Supply Pins  
Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
VS voltage  
VSD voltage  
VSD voltage  
VS,max  
-0.3  
-0.3  
-
-
-
40  
48  
48  
V
V
V
1) Load dump  
P_1.1.1  
1)  
VSD,max  
P_1.1.34  
P_1.1.35  
VSD,max_ext -2.8  
2) 1) Series resistor; RVSD=2.2;  
t=8ms  
ended  
1)  
VDDP voltage  
VDDP,max  
-0.3  
-
-
5.5  
V
V
P_1.1.2  
P_1.1.3  
1)  
VDDEXT voltage  
VDDEXT,max -0.3  
VS +  
0.3  
1)  
VDDC voltage  
VDDC,max  
-0.3  
-
1.6  
V
P_1.1.4  
1) Not subject to production test, specified by design  
2) Conditions and min. value is derived from application condition for reverse-polarity event.  
Table 17  
Voltages High Voltage Pins  
Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
1) 2)  
Voltage at VBAT_SENSE VBAT_SENSE, -28  
-
40  
V
P_1.1.5  
P_1.1.6  
pin  
max  
2)  
Voltage at HS pin  
VHS,max  
-0.3  
-28  
-
VS  
+0.3  
V
2)  
Voltage at LIN pin  
Voltage at MONx pins  
Voltage at VDH pin  
Voltage at GHx pins  
VLIN,max  
-
-
-
-
-
40  
40  
48  
48  
14  
V
P_1.1.7  
P_1.1.8  
P_1.1.36  
P_1.1.37  
P_1.1.38  
1) 2)  
VMON,max -28  
V
3) 2)  
VVDH,max  
VGH  
-2.8  
-8  
V
4) 2)  
V
2)  
Voltage at GHx vs. SHx VGHvsSH  
-
V
pins  
2)  
Voltage at SHx pins  
Voltage at GLx pins  
VSH  
VGL  
-8  
-8  
-
-
48  
48  
V
P_1.1.39  
P_1.1.40  
5) 2)  
V
Datasheet  
95  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
Table 17  
Voltages High Voltage Pins (cont’d)  
Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
2)  
Voltage at GLx vs. SL  
pins  
VGLvsSL  
VSL  
-
-
14  
V
P_1.1.41  
2)  
Voltage at SL pin  
-8  
-
-
48  
48  
V
P_1.1.49  
P_1.1.42  
6) 2)  
Voltage at charge pump VCPx  
pins CP1H, CP1L, CP2H,  
CP2L, VCP  
-0.3  
V
1) For -28V, external 1 kΩ resistor is required to limit output current.  
2) Not subject to production test, specified by design  
3) For -2.8V, external 1 kΩ resistor is required to limit output current.  
4) To achieve max. ratings on this pin, Parameter P_1.1.38 has to be taken into account resulting in the following  
dependency: VGH < VSH + VGHvsSH_max and additionally VSH < VGH + 0.3 V  
5) To achieve max. ratings on this pin, Parameter P_1.1.41 has to be taken into account resulting in the following  
dependency: VGL < VSL + VGLvsSL_max and additionally VSL < VGL + 0.3 V  
6) These limits can be kept if max current drawn out of pin does not exceed limit of 200 μA  
Table 18  
Voltages GPIOs  
Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Voltage on port pin P0.x, VIO,max  
P1.x, P2.x, TMS and  
RESET  
-0.3  
-
VDDP + V  
0.3  
1) in consideration of VIO,max  
VDDP@MAX  
<
P_1.1.10  
1) Not subject to production test, specified by design  
Table 19  
Voltages at Current Sense Amplifier Inputs  
Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
1)  
Input voltage OP1, OP2 VOAI  
-7  
-
7
V
P_1.1.43  
1) Not subject to production test, specified by design  
Datasheet  
96  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
Table 20  
Currents  
Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Injection current in  
Sleep Mode on P0.x,  
P1.x, P2.x, TMS and  
RESET  
Ixx  
-
-
5
mA 1) maximum allowed injection P_1.1.11  
current on single pin or sum of  
pins in Sleep Mode and  
unpowered device  
Injection current on HS IHS  
-
-
-
150  
-
mA 1) current flowing into HS pin  
(back supply in case of short to  
battery)  
P_1.1.12  
P_1.1.44  
1)  
Max. current at VCP pin IVCP  
-15  
mA  
1) Not subject to production test, specified by design  
Table 21  
Temperatures  
Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
1)  
Junction Temperature Tj  
Storage Temperature Tstg  
-40  
-55  
-
-
150  
150  
°C  
P_1.1.14  
P_1.1.15  
1)  
°C  
1) Not subject to production test, specified by design  
Table 22  
ESD Susceptibility  
Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
ESD Susceptibility HBM VESD1  
all pins  
-2  
-
2
kV  
kV  
V
1) 2) JEDEC HBM  
1) 2) JEDEC HBM  
P_1.1.16  
P_1.1.17  
P_1.1.18  
P_1.1.48  
ESD Susceptibility HBM VESD3  
pins LIN vs. LINGND  
-6  
-
6
ESD Susceptibility CDM VESD_CDM -500 -  
500  
750  
2) Charged device model, acc.  
JEDEC JESD22-C101  
2) Charged device model, acc.  
JEDEC JESD22-C101  
ESD Susceptibility CDM VESD_CDM_C -750 -  
V
corner pins: 1, 12, 13, 24,  
orner  
25, 36, 37, 48  
1) ESD susceptibility, JEDEC HBMaccording to ANSI/ESDA/JEDEC JS001 (1.5 kΩ, 100 pF).  
2) Not subject to production test, specified by design  
Datasheet  
97  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
29.1.2  
Functional Range  
Note:  
Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics  
table.  
Table 23  
Functional Range  
Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Supply voltage in Active VS_AM  
5.5  
-
28  
V
P_1.2.1  
Mode  
Extended Supply  
voltage in Active Mode-  
range 1  
VS_AM_exten 28  
-
40  
V
1) Functional with parameter  
deviation  
P_1.2.24  
d_1  
Extended Supply  
voltage in Active Mode  
VS_AM_exten 3.0  
-
-
28  
29  
V
V
2) Functional with parameter  
deviation  
P_1.2.2  
d_2  
Supply voltage in Active VSD_AM  
Mode for MOSFET Driver  
Supply  
5.4  
P_1.2.12  
Extended maxiumum  
supply voltage in Active  
Mode for MOSFET Driver  
Supply  
VSD_AM_max 29  
-
32  
V
1) Functional with parameter  
deviation  
P_1.2.13  
_extended  
Supply voltage for LIN VS_AM_LIN 5.5  
Transceiver  
-
-
18  
28  
V
V
Parameter Specification  
P_1.2.3  
P_1.2.4  
Extended Supply  
voltage for LIN  
Transceiver and  
Monitoring Inputs  
(MONx) for all device  
modes  
VS_AM_LIN_e 4.0  
Functional with parameter  
deviation  
xtend  
Supply voltage in Stop VS_Stopmin 3.0  
Mode  
-
-
-
-
V
V
P_1.2.5  
P_1.2.6  
Min. Supply voltage in VS_Sleepmin 3.0  
Sleep Mode  
Datasheet  
98  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
Table 23  
Functional Range (cont’d)  
Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
3)  
Supply Voltage  
transients slew rate  
dVS/dt  
-5  
-
-
-
-
5
V/µs  
P_1.2.7  
P_1.2.8  
P_1.2.9  
P_1.2.11  
3)  
Output current on any IOH, IOL  
GPIO  
-5  
5
mA  
3)  
Output sum current for IGPIO,sum  
all GPIO pins  
-50  
50  
mA  
Junction Temperature Tj  
-40  
150  
°C  
1) This operation voltage range is only allowed for a short duration: tmax < 400 ms  
2) Hall-Supply, ADC, SPI, UART, NVM, RAM, CPU fully functional and in spec down to Vs = 3 V. Actuators (High-Side Switch,  
MOSFET Driver) in Vs range from 3 V < Vs < 5.5 V (High-Side Switch) or 3 V < Vs < 4.4 V (MOSFET Driver) functional but  
some parameters can be out of spec  
3) Not subject to production test, specified by design  
29.1.3  
Current Consumption  
Table 24  
Current Consumption  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Current Consumption in IVs_40M  
Active Mode at pin VS  
-
-
30  
mA all digital modules enabled and P_1.3.18  
functional, ADCs converting in  
sequencer mode, PLL running,  
no loads on GPIOs, VDDEXT off,  
LIN in recessive state (no  
communication), HSx enabled  
but off, Charge Pump on,  
MOSFET Driver enabled and on  
(PWM running at 25kHz with a  
capacitive load of CLoad= 10 nF),  
CSA enabled.; 3VVs28V;  
fsys=40MHz  
Current consumption in IVSD  
Active Mode at pin VSD  
-
-
-
-
50  
25  
mA Charge Pump on, MOSFET  
Driver enabled and on (PWM  
running at 25kHz with a  
P_1.3.8  
capacitive load of CLoad= 10 nF).  
Current consumption in IVSD_BK  
Active Mode at pin VSD -  
Brake Mode  
mA Charge Pump on and in single- P_1.3.33  
stage mode, MOSFET Driver  
enabled and 2 Low-Side Drivers  
on, but not switching;  
ICHARGE=15D  
Datasheet  
99  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
Table 24  
Current Consumption (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Current consumption in IVSD_SMHM  
Sleep Mode at pin VSD -  
Hold Mode  
-
-
-
-
-
-
-
-
-
-
16  
19  
16  
19  
25  
µA Device in Sleep mode, but Low P_1.3.34  
Side Gates are charged  
statically to keep low side  
MOSFETs on. Current does not  
include static Gate to Source  
current caused by external Gate  
to Source resistor.;  
-40°CTj85°C  
Current consumption in IVSD_SMHM(  
µA Device in Sleep mode, but Low P_1.3.35  
Side Gates are charged  
Sleep Mode at pin VSD -  
T_extend)  
Hold Mode (extended  
Temperature Range)  
statically to keep low side  
MOSFETs on. Current does not  
include static Gate to Source  
current caused by external Gate  
to Source resistor.;  
85°C<Tj150°C  
Current consumption in IVSD_STPMH  
µA Device in Stop mode, but Low P_1.3.37  
Side Gates are charged  
Stop Mode at pin VSD -  
M
Hold Mode  
statically to keep low side  
MOSFETs on. Current does not  
include static Gate to Source  
current caused by external Gate  
to Source resistor.;  
-40°CTj85°C  
Current consumption in IVSD_STPMH  
µA Device in Stop mode, but Low P_1.3.38  
Side Gates are charged  
Stop Mode at pin VSD -  
M(T_extend)  
Hold Mode (extended  
Temperature Range)  
statically to keep low side  
MOSFETs on. Current does not  
include static Gate to Source  
current caused by external Gate  
to Source resistor.;  
85°C<Tj150°C  
Current consumption in ISleep  
Sleep Mode at pin VS  
µA System in Sleep Mode,  
microcontroller not powered,  
Wake capable via LIN and MON;  
GPIOs open (no loads) or  
connected to GND;  
P_1.3.2  
-40°CTj25°C  
Datasheet  
100  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
Table 24  
Current Consumption (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Current consumption in ISleep(T_exte  
-
-
-
-
35  
µA 1) System in Sleep Mode,  
microcontroller not powered,  
Wake capable via LIN and MON;  
GPIOs open (no loads) or  
connected to GND;  
P_1.3.3  
Sleep Mode at pin VS  
nd)  
(extended Temperature  
Range)  
25°C<Tj85°C; 3VVs18V  
Current consumption in ISleep(V_T_e  
40  
µA 1) System in Sleep Mode,  
microcontroller not powered,  
Wake capable via LIN and MON;  
GPIOs open (no loads) or  
connected to GND;  
P_1.3.4  
Sleep Mode at pin VS  
xtend)  
(extended Voltage and  
Temperature Range)  
25°C<Tj85°C; 3VVs28V  
Current consumption in ICyclic  
Sleep Mode at pin VS  
with cyclic wake  
-
-
-
-
30  
40  
µA during sleep period;  
P_1.3.5  
P_1.3.6  
-40°CTj25°C; 3VVs28V  
Current consumption in ICyclic(T_exte  
µA 1) during sleep period;  
Sleep Mode at pin VS  
25°C<Tj85°C; 3VVs28V  
nd)  
with cyclic wake  
(extended Temperature  
Range)  
Current consumption in IStop  
Stop Mode at pin VS  
-
-
-
60  
µA System in Stop Mode,  
microcontroller not clocked,  
Wake capable via LIN and MON;  
GPIOs open (no loads) or  
connected to GND;  
P_1.3.22  
P_1.3.19  
-40°CTj25°C; 5.5VVs18V  
Current consumption in IStop(T_exte  
90  
110  
µA 1) System in Stop Mode,  
microcontroller not clocked,  
Wake capable via LIN and MON;  
GPIOs open (no loads) or  
connected to GND;  
Stop Mode at pin VS  
nd)  
(extended Temperature  
Range)  
25°C<Tj85°C  
Datasheet  
101  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
Table 24  
Current Consumption (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Current consumption in IStop_V_exte  
-
-
-
4.0  
mA System in Stop Mode,  
microcontroller not clocked,  
Wake capable via LIN and MON;  
GPIOs open (no loads) or  
connected to GND;  
-40°CTj85°C; 3VVs<5.5V  
µA 1) System in Stop Mode (during P_1.3.20  
stop period), microcontroller  
P_1.3.21  
Stop Mode at pin VS  
nd  
Current consumption in IStop_CS  
Stop Mode at pin VS  
95  
115  
with cyclic sense  
not clocked, Wake capable via  
LIN and MON; VDDEXT off; High  
Side off; GPIOs open (no loads)  
or connected to GND or VDDP;  
-40°CTj85°C; 5.5VVs18V  
1) Not subject to production test, specified by design  
29.1.4  
Thermal Resistance  
Table 25  
Thermal Resistance  
Symbol  
Parameter  
Values  
Min. Typ. Max.  
Unit Note or Test Condition  
Number  
Junction to Case  
Rth(JC)  
Rth(JA)  
-
6
-
-
K/W 1) measured to Exposed Pad  
P_1.4.1  
P_1.4.2  
2)  
Junction to Ambient  
-
33  
K/W  
1) Not subject to production test, specified by design  
2) According to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board . Board: 76.2x114.3x1.5mm3 with 2 inner  
copper layers (35μm thick), with thermal via array under the exposed pad contacting the first inner copper layer and  
300mm2 cooling area on the bottom layer (70μm).  
29.1.5  
Timing Characteristics  
The transition times between the system modes are specified here. Generally the timings are defined from the  
time when the corresponding bits in register PMCON0 are set until the sequence is terminated.  
Datasheet  
102  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
Table 26  
System Timing  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Wake-up over battery  
Sleep-Exit  
tstart  
-
-
2.5  
ms 1) Battery ramp-up till MCU  
software is running.  
P_1.5.1  
P_1.5.2  
tsleep - exit  
-
-
2.5  
ms 1) rising/falling edge of any  
wake-up signal (LIN, MON) till  
MCU software running.  
2) 1)  
Sleep-Entry  
tsleep - entry  
-
-
330  
µs  
P_1.5.3  
1) Not subject to production test, specified by design  
2) Wake events during Sleep-Entry are stored and lead to wake-up after Sleep Mode is reached.  
Datasheet  
103  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
29.2  
Power Management Unit (PMU)  
This chapter includes all electrical characteristics of the Power Management Unit.  
29.2.1  
PMU Input Voltage VS  
Table 27  
Electrical Characteristics  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Required decoupling  
capacitance  
CVS1  
CVS2  
0.1  
-
-
µF ESR<1Ω  
P_2.1.12  
P_2.1.13  
1)  
Required buffer  
10  
-
-
µF  
capacitance for stability  
(load jumps)  
1) Not subject to production test, specified by design  
29.2.2  
PMU I/O Supply Parameters VDDP  
Table 28  
Electrical Characteristics  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
1)  
Specified Output  
Current  
IVDDP  
0
-
50  
mA  
P_2.1.1  
P_2.1.2  
P_2.1.3  
Required decoupling  
capacitance  
CVDDP1  
CVDDP2  
0.47 -  
0.47 -  
-
µF 2) 3) ESR<1Ω  
3) 4)  
Total required buffer  
capacitance for stability  
(load jumps, line steps)  
2.2  
µF  
5)  
Output Voltage  
including line and load  
regulation @ Active  
Mode  
VDDPOUT  
4.9 5.0  
5.1  
V
V
I
I
<90mA; Vs5.5V  
P_2.1.4  
P_2.1.5  
load  
5)  
Output Voltage  
VDDPOUTST 4.5 5.0  
5.25  
=Iload_internal+Iload_external ;  
load  
including line and load  
regulation @ Stop Mode  
I
load_external=5mA;  
OP  
I
load_internal=2mA; Vs5.5V  
6)  
Output Drop  
VsV DDPout  
-
50  
-
+400 mV  
I
=50mA; Vs=3V  
P_2.1.6  
P_2.1.7  
VDDP  
Load Regulation  
VVDDPLOR -50  
50  
mV 2mAIload90mA; Tj150°C;  
C=CVDDP1+CVDDP2  
Line Regulation  
VVDDPLIR  
-50  
-
50  
mV 5.5VVs28V  
P_2.1.8  
P_2.1.9  
Overvoltage detection VDDPOV  
5.14 -  
5.4  
V
Overvoltage leads to  
SUPPLY_NMI; Vs5.5V  
Datasheet  
104  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
Table 28  
Electrical Characteristics (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Under Voltage Reset  
VDDPUV  
2.55 2.7  
2.8  
V
P_2.1.10  
P_2.1.15  
4)  
Voltagestabledetection ΔVDDPSTB -220 -  
+220 mV  
range 7)  
Over Current Diagnostic IVDDPOC  
90  
-
220  
mA current including VDDC current P_2.1.11  
consumption  
4)  
Short-Circuit Diagnostic IVDDPSC  
270  
-
-
600  
8.9  
mA  
P_2.1.31  
P_2.1.29  
Pull Down Strength in IVDDPPDSLP 5.1  
mA VDDP=5V  
Sleep Mode  
1) Specified output current for port supply and additional other external loads connected to VDDP, excluding on-chip  
current consumption.  
2) only min. value is tested  
3) The total capacitance on pin VDDP is specified by CVDDP2 including CVDDP1  
4) Not subject to production test, specified by design  
5) Load current includes internal supply.  
.
6) Output drop for IVDDP plus internal supply  
7) The absolute voltage value is the sum of parameters VVDDP = VVDDP + ΔVVDDPSTB  
Table 29  
Timing Parameters  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
1) 2)  
Overvoltage detection tFILT_VDDPO 465 665  
865  
µs  
P_2.1.16  
P_2.1.17  
P_2.1.18  
P_2.1.34  
P_2.1.35  
filter time  
V
1) 2)  
Overcurrent diagnostic tFILT_VDDPO 21 30  
filter time  
39  
µs  
C
1) 2)  
Overcurrent diagnostic tFILT_VDDPO 615 920  
shutdown time  
1250 µs  
C_SD  
1) 2)  
1) 2)  
Short-circuit diagnostic tFILT_VDDPS  
filter time  
5
10  
13  
µs  
µs  
C
Short-circuit diagnostic tFILT_VDDPS 50 75  
105  
shutdown time  
C_SD  
1) This filter time and its variation is derived from the time base tLP_CK = 1 / fLP_CLK  
2) Not subject to production test, specified by design  
Datasheet  
105  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
29.2.3  
PMU Core Supply Parameters VDDC  
Table 30  
Electrical Characteristics  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Required decoupling  
capacitance  
CVDDC1  
CVDDC2  
0.1  
-
1
µF 1) ESR<1Ω  
P_2.2.1  
P_2.2.2  
2)  
Required buffer  
0.33 -  
1
µF  
capacitance for stability  
(load jumps)  
Output Voltage  
including line  
regulation @ Active  
Mode  
VDDCOUT  
1.44 1.5  
1.56  
V
Iload<40mA  
P_2.2.3  
Output Voltage  
including line  
regulation @ Stop Mode  
VDDCOUT_St 1.44 1.5  
1.56  
1.3  
V
V
with setting of VDDC output  
voltage to 1.5V in Stop Mode;  
Iload_internal<2mA  
P_2.2.26  
P_2.2.25  
op1  
Output Voltage  
including line  
VDDCOUT_St 0.8  
-
with setting of VDDC output  
voltage to 0.9V in Stop Mode;  
op2  
regulation @ Stop Mode  
- Reduced Core Supply  
Voltage  
Iload_internal<2mA  
Load Regulation  
VDDCLOR  
VDDCLIR  
-50  
-25  
-
-
50  
mV 2mAIload40mA;  
C=CVDDC1+CVDDC2  
P_2.2.4  
Line Regulation  
25  
-
mV 5.5VVs28V  
P_2.2.5  
P_2.2.6  
Over Voltage Detection VDDCOV  
1.58 -  
V
Overvoltage leads to  
SUPPLY_NMI  
Under Voltage Reset VDDVUV  
1.10 -  
1.19  
80  
V
P_2.2.7  
P_2.2.8  
P_2.2.28  
P_2.2.27  
Over Current Diagnostic IVDDCOC  
Short-Circuit Diagnostic IVDDCSC  
40  
-
-
mA  
mA  
2)  
120  
240  
2.7  
Pulldown Strength in  
Sleep Mode  
IVDDCPDSLP 0.75 1.5  
mA VDDC=1.5V  
1) only min. value is tested  
2) Not subject to production test, specified by design  
Datasheet  
106  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
Table 31  
Timing Parameters  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
1) 2)  
Overvoltage detection tFILT_VDDCO 465 665  
865  
µs  
P_2.2.11  
P_2.2.12  
P_2.2.13  
P_2.2.29  
P_2.2.30  
filter time  
V
1) 2)  
Overcurrent diagnostic tFILT_VDDCO 21 30  
filter time  
39  
µs  
C
1) 2)  
Overcurrent diagnostic tFILT_VDDCO 615 920  
shutdown time  
1250 µs  
C_SD  
1) 2)  
1) 2)  
Short-circuit diagnostic tFILT_VDDCS  
filter time  
5
10  
13  
µs  
µs  
C
Short-circuit diagnostic tFILT_VDDCS 50 75  
105  
shutdown time  
C_SD  
1) This filter time and its variation is derived from the time base tLP_CLK = 1 / fLP_CLK  
.
2) Not subject to production test, specified by design  
Datasheet  
107  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
29.2.4  
VDDEXT Voltage Regulator 5.0V  
Table 32  
VDDEXT Regulator Active Mode  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Specified Output  
Current  
IVDDEXT  
0
-
-
-
40  
mA  
P_2.3.1  
P_2.3.2  
P_2.3.3  
Required decoupling  
capacitance  
CVDDEXT1 330  
CVDDEXT2 100  
1000 nF  
1000 nF  
ESR<1Ω  
1)  
Required buffer  
capacitance for stability  
(load jumps)  
Output voltage  
including line and load  
regulation - Load 1  
VDDEXT_LD1 4.9 5.0  
5.1  
5.1  
V
V
Iload20mA; Vs5.5V  
P_2.3.4  
Output voltage  
including line and load  
regulation - Load 2  
VDDEXT_LD2 4.9 5.0  
Iload40mA; -40°CTj150°C;  
Vs5.5V  
P_2.3.45  
Output Drop - Load 1  
Output Drop - Load 2  
Load Regulation  
Vs-  
-
-
50  
-
+300 mV 2) 0mAIload20mA; 3VVs5V;  
C=CVDDEXT1+CVDDEXT2  
P_2.3.5  
P_2.3.17  
P_2.3.6  
VDDEXT_L1  
Vs-  
+600 mV 20mA<Iload40mA; 3VVs5V;  
C=CVDDEXT1+CVDDEXT2  
VDDEXT_L2  
VDDEXTLOR -100 -  
10  
mV 2) 0mAIload40mA; Vs5.5V;  
C=CVDDEXT1+CVDDEXT2  
Line Regulation - Load 1 VVDDEXTLIR -50  
Line Regulation - Load 2 VVDDEXTLIR -60  
Power Supply Rejection PSRRVDDEX 50  
-
-
-
50  
60  
-
mV 2) 0mAIload20mA; 5.5VVs28V P_2.3.7  
mV 20mA<Iload40mA; 5.5VVs28V P_2.3.50  
dB 1) 0mAIload20mA; Vr=2Vpp ;  
Vs=13.5V; 0kHz<f1kHz  
P_2.3.8  
P_2.3.9  
Ratio  
T1  
3)  
Under Voltage  
Shutdown  
VVDDEXTUV 1.55 1.9  
2.1  
V
1)  
Over Current Limitation IVDDEXTOC 100 250  
380  
24  
mA  
P_2.3.10  
P_2.3.11  
VDDEXT output  
RVDDEXT_DI 16 20  
kOh  
m
discharge resistance  
SCHG  
1) Not subject to production test, specified by design  
2) Tested with 10 uA.  
3) When condition is met, the bit VDDEXT_CTRL.VDDEXT_UV_IS will be set.  
Datasheet  
108  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
Table 33  
Thermal Shutdown (Junction Temperature)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
1)  
Thermal shutdown  
temp.  
TjSD  
180 200  
215  
°C  
P_2.3.48  
P_2.3.49  
1)  
Thermalshutdownhyst. ΔT  
5
10  
15  
K
1) Not subject to production test, specified by design  
Table 34  
VDDEXT Regulator Low Current Mode  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Specified Output  
Current  
IVDDEXT_LCM  
0
-
5
mA  
P_2.3.28  
P_2.3.29  
Output Voltage  
including line and load  
regulation  
VDDEXT_LCM 4.6 5.0  
5.1  
V
Iload5mA; Vs5.5V  
Output Drop  
Vs-  
-
50  
+300 mV Iload5mA; 3VVs5V;  
C=CVDDEXT1+CVDDEXT2  
P_2.3.30  
P_2.3.31  
VDDEXT_LCM  
Load Regulation  
Line Regulation  
VDDEXTLOR_ -250 -  
250  
300  
-
mV 1) 0mAIload5mA; Vs5.5V;  
C=CVDDEXT1+CVDDEXT2  
mV 1) 0mAIload5mA; 5.5VVs28V P_2.3.32  
LCM  
VVDDEXTLIR_ -300 -  
LCM  
Power Supply Rejection PSRRVDDEX 50  
Ratio  
-
dB 2) 0mAIload5mA; Vr=2Vpp ;  
Vs=13.5V; 0kHz<f1kHz  
P_2.3.33  
T_LCM1  
1) Tested with 10 uA.  
2) Not subject to production test, specified by design  
Datasheet  
109  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
29.2.5  
VPRE Voltage Regulator (PMU Subblock) Parameters  
Table 35  
Functional Range  
Symbol  
Parameter  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
1)  
Specified Output  
Current  
IVPRE  
0
-
90  
mA  
P_2.4.1  
1) Not subject to production test, specified by design  
29.2.5.1 Load Sharing Scenario of VPRE Regulator  
The figure below shows the possible load sharing scenario of VPRE regulator.  
VS  
VPRE  
max. 90 mA  
VDDP - 5V  
1: max. 50 mA  
2: max. 70 mA  
VDDP  
CVDDP  
GND (Pin 43)  
VDDC  
VDDC - 1.5V  
max. 20 mA  
CVDDC  
GND (Pin 43)  
Load Sharing VPRE – Scenarios 1 & 2  
Load_Sharing_VPRE.vsd  
Figure 44 Load Sharing Scenario of VPRE and VDDP Regulator  
Datasheet  
110  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
29.2.6  
Power Down Voltage Regulator (PMU Subblock) Parameters  
The PMU Power Down voltage regulator consists of two subblocks:  
Power Down Pre regulator: VDD5VPD  
Power Down Core regulator: VDD1V5_PD (Supply used for GPUDATAxy registers)  
Both regulators are used as purely internal supplies. The following table contains all relevant parameter:  
Table 36  
Functional Range  
Symbol  
Parameter  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
1)  
Power-On Reset  
Threshold  
VDD1V5_PD_ 1.2  
-
1.5  
V
I
=internal load connected P_2.5.1  
load  
to VDD1V5_PD  
RSTTH  
1) Not subject to production test, specified by design  
Datasheet  
111  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
29.3  
System Clocks  
29.3.1  
Electrical Characteristics Oscillators and PLL  
Table 37  
PMU Oscillators (Power Management Unit)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Frequency of LP_CLK  
fLP_CLK  
17 20  
23  
MHz this clock is used at startup and P_3.1.1  
can be used in case the PLL fails  
Frequency of LP_CLK2 fLP_CLK2  
Table 38  
70 100  
130  
kHz this clock is used for cyclic wake P_3.1.2  
CGU Oscillator (Clock Generation Unit Microcontroller)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Short term frequency  
deviation  
fTRIMST  
-0.4  
%
-
+0.4 MHz within any 100 ms, e.g. after  
synchronization to a LIN frame  
+1.49 MHz Including temperature and  
P_3.1.3  
P_3.1.4  
%
Absolute accuracy  
fTRIMABSA  
-
-
1.49  
%
%
lifetime drift and supply  
variation; Tj150°C  
1) startup time OSC from Sleep P_3.1.5  
Mode, power supply stable  
CGU-OSC Start-up time tOSC  
-
-
10  
µs  
1) Not subject to production test, specified by design  
Table 39  
PLL (Clock Generation Unit Microcontroller)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
1) 2)  
VCO reference  
frequency range  
fREF  
0.8  
1
1.27 MHz  
P_3.1.25  
P_3.1.21  
2)  
VCO frequency (tuning) fVCO  
48  
-
160  
MHz  
range  
Input frequency range fOSC  
XTAL1 input freq. range fOSCHP  
4
4
5
-
-
-
-
40  
16  
40  
MHz 3) 4) 2) External input clock mode P_3.1.6  
MHz 3) 2) External crystal mode  
P_3.1.23  
P_3.1.7  
3) 2)  
Output freq. range  
fPLL  
MHz  
2)  
Free-running frequency fVCOfree  
21.5 38  
MHz  
P_3.1.24  
Datasheet  
112  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
Table 39  
PLL (Clock Generation Unit Microcontroller) (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
2)  
Input clock high/low  
time  
thigh/low  
10  
-
-
ns  
P_3.1.8  
Accumulated jitter with jacc_ext  
-
-
8
ns  
2) for K2=2; this parameter value P_3.1.10  
external oscillator  
is only valid with the  
combination of an external  
quartz oscillator (e.g. 5 MHz)  
Lock-in time  
tL  
-
-
260  
µs  
2) this parameter represents the P_3.1.11  
duration from module power-  
on to assertion of lock signal  
1) oscillator or clock inaccuracy needs to be taken into accout, do not select a nominal frequency and PDIV in a  
combination that fREF has exactly min or max value  
2) Not subject to production test, specified by design  
3) specified limits for fVCO and fREF need to be fulfilled, restrictions to PDIV, NDIV, K2DIV settings apply  
4) Above 24MHz the hysteresis of the OSC_HP module needs to be switched off (see register SCU_XTAL_CTRL).  
29.3.2  
External Clock Parameters XTAL1, XTAL2  
Table 40  
Functional Range  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
1) 2)  
Input voltage range  
limits for signal on  
XTAL1  
VIX1_SR  
-1.7  
+
-
1.7  
V
P_3.2.1  
VDDC  
Input voltage  
VAX1_SR  
0.3x -  
-
V
3) 4) Peak-to-peak voltage  
P_3.2.2  
(amplitude) on XTAL1  
VDDC  
XTAL1 input current  
IIL  
-20  
4
-
-
20  
16  
µA 0V<VIN<VDDC  
P_3.2.3  
P_3.2.4  
5) 6)  
Oscillator frequency -  
External input clock  
mode  
fOSC_EXT  
MHz  
4)  
Oscillator frequency -  
External crystal (or  
resonator) mode  
fOSC_XTAL  
4
-
16  
MHz  
P_3.2.5  
5) 7) 4) 2)  
High time  
Low time  
Rise time  
Fall time  
High time  
tH  
6
6
-
-
-
ns  
P_3.2.6  
P_3.2.7  
P_3.2.8  
P_3.2.9  
P_3.2.10  
5) 7) 4) 2)  
tL  
-
-
ns  
5) 7) 4) 2)  
tR  
8
8
-
8
8
-
ns  
5) 7) 4) 2)  
tF  
-
ns  
5) 8) 4) 2)  
tH_PLLNM  
12  
ns  
Datasheet  
113  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
Table 40  
Functional Range (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
5) 8) 4) 2)  
Low time  
Rise time  
Fall time  
tL_PLLNM  
tR_PLLNM  
tF_PLLNM  
12  
-
-
-
ns  
P_3.2.11  
P_3.2.12  
P_3.2.13  
5) 8) 4) 2)  
7
7
ns  
5) 8) 4) 2)  
-
7
7
ns  
1) Overload conditions must not occur on pin XTAL1. This Parameter is not valid for stop mode.  
2) Not subject to production test, specified by design  
3) The amplitude voltage VAX1 refers to the offset voltage VOFF. This offset voltage must be stable during the operation  
and the resulting voltage peaks must remain within the limits defined by VIX1  
.
4) Default hysteresis settings (SCU_XTAL_CTRL.XTALHYSEN = 1B, SCU_XTAL_CTRL.XTALHYSCTRL = 11B)  
5) Valid for rectangular full-swing input signals.  
6) Hysteresis disabled (SCU_XTAL_CTRL.XTALHYSEN=0B)  
7) This performance is only valid for Prescaler Mode (VCO Bypass mode).  
8) This performance is only valid for PLL Normal Mode.  
Datasheet  
114  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
29.4  
Flash Parameters  
This chapter includes the parameters for the 48 KB embedded flash module (incl. config sector).  
29.4.1  
Flash Characteristics  
Table 41  
Flash Characteristics  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
ns  
1) 3V<Vs<28V  
Number  
Min. Typ. Max.  
Read time  
tread_ac  
-
-
-
75  
P_4.1.22  
P_4.1.1  
Programming time per tPR  
3
3.5  
ms 1) 3V<Vs<28V  
128 Byte page  
Programming time per tPR_FW  
128 Byte page incl.  
Firmware routine  
-
-
4
ms 1) 3V<Vs<28V  
P_4.1.20  
runtime for program  
operation  
Erase time per  
sector/page  
tER  
-
-
4
-
4.5  
5
ms 1) 3V<Vs<28V  
ms 1) 3V<Vs<28V  
P_4.1.2  
Erase time per  
sector/page incl.  
Firmware routine  
runtime for erase  
operation  
tER_FW  
P_4.1.21  
Data retention time  
tRET  
tRET  
20  
50  
30  
10  
32  
-
-
-
-
-
-
-
-
-
-
year 1) 1,000 erase / program cycles P_4.1.3  
s
Data retention time  
year 2) 1) 1,000 erase / program  
cycles; Tj=30°C  
P_4.1.4  
s
Flash erase endurance NER  
for user sectors  
kcyc 1) Data retention time 5 years  
les  
P_4.1.5  
Flash erase endurance NSEC  
for security pages  
cycl 1) Data retention time 20 years; P_4.1.6  
es  
Tj=25°C  
3) 1)  
Drain disturb limit  
NDD  
kcyc  
les  
P_4.1.7  
1) Not subject to production test, specified by design  
2) Derived by extrapolation of lifetime tests.  
3) This parameter limits the number of subsequent programming operations within a physical sector without a given  
page in this sector being (re-)programmed. The drain disturb limit is applicable if wordline erase is used repeatedly.  
For normal sector erase/program cycles this limit will not be violated. For data sectors the integrated EEPROM  
emulation firmware routines handle this limit automatically, for wordline erases in code sectors (without EEPROM  
emulation) it is recommended to execute a software based refresh, which may make use of the integrated random  
number generator NVMBRNG to statistically start a refresh.  
Datasheet  
115  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
29.5  
Parallel Ports (GPIO)  
29.5.1  
Description of Keep and Force Current  
VDDP  
keeper  
current  
PU Device  
PUDSEL  
P2.x  
P1.x  
P0.x  
\PUDSEL  
keeper  
current  
PD Device  
VSS  
Figure 45 Pull-Up/Down Device  
U
GPIO  
Logical „1"  
undefined  
Logical 0"  
7.5 KOhm (equivalent)  
(1.5V / 200uA) *)  
VIH  
VIL  
2.33 KOhm (equivalent)  
(3.5V / 1.5mA) *)  
I
IPUK  
IPUF  
*) value for port 0 and 1, as example  
Figure 46 Pull-Up Keep and Forced Current  
Datasheet  
116  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
U
GPIO  
Logical „1"  
undefined  
Logical 0"  
2.33 KOhm (equivalent)  
(3.5V / 1.5mA) *)  
VIH  
VIL  
7.5 KOhm (equivalent)  
(1.5V / 200uA) *)  
I
IPDK  
IPDF  
*) value for port 0 and 1, as example  
Figure 47 Pull-Down Keep and Force Current  
29.5.2  
DC Parameters Port 0, Port 1, TMS, Reset  
Note:  
Operating Conditions apply.  
Keeping signal levels within the limits specified in this table ensures operation without overload  
conditions. For signal levels outside these specifications, also refer to the specification of the  
overload current IOV  
.
Table 42  
DC Characteristics Port0, Port1, TMS, Reset  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Input low voltage  
Input high voltage  
Input Hysteresis  
VIL  
-0.3  
-
0.3 x  
VDDP  
V
2.55VVDDP<5.5V  
2.55VVDDP<5.5V  
P_5.2.1  
P_5.2.2  
P_5.2.3  
VIH  
0.7x -  
VDDP  
VDDP + V  
0.3  
HYS  
0.11 -  
x
VDDP  
-
V
V
1) 4.5VVDDP5.5V; Series  
Resistance=0Ω  
Input Hysteresis  
HYSexten 0.04 -  
d
-
1) 2.55VVDDP<4.5V; Series  
Resistance=0Ω  
P_5.2.16  
x
VDDP  
2) 3)  
Output low voltage  
Output low voltage  
Output high voltage  
VOL  
VOL  
VOH  
-
-
-
-
-
1.0  
0.4  
-
V
V
V
I IOLmax ; 2.55VVDDP<5.5V P_5.2.4  
OL  
2) 3)  
2) 3)  
I IOLnom ; 2.55VVDDP<5.5V P_5.2.5  
OL  
VDDP  
I IOHmax ; 2.55VVDDP<5.5V P_5.2.6  
OH  
- 1.0  
2) 3)  
Output high voltage  
VOH  
IOZ2  
VDDP  
-
-
V
I IOHnom ; 2.55VVDDP<5.5V P_5.2.7  
OH  
- 0.4  
Input leakage current  
Input leakage current  
-5  
-
-
+5  
µA 4) Tj85°C; 0V<VIN<VDDP  
µA 4) Tj150°C; 0V<VIN<VDDP  
P_5.2.8  
P_5.2.9  
IOZ2_T_exten -15  
+15  
d
Datasheet  
117  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
Table 42  
DC Characteristics Port0, Port1, TMS, Reset (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
5)  
Pull-up level keep  
current  
IPUK  
IPUF  
IPDK  
IPDF  
-
-
-
-
-
-200 µA  
V
V
V
V
VIH  
VIL  
VIL  
VIH  
P_5.2.10  
P_5.2.11  
P_5.2.26  
P_5.2.27  
PIN  
PIN  
PIN  
PIN  
5)  
5)  
5)  
Pull-up level force  
current  
-1.5  
200  
-
-
mA  
µA  
Pull-down level keep  
current  
-
Pull-down level force  
current  
1.5  
mA  
1)  
6)  
Pin capacitance  
CIO  
-
-
10  
6
pF  
µs  
P_5.2.12  
P_5.2.13  
Reset Pin Input Filter  
Time  
Tfilt_RESET  
3
4.5  
1) Not subject to production test, specified by design  
2) The values for IOLnom, IOLmax, IOHnom, IOHmax depend on the driver strength settings (see register bit fields  
SCU_Px_POCON0.Px_PDMy) and are defined by P_5.2.20 ... P_5.2.25  
3) The maximum deliverable output current of a port driver depends on the selected output driver mode. The limit for  
pin groups must be respected (see P_1.2.9).  
4) The given values are worst-case values. In production test, this leakage current is only tested at 150ºC; other values  
are ensured by correlation. For derating, please refer to the following descriptions:  
Leakage derating depending on temperature (TJ = junction temperature [ºC]):IOZ = 0.05 x e(1.5 + 0.028xTJ) [μA]. For  
example, at a temperature of 95ºC the resulting leakage current is 3.2μA.  
Leakage derating depending on voltage level (DV = VDDP - VPIN [V]):IOZ = IOZtempmax - (1.6 x DV) [μA]  
This voltage derating formula is an approximation which applies for maximum temperature.  
5) Keep current: Limit the current through this pin to the indicated value so that the enabled pull device can keep the  
default pin level: VPIN VIH for a pull-up; VPIN VIL for a pull-down.  
Force current: Drive the indicated minimum current through this pin to change the default pin level driven by the  
enabled pull device: VPIN VIL for a pull-up; VPINVIH for a pull-down.  
These values apply to the fixed pull-devices in dedicated pins and to the user-selectable pull-devices in general  
purpose IO pins.  
6) This filter time and its variation is derived from the time base tLP_CLK = 1 / fLP_CLK  
.
Table 43  
Current Limits for Port Output Drivers  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
1)  
Output Current, Strong IOLs5  
Driver  
-
-
-
1.6  
5
mA  
mA  
mA  
V
V
V
4.5V  
4.5V  
4.5V  
P_5.2.20  
P_5.2.21  
P_5.2.22  
DDP  
DDP  
DDP  
1)  
1)  
Output Current,  
Medium Driver  
IOLm5  
1.0  
3
Output Current, Weak IOLw5  
0.25 0.5  
Driver  
Datasheet  
118  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
Table 43  
Current Limits for Port Output Drivers (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Output Current, Strong IOLs3  
Driver  
-
-
-
1.0  
3
mA 1) 2.55V<VDDP<4.5V  
mA 1) 2.55V<VDDP<4.5V  
mA 1) 2.55V<VDDP<4.5V  
P_5.2.23  
P_5.2.24  
P_5.2.25  
Output Current,  
Medium Driver  
IOLm3  
0.8  
1.8  
Output Current, Weak IOLw3  
0.15 0.3  
Driver  
1) These values apply for P_5.2.4 ... P_5.2.7: typ. values represent the "Nominal Output Current" (IOLnom, - IOHnom), max.  
values represent the "Maximum Output Current" (IOLmax, - IOHmax  
)
29.5.3  
DC Parameters Port 2  
Note:  
Operating Conditions apply.  
Keeping signal levels within the limits specified in this table ensures operation without overload  
conditions. For signal levels outside these specifications, also refer to the specification of the  
overload current IOV  
.
Table 44  
DC Characteristics Port 2  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Input low voltage  
Input high voltage  
Input Hysteresis  
VIL_P2  
VIH_P2  
HYSP2  
-0.3  
-
0.3 x  
VDDP  
V
2.55VVDDP<5.5V  
2.55VVDDP<5.5V  
P_5.3.1  
P_5.3.2  
P_5.3.3  
0.7x -  
VDDP  
VDDP + V  
0.3  
0.11 -  
x
VDDP  
-
V
V
1) 4.5VVDDP5.5V; Series  
Resistance=0Ω  
Input Hysteresis  
HYSP2_exte 0.04 -  
-
1) 2.55VVDDP<4.5V; Series  
Resistance=0Ω  
P_5.3.10  
x
nd  
VDDP  
Input leakage current  
IOZ1_P2  
-400 -  
+400 nA ; Tj85°C; 0V<VIN<VDDP  
P_5.3.4  
Input leakage current  
(extended temperature  
range)  
IOZ1_P2_T_ -1  
-
+1  
µA ; Tj150 °C ; 0V<VIN<VDDP  
P_5.3.11  
extend  
2)  
Pull-up level keep  
current  
IPUK_P2  
-
-
-30  
µA  
V
VIH  
P_5.3.5  
PIN  
Datasheet  
119  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
Table 44  
DC Characteristics Port 2 (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
2)  
Pull-up level force  
current  
IPUF_P2  
IPDK_P2  
IPDF_P2  
-750 -  
-
µA  
µA  
µA  
pF  
V
V
V
VIL  
VIL  
VIH  
P_5.3.6  
P_5.3.12  
P_5.3.13  
P_5.3.7  
PIN  
PIN  
PIN  
2)  
2)  
1)  
Pull-down level keep  
current  
30  
-
-
-
-
-
Pull-down level force  
current  
750  
10  
Pin capacitance (digital CIO_P2  
-
inputs/outputs)  
1) Not subject to production test, specified by design  
2) Keep current: Limit the current through this pin to the indicated value so that the enabled pull device can keep the  
default pin level: VPIN VIH for a pull-up; VPIN VIL for a pull-down.  
Force current: Drive the indicated minimum current through this pin to change the default pin level driven by the  
enabled pull device: VPIN VIL for a pull-up; VPINVIH for a pull-down.  
Datasheet  
120  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
29.6  
LIN Transceiver  
29.6.1  
Electrical Characteristics  
Table 45  
Bus Receiver Interface  
VS = 5.5 V to 18 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Receiver threshold  
voltage, recessive to  
dominant edge  
Vth_dom  
0.4x 0.45 x 0.53 x  
V
SAE J2602  
P_6.1.1  
VS  
VS  
VS  
Receiver dominant  
state  
VBUSdom  
Vth_rec  
-27  
-
0.4 x  
VS  
V
V
LIN Spec 2.2 (Par. 17)  
SAE J2602  
P_6.1.2  
P_6.1.3  
Receiver threshold  
voltage, dominant to  
recessive edge  
0.47 0.55 x 0.6 x  
x VS VS  
VS  
Receiver recessive state VBUSrec  
0.6x -  
VS  
1.15 x  
VS  
V
V
1) LIN Spec 2.2 (Par. 18)  
2) LIN Spec 2.2 (Par. 19)  
P_6.1.4  
P_6.1.5  
Receiver center voltage VBUS_CNT 0.47 0.5 x 0.525  
5 x VS  
x VS  
VS  
Receiver hysteresis  
VHYS  
0.07 0.12 x 0.175  
VS VS x VS  
0.4x 0.5 x 0.6 x  
V
3) LIN Spec 2.2 (Par. 20)  
P_6.1.6  
P_6.1.7  
Wake-up threshold  
voltage  
VBUS,wk  
V
VS  
VS  
VS  
Dominant analog filter tWK_ana,bus  
time for bus wake-up  
3
-
15  
µs  
µs  
analog filtertime of transceiver P_6.1.88  
Dominant time for bus tWK,bus  
wake-up  
30  
-
150  
including analog and digital  
filter time. Digital filter time can  
be adjusted by  
P_6.1.8  
PMU.CNF_WAKE_FILTER  
1) Maximum limit specified by design.  
2) VBUS_CNT = (Vth_dom +Vth rec)/2  
3) VHYS = VBUSrec - VBUSdom  
Datasheet  
121  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
Table 46  
Bus Transmitter Interface  
VS = 5.5 V to 18 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
VTxD=high Level  
Number  
Min. Typ. Max.  
Bus recessive output  
voltage  
VBUS,ro  
0.8x -  
VS  
V
P_6.1.9  
VS  
Bus short circuit current IBUS,sc  
40 100  
150  
mA Current Limitation for driver  
dominant state driver on  
P_6.1.10  
VBUS=18V; LIN Spec 2.2 (Par. 12)  
Leakage current  
IBUS_NO_GN  
-
-450  
0
µA LIN Spec 2.2 (Par. 15); VBUS=-12V; P_6.1.11  
Vs=0V  
100  
0
D
Leakage current  
Leakage current  
Leakage current  
IBUS_NO_BA  
-
10  
-
20  
-
µA LIN Spec 2.2 (Par. 16); VBUS=18V; P_6.1.12  
Vs=0V  
T
IBUS_PAS_do -1  
mA LIN Spec 2.2 (Par. 13); VBUS=0V; P_6.1.13  
Vs=18V  
m
IBUS_PAS_re  
-
-
20  
µA LIN Spec 2.2 (Par. 14); VBUS=18V; P_6.1.14  
Vs=8V  
c
Bus pull-up resistance RBUS  
20 30  
47  
kOh Normal mode LIN Spec 2.2 (Par. P_6.1.15  
m
26), also present in Sleep mode  
Table 47  
AC Characteristics - Transceiver Normal Slope Mode  
VS = 5.5 V to 18 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Propagation delay bus td(L),R  
dominant to RxD LOW  
0.1  
0.1  
-2  
1
1
-
6
6
2
-
µs  
µs  
µs  
LIN Spec 2.2 (Param. 31)  
LIN Spec 2.2 (Param. 31)  
LIN Spec 2.2 (Par. 32);  
P_6.1.16  
P_6.1.17  
P_6.1.18  
Propagation delay bus td(H),R  
recessive to RxD HIGH  
Receiver delay  
symmetry  
tsym,R  
tduty1  
tsym,R=td(L),R - td(H),R  
Duty cycle D1 Normal  
Slope Mode(for worst  
case at 20 kbit/s)  
0.39 -  
6
1) duty cycle 1, LIN Spec 2.2 (Par. P_6.1.19  
27); D1=tbus_rec(min)/2 tbit  
THDom(max)=0.581xVS ;  
THRec(max)=0.744xVS ;  
5.5VVs18V; tbit=50µs  
;
Duty cycle D2 Normal  
Slope Mode(for worst  
case at 20 kbit/s)  
tduty2  
-
-
0.581  
1) duty cycle 2, LIN Spec 2.2 (Par. P_6.1.20  
28); D2=tbus_rec(max)/2 tbit  
THDom(max)=0.284xVS ;  
THRec(max)=0.422xVS ;  
5.5VVs18V; tbit=50µs  
;
Datasheet  
122  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
1) Bus load concerning LIN Spec. 2.2: Load 1 = 1 nF / 1 kΩ = CBUS / RBUS, Load 2 = 6.8 nF / 660 Ω = CBUS / RBUS, Load 3 = 10  
nF / 500 Ω = CBUS / RBUS  
Table 48  
AC Characteristics - Transceiver Low Slope Mode  
VS = 5.5 V to 18 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Propagation delay bus td(L),R_LSM 0.1  
dominant to RxD LOW  
1
1
-
6
6
2
-
µs  
µs  
µs  
LIN Spec 2.2 (Param. 31)  
LIN Spec 2.2 (Param. 31)  
P_6.1.21  
P_6.1.22  
P_6.1.23  
Propagation delay bus td(H),R_LSM 0.1  
recessive to RxD HIGH  
Receiver delay  
symmetry  
tsym,R_LSM -2  
LIN Spec 2.2 (Par. 32);  
tsym,R=td(L),R - td(H),R  
1) duty cycle 3 LIN Spec 2.2 (Par. P_6.1.24  
Duty cycle D3(for worst tduty1_LSM 0.41 -  
case at 10.4 kbit/s)  
7
29); D3=tbus_rec(min)/2 tbit  
THDom(max)=0.616xVS ;  
THRec(max)=0.778xVS ;  
5.5VVs18V; tbit=96µs  
;
Duty cycle D4(for worst tduty2_LSM  
-
-
0.590  
1) duty cycle 4 LIN Spec 2.2 (Par. P_6.1.25  
case at 10.4 kbit/s)  
30); D4=tbus_rec(max)/2 tbit  
THDom(max)=0.251xVS ;  
THRec(max)=0.389xVS ;  
5.5VVs18V; tbit=96µs  
;
1) Bus load concerning LIN Spec. 2.2: Load 1 = 1 nF / 1 kΩ = CBUS / RBUS, Load 2 = 6.8 nF / 660 Ω = CBUS / RBUS, Load 3 = 10  
nF / 500 Ω = CBUS / RBUS  
Table 49  
AC Characteristics - Transceiver Fast Slope Mode  
VS = 5.5 V to 18 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Propagation delay bus td(L),R_FSM 0.1  
dominant to RxD LOW  
1
1
-
6
µs  
µs  
P_6.1.26  
P_6.1.27  
P_6.1.28  
Propagation delay bus td(H),R_FSM 0.1  
recessive to RxD HIGH  
6
Receiver delay  
symmetry (LIN Spec  
V1.3 supply voltage  
range)  
tsym,R_VS_S -1.5  
1.5  
µs  
7VVs18V; tsym,R=td(L),R - td(H),R  
pecV1.3  
Receiver delay  
symmetry  
tsym,R_FSM -2.0  
-
2.0  
µs  
tsym,R=td(L),R - td(H),R  
P_6.1.42  
Datasheet  
123  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
Table 49  
AC Characteristics - Transceiver Fast Slope Mode (cont’d)  
VS = 5.5 V to 18 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Duty cycle D5(used for tduty1_FSM 0.39 -  
-
1) duty cycle 5; D1=tbus_rec(min)/2 P_6.1.29  
bit ; THDom(max)=0.581xVS ;  
62.5 kbit/s)  
5
t
THRec(max)=0.744xVS ;  
5.5VVs18V; tbit=25µs  
Duty cycle D6(used for tduty2_FSM  
62.5 kbit/s)  
-
-
0.581  
1) duty cycle 6; D2=tbus_rec(max)/2 P_6.1.30  
tbit ; THDom(max)=0.284xVS ;  
THRec(max)=0.422xVS ; tbit=25µs  
1) Bus load concerning LIN Spec. 2.2: Load 1 = 1 nF / 1 kΩ = CBUS / RBUS, Load 2 = 6.8 nF / 660 Ω = CBUS / RBUS, Load 3 = 10  
nF / 500 Ω = CBUS / RBUS  
Table 50  
AC Characteristics - Flash Mode  
VS = 5.5 V to 18 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Propagation delay bus td(L),R_FM 0.1 0.5  
dominant to RxD LOW  
6
µs  
µs  
P_6.1.31  
P_6.1.32  
P_6.1.33  
Propagation delay bus td(H),R_FM 0.1 0.5  
recessive to RxD HIGH  
6
Receiver delay  
symmetry (LIN Spec  
V1.3 supply voltage  
range)  
tsym,R_VS_S -1.0  
-
1.5  
µs  
7VVs18V; tsym,R=td(L),R - td(H),R  
pecV1_3  
Receiver delay  
symmetry  
tsym,R_FM -2.0  
-
2.0  
-
µs  
tsym,R=td(L),R - td(H),R  
P_6.1.86  
P_6.1.34  
Duty cycle D7(for worst tduty1_FM 0.39 -  
1) duty cycle D7;  
case at 115 kbit/s)for +1  
us Receiver delay  
symmetry (used for 250  
kbit/s programming)  
5
D7=tbus_rec(min)/(2 x tbit) ;  
THDom(max)=0.581xVS ;  
THRec(max)=0.744xVS ; tbit=8.7µs  
Duty cycle D8(for worst tduty2_FM  
case at 115 kbit/s)for +1  
us Receiver delay  
symmetry (used for 250  
kbit/s programming)  
-
-
0.578  
30  
1) duty cycle 8; D8=tbus_rec(max)/(2 P_6.1.35  
x tbit) ; THDom(max)=0.284xVS ;  
THRec(max)=0.422xVS ; tbit=8.7µs  
2)  
LIN input capacity  
CLIN_IN  
-
15  
pF  
P_6.1.36  
1) Bus load: Load 1 = 1 nF / 500 Ω = CBUS / RBUS  
2) Not subject to production test, specified by design  
Datasheet  
124  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
Table 51  
AC Characteristics - Other Timings  
VS = 5.5 V to 18 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
TxD dominant time out ttimeout  
Table 52  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
6
12  
20  
ms VTxD=0V  
P_6.1.37  
Thermal Shutdown (Junction Temperature)  
VS = 5.5 V to 18 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
1)  
Thermal shutdown  
temp.  
TjSD  
180 200  
215  
°C  
P_6.1.38  
P_6.1.39  
1)  
Thermalshutdownhyst. ΔT  
-
10  
-
K
1) Not subject to production test, specified by design  
Datasheet  
125  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
29.7  
High-Speed Synchronous Serial Interface  
29.7.1  
SSC Timing  
The table below provides the SSC timing in the TLE9853QX:  
Table 53 SSC Master Mode Timing (Operating Conditions apply, CL = 50 pF)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
1) 2)  
SCLK clock period  
t0  
2 x  
-
-
V
>2.7V  
P_7.1.1  
DDP  
TSSC  
2)  
2)  
2)  
MTSR delay from SCLK t1  
10  
10  
15  
-
-
-
-
-
-
ns  
ns  
ns  
V
V
V
>2.7V  
P_7.1.2  
P_7.1.3  
P_7.1.4  
DDP  
DDP  
DDP  
MRST setup to SCLK  
t2  
t3  
>2.7V  
>2.7V  
MRST hold from SCLK  
1) TSSCmin = TCPU = 1/fCPU  
.
If fCPU = 20 MHz, t0 = 100 ns. TCPU is the CPU clock period.  
2) Not subject to production test, specified by design  
t0  
SCLK1)  
t1  
t1  
1)  
MTSR  
t2  
t3  
Data  
valid  
MRST1)  
t1  
1) This timing is based on the following setup: CON.PH = CON.PO = 0.  
SSC_Tmg1  
Figure 48 SSC Master Mode Timing  
Datasheet  
126  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
29.8  
Measurement Unit  
29.8.1  
Electrical Characteristics  
Table 54  
ADC1 - Battery / Supply Voltage Measurement VBAT_SENSE, VS  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Input to output voltage ATTVBAT_SE  
-
0.047  
-
P_8.1.10  
attenuation:  
BAT_SENSE/VS  
NSE, ATTVS  
V
Nominal operating  
input voltage range  
VBAT_SENSE/VS  
VBAT_SENSE,  
range, VS,  
0
-
25.77  
200  
300  
V
1) Max. value corresponds to typ. P_8.1.11  
ADC full scale input; calculated:  
typ. VBG/ typ. ATTVBAT_SENSE  
range  
AccuracyofVBAT_SENSE/VS ΔVBAT_SEN -200 -  
after calibration - with  
IIR filter  
mV -40°CTj150°C; 5.5VVs28V;  
ADC1_FILTCOEFF0_13.CHx=11B  
; fADCI=fsys_max  
P_8.1.12  
P_8.1.49  
,
SE_IIR  
ΔVS_IIR  
AccuracyofVBAT_SENSE/VS ΔVBAT_SEN -300 -  
after calibration SE, ΔVS  
mV -40°CTj150°C; 5.5VVs28V;  
fADCI=fsys_max  
1) Not subject to production test, specified by design  
Table 55  
ADC1 - Monitoring Input Voltage Measurement VMONx  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Input to output voltage ATTVMONx  
-
0.039  
-
P_8.1.13  
attenuation: VMONx  
Nominal operating  
input voltage range  
VMONx  
VMONx,range  
0
-
31.05  
V
1) Max. value corresponds to typ. P_8.1.14  
ADC full scale input; calculated:  
typ. VBG/ typ. ATTVMONx  
1) Not subject to production test, specified by design  
Datasheet  
127  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
Table 56  
ADC1 - Port 2.x Voltage Measurement V2.x  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Input to output voltage ATT2.x  
-
0.227  
-
P_8.1.15  
attenuation: VPort2.x  
Nominal operating  
input voltage range  
VPort2.x  
VPort2.x,rang  
0
-
VDDPOU  
V
1) Max. value corresponds to typ. P_8.1.16  
ADC full scale input; calculated:  
typ. VBG/ typ. ATT2.x  
e
T
1) Not subject to production test, specified by design  
Table 57  
ADC1 - OPA Voltage Measurement VOPA  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Input to output voltage ATTOPA  
attenuation: VOPA  
-
0.265  
-
P_8.1.36  
Nominal operating  
VOPA,range  
0
-
4.57  
V
1) Max. value corresponds to typ. P_8.1.37  
input voltage range VOPA  
ADC full scale input; calculated:  
typ. VBG/ typ. ATTOPA  
Accuracy of VOPA sense ΔVOPA_IIR - 75  
after calibration - with  
IIR filter 2)  
-
-
75  
95  
mV VOP1=0V; VOP2=0V; 5.5VVs28V; P_8.1.38  
ADC1_FILTCOEFF0_13.CHx=11B  
; CSA gain=40 ; fADCI=fsys_max  
Accuracy of VOPA sense ΔVOPA  
-95  
mV VOP1=0V; VOP2=0V; 5.5VVs28V; P_8.1.52  
CSA gain=40 ; fADCI=fsys_max  
after calibration 2)  
1) Not subject to production test, specified by design  
2) CSA + ADC1 (i.e. P_8.1.38 includes P_13.1.5 and P_13.1.7)  
Table 58  
ADC2 - Supply Voltage Measurement VS  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Input to output voltage ATTVS_ADC  
-
0.039  
-
P_8.1.1  
attenuation: VS  
2
Nominal operating  
VS,ADC2  
3
-
31.05  
V
1) Max. value corresponds to typ. P_8.1.2  
input voltage range VS  
ADC full scale input; calculated:  
typ. VBG/ typ. ATTVS_ADC2  
Accuracy of VS after  
ΔVS,ADC2 -320 -  
320  
mV -40°CTj150°C; 5.5VVs28V  
P_8.1.3  
calibration  
1) Not subject to production test, specified by design  
Datasheet  
128  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
Table 59  
ADC2 - Supply Voltage Measurement VSD  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Input to output voltage ATTVSD_AD  
-
0.039  
-
P_8.1.44  
attenuation: VSD  
C2  
Nominal operating  
VSD,ADC2  
3
-
31.05  
V
1) Max. value corresponds to typ. P_8.1.39  
input voltage range VSD  
ADC full scale input; calculated:  
typ. VBG/ typ. ATTVSD_ADC2  
Accuracy of VSD after  
ΔVSD,ADC2 -320 -  
320  
mV -40°CTj150°C; 5.5VVs28V  
P_8.1.40  
calibration  
1) Not subject to production test, specified by design  
Table 60  
ADC2 - Supply Voltage Measurement VCP  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Input to output voltage ATTVCP_AD  
-
0.023  
-
P_8.1.41  
attenuation: VCP  
C2  
Nominal operating  
VCP,ADC2  
3
-
52.65  
V
1) 2) Max. value corresponds to P_8.1.42  
input voltage range VCP  
typ. ADC full scale input;  
calculated: typ. VBG/ typ.  
ATTVCP_ADC2  
Accuracy of VCP after  
ΔVCP,ADC2 -650 -  
650  
mV -40°CTj150°C; 5.5VVs28V  
P_8.1.43  
calibration  
1) This is the theoretical nominal full-scale input range of the measurement chain. The allowed input voltage range at  
the pin is given in the "Absolute Maximum Ratings" section.  
2) Not subject to production test, specified by design  
Table 61  
ADC2 - VDDEXT Voltage Measurement VDDEXT  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Input to output voltage ATTVDDEXT  
-
0.195  
-
P_8.1.17  
attenuation: VDDEXT  
Nominal operating  
input voltage range  
VDDEXT  
VDDEXT,rang  
0
-
5.97  
V
1) Max. value corresponds to typ. P_8.1.18  
ADC full scale input; calculated:  
typ. VBG/ typ. ATTVCP_VDDEXT  
e
1) Not subject to production test, specified by design  
Datasheet  
129  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
Table 62  
ADC2 - Pad Supply Voltage Measurement VVDDP  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Input-to-output voltage ATTVDDP  
-
0.195  
-
P_8.1.4  
attenuation: VDDP  
Nominal operating  
input voltage range  
VDDP  
VDDP,range  
0
-
VDDPOU  
T + 0.3  
V
1) Max. value corresponds to typ. P_8.1.5  
ADC full scale input; calculated:  
typ. VBG/ typ. ATTVDDP  
1) Not subject to production test, specified by design  
Table 63  
ADC2 - Reference Voltage Measurement VPMUBG  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
1)  
Input-to-output voltage ATTPMUVBG  
-
0.75  
-
P_8.1.6  
attenuation: VBG  
Nominal operating  
input voltage range VBG  
VPMUBG,ran 0.8  
-
VDDC  
0.1  
-
V
V
1) Max. value corresponds to typ. P_8.1.7  
ADC full scale input; calculated:  
typ. VBG/ typ. ATTVBG  
ge  
Value of ADC2-VPMUBG  
measurement after  
calibration  
VPMUBG  
0.9 1.0  
1.1  
P_8.1.45  
1) Not subject to production test, specified by design  
Table 64  
ADC2 - Core supply Voltage Measurement VDDC  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Input-to-output voltage ATTVDDC  
-
0.75  
-
P_8.1.8  
attenuation: VDDC  
Nominal operating  
input voltage range  
VDDC  
VDDC,range 0.6  
-
VDDC + V  
0.1  
1) Max. value corresponds to typ. P_8.1.9  
ADC full scale input; calculated:  
typ. VBG/ typ. ATTVDDC  
1) Not subject to production test, specified by design  
Datasheet  
130  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
29.8.2  
Central Temperature Sensor Module  
29.8.2.1 Electrical Characteristics  
Table 65  
Temperature Sensor Specifications  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Output voltage VTEMP at  
T0=0ºC (273 K)  
a
-
0.628  
-
V
1) T0=0°C  
P_8.2.1  
P_8.2.2  
1)  
Temperature sensitivity b  
b
-
2.31  
-
mV/  
K
Accuracy_1  
Accuracy_2  
Accuracy_3  
Acc_1  
-10  
-10  
-5  
-
-
-
10  
10  
5
°C  
°C  
°C  
2) -40°C<Tj<85°C  
1) 125°C<Tj<150 °C  
85°C<Tj<125°C  
P_8.2.3  
P_8.2.4  
P_8.2.5  
Acc_2  
Acc_3  
1) Not subject to production test, specified by design  
2) Accuracy with reference to on-chip temperature calibration measurement, valid for Mode1  
Datasheet  
131  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
29.9  
ADC1 (10-Bit)  
29.9.1  
Electrical Characteristics ADC1 (10-Bit)  
These parameters describe the conditions for optimum ADC performance.  
Note:  
Operating Conditions apply.  
Table 66  
Timing and AC Specification  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
1)  
Analog clock frequency fADCI  
5
-
MHz  
P_9.2.1  
1) The limit values for fADCI must not be exceeded when selecting the peripheral frequency and the prescaler setting.  
Table 67  
DC Specification  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
DNL error  
INL error  
Gain error  
EADNL  
EAINL  
-2  
-
-
-
2
LSB  
P_9.2.8  
P_9.2.9  
P_9.2.10  
-2  
2
LSB Tj150°C  
% of 1) 2) Already calibrated by  
EAGAIN  
-1.2  
1.2  
FSR implemented calibration unit  
Offset error  
EAOFF  
-2.5  
-10  
-2  
-
-
-
2.5  
10  
2
LSB 2) already calibrated  
LSB 2) already calibrated  
P_9.2.11  
P_9.2.33  
P_9.2.12  
Total unadjusted error EATUE  
2)  
Cross-coupling  
Attenuation between LV  
Channels  
EACCOUP  
LSB  
2)  
Input capacitance of a CAINT_HVI  
HV analog input  
-
-
-
-
200  
200  
fF  
P_9.2.13  
P_9.2.19  
2)  
Input capacitance of a CAINT_LVI  
fF  
LV analog input  
1) This Gain error is calibrated by IFX end of line  
2) Not subject to production test, specified by design  
Datasheet  
132  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
29.10  
High-Voltage Monitoring Input  
29.10.1 Electrical Characteristics  
Table 68  
Electrical Characteristics Monitoring Input  
VS = 5.5 V to 28 V; Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Wake-up/monitoring  
threshold voltage  
VMONth  
0.4x 0.5 x 0.6 x  
V
V
without external serial resistor P_10.1.1  
Rs (with Rs:dV = IPD/PU* Rs);  
VS  
VS  
VS  
Threshold hysteresis  
VMONth,hys 0.02 0.06 x 0.12 x  
in all modes; without external P_10.1.2  
x VS VS  
VS  
serial resistor Rs (with Rs:dV =  
IPD/PU* Rs);  
Pull-up current  
IPU, MON  
IPD, MON  
ILK,MON  
tFT,MON  
-20 -10  
-5  
20  
2
µA VMON_IN=0.6*Vs  
P_10.1.3  
P_10.1.4  
P_10.1.5  
P_10.1.6  
Pull-down current  
Input leakage current  
Wake-up filter time  
5
-2  
-
10  
-
µA VMON_IN=0.4*Vs  
µA 1) Tj<150°C; 0V<VMON_IN<28V  
2)  
20  
-
µs  
1) Valid for enabled module. Pull-up and pull down current functionality disabled; ADC1 off.  
2) With pull-up, pull down current disabled.  
Datasheet  
133  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
29.11  
High Side Switch  
29.11.1 Electrical Characteristics  
Table 69  
Operating areas  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
PWM frequency of HS  
with Slew Rate Control  
fPWM_W_SR  
0
-
10  
kHz 1) Frequency must be  
configured in the PWM  
Generator  
P_11.1.1  
PWM frequency of HS  
without Slew Rate  
Control  
fPWM_W/O_S  
0
-
25  
kHz 2) 1) Frequency must be  
configured in the PWM  
Generator (minimum ON / OFF  
time 5 us)  
P_11.1.2  
R
1) Not subject to production test, specified by design  
2) Referring to a 47Ohm series resistor to charge an external power mos gate.  
Table 70  
Output HS  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
ON-State Resistance  
RON  
3.5 10  
15  
Oh Vs=13.5V; Ids=100mA  
P_11.1.3  
m
Output leakage Current Ileakage  
-1.5  
-
-
-
µA Output OFF; -0.3V<VHS<VS  
P_11.1.4  
P_11.1.5  
Output Slew Rate  
(rising) with slow Slew  
Rate setting (Slew Rate  
1)  
SRraise_SR1 1.5  
SRfall_SR1 -7  
SRraise_SR2 21  
SRfall_SR2 -30  
7
V/µs 20% to 80% of VS; CL=1nF;  
RL=300Ω  
Output Slew Rate  
(falling) with slow Slew  
Rate setting (Slew Rate  
1)  
-
-
-
-1.5  
80  
V/µs 80% to 20% of VS; CL=1nF;  
RL=300Ω  
P_11.1.6  
P_11.1.7  
P_11.1.8  
Output Slew Rate  
(rising) with fast Slew  
Rate setting (Slew Rate  
2)  
V/µs 20% to 80% of VS; CL=1nF;  
RL=300Ω  
Output Slew Rate  
(falling) with fast Slew  
Rate setting (Slew Rate  
2)  
-3  
V/µs 80% to 20% of VS; CL=1nF;  
RL=300Ω  
Datasheet  
134  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
Table 70  
Output HS (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Output Slew Rate  
(rising) with Slew Rate  
setting for low Emission  
(Slew Rate 3)  
SRraise_SR3 0.3  
-
1.8  
V/µs 20% to 80% of VS; CL=1nF;  
RL=300Ω  
P_11.1.59  
Output Slew Rate  
SRfall_SR3 -1.8  
-
-0.3  
V/µs 80% to 20% of VS; CL=1nF;  
RL=300Ω  
P_11.1.60  
(falling) with Slew Rate  
setting for low Emission  
(Slew Rate 3)  
Turn ON Delay time  
(Slew Rate 1)  
tIN-HS_SR1 1.1 2.2  
3.6  
8.8  
16  
µs  
µs  
µs  
ON=1 to 20% of VS; CL=1nF;  
RL=300Ω  
P_11.1.9  
Turn ON time (Slew Rate tON_SR1  
1)  
2.1  
5
-
-
HS_ON=1 to 80% of VS; CL=1nF; P_11.1.10  
RL=300Ω  
Turn OFF time (Slew  
Rate 1)  
tOFF_SR1  
HS_ON=0 to 20% of VS; CL=1nF; P_11.1.11  
RL=300Ω  
Turn ON Delay time  
(Slew Rate 2)  
tIN-HS_SR2 0.08 0.22 0.38 µs  
ON=1 to 20% of VS; CL=1nF;  
RL=300Ω  
P_11.1.55  
Turn ON time (Slew Rate tON_SR2  
2)  
0.2  
1.1  
-
-
1.2  
2.7  
µs  
µs  
HS_ON=1 to 80% of VS; CL=1nF; P_11.1.56  
RL=300Ω  
Turn OFF time (Slew  
Rate 2)  
tOFF_SR2  
HS_ON=0 to 20% of VS; CL=1nF; P_11.1.57  
RL=300Ω  
Turn ON Delay time  
(Slew Rate 3)  
tIN-HS_SR3 3.5 8.2  
13.5 µs  
ON=1 to 20% of VS; CL=1nF;  
RL=300Ω  
P_11.1.61  
Turn ON time (Slew Rate tON_SR3  
3)  
7.8  
18  
-
-
36  
64  
µs  
µs  
HS_ON=1 to 80% of VS; CL=1nF; P_11.1.62  
RL=300Ω  
Turn OFF time (Slew  
Rate 3)  
tOFF_SR3  
HS_ON=0 to 20% of VS; CL=1nF; P_11.1.63  
RL=300Ω  
Table 71  
Overcurrent detection  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
26 40.5 56  
Overcurrent threshold Iocth0  
0,trimmed  
mA Vs=13.5V; HSx_OC_SEL=00  
mA 1) HSx_OC_SEL=00  
P_11.1.12  
P_11.1.13  
P_11.1.14  
Overcurrent threshold 0 Iocth0,hyst 2.5  
5
12  
86  
hysteresis  
Overcurrent threshold Iocth1  
51 65  
mA Vs=13.5V; HSx_OC_SEL=01  
1,trimmed  
Datasheet  
135  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
Table 71  
Overcurrent detection (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Overcurrent threshold 1 Iocth1,hyst  
hysteresis  
4
8
17  
mA 1) HSx_OC_SEL=01  
P_11.1.15  
P_11.1.16  
P_11.1.17  
P_11.1.18  
P_11.1.19  
Overcurrent threshold Iocth2  
2,trimmed  
101 134  
180  
33  
mA Vs=13.5V; HSx_OC_SEL=10  
mA 1) HSx_OC_SEL=10  
Overcurrent threshold 2 Iocth2,hyst 11 17  
hysteresis  
Overcurrent threshold Iocth3  
3,trimmed  
151 201  
270  
67  
mA Vs=13.5V; HSx_OC_SEL=11  
mA 1) HSx_OC_SEL=11  
Overcurrent threshold 3 Iocth3,hyst 22 35  
hysteresis  
Overcurrent shutdown tocft  
8
-
80  
µs  
1) HS_ON to OC_SD (including P_11.1.20  
response time  
switch-on time); RL=100;  
Vs=13.5V  
1) Not subject to production test, specified by design  
Table 72  
ON-state open load detection  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Open load threshold  
Hysteresis  
IOLONth  
0.35 -  
2.15 mA  
P_11.1.21  
P_11.1.22  
IOLONhys  
0.01 -  
5
0.3  
mA  
Table 73  
Cyclic sense mode  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Current capability  
IHS max  
40  
-
-
-
-
-
mA Sleep Mode / Stop Mode Cyclic P_11.1.23  
Operation  
sleep_pd  
ON-State Resistance  
RON,static  
-
105  
18  
-2.5  
Oh Ids=40mA  
m
P_11.1.24  
P_11.1.25  
P_11.1.26  
Output Slew Rate  
(rising)  
SRrise_cyc 0.9  
SRfal_cycl -34  
V/µs 20% to 80% of VS; RL=300;  
Vs18V  
Output Slew Rate  
(falling)  
V/µs 80% to 20% of VS; RL=300;  
Vs18V  
Datasheet  
136  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
Table 73  
Cyclic sense mode (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Delay Time CYCLIC_ON- tIN_cyc  
HS  
0.2  
-
5.6  
µs  
ON=1 to 20% of VS; RL=300;  
Vs18V  
P_11.1.27  
Turn-ON time  
Turn-OFF time  
tON_cyc  
tOFF_cyc  
1.5  
0.8  
-
-
15  
µs  
µs  
ON=1 to 80%; RL=300; Vs18V P_11.1.28  
3.4  
ON=0 to 20% of VS; RL=300;  
Vs18V  
P_11.1.29  
Datasheet  
137  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
29.12  
MOSFET Driver  
29.12.1 Electrical Characteristics  
Table 74  
MOSFET Driver Output  
VS = 4.4 V to 28 V, VSD = 5.4 V to 29 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current  
flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Gate charge current  
Gate charge current  
Gate charge current  
Gate charge current  
Gate charge current  
Gate charge current  
Ichg0  
3
7
12  
mA 1) CL=10nF; ICHARGE=0D ;  
P_12.1.80  
P_12.1.81  
P_12.1.82  
P_12.1.83  
P_12.1.84  
P_12.1.44  
P_12.1.85  
V
GSxVGS(on) ; VSD7.4V  
mA 1) CL=10nF; ICHARGE=3D ;  
GSxVGS(on) ; VSD7.4V  
mA 1) CL=10nF; ICHARGE=7D ;  
GSxVGS(on) ; VSD7.4V  
mA 1) CL=10nF; ICHARGE=15D ;  
GSxVGS(on) ; VSD7.4V  
mA 1) CL=10nF; ICHARGE=31D ;  
GSxVGS(on) ; VSD7.4V  
mA CL=10nF; ICHARGE=63D ;  
GSxVGS(on) ; VSD7.4V  
Ichg3  
8
15  
23  
V
Ichg7  
16 26  
38 53  
96 125  
260 320  
36  
V
Ichg15  
Ichg31  
Ichg63  
68  
V
154  
380  
+25 %  
V
V
Gate charge current  
dynamic average  
deviation  
Δ I  
-25  
%
-
1) Reference: typ. Ichgx; CL=10,  
33nF; SRon_SHx=165V/µs;  
VGSxVGS(on)  
chg_avg_%  
Gate discharge current Idischg0  
Gate discharge current Idischg3  
Gate discharge current Idischg7  
Gate discharge current Idischg15  
Gate discharge current Idischg31  
Gate discharge current Idischg63  
Gate discharge current Δ I  
3
8
7
12  
mA 1) CL=10nF; IDISCHARGE=0D ;  
VGSxVGS(off) ; VSD7.4V  
mA 1) CL=10nF; IDISCHARGE=3D ;  
VGSxVGS(off) ; VSD7.4V  
mA 1) CL=10nF; IDISCHARGE=7D ;  
VGSxVGS(off) ; VSD7.4V  
mA 1) CL=10nF; IDISCHARGE=15D ;  
P_12.1.86  
P_12.1.87  
P_12.1.88  
P_12.1.89  
P_12.1.90  
P_12.1.45  
15  
23  
16 26  
38 53  
96 125  
260 320  
36  
68  
V
GSxVGS(off) ; VSD7.4V  
mA 1) CL=10nF; IDISCHARGE=31D ;  
GSxVGS(off) ; VSD7.4V  
mA CL=10nF; IDISCHARGE=63D ;  
GSxVGS(off) ; VSD7.4V  
154  
380  
+28 %  
V
V
-28  
%
-
-
1) Reference: typ. Idischgx; CL=10, P_12.1.91  
33nF; SRoff_SHx=165V/µs;  
dynamic average  
dischg_avg_  
deviation  
VGSxVGS(off) ; VSD7.4V  
%
High level output  
voltage Gxx vs. Sxx  
VGxx1  
10  
12  
V
2) all other Drivers enabled but P_12.1.3  
not ON; CL=10nF; ICP=6mA;  
VSD7.4V  
Datasheet  
138  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
Table 74  
MOSFET Driver Output (cont’d)  
VS = 4.4 V to 28 V, VSD = 5.4 V to 29 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current  
flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
High level output  
VGxx2  
8
7
8
7
7
-
-
-
-
-
-
-
-
-
-
V
V
V
V
V
2) 1) all other Drivers enabled but P_12.1.4  
not ON; CL=10nF; ICP=6mA;  
VSD=6.4V  
2) all other Drivers enabled but P_12.1.5  
not ON; CL=10nF; ICHARGE31D ;  
voltage GHx vs. SHx  
High level output  
VGxx3  
voltage GHx vs. SHx  
ICP=6mA; VSD=5.4V  
High level output  
VGxx6  
2) 1) all other Drivers enabled but P_12.1.6  
voltage GLx vs. GND  
not ON; CL=10nF; ICP=6mA;  
VSD=6.4V  
High level output  
VGxx7  
2) all other Drivers enabled but P_12.1.7  
not ON; CL=10nF; ICP=6mA;  
VSD=5.4V  
voltage GLx vs. GND  
High level output  
voltage GLx vs. GND /  
GHx vs. SHx - Brake  
Mode  
VGxx_BM  
all other Drivers enabled but  
P_12.1.66  
not ON; CL=10nF; RGS=100k;  
VSD=5.4V  
High level output  
voltage GLx vs. GND -  
Hold Mode  
VGxx_HM  
2.5  
4.2  
-
-
7.1  
7.4  
V
V
; CL=10nF; RGS=100k; VSD5.4V P_12.1.67  
1) ; CL=10nF; RGS=100k;  
P_12.1.102  
VSD7.4V  
1)  
External MOSFET gate- VGS(on)  
to-source voltage -  
MOSFET on  
5
7
-
-
-
-
V
V
V
V
=5.4V  
=7.4V  
P_12.1.103  
P_12.1.95  
SD  
1)  
SD  
1)  
1)  
External MOSFET gate- VGS(off)  
to-source voltage -  
MOSFET off  
-
-
-
-
2
V
V
I
<31D  
31D  
P_12.1.104  
P_12.1.96  
DISCHARGE  
3.5  
I
DISCHARGE  
Rise time  
Fall time  
Rise time  
Fall time  
trise3_3nf  
tfall3_3nf  
trisemax  
tfallmax  
65 100  
65 100  
100 250  
100 250  
130  
130  
450  
450  
ns  
ns  
ns  
ns  
1) 25-75% of VGxx1; CL=3.3nF;  
ICHARGE=max ; IDISCHARGE=max ;  
VSD7.4V  
P_12.1.8  
P_12.1.9  
P_12.1.57  
P_12.1.58  
1) 75-25% of VGxx1; CL=3.3nF;  
ICHARGE=max ; IDISCHARGE=max ;  
VSD7.4V  
25-75% of VGxx1; CL=10nF;  
ICHARGE=max ; IDISCHARGE=max ;  
VSD7.4V  
75-25% of VGxx1; CL=10nF;  
ICHARGE=max ; IDISCHARGE=max ;  
VSD7.4V  
Datasheet  
139  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
Table 74  
MOSFET Driver Output (cont’d)  
VS = 4.4 V to 28 V, VSD = 5.4 V to 29 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current  
flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Rise time  
trisemin  
4
-
-
-
-
15  
µs  
µs  
ns  
ns  
1) 25-75% of VGxx1; CL=10nF;  
CHARGE=min ; IDISCHARGE=min ;  
VSD7.4V  
1) 75-25% of VGxx1; CL=10nF;  
ICHARGE=min ; IDISCHARGE=min ;  
VSD7.4V  
P_12.1.14  
I
Fall time  
tfallmin  
3.5  
12  
P_12.1.15  
P_12.1.35  
P_12.1.36  
Absolute rise - fall time tr_f(diff)LSx  
difference for all LSx  
-
-
100  
100  
25-75% of VGxx1; CL=10nF;  
ICHARGE=max ; IDISCHARGE=max ;  
VSD7.4V  
Absolute rise - fall time tr_f(diff)HSx  
25-75% of VGxx1; CL=10nF;  
difference for all HSx  
ICHARGE=max ; IDISCHARGE=max ;  
VSD7.4V  
Resistor between  
GHx/GLx and GND  
RGGND  
RSHGN  
30 40  
30 40  
50  
50  
kOh  
m
P_12.1.11  
P_12.1.10  
Resistor between SHx  
and GND  
kOh 3) This resistance is the  
m
resistance between GHx and  
GND connected through a diode  
to SHx. As a consequence the  
voltage at SHx can rise up to  
0,6V typ. before it gets  
discharged through the resistor.  
Effective  
RONCCP  
-
9
12  
Oh 50mA forced into Gx, Sx  
P_12.1.50  
dischargeRDSON  
m
grounded; IDISCHARGE=63D ;  
VVCP=VVSD +14.0V; VVSD=13.5V  
Input propagation time tP(ILN)min  
(LS on)  
-
-
-
-
-
-
-
3
8
µs  
µs  
µs  
µs  
ns  
ns  
ns  
1) "ON"=1 to 25% of VGxx1  
CL=10nF; ICHARGE=min  
1) "ON"=0 to 75% of VGxx1  
CL=10nF; IDISCHARGE=min  
1) "ON"=1 to 25% of VGxx1  
CL=10nF; ICHARGE=min  
1) "ON"=0 to 75% of VGxx1  
CL=10nF; IDISCHARGE=min  
;
;
;
;
P_12.1.37  
P_12.1.38  
P_12.1.39  
P_12.1.40  
Input propagation time tP(ILF)min  
(LS off)  
3
8
Input propagation time tP(IHN)min  
(HS on)  
3
8
Input propagation time tP(IHF)min  
(HS off)  
3
8
Input propagation time tP(ILN)max  
(LS on)  
200  
200  
200  
350  
300  
350  
"ON"=1 to 25% of VGxx1; CL=10nF; P_12.1.26  
CHARGE=max  
"ON"=0 to 75% of VGxx1; CL=10nF; P_12.1.27  
DISCHARGE=max  
"ON"=1 to 25% of VGxx1; CL=10nF; P_12.1.28  
CHARGE=max  
I
Input propagation time tP(ILF)max  
(LS off)  
I
Input propagation time tP(IHN)max  
(HS on)  
I
Datasheet  
140  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
Table 74  
MOSFET Driver Output (cont’d)  
VS = 4.4 V to 28 V, VSD = 5.4 V to 29 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current  
flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Input propagation time tP(IHF)max  
(HS off)  
-
200  
300  
ns  
ns  
"ON"=0 to 75% of VGxx1; CL=10nF; P_12.1.29  
DISCHARGE=max  
"ON"=1 to 25% of VGxx1; CL=10nF; P_12.1.30  
CHARGE=max  
I
Absolute input  
tPon(diff)LSx  
tPoff(diff)LSx  
tPon(diff)HSx  
tPoff(diff)HSx  
-
-
100  
propagation time  
difference between  
propagation times for  
all LSx (LSx on)  
I
Absolute input  
-
-
-
-
-
-
100  
100  
100  
ns  
ns  
ns  
"ON"=0 to 75% of VGxx1; CL=10nF; P_12.1.41  
ICHARGE=max  
propagation time  
difference between  
propagation times for  
all LSx (LSx off)  
Absolute input  
"ON"=1 to 25% of VGxx1; CL=10nF; P_12.1.42  
ICHARGE=max  
propagation time  
difference between  
propagation times for  
all HSx (HSx on)  
Absolute input  
"ON"=0 to 75% of VGxx1; CL=10nF; P_12.1.43  
ICHARGE=max  
propagation time  
difference between  
propagation times for  
all HSx (HSx off)  
1) Not subject to production test, specified by design  
2) The condition ICP = 6 mA emulates H-Bridge Drive with 2 MOSFET switching at 25 kHz and CL = 10 nF.  
3) This resistance is connected through a diode between SHx and GHx to ground.  
Table 75  
Charge-Discharge Current Timing Characteristics  
VS = 4.4 V to 28 V, VSD = 5.4 V to 29 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current  
flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Charge current delay  
time  
tdly(on)  
-
-
-
35  
35  
50  
90  
ns  
ns  
ns  
1) from ON=1 to 20% of Ichgx  
(x=0...63); CL=10nF  
1) from 20% of Ichgx to Ichgx,min  
(x=0...63); CL=10nF  
P_12.1.63  
P_12.1.64  
P_12.1.68  
Charge current rise time trise(on)  
70  
Gate Source Voltage  
Saturation Time  
tsat(on)  
100  
1) from VGS=VGS(on) to VGxxy,min  
CL=10nF; ICHARGE=63  
;
Datasheet  
141  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
Table 75  
Charge-Discharge Current Timing Characteristics (cont’d)  
VS = 4.4 V to 28 V, VSD = 5.4 V to 29 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current  
flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Charge current settling tset_chg(seq)  
time - sequencer mode  
-
-
150  
ns  
ns  
2) 1) from any ICHARGE(n) to  
ICHARGE(n+1) = 0D or 63D; CL=10nF  
3) 1) from any IDISCHARGE(n) to  
IDISCHARGE(n+1) = 0D or 63D;  
CL=10nF  
P_12.1.69  
P_12.1.70  
Discharge current  
settling time -  
tset_dischg(s  
-
-
75  
eq)  
sequencer mode  
Discharge current delay tdly(off)  
time  
-
-
25  
25  
80  
50  
ns  
ns  
1) from "ON"=0 to 20% of Idischgx P_12.1.71  
(x=0...63); CL=10nF  
1) from 20% of Idischgx to Idischgx,min P_12.1.72  
(x=0...63); CL=10nF  
Discharge current rise trise(off)  
time  
1) Not subject to production test, specified by design  
2) ICHARGE(n) and ICHARGE(n+1) are consecutive gate charge current set points in sequencer mode.  
3) IDISCHARGE(n) and IDISCHARGE(n+1) are consecutive gate discharge current set points in sequencer mode.  
Table 76  
Timing Measurement Comparators  
VS = 4.4 V to 28 V, VSD = 5.4 V to 29 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current  
flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Low-side timing  
measurement  
VSH(low)  
2
-
2.5  
V
P_12.1.73  
comparator threshold  
High-side timing  
measurement  
comparator threshold  
VSH(high)  
VSD - -  
2.5V  
VSD  
2V  
-
V
P_12.1.74  
P_12.1.75  
P_12.1.76  
Delay of low-side timing tcdly(low)  
measurement  
comparator  
5
5
-
-
20  
25  
ns  
ns  
Delay of high-side  
timing measurement  
comparator  
tcdly(high)  
Datasheet  
142  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
Table 77  
Drain source monitoring  
VS = 4.4 V to 28 V, VSD = 5.4 V to 29 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current  
flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Drain source  
monitoring threshold  
VDSMONVTH 0.11 0.145 0.178  
V
V
V
V
V
V
V
V
BDRV_CTRL3.DSMONVTH<2:0> P_12.1.46  
=000B  
2
0.22 0.27 0.311  
9
BDRV_CTRL3.DSMONVTH<2:0> P_12.1.105  
=001B  
0.42 0.5  
5
0.575  
BDRV_CTRL3.DSMONVTH<2:0> P_12.1.106  
=010B  
0.63 0.75 0.863  
7
BDRV_CTRL3.DSMONVTH<2:0> P_12.1.107  
=011B  
0.85 1.00 1.15  
BDRV_CTRL3.DSMONVTH<2:0> P_12.1.108  
=100B  
1.06 1.25 1.44  
BDRV_CTRL3.DSMONVTH<2:0> P_12.1.109  
=101B  
1.27 1.5  
1.73  
BDRV_CTRL3.DSMONVTH<2:0> P_12.1.110  
=110B  
1.48 1.75 2.02  
BDRV_CTRL3.DSMONVTH<2:0> P_12.1.111  
=111B  
Table 78  
Open load diagnosis currents  
VS = 4.4 V to 28 V, VSD = 5.4 V to 29 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current  
flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Pull-Up diagnosis  
current  
IPUDiag  
IPDDiag  
IPDDiag_OD 200  
-700 -  
-300 µA IDISCHARGE=0 ; VSD6.4V; VSHx=5V; P_12.1.47  
Vs5.4V  
Pull-Down diagnosis  
current  
800  
-
-
1450 µA IDISCHARGE=0 ; VSD6.4V; VSHx=5V; P_12.1.48  
Vs5.4V  
Effective Pull-Down  
diagnosis current  
overdrive  
-
µA IDISCHARGE=0 ; VSD6.4V; VSHx=5V; P_12.1.100  
Vs5.4V  
Datasheet  
143  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
Table 79  
Charge pump  
VS = 4.4 V to 28 V, VSD = 5.4 V to 29 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current  
flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Output voltage VCP vs. VCPmin1  
7.7  
-
10.1  
V
1) Bridge Driver enabled but not P_12.1.53  
VSD  
ON; CCP1=220nF; CCP2=220nF;  
100µAICP6mA; VVSD=5.4V;  
fCP=250kHz  
Single-Stage Mode  
Output voltage VCP vs.  
VSD  
VCPsingle  
10.5 -  
12.5  
V
1) Bridge Driver enabled but not P_12.1.101  
ON, Charge Pump in single-  
stage mode; CCP1=220nF;  
CCP2=220nF; 100µAICP6mA;  
V
VSD=13.5V; fCP=250kHz  
Regulated output  
voltage VCP vs. VSD  
VCP  
11.8 14.8 16.8  
V
V
1) Bridge Driver enabled but not P_12.1.49  
ON; CCP1=220nF; CCP2=220nF;  
ICP=6mA; VSD7.4V; fCP=250kHz  
Regulated output  
voltage VCP vs. VSD  
VCP_9V  
7.4 9.4  
11.4  
90  
1) Bridge Driver enabled but not P_12.1.98  
ON; CCP1=220nF; CCP2=220nF;  
ICP=6mA; VSD7.4V; fCP=250kHz;  
VCP9V_SET=1  
2) 1) 3) from CPCLK_EN='1' to 25% P_12.1.59  
of VCP; CCP1=220nF; CCP2=220nF;  
Turn ON Time  
Rise time  
tON_VCP  
27  
55  
-
-
µs  
µs  
CVCP=470nF; VSD7.4V;  
fCP=250kHz  
trise_VCP  
130  
2) 1) 3) from 25% to 75% of VCP  
CCP1=220nF; CCP2=220nF;  
;
P_12.1.60  
CVCP=470nF; VSD7.4V;  
fCP=250kHz  
1) Ichgx = 63d, Idischgx = 63d, BDRV_CTRL3.DSMONVTH<2:0>=111B  
2) This time applies when bit DRV_CP_CLK_CTRL.CPCLK_EN is set  
3) Not subject to production test, specified by design  
Datasheet  
144  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
29.13  
Operational Amplifier  
29.13.1 Electrical Characteristics  
Table 80  
Electrical Characteristics Operational Amplifier  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Differential gain  
(uncalibrated)  
G
9.5 10  
19 20  
10.5  
21  
CSA_CTRL.CSA_GAIN<1:0>=00B P_13.1.6  
1)  
P_13.1.28  
CSA_CTRL.CSA_GAIN<1:0>=01B  
1)  
38 40  
57 60  
42  
P_13.1.29  
CSA_CTRL.CSA_GAIN<1:0>=10B  
1)  
63  
P_13.1.30  
CSA_CTRL.CSA_GAIN<1:0>=11B  
Differential input  
operating voltage range  
OP2 - OP1  
VIX  
-1.5  
/ G  
-
-
1.5 / G V  
P_13.1.1  
Operating. common  
mode input voltage  
range (referred to GND  
(OP2 - GND) or (OP1 -  
GND)  
VCM  
-2.0  
2.0  
7.0  
V
V
P_13.1.2  
Max. input voltage  
range (referred to GND)  
(OP2 - GND) or (OP1 -  
GND)  
VIX_max  
-7.0  
-
max. rating of operational  
amplifier inputs, where  
measurement is not done  
P_13.1.3  
P_13.1.4  
2) 1)  
Single ended output  
voltage range (linear  
range)  
VOUT  
Vzero  
- 1.5  
-
-
Vzero + V  
1.5  
Linearity error  
ELIN  
-15  
15  
mV maximum deviation from best P_13.1.5  
fit straight line divided by max.  
value of differential output  
voltage range (0.5V - 3.5V); this  
parameter is determined at G =  
40.  
Gain drift  
ΔG  
-1  
-
1
-
%
Gain drift after calibration at G = P_13.1.7  
40.  
DC input voltage  
common mode  
rejection ratio  
DC-CMRR 58 80  
dB CMRR (in dB)=-20*log  
(differential mode gain/  
P_13.1.8  
common mode gain); -  
2VVCMI2V; VOP2-VOP1=0V; G=40  
Datasheet  
145  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Electrical Characteristics  
Table 80  
Electrical Characteristics Operational Amplifier (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Settling time to 98%  
TSET  
-
800  
1400 ns  
1) derived from 80 - 20 % rise fall P_13.1.9  
times for ±2V overload  
condition (3 Tau value of  
settling time constant)  
1)  
Current Sense Amplifier Rin_OP1_OP  
1
1.25 1.5  
kOh  
m
P_13.1.25  
InputResistance@ OP1,  
2
OP2  
1) Not subject to production test, specified by design  
2) Nominal Vzero = 2 V (derived from the bandgap voltage: Vzero = 1.652 * VBG  
)
Datasheet  
146  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Package Outlines  
30  
Package Outlines  
0ꢀ9 MAXꢀ  
(0ꢀ65)  
11 x 0ꢀ5 = 5ꢀ5  
0ꢀ5  
0ꢀ1  
7
A
0ꢀ03  
6ꢀ8  
0ꢀ1  
+0ꢀ031)  
2)  
37  
B
36  
25  
24  
48x  
0ꢀ08  
48  
13  
1
12  
Index Marking  
48x  
0ꢀ1  
0ꢀ4 x 45°  
0ꢀ05  
Index Marking  
0ꢀ23  
(0ꢀ35)  
M
A B C  
(0ꢀ2)  
0ꢀ05 MAXꢀ  
(5ꢀ2)  
(6)  
C
1) Vertical burr 0ꢀ03 maxꢀ, all sides  
2) These four metal areas have exposed diepad potential  
PG-VQFN-48-29, -31-PO V05  
Figure 49 VQFN-48-31 (with LTI)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further information on alternative packages, please visit our website:  
http://www.infineon.com/packages.  
Dimensions in mm  
Datasheet  
147  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Abbreviations  
31  
Abbreviations  
The following acronyms and terms are used within this document. List see in Table 81.  
Table 81  
Acronyms  
AHB  
CCU6  
CGU  
CLKMU  
CMU  
CSA  
Acronyms  
Name  
Arm® Advanced High-Performance Bus  
Capture Compare Unit 6  
Clock Generation Unit  
Clock Management Unit  
Cyclic Management Unit  
Current Sense Amplifier  
Data Post Processing  
DPP  
ECC  
Error Correction Code  
EEPROM  
GPIO  
HV  
Electrically Erasable Programmable Read Only Memory  
General Purpose Input Output  
High Voltage  
ICU  
Interrupt Control Unit  
LDO  
LIN  
Low DropOut voltage regulator  
Local Interconnect Network  
Least Significant Bit  
LSB  
LTI  
Lead Tip Inspection  
LV  
Low Voltage  
MCU  
MF  
Memory Control Unit  
Measurement Functions  
Memory Protection Unit  
Master Receive / Slave Transmit, corresponds to MISO in SPI  
Most Significant Bit  
MPU  
MRST  
MSB  
MTSR  
MU  
Master Transmit / Slave Receive, corresponds to MOSI in SPI  
Measurement Unit  
NMI  
Non Maskable Interrupt  
Nested Vector Interrupt Controller  
Oscillator  
NVIC  
OSC  
OTP  
PBA  
One Time Programmable  
Peripheral Bridge  
PC  
Program Counter  
PCU  
PD  
Power Control Unit  
Pull Down  
PGU  
PLL  
Power supply Generation Unit  
Phase Locked Loop  
Datasheet  
148  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Abbreviations  
Table 81  
Acronyms  
PMU  
PPB  
Acronyms  
Name  
Power Management Unit  
Private Peripheral Bus  
PSW  
PU  
Program Status Word  
Pull Up  
PWM  
RAM  
Pulse Width Modulation  
Random Access Memory  
RCU  
Reset Control Unit  
rfu  
reserved for future use  
RMU  
ROM  
SCU  
Reset Management Unit  
Read Only Memory  
System Control Unit  
SOW  
SPI  
Short Open Window (for WDT1)  
Serial Peripheral Interface  
Synchronous Serial Channel  
Arm® Serial Wire Debug  
SSC  
SWD  
TCCR  
TMS  
Temperature Compensation Control Register  
Test Mode Select  
TSD  
Thermal Shut Down  
UART  
VBG  
Universal Asynchronous Receiver Transmitter  
Voltage reference Band Gap  
Voltage Controlled Oscillator  
Watchdog timer in SCU-DM (System Control Unit - Digital Modules)  
Watchdog timer in SCU-PM (System Control Unit - Power Modules)  
Wake-up Management Unit  
100 Times Programmable  
VCO  
WDT  
WDT1  
WMU  
100TP  
Datasheet  
149  
Rev. 1.0  
2019-07-26  
TLE9853QX  
Revision History  
32  
Revision History  
Revision Date  
Changes  
1.0  
2019-07-26 Initial version for AD-Step  
Datasheet  
150  
Rev. 1.0  
2019-07-26  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2019-07-26  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2019 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
Document reference  
Z8F65189481  

相关型号:

TLE9854QX

TLE9854QX is part of the MOTIX™ TLE985x Infineo
INFINEON

TLE9855QXXUMA2

RISC Microcontroller,
INFINEON

TLE9861QXA20

Microcontroller with PWM Interface and H-Bridge MOSFET Driver for Automotive Applications
INFINEON

TLE9861QXA20_15

Microcontroller with PWM Interface and H-Bridge MOSFET Driver for Automotive Applications
INFINEON

TLE9861QXA20_17

Microcontroller with PWM Interface and H-Bridge MOSFET Driver for Automotive Applications
INFINEON

TLE9862QXA40

The TLE9862QXA40 is part of the TLE986x product family. The TLE9862QXA40 is a single chip 2-Phas
INFINEON

TLE9867QXA20

Microcontroller with LIN and H-Bridge MOSFET Driver for Automotive Applications
INFINEON

TLE9867QXA20_15

Microcontroller with LIN and H-Bridge MOSFET Driver for Automotive Applications
INFINEON

TLE9867QXA20_17

Microcontroller with LIN and H-Bridge MOSFET Driver for Automotive Applications
INFINEON

TLE9867QXA40

Microcontroller with LIN and H-Bridge MOSFET Driver for Automotive Applications
INFINEON

TLE9867QXA40_15

Microcontroller with LIN and H-Bridge MOSFET Driver for Automotive Applications
INFINEON

TLE9867QXA40_17

Microcontroller with LIN and H-Bridge MOSFET Driver for Automotive Applications
INFINEON