TLE9891QTA61 [INFINEON]

The MOTIX™ TLE9891QTA61 is part of the MOTIX™ TLE989x product family. It is a fully integrated;
TLE9891QTA61
型号: TLE9891QTA61
厂家: Infineon    Infineon
描述:

The MOTIX™ TLE9891QTA61 is part of the MOTIX™ TLE989x product family. It is a fully integrated

文件: 总144页 (文件大小:4233K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for  
BLDC Applications  
AK step  
Compute  
Features  
Arm®  
Cortex-M3  
32-bit Arm® Cortex®*-M3 core at up to 60 MHz  
FLASH0  
FLASH1  
SRAM  
ROM  
DMA  
Debug  
NVIC  
Single power supply from 5.5 V to 28 V  
FLASH0 up to 32 KB, FLASH1 up to 256 KB with  
EEPROM emulation, RAM up to 32 KB  
System  
Timer  
Motor Control  
Capture Compare Unit  
(CCU7)  
Power  
Management  
Unit  
SYSTICK  
SYSWDT  
T20/21  
GPT12  
Monitoring  
ADC - 10 bit  
(ADC2)  
2 or 3~ Bridge Driver  
(BDRV)  
1x CAN-FD protocol handler and transceiver  
2x UART (with LIN support), 2x SSC  
(PMU)  
System  
Control Unit  
(SCU)  
TMPSNS  
ARVG  
Charge  
Pump  
N-FET  
Stage  
TLE989x/  
TLE988x  
3-phase bridge driver with charge pump and  
PWM generation (CCU7) and safe switch off path  
Safe Switch Off Path  
Communication  
CAN-FD  
CANTRX  
BEMF Comparator  
(BEMFC)  
1x low side shunt current sense amplifier and  
comparator  
MultiCAN+  
Measurement ADC  
12 Bit  
Safe switch off path  
Sensor Interface  
UART0/1  
SSC0/1  
(ADC1)  
Sigma Delta ADC  
14 Bit  
Input/Output  
Current Sense  
3x BEMF comparators  
CSC  
CSA  
MON  
GPIO  
(SDADC)  
1x 12-bit ADC with 19 inputs and 1x 10-bit ADC  
with 14 inputs  
14-bit SDADC with 2x2 differential inputs for  
rotary sensor measurement  
12x 16-bit timer, 1x 24-bit timer (SYSTICK)  
8/16 GPIOs (incl. RESET, SWD) and 7/10 GPIs (incl. XTALI/O), package dependent (TQFP-48/LQFP-64)  
Fail safe mechanism and error handling with safe switch off path for bridge driver (according to ISO26262  
Safety Element out of Context for safety requirements up to ASIL-B)  
Security: Layered access right management, secured boot and key storage  
Temperature Range TJ: -40°C up to 175°C  
Ultra compact application footprint with packages TQFP-48 and LQFP-64  
Potential applications  
Automotive motor control for auxiliary drives like pumps, fans, HVAC, actuators, sunroof  
Product validation  
Qualified for automotive applications. Product validation according to AEC-Q100  
*
Arm and Cortex are trademarks of ARM Limited, UK  
Datasheet, Z8F80164852  
www.infineon.com/motixmcu  
1
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Table of contents  
1
2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3
3.1  
3.1.1  
3.1.2  
3.2  
Product definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Device pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Device pinout 48 pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Device pinout 64 pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Device packages and ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Special pin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
RESET and FIFO pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Clock input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Analog reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Device startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Brown-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
General electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3.3  
3.4  
3.4.1  
3.4.2  
3.4.3  
3.4.4  
3.4.5  
3.5  
3.6  
3.7  
3.7.1  
3.7.2  
3.7.3  
3.7.4  
3.7.5  
4
BLDC driver application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
4.1  
Further application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
5
5.1  
5.2  
5.3  
Power Management Unit (PMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Features overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Electrical characteristics PMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Supply characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Voltage regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Master supply characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
VDDP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
VDDC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
VDDEXT characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Clock Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Master clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Safe reference clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
System state control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
FIFO Fail-safe supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Monitoring and supply generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
5.3.1  
5.3.2  
5.3.2.1  
5.3.2.2  
5.3.2.3  
5.3.2.4  
5.3.3  
5.3.3.1  
5.3.3.2  
5.3.4  
5.3.5  
5.3.6  
6
System Control Unit (SCU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Features overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Electrical characteristics SCU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Oscillators and PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
6.1  
6.2  
6.3  
6.3.1  
Datasheet, Z8F80164852  
2
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
6.3.2  
External clock characteristics (XTAL1, XTAL2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
7
Microcontroller Unit (MCU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Features overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Electrical characteristics Flash parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
FLASH0 and FLASH1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
7.1  
7.2  
7.3  
7.3.1  
8
8.1  
8.2  
System Watchdog Timer (SYSWDT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Features overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
9
9.1  
9.2  
Universal Asynchronous Receiver Transmitter (UART0/1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Features overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
10  
High-Speed Synchronous Serial Interface (SSC0/1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Features overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Electrical characteristics SSC0/1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
SSC timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
10.1  
10.2  
10.3  
10.3.1  
11  
11.1  
11.2  
CAN Controller (MultiCAN+) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Features overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
12  
CAN Transceiver (CANTRX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Features overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Electrical characteristics CANTRX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
CANTRX characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
12.1  
12.2  
12.3  
12.3.1  
13  
13.1  
13.2  
13.3  
13.3.1  
13.3.2  
13.3.3  
General Purpose Ports (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Features overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Electrical characteristics GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Description of keep and force current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Port 0, Port 1, TMS and Reset DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Port 2 DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
14  
High-Voltage Monitor Input (MON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Features overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Electrical characteristics MON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
MON characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
14.1  
14.2  
14.3  
14.3.1  
15  
Analog Reference Voltage Generation (ARVG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Features overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Electrical characteristics ARVG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
VREF1V2 DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
VREF5 DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
15.1  
15.2  
15.3  
15.3.1  
15.3.2  
16  
Analog Digital Converter 1 (ADC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Datasheet, Z8F80164852  
3
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
16.1  
16.2  
16.3  
16.3.1  
16.3.2  
Features overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Electrical characteristics ADC1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
A/D converter characteristics ADC1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Analog inputs characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
17  
Monitoring Analog Digital Converter 2 (ADC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Features overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Electrical characteristics ADC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
A/D converter characteristics ADC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Attenuators characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
17.1  
17.2  
17.3  
17.3.1  
17.3.2  
18  
18.1  
18.2  
18.3  
18.3.1  
18.3.2  
18.3.3  
Current Sense Amplifier (CSA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Features overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Electrical characteristics CSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Description of electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Transfer characteristic and error definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
CSA characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
19  
Current Sense Comparator (CSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Features overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Electrical characteristics CSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
CSC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
19.1  
19.2  
19.3  
19.3.1  
20  
Temperature Sensor Unit (TMPSNS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Features overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Electrical characteristics TMPSNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
TMPSNS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
20.1  
20.2  
20.3  
20.3.1  
21  
BEMF Comparators (BEMFC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Feature overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Electrical characteristics BEMFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Threshold and hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
BEMFC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
21.1  
21.2  
21.3  
21.3.1  
21.3.2  
22  
Sigma Delta ADC (SDADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Features overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Electrical characteristics SDADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
SDADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
22.1  
22.2  
22.3  
22.3.1  
23  
23.1  
23.1.1  
Timer20 (T20) and Timer21 (T21) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Features overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
24  
24.1  
24.2  
General Purpose Timer Units (GPT12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Features overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Datasheet, Z8F80164852  
4
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
25  
25.1  
25.2  
Capture/Compare Unit 7 (CCU7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Features overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
26  
26.1  
26.2  
26.3  
Bridge Driver (BDRV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Features overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Electrical characteristics BDRV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Description of electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Switch-on parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Switch-off parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Gate current settling behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Timing measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
MOSFET driver output characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Charge-discharge current timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Timing measurement comparators characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Drain source monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Open load diagnosis currents characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Charge pump characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
VSD overvoltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
26.3.1  
26.3.1.1  
26.3.1.2  
26.3.1.3  
26.3.1.4  
26.3.2  
26.3.3  
26.3.4  
26.3.5  
26.3.6  
26.3.7  
26.3.8  
27  
28  
29  
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
Datasheet, Z8F80164852  
5
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Overview  
1
Overview  
The TLE989x/TLE988x has following features:  
Arm® Cortex®-M3 core system  
Up to 60 MHz CPU and system frequency  
Arm® NVIC interrupt controller with 32 interrupt requests and 32 levels  
Arm® Coresight debug with 2 hardware breakpoints and 2-wire interface (SWD)  
Arm® µDMA direct memory access controller with 8 channels  
Arm® SysTick system timer (24-bit)  
Single system power supply connected to battery supply (VS pin)  
Operating range from 5.5 V to 28 V, extended operating range from 3 V to 40 V  
Low-dropout voltage regulators (LDO) for pad and CAN supply (VDDP, VCAN) and core supply (VDDC)  
5 V low-dropout voltage regulator for on-board loads (VDDEXT)  
On-chip clock generation  
Low power oscillators as clock source in startup and power saving modes, also used as independent  
safe watchdog timer clock  
High precision oscillator as base and fallback clock source for system with clock watchdog  
Oscillator circuit for external crystal/resonator for accurate clock source with clock watchdog  
Two low jitter phase lock loop circuits (PLL0/1) with programmable prescaler for system clock  
with loss-of-lock detection and fallback clock  
Control state machine for switching the system states  
Active mode: system fully operational with power saving options for frequency and peripherals;  
bridge driver in active mode, brake mode or off; current consumption typ. 20 mA at VS (MCU and  
CAN active, bridge driver off)  
Stop mode: MCU subsystem stopped with monitoring and communication peripherals listening  
Sleep mode: MCU subsystem unpowered with wake monitoring active; wake-up time typ. 2 ms and  
typ. 30 µA at VS  
Wake capabilities for stop and sleep modes via cyclic timer event or CAN/MON event  
On-chip memory  
Up to 256 KByte FLASH1 for non-volatile code and data storage with ECC  
Up to 32 KByte FLASH0 for non-volatile code and data storage with ECC, EEPROM emulation support  
1024 Byte 100 Time Programmable Memory with ECC (100 TP)  
Up to 32 KByte RAM with ECC  
BootROM for startup firmware, bootstrap loader (BSL) and flash routines  
Key storage for supporting security routines  
Security features  
Secured boot mechanism as anchor for in-field software updates  
CMAC and AES functions  
Key storage with key management support  
Layered access right management  
Datasheet, Z8F80164852  
6
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Overview  
Communication features  
MultiCAN+ protocol handler with CAN-FD support (up to 2 MBaud) and 32 message objects  
CAN-FD transceiver compliant to ISO11898-2 and ISO11898-5 up to 5 MBaud  
2x full duplex asynchronous serial interface (UART0/1) with LIN support  
2x synchronous serial channel (SSC0/1) up to 30 MHz (master mode) and 15 MHz (slave mode)  
Wake-up capable high voltage monitoring input(s) (MONx) with input range of -28 V to 40 V (with  
series resistor)  
General-purpose I/O Ports (GPIO) with push-pull, open-drain and pull-up/down arrangement  
TQFP-48: 8 GPIOs (incl. RESET, SWD)  
LQFP-64: 16 GPIOs (incl. RESET, SWD)  
General-purpose input Ports (GPI) with pull-up/down arrangement  
TQFP-48: 7 GPIs (incl. XTALI/O)  
LQFP-64: 10 GPIs (incl. XTALI/O)  
Optimized functionality for BLDC motor control  
3-phase bridge driver for N-Channel MOSFETs with programmable current driven output stage, various  
diagnosis and protection features in on and off state. The bridge driver allows an EMC and thermally  
optimized switching behavior for MOSFETs of up to 6 x 150 nC at 20 kHz  
2-stage charge pump operating down to VSD = 5.4 V allowing motor operation for wide supply range  
from VS = 4.4 V to 28 V (cranking and load dump situation)  
High speed current sense amplifier (CSA) for single shunt current measurement in ground path with  
programmable gain  
Current sense comparator (CSC) with programmable threshold for fast overcurrent detection and safe  
switch off request  
12-bit ADC (ADC1) for measurement of eight high and ten middle voltage inputs with deterministic  
sample trigger, four time-triggered sequences and digital postprocessing  
3x BEMF comparators for sensorless block commutation  
Capture/compare unit (CCU7) with five 16-bit timers for sophisticated 3-phase PWM pattern generation  
Sensor interface  
14-bit Sigma Delta ADC (SDADC) for rotary sensors with two differential channels supporting  
AMR/GMR/TMR type sensors  
General purpose timer  
GPT12 (five 16-bit), Timer 20 (16 bit), Timer 21 (16 bit)  
Monitoring ADC  
10-bit ADC (ADC2) for background monitoring of five external and eight internal voltages with  
programmable threshold, warning flag indication, shut down and interrupt request  
Fail-safe mechanism and error handling  
Power-on and undervoltage/brown-out reset generator  
Supervision of all system supply voltages  
Clock monitoring for master clock, external clock, system clock and PLL with error handling  
Overtemperature detection sensing the junction temperature at two die locations with warning flag  
indication and automatic error handling  
Drain source monitoring of bridge driver for detection of short circuit (in on/off state) and open load  
diagnosis (in off state)  
Datasheet, Z8F80164852  
7
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Overview  
All memories (flash and RAM) with single bit error correction and double bit correction (SECDET)  
2x window watchdog (FS_WDT and SYSWDT) with independent clock source  
Safe switch off for bridge driver at severe system malfunction (FS_WDT overflow, shunt overcurrent,  
supply under-/overvoltage, failure input active) and failure indication according to ISO 26262 Safety  
Element out of Context for safety requirements up to ASIL-B  
Temperature range TJ: -40°C up to 175°C  
Packages TQFP-48 and LQFP-64  
Green package (RoHS compliant)  
AEC qualified (Grade 0)  
Datasheet, Z8F80164852  
8
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Block diagram  
2
Block diagram  
Compute  
FLASH0  
Arm®  
Cortex-M3  
FLASH1  
SRAM  
ROM  
DMA  
TMS  
P0.0  
Debug  
NVIC  
System  
Timer  
Motor Control  
Power  
Management  
Unit  
VS  
VDDP  
Capture Compare Unit  
(CCU7)  
SYSTICK  
T20/21  
Monitoring  
ADC - 10 bit  
(ADC2)  
VCP  
CP1H/L  
CP2H/L  
VDH  
VSD  
VDDC  
SYSWDT  
GPT12  
2 or 3~ Bridge Driver  
(BDRV)  
(PMU)  
VDDEXT  
P0.10/RESET  
System  
Control Unit  
(SCU)  
TMPSNS  
ARVG  
GHx  
XTALI/O  
Charge  
Pump  
N-FET  
Stage  
SHx  
TLE989x/  
TLE988x  
GLx  
Safe Switch Off Path  
FIFO  
SL  
Communication  
CAN-FD  
CANTRX  
BEMF Comparator  
(BEMFC)  
VCAN  
CANH/L  
MultiCAN+  
VAREF  
VAGND  
P2.x  
Measurement ADC  
12 Bit  
Safe switch off path  
Sensor Interface  
UART0/1  
SSC0/1  
(ADC1)  
Sigma Delta ADC  
14 Bit  
Input/Output  
Current Sense  
P0.x  
CSAN  
CSAP  
CSC  
CSA  
P1.x  
MON  
GPIO  
(SDADC)  
MONx  
Figure 1  
Block diagram TLE989x/TLE988x  
Datasheet, Z8F80164852  
9
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Product definitions  
3
Product definitions  
Device pinout  
3.1  
3.1.1  
Device pinout 48 pins  
1
2
3
4
5
6
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
MON1  
VS  
VDH  
VSD  
CP1L  
CP1H  
VCP  
CP2H  
CP2L  
SH1  
VAGND  
P2.6  
P2.5  
P2.4  
P2.3  
P2.2  
CSAP  
CSAN  
P0.3  
P0.2  
P0.1  
P0.0  
TLE989x/TLE988x  
(TQFP-48)  
7
8
9
10  
11  
12  
GH1  
SH2  
EP***  
*) 2- or 3-phase device variant  
**) configurable option (via 100 TP)  
***) exposed pad (backside)  
Pinout48.vsdx  
Figure 2  
Pinout for 48 pin package  
Datasheet, Z8F80164852  
10  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Product definitions  
3.1.2  
Device pinout 64 pins  
1
2
3
4
5
6
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
MON3  
MON2  
MON1  
FIFO  
VS  
VDH  
VSD  
CP1L  
CP1H  
VCP  
P2.6  
P2.5  
P2.4  
P2.3  
P2.2  
CSAP  
CSAN  
P0.9  
P0.8  
P0.7  
P0.6  
P0.5  
P0.4  
P0.3  
P0.2  
P0.1  
TLE989x  
(LQFP-64)  
7
8
9
10  
11  
12  
13  
14  
15  
16  
CP2H  
CP2L  
SH1  
EP**  
GH1  
SH2  
GH2  
*) configurable option (via 100 TP)  
**) exposed pad (backside)  
Pinout64.vsdx  
Figure 3  
Pinout for 64 pin package  
Datasheet, Z8F80164852  
11  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Product definitions  
3.2  
Device packages and ordering information  
The device is offered in following package(s), see Table 1.  
Table 1  
Name  
Device packages  
Number of Body size Pin pitch  
Epad  
Designed for automatic lead  
tip inspection (LTI)  
pins  
[mm2]  
[mm]  
TQFP-48  
LQFP-64  
48  
7 x 7  
0.5  
yes  
yes  
yes  
yes  
64  
10 x 10  
0.5  
Ordering information  
This datasheet covers the products with different package markings. Each marking has a separate ordering  
number. The features of the different markings are described in Table 2.  
Table 2  
Ordering info  
Package FLASH1 FLASH0/ RAM Security CAN  
Marking  
SDADC Functional  
safety  
[KB]  
EEPROMB [KB] [KB] 2)  
[KB] 1)  
TLE989x Grade-0 (3 ph)  
TLE9893-2QKW62S  
TLE9893QKW62S  
TLE9893-2QTW62S  
TLE9891-2QTW61  
TLE9891-2QTW60  
LQFP-64 248  
LQFP-64 248  
TQFP-48 248  
TQFP-48 120  
TQFP-48 120  
24+8  
24+8  
24+8  
24+8  
24+8  
31  
31  
31  
16  
16  
8+1  
8+1  
8+1  
0
CAN-FD Yes  
ASIL-B  
ASIL-B  
ASIL-B  
ASIL-B  
QM  
CAN-FD No  
CAN-FD Yes  
CAN-2.0 Yes  
CAN-2.0 Yes  
0
TLE989x Grade-1 (3 ph)  
TLE9893-2QTA62S  
TLE9893-2QTA62  
TLE9891QTA61  
TQFP-48 248  
24+8  
24+8  
24+8  
31  
31  
16  
8+1  
0
CAN-FD Yes  
CAN-FD Yes  
CAN-2.0 No  
ASIL-B  
ASIL-B  
ASIL-B  
TQFP-48 248  
TQFP-48 120  
0
TLE988x Grade-0 (2 ph)  
TLE9883-2QTW62S  
TLE9881-2QTW60  
TQFP-48 248  
TQFP-48 120  
24+8  
24+8  
31  
16  
8+1  
0
CAN-FD Yes  
CAN-2.0 Yes  
ASIL-B  
QM  
TLE988x Grade-1 (2 ph)  
TLE9883QTA62  
TQFP-48 248  
24+8  
31  
0
CAN-FD No  
ASIL-B  
Notes  
1. The EEPROM is emulated in FLASH0 and allocates 8 KB, the remaining 24 KB are free for user functions.  
2. The security functions allocate 8 KB of FLASH1 and 1 KB of RAM.  
3. Functional safety term “ASIL-B” refers to “Safe Switch Off”, see also Safety Manual (Z8F63951407).  
JTAG ID  
The JTAG ID of the TLE989x/TLE988x is 0x1021 F083.  
Datasheet, Z8F80164852  
12  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Product definitions  
Customer ID  
The Customer ID contains the device specific variant information. It can be read using a firmware API routine,  
refer to the firmware user manual. The decoding of the Customer ID is described in the following figure.  
Figure 4  
Customer ID decoding  
Datasheet, Z8F80164852  
13  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Product definitions  
3.3  
Pin definitions  
The functions and default states of the external pins are provided in Table 3.  
The following pin types exist:  
I/O: Input or output  
I: Input only  
O: Output only  
P: Power supply  
After reset, all pins have a defined setting. The following options are possible:  
Input with pull-up device enabled (I/PU)  
Input with pull-down device enabled (I/PD)  
Input with both pull-up and pull-down devices disabled (I/HiZ)  
Input floating to a voltage level (float)  
Input/Output with driver off (HiZ)  
Output with driver off and pull-down device enabled (PD)  
Output with driver off floating to a voltage level (float)  
Power supply (powered or GND)  
Table 3  
Pin definitions and functions  
Symbol Pin no. Type Reset  
Function  
Description  
state  
64 48  
General purpose I/Os  
P0.0  
32 25 I/O I/HiZ  
GPIO  
Connect to SWDCLK for debugging;  
Leave open if not used  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
P0.8  
P0.9  
33 26 I/O I/HiZ  
34 27 I/O I/HiZ  
35 28 I/O I/HiZ  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
Leave open if not used  
Leave open if not used  
Leave open if not used  
Leave open if not used  
Leave open if not used  
Leave open if not used  
Leave open if not used  
Leave open if not used  
Leave open if not used  
36  
37  
38  
39  
40  
41  
I/O I/HiZ  
I/O I/HiZ  
I/O I/HiZ  
I/O I/HiZ  
I/O I/HiZ  
I/O I/HiZ  
P0.10 or 31 24 I/O I/HiZ  
GPIO or  
pin RESET  
Configurable option (via 100TP);  
Leave open if not used  
RESET  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
I/PU  
25 20 I/O I/HiZ  
26 21 I/O I/HiZ  
27 22 I/O I/HiZ  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
Leave open if not used  
Leave open if not used  
Leave open if not used  
Leave open if not used  
Leave open if not used  
28  
29  
I/O I/HiZ  
I/O I/HiZ  
Datasheet, Z8F80164852  
14  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Product definitions  
Table 3  
Pin definitions and functions (cont’d)  
Symbol Pin no. Type Reset  
Function  
Description  
state  
64 48  
Analog inputs  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
P2.8  
P2.9  
CSAN  
55 39 I  
54 38 I  
44 31 I  
45 32 I  
46 33 I  
47 34 I  
48 35 I  
I/HiZ  
I/HiZ  
I/HiZ  
I/HiZ  
I/HiZ  
I/HiZ  
I/HiZ  
I/HiZ  
I/HiZ  
I/HiZ  
I/HiZ  
GPI  
GPI  
GPI  
GPI  
GPI  
GPI  
GPI  
GPI  
GPI  
GPI  
Leave open if not used  
Leave open if not used  
Leave open if not used  
Leave open if not used  
Leave open if not used  
Leave open if not used  
Leave open if not used  
Leave open if not used  
Leave open if not used  
Leave open if not used  
51  
52  
53  
I
I
I
42 29 I  
CSA negative Connect via shunt resistor to CSAP;  
input Connect to GNDVSSP if not used  
CSA positive Connect via shunt resistor to CSAN;  
input Connect to GNDVSSP if not used  
CSAP  
43 30 I  
I/HiZ  
Fail input/output  
FIFO  
4
-
I/O I/HiZ  
Fail in /fail out Connect via resistor to an external signal;  
Connect via 10 k pull-up to VDDP if not used  
High-Voltage Monitoring inputs  
MON1  
MON2  
MON3  
3
2
1
1
I
I
I
I/HiZ  
I/HiZ  
I/HiZ  
HV monitor  
input 1  
Connect via resistor to an external signal;  
Connect to GNDVSSP if not used  
HV monitor  
input 2  
Connect via resistor to an external signal;  
Connect to GNDVSSP if not used  
HV monitor  
input 3  
Connect via resistor to an external signal;  
Connect to GNDVSSP if not used  
CAN interface  
CANH  
CANL  
VCAN  
64 48 I/O HiZ  
CAN high bus Connect resistor to CANL;  
Leave open if not used  
63 47 I/O HiZ  
CAN low bus Connect resistor to CANH;  
Leave open if not used  
61 45 P  
Supply input Connect to VDDP;  
for CAN  
Connect capacitor to GNDCAN  
transceiver  
GNDCAN 62 46 P  
Ground for  
CAN  
Connect to GNDVSSP;  
Connect capacitor to VCAN  
transceiver  
Datasheet, Z8F80164852  
15  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Product definitions  
Table 3  
Pin definitions and functions (cont’d)  
Symbol Pin no. Type Reset  
Function  
Description  
state  
64 48  
Bridge Driver  
SL  
22 19 I  
19 16 O  
20 17 O  
21 18 –  
21 18 O  
GND  
PD  
PD  
BDRV ground Source low side FETs;  
Connect to GNDVSSP if not used  
GL1  
GL2  
NC  
BDRV gate  
low side 1  
Connect to gate of low side MOSFET 1;  
Leave open if not used  
BDRV gate  
low side 2  
Connect to gate of low side MOSFET 2;  
Leave open if not used  
2-phase device variant;  
Leave open  
GL3  
PD  
BDRV gate  
low side 3  
3-phase device variant;  
Connect to gate of low side MOSFET 3;  
Leave open if not used  
SH1  
GH1  
SH2  
GH2  
NC  
13 10 I  
14 11 O  
15 12 I  
16 13 O  
17 14 –  
17 14 I  
Float to  
GND+1*Vdiode high 1  
BDRV source Connect to source of high side MOSFET 1;  
Leave open if not used  
PD  
BDRV gate  
high 1  
Connect to gate of high side MOSFET 1;  
Leave open if not used  
Float to  
GND+1*Vdiode high 2  
BDRV source Connect to source of high side MOSFET 2;  
Leave open if not used  
PD  
BDRV gate  
high 2  
connect to gate of high side MOSFET 2;  
Leave open if not used  
2-phase device variant;  
Leave open  
SH3  
Float to  
BDRV source 3-phase device variant;  
GND+1*Vdiode high 3  
Connect to source of high side MOSFET 3;  
Leave open if not used;  
NC  
18 15 –  
18 15 O  
2-phase device variant;  
Leave open  
GH3  
PD  
BDRV gate  
high 3  
3-phase device variant;  
Connect to gate of high side MOSFET 3;  
Leave open if not used;  
Charge pump  
CP1L  
CP1H  
VCP  
8
5
6
7
O
O
P
HiZ  
CP stage 1 out Connect external capacitor to CP1H;  
low Leave open if not used  
CP stage 1 out Connect external capacitor to CP1L;  
Leave open if not used  
charge pump Connect via capacitor to star point of DC link high;  
9
Float to  
VSD-1*Vdiode high  
10  
Float to  
VSD-1*Vdiode output  
voltage  
Connect to VSD if not used  
CP2L  
12  
9
O
HiZ  
CP stage 2 out Connect external capacitor to CP2H;  
low Leave open if not used  
Datasheet, Z8F80164852  
16  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Product definitions  
Table 3  
Pin definitions and functions (cont’d)  
Symbol Pin no. Type Reset  
Function  
Description  
state  
64 48  
CP2H  
VSD  
11  
8
O
P
Float to  
VSD-1*Vdiode high  
CP stage 2 out Connect external capacitor to CP2L;  
Leave open if not used  
BDRV supply Connect with RC filter from star point of  
7
4
input  
DC link high;  
Connect to VS if not used  
VDH  
6
3
I
I/HiZ  
BRDV sense  
input  
Connect with RC filter from star point of  
DC link high;  
Connect to SL if not used  
Other pins  
TMS  
30 23 I/O I/PD  
Test mode  
select input  
Connect to SWDIO for debugging;  
Connect to GNDVSSP if not used  
Power supply  
VS  
5
2
P
Supply input Connect via reverse polarity diode to VBAT;  
Connect capacitor to GNDVSSP  
VDDP  
24, 43 P  
59  
Output of  
VDDP  
Connect capacitor to GNDVSSP;  
Connect to VCAN  
regulator  
VDDC  
56 40 P  
Output of  
VDDC  
regulator  
Connect capacitor to GNDVSSC  
VDDEXT 60 44 P  
Output of  
VDDEXT  
regulator  
Connect capacitor to GNDVSSP;  
Connect to sensor supply input  
GNDVSSP 23, 42 P  
58  
Ground of  
VDDP  
regulator  
Connect capacitor to VDDP;  
Connect to module GND;  
Do not connect to GNDVSSC  
GNDVSSC 57 41 P  
Ground of  
VDDC  
regulator  
Connect capacitor to VDDC;  
Do not connect to GNDVSSP  
VAGND  
VAREF  
49 36 P  
50 37 P  
Reference  
ground for  
If VREF5V is used: do not connect to GNDVSSP;  
If external reference is used: connect to GNDVSSP;  
mixed signal Always connect via capacitor to VAREF  
peripherals  
Optional  
output of  
VREF5V  
Connect to capacitor to VAGND;  
Optionally connect to VDDEXT or other reference;  
Leave open if not used  
regulator;  
Reference  
input for  
ADC1, SDADC,  
CSA, CSC  
EP  
P
Exposed pad Connect to GNDVSSP  
Datasheet, Z8F80164852  
17  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Product definitions  
3.4  
Special pin functions  
3.4.1  
RESET and FIFO pins  
The following reset and fail-safe pins are available:  
RESET pin: P0.10 can be configured via a config sector setting (via 100TP) as bidirectional RESET function  
(default for P0.10 is GPIO)  
FIFO pin (only in 64 pin variant): this is a dedicated pin with bidirectional safe switch off (SSO) function  
3.4.2  
Programming  
The device flash modules can be programmed using the following interfaces:  
Via standard Cortex SWD interface (pins TMS and P0.0, latched at start up, bootlatch) and SWD protocol  
Via bootstrap loader (BSL) interface (pins CANH and CANL) and UART protocol over CAN transceiver  
Note:  
TMS is a dedicated pin. P0.0 is configured as SWDCLK in case TMS is latched high.  
3.4.3  
Debugging  
The device can be debugged via standard Cortex SWD interface (pins TMS and P0.0) and SWD protocol.  
Note:  
TMS is a dedicated pin. P0.0 is configured as SWDCLK in case TMS is latched high.  
3.4.4  
Clock input  
An external crystal or resonator can be connected to P2.0/XTALI and P2.1/XTALO  
An external digital clock can be connected to P2.0/XTALI  
3.4.5  
Analog reference  
The pins VAREF and VAGND serve as buffer for the analog reference voltage and analog reference ground  
for ADC1, CSA, CSC and SDADC  
A buffer capacitor (CVAREF, P_ARVG_03_03) has to be placed externally  
Datasheet, Z8F80164852  
18  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Product definitions  
3.5  
Device startup  
After a device reset, the BootROM firmware is executed to initialize the device.  
The execution of the BootROM firmware has a certain execution time until execution is handed over to the user  
application.  
FS_WDT Long Open Window  
180 ms  
Power-up / Sleep-exit  
5 ms / 2.5 ms  
BSL connection timeout  
0 - 135 ms  
Init  
0.2 ms  
CMAC  
17.5 ms / KB  
Finish  
0.65 ms  
Flash Service  
up to 33 * tER  
Application  
Initial BootROM firmware  
execution time depends  
on whether it is a Power-  
up or Sleep-exit  
Occurs only in an  
EEPROM emulation  
error situation, may  
erase up to 33 pages  
After BootROM firmware  
execution, the application is  
started and the FS_WDT should  
be serviced from now on  
Depending on the NAC setting,  
the BSL timeout is between 0  
and 135 ms  
Only if Secure Boot is enabled and  
executed by the BootROM firmware  
t
Figure 5  
Device bootup timing  
Note:  
The Power-up, Sleep-exit, and FS_WDT Long Open Window timings refer to typical values of MCLK.  
The timings for the BSL connection timeout and Secure Boot refer to typical values of HP_CLK.  
Datasheet, Z8F80164852  
19  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Product definitions  
3.6  
Brown-out  
The integrated VDDP regulator will enter dropout operation as the VS pin voltage is dropping below the  
minimum supply voltage (P_GEN_09_01). As a consequence the regulator will enter dropout and can no  
longer maintain its output voltage within the regulation limits.  
The MCU subsystem remains fully functional down to the minimum extended supply voltage range  
(P_GEN_09_03 and P_GEN_09_14).  
Care should be taken while operating following peripherals under low-supply conditions:  
Derated electrical performance for VDDEXT, VREF5V (VAREF), CSA, CSC, SDADC, MON, BDRV  
Derated ADC1 electrical performance (relating to a drift on the VREF5V (VAREF) reference)  
CAN transceiver interface  
Figure 6 illustrates the operation under low-supply (brown-out) conditions:  
Supply rail  
VS  
P_GEN_09_01 (Min.) – Supply voltage in active mode  
PH_PMU_03_37 - VDDP LDO dropout  
VDDP  
VDDC  
P_GEN_09_14 (Min.) – Extended supply voltage in active mode  
P_GEN_09_03 (Min.) – Extended supply voltage in active mode  
P_PMU_03_06 - VDDP undervoltage reset  
P_PMU_04_05 - VDDC undervoltage reset  
Time  
VDDP_UV_RST  
VDDC_UV_RST  
Low_VS_operation.vsdx  
Figure 6  
Operation under low-supply (brown-out) conditions  
Datasheet, Z8F80164852  
20  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
General electrical characteristics  
3.7  
General electrical characteristics  
3.7.1  
Absolute maximum ratings  
Table 4  
Voltages Supply Pins  
Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with respect to ground,  
positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
VS voltage  
VS_max  
-0.3  
-
40  
V
1) Load dump;  
P_GEN_01_01  
t=400ms  
1)  
VSD voltage max1 VSD_max1  
VSD voltage max2 VSD_max2  
-0.3  
-2.8  
-
-
48  
48  
V
V
P_GEN_01_02  
P_GEN_01_03  
1) For -2.8V external  
2.2Ω is required to  
limit the output  
current; t=8ms  
1)  
VDDP voltage  
VDDEXT voltage  
VCAN voltage  
VDDC voltage  
VDDP_max  
VDDEXT_max  
VCAN_max  
VDDC_max  
VAREF_max  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-
-
-
-
-
5.5  
V
P_GEN_01_04  
P_GEN_01_05  
P_GEN_01_06  
P_GEN_01_07  
1)  
1)  
1)  
VS+0.3 V  
5.5  
1.6  
V
V
V
Analog reference  
voltage  
VDDP  
+0.3  
1) VAREF < VDDP_max; P_GEN_01_08  
between pin VAREF  
and VAGND  
1)  
Analog reference  
ground  
VAGND_max  
-0.3  
-
0.3  
V
P_GEN_01_09  
1) Not subject to production test, specified by design  
Table 5  
Voltages High Voltage Pins  
Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with respect to ground,  
positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Voltage at MONx  
pins  
VMON_max  
-28  
-2.8  
-8  
-
-
-
40  
V
V
V
1) The overload  
current must be  
P_GEN_02_01  
limited via an external  
1kΩ resistor at pin  
1) The overload  
current must be  
limited via an external  
1kΩ resistor at pin  
1)  
Voltage at VDH pin VVDH_max  
48  
P_GEN_02_02  
P_GEN_02_03  
Voltage at GHx pins VGH  
48  
Datasheet, Z8F80164852  
21  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
General electrical characteristics  
Table 5  
Voltages High Voltage Pins (cont’d)  
Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with respect to ground,  
positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
1)  
Voltage at GHx vs. VGHvsSH  
-0.3  
-
14  
V
P_GEN_02_04  
SHx pins  
1)  
1)  
1)  
Voltage at SHx pins VSH  
Voltage at GLx pins VGL  
-8  
-
-
-
48  
48  
14  
V
V
V
P_GEN_02_05  
P_GEN_02_06  
P_GEN_02_07  
-8  
Voltage at GLx vs.  
SL pins  
VGLvsSL  
-0.3  
1)  
Voltage at SL pin  
VSL  
-8  
-
-
48  
48  
V
V
P_GEN_02_08  
Voltage at charge  
pump pins CP1H,  
CP1L, CP2H, CP2L,  
VCP  
VCPx  
-0.3  
1) Limit output current P_GEN_02_09  
to ICPx > -200μA  
Voltage at FIFO pin VFIFO_max  
-28  
-
40  
V
1) The overload  
P_GEN_02_10  
current must be  
limited via an external  
1 kΩ resistor at pin  
1) Not subject to production test, specified by design  
Table 6  
Voltages CAN Transceiver  
Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with respect to ground,  
positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
1)  
Voltage on CANH, VBus_max  
CANL  
-27  
-
40  
V
P_GEN_03_01  
P_GEN_03_02  
1)  
Differential voltage Vdiff  
-5  
-
10  
V
V
= VCANH - VCANL  
diff  
1) Not subject to production test, specified by design  
Table 7  
Voltages GPIOs  
Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with respect to ground,  
positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
1)  
Voltage on port pin VIN  
P0.x, P1.x, P2.x,  
TMS  
-0.3  
-
VDDP+0 V  
V <VDDP_max  
P_GEN_04_01  
IN  
.3  
1) Not subject to production test, specified by design  
Datasheet, Z8F80164852  
22  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
General electrical characteristics  
Table 8  
Voltages at Current Sense Amplifier Inputs  
Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with respect to ground,  
positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
1)  
InputvoltageCSAN, VOAI  
-7  
-
7
V
P_GEN_05_01  
CSAP  
1) Not subject to production test, specified by design  
Table 9  
Currents  
Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with respect to ground,  
positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
1)  
Max. current at VCP IVCP  
-15  
-
-
mA  
P_GEN_06_02  
pin  
1) Not subject to production test, specified by design  
Table 10 Overload currents  
Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with respect to ground,  
positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Overload current  
on digital inputs  
P0.x, P1.x, TMS  
Iovdig  
-2  
-
2
mA 1) 2) 3) Overload current P_GEN_06_01  
must be limited, e.g.  
via series resistor  
mA 1) 2) 3) Overload current P_GEN_06_04  
must be limited, e.g.  
Overload current  
on analog inputs  
P2.x (except P2.0,  
P2.1 and P2.5)  
Iovana  
-1  
-
2
via series resistor  
Sum of overload  
currents  
Iovsum  
-4  
-
4
mA 1) 2) 3) The number of P_GEN_06_03  
pins with overload  
must be limited to  
maximum 4 pins  
1) Overload current is allowed in following operation modes: unpowered, active and sleep mode  
2) Overload conditions occur if the standard operating conditions are exceeded, i.e. the input voltage VIN at the pin  
exceeds the specified range: VIN > VDDP + 0.3 V (Iov > 0) or VIN < -0.3 V (Iov < 0)  
3) Not subject to production test, specified by design  
Datasheet, Z8F80164852  
23  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
General electrical characteristics  
Pad  
PMU  
wake  
Overload definition  
a) Vin > VDDP+0.3V  
b) Vin < -0.3V  
VDDP  
VDDP  
VBAT  
1
VDDP  
Vin  
Iov  
4
sleep  
3
R
GPIO  
ADC  
VDDP  
regulator  
Iovsum  
Pad  
2
KOVAN  
KOVAP  
Effect of overload  
1
Stress on diode  
ADC  
2
Coupling to ADC  
Adjacent pin  
GPIO  
3
Wake & startup behaviour  
4
Regulator performance  
lov_0000063040-21.vsdx  
Figure 7  
Overload current  
Table 11 Temperatures  
Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with respect to ground,  
positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
1)  
Junction  
temperature  
Tj  
-40  
-
175  
°C  
P_GEN_07_01  
P_GEN_07_02  
1)  
Storage  
Tstg  
-55  
-
175  
°C  
temperature  
1) Not subject to production test, specified by design  
Datasheet, Z8F80164852  
24  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
General electrical characteristics  
EMC  
EMC susceptibility according to BISS generic IC test specification, release 2.0.  
Table 12 ESD susceptibility  
Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with respect to ground,  
positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
1) 2)  
ESD susceptibility VESD1  
HBM all pins  
-2  
-
2
kV  
P_GEN_08_01  
P_GEN_08_08  
ESD susceptibility VESD_CDM  
CDM  
-500  
-
500  
V
2) Charged device  
model, acc. JEDEC  
JESD22-C101  
ESD susceptibility VESD_CDM_Corner -750  
CDM on corner pins  
-
750  
V
2) Charged device  
model, acc. JEDEC  
JESD22-C101  
P_GEN_08_09  
1) ESD susceptibility, JEDEC HBMaccording to ANSI/ESDA/JEDEC JS001 (1.5 kΩ, 100 pF)  
2) Not subject to production test, specified by design  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
Datasheet, Z8F80164852  
25  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
General electrical characteristics  
3.7.2  
Functional range  
Note:  
Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics  
table.  
Table 13 Functional Range  
Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with respect to ground,  
positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Supply voltage at  
VS in active mode -  
voltage range 1  
VS_act1  
5.5  
-
28  
V
P_GEN_09_01  
Extended supply  
voltage at VS in  
active mode -  
VS_act2  
28  
-
40  
V
Allowed for tmax  
400ms with  
parameter deviation  
<
P_GEN_09_02  
voltage range 2  
Extended supply  
voltage at VS in  
active mode -  
VS_act3  
3.0  
-
5.5  
V
Due to derived voltage P_GEN_09_03  
dependencyfollowing  
modules show  
voltage range 3  
parameter deviation:  
VDDEXT, VREF5V, CSA,  
CSC, SDADC, MON,  
BDRV. Module  
CANTRX is out of its  
functional range  
Extended supply  
voltage at VS in  
active mode -  
VS_act4  
4.2  
-
5.5  
V
1) Due to dependency P_GEN_09_14  
to VAREF, the ADC1  
shows parameter  
voltage range 4  
deviations  
Supply voltage at  
VS in sleep mode  
VS_slpmin  
VS_stpmin  
ΔVS/Δt  
3.0  
3.0  
-5  
-
-
-
-
V
V
P_GEN_09_07  
P_GEN_09_06  
Supply voltage at  
VS in stop mode  
-
Supply voltage  
transients slew rate  
5
V/µs 2) For rising and falling P_GEN_09_08  
transient: not faster  
than this  
Supply voltage at  
VSD in active mode  
for bridge driver  
supply  
VSD_act1  
5.4  
-
29  
V
P_GEN_09_04  
Datasheet, Z8F80164852  
26  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
General electrical characteristics  
Table 13 Functional Range (cont’d)  
Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with respect to ground,  
positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Extended  
VSD_act2  
29  
29  
-
32  
V
Allowed for tmax  
400ms with  
parameter deviation  
<
P_GEN_09_05  
maximum supply  
voltage at VSD in  
active mode for  
bridge driver  
supply  
Extended supply  
voltage at VSD in  
active mode for  
bridge driver  
supply - active  
brake  
VSD_ab  
-
40  
V
Active brake mode  
with low-side drivers,  
charge pump off  
P_GEN_09_16  
Analog reference  
voltage  
VAREF  
3.8  
-
-
-
VDDP  
+0.3  
V
2) between pin VAREF P_GEN_09_15  
and VAGND  
Analog reference  
voltage ground  
VAGND  
-0.05  
-50  
0.05  
V
2) at VAGND pin  
P_GEN_09_17  
3) 2)  
Output sum current IGPIO,sum  
50  
mA  
P_GEN_09_11  
for all GPIO pins  
System frequency 0 fsys0  
5
5
-
-
60  
80  
MHz  
MHz  
P_GEN_09_12  
P_GEN_09_13  
System frequency 1 fsys1  
1) ADC1 calibration is done at VS = 13.5 V and VAREF = 5.0 V, for low VS range calibration shall be disabled (CALEN.CALENi  
= 0) and VAREF measurement from ADC2 shall be used  
2) Not subject to production test, specified by design  
3) This is a system requirement; it has to be ensured that current stays within limits  
Datasheet, Z8F80164852  
27  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
General electrical characteristics  
3.7.3  
Current consumption  
Table 14 Current Consumption  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Current  
consumption in  
active mode  
IVs_act60  
-
-
60  
mA VS=3V to 28V; see  
Table 15Activemode  
current consumption  
P_GEN_10_01  
Current  
IVs_act20  
-
-
50  
mA VS=3V to 28V; see  
Table 15Activemode  
current consumption  
P_GEN_10_02  
P_GEN_10_03  
consumption in  
active mode with  
reduced frequency  
Current  
IVs_actCAN  
-
-
35  
mA VS=3V to 28V; see  
Table 15Activemode  
current consumption  
consumption in  
active mode at  
reduced frequency  
and with CAN  
communication  
only  
Current  
IVs_slp0  
IVs_slp1  
IVs_slp2  
-
-
-
-
-
-
35  
µA VS=9V to 28V; TJ=-40ºC P_GEN_10_04  
to 85ºC; see Table 16  
consumption in  
sleep mode at  
normal voltage and  
temperature range  
Sleep mode current  
consumption  
Current  
50  
µA VS=5.5Vto9V;TJ=-40ºC P_GEN_10_05  
to 85ºC; see Table 16  
consumption in  
sleep mode at low  
voltage and normal  
temperature range  
Sleep mode current  
consumption  
Current  
250  
µA VS=3V to 28V; TJ=-40ºC P_GEN_10_06  
to 150ºC; see Table 16  
consumption in  
sleep mode at  
extended voltage  
range and  
Sleep mode current  
consumption  
temperature range  
Current  
IVs_stp1  
-
-
-
-
120  
175  
µA TJ=-40ºC to 25ºC; see P_GEN_10_11  
Table 17 Stop mode  
consumption in  
stop mode -  
temperature range  
1
current consumption  
Current  
IVs_stp2  
µA TJ=25ºC to 85ºC; see P_GEN_10_12  
Table 17 Stop mode  
consumption in  
stop mode -  
temperature range  
2
currentconsumption  
Datasheet, Z8F80164852  
28  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
General electrical characteristics  
Table 14 Current Consumption (cont’d)  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Current  
IVs_stp3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2.2  
6
mA TJ=85ºC to 175ºC; see P_GEN_10_13  
Table 17 Stop mode  
consumption in  
stop mode -  
temperature range  
3
currentconsumption  
Current  
IVs_stp4  
IVs_MONx  
IVs_CAN  
IVs_CYC  
IVs_GPIO  
IVSD_on  
mA VS=3V to 28V; TJ=-40ºC P_GEN_10_14  
to 175ºC; see Table 17  
consumption in  
stop mode -  
extended voltage  
range  
Stop mode current  
consumption  
Current  
1
µA 1) Additional to  
Ivs_slp, Ivs_stp if  
configured  
P_GEN_10_23  
P_GEN_10_24  
P_GEN_10_25  
P_GEN_10_26  
P_GEN_10_18  
consumption of  
one MONx as wake  
source in sleep or  
stop mode  
Current  
4
µA 1) Additional to  
Ivs_slp, Ivs_stp if  
configured  
consumption of  
CAN as wake source  
in sleep or stop  
mode  
Current  
5
µA 1) Additional to  
Ivs_slp, Ivs_stp if  
configured; while  
VDDEXT is off  
consumption of  
CYCLIC TIMER as  
wake source in  
sleep or stop mode  
Current  
1
µA 1) Additional to  
Ivs_slp, Ivs_stp if  
configured  
consumption of  
one GPIO as wake  
source in stop  
mode  
Current  
70  
mA 3x HS/LS @ 20 kHz  
with 6x CL=10nF;  
consumption at pin  
VSD - bridge driver  
fully operating  
5.4VVSD29V  
Datasheet, Z8F80164852  
29  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
General electrical characteristics  
Table 14 Current Consumption (cont’d)  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Current  
IVSD_ab  
-
-
-
10  
5
mA 3x LS statically on;  
P_GEN_10_19  
consumption at pin  
VSD - bridge driver  
in active brake  
mode  
5.4VVSD40V  
Current  
IVSD_off  
-
µA 3x HS and LS off with P_GEN_10_22  
passive pulldown  
consumption at pin  
VSD - bridge driver  
off  
1) Not subject to production test, specified by design  
Table 15 Active mode current consumption  
IVs_act60  
IVs_act20  
IVs_actCAN  
PLL0/PLL1  
locked on XTAL  
60 MHz  
locked on XTAL  
20 MHz  
locked on XTAL  
20 MHz  
SYS0_CLK (for MCU)  
SYS1_CLK (for CAN)  
MCU subsystem  
80 MHz  
80 MHz  
80 MHz  
active  
active  
active with CPU  
DEEPSLEEP mode  
Timers, UARTs, SSCs  
ADC1, CSA/CSC  
active  
active  
disabled  
disabled  
converting  
converting  
CANTRX, MultiCAN  
receiving,  
2 Mbit  
receiving,  
2 Mbit  
receiving,  
2 Mbit  
BDRV, CP  
PWM @3ph with 20 KHz  
disabled  
PWM @3ph with 20 KHz  
disabled  
disabled  
VDDEXT  
disabled  
GPIO  
input without load  
via MON1  
input without load  
via MON1  
input without load  
via MON1  
Wake configuration  
Table 16 Sleep mode current consumption  
lVs_slp0  
lVs_slp1  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
lVs_slp2  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
lVs_slp3  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
PLL0/PLL1  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
SYS0_CLK (for MCU)  
SYS1_CLK (for CAN)  
MCU subsystem  
Timers, UARTs, SSCs  
ADC1, CSA/CSC  
CANTRX, MultiCAN  
Datasheet, Z8F80164852  
30  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
General electrical characteristics  
Table 16 Sleep mode current consumption  
lVs_slp0  
lVs_slp1  
lVs_slp2  
lVs_slp3  
BDRV, CP  
SSO active  
OFF  
SSO active  
OFF  
SSO active  
OFF  
SSO active  
OFF  
VDDEXT  
GPIO  
no load  
via MON1  
no load  
via MON1  
no load  
via MON1  
no load  
via MON1  
Wake configuration  
Table 17 Stop mode current consumption  
lVs_stp1  
lVs_stp2  
OFF  
lVs_stp3  
OFF  
lVs_stp4  
OFF  
PLL0/PLL1  
OFF  
SYS0_CLK (for MCU)  
SYS1_CLK (for CAN)  
MCU subsystem  
Timers, UARTs, SSCs  
ADC1, CSA/CSC  
CANTRX, MulitCAN  
BDRV, CP  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
stopped  
OFF  
stopped  
OFF  
stopped  
OFF  
stopped  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
SSO active  
OFF  
SSO active  
OFF  
SSO active  
OFF  
SSO active  
OFF  
VDDEXT  
GPIO  
no load  
via MON1  
no load  
via MON1  
no load  
via MON1  
no load  
via MON1  
Wake configuration  
Datasheet, Z8F80164852  
31  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
General electrical characteristics  
3.7.4  
Thermal resistance  
Table 18 Thermal Resistance - TQFP-48  
Parameter Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
1)  
Junction to case for Rthjc_T48  
-
6
-
K/W  
P_GEN_12_01  
P_GEN_12_02  
TQFP-48  
2) 1)  
Junction to  
ambient for TQFP-  
48  
Rthja_T48  
-
33  
-
K/W  
1) Not subject to production test, specified by design  
2) According to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board. Board: 76.2x114.3x1.5mm3 with 2 inner  
copper layers (35μm thick), with thermal via array under the exposed pad contacting the first inner copper layer and  
300mm2 cooling area on the bottom layer (70μm).  
Table 19 Thermal Resistance - LQFP-64  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
1)  
Junction to case for Rthjc_L64  
LQFP-64  
-
6
-
K/W  
P_GEN_13_01  
P_GEN_13_02  
2) 1)  
Junction to  
ambient for LQFP-  
64  
Rthja_L64  
-
33  
-
K/W  
1) Not subject to production test, specified by design  
2) According to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board. Board: 76.2x114.3x1.5mm3 with 2 inner  
copper layers (35μm thick), with thermal via array under the exposed pad contacting the first inner copper layer and  
300mm2 cooling area on the bottom layer (70μm).  
Datasheet, Z8F80164852  
32  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
General electrical characteristics  
3.7.5  
Timing characteristics  
Table 20 System Timing  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Power-up time  
tstartup  
-
-
5
ms 1) VS ramp-up (0 V to P_GEN_14_01  
14 V in 100 µs) until  
start of user code  
Sleep-Exit  
tslpex  
-
-
2.5  
ms 1) CAN/MON wake  
event until start of  
user code  
P_GEN_14_02  
Sleep-Entry  
Stop-Exit  
tslpen  
tstpex  
-
-
-
-
0.2  
0.3  
ms 1) From setting  
PMCON0.SLEEP  
ms 1) CAN/MON/GPIO  
wake event until start  
of user code  
P_GEN_14_03  
P_GEN_14_04  
Stop-Entry  
tstpen  
-
-
0.2  
ms 1) From setting  
PMCON0.STOP  
P_GEN_14_06  
1) Not subject to production test, specified by design  
Datasheet, Z8F80164852  
33  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
BLDC driver application information  
4
BLDC driver application information  
Figure 8 shows the TLE989x/TLE988x in an electric drive application setup controlling a BLDC motor.  
EMC filter  
LPFILT  
Reverse polarity protection  
TRP  
VDC  
VBAT  
GND  
DVS  
CVS1  
CPFILT1  
CPFILT2  
QRP  
RRP1  
DRP  
RRP2  
CVS2  
CVCP2  
VS  
VDDP  
VCP  
CP1H  
CP1L  
CP2H  
CP2L  
VSD  
VDDP  
CVDDP2  
CVDDP1  
CCPS1  
GNDVSSP  
alternative  
CVCP1  
VDDC  
CVDDC1  
CCPS2  
CVDDC2  
GNDVSSC  
RVSD  
RVDH  
VAREF  
CVSD  
CVDH  
CVAREF  
VAGND  
VDDEXT  
VDH  
VDDEXT  
CVDDEXT1  
CVDDEXT2  
TH1  
RGH1  
CPH1  
GH1  
SH1  
GL1  
VCAN  
VDDP  
RGSH1  
CVCAN  
CGSH1  
U
GNDCAN  
CXIN  
CSH1  
RGL1  
P2.0/XTALI  
P2.1/XTALO  
TL1  
QXTAL  
RXD  
RGSL1  
CXOUT  
CGSL1  
SL  
TH2  
VDC  
Serial Wire Debug  
SUPPLY  
VDDP  
RGH2  
CPH2  
P0.10/RESET  
TMS  
RESET  
SWDIO  
GH2  
SH2  
GL2  
RGSH2  
CGSH2  
V
SWDCLK  
P0.0  
CSH2  
RGL2  
TL2  
P0.1  
P0.2  
P0.3  
P0.4*  
P0.5*  
P0.6*  
P0.7*  
P0.8*  
P0.9*  
P1.0  
P1.1  
P1.2  
P1.3*  
P1.4*  
P2.7*  
P2.8*  
P2.9*  
RGSL2  
TLE989x  
CGSL2  
SL  
TH3  
VDC  
RGH3  
CPH3  
GH3  
SH3  
GL3  
RGSH3  
CGSH3  
Unused pins  
- 6 (14*) digital GPIOs  
- 3* digital inputs  
W
CSH3  
RGL3  
TL3  
- 2* HV monitoring inputs  
RGSL3  
CGSL3  
RCSAP  
CCSA  
SL  
CCSAP  
CSAP  
RSHUNT  
RCSAN  
CCSAN  
MON2*  
MON3*  
CSAN  
CANH  
3 phase  
BLDC motor  
CCAN  
RCAN1  
CANH  
CANL  
VDDEXT  
U
V
W
RCAN2  
RMON1  
CANL  
RT  
TEMP  
COSN  
SINP  
COSP  
SINN  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
WAKE  
MON1  
FIFO*  
CMON11  
CMON12  
RFIFO  
TMR  
Sensor  
M
SOFF  
CFIFO1  
CFIFO2  
EP  
ApplicationDiagram.vsdx  
*) 64-pin package only  
Figure 8  
Simplified application diagram example for a BLDC system  
Datasheet, Z8F80164852  
34  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
BLDC driver application information  
Note:  
The following information is given as a hint for the implementation of the device only and shall not  
be regarded as a description or warranty of a certain functionality, condition or quality of the device.  
This is a very simplified example of an application circuit and bill of material. The function must be  
verified in the actual application.  
Table 21 External components (BOM)  
Symbol  
DVS  
Function  
Component  
Reverse polarity protection diode  
Decoupling capacitor at VS pin  
Buffer capacitor at VS pin  
e.g. BAS52-02V  
CVS1  
see P_PMU_01_06  
CVS2  
see P_PMU_01_07  
CVDDP1  
CVDDP2  
CVDDEXT1  
CVDDEXT2  
CVCAN  
CVDDC1  
CVDDC2  
CVAREF  
CCPS1  
Decoupling capacitor at VDDP pin  
Stability capacitor at VDDP pin  
Decoupling capacitor at VDDEXT pin  
Stability capacitor at VDDEXT pin  
Decoupling capacitor at VCAN pin  
Decoupling capacitor at VDDC pin  
Decoupling capacitor at VDDC pin  
Stability capacitor at VAREF pin  
Charge pump flying capacitor stage 1  
Charge pump flying capacitor stage 2  
see P_PMU_03_22  
see P_PMU_03_22  
see P_PMU_05_13  
see P_PMU_05_13  
see P_PMU_03_23  
see P_PMU_04_21  
see P_PMU_04_21  
see P_ARVG_03_03  
application dependent, min. 100 nF  
application dependent, min. 100 nF  
application dependent, min. 220 nF  
CCP2S  
CVCP1  
Charge pump storage capacitor (placing  
option 1)  
CVCP2  
Charge pump storage capacitor (placing  
option 2)  
application dependent, min. 220 nF  
RMON1  
CMON11  
CMON12  
RFIFO  
Resistor at MON1 pin for ISO pulses  
Pi Filter Capacitor at MONx  
Pi Filter Capacitor at MONx  
Resistor at FIFO pin for ISO pulses  
Pi Filter Capacitor at FIFO pin  
Pi Filter Capacitor at FIFO pin  
DC link capacitor  
application dependent, e. g. 1 kΩ  
application dependent, e. g. 10 nF  
application dependent, e. g. 1 nF  
application dependent, e. g. 1 kΩ  
application dependent, e. g. 10 nF  
application dependent, e. g. 1 nF  
application dependent, e. g. 680 µF  
application dependent, e. g. 680 µF  
application dependent, e. g. 680 µF  
application dependent, e. g. 1 nF  
application dependent, e. g. 12 Ω  
application dependent, e. g. 12 Ω  
application dependent, e. g. 1 nF  
application dependent, e. g. 1 nF  
application dependent, e. g. 5 mΩ  
2 Ω  
CFIFO1  
CFIFO2  
CPH1  
CPH2  
DC link capacitor  
CPH3  
DC link capacitor  
CCSA  
Filter capacitor  
RCSAN  
RCSAP  
CCSAN  
CCSAP  
RSHUNT  
RVSD  
Filter resistor (optional)  
Filter resistor (optional)  
Filter capacitor (optional)  
Filter capacitor (optional)  
Shunt resistor  
Limitation of reverse current due to  
transient (-2 V, 8 ms)  
Datasheet, Z8F80164852  
35  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
BLDC driver application information  
Table 21 External components (BOM) (cont’d)  
Symbol  
CVSD  
Function  
Component  
Capacitor  
1 µF  
RVDH  
Filter resistor  
optional, e. g. 1 kΩ  
optional, e. g. 100 nF  
optional, 2 Ω  
CVDH  
Filter capacitor  
RGH1/2/3  
RGL1/2/3  
RGSH1/2/3  
RGSL1/2/3  
CGSH1/2/3  
CGSL1/2/3  
TH1/2/3  
TL1/2/3  
TRP  
Resistor  
Resistor  
optional, 2 Ω  
Resistor  
optional, 100 kΩ  
optional, 100 kΩ  
optional, 4.7 nF  
optional, 4.7 nF  
e.g. IPC70N04S5-4R6  
e.g. IPC70N04S5-4R6  
e.g. IPC70N04S5-4R6  
e.g. BC817  
Resistor  
Capacitor  
Capacitor  
N-channel MOSFET  
N-channel MOSFET  
Reverse polarity protection MOSFET  
Reverse polarity protection transistor  
Reverse polarity protection resistor 1  
Reverse polarity protection resistor 2  
Reverse polarity protection circuit diode  
EMC filter coil  
QRP  
RRP1  
10 kΩ  
RRP2  
3.3 kΩ  
DRP  
e.g. BAS52-02V  
e.g. 4.7 µH  
LPFILT  
CPFILT1/2  
CSH1/2/3  
RSH2  
EMC filter capacitor  
Capacitor  
e.g. 22 µF  
optional  
Resistor  
optional  
RSH3  
Resistor  
optional  
QXTAL  
RXD  
Crystal or ceramic resonator  
Damping resistor  
Capacitor  
optional , e. g. NG3225GA, 16 MHz  
optional, e. g. 330 Ω  
optional, e. g. 0 Ω  
optional, e. g. 4.7 pF  
optional, e. g. 4.7 nF  
optional, e. g. 62 Ω  
optional  
CXIN  
CXOUT  
CCAN  
Capacitor  
Capacitor  
RCAN1/2  
RT  
Resistor  
Thermal resistor (e. g. NTC)  
TMR sensor  
TMR  
optional, e. g. TLE5501  
4.1  
Further application information  
Please contact Infineon Technologies for information regarding the pins FMEA and Safety Manual  
For further information, please follow the link: https://www.infineon.com/motixmcu  
Datasheet, Z8F80164852  
36  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Power Management Unit (PMU)  
5
Power Management Unit (PMU)  
5.1  
Features overview  
The Power Management Unit (PMU) manages all functions related to the device power supply and its  
supervision. The PMU controls all operating mode transitions and ensures a fail-safe behavior.  
The PMU provides following features:  
State control  
Operating state machine (Start-up, Active, Stop, Sleep and Fail-Sleep)  
Voltage regulator control  
Master clock generation (MCLK) acting as PMU clock  
Reset management controlling the reset behavior of the entire device  
Bi-directional reset pin (P0.10/RESET) as reset input and reset output indicating an internally  
generated reset  
Wake-up control for wake-up in Stop/Sleep modes via MON, CAN, BDRV, GPIOs, cyclic timer  
Voltage regulators  
Linear voltage regulators (VMSUP) for internal supply of the device  
Linear voltage regulator (VDDP, 5 V typ.) for GPIO and CAN transceiver supply  
Linear voltage regulator (VDDC, 1.5 V typ.) for internal digital logic supply  
Reference voltage generation (VAREFSUP)  
Linear voltage regulator (VDDEXT, 5 V typ.) for external sensors supply  
Fail-safe supervision  
System monitor, monitoring of fail-safe relevant signals  
Supply monitor, monitoring of fail-safe relevant voltages  
Safe reference clock (REF_CLK) and clock watchdog for monitoring of the MCLK  
Fail-safe input/output (FIFO pin) for external safe shutdown request or indication  
Fail-safe window watchdog (FS_WDT) for monitoring the CPU execution timing  
Safe shutdown mechanism to bring the bridge driver (BDRV) into a safe off-state  
Retention memory (GPUDATA with 96 bits) for data storage in Sleep and Fail-sleep modes  
5.2  
Block diagram  
The PMU module consists of the following major functional parts:  
State control  
Voltage regulators  
Fail-safe supervision  
Retention memory  
Datasheet, Z8F80164852  
37  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Power Management Unit (PMU)  
PMU  
State control  
AHB  
Master clock  
generation  
Reset  
management  
Voltage regulator  
control  
RESET_TYPE_3  
RESET_TYPE_4  
RESET_TYPE_5  
RESET_TYPE_6  
MCLK  
P0.10/RESET  
MCLK  
P0[10:0]  
P1[4:0]  
P2[9:2]  
Operating state  
machine  
Bi-directional  
RESET pin  
Wake control  
WAKEVSDOV  
WAKECAN  
WAKEMON[3:1]  
FAIL_SLEEP_REQ  
HP_CLK_EN  
IRQ[5:0]  
Voltage regulators  
VDDP  
Master supply  
generation  
VDDDP  
VDDC  
VDDEXT  
VDDEXT  
VS  
VMSUP  
VGEN_REF  
VGEN_ADC  
VDD5V_PD  
VMSUP  
VAREF supply  
VAREFSUP  
VDDC  
VAREF  
VAREFSUP  
Fail safe supervision  
System monitor  
Fail-safe WDT  
(FS_WDT)  
Safe reference  
clock & monitor  
FIFO  
REF_CLK  
CSC_OC  
CSC_EN  
FAIL_SLEEP_REQ  
SSONOUT  
Bi-directional  
FIFO pin  
Supply monitor  
OT/UV/OV  
Safe shutdown  
CSC_BIST_FAIL  
SYS_OT  
FASTDIS  
REF_CLK  
HP_CLK_FAIL  
Retention memory  
GPUDATA  
PMU_BD.vsdx  
Figure 9  
Block diagram PMU  
Datasheet, Z8F80164852  
38  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics PMU  
5.3  
Electrical characteristics PMU  
5.3.1  
Supply characteristics  
Table 22  
PMU Supply DC Specification  
Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with respect to ground,  
positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
1)  
External Supply in VS  
5.5  
13.5 28  
V
P_PMU_01_01  
regulation mode  
VS input voltage  
transient time  
tVSSLEW  
5
-
-
-
-
µs  
µF  
1) VS voltage rise time P_PMU_01_05  
rate from 0V to 28V  
1) Buffering capacitor P_PMU_01_06  
to cut off battery  
spikes, value  
Required VS input CVS1  
capacitance  
0.1  
depending on  
application  
requirements, ESR <  
1Ω;  
1)  
Required VS input CVS2  
10  
-
-
µF  
P_PMU_01_07  
capacitance  
1) Not subject to production test, specified by design  
5.3.2  
Voltage regulators  
5.3.2.1 Master supply characteristics  
Table 23  
Master Supply DC Specification  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Master Supply  
output voltage  
VMSUP  
1.4  
1.5  
1.6  
V
all parameters within P_PMU_02_01  
specification limits  
Master Supply  
overvoltage  
threshold  
VMSUPOV  
1.65  
1.72 1.79  
V
P_PMU_02_02  
Master Supply  
overvoltage filter  
time (analog)  
tVMSUPOVFT  
1
-
3
µs  
1) Step on VMSUP from P_PMU_02_03  
VMSUP@typ to  
VMSUPOV@max  
Datasheet, Z8F80164852  
39  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics PMU  
Table 23  
Master Supply DC Specification (cont’d)  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
1)  
Master Supply  
input voltage in  
regulation mode  
VMSUPIN  
5.5  
1.2  
1
12  
28  
V
P_PMU_02_04  
Master Supply  
undervoltage  
threshold  
VMSUPUV  
tMSUPUVFT  
VGEN_ADC  
1.275 1.35  
V
P_PMU_02_06  
Master Supply  
undervoltage filter  
time (analog)  
-
3
µs  
V
1) Step on VMSUP from P_PMU_02_07  
VMSUP@typ to  
VMSUPUV@min  
Central PMU  
1.0  
1.1  
1.3  
PH_PMU_02_18  
bandgap reference  
voltage measured  
at ADC2  
1) Not subject to production test, specified by design  
5.3.2.2 VDDP characteristics  
Table 24  
VDDP DC Specification  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
VDDP output  
voltage including  
line and load  
regulation  
VDDP  
4.9  
5.0  
5.1  
V
all parameters within P_PMU_03_01  
specification limits  
1mA IDDP 170mA;  
VDDP regulatorinhigh  
current mode  
VDDP output  
current @ High  
Current Mode  
(HCM)  
IDDPHCM  
IDDPLCM1  
IDDPLCM2  
0
0
0
-
-
-
170  
2
mA 1) external 5V Supply, P_PMU_03_03  
Supply for VDDC  
regulator  
VDDP output  
mA 1) external 5V Supply, P_PMU_03_04  
Supply for VDDC  
current @ Low  
Current Mode  
(LCMN and LCMA)  
regulator  
VDDP output  
7
mA 1) external 5V Supply, P_PMU_03_05  
Supply for VDDC  
current @ Low  
Current Mode  
(LCMN and LCMA)  
regulator  
Datasheet, Z8F80164852  
40  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics PMU  
Table 24  
VDDP DC Specification (cont’d)  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
VDDP undervoltage VDDPUVFALL  
falling threshold  
2.55  
2.65  
0.85  
4.34  
2.67 2.77  
V
P_PMU_03_06  
P_PMU_03_07  
P_PMU_03_09  
P_PMU_03_10  
1)  
1)  
VDDP undervoltage VDDPUVRISE  
rising threshold  
2.77 2.87  
V
VDDP undervoltage tVDDPUVFT  
filter time  
1
1.15  
µs  
V
VDDP undervoltage VDDPUVWFALL  
warning falling  
threshold  
4.52 4.7  
4.62 4.8  
1)  
VDDP undervoltage VDDPUVWRISE  
warning rising  
threshold  
4.44  
1
V
P_PMU_03_11  
1)  
1)  
VDDP undervoltage tVDDPUVWFT  
warning filter time  
2
3
µs  
V
P_PMU_03_12  
P_PMU_03_13  
P_PMU_03_14  
VDDP overvoltage VDDPOVFALL  
falling threshold  
5.554 5.785 6.016  
5.666 5.902 6.138  
VDDP overvoltage VDDPOVRISE  
V
rising threshold  
VDDP current  
limitation  
IDDPILIM  
500  
2
700  
4
900  
6
mA current flowing out of P_PMU_03_16  
the pin, VDDP = 0V  
1)  
VDDP current  
limitation filter  
time  
tVDDPILIMFT  
µs  
°C  
P_PMU_03_17  
P_PMU_03_18  
P_PMU_03_20  
1)  
VDDP  
overtemperature  
threshold  
TjVDDPOTSHD  
180  
40  
190  
-
200  
-
VDDP ripple  
rejection  
PSRRVDDP  
dB 1) @10 ... 20 KHz;  
@0.5Vpp; 6V VS ≤  
28V; IDDPHCM = 85mA;  
VDDP regulatorinhigh  
current mode  
Required VDDP  
output buffer  
capacitance  
CVDDP  
0.57  
-
4.4  
µF  
1) ESR < 0.1Ω; the  
specified capacitor  
value is a value  
P_PMU_03_22  
including tolerances  
Datasheet, Z8F80164852  
41  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics PMU  
Table 24  
VDDP DC Specification (cont’d)  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Buffer Capacitance CVCAN  
on CAN transceiver  
supply to counter  
EMI  
1
-
3.83  
µF  
1) Total capacitance of P_PMU_03_23  
CVDDP1, CVDDP2 and  
CVCAN shall not exceed  
4.4μF in order to  
ensure startup time  
within specification.  
The specified  
capacitor value is a  
value including  
tolerances  
VDDP_REG current IVDDPREGLCM1  
consumption@LCM  
-
-
29  
µA 1) Low-Current Mode PH_PMU_03_24  
1; IDDPLCM1 60 μA; -  
1, adaptive on or off  
40°C<TJ<85°C  
µA 1) Low-Current Mode PH_PMU_03_42  
2; IDDPLCM1 60 μA; -  
VDDP_REG current IVDDPREGLCM2  
consumption@LCM  
-
-
39  
2, adaptive on or off  
40°C<TJ<85°C  
VDDP output  
voltage@short  
circuit on CAN, High  
Current Mode  
(HCM)  
VDDPSHORT  
4.75  
5.0  
5.25  
V
170mA<IDDP240mA  
PH_PMU_03_30  
VDDP output  
voltage including  
line and load  
regulation@Low  
CurrentMode(LCM)  
VDDPLCMN  
4.9  
-
5.15  
450  
V
1µAIDDPIDDPLCM1/2@ma PH_PMU_03_32  
x
VDDP output drop VDDPDROP  
0
-
mV IDDP=125mA; VS=3.0V PH_PMU_03_37  
1) Not subject to production test, specified by design  
Datasheet, Z8F80164852  
42  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics PMU  
5.3.2.3 VDDC characteristics  
Table 25  
VDDC DC Specification  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
VDDC output  
voltage including  
line and load  
regulation in HCM  
and LCM  
VDDC  
1.47  
1.5  
1.56  
V
all parameters within P_PMU_04_01  
specification limits;  
IDDC 60mA  
VDDC output  
voltage in LCMN or  
LCMA mode  
VDDCLCM  
0.88  
0
0.9  
-
0.97  
60  
V
No external load; MCU P_PMU_04_02  
in stop mode; 2.6 ≤  
VDDP 5.5 V  
VDDC output  
current @ High  
Current Mode  
(HCM)  
IDDCHCM  
mA 1) only used as internal P_PMU_04_03  
core supply and  
supply of internal  
analog modules  
VDDC output  
IDDCLCM  
0
-
2.5  
mA 1) only used as internal P_PMU_04_04  
core supply and  
current @ Low  
Current Mode  
(LCMN and LCMA)  
supply of internal  
analog modules  
VDDC undervoltage VDDCUVFALL  
falling threshold  
1.2  
1.25 1.3  
V
P_PMU_04_05  
P_PMU_04_06  
P_PMU_04_08  
P_PMU_04_09  
1)  
1)  
VDDC undervoltage VDDCUVRISE  
rising threshold  
1.23  
0.85  
1.28 1.33  
V
VDDC undervoltage tVDDCUVFT  
filter time (analog)  
2
4
µs  
V
VDDC undervoltage VDDCUVWFALL  
warning falling  
threshold  
1.317 1.372 1.427  
1.349 1.405 1.461  
1)  
VDDC undervoltage VDDCUVWRISE  
warning rising  
V
P_PMU_04_10  
threshold  
1)  
VDDC undervoltage tVDDCUVWFT  
warning filter time  
27  
32  
37  
µs  
V
P_PMU_04_11  
P_PMU_04_12  
P_PMU_04_13  
P_PMU_04_14  
P_PMU_04_15  
VDDC overvoltage VDDCOVFALL  
falling threshold  
1.62  
1.65  
1
1.69 1.76  
1.72 1.79  
1) VS > 3V  
VDDC overvoltage VDDCOVRISE  
rising threshold  
V
1)  
1)  
VDDC overvoltage tVDDCOVFT  
filter time  
2
3
µs  
mA  
VDDC overcurrent IDDCOCFALL  
70  
90  
120  
falling threshold  
Datasheet, Z8F80164852  
43  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics PMU  
Table 25  
VDDC DC Specification (cont’d)  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
VDDC overcurrent IDDCOCRISE  
rising threshold  
80  
100  
32  
-
130  
mA  
P_PMU_04_16  
P_PMU_04_17  
1)  
VDDC overcurrent tVDDCOCFT  
filter time  
27  
37  
µs  
VDDC current  
limitation  
IVDDCILIM  
CVDDC  
110  
0.57  
180  
2
mA 1) current flowing out P_PMU_04_19  
of the pin, VDDC = 0 V  
Required VDDC  
output buffer  
capacitance  
-
µF  
1) ESR 0.1Ω; the  
specified capacitor  
value is a value  
P_PMU_04_21  
including tolerances  
VDDC_REG current IVDDCREGLCMAON  
consumption@LCM  
, adaptive on  
-
-
23  
µA 1) -40°C<TJ<85°C  
PH_PMU_04_23  
PH_PMU_04_24  
VDDC under-  
voltage falling  
threshold 0.9 V  
mode  
VDDCUV0V9FALL  
762  
793  
825  
mV VS>3V  
VDDC under-  
voltage rising  
threshold 0.9 V  
mode  
VDDCUV0V9RISE  
792  
-
823  
-
855  
20  
mV VS>3V  
PH_PMU_04_25  
PH_PMU_04_31  
VDDC_REG current IVDDCREGLCMAOFF  
consumption@LCM  
µA 1) -40°C<TJ<85°C  
, adaptive off  
1) Not subject to production test, specified by design  
5.3.2.4 VDDEXT characteristics  
Table 26  
VDDEXT DC Specification  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
External Sensor  
Supply Regulator  
output voltage  
VDDEXTILIM  
4.9  
5
5.1  
V
IDDEXT20mA  
P_PMU_05_14  
External Sensor  
Supply Regulator  
output voltage  
VDDEXTTLIM  
4.9  
5
5.1  
V
IDDEXT=40mA; -  
40ºCTJ150ºC  
P_PMU_05_15  
Datasheet, Z8F80164852  
44  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics PMU  
Table 26  
VDDEXT DC Specification (cont’d)  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
External Sensor  
Supply Regulator  
output voltage  
VDDEXT  
4.8  
5
5.2  
V
-40ºCTJ175ºC  
P_PMU_05_01  
VDDEXT voltage  
drop with respect  
to VS  
VDDEXTDROP  
0
50  
300  
mV 0mAIDDEXT20mA;  
3VVS5V  
P_PMU_05_02  
1)  
VDDEXT output  
current  
IDDEXT  
0
-
-
-
40  
10  
50  
mA  
P_PMU_05_03  
P_PMU_05_16  
VDDEXT load  
regulation  
VDDEXTLOR  
-100  
mV 1) 0mAIDDEXT40mA  
1)  
VDDEXT dynamic  
load regulation  
VDDEXTLOR_DYN -130  
mV  
I
jumping from P_PMU_05_17  
DDEXT  
0mA to 40mA and  
from 40mA to 0mA  
with Δl/Δt=40mA/μs  
VDDEXT line  
regulation  
VDDEXTLIR  
-60  
-
-
60  
mV 1) 0mAIDDEXT40mA  
P_PMU_05_18  
VDDEXT dynamic  
line regulation  
VDDEXTLIR_DYN  
-500  
500  
mV 1) VS jumping from 5.5V P_PMU_05_19  
to 18V and from 18V to  
5.5V with ΔV/Δt=5V/μs  
VDDEXT output  
discharge  
resistance  
RVDDEXT_DISCHG 16  
20  
1.9  
8
24  
2.1  
10  
kIVDDEXT = 0.2mA, MCU in P_PMU_05_20  
active state,  
VDDEXT_CTRL=[00000  
000]h  
VDDEXT  
VDDEXTUV  
1.55  
V
P_PMU_05_04  
P_PMU_05_05  
undervoltage  
shutdown  
threshold  
1)  
VDDEXT  
tVDDEXTUVFT  
6
µs  
undervoltage filter  
time  
VDDEXT current  
limitation  
IDDEXTILIM  
100  
180  
250  
200  
380  
215  
mA 1) current flowing out P_PMU_05_06  
of the pin, VDDEXT = 0 V  
1)  
VDDEXT  
overtemperature  
threshold  
TjVDDEXTOTSHD  
°C  
µs  
P_PMU_05_07  
P_PMU_05_08  
1)  
VDDEXT  
tVDDEXTOTFT  
8
10  
12  
overtemperature  
filter time  
Datasheet, Z8F80164852  
45  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics PMU  
Table 26  
VDDEXT DC Specification (cont’d)  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
VDDEXT ripple  
rejection 1  
PSRRVDDEXT1  
50  
-
-
dB 1) @0mAIload20mA; P_PMU_05_09  
@2Vpp @Vs=13.5V @  
0kHz<f1kHz  
VDDEXT ripple  
rejection 2  
PSRRVDDEXT2  
PSRRVDDEXT3  
38  
26  
-
-
-
-
dB 1) @2Vpp @Vs=13.5V; P_PMU_05_10  
@1kHzf10kHz  
VDDEXT ripple  
rejection 3  
dB 1) @0.5Vpp  
@Vs=13.5V;  
P_PMU_05_11  
P_PMU_05_13  
@10kHzf20kHz  
Required VDDEXT CVDDEXT  
output buffer  
capacitance  
0.43  
-
2
µF  
1) ESR < 0.1Ω; the  
specified capacitor  
value is a value  
including tolerances  
1) Not subject to production test, specified by design  
Datasheet, Z8F80164852  
46  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics PMU  
5.3.3  
Clock Generators  
5.3.3.1 Master clock characteristics  
Table 27  
Master Clock Specification  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Master clock  
frequency  
fMCLK  
17  
0.8  
20  
20  
23  
1.2  
40  
MHz  
P_PMU_06_01  
P_PMU_06_03  
1)  
Master clock  
settling time  
tMCLKRDY  
1
µs  
Master clock failure tMCLKWDGFT  
detection time  
30  
µs  
1) Timing is refered to P_PMU_06_04  
REFCLK  
1) Not subject to production test, specified by design  
5.3.3.2 Safe reference clock characteristics  
Table 28  
Safe Reference Clock Specification  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Safe reference  
clock frequency  
fSAFERCLK  
85  
100  
115  
kHz  
P_PMU_07_01  
P_PMU_07_03  
1)  
Safe reference  
tSAFERCLKRDY  
40  
50  
60  
µs  
clock settling time  
1) Not subject to production test, specified by design  
Datasheet, Z8F80164852  
47  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics PMU  
5.3.4  
System state control  
Table 29  
System State Control  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Reset pin input  
filter time  
Tfilt_RESET  
80  
100  
120  
µs  
Filter time starts when P_PMU_11_01  
the configurable  
blanking/blind time  
expired  
MONx wake source tMONx_FT  
filter time  
27.2  
27.2  
27.2  
27.2  
0.8  
32  
32  
32  
32  
1
36.8  
36.8  
36.8  
36.8  
1.2  
µs  
µs  
µs  
µs  
ms  
1) Two values  
configurable  
1)  
P_PMU_08_01  
P_PMU_08_02  
P_PMU_08_03  
P_PMU_08_04  
P_PMU_08_05  
Port0.x wake  
source filter time  
tPORT0_x  
tPORT1_x  
tPORT2_x  
tVDDPUVTO  
1)  
1)  
1)  
Port1.x wake  
source filter time  
Port2.x wake  
source filter time  
Fail-Safe Sleep  
VDDP_TMOUT  
trigger timeout  
1)  
1)  
1)  
1)  
Fail-Safe Sleep  
VDDC_TMOUT  
trigger timeout  
tVDDCUVTO  
tLOSSFSYSFT  
tSYSOTFT  
400  
500  
32  
600  
µs  
µs  
µs  
µs  
P_PMU_08_06  
P_PMU_08_07  
P_PMU_08_08  
P_PMU_08_09  
Fail-Safe Sleep  
SYSTEM_CLK_WDG  
_FAIL  
27.2  
27.2  
27.2  
36.8  
36.8  
36.8  
Fail-Safe Sleep  
SYSTEM_OT filter  
time  
32  
Fail-Safe Sleep  
tFSWDTFT  
32  
SAFE_WDT _FAIL  
1) Not subject to production test, specified by design  
Datasheet, Z8F80164852  
48  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics PMU  
5.3.5  
FIFO Fail-safe supervision  
Table 30  
FIFO Fail Safe Supervision  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Fail safe output low VFO,L  
voltage  
-
0.6  
1
V
IFO < 4mA  
P_PMU_10_01  
P_PMU_10_02  
P_PMU_10_03  
P_PMU_10_04  
Fail Safe input  
leakage current  
IFO,LK  
VFIth  
-
-
2
µA VFO < 28V  
Fail-safe input  
2
3
-
3.8  
0.7  
V
V
threshold voltage  
Fail safe input  
threshold  
VFIth,hys  
0.1  
hysteresis  
1)  
Fail-safe input filter tFI,filt  
time  
6
8
10  
50  
µs  
P_PMU_10_05  
Fail-safe input pull- RFI,PU  
up resistor  
30  
40  
k1) Switchable resistor P_PMU_10_06  
to VS  
1) Not subject to production test, specified by design  
Datasheet, Z8F80164852  
49  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics PMU  
5.3.6  
Monitoring and supply generation  
Table 31  
Monitoring Reference and Supply Generation Specification  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
PMU Failsafe  
Analog current  
consumption in  
sleep mode  
IPMUFSSLEEP  
-
-
10  
µA 1) Only  
VMON_SUP_REF and  
PH_PMU_10_01  
VMSUP_MON active; -  
40°C<Tj<85°C  
1) Not subject to production test, specified by design  
Table 32  
VAREF Monitoring Specification  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
VAREF over-voltage VAREFOVRISE  
rising threshold  
5.4  
5.63 5.85  
V
PH_PMU_11_02  
PH_PMU_11_03  
1)  
VAREF over-voltage VAREFOVHST  
threshold  
-
100  
-
mV  
hysteresis  
1) Not subject to production test, specified by design  
Datasheet, Z8F80164852  
50  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
System Control Unit (SCU)  
6
System Control Unit (SCU)  
6.1  
Features overview  
The SCU provides following features:  
Flexible clock management with different clock sources and prescaler options. This allows a high flexibility  
for the operation modes and ensures a fail-safe behavior in case of a clock failure  
Flexible peripheral management when enabling and disabling peripherals, when switching the system  
states and when debugging. The SCU supports the shutdown for some peripherals and the whole system  
in case of a critical system state  
The assignment of interrupt and exception request events to the NVIC and DMA request events to the DMA  
module is done inside the SCU  
6.2  
Block diagram  
SCU  
CLKOUT  
XTALI  
CPU_CLK  
To  
System clock control  
Peripherals  
XTALO  
Peripheral  
clocks  
Supply  
Master clock  
To  
PMU  
Peripheral and operation mode  
management  
STOP/SLEEP  
requests  
From  
PMU  
Resets  
Exceptions  
IRQ[31:0]  
Interrupt  
requests  
To  
NVIC  
From  
Peripherals  
Interrupt and DMA  
assignment  
DMA req[7:0]  
To  
DMA  
SCU_BlockDiagram.vsdx  
Figure 10 Block diagram SCU  
Datasheet, Z8F80164852  
51  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics SCU  
6.3  
Electrical characteristics SCU  
6.3.1  
Oscillators and PLL characteristics  
The following table contains the ECs of all system oscillators and the integrated PLL.  
Table 33 HP_CLK Oscillator (SCU Clock Control)  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
HP_CLK frequency fHP  
range  
78.4  
80  
81.6  
MHz This is the fHP  
frequency range over  
P_SCU_02_02  
all operating  
conditions  
HP_CLK short term fHPST  
frequency  
deviation  
-0.4%  
-
0.4% MHz frequencydeviationof P_SCU_02_03  
fHP within 100 ms, incl.  
VDDC variation  
(VDDCmin and  
VDDCmax) and  
temperature variation  
of 30 K  
HP_CLK Start-up  
time  
tHPUP  
-
-
1
µs  
1) from power supply P_SCU_02_04  
stable  
1) Not subject to production test, specified by design  
Table 34  
PLL0  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
VCO reference  
frequency range  
fREF0  
fVCO0  
fin0  
0.8  
48  
4
1
1.27  
160  
40  
MHz 1) fref0 = fin0/PDIV0  
P_SCU_03_01  
P_SCU_03_02  
P_SCU_03_03  
P_SCU_03_04  
P_SCU_03_05  
1)  
VCO frequency  
(tuning) range  
-
MHz  
1)  
Input frequency  
range  
-
MHz  
1)  
Output frequency fPLL0  
range  
5
-
80  
MHz  
1)  
Free-running  
frequency  
fVCOfree0  
10  
21.5 45  
MHz  
Datasheet, Z8F80164852  
52  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics SCU  
Table 34  
PLL0 (cont’d)  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Accumulated jitter tjacc0  
with external  
oscillator  
-5  
-
5
ns  
µs  
1) accumulated over  
300 cycles;  
@fPLL0 = 60 MHz,  
NDIV = 120, PDIV = 2;  
P_SCU_03_06  
fXTAL = 16 MHz  
Lock-in time  
tL0  
-
-
260  
1) from enable till lock P_SCU_03_07  
1) Not subject to production test, specified by design  
Table 35  
PLL1  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
VCO reference  
frequency range  
fREF1  
fVCO1  
fin1  
0.8  
48  
4
1
1.27  
160  
40  
MHz 1) fref1 = fin1/PDIV1  
P_SCU_04_01  
P_SCU_04_02  
P_SCU_04_03  
P_SCU_04_04  
P_SCU_04_05  
P_SCU_04_06  
1)  
VCO frequency  
(tuning) range  
-
MHz  
1)  
Input frequency  
range  
-
MHz  
1)  
Output frequency fPLL1  
range  
5
-
80  
MHz  
1)  
Free-running  
frequency  
fVCOfree1  
10  
-5  
21.5 45  
MHz  
Accumulated jitter tjacc1  
with external  
oscillator  
-
5
ns  
µs  
1) accumulated over  
300 cycles;  
@fPLL1 = 80 MHz,  
NDIV = 160, PDIV = 2;  
fXTAL = 16 MHz  
Lock-in time  
tL1  
-
-
260  
1) from enable till lock P_SCU_04_07  
1) Not subject to production test, specified by design  
Table 36  
Current consumption  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
PLLx active current IDDPLL  
-
-
1
mA 1) @ fPLL = 20 to 80 MHz P_SCU_05_01  
1) Not subject to production test, specified by design  
Datasheet, Z8F80164852  
53  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics SCU  
6.3.2  
External clock characteristics (XTAL1, XTAL2)  
Table 37  
Functional Range  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
1)  
Input voltage range VIXI  
for signal on XTALI  
-0.2  
-
1.7  
V
P_SCU_06_01  
P_SCU_06_02  
Input amplitude on VAXI  
XTALI  
0.6  
-
-
V
1) Peak-to-peak  
voltage  
XTALI input current IIL  
-20  
4
-
-
20  
40  
µA 1) 0V<VIN<VDDC  
MHz 2) 1) on XTALI  
P_SCU_06_03  
P_SCU_06_04  
Digital oscillator  
input frequency  
fXTALI  
fXTAL  
t1  
Analog oscillator  
input frequency  
4
6
-
-
16  
-
MHz 1) connected to  
XTALI/XTALO  
P_SCU_06_05  
P_SCU_06_06  
XTALI high time  
XTALI low time  
XTALI rise time  
ns  
ns  
ns  
1) this is a system  
requirementandmust  
be ensured by  
application  
t2  
6
-
-
-
-
1) this is a system  
requirementandmust  
be ensured by  
P_SCU_06_07  
P_SCU_06_08  
application  
t3  
8
1) this is a system  
requirementandmust  
be ensured by  
application; 10% to  
90%  
XTALI fall time  
t4  
-
-
8
ns  
1) this is a system  
requirementandmust  
be ensured by  
application; 90% to  
10%  
P_SCU_06_09  
1) Not subject to production test, specified by design  
2) Above 24MHz the hysteresis needs to be switched off (see register SCU_XTAL_CTRL).  
Datasheet, Z8F80164852  
54  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Microcontroller Unit (MCU)  
7
Microcontroller Unit (MCU)  
7.1  
Features overview  
The MCU provides following features:  
Arm® Cortex®-M3 processor  
Arm® Cortex®-M3 processor core  
Arm® System Timer (SYSTICK)  
Nested Vector Interrupt Controller (NVIC)  
Arm® CoreSightTM Debug Unit (SW-DP)  
Direct Memory Access (DMA)  
Memory system  
Non-volatile memory uncached (FLASH0)  
Non-volatile memory cached (FLASH1)  
Program SRAM memory (PSRAM)  
Data SRAM memory (DSRAM)  
Read-only memory (ROM)  
Cache system  
Multilayer Bus Matrix  
Bus Matrix interconnect topology  
AHB watcher  
Memory Access Control (MAC)  
Memory protection  
Trusted Gate mechanism  
Firmware  
Peripheral Bridge (PBA0/1)  
Datasheet, Z8F80164852  
55  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Microcontroller Unit (MCU)  
7.2  
Block diagram  
The Figure 11 illustrates the top-level architecture of the Microcontroller Unit sub-system.  
Debug  
Interface  
Arm®  
Cortex®-M3  
Processor  
DMA  
FLASH1  
FLASH0  
DSRAM  
PSRAM  
ROM  
Interrupts  
Cache  
master  
Memory Access Control  
Multilayer Bus Matrix  
PBA0  
PBA1  
Peripherals 0  
Peripherals 1  
Figure 11 Block diagram MCU  
Datasheet, Z8F80164852  
56  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics Flash parameters  
7.3  
Electrical characteristics Flash parameters  
7.3.1  
FLASH0 and FLASH1 characteristics  
This chapter includes the parameters of the embedded flash module (incl. config sector).  
Table 38 Flash Characteristics  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Read time  
tread_ac  
-
-
75  
ns  
Read accesses to the P_NVM_01_01  
flash module which is  
under  
write/erase/verify  
operation is not  
allowed; 3VVs28V  
Programming time tPR  
per 128 Byte page  
-
-
3
-
3.5  
4
ms 3VVs28V  
P_NVM_01_02  
P_NVM_01_03  
Programming time tPR_FW  
per 128 Byte page  
incl. Firmware  
ms 3VVs28V  
routine runtime for  
program operation  
Erase time per  
sector/page  
tER  
-
-
4
-
4.5  
5
ms 3VVs28V  
ms 3VVs28V  
P_NVM_01_04  
P_NVM_01_05  
Erase time per  
sector/page incl.  
Firmware routine  
runtime for erase  
operation  
tER_FW  
Data retention time tRET  
20  
50  
30  
-
-
-
-
-
-
year @NER  
s
year 1) 2) @NER; Tj=30°C  
s
P_NVM_01_06  
P_NVM_01_07  
P_NVM_01_08  
Data retention time tRET_strg  
for device storage  
Flash endurance for NER_high  
page within user  
kcyc Valid for FLASH0  
les  
sectors for FLASH0  
Flash erase  
endurance for  
security pages  
NSEC  
10  
32  
-
-
-
-
cycl Data retention time 20 P_NVM_01_09  
es  
years; Tj=25°C  
3)  
Drain disturb limit NDD  
kcyc  
les  
P_NVM_01_10  
Datasheet, Z8F80164852  
57  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics Flash parameters  
Table 38  
Flash Characteristics (cont’d)  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Flash endurance for NER  
page within user  
sectors for  
1
-
-
kcyc Valid for FLASH0 and P_NVM_01_11  
les FLASH1  
FLASH0/1  
Data retention time tRET_short  
5
-
-
year @NER_high  
P_NVM_01_12  
for high endurance  
s
1) Derived by extrapolation of lifetime tests.  
2) Not subject to production test, specified by design  
3) This parameter limits the number of subsequent programming operations within a physical sector without a given  
page in this sector being (re-)programmed. The drain disturb limit is applicable if wordline erase is used repeatedly.  
For normal sector erase/program cycles this limit will not be violated. For data sectors the integrated EEPROM  
emulation firmware routines handle this limit automatically, for wordline erases in code sectors (without EEPROM  
emulation) it is recommended to execute a software based refresh, which may make use of the integrated random  
number generator NVMBRNG to statistically start a refresh.  
Datasheet, Z8F80164852  
58  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
System Watchdog Timer (SYSWDT)  
8
System Watchdog Timer (SYSWDT)  
8.1  
Features overview  
The System Watchdog Timer (SYSWDT) belongs to the MCU subsystem. The SYSWDT resets the  
MCU subsystem in case it is not serviced within a defined time. Therefore it can bring the system into a defined  
state if the software is not executing according to its normal timing scheme due to a malfunction.  
The SYSWDT provides following features:  
16-bit window watchdog timer  
Programmable watchdog period and window  
Selectable input frequency  
Prewarning interrupt for debug purpose  
8.2  
Block diagram  
SYSWDT  
8-bit reload value  
SYSWDTCON.  
WDTRS  
SYSWDTREL.WDTREL  
clear  
/2  
WDT  
CLK  
0
1
8-bit up counter  
8-bit up counter  
CPU_CLK  
SYSWDT.WDT[7:0]  
SYSWDT.WDT[15:8]  
/128  
overflow  
To  
NVIC  
NMISR.NMIWDT  
(EXCEPT [-14])  
SYSWDTCON.  
WDTPR  
SYSWDTCON.  
WDTEN  
SYSWDTCON.  
WDTIN  
Overflow and boundary control  
SYSWDTCON.  
WDTBEN  
SYSWDTWINB.  
WDTWINB  
SCU_WDT_TIMEOUT  
(reset request)  
To  
PMU  
SYSWDT_FunctionalBlock.vsd  
Figure 12 Block diagram SYSWDT  
Datasheet, Z8F80164852  
59  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Universal Asynchronous Receiver Transmitter (UART0/1)  
9
Universal Asynchronous Receiver Transmitter (UART0/1)  
9.1  
Features overview  
The UART0/1 provide a full-duplex asynchronous receiver/transmitter, i.e., it can transmit and receive  
simultaneously. They are also receive-buffered (1 byte), i.e., they can commence reception of further bytes  
before a previously received byte has been read from the receive register. However, if the first byte still has not  
been read by the time the reception of the second byte is complete, the previous byte will be lost. The serial  
port receive and transmit registers are accessed at Special Function Register (SFR) TXBUF and RXBUF. Writing  
to TXBUF loads the transmit register, and reading RXBUF accesses a physically separate receive register.  
The UART0/1 provides following features:  
Full-duplex asynchronous modes  
8-bit or 9-bit data frames, LSB first  
fixed or variable baud-rate  
Receive buffered (1 Byte)  
Transmit buffered (1 Byte)  
Multiprocessor communication  
Interrupt generation on the completion of a data transmission or reception  
Baud-rate generator with fractional divider for generating a wide range of baud-rates, e.g. 9.6 kBaud,  
19.2 kBaud, 115.2 kBaud, 125 kBaud, 250 kBaud, 500 kBaud, 2 MBaud  
Hardware logic for break and synch Byte detection  
Tx inverter logic  
LIN support: connected to timer channel for synchronization to LIN baud-rate  
In all modes, transmission is initiated by any instruction that uses TXBUF as a destination register or by writing  
to the start bit or by an external event. The start selection is programmable. Reception is initiated in the modes  
by the incoming start bit if REN = 1.  
The serial interface also provides interrupt requests when transmission or reception of the frames has been  
completed. The corresponding interrupt request flags are TI or RI, respectively. If the serial interrupt is not  
used (i.e., serial interrupt not enabled), TI and RI can also be used for polling the serial interface.  
Datasheet, Z8F80164852  
60  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Universal Asynchronous Receiver Transmitter (UART0/1)  
9.2  
Block diagram  
UART  
Module  
RI  
TI  
TXDx  
RXDx  
GPIO  
SCU  
Interrupt  
Control  
P0.x  
P1.x  
P2.x  
ERRSYN  
EOFSYN  
Interrupt  
Control  
LIN Break/  
Sync Detection  
Inter-  
connection  
SCU  
Clock  
Control  
fUART_CLK  
RXDO  
TXEVx  
Baud Rate  
Generator  
I/O and Start  
Control  
CANH  
CANL  
CAN TRX  
SCU  
Peripheral  
UART_DIS  
Management  
Figure 13 Block diagram UART  
Datasheet, Z8F80164852  
61  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
High-Speed Synchronous Serial Interface (SSC0/1)  
10  
High-Speed Synchronous Serial Interface (SSC0/1)  
10.1  
Features overview  
The two high-speed synchronous serial interfaces SSC0/1 support both full-duplex and half-duplex serial  
synchronous communication.  
The SSC0/1 provides following features:  
Master and Slave Mode operation  
Full-duplex or half-duplex operation  
Transmit and receive buffered  
Flexible data format  
Programmable number of data bits: 2 to 64-bits  
Programmable shift direction: Least Significant Bit (LSB) or Most Significant Bit (MSB) shift first  
Programmable clock polarity: idle low or high state for the shift clock  
Programmable clock/data phase: data shift with leading or trailing edge of the shift clock  
Variable baud-rate, up to 15 MBaud (Slave mode), 30 MBaud (Master Mode)  
Chip Select (Master), for 1 … 4 slaves  
Chip Select (Slave)  
Compatible with Serial Peripheral Interface (SPI)  
Interrupt generation  
Interrupt on a transmitter empty condition  
Interrupt on a receiver full condition  
Interrupt on an error condition (receive, phase, baud-rate, transmit error)  
Datasheet, Z8F80164852  
62  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
High-Speed Synchronous Serial Interface (SSC0/1)  
10.2  
Block diagram  
SSC0/1  
General configuration  
Baud-rate  
generator  
Master & slave  
mode  
Input selection  
Receive and transmit configuration  
AHB  
Single & continues  
transfer  
Data format  
Chip select  
SSC_CLK  
MTSR[D:A]  
MRST[D:A]  
SCLK[D:A]  
SLS[D:A]  
MTSR  
Receive and transmit engine  
MRST  
SCLK  
CS[3:0]  
Transmit  
start  
Shift register  
2-64 Bit  
Error  
detection  
START[D:A]  
Event generation  
TIR  
RIR  
EIR  
Status  
Interrupt and DMA request  
SSC_FuncBD.vsdx  
Figure 14 Block diagram SSC  
Datasheet, Z8F80164852  
63  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics SSC0/1  
10.3  
Electrical characteristics SSC0/1  
10.3.1  
SSC timing characteristics  
Table 39  
SSC Master Mode Timing (Operating Conditions apply, CL = 50 pF)  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
1) 2)  
SCLK clock period t0  
2 *TSSC  
-
-
-
-
V
>2.7V  
P_SSC_01_01  
P_SSC_01_02  
DDP  
2)  
MTSR delay from  
SCLK  
t1  
10  
ns  
V
>2.7V  
DDP  
2)  
MRST setup to SCLK t2  
10  
15  
-
-
-
-
ns  
ns  
V
>2.7V  
>2.7V  
P_SSC_01_03  
P_SSC_01_04  
DDP  
2)  
MRST hold from  
SCLK  
t3  
V
DDP  
1) TSSCmin = TCPU = 1/fCPU  
.
If fCPU = 20 MHz, t0 = 100 ns. TCPU is the CPU clock period. Additionally, the  
speed limitation of the GPIO needs to be taken into account.  
2) Not subject to production test, specified by design  
t0  
SCLK1)  
t1  
t1  
1)  
MTSR  
t2  
t3  
Data  
valid  
MRST1)  
t1  
1) This timing is based on the following setup: CON.PH = CON.PO = 0.  
SSC_Tmg1  
Figure 15 SSC master mode timing  
Datasheet, Z8F80164852  
64  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
CAN Controller (MultiCAN+)  
11  
CAN Controller (MultiCAN+)  
11.1  
Features overview  
The MultiCAN+ provides a communication interface which is compliant to the CAN specification CAN FD  
ISO11898-1 (non-ISO CAN FD format and ISO CAN FD), providing communications at up to 1 Mbit/s in  
classical CAN (ISO 11898-1:2003(E) mode and/or CAN FD until 2 MBaud data speed, dependent on frequency  
and nodes).  
The MultiCAN+ for the TLE989x/TLE988x consists of 1 module (i.e. MultiCAN with 1 CAN nodes), representing 1  
serial communication interfaces. All nodes are CAN FD capable. Each CAN node communicates over two pins  
(TXD and RXD). The device ports which are used for TXD and RXD may be individually configured within the  
GPIO block. Several port configuration options are available to provide application-specific flexibility.  
The MultiCAN+ contains 1 independently operating CAN node with Full-CAN functionality that is able to  
exchange Data and Remote Frames via a gateway function. Each CAN node can receive and transmit standard  
frames with 11-bit identifiers as well as extended frames with 29-bit identifiers.  
All CAN nodes share a common set of 32 message objects. Each message object can be individually allocated  
to one of the CAN nodes. Besides serving as a storage container for incoming and outgoing frames, message  
objects can be combined to build gateways between the CAN nodes or to setup a FIFO buffer.  
The message objects are organized in double-chained linked lists, where each CAN node has its own list of  
message objects. A CAN node stores frames only into message objects that are allocated to the message object  
list of the CAN node, and it transmits only messages belonging to this message object list. A powerful,  
command-driven list controller performs all message object list operations.  
The bit timings for the CAN nodes are derived from the module timer clock (fCAN) and are programmable up to  
a data rate of 1 Mbit/s in Classical CAN (ISO 11898-1:2003(E) mode or up to 2 MBaud in CAN FD mode. External  
bus transceivers are connected to a CAN node via a pair of receive and transmit pins.  
The MultiCAN+ provides the following features:  
Compliant with ISO 11898 and SAE J 1939  
Supports CAN with Flexible Data-Rate Specification CAN FD (non-ISO CAN FD format and ISO CAN FD) with  
max. 64 data bytes  
Data transfer rates up to 1 Mbit/s when operating in Classical CAN mode per ISO 11898-1:2003(E)  
Supports up to 2 MBaud, when operating in CAN FD mode.  
Support for asynchronous clock sources for baud-rate generation  
Flexible and powerful message transfer control and error handling capabilities  
Advanced CAN bus bit timing analysis and baud-rate detection for each CAN node via a frame counter  
Full-CAN functionality: A set of 32 message objects can be individually  
Configured as transmit or receive object  
Setup to handle frames with 11-bit or 29-bit identifier  
Identified by a timestamp via a frame counter  
Configured to remote monitoring mode  
Advanced Acceptance Filtering  
Each message object provides an individual acceptance mask to filter incoming frames  
A message object can be configured to accept standard or extended frames or to accept both standard  
and extended frames  
Message objects can be grouped into different priority classes for transmission and reception  
Datasheet, Z8F80164852  
65  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
CAN Controller (MultiCAN+)  
The selection of the message to be transmitted first can be based on frame identifier, IDE bit and RTR  
bit according to CAN arbitration rules, or on its order in the list  
Advanced CAN node features  
Analyzer mode supports monitoring of bus traffic without actively participating on the bus  
Internal Loop-Back mode is available for test purposes  
Data transmission from a node can be stopped without affecting reception  
Programmable minimum delay between two consecutive messages  
Advanced message object functionality  
Message objects can be combined to build FIFO message buffers of arbitrary size, limited only by the  
total number of message objects  
Advanced data management  
The message objects are organized in double-chained lists  
up to 8 lists can be used for message objects  
List reorganizations can be performed at any time, even during full operation of the CAN nodes  
A powerful, command-driven list controller manages the organization of the list structure and ensures  
consistency of the list  
Message FIFOs are based on the list structure and can easily be scaled in size during CAN operation  
Advanced interrupt handling  
Message interrupts, node interrupts can be generated  
Interrupt requests can be routed individually to one of the 3 interrupt output lines  
Message post-processing notifications can be combined flexibly into a dedicated register field of  
256 notification bits  
11.2  
Block diagram  
CAN Controller  
Baud  
Rate  
Clock  
Block  
MultiCAN+  
fASYN_CLK  
fCAN  
Pin x.y  
fSYN_CLK  
fCLC  
Clock  
Control  
.
.
.
GPIO  
Message  
Object  
Buffer  
Linked  
List  
Control  
AHB  
m
Objects  
CAN  
Transceiver  
CANH  
CANL  
DMA  
NVIC  
TXDC  
CAN  
Node 0  
CAN Control  
RXDC  
MultiCanPlusTLE988x9x.vsd  
Figure 16 Block diagram MultiCAN+  
Datasheet, Z8F80164852  
66  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
CAN Transceiver (CANTRX)  
12  
CAN Transceiver (CANTRX)  
12.1  
Features overview  
The CAN transceiver (CANTRX) meets the physical layer requirements of the ISO11898-2:2016 High-Speed  
Controller Area Network (CAN) specification providing an interface between the CAN bus and the CAN protocol  
controller (MultiCAN+).  
The CANTRX provides following features:  
Compliant to ISO11898-2:2016  
Compliant to classical CAN and CAN-FD up to 5 Mbps  
Fulfills CAN interfaces (v1.2) OEM hardware requirements  
Supports four operating modes:  
Off mode  
Normal mode (Rx, Tx)  
Receive-only mode (Rx-only)  
Sleep mode for low-power operation. Wake-up time: <100 µs typ. Wake-up pattern recognition  
Interfaces with multiple hosts:  
MultiCAN+ protocol controller  
UART  
GPIO  
Timer GPT12 and Timer2 (T2)  
CAN bus bias control. Ideal passive behavior when unpowered.  
Diagnostics:  
CAN supply (VCAN) undervoltage supervision  
CAN bus dominant timeout  
CAN transceiver input (TxD) dominant timeout  
Overtemperature protection  
Datasheet, Z8F80164852  
67  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
CAN Transceiver (CANTRX)  
12.2  
Block diagram  
CANTRX  
AHB  
SYS0_CLK  
MCLK  
TXD_IN_SEL  
Transmitter  
TFILT_CLK  
TXDA  
TXDB  
TXDC  
TXDD  
TxD  
VCAN  
Driver  
CANH  
CANL  
Diagnostic  
and  
protection  
VCAN_UV  
GNDCAN  
TO  
Bus bias  
EN  
MODE  
TSIL_EN  
VCAN/2  
Receiver  
RXD  
Wake receiver WUP detection  
WAKECAN  
Event generation  
IRQS.  
BUS_TO_STS  
TXD_TO_STS  
OT_STS  
UV_STS  
BUS_TO_IS  
TXD_TO_IS  
OT_IS  
IRQ  
BUS_ACT_IS  
CANTRX_BD.vsdx  
Figure 17 Block diagram CANTRX  
Datasheet, Z8F80164852  
68  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics CANTRX  
12.3  
Electrical characteristics CANTRX  
12.3.1  
CANTRX characteristics  
Table 40  
CAN Bus Receiver  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C,  
CAN = 4.75 V to 5.25 V, RL = 60 Ω, CAN Normal mode, all voltages with respect to ground, positive current flowing  
into pin (unless otherwise specified)  
V
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
"Dominant"  
differential range  
Vdiff, D_range  
0.9  
-
8.0  
V
V
V
CAN Normal/Receive- P_CAN_01_01  
only Mode; -  
12VVCM(CAN)12V;  
Vdiff=VCANH - VCANL  
"Recessive"  
differential range  
Vdiff, R_range  
-3.0  
-
0.5  
CAN Normal/Receive- P_CAN_01_02  
only Mode; -  
12VVCM(CAN)12V;  
Vdiff=VCANH - VCANL  
1)  
Common Mode  
Range  
CMR  
-12  
20  
40  
-3  
-
12  
50  
100  
3
P_CAN_01_03  
CANH, CANL Input Rin  
Resistance  
40  
80  
-
kRecessive state; -  
2VVCANL/H7V  
P_CAN_01_04  
P_CAN_01_05  
P_CAN_01_06  
Differential Input  
Resistance  
Rin_diff  
DRi  
kRecessive state; -  
2VVCANL/H7V  
Input Resistance  
Deviation between  
CANH and CANL  
%
1) Recessive state;  
VCANL=VCANH = 5V  
Input Capacitance Cin  
CANH, CANL versus  
GND  
-
20  
40  
pF  
1) Recessive state; S2P P_CAN_01_07  
method @ f=10MHz  
Differential Input  
Capacitance  
Cin_diff  
-
10  
-
20  
pF  
V
1) Recessive state; S2P P_CAN_01_08  
method @ f=10MHz  
"Dominant"  
Vdiff,D_range_sleep 1.15  
8.0  
CAN Sleep Mode; -  
P_CAN_01_09  
differential range,  
CAN Sleep Mode  
12VVCM(CAN)12V;  
Vdiff=VCANH - VCANL  
"Recessive"  
Vdiff,R_range_sleep -3.0  
-
0.4  
V
CAN Sleep Mode; -  
P_CAN_01_10  
differential range,  
CAN Sleep Mode  
12VVCM(CAN)12V;  
Vdiff=VCANH - VCANL  
1) Not subject to production test, specified by design  
Datasheet, Z8F80164852  
69  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics CANTRX  
Table 41  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C,  
CAN = 4.75 V to 5.25 V, RL = 60 Ω, CAN Normal mode, all voltages with respect to ground, positive current flowing  
into pin (unless otherwise specified)  
CAN Bus Transmitter  
V
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
CANH/CANL  
Recessive Output  
Voltage  
VCANL/H_NM  
2.0  
-
3.0  
V
CAN Normal/Receive- P_CAN_02_01  
only Mode; no load  
CANH/CANL  
VCANL/H_LP  
-0.1  
-
0.1  
V
CAN Sleep Mode; no P_CAN_02_02  
load  
Recessive Output  
Voltage, CAN Sleep  
Mode  
CANH, CANL  
Recessive Output  
Voltage Difference  
Vdiff_r_N  
-500  
-200  
-
-
50  
mV CAN Normal/Receive- P_CAN_02_03  
only Mode; no load;  
Vdiff=VCANH - VCANL  
CANH, CANL  
Vdiff_r_W  
200  
mV CAN Sleep Mode; no P_CAN_02_04  
Recessive Output  
Voltage Difference,  
CAN Sleep Mode  
load; Vdiff=VCANH - VCANL  
CANL Dominant  
Output Voltage  
VCANL  
0.5  
-
-
-
2.25  
4.5  
V
V
V
CAN Normal Mode;  
50Ω≤RL65; VCAN=5V  
P_CAN_02_05  
P_CAN_02_06  
P_CAN_02_07  
CANH Dominant  
Output Voltage  
VCANH  
2.75  
1.5  
CAN Normal Mode;  
50Ω≤RL65; VCAN=5V  
CANH, CANL  
Dominant Output  
Voltage Difference  
Vdiff_d_N  
2.5  
CAN Normal Mode;  
50Ω≤RL65;  
4.9VVCAN5.25V;  
Vdiff=VCANH - VCANL  
CANH, CANL  
Vdiff_d_N  
1.5  
1.4  
-
-
-
-
5.0  
3.3  
70  
V
V
1) CAN Normal Mode; P_CAN_02_08  
RL=2240;  
4.9VVCAN5.25V;  
Dominant Output  
Voltage Difference  
(resistance during  
arbitration)  
Vdiff=VCANH - VCANL  
CANH, CANL  
Vdiff_d_N  
1) CAN Normal Mode; P_CAN_02_09  
45Ω≤RL70;  
4.9VVCAN5.25V;  
Dominant Output  
Voltage Difference  
(extended bus load  
range)  
Vdiff=VCANH - VCANL  
CANH, CANL output Vdiff_slope_rd  
voltage difference  
slope, recessive to  
dominant  
V/µs 1) 30% to 70% of  
measured differential  
bus voltage; CL=100pF  
P_CAN_02_14  
Datasheet, Z8F80164852  
70  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics CANTRX  
Table 41  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C,  
CAN = 4.75 V to 5.25 V, RL = 60 Ω, CAN Normal mode, all voltages with respect to ground, positive current flowing  
into pin (unless otherwise specified)  
Parameter Symbol  
CAN Bus Transmitter (cont’d)  
V
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
CANH, CANL output Vdiff_slope_dr  
voltage difference  
slope, dominant to  
recessive  
-
-
70  
V/µs 1) 70% to 30% of  
measured differential  
bus voltage; CL=100pF  
P_CAN_02_15  
Driver Symmetry  
VSYM  
4.5  
-
5.5  
V
2) CAN Normal Mode; ; P_CAN_02_10  
SPLIT=4.7nF;  
50Ω≤RL60; VCAN=5V  
mA CAN Normal Mode;  
CAN=5V; VCANHshort=-3V  
mA CAN Normal Mode;  
CAN=5V; VCANLshort=18V  
VSYM = VCANH + VCANL  
C
CANH Short Circuit ICANHsc  
Current  
-115  
50  
-
-80  
80  
2
-50  
115  
5
P_CAN_02_11  
P_CAN_02_12  
P_CAN_02_13  
V
CANL Short Circuit ICANLsc  
Current  
V
3)  
Leakage Current  
ICANH,lk ICANL,lk  
µA  
R
=0 / 47k;  
test  
0VVCANH,L5V; VS=VCAN  
= 0V  
1) Not subject to production test, specified by design  
2) VSYM shall be observed during dominant and recessive state and also during the transition dominant to recessive and  
vice versa while TXD is simulated by a square signal (50% duty cycle) with a frequency of up to 1 MHz (2 MBit/s)  
3) Rtest between (Vs/VCAN) and 0 V (GND)  
Table 42  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C,  
CAN = 4.75 V to 5.25 V, RL = 60 Ω, CAN Normal mode, all voltages with respect to ground, positive current flowing  
into pin (unless otherwise specified)  
Dynamic CAN-Transceiver Characteristics  
V
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Min. Dominant  
Time for Bus Wake-  
up  
tWake1  
0.5  
1.2  
1.8  
µs  
1) CAN Sleep Mode;  
TJ = -40ºC to 85ºC; -  
12VVCM(CAN)12V  
P_CAN_03_01  
Wake-up Time-out, tWake2  
Recessive Bus  
0.8  
-
10  
ms 2) 1) CAN Sleep Mode  
P_CAN_03_02  
P_CAN_03_03  
Wake-up reaction tWU_WUP  
time (WUP)  
-
100  
µs  
ns  
ns  
3) 2) 4) 1) Wake-up  
reaction time after a  
valid WUP  
5) CAN Normal Mode; P_CAN_03_04  
CL=100pF; CRXD=15pF;  
RL=60Ω  
5) CAN Normal Mode; P_CAN_03_05  
CL=100pF; CRXD=15pF;  
RL=60Ω  
Loop delay  
(recessive to  
dominant)  
tLOOP,f  
-
-
150  
150  
255  
255  
Loop delay  
(dominant to  
recessive)  
tLOOP,r  
Datasheet, Z8F80164852  
71  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics CANTRX  
Table 42  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C,  
CAN = 4.75 V to 5.25 V, RL = 60 Ω, CAN Normal mode, all voltages with respect to ground, positive current flowing  
into pin (unless otherwise specified)  
Parameter Symbol  
Dynamic CAN-Transceiver Characteristics (cont’d)  
V
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Propagation Delay td(L),T  
TXDCAN low to bus  
dominant  
-
90  
140  
140  
140  
140  
550  
ns  
ns  
ns  
ns  
ns  
CAN Normal Mode;  
CL=100pF; RL=60Ω  
P_CAN_03_06  
Propagation Delay td(H),T  
TXDCAN high to bus  
recessive  
-
100  
100  
100  
-
CAN Normal Mode;  
CL=100pF; RL=60Ω  
P_CAN_03_07  
P_CAN_03_08  
P_CAN_03_09  
P_CAN_03_11  
Propagation Delay td(L),R  
bus dominant to  
RXDCAN low  
-
CAN Normal Mode;  
CL=100pF; RL=60Ω  
Propagation Delay td(H),R  
bus recessive to  
RXDCAN high  
-
CAN Normal Mode;  
CL=100pF; RL=60Ω  
Received Recessive tbit(RXD)_2M  
bit width (CAN FD  
up to 2Mbps)  
400  
CAN Normal Mode;  
Parameter definition  
according to ISO  
11898-2; CL=100pF;  
CRXD=15pF; RL=60;  
tbit(TXD)=500ns  
Transmitted  
Recessive bit width  
(CAN FD up to  
2Mbps)  
tbit(BUS)_2M  
455  
-45  
120  
-
-
-
510  
15  
ns  
ns  
ns  
CAN Normal Mode;  
Parameter definition  
according to ISO  
P_CAN_03_12  
11898-2; CL=100pF;  
CRXD=15pF; RL=60;  
tbit(TXD)=500ns  
Receiver timing  
symmetry (CAN FD  
up to 2Mbps)  
ΔtRec_2M  
6) CAN Normal Mode; P_CAN_03_13  
Parameter definition  
according to ISO  
11898-2; CL=100pF;  
CRXD=15pF; RL=60;  
tbit(TXD)=500ns  
Received Recessive tbit(RXD)_5M  
bit width (CAN FD  
up to 5Mbps)  
220  
CAN Normal Mode;  
Parameter definition  
according to ISO  
P_CAN_03_14  
11898-2; CL=100pF;  
CRXD=15pF; RL=60;  
tbit(TXD)=200ns  
Datasheet, Z8F80164852  
72  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics CANTRX  
Table 42  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C,  
CAN = 4.75 V to 5.25 V, RL = 60 Ω, CAN Normal mode, all voltages with respect to ground, positive current flowing  
into pin (unless otherwise specified)  
Dynamic CAN-Transceiver Characteristics (cont’d)  
V
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Transmitted  
Recessive bit width  
(CAN FD up to  
5Mbps)  
tbit(BUS)_5M  
155  
-45  
8
-
210  
ns  
ns  
µs  
CAN Normal Mode;  
Parameter definition  
according to ISO  
P_CAN_03_15  
11898-2; CL=100pF;  
CRXD=15pF; RL=60;  
tbit(TXD)=200ns  
Receiver timing  
symmetry (CAN FD  
up to 5Mbps)  
ΔtRec_5M  
-
15  
6) CAN Normal Mode; P_CAN_03_16  
Parameter definition  
according to ISO  
11898-2; CL=100pF;  
CRXD=15pF; RL=60;  
tbit(TXD)=200ns  
CAN Transceiver  
Enabling Time  
tCAN,EN  
12  
18  
2) 1) SFR "MODE"  
setting to first valid  
transmitteddominant  
bit  
P_CAN_03_17  
TXDCAN Dominant tTXDCAN_TO  
Time-out  
1.6  
2.0  
2.0  
2.5  
2.4  
3.0  
ms 2) 1) CAN Normal Mode P_CAN_03_18  
BUS Dominant  
Time-out  
tBUS_CAN_TO  
ms 2) 1) CAN  
Normal/Receive-only  
P_CAN_03_19  
Mode  
2) 1)  
Time-out for bus  
inactivity  
tSILENCE  
tBias  
0.6  
-
-
-
1.2  
s
P_CAN_03_20  
P_CAN_03_21  
2) 1)  
Bus Bias reaction  
time  
250  
µs  
1) Not subject to production test, specified by design  
2) Tolerance defined by internal oscillator tolerance  
3) Wake-up is signalized via VDDC ramping up  
4) For WUP: time starts with end of last dominant phase of WUP  
5) VSYM shall be observed during dominant and recessive state and also during the transition dominant to recessive and  
vice versa while TXD is simulated by a square signal (50% duty cycle) with a frequency of up to 1 MHz (2 MBit/s)  
6) ΔtRec = tbit(RXD) - tbit(BUS)  
Datasheet, Z8F80164852  
73  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics CANTRX  
Table 43  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C,  
CAN = 4.75 V to 5.25 V, RL = 60 Ω, CAN Normal mode, all voltages with respect to ground, positive current flowing  
into pin (unless otherwise specified)  
CAN Overtemperature Characteristics  
V
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
1)  
1)  
1)  
CAN  
TjCAN_OT  
175  
185  
10  
5
195  
°C  
P_CAN_04_01  
overtemperature  
threshold  
CAN  
TjCAN_OT,hys  
-
-
K
P_CAN_04_02  
P_CAN_04_03  
overtemperature  
hysteresis  
CAN  
tCAN_OT_FT  
4
6
µs  
overtemperature  
filter time  
1) Not subject to production test, specified by design  
70%  
TXD  
30%  
td(L),T  
td(H),T  
Vdiff=CANH-CANL  
900mV  
500mV  
td(H),R  
td(L),R  
70%  
RXD  
30%  
td(H),TR  
Figure 18 Timing diagrams for dynamic characteristics  
Datasheet, Z8F80164852  
74  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics CANTRX  
70%  
TXD  
30%  
tLoop_f  
5x tBit(TXD)  
tBit(TXD)  
Vdiff=CANH-CANL  
900mV  
tBit(Bus)  
500mV  
70%  
RXD  
30%  
tLoop_r  
Figure 19 From ISO 11898-2: tloop, tbit(TXD), tbit(Bus), tbit(RXD) definitions  
tBit(RXD)  
Datasheet, Z8F80164852  
75  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
General Purpose Ports (GPIO)  
13  
General Purpose Ports (GPIO)  
13.1  
Features overview  
The TLE989x/TLE988x has many digital port pins, which can be used as General Purpose I/Os (GPIO) and are  
connected to the on-chip peripheral units.  
The TLE989x/TLE988x has port pins organized into three parallel ports: Port 0 (P0), Port 1 (P1) and Port 2 (P2).  
Each port pin has a pair of internal pull-up and pull-down devices that can be individually enabled or disabled.  
P0 and P1 are bidirectional and can be used as general purpose input/output (GPIO) or to perform alternate  
input/output functions for the on-chip peripherals. When configured as an output, the open drain mode can  
be selected. On Port 2 (P2) analog inputs are shared with general purpose digital inputs.  
The GPIOs provide a generic and flexible software and hardware interface for all standard digital I/Os. Each  
port has the same software interfaces for the operation as General Purpose I/O and it further provides the  
connectivity to the on-chip peripherals and the control for the pad characteristics. :  
The GPIO provides following features:  
Bidirectional port features (P0, P1)  
P0/P1: Configurable pin direction  
P0/P1: Configurable pull-up/pull-down devices  
P0/P1: Configurable open drain mode  
P0/P1: Configurable drive strength  
P0/P1: Configurable slew rate  
P0/P1: Transfer of data through digital inputs and outputs (general purpose I/O)  
P0/P1: Possible readback of pin status when GPIO is configured as output (short detection)  
P0/P1: Alternate input/output for on-chip peripherals  
P0/P1: up to seven alternate output connections from peripherals selectable. The three configuration  
bits per GPIO are located in the same register  
P0/P1: separate input and output registers, which allows to evaluate the input while the output is active  
(plausibility check)  
P0/P1: dedicated output modification registers (enabling set, clear, toggle functionality) to avoid read-  
modify-write operations  
P0/P1: default configuration during bootup is input and floating (no pull-up/pull-down)  
Analog port features (P2)  
P2: Configurable pull-up/pull-down devices  
P2: Transfer of data through digital inputs  
P2: Alternate inputs for on-chip peripherals  
P2: Disabling of digital input stage on shared analog input ports  
Wake-up feature  
Configurable wake-up from stop mode via GPIO (rising edge only, falling edge only, both edges), e.g. for  
wake-up on a sensor signal  
In total 6 port pins can be configured for wake-up, freely selectable from P0/P1/P2  
No lost wake-up, independent from the timing relationship between the wake-up event and the stop-  
entry command  
Datasheet, Z8F80164852  
76  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
General Purpose Ports (GPIO)  
13.2  
Block diagram  
Port 0 and Port 1  
Port slice  
Pad  
Pull  
devices  
Control  
registers  
AHB  
Data  
registers  
Alternate  
inputs  
Alternate  
outputs  
Pn.x  
Tristate  
inputs  
Port_BlockDiagram.vsdx  
Figure 20 General structure of bidirectional port  
Port 2  
Port slice  
Pad  
Pull  
devices  
Control  
registers  
AHB  
Data  
registers  
P2.x  
Alternate  
inputs  
Analog  
input  
Port_Input_Diagram.vsdx  
Figure 21 General structure of input port  
Datasheet, Z8F80164852  
77  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics GPIO  
13.3  
Electrical characteristics GPIO  
13.3.1  
Description of keep and force current  
VDDP  
keeper  
current  
PU Device  
PUDSEL  
P2.x  
P1.x  
P0.x  
\PUDSEL  
keeper  
current  
PD Device  
VSS  
Pull-Up-Down.vsd  
Figure 22 Pull-up/pull-down device  
Datasheet, Z8F80164852  
78  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics GPIO  
internal Pull-Up active  
VIN  
VIHmax (VDDP+0.3V)  
VIH  
IPU < IPUKT (min. 60 uA)  
IPU > IPUFT (max. 1 mA)  
Keep-range  
Force-range  
valid high  
VIHmin (0.7 * VDDP  
)
invalid digital input  
VILmax (0.3 * VDDP  
)
VIL  
VILmin (-0.3V)  
valid low  
IPU definition (non-default): positive current flowing out of pin  
internal Pull-Down active  
VIN  
VIHmax (VDDP+0.3V)  
IPD > IPDFT (max. 1 mA)  
Force-range  
VIH  
valid high  
VIHmin (0.7 * VDDP  
)
invalid digital input  
VILmax (0.3 * VDDP  
)
IPD < IPDKT (min. 60 uA)  
VIL  
VILmin (-0.3V)  
Keep-range  
valid low  
Pull-currents.vsd  
All values in brackets are for information only  
Figure 23 Pull currents, Keep and Force Current  
Datasheet, Z8F80164852  
79  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics GPIO  
13.3.2  
Port 0, Port 1, TMS and Reset DC characteristics  
Note:  
Operating Conditions apply.  
Keeping signal levels within the limits specified in this table ensures operation without overload  
conditions. For signal levels outside these specifications, also refer to the specification of the  
overload current IOV  
.
Table 44  
DC Characteristics Port0, Port1, TMS, Reset  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Input low voltage  
VIL  
-0.3  
-
-
-
-
-
-
-
-
-
-
0.3 *  
VDDP  
V
V
V
V
2.55VVDDP5.5V  
P_GPIO_01_01  
P_GPIO_01_02  
P_GPIO_01_03  
P_GPIO_01_04  
Input high voltage VIH  
0.7 *  
VDDP  
VDDP +  
0.3  
2.55VVDDP5.5V  
Input Hysteresis  
Input Hysteresis  
Hys  
0.11 *  
VDDP  
-
1) 4.5VVDDP5.5V;  
Series Resistance=0Ω  
1) 2.55VVDDP<4.5V;  
Series Resistance=0Ω  
Hysext  
IOZ2  
0.04 *  
VDDP  
-
Input leakage  
current  
-5  
-22  
60  
-
+5  
+22  
-
µA Tj85°C; 0V<VIN<VDDP P_GPIO_01_05  
Input leakage  
current  
IOZ2ext  
IPUKT  
IPUFT  
IPDKT  
IPDFT  
CIO  
µA 0V<VIN<VDDP  
P_GPIO_01_06  
P_GPIO_01_07  
P_GPIO_01_08  
P_GPIO_01_09  
P_GPIO_01_10  
Pull-up keep  
threshold  
µA 2) 3) 4.5VVDDP5.5V;  
VIN=VIHmin  
mA 2) 3) 4.5VVDDP5.5V;  
VIN=VILmax  
µA 2) 4.5VVDDP5.5V;  
VIN=VILmax  
mA 2) 4.5VVDDP5.5V;  
VIN=VIHmin  
Pull-up force  
threshold  
1
Pull-down keep  
threshold  
60  
-
-
Pull-down force  
threshold  
1
1)  
Pin capacitance  
-
-
-
-
10  
pF  
P_GPIO_01_11  
P_GPIO_01_13  
4) 5)  
Output low voltage VOL_max_cur  
(max. current)  
1.0  
V
V
V
V
I IOLmax ;  
OL  
2.55VVDDP5.5V  
4) 5)  
Output low voltage VOL_nom_cur  
(nom. current)  
-
-
-
-
0.4  
I IOLnom  
;
P_GPIO_01_14  
P_GPIO_01_15  
P_GPIO_01_16  
OL  
2.55VVDDP5.5V  
4) 5) 6)  
Outputhighvoltage VOH_max_cur  
(max. current)  
VDDP  
1.0  
-
-
-
-
I IOHmax ;  
OH  
2.55VVDDP5.5V  
4) 5) 6)  
Outputhighvoltage VOH_nom_cur  
VDDP  
I IOHnom ;  
OH  
(nom. current)  
0.4  
2.55VVDDP5.5V  
Datasheet, Z8F80164852  
80  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics GPIO  
Table 44  
DC Characteristics Port0, Port1, TMS, Reset (cont’d)  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Output Slope  
(strong driver,  
sharp edge), rise /  
fall time  
tslope,sharp  
-
-
-
-
15  
5
ns  
ns  
7) CL100pF  
7) CL20pF  
P_GPIO_01_17  
P_GPIO_01_18  
Output Slope  
(medium driver),  
rise / fall time  
tslope,medium  
-
-
-
-
50  
12  
ns  
ns  
7) CL100pF  
7) CL20pF  
P_GPIO_01_19  
P_GPIO_01_20  
1) Not subject to production test, specified by design  
2) Keep current: Limit the current through this pin below the threshold so that the enabled pull device can keep the pin  
level.  
Force current: Drive at least the threshold current through this pin to override the pin level driven by the enabled pull  
device.  
See also figure "Pull currents, Keep and Force Current".  
These values apply to the fixed pull-devices in dedicated pins and to the user-selectable pull-devices in general  
purpose IO pins.  
3) IPU definition (non-default): positive current flowing out of pin  
4) The maximum deliverable output current of a port driver depends on the selected output driver mode. The limit for  
pin groups must be respected.  
5) IOLnom, IOLmax, IOHnom, IOHmax: see Table "Current Limits for Port Output Drivers"  
6) IOH definition (non-default): positive current flowing out of pin  
7) 20% / 80% of VDDP  
Datasheet, Z8F80164852  
81  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics GPIO  
Table 45  
Current Limits for Port Output Drivers  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
1) 2)  
1) 2)  
1) 2)  
Output Current,  
Strong Driver  
IOLHs5  
IOLHm5  
IOLHw5  
IOLHs3  
IOLHm3  
IOLHw3  
-
-
-
-
-
-
1.6  
5
mA  
mA  
mA  
V
V
V
4.5V  
4.5V  
4.5V  
P_GPIO_02_01  
P_GPIO_02_02  
P_GPIO_02_03  
P_GPIO_02_04  
P_GPIO_02_05  
P_GPIO_02_06  
DDP  
DDP  
DDP  
Output Current,  
Medium Driver  
1.0  
3
Output Current,  
Weak Driver  
0.25 0.5  
Output Current,  
Strong Driver  
1.0  
0.8  
3
mA 1) 2) 2.55VVDDP<4.5V  
mA 1) 2) 2.55VVDDP<4.5V  
mA 1) 2) 2.55VVDDP<4.5V  
Output Current,  
Medium Driver  
1.8  
Output Current,  
Weak Driver  
0.15 0.3  
1) Typ. values: Nominal Output Current (IOLnom, IOHnom).  
Max. values: Maximum Output Current (IOLmax, IOHmax).  
Values are valid for both Lowside current and Highside current.  
2) IOH definition (non-default): positive current flowing out of pin  
Datasheet, Z8F80164852  
82  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics GPIO  
13.3.3  
Port 2 DC characteristics  
Note:  
Operating Conditions apply.  
Keeping signal levels within the limits specified in this table ensures operation without overload  
conditions. For signal levels outside these specifications, also refer to the specification of the  
overload current IOV  
.
Table 46  
DC Characteristics Port 2  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Input low voltage  
VIL_P2  
-0.3  
-
-
-
-
-
-
-
-
-
-
-
0.3 *  
VDDP  
V
V
V
V
2.55VVDDP5.5V  
P_GPIO_03_01  
P_GPIO_03_02  
P_GPIO_03_03  
P_GPIO_03_04  
Input high voltage VIH_P2  
0.7 *  
VDDP  
VDDP +  
0.3  
2.55VVDDP5.5V  
Input Hysteresis  
Input Hysteresis  
HysP2  
0.11 *  
VDDP  
-
-
1) 4.5VVDDP5.5V;  
Series Resistance=0Ω  
1) 2.55VVDDP<4.5V;  
Series Resistance=0Ω  
HysP2ext  
IOZ1_P2  
0.04 *  
VDDP  
Input leakage  
current  
-400  
-1  
60  
-
+400 nA 2) Tj85°C; 0V<VIN<5.1V P_GPIO_03_05  
Input leakage  
current  
IOZ1_P2ext  
IPUKT_P2  
IPUFT_P2  
IPDKT_P2  
IPDFT_P2  
CIO_P2  
+1  
-
µA 2) 0V<VIN<5.1V  
P_GPIO_03_06  
P_GPIO_03_07  
P_GPIO_03_08  
P_GPIO_03_09  
P_GPIO_03_10  
P_GPIO_03_11  
Pull-up keep  
threshold  
µA 3) 4) 4.5VVDDP5.5V;  
VIN=VIHmin  
mA 3) 4) 4.5VVDDP5.5V;  
VIN=VILmax  
µA 3) 4.5VVDDP5.5V;  
VIN=VILmax  
mA 3) 4.5VVDDP5.5V;  
VIN=VIHmin  
Pull-up force  
threshold  
1
Pull-down keep  
threshold  
60  
-
-
Pull-down force  
threshold  
1
1)  
Pin capacitance  
(digital  
-
10  
pF  
inputs/outputs)  
1) Not subject to production test, specified by design  
2) An additional error current will flow if an overload current flows through an adjacent pin.  
3) Keep current: Limit the current through this pin below the threshold so that the enabled pull device can keep the pin  
level.  
Force current: Drive at least the threshold current through this pin to override the pin level driven by the enabled pull  
device.  
See also figure "Pull currents, Keep and Force Current".  
4) IPU definition (non-default): positive current flowing out of pin  
Datasheet, Z8F80164852  
83  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
High-Voltage Monitor Input (MON)  
14  
High-Voltage Monitor Input (MON)  
14.1  
Features overview  
The High-Voltage Monitor Input (MON) is dedicated to monitor external voltage levels above or below the  
threshold VMONth. Each MONx input can further be used to create a wake-up event by detecting a level change  
while crossing the threshold. This applies to any system operation mode, especially for the power-down  
modes. Furthermore each MONx input can be sampled by the ADC1 as an analog input. It can also be used as  
a high-voltage PWM input signal for Timer21.  
The MON provides following features:  
High-voltage inputs with threshold voltage 3 V (typ.)  
Wake-up capability for system Stop mode and system Sleep mode  
Edge sensitive wake-up feature configurable for transitions from low to high, high to low or both directions  
MON input level status (high/low) can be read in Active mode  
MON inputs can also be evaluated with ADC1 in Active mode to sense high-voltage signals, using adjustable  
threshold values for interrupt generation  
Selectable pull-up and pull-down current sources available  
MON inputs can be selected as inputs for Timer21 to evaluate high-voltage PWM input signals  
MON inputs can be used for edge detection (interrupt generation for transitions from low to high, high to  
low or both directions)  
14.2  
Block diagram  
VDD5V_PD  
MON  
to ADC1 / ADC2  
+
-
to UART1, T21  
(only MON1)  
to SCU (interrupt request)  
(with fixed digital filter)  
MONx  
to PMU (wake-up event)  
(with configurable digital filter)  
Logic (in MON and PMU)  
SFR (in PMU and SCU)  
VRef  
MONx_3V_block_diagram_UM.vsdx  
Figure 24 Block diagram MON  
Datasheet, Z8F80164852  
84  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics MON  
14.3  
Electrical characteristics MON  
14.3.1  
MON characteristics  
Table 47  
Electrical Characteristics Monitoring Input  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Wake-  
up/monitoring  
threshold voltage  
VMONth  
2
3
3.8  
V
withoutexternalserial P_MON_02_01  
resistor Rs (with Rs:dV  
= IPD/PU* Rs);  
Threshold  
hysteresis  
VMONth,hys  
0.1  
-
0.7  
V
in all modes; without P_MON_02_02  
external serial resistor  
Rs (with Rs:dV = IPD/PU  
Rs);  
*
Pull-up current  
IPU, MON  
-20  
3
-10  
10  
-
-3  
20  
2
µA VMON_IN=3.8V  
µA VMON_IN=2V  
µA 1) 0V<VMON_IN<40V  
P_MON_02_03  
P_MON_02_04  
P_MON_02_05  
Pull-down current IPD, MON  
Input leakage  
current  
ILK,MON  
-2  
1) Valid for enabled module. Pull-up and pull down current functionality disabled; ADC1 off.  
Datasheet, Z8F80164852  
85  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Analog Reference Voltage Generation (ARVG)  
15  
Analog Reference Voltage Generation (ARVG)  
15.1  
Features overview  
The Analog Reference Voltage Generation module (ARVG) is responsible for the generation of reference  
voltages that can be used by the various analog peripherals in the device.  
The ARVG provides following features:  
VREF1V2 internal reference voltage generation (VREF1V2, 1.211 V typ.) for ADC2 and the NVM  
VREF1V2 is monitored by ADC1  
VAREF reference voltage generation (VREF5V, 5 V typ.) for ADC1, CSA, CSC and SDADC; VAREF has a pin and  
needs a buffer cap to VAGND (see CVAREF)  
VAREF has an overcurrent (undervoltage) monitor (VAREF_OC)  
VAREF has an overvoltage monitor within the PMU (VAREF_OV), for more details please refer to the Power  
Management Unit (PMU) chapter  
15.2  
Block diagram  
ARVG  
VAREF  
VAREF_IRQ.  
OC_IS  
IRQ  
To SCU and NVIC  
AHB  
VAREFUVF/  
VAREFUVR  
OC  
VAREF_IRQ.  
OC_STS  
VAREF_IEN.  
OC_IEN  
tVAREFOCFT  
VAREF_CTRL.  
EN  
&
VREF5V  
VAREFSUP  
VGEN_REF  
VAREF  
Can be used as reference for  
ADC1, CSA/CSC, SDADC  
Monitored by PMU  
VAGND  
VREF1V2  
VREF1V2  
Used as reference for  
ADC2 and NVM  
Bandgap  
VREF1V2  
VDDC  
Monitored by ADC1  
CFU_STS.  
VAREF_1V2_UP  
ARVG.vsdx  
Figure 25 Block diagram ARVG  
Datasheet, Z8F80164852  
86  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics ARVG  
15.3  
Electrical characteristics ARVG  
15.3.1  
VREF1V2 DC characteristics  
Table 48  
VREF1V2 DC Specification  
VS = 3 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
1.188 1.211 1.22  
Reference output  
voltage  
VREF1V2  
V
all parameters within P_ARVG_02_01  
specification limits  
1) 2)  
Temperature drift ΔVREF1V2  
0
-
1
%
P_ARVG_02_02  
1) ΔVREF1V2 = (VREF1V2,max - VREF1V2,min) / VREF1V2,min where VREF1V2,min is minimum VREF1V2 over temperature range and VREF1V2,max  
is maximum VREF1V2 over temperature range  
2) Not subject to production test, specified by design  
Datasheet, Z8F80164852  
87  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics ARVG  
15.3.2  
VREF5 DC characteristics  
Table 49  
VREF5 DC Specification  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Reference output  
voltage  
VREF5V  
4.9  
5
5.1  
V
all parameters within P_ARVG_03_01  
specification limits  
1) 2)  
Temperature drift ΔVREF5V  
0
-
-
1
%
P_ARVG_03_08  
Power-up time  
tWAKE  
50  
200  
µs  
VREF5V_ENABLE to  
99.9% of the final  
value; Cext=100nF  
P_ARVG_03_02  
VAREF required  
buffer capacitance  
CVAREF  
0.1  
-
1
µF  
2) the specified  
capacitor value is a  
value including  
tolerances;  
P_ARVG_03_03  
ESR<100mOhm  
VAREF  
VAREFUVF  
VAREFUVR  
IVAREF  
2.33  
3.44  
2.48 2.85  
V
V
P_ARVG_03_04  
P_ARVG_03_05  
undervoltage  
(overcurrent)  
threshold falling  
2)  
VAREF  
3.74  
4
undervoltage  
(overcurrent)  
threshold rising  
2)  
2)  
VAREF output  
current  
0
-
20  
µA  
µs  
P_ARVG_03_06  
P_ARVG_03_07  
VAREF OC filter time tVAREFOCFT  
3.6  
4
4.4  
1) ΔVREF5V = (VREF5V,max - VREF5V,min) / VREF5V,min where VREF5V,min is minimum VREF5V over temperature range and VREF5V,max is  
maximum VREF5V over temperature range  
2) Not subject to production test, specified by design  
Datasheet, Z8F80164852  
88  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Analog Digital Converter 1 (ADC1)  
16  
Analog Digital Converter 1 (ADC1)  
16.1  
Features overview  
The ADC1 is a successive approximation analog to digital converter which can be used for analog signal  
measurement especially optimized for BLDC motor control. It has a deterministic behavior regarding to the  
sample event and conversion timing, even for a sequence of conversions. The ADC1 operates greatly  
autonomous in background avoiding real-time critical interaction by the CPU or DMA.  
The ADC1 provides following features:  
A/D kernel performance:  
12-bit resolution for all analog inputs  
High accuracy of typ. 0.5% of the input range (MVACC, HVACC1  
)
Fast sampling time (tsampMV, tsampHV, tsampSHx  
)
Fast total conversion time (typ. 800 ns for MV/HV inputs and 1600 ns for SHx inputs)  
Analog inputs ANx:  
Up to 11 middle voltage inputs (range MVRNG)  
8 factory calibrated high voltage inputs (range HVRNG1)  
Referenced to VAREF/VAGND via internal VAREF or VDDEXT voltage regulators  
Digital channels with channel control and result generation:  
Each analog input can be freely assigned to one or more out of 20 possible digital channels  
Each digital channel has its own result register with a result event (IRQ capable)  
One out of 4 conversion classes can be assigned to a digital channel  
Up to 4 digital comparators with 8-bit upper and lower thresholds can monitor a channel result and  
generate a compare event (IRQ and/or interconnect signal)  
Up to 4 first order IIR filter s with programmable characteristics can be assigned to a channel result  
Programmable repeat feature for each channel  
Trigger and gating control:  
For deterministic control of complex conversion sequences with respect to time-accuracy and time-  
equidistancy  
36 trigger inputs can be selected for hardware or software-based start event of a conversion sequence  
16 gating inputs can be selected for hardware or software-based gating of a trigger event  
Sequencer:  
Allows to build complex and variable conversion schemes  
Up to 4 independent sequences with up to 4 digital channels can be freely assembled  
Hardware or software-based trigger of a sequence with deterministic end of sequence event (IRQ  
capable)  
Possible trigger features: self-trigger or next-sequence-trigger (round robin capable)  
Shadow mechanism for data coherency when updating the sequencer configuration on-the-fly  
Conversion class control:  
Programmable sample time adjustment to adapt to the analog input characteristic  
Programmable noise reduction feature (oversampling, averaging, sample point adjust)  
Programmable broken wire detection feature for external sensors  
Datasheet, Z8F80164852  
89  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Analog Digital Converter 1 (ADC1)  
Programmable calibration feature to compensate drift and temperature effects  
Interrupt and DMA:  
The ADC1 events can be routed to 4 interrupt node pointers (with 4 IRQ lines)  
ADC1 events can be mapped to 8 DMA channels  
16.2  
Block diagram  
ADC1  
To  
Sequencer Control  
Sequencer  
Channel Control  
CLKIN  
GTSQx[D:A]  
TRGSQx[H:A]  
IRQ[3:0]  
NVIC  
Trigger and gating  
inputs (CCU7)  
Trigger  
Logic  
Channel  
Class  
Channel  
Config  
SQ[1:0]  
CH[7:0]  
CMPUP0  
CMPLO0  
To  
DMA  
Shadow transfer requests  
and enable (CCU7)  
From GPIO (P2.x)  
EXSTR[F:A]  
EXTSTE  
ADC Kernel  
Result Generation  
AN[26:0]  
Result  
Filter  
VS, VCP, SHx, MONx,  
CSA, REF1V2  
To  
Attenuators  
A/D  
Calibration  
CMPUP[3:0]  
CMPLO[3:0]  
peripheral  
interconnects  
Compare  
VAREF  
VAGND  
From VAREF  
ADC1_BlockDiagram.vsd  
Figure 26 Block diagram ADC1  
Datasheet, Z8F80164852  
90  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics ADC1  
16.3  
Electrical characteristics ADC1  
16.3.1  
A/D converter characteristics ADC1  
Table 50  
A/D converter ADC1, Timing parameters  
VS = 4.2 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Reference ground VAGND  
-0.05  
-
0.05  
V
@VAGND pin; tested P_ADC1_01_05  
with VAREF=VREF5V,  
VAGND = n.c., blocking  
cap 100nF between  
VAREF and VAGND  
Module Clock  
Frequency  
fadc  
5
-
-
-
-
40  
-
MHz Internal ADC1 clock  
P_ADC1_01_36  
P_ADC1_01_38  
P_ADC1_01_44  
P_ADC1_01_40  
derived from module  
input clock via CLKDIV  
Sample Time HV  
input  
tsampHV  
200  
1000  
200  
ns  
ns  
ns  
1) STC has to be  
programmed  
accordingly  
1) STC has to be  
programmed  
accordingly  
1) STC has to be  
programmed  
accordingly  
Sample Time SHx tsampSHx  
input  
-
Sample Time MV  
input  
tsampMV  
-
1) Not subject to production test, specified by design  
Table 51  
A/D converter ADC1, Performance parameters  
VS = 4.2 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified), LSB = VAREF/4096  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Integral  
Nonlinearity  
INLE  
-4  
-1  
-7  
-6  
-
-
4
2
7
6
2
LSB  
P_ADC1_01_18  
Differential  
Nonlinearity  
DNLE  
TUEHV  
TUEMV  
RMS1  
-
LSB 1) No two consecutive P_ADC1_01_20  
missing codes  
2) 1)  
Total Unadjusted  
Error for HV inputs  
-
LSB  
LSB  
LSB  
P_ADC1_01_30  
P_ADC1_01_28  
P_ADC1_01_32  
2) 1)  
1)  
Total Unadjusted  
Error for MV inputs  
-
RMS Noise 1  
1.5  
Datasheet, Z8F80164852  
91  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics ADC1  
Table 51  
A/D converter ADC1, Performance parameters (cont’d)  
VS = 4.2 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified), LSB = VAREF/4096  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
RMS Noise 3  
RMS3  
-
-
1.4  
LSB 1) With averaging of 4 P_ADC1_01_34  
oversampling  
conversions  
3) 4) 5) 1)  
Negative overload KOVAN  
coupling factor  
-
-
0.0001  
5
P_ADC1_01_08  
3) 4) 5) 1)  
Positive overload  
coupling factor  
KOVAP  
-
-
0.0001  
5
P_ADC1_01_09  
Discharge current lbwd  
for broken wire  
detection setting 0  
60  
80  
100  
800  
34  
µA  
µA  
P_ADC1_01_06  
P_ADC1_01_07  
Discharge current lbwdh  
for broken wire  
detection setting 1  
480  
-
640  
-
Analog input  
resistance  
RAIN  
k1) This is the internal P_ADC1_01_12  
resistive path from  
ANx pad via mux to  
the cap field  
Switched  
CAIN  
-
-
660  
fF  
1) This is the  
P_ADC1_01_13  
capacitance at ANx  
capacitance which  
must be charged by  
the analog source  
within the minimum  
sampling time  
Analog reference  
input resistance  
RAREF  
-
-
-
-
7
k1) This is the internal P_ADC1_01_15  
resistive path from  
VAREF pad to cap field  
Switched  
capacitance at  
VAREF  
CAREF  
330  
fF  
1) This is the  
P_ADC1_01_17  
capacitance which  
must be charged by  
VAREF source with the  
first successive  
approximation cycle  
Power Supply  
Rejection Ratio for  
High Voltage Inputs  
PSSRHV  
PSSRMV  
25  
5
-
-
-
-
dB 1) @VDDP with 3 kHz, P_ADC1_01_42  
100 mV peak-to peak  
ripple  
dB 1) @VDDP with 3 kHz, P_ADC1_01_43  
Power Supply  
Rejection Ratio for  
Mid Voltage Inputs  
100 mV peak-to peak  
ripple  
1) Not subject to production test, specified by design  
2) TUE = (INL × GE) + OE, without channel calibration.  
Datasheet, Z8F80164852  
92  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics ADC1  
3) The overload coupling factor KOVAN/KOVAP (K) defines the worst case relation of an overload condition (Iov) at one  
pin to the resulting leakage current (Ileaktot) into an adjacent pin: Ileaktot = ±K × |Iov| + Ioz1. Thus the overload  
condition can cause an an additional error voltage at an adjacent analog input pin.  
4) Overload current is allowed in following operation modes: unpowered, active and sleep mode.  
5) Overload conditions occur if the standard operating conditions are exceeded, i.e. the input voltage Vin at the pin  
exceeds the specified range: Vin > VDDP + 0.3 V (Iov > 0) or Vin < -0.3 V (Iov < 0).  
Datasheet, Z8F80164852  
93  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics ADC1  
16.3.2  
Analog inputs characteristics  
Table 52  
HV inputs with attenuator type 0 (ATT_TYP0)  
VS = 5.5 V to 40 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Nominal HV input HVRNG0  
voltage range 0  
0
-
25.09  
V
not calibrated  
P_ADC1_02_01  
P_ADC1_02_02  
Accuracy of  
measurement with  
ATTTYP0  
HVACC0  
-250  
-
250  
mV 1) not calibrated  
1) Not subject to production test; referenced to Vin.  
Table 53  
HV inputs with attenuator type 1 (ATT_TYP1)  
VS = 5.5 V to 40 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Nominal HV input HVRNG1  
voltage range 1  
0
-
35.555 V  
P_ADC1_03_01  
P_ADC1_03_03  
Accuracy of  
HVACC1_1  
HVACC1_2  
HVACC1_3  
-125  
-
125  
150  
235  
mV 1) with calibration  
enabled (CALENi=1);  
0V<VIN10.6V  
measurement with  
ATTTYP1 at input  
voltage range 1  
Accuracy of  
-150  
-235  
-
-
mV 1) with calibration  
enabled (CALENi=1);  
10.6V<VIN17.7V  
P_ADC1_03_04  
P_ADC1_03_02  
measurement with  
ATTTYP1 at input  
voltage range 2  
Accuracy of  
mV 1) with calibration  
enabled (CALENi=1);  
17.7V<VIN35.5V  
measurement with  
ATTTYP1 at input  
voltage range 3  
1) Five points of transfer curve for each analog input; @hot and @cold temperature; each point averaged over  
16 measurements.  
Datasheet, Z8F80164852  
94  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics ADC1  
Table 54  
MV inputs with attenuator type 2 (ATT_TYP2)  
VS = 5.5 V to 40 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Nominal MV input MVRNG  
voltage range  
0
-
5
V
with calibration  
enabled (CALENi=1);  
in case VAREF is  
externally supplied  
the condition VAREF <  
VDDP + 0.3 V must be  
met  
P_ADC1_04_01  
Accuracy of  
measurement with  
ATTTYP2  
MVACC  
-35  
-60  
-
-
35  
60  
mV 1) with calibration  
enabled (CALENi=1)  
P_ADC1_04_02  
Accuracy of  
measurement with  
ATTTYP2  
MVACC_CSA  
mV for CSA (ADC1 channel P_ADC1_04_03  
18); G=40 ;  
CTRL2.OFFS_SEL<1:0  
>=00B  
-90  
-
90  
mV for CSA (ADC1 channel P_ADC1_04_04  
18)  
1) Five points of transfer curve for each analog input; @hot and @cold temperature; each point averaged over  
16 measurements.  
Datasheet, Z8F80164852  
95  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Monitoring Analog Digital Converter 2 (ADC2)  
17  
Monitoring Analog Digital Converter 2 (ADC2)  
17.1  
Features overview  
The ADC2 is a successive approximation analog to digital converter which is used for diagnosis of internal  
system voltages. The ADC2 has a pre-configured sequence of conversions with a deterministic timing. It runs  
fully autonomous in background, provides the digital results and generates events for interrupts and  
interconnects.  
The ADC2 has following features:  
A/D kernel performance:  
10-bit resolution for all analog inputs  
Wide input range for middle and high voltage inputs from typ. 5 V to 50 V (MVRNG, HVRNG0/1/2/3  
)
High accuracy of typ. 1% of the input range (MVACC, HVACC0/1/2/3  
Fast sampling time (tsampMV, tsampHV  
Fast total conversion time (typ. 1 µs for MV and typ. 2 µs for HV inputs)  
)
)
Analog inputs ANx:  
8 factory calibrated middle voltage inputs (range MVRNG  
)
Up to 7 factory calibrated high voltage inputs (ranges HVRNG0/1/2/3  
)
Referenced to internally generated VREF1V2 reference voltage (see the Analog Reference Voltage  
Generation (ARVG) chapter)  
Digital channels with channel control and result generation:  
Each analog input is assigned to one digital channel and has a separate result register  
6 digital channels are pre-set for monitoring and protection function for BDRV and CANTRX  
(NMI capable)  
2 freely selectable digital comparators with programmable upper and lower thresholds (8-bit) for user  
defined monitoring (IRQ capable)  
2 freely selectable first order IIR filters with programmable characteristics for result post-processing  
Results can be read at any time by user software  
Sequencer:  
One fixed conversion sequence is pre-programmed and runs in a round-robin scheme autonomously in  
background  
Interrupt and DMA:  
The ADC2 events can generate a NMI  
The ADC2 events can be mapped to 2 interrupt node pointers (with 2 IRQ lines)  
Datasheet, Z8F80164852  
96  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Monitoring Analog Digital Converter 2 (ADC2)  
17.2  
Block diagram  
ADC2  
Sequencer Control  
Sequencer  
Channel Control  
IRQ[1:0]  
IRQ3  
CLKIN  
Trigger  
Logic  
Channel  
Class  
Channel  
Config  
ADC Kernel  
Result Generation  
AN[14:0]  
Result  
Filter  
Attenuators  
A/D  
Calibration  
CMPUP[4:0]  
CMPLO[4:0]  
VREF1V2  
GND  
Compare  
ADC2_BlockDiagram.vsd  
Figure 27 Block diagram ADC2  
Datasheet, Z8F80164852  
97  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics ADC2  
17.3  
Electrical characteristics ADC2  
17.3.1  
A/D converter characteristics ADC2  
Table 55  
A/D Converter - Timing and AC specification  
VS = 3 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Analog clock  
frequency  
fADC2  
5
-
40  
MHz Internal ADC2 clock  
derived from module  
input clock via CLKDIV  
P_ADC2_02_02  
Sampling time for tsampHV  
high voltage inputs  
1400  
400  
-
-
-
-
ns  
P_ADC2_02_03  
P_ADC2_02_05  
Sampling time for tsampMV  
medium voltage  
input  
ns  
1) 2)  
RMS noise  
RMS  
0
-
1.8  
LSB  
P_ADC2_02_10  
1) Design characterization: 5000 samples @ VIN=4.75V; value @ 1 sigma  
2) Not subject to production test, specified by design  
Table 56  
A/D Converter - DC specification  
VS = 3 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Differential  
nonlinearity  
DNLE  
INLE  
-0.99  
-
2
LSB no missing codes  
P_ADC2_03_01  
Integral  
-2  
-
2
LSB maximum deviation P_ADC2_03_02  
nonlinearity  
from linear best fit line  
1)  
Gain error  
GE  
OE  
-1.2  
-3  
-
-
1.2  
3
%
P_ADC2_03_03  
P_ADC2_03_04  
Offset error  
LSB 2) VS=13.5V;  
fADC2=30MHz  
2)  
Total unadjusted  
error  
TUE  
-8  
4
-
8
LSB  
P_ADC2_03_05  
P_ADC2_03_06  
P_ADC2_03_07  
2)  
On resistance of a RAON_HV  
HV analog input  
5.5  
180  
7.5  
310  
kΩ  
2)  
Input capacitance CAIN_HV  
80  
fF  
of a HV analog input  
Datasheet, Z8F80164852  
98  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics ADC2  
Table 56  
A/D Converter - DC specification (cont’d)  
VS = 3 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
2)  
On resistance of a RAON_MV  
MV analog input  
8
13  
19  
kΩ  
P_ADC2_03_08  
P_ADC2_03_09  
2)  
Input capacitance CAIN_MV  
of a MV analog  
input  
325  
435  
545  
fF  
1) After analog input calibration, including temperature drift of GE and VREF1V2; temperature drift of GE and  
temperature drift of VREF1V2 may compensate each other; GE is relative to the full scale range; the GE at half scale  
range is only half of the full scale range error  
2) Not subject to production test, specified by design  
17.3.2  
Attenuators characteristics  
Table 57  
Attenuator type 0 for HV inputs  
VS = 3 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Nominal HV input HVRNG0  
0
-
25.83  
V
HVRNG0=VREF1V2(typ)/ P_ADC2_04_01  
voltage range 0  
ATTTYP0  
1)  
Accuracy of  
measurement with  
ATTTYP0  
HVACC0  
-220  
-
220  
mV  
P_ADC2_04_02  
1) Five points of transfer curve for each analog input; @hot and @cold temperature; each point averaged over  
16 measurements  
Table 58  
Attenuator type 1 for HV inputs  
VS = 3 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Nominal HV input HVRNG1  
0
-
31.00  
V
HVRNG1=VREF1V2(typ)/ P_ADC2_05_01  
voltage range 1  
ATTTYP1  
Accuracy of  
measurement with  
ATTTYP1  
HVACC1  
-250  
-275  
-
-
250  
275  
mV 1) VS5.5V  
mV 1) VS<5.5V  
P_ADC2_05_02  
P_ADC2_05_03  
1) Five points of transfer curve for each analog input; @hot and @cold temperature; each point averaged over  
16 measurements  
Datasheet, Z8F80164852  
99  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics ADC2  
Table 59  
Attenuator type 2 for HV inputs  
VS = 3 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Nominal HV input HVRNG2  
0
-
51.67  
V
HVRNG2=VREF1V2(typ)/ P_ADC2_06_01  
voltage range 2  
ATTTYP2  
1)  
Accuracy of  
measurement with  
ATTTYP2  
HVACC2  
-500  
-450  
-
-
500  
450  
mV  
P_ADC2_06_02  
mV 1) Tj150°C  
P_ADC2_06_03  
1) Five points of transfer curve for each analog input; @hot and @cold temperature; each point averaged over  
16 measurements  
Table 60  
Attenuator type 3 for HV inputs  
VS = 3 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Nominal HV input HVRNG3  
0
-
8.15  
V
HVRNG3=VREF1V2(typ)/ P_ADC2_07_01  
voltage range 3  
ATTTYP3  
1)  
Accuracy of  
measurement with  
ATTTYP3  
HVACC3  
-100  
-
100  
mV  
P_ADC2_07_02  
1) Five points of transfer curve for each analog input; @hot and @cold temperature; each point averaged over  
16 measurements  
Table 61  
Attenuator type 4 for MV inputs  
VS = 3 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Nominal MV input MVRNG  
0
-
5.34  
V
MVRNG=VREF1V2(typ)/ P_ADC2_08_01  
voltage range  
ATTTYP4  
Accuracy of  
measurement with  
ACCTYP4  
MVACC  
-50  
-
50  
mV 1) MV measurements P_ADC2_08_02  
are dependent on  
VDDP, therefore  
MV_ACC is valid for  
VIN < VDDP + 0.2 V  
1) Five points of transfer curve for each analog input; @hot and @cold temperature; each point averaged over  
16 measurements  
Datasheet, Z8F80164852  
100  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Current Sense Amplifier (CSA)  
18  
Current Sense Amplifier (CSA)  
18.1  
Features overview  
The Current Sense Amplifier (CSA) in Figure 28 can be used to measure near-ground differential voltages via  
ADC1. Its gain and output offset voltage are digitally programmable through internal control registers.  
Linear calibration has to be applied to achieve high gain accuracy, e.g. end-of-line calibration including the  
shunt resistor.  
Figure 28 shows how the current sense amplifier can be used as a low-side current sense amplifier where the  
motor current is converted to a voltage by means of a shunt resistor RSH. A differential amplifier input is used  
in order to eliminate measurement errors due to voltage drop across the stray resistance RStray and differences  
between the external and internal ground. If the voltage at one or both inputs (CSAP/CSAN) is out of the  
operating range it has to be taken into account that the input circuit is overloaded and needs a certain  
specified recovery time.  
In general, the external low pass filter should suppress electromagnetic interferences (EMI).  
The CSA provides following features:  
The CSA amplifies a near-ground differential input voltage to a single-ended output voltage  
The CSA has programmable gain settings of G = 10, 20, 40, 60  
The CSA output voltage has a programmable offset  
The CSA output voltage can be measured by the ADC1  
The CSA output voltage offset can be measured by the ADC1 independently from the CSA input conditions  
The CSA output voltage offset is derived from the ADC1 reference voltage VAREF  
Datasheet, Z8F80164852  
101  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Current Sense Amplifier (CSA)  
18.2  
Block diagram  
VSD  
CSA  
VAREF  
VAGND  
MOSFET  
bridge  
Output  
offset  
generator  
CSAOUT_OFF  
CSAOUT  
LP filter  
RCSAFILT  
CSC  
CSAP  
CSAN  
CSAADC  
ADC1  
CCSAFILT  
RCSAFILT  
RSH  
G
MI_CLK  
AHB  
CCSAFILT  
RStray  
GND  
Figure 28 Block diagram CSA  
Datasheet, Z8F80164852  
102  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics CSA  
18.3  
Electrical characteristics CSA  
18.3.1  
Description of electrical parameters  
Supply range  
The CSA is operational for the whole VS supply range  
Current consumption  
The CSA contributes to the overall device current consumption for the  
operation modes active, stop, sleep. The overall targets must be  
achieved.  
Difference of input voltages: VCSAIN_DIFF = VCSAP - VCSAN  
Within this range the CSA characteristic is linear  
Differential linear input voltage  
range  
Within this range the CSA errors are inside the specified limits  
Symmetry of input voltage range depends on VCSAOUT_OFF  
Common mode input voltage range Voltage range for VCSAP and VCSAN  
Transfer function: VCSAOUT = VCSAOUT_OFF + G * (VCSAP - VCSAN)  
Single-ended linear output voltage  
range  
Within this range the CSA characteristic is linear  
Within this range the CSA errors are inside the specified limits  
Defines VCSAOUT under the condition VCSAP = VCSAN  
Determines the symmetry of input voltage range  
Nominal gain factors are 10, 20, 40, 60  
Maximum deviation from best fit line  
Output voltage offset range  
Differential gain factor  
Linearity error  
15 mV/1LSB12  
Maximum differential input offset  
Input differential mode offset  
(VCSAP - VCSAN = VINOFF) which is allowed to be added in order to get  
VCSAOUT_OFF at the CSA output  
Input resistance  
Differential resistance between CSAP and CSAN input  
CMRR = -20*log(differential mode gain/common mode gain)  
Settling time upon a wide input range swing (into the saturation range)  
Time the CSA needs to settle after power on  
Common mode rejection ratio  
Output settling time  
Settling time after power on  
Datasheet, Z8F80164852  
103  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics CSA  
18.3.2  
Transfer characteristic and error definition  
VCSAOUT  
VAREF  
Non-linear  
range  
VCSAOUT@MAX  
ELIN  
Linear  
range  
VCSAOUT=VCSAOUT_OFF  
Z
Best fit line  
G
VCSAIN_DIFF=0  
(VCSAP=VCSAN  
Vin  
Possible curve  
)
VCSAIN_DIFF  
VCSAOUT@MIN  
Zoom  
VAGND  
Figure 29 CSA transfer characteristic  
Vdiff  
Vdiffover  
Vdiffmax  
t
Vout  
Error Band  
t
Tset  
Figure 30 CSA settling time  
Datasheet, Z8F80164852  
104  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics CSA  
18.3.3  
CSA characteristics  
Table 62  
Electrical Characteristics Current Sense Amplifier  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Differential Linear VCSAIN_DIFF  
Input Voltage  
Range  
0
-
-
-
-
3 / G  
V
VCSAIN_DIFF=VCSAP-VCSAN  
minimum setting for  
VCSAOUT_OFF  
,
P_CSA_01_09  
-1.5 /  
G
1.5 / G V  
V
CSAIN_DIFF=VCSAP-VCSAN  
,
P_CSA_01_10  
P_CSA_01_11  
P_CSA_01_12  
maximum setting for  
VCSAOUT_OFF  
Common Mode  
Input Voltage  
Range  
VCSAx_CM  
-2.0  
2.0  
3.5  
V
V
Single-Ended  
Linear Output  
Voltage Range  
VCSAOUT  
0.39  
Output Voltage  
Offset  
VCSAOUT_OFF  
0.45  
0.95  
1.45  
1.95  
9.85  
19.7  
39.4  
59.1  
-15  
0.5  
1
0.55  
1.05  
1.55  
2.05  
10.15  
20.3  
40.6  
60.9  
15  
V
V
V
V
CTRL2.OFFS_SEL<1:0 P_CSA_01_13  
>=00b  
CTRL2.OFFS_SEL<1:0 P_CSA_01_27  
>=01b  
1.5  
2
CTRL2.OFFS_SEL<1:0 P_CSA_01_28  
>=10b  
CTRL2.OFFS_SEL<1:0 P_CSA_01_29  
>=11b  
Differential Gain  
G
10  
20  
40  
60  
-
CTRL2.GAIN_SEL<1:0> P_CSA_01_14  
=00B  
CTRL2.GAIN_SEL<1:0> P_CSA_01_15  
=01B  
CTRL2.GAIN_SEL<1:0> P_CSA_01_16  
=10B  
CTRL2.GAIN_SEL<1:0> P_CSA_01_17  
=11B  
Linearity error  
ELIN  
mV maximum deviation P_CSA_01_18  
from best fit line; G=40  
Input Differential  
Mode Offset  
VINOFF  
-1.3  
-
1.3  
mV G=40 ; VCSAN=0V;  
CSAP=0V;  
P_CSA_01_19  
V
CTRL2.OFFS_SEL<1:0  
>=00B  
-3  
-
3
mV  
P_CSA_01_31  
Additional Input  
Offset  
VCSAIN_OFF  
-15% 20  
+15% mV CTRL2.ADD_INP_OFF P_CSA_01_30  
S=1b  
Datasheet, Z8F80164852  
105  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics CSA  
Table 62  
Electrical Characteristics Current Sense Amplifier (cont’d)  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Input Bias Current ICSAx  
-300  
1
-
0
µA VCSAN=0V; VCSAP=0V  
P_CSA_01_20  
Input Resistance  
RIN  
1.3  
1.6  
kDifferential resistance P_CSA_01_22  
between CSAP and  
CSAN  
Common Mode  
Rejection Ratio  
CMRRCSA  
TSET  
58  
-
80  
-
dB VCSAP-VCSAN=0V; -  
2VVCSAx2V; G=40  
P_CSA_01_24  
P_CSA_01_25  
Output Settling  
Time  
800  
1400 ns  
Time until the CSA  
output voltage settles  
and stays within the  
error band under all  
input conditions  
Datasheet, Z8F80164852  
106  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Current Sense Comparator (CSC)  
19  
Current Sense Comparator (CSC)  
19.1  
Features overview  
The Current Sense Comparator (CSC) is used for fast detection and reaction on overcurrent on the shunt  
measurement by the CSA.  
The CSC provides following features:  
The CSC compares the CSA output voltage against a programmable threshold voltage to detect positive  
overcurrents through the shunt  
The CSC threshold voltage is derived from the ADC1 reference voltage  
The CSC provides a programmable filter time  
The CSC event can trigger a CCU7.CTRAP event  
The CSC event can trigger an interrupt request  
The CSC event can switch off the bridge driver output safely (safe switch off in case of overcurrent)  
The CSC output status is indicated by a volatile level indication flag showing the actual status  
The CSC output status is indicated by a sticky status flag which must be cleared by software  
The CSC output status is indicated by an interrupt request flag  
19.2  
Block diagram  
CSC  
VAREF  
VAGND  
INOFF  
AHB  
Threshold  
generator  
MI_CLK  
MCLK  
CSC_BIST_FAIL  
CSC_EN  
CSC_OC  
IRQ  
CSA  
Filter  
INP  
Figure 31 Block diagram CSC  
Datasheet, Z8F80164852  
107  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics CSC  
19.3  
Electrical characteristics CSC  
19.3.1  
CSC characteristics  
Table 63  
Electrical Characteristics Current Sense Comparator  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
CSC overcurrent  
threshold  
VCSC_THR  
tCSC_FILT  
VCSAOU  
-
3.5  
2.3  
4.4  
6.5  
8.5  
2
V
programmable by SFR P_CSC_01_01  
T_OFF  
CSC filter time  
1.7  
2
4
6
8
-
µs  
µs  
µs  
µs  
µs  
CTRL2.TFILT_SEL=00 P_CSC_01_02  
b
3.6  
5.5  
7.5  
-
CTRL2.TFILT_SEL=01 P_CSC_01_03  
b
CTRL2.TFILT_SEL=10 P_CSC_01_04  
b
CTRL2.TFILT_SEL=11 P_CSC_01_05  
b
CSC reaction time tCSC_REACT  
P_CSC_01_10  
Datasheet, Z8F80164852  
108  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Temperature Sensor Unit (TMPSNS)  
20  
Temperature Sensor Unit (TMPSNS)  
20.1  
Features overview  
The SoC integrates multiple temperature sensors spread across the die. These monitors are located and  
associated with critical blocks such as:  
PMU module (VDDP and VDDEXT linear regulators)  
CAN transceiver module  
Gate driver module (2-stage charge pump), TEMP0  
SoC core logic, TEMP1  
This chapter describes the behavior of the temperature sensors TEMP0 and TEMP1. The overtemperature  
protection mechanisms associated with the PMU and the CAN transceiver are described in the respective  
module chapters.  
The TMPSNS provides following features:  
Two dedicated temperature sensors to measure the on-chip temperature at different locations:  
TEMP0 measures the die temperature in the charge pump of gate driver module  
TEMP1 measures the die temperature in the center of the chip (i.e. system temperature)  
Positive output slope of 2.5 mV/°C typ. over the full Tj = -40°C to +175°C temperature range  
Temperature sensors connect internally to the multiple inputs analog-to-digital converter (ADC2). The  
ADC2 post-processing and digital comparator features are used for background temperature monitoring  
ADC2 raises an overtemperature shutdown flag (CP_OT) when the die temperature in the charge pump  
(TEMP0) exceeds the threshold value (190°C typ.)  
ADC2 raises an overtemperature warning flag (SYS_OTWARN) when the system temperature (TEMP1)  
exceeds the threshold value (135°C typ.)  
ADC2 raises an overtemperature shutdown flag (SYS_OT) when the system temperature (TEMP1) exceeds  
the threshold value (190°C typ.). This event will automatically transition the SoC into Fail-sleep system  
power mode (refer to WAKE_FAIL_STS.SYS_OT bit description)  
Datasheet, Z8F80164852  
109  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Temperature Sensor Unit (TMPSNS)  
20.2  
Block diagram  
SCU  
CANTRX  
BDRV  
CANTRX_ON  
CANTRX_SD  
CANTRX_SD  
XTAL_FAIL_STS  
SYS_OTWARN  
BDRV_ON  
BDRV_SD  
BDRV_SD  
CP_OTSD  
VMSUP  
ADC2  
CP_OT  
PMU  
VMSUP  
VTEMP0  
VTEMP1  
CMPCFG4  
Buffer  
Ch13  
Ch14  
{
{
CP_OTWARN  
SYS_OT  
Buffer  
CMPCFG5  
SYS_OTWARN  
Thermal sensor  
1
Thermal sensor  
2
GNDVSS  
EN  
Bias Control  
Note 1: Thermal sensor (TEMP0) is located in the charge pump of the gate driver module  
Note 2: Thermal sensor (TEMP1) is located in the center of the chip  
GNDVSS  
Figure 32 Block diagram TMPSNS  
Datasheet, Z8F80164852  
110  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics TMPSNS  
20.3  
Electrical characteristics TMPSNS  
TMPSNS characteristics  
20.3.1  
Table 64 Temperature Sensor Specifications  
VS = 3 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Accuracy 1  
Accuracy 2  
Accuracy 3  
Acc1  
Acc2  
Acc3  
a
-10  
-10  
-5  
-
10  
10  
5
K
-40°C<Tj<85°C  
P_TEMP_02_04  
P_TEMP_02_05  
P_TEMP_02_06  
P_TEMP_02_07  
-
K
125°C<Tj<175°C  
-
K
85°CTj125°C  
1)  
Offset coefficient  
(a)  
-
678  
-
mV  
1)  
Gain coefficient (b)  
b
-
2.5  
-
mV/  
°C  
P_TEMP_02_08  
1) Not subject to production test, specified by design  
Table 65 System Thermal Shutdown  
VS = 3 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
System Thermal  
Shutdown  
Tj_SYS_TSD  
180  
190  
200  
°C  
P_TEMP_03_01  
Threshold  
Bridge Driver  
Thermal Shutdown  
Threshold  
Tj_BDRV_TSD  
180  
190  
200  
°C  
P_TEMP_03_02  
Datasheet, Z8F80164852  
111  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
BEMF Comparators (BEMFC)  
21  
BEMF Comparators (BEMFC)  
21.1  
Feature overview  
For rotor position detection of a BLDC motor the BEMF (Back ElectroMotive Force) information can be used.  
This BEMF information is always sensed in the phase which is currently not active. Therefore, at each motor  
phase, a comparator compares the BEMF voltage against a virtual star point built by the other two motor  
phases and provides post-processing features to generate valid zero-crossing events.  
The BEMFC provides following features:  
The BEMF comparator module consists of 3 BEMF comparators, one for each SHx pin  
The BEMF comparators compare the voltage at the corresponding SHx pin to a “virtual star point” voltage  
which is the average of the voltages at the remaining two SHy and SHz pins (see VBEMFC_TH  
)
The BEMF comparators provide low settling time tBEMFC_D  
The BEMF comparators can be switched off if not needed to avoid additional power consumption and  
undesired input currents in power down modes  
The BEMF comparator output signals are spike filtered with a programmable filter time  
The BEMF comparators have each a blanking filter which can be enabled to mask oscillations during a  
programmable time after switching the corresponding motor phases  
The BEMF comparators have each a demagnetisation filter which can be enabled to automatically remove  
demagnetisation pulses from the BEMF comparator output signal to get only valid zero-crossing events  
Interrupts can be triggered on BEMF comparator status changes at rising and/or falling edge  
21.2  
Block diagram  
BEMF Comparator 1  
MI_CLK  
SH1  
+
-
Demag  
Filter 1  
Blanking  
Filter 1  
Spike  
Filter 1  
TFILT_CLK  
SH2  
SH3  
INA[3:1]  
INB[3:1]  
INC[6:1]  
TRIGA  
BEMF Comparator 2  
SH2  
+
-
Demag  
Filter 2  
Blanking  
Filter 2  
Spike  
Filter 2  
TRIGB  
SH1  
SH3  
PH[3:1]_ZC_STS  
BEMF Comparator 3  
PHXZC_TRIG  
IRQ[2:0]  
SH3  
+
-
Demag  
Filter 3  
Blanking  
Filter 3  
Spike  
Filter 3  
SH2  
SH1  
Figure 33 Block diagram BEMFC  
Datasheet, Z8F80164852  
112  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics BEMFC  
21.3  
Electrical characteristics BEMFC  
21.3.1  
Threshold and hysteresis  
VBEMFC_TH = VSHx – (VSHy + VSHz) / 2  
max. VBEMFC_TH  
min. VBEMFC_HYST  
0
t
max. VBEMFC_HYST  
min. VBEMFC_TH  
BEMFCx output  
Figure 34 BEMFC threshold and hysteresis definition  
21.3.2  
BEMFC characteristics  
Table 66  
Electrical Characteristics  
VS = 4.4 V to 28 V, VSD = 5.4 V to 29 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C,  
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
1) 2)  
Detection  
threshold  
VBEMFC_TH  
-50  
-
-
-
50  
40  
1
mV  
mV  
µs  
P_BEMFC_01_01  
P_BEMFC_01_02  
P_BEMFC_01_03  
Comparator  
hysteresis  
VBEMFC_HYST  
5
Comparator delay tBEMFC_D  
-
Voltage step on VSHx  
from 0 V to VSD + 500  
mV; VSHy=0V; VSHz=VSD  
1) Comparison against "virtual star point": VBEMFC_TH = VSHx - (VSHy + VSHz) / 2  
2) Not subject to production test, specified by design  
Datasheet, Z8F80164852  
113  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Sigma Delta ADC (SDADC)  
22  
Sigma Delta ADC (SDADC)  
22.1  
Features overview  
There is one Sigma Delta ADC (SDADC) module with two independent channels with input stage, 2nd order  
modulator, 3rd order CIC filter, result handling and synchronization feature. The SDADC is optimized for the  
usage of external AMR/GMR/TMR type sensors. The application configuration is shown in Figure 35, the block  
diagram in Figure 36.  
The SDADC has following features:  
Performance  
Sampling frequency up to 20 MHz (typ.), MCLK, fS  
Input frequency of up to 1 kHz (typ.), fIN  
Linear input range of ±3.75 V (typ.), VDIFF_lin  
RMS noise of less than 1 mV (typ.), Vrms  
SNDR of 72 dB (typ.), SNDR  
Input stages  
Configurable for differential or single ended input types  
Two possible inputs selectable for usage of two sensors in time multiplex  
Offset compensation feature  
Modulator (2nd order type)  
Normal mode (use modulator and demodulator together)  
External demodulator mode (modulator’s output as alternate function, demodulator external)  
External modulator mode (modulator bypassed, demodulator inputs via GPIOs)  
Dither unit for dead zone cancellation and idle tone reduction  
Demodulator (3rd order CIC filter type)  
Linear programmable decimation factor (DECF) from 16 to 512 with automatic result scaling  
16-bit signed filter result (s16 format, internally s29)  
Two filter modes: continues or triggered (synchronization feature to PWM)  
Timestamping upon external trigger to capture the age of a result (synchronization feature to PWM)  
Programmable digital comparator thresholds three modes (range, over-, undervoltage)  
Interrupts, DMA and events  
SDADC events can be mapped to 2 interrupt node pointers (with 2 IRQ lines)  
Result events can be mapped to 2 DMA requests  
Compare events are connected to GPIOs, CCU7 and GPT12  
Datasheet, Z8F80164852  
114  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Sigma Delta ADC (SDADC)  
22.2  
Block diagram  
Power Stage  
Compute  
Motor Control  
CPU  
Timer  
System  
CAPCOM7  
2 or 3~ Bridge Driver  
Current Sense  
M
Gear  
S1  
S2  
Meas-ADC  
12 Bit  
BEMF  
Comparator  
TLE988/9x  
Communication  
CAN/UART/SSC  
Input/Output  
Sensor Interface  
Sigma Delta  
sin  
cos  
sin  
cos  
ADC  
sin  
cos  
14 Bit  
Differential or single ended  
sensor interface  
SDADC_Application.vsdx  
Figure 35 Application diagram SDADC  
From/to GPIOs  
From SCU  
SDADC  
From  
ARVG or  
VDDEXT  
VAREF  
VAGND  
VREF DOUT0 DOUT1 DIN0 DIN1  
MCLK  
Clock Control  
Channel 0  
VREF DOUT0 DIN0  
Input Stage  
IN0PA  
IN0PB  
IN0P  
+
IRQ[1:0]  
RES0  
CMP0  
NVIC  
DMA  
Event  
Hand-  
ling  
Result 0  
3rd  
order  
CIC  
From  
GPIOs  
2nd  
order  
MOD  
Comparator 0  
-
DEC  
CNT  
Peripheral  
inter-  
connects  
IN0NA  
IN0NB  
VAGND  
IN0N  
filter  
TRGSD0A  
TRGSD0B  
Timestamp 0  
SYNCSTART  
MCLK  
Channel 1  
VREF DOUT1 DIN1  
Input Stage  
IN1PA  
IN1PB  
IN1P  
+
IRQ[1:0]  
RES1  
CMP1  
NVIC  
DMA  
Event  
Hand-  
ling  
Result 1  
From  
GPIOs  
3rd  
order  
CIC  
2nd  
order  
MOD  
Comparator 1  
-
DEC  
CNT  
Peripheral  
inter-  
connects  
IN1NA  
IN1NB  
VAGND  
IN1N  
filter  
TRGSD1A  
TRGSD1B  
Timestamp 1  
SYNCSTART  
MCLK  
SDADC_FunctionalBlock.vsd  
Figure 36 Block diagram SDADC  
Datasheet, Z8F80164852  
115  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics SDADC  
22.3  
Electrical characteristics SDADC  
22.3.1  
SDADC characteristics  
Table 67  
SDADC characteristics  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Sampling  
frequency  
fS  
5
-
20  
MHz fS is identical to MCLK P_SDADC_01_02  
Decimation factor DECF  
16  
0
-
-
512  
P_SDADC_01_03  
Input voltage  
VIN  
VAREF  
V
V
Input voltage on  
SDADC.INxP or  
SDADC.INxN x={0,1}  
P_SDADC_01_04  
Differential linear  
input voltage  
VDIFF_lin  
-3.75  
-4  
-
-
3.75  
4
VDIFF = VINxP - VINxN  
;
P_SDADC_01_06  
VINxP, VINxN within VIN  
range; x={0,1}  
Differential non-  
VDIFF_nonlin  
V
VDIFF = VINxP - VINxN  
;
P_SDADC_01_07  
linear input voltage  
VINxP, VINxN within VIN  
range; x={0,1}  
Single ended linear VSNGL_lin  
input voltage  
0
-
-
-
3.75  
V
V
V
VSNGL = VINxP; VINxN = 0 V; P_SDADC_01_08  
x={0,1}  
Single ended non- VSNGL_nonlin  
linear input voltage  
0
4
-
VSNGL = VINxP; VINxN = 0 V; P_SDADC_01_09  
x={0,1}  
Full scale voltage  
VFS  
3.75  
At VDIFF = ±VFS;  
P_SDADC_01_10  
RESULTmax resp.  
RESULTmin is reached  
(defined as linear  
voltage range)  
Input frequency  
RMS noise  
fIN  
0
-
-
1
kHz  
P_SDADC_01_11  
VRMS  
0.69 2.4  
mV 1) Tested with DECF = P_SDADC_01_12  
128 and VREF =  
VREF5V  
Effective resolution ERES  
10.61 12.4  
-
-
-
Bits 1) Calculated, ERES = P_SDADC_01_13  
ld(VFS/VRMS  
)
Effective number of ENOB  
bits  
-
-
11.7  
72  
Bits 1) ENOB = (SNDR -  
1.76dB) / 6.02dB  
P_SDADC_01_14  
SNDR with a fully  
differential sinus -  
6dBFS  
SNDR  
dB 1) Characterized, not P_SDADC_01_15  
tested in production  
Datasheet, Z8F80164852  
116  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics SDADC  
Table 67  
SDADC characteristics (cont’d)  
VS = 5.5 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Filter result linear RESULTlin  
range  
-16384 -  
16383 LSB Linear range,  
represented in two's  
P_SDADC_01_16  
complement;  
RESULT= (VDIFF / VREF) ×  
GAIN × (214 - 1)  
Filter result non-  
linear range  
RESULTnonlin  
-32768 -  
32767 LSB Linear range,  
P_SDADC_01_17  
represented in two's  
complement;  
RESULT= (VDIFF / VREF) ×  
GAIN × (214 - 1)  
2)  
Input gain  
Gain ratio  
GAIN  
GR  
-
4/3  
-
P_SDADC_01_18  
P_SDADC_01_19  
0.99  
-
1.01  
GR = GCH0 / GCH1;  
channel mismatch  
due to gain mismatch  
1)  
Dynamic input  
impedance  
ZIN  
tup  
0.1  
-
0.25  
-
1
MOh  
m
Z = 1 / (2 × fS × CIN) P_SDADC_01_21  
IN  
Power up time  
100  
µs  
Time after module  
RESET inactive to  
analog part in  
operating condition  
3) 4) 1)  
P_SDADC_01_23  
Coupling factor for KOVAN  
negative overload  
current  
-
-
-
-
0.0001  
0.0001  
P_SDADC_01_24  
P_SDADC_01_25  
3) 1)  
Coupling factor for KOVAP  
positive overload  
current  
1) Not subject to production test, specified by design  
2) Defined by design  
3) The overload coupling factor KOVAN/KOVAP (K) defines the worst case relation of an overload condition (Iov) at one  
pin to the resulting leakage current (Ileaktot) into an adjacent pin: Ileaktot = ±K × |Iov| + Ioz1. Thus the overload  
condition can cause an an additional error voltage at an adjacent analog input pin.  
4) Overload current is allowed in following operation modes: unpowered, active and sleep mode.  
Datasheet, Z8F80164852  
117  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics SDADC  
Input Stage  
Equivalent Circuit  
Csample  
INxPA/B  
Cparasitic  
C
IN  
V
DIFF  
GND  
Z
IN  
Cparasitic  
Csample  
1
s
ZIN =  
INxNA/B  
2*f *CIN  
SDADC_Cin.vsdx  
Figure 37 Input stage equivalent circuit  
Datasheet, Z8F80164852  
118  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Timer20 (T20) and Timer21 (T21)  
23  
Timer20 (T20) and Timer21 (T21)  
23.1  
Features overview  
Two functionally identical timers are implemented: Timer20 and Timer21. The description also use the name  
as Timer2.  
The timer modules are general purpose 16-bit timers. Timer2 can function as a timer or counter in each of its  
modes. As a timer, it counts with an input clock of fT2_CLK/12 (if prescaler is disabled). As a counter, Timer2  
counts 1-to-0 transitions on pin T2. In the counter mode, the maximum resolution for the count is fT2_CLK/24  
(if prescaler is disabled).  
The T20 and T21 provides following features:  
16-bit auto-reload mode  
selectable up or down counting  
One channel 16-bit capture mode  
T20 and T21 can be configured as trigger source for ADC1  
23.1.1  
Block diagram  
TF2  
SCU  
Interrupt  
EXF2  
Control  
P0.x  
P1.x  
P2.x  
T2  
SCU  
Clock  
Control  
fT2_CLK  
TIMER2  
Module  
(Kernel)  
GPIO  
and  
Interconnection  
T2EX  
SCU  
Peripheral  
Management  
T2xSUS  
T2x_DIS  
EXF2  
Figure 38 Block diagram Timer2  
Datasheet, Z8F80164852  
119  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
General Purpose Timer Units (GPT12)  
24  
General Purpose Timer Units (GPT12)  
24.1  
Features overview  
The General Purpose Timer Unit blocks GPT1 and GPT2 have very flexible multifunctional timer structures  
which may be used for timing, event counting, pulse width measurement, pulse generation, frequency  
multiplication, and other purposes.  
They incorporate five 16-bit timers that are grouped into the two timer blocks GPT1 and GPT2. Each timer in  
each block may operate independently in a number of different modes such as Gated timer or Counter mode,  
or may be concatenated with another timer of the same block.  
Each block has alternate input/output functions and specific interrupts associated with it. Input signals can  
be selected from several sources.  
The GPT module is clocked with clock fGPT_CLK  
.
The GPT12 provides following features:  
Features block GPT1:  
fGPT_CLK/4 maximum resolution  
3 independent timers/counters  
Timers/counters can be concatenated  
4 operating modes:  
Timer mode  
Gated Timer mode  
Counter Mode  
Incremental Interface mode  
Reload and Capture functionality  
Features block GPT2:  
fGPT_CLK/2 maximum resolution  
2 independent timers/counters  
Timers/counters can be concatenated  
3 operating modes:  
Timer mode  
Gated Timer mode  
Counter mode  
Extended capture/reload functions  
Datasheet, Z8F80164852  
120  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
General Purpose Timer Units (GPT12)  
24.2  
Block diagram  
GPT12  
AHB  
Clock control  
2n : 1  
CLKIN  
T2IN[B:A]  
GPT1  
T2EUD[B:A]  
Mode  
control  
T2  
T3  
T4  
T3IN[D:A]  
T3EUD[D:A]  
T4IN[D:A]  
T3OUT  
T6OUT  
Input  
select  
T4EUD[D:A]  
GPT2  
T5IN[B:A]  
T5EUD[B:A]  
T6IN[B:A]  
T6EUD[B:A]  
CAPIN[D:A]  
Mode  
control  
T5  
CAPREL  
T6  
Input  
select  
T2IRQ  
T3IRQ  
T4IRQ  
T5IRQ  
T6IRQ  
CRIRQ  
Event generation  
Status Interrupt  
GPT12_BD.vsdx  
Figure 39 Block diagram GPT12  
Datasheet, Z8F80164852  
121  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Capture/Compare Unit 7 (CCU7)  
25  
Capture/Compare Unit 7 (CCU7)  
25.1  
Features overview  
The CCU7 is a high-resolution 16-bit capture and compare unit with application-specific modes, mainly for  
AC drive control. Special operating modes support the control of Brushless DC-motors using Hall sensors or  
Back-EMF detection. Furthermore, block commutation and control mechanisms for multi-phase machines are  
supported.  
This chapter gives an overview over the different building blocks and their main features.  
The CCU7 provides following features:  
Timer T12 block features:  
Six compare channels  
Supports generation of three-phase PWM (six outputs, individual signals for high-side and low-side  
switches)  
16-bit resolution, maximum count frequency (peripheral clock)  
Dead-time control for each channel to avoid short-circuits in the power stage  
Concurrent update of T12 registers  
Center-aligned and edge-aligned PWM can be generated, as well as rising edge and duration PWM  
pulses  
Single-shot mode supported  
Start can be controlled by external events  
Capability of counting external events  
Timer T13 block features:  
One independent compare channel with one output  
16-bit resolution, maximum count frequency (peripheral clock)  
Concurrent update of T13 registers  
Can be synchronized to T12  
Event generation at period-match and compare-match  
Single-shot mode supported  
Start can be controlled by external events  
Capability of counting external events  
Timer T14, T15 and T16 block features:  
Each with one independent compare channel with one output  
16-bit resolution, maximum count frequency (module clock)  
Dead-time control for each channel to avoid short-circuits in the power stage  
Concurrent update of T14, T15 and T16 registers  
Can be synchronized to T12  
Event generation at period-match and compare-match  
Single-shot mode supported  
Start can be controlled by external events  
Capability of counting external events  
Datasheet, Z8F80164852  
122  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Capture/Compare Unit 7 (CCU7)  
Additional specific functions:  
Block commutation support for brushless DC-drives with programmable state pattern, event-triggered  
next state switching and background speed capture  
Programmable Hall-sensor pattern detection with noise filter  
Integrated error handling  
Fast emergency stop without CPU load via external signal (CTRAP)  
Control modes for multi-channel AC-drives  
Output levels can be selected and adapted to the power stage  
25.2  
Block diagram  
The CCU7 is comprised of a timer T12 block with six capture/compare channels, and a timer T13, T14, T15 and  
T16 block with one compare channel each. The T12 channels can independently generate PWM signals or  
accept capture triggers, or they can jointly generate control signal patterns to drive AC-motors or inverters.  
CCU7  
fPWM  
CCU7  
CLKIN  
T13HR[H:A]  
T14HR[H:A  
Clock Control  
Interrupt Control  
SR[3:0]  
events  
CC70/71/72  
COUT70/71/72  
COUT73  
C73ST  
C73STn  
T13  
C73  
T12_ZM  
T12_OM  
T12_PM  
T14R, C74ST  
T14  
T15  
T16  
C74  
C75  
C76  
T15R, C75ST  
T16R, C76ST  
T15HR[H:A]  
T16HR[H:A]  
T13/14/15/16_PM  
CC70/1/2DT  
CC70/1/2DTn  
Dead-  
Time  
Control  
CM_70/71/72  
CM_70B/71B/72B  
CM_73/74/75/76  
Modulation  
Control  
CC70/1/2ST  
C70/1/2BST  
CC70  
CC70/71/72/73ST  
C70/71/72BST  
C74/75/76ST  
C70B  
CC71  
C71B  
CC72  
C72B  
MCMP.0...5  
TRPS  
T12HR[H:A]  
Multi-Channel  
CCPOS0/1/2[D:A]  
T12  
CCPOS0/1/2  
CTRAP  
Hall Logic  
CC70/1/2IN[D:A]  
CTRAP[D:A]  
CM_CHE  
T12_ST  
Trap Control  
CCU7_BlockDiagram.vsdx  
Figure 40 Block diagram CCU7  
Datasheet, Z8F80164852  
123  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Bridge Driver (BDRV)  
26  
Bridge Driver (BDRV)  
26.1  
Features overview  
The BDRV module consists of 6 gate drivers to control external normal-level n-channel MOSFETs arranged in  
3 half bridges for 3-phase motor control applications.  
The BDRV provides the following features:  
Flexible control by SFRs of Bridge Driver module, PWM output signals of CCU7 module, or alternate  
functions of GPIOs  
Current-driven output stages to control external n-channel MOSFET gates with flexibly programmable  
gate current profile  
Adjustable cross-conduction protection  
High-current discharge mode to reduce dead times and to keep external MOSFETs off during fast  
transients  
Safe switch-off path to switch off the Bridge Driver in a defined way in the case of errors  
Passive pull-down mode to keep external MOSFETs off if the Bridge Driver is disabled  
Active brake mode with reduced current consumption to statically switch on external MOSFETs  
Timing measurements of on/off delays and on/off slope durations  
Adaptive control mode with automatic adjustment of gate current values  
Integrated 2-stage charge pump for low-voltage operation and statical MOSFET gate control  
Adjustable voltage monitoring of Bridge Driver supply voltage (VSD) and charge pump output voltage  
(VCP)  
Adjustable short-circuit detection in on and off state  
Open-load detection in off state  
Overtemperature detection and shutdown  
Datasheet, Z8F80164852  
124  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Bridge Driver (BDRV)  
26.2  
Block diagram  
VCP  
VSD  
VSD  
VSD_OV  
overvoltage  
comparator  
2-stage  
charge pump  
CP2H  
CP2L  
CP1H  
CP1L  
SAFE_ENABLE  
SAFE_SHUTDOWN  
SSO_HCDIS  
Safe enable  
& shutdown  
VDH  
BDRV_SD  
High-side  
driver  
INA[3:1]  
INB[3:1]  
INC[6:1]  
GHx  
SHx  
Vth  
VCP_LOTH1  
VCP_UPTH  
VSD_LOTH  
VSD_UPTH  
VSD_CP1ST  
CP_OTSD  
Control &  
Diagnosis  
Low-side  
driver  
GLx  
SL  
MI_CLK  
TFILT_CLK  
IRQ[1:0]  
Vth  
AHB  
Figure 41 Block diagram BDRV  
Datasheet, Z8F80164852  
125  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics BDRV  
26.3  
Electrical characteristics BDRV  
26.3.1  
Description of electrical parameters  
26.3.1.1 Switch-on parameters  
Figure 42 shows the detailed behavior of the gate driver output stage in the switch-on phase and the  
corresponding electrical characteristic parameters.  
Control  
Signal  
OFF  
ON  
SRon_SHx = 0  
SRon_SHx 0, VGS<VGS(on)  
tdly(on)  
trise(on)  
I
max.  
typ.  
Gate  
Charge  
Current  
Ichgx  
ΔIchg_avg_%  
*)  
min.  
Igate  
20%  
t
V
VDS  
max.  
VGxxy  
min.  
VGS=VGS(on)  
External  
MOSFET  
Voltages  
tsat(on)  
VGS  
t
Pre-Charge  
Post-Charge  
On Slope  
Off  
On  
*) positive current flowing out of Gx pin  
Figure 42 Detailed behavior of the gate driver output stage in the switch-on phase  
After an initial turn-on delay time tdly(on) the gate charge current Igate rises and after additional trise(on) reaches  
its specified minimum limit Ichgx@MIN and stays stable until the gate-to-source voltage of the external MOSFET  
reaches VGS = VGS(on). During the slope at the corresponding SHx pin (i.e. the slew rate SRon_SHx 0) the average  
gate current deviates less than ΔIchg_avg_% from the programmed nominal current Ichgx. The gate of the external  
MOSFET is further charged to the high-level output voltage of the gate driver VGxxy. The time from exceeding  
V
GS = VGS(on) and reaching VGxxy@MIN is defined by tsat(on)  
.
Datasheet, Z8F80164852  
126  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics BDRV  
26.3.1.2 Switch-off parameters  
Figure 43 shows the detailed behavior of the gate driver output stage in the switch-off phase and the  
corresponding electrical characteristic parameters.  
Control  
Signal  
ON  
OFF  
SRoff_SHx = 0  
SRoff_SHx 0, VGS>VGS(off)  
tdly(off)  
trise(off)  
I
Gate  
Discharge  
Current  
max.  
typ.  
Idischgx  
ΔIdischg_avg_%  
*)  
min.  
Igate  
20%  
t
V
External  
MOSFET  
Voltages  
VDS  
VGS  
VGS=VGS(off)  
t
Pre-Discharge  
Post-Discharge  
Off Slope  
On  
Off  
*) positive current flowing into Gx pin  
Figure 43 Detailed behavior of the gate driver output stage in the switch-off phase  
After an initial turn-off delay time tdly(off) the gate discharge current Igate rises and reaches its specified  
maximum limit Idischg@MAX after trise(off) and stays stable until the gate-to-source voltage of the external MOSFET  
reaches VGS = VGS(off). During the slope at the corresponding SHx pin (i.e. slew rate SRoff_SHx 0) the average gate  
discharge current deviates less than ΔIdischg_avg_% from the programmed nominal current Idischgx  
.
26.3.1.3 Gate current settling behavior  
At the transition between two different gate current value settings, the actual gate driver output current  
settles within tset(seq) to the new gate current value:  
Datasheet, Z8F80164852  
127  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics BDRV  
Gate current  
value setting  
in-1  
in  
in+1  
tn-1  
tn  
tn+1  
Gate current  
duration  
tset(seq)  
I
max.  
typ.  
in  
Gate current  
profile  
min.  
Igate  
max.  
typ.  
in-1  
min.  
max.  
typ.  
in+1  
tset(seq)  
min.  
t
igate_sequencer_settling.vsdx  
Figure 44 Gate current settling time  
26.3.1.4 Timing measurement  
Figure 45 shows the thresholds VSH(high) and VSH(low) and the propagation delays tcdly(high) and tcdly(low) of the  
high-speed voltage comparators during one PWM cycle of VSHx  
:
Low-Side  
OFF  
ON  
OFF  
Control  
Signal  
V
VVDH  
VSH(high)  
Half-Bridge  
Voltages  
VSHx  
VSH(low)  
t
tcdly(high)  
tcdly(high)  
SH_high  
SH_low  
Comparator  
Output  
Signals  
tcdly(low)  
tcdly(low)  
Figure 45 Timing measurement comparator thresholds and delays  
Datasheet, Z8F80164852  
128  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics BDRV  
26.3.2  
MOSFET driver output characteristics  
Table 68 MOSFET Driver Output  
VS = 4.4 V to 28 V, VSD = 5.4 V to 29 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C,  
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
1)  
Gate charge current Ichg0  
Gate charge current Ichg3  
Gate charge current Ichg7  
Gate charge current Ichg15  
Gate charge current Ichg31  
Gate charge current Ichg63  
1.5  
4
8
mA  
mA  
mA  
mA  
mA  
I
=0D ;  
P_BDRV_02_01  
P_BDRV_02_02  
P_BDRV_02_03  
P_BDRV_02_04  
P_BDRV_02_05  
P_BDRV_02_06  
P_BDRV_02_07  
CHARGE  
VGSxVGS(on) ; VSD8V  
1)  
5
10  
18  
45  
125  
340  
-
15  
I
=3D ;  
CHARGE  
VGSxVGS(on) ; VSD8V  
1)  
12  
24  
I
=7D ;  
CHARGE  
VGSxVGS(on) ; VSD8V  
1)  
33  
57  
I
=15D ;  
CHARGE  
VGSxVGS(on) ; VSD8V  
1)  
100  
290  
-25%  
150  
390  
+25%  
I
=31D ;  
CHARGE  
VGSxVGS(on) ; VSD8V  
mA ICHARGE=63D ;  
VGSxVGS(on) ; VSD8V  
Gate charge current Δ I chg_avg_%  
dynamic average  
1) Reference: typ. Ichgx  
SRon_SHx=165V/µs;  
;
deviation  
VGSxVGS(on)  
1)  
Gate discharge  
current  
Idischg0  
Idischg3  
Idischg7  
Idischg15  
Idischg31  
Idischg63  
1.5  
5
5
8
mA  
mA  
mA  
mA  
mA  
I
=0D ;  
P_BDRV_02_08  
P_BDRV_02_09  
P_BDRV_02_10  
P_BDRV_02_11  
P_BDRV_02_12  
P_BDRV_02_13  
P_BDRV_02_14  
DISCHARGE  
V
GSxVGS(off) ; VSD8V  
1)  
Gate discharge  
current  
10  
20  
50  
125  
360  
-
15  
I
=3D ;  
DISCHARGE  
V
GSxVGS(off) ; VSD8V  
1)  
Gate discharge  
current  
13  
27  
I
=7D ;  
DISCHARGE  
V
GSxVGS(off) ; VSD8V  
1)  
Gate discharge  
current  
37  
63  
I
=15D ;  
DISCHARGE  
V
GSxVGS(off) ; VSD8V  
1)  
Gate discharge  
current  
100  
310  
150  
410  
+28%  
I
=31D ;  
DISCHARGE  
VGSxVGS(off) ; VSD8V  
Gate discharge  
current  
mA IDISCHARGE=63D ;  
VGSxVGS(off) ; VSD8V  
Gate discharge  
Δ I dischg_avg_% -28%  
1) Reference: typ.  
current dynamic  
average deviation  
Idischgx  
SRoff_SHx=165V/µs;  
GSxVGS(off) ; VSD8V  
;
V
High level output  
voltage Gxx vs. Sxx  
VGxx1  
10  
11  
12  
V
2) All other drivers  
enabled but not ON;  
CL=15nF; ICP=18.9mA;  
RGS=100k; VSD8V  
P_BDRV_02_17  
Datasheet, Z8F80164852  
129  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics BDRV  
Table 68 MOSFET Driver Output (cont’d)  
VS = 4.4 V to 28 V, VSD = 5.4 V to 29 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C,  
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
High level output  
voltage Gxx vs. Sxx  
VGxx2  
7
-
12  
V
V
2) All other drivers  
enabled but not ON;  
CL=15nF; ICP=16.2mA;  
RGS=100k; VSD=7V  
2) All other drivers  
enabled but not ON;  
CL=7nF; ICHARGE31D ;  
P_BDRV_02_18  
High level output  
voltage Gxx vs. Sxx  
VGxx3  
7
-
12  
P_BDRV_02_20  
P_BDRV_02_22  
I
CP=7.6mA;  
RGS=100k; Tj150°C;  
SD=5.4V  
V
High level output  
voltage GLx vs. GND  
/ GHx vs. SHx -  
VGxx_ABK  
7
-
12  
V
all other Drivers  
enabled but not ON;  
CL=15nF; RGS=100k;  
VSD=5.4V  
Active Brake Mode  
1)  
External MOSFET  
gate-to-source  
voltage - MOSFET  
on  
VGS(on)  
5
7
-
-
-
-
V
V
V
V
=5.4V  
=8V  
P_BDRV_02_25  
P_BDRV_02_26  
SD  
1)  
SD  
1)  
1)  
External MOSFET  
gate-to-source  
voltage - MOSFET  
off  
VGS(off)  
-
-
-
-
2
V
V
I
<31D  
31D  
P_BDRV_02_27  
P_BDRV_02_28  
DISCHARGE  
3.5  
I
DISCHARGE  
Rise time  
trise3_3nf  
40  
40  
70  
70  
100  
100  
ns  
ns  
1) 25-75% of VGxx1  
CL=3.3nF; ICHARGE=max  
; IDISCHARGE=max ;  
VSD8V  
;
P_BDRV_02_29  
P_BDRV_02_30  
Fall time  
tfall3_3nf  
1) 75-25% of VGxx1  
;
CL=3.3nF; ICHARGE=max  
; IDISCHARGE=max ;  
VSD8V  
Rise time  
Fall time  
Rise time  
trisemax  
tfallmax  
trisemin  
50  
50  
5
-
-
-
350  
350  
25  
ns  
ns  
µs  
25-75% of VGxx1  
CL=10nF; ICHARGE=max ;  
DISCHARGE=max ; VSD8V  
75-25% of VGxx1  
CL=10nF; ICHARGE=max ;  
DISCHARGE=max ; VSD8V  
1) 25-75% of VGxx1  
;
P_BDRV_02_31  
P_BDRV_02_32  
P_BDRV_02_33  
I
;
I
;
CL=10nF; ICHARGE=min ;  
IDISCHARGE=min ; VSD8V  
Datasheet, Z8F80164852  
130  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics BDRV  
Table 68 MOSFET Driver Output (cont’d)  
VS = 4.4 V to 28 V, VSD = 5.4 V to 29 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C,  
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Fall time  
tfallmin  
5
-
-
-
25  
µs  
ns  
ns  
1) 75-25% of VGxx1  
CL=10nF; ICHARGE=min ;  
DISCHARGE=min ; VSD8V  
25-75% of VGxx1  
CL=10nF; ICHARGE=max ;  
IDISCHARGE=max ; VSD8V  
;
P_BDRV_02_34  
I
Absolute rise - fall tr_f(diff)LSx  
time difference for  
all LSx  
-
100  
100  
;
P_BDRV_02_35  
P_BDRV_02_36  
P_BDRV_02_38  
Absolute rise - fall tr_f(diff)HSx  
time difference for  
all HSx  
-
25-75% of VGxx1  
CL=10nF; ICHARGE=max ;  
DISCHARGE=max ; VSD8V  
;
I
Resistor between  
GHx/GLx and GND  
RGGND  
10  
15  
13.5 17  
20 27  
kOh  
m
Resistor between  
SHx and GND  
RSHGN  
kOh 3) This resistance is the P_BDRV_02_39  
m
resistance between  
GHx and GND  
connected through a  
diode to SHx. As a  
consequence the  
voltage at SHx can rise  
up to 0,6V typ. before  
it gets discharged  
through the resistor.  
Effective  
RONCCP  
2.5  
5
10  
Oh 50mA forced into Gx, P_BDRV_02_40  
dischargeRDSON  
m
Sx grounded;  
DISCHARGE=63D ; VCP=VSD  
I
+14.0V; VSD=13.5V  
Input propagation tP(ILN)min  
time (LS on)  
3
3
3
3
-
-
12  
12  
µs  
µs  
µs  
µs  
ns  
1) "ON"=1 to 25% of  
VGxx1; CL=10nF;  
ICHARGE=min  
1) "ON"=0 to 75% of  
P_BDRV_02_42  
P_BDRV_02_43  
P_BDRV_02_44  
P_BDRV_02_45  
P_BDRV_02_46  
Input propagation tP(ILF)min  
time (LS off)  
-
V
Gxx1; CL=10nF;  
DISCHARGE=min  
1) "ON"=1 to 25% of  
VGxx1; CL=10nF;  
I
Input propagation tP(IHN)min  
time (HS on)  
-
12  
ICHARGE=min  
1) "ON"=0 to 75% of  
VGxx1; CL=10nF;  
Input propagation tP(IHF)min  
time (HS off)  
-
12  
I
DISCHARGE=min  
"ON"=1 to 25% of  
Gxx1; CL=10nF;  
CHARGE=max  
Input propagation tP(ILN)max  
time (LS on)  
200  
350  
V
I
Datasheet, Z8F80164852  
131  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics BDRV  
Table 68 MOSFET Driver Output (cont’d)  
VS = 4.4 V to 28 V, VSD = 5.4 V to 29 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C,  
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Input propagation tP(ILF)max  
time (LS off)  
-
-
-
-
200  
200  
200  
-
300  
350  
300  
100  
ns  
ns  
ns  
ns  
"ON"=0 to 75% of  
Gxx1; CL=10nF;  
DISCHARGE=max  
"ON"=1 to 25% of  
Gxx1; CL=10nF;  
P_BDRV_02_47  
V
I
Input propagation tP(IHN)max  
time (HS on)  
P_BDRV_02_48  
P_BDRV_02_49  
P_BDRV_02_50  
V
ICHARGE=max  
Input propagation tP(IHF)max  
time (HS off)  
"ON"=0 to 75% of  
VGxx1; CL=10nF;  
I
DISCHARGE=max  
"ON"=1 to 25% of  
Gxx1; CL=10nF;  
CHARGE=max  
Absolute input  
tPon(diff)LSx  
tPoff(diff)LSx  
tPon(diff)HSx  
tPoff(diff)HSx  
propagation time  
difference between  
propagation times  
for all LSx (LSx on)  
V
I
Absolute input  
-
-
-
-
-
-
100  
100  
100  
ns  
ns  
ns  
"ON"=0 to 75% of  
Gxx1; CL=10nF;  
DISCHARGE=max  
P_BDRV_02_51  
P_BDRV_02_52  
P_BDRV_02_53  
propagation time  
difference between  
propagation times  
for all LSx (LSx off)  
V
I
Absolute input  
"ON"=1 to 25% of  
Gxx1; CL=10nF;  
CHARGE=max  
propagation time  
difference between  
propagation times  
for all HSx (HSx on)  
V
I
Absolute input  
"ON"=0 to 75% of  
Gxx1; CL=10nF;  
DISCHARGE=max  
propagation time  
difference between  
propagation times  
for all HSx (HSx off)  
V
I
1) Not subject to production test, specified by design  
2) The value of ICP replicates the average load on the charge pump coming from 20-kHz PWM operation of 6 MOSFETs,  
having each a max. gate capacitance of the specified CL, under the assumption that the low-side gates are charged up  
to VGxx1@TYP and the high-side gates are charged up to the respective VGxxy@MIN  
.
3) This resistance is connected through a diode between SHx and GHx to ground.  
Datasheet, Z8F80164852  
132  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics BDRV  
26.3.3  
Charge-discharge current timing characteristics  
Table 69 Charge-Discharge Current Timing Characteristics  
VS = 4.4 V to 28 V, VSD = 5.4 V to 29 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C,  
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Charge current  
delay time  
tdly(on)  
-
-
-
-
-
35  
35  
50  
-
90  
ns  
ns  
ns  
ns  
ns  
1) from ON=1 to 20% P_BDRV_03_01  
of Ichgx (x=0...63);  
CL=10nF  
1) from 20% of Ichgx to P_BDRV_03_02  
Ichgx@MIN (x=0...63);  
Charge current rise trise(on)  
time  
70  
CL=10nF  
Gate Source  
Voltage Saturation  
Time  
tsat(on)  
100  
150  
75  
1) from VGS=VGS(on) to  
0.9*VGxxy@MIN;CL=10nF;  
ICHARGE=63 ; VSD8V  
P_BDRV_03_03  
Charge current  
settling time -  
sequencer mode  
tset_chg(seq)  
2) 1) from any ICHARGE(n) P_BDRV_03_04  
to ICHARGE(n+1) = 0D or  
63D; CL=10nF  
Discharge current tset_dischg(seq)  
settling time -  
-
3) 1) from any  
P_BDRV_03_05  
IDISCHARGE(n) to  
sequencer mode  
IDISCHARGE(n+1) = 0D or  
63D; CL=10nF  
Discharge current tdly(off)  
delay time  
-
-
25  
25  
80  
70  
ns  
ns  
1) from "ON"=0 to 20% P_BDRV_03_06  
of Idischgx (x=0...63);  
CL=10nF  
Discharge current trise(off)  
1) from 20% of Idischgx to P_BDRV_03_07  
rise time  
Idischgx@MIN (x=0...63);  
CL=10nF  
1) Not subject to production test, specified by design  
2) ICHARGE(n) and ICHARGE(n+1) are consecutive gate charge current set points in sequencer mode.  
3) IDISCHARGE(n) and IDISCHARGE(n+1) are consecutive gate discharge current set points in sequencer mode.  
Datasheet, Z8F80164852  
133  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics BDRV  
26.3.4  
Timing measurement comparators characteristics  
Table 70 Timing Measurement Comparators  
VS = 4.4 V to 28 V, VSD = 5.4 V to 29 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C,  
all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Low-side timing  
measurement  
comparator  
VSH(low)  
2
-
-
-
-
2.5  
V
P_BDRV_04_01  
threshold voltage  
High-side timing  
measurement  
comparator  
VSH(high)  
VSD  
2.5V  
-
VSD-2V V  
P_BDRV_04_02  
P_BDRV_04_03  
P_BDRV_04_04  
threshold voltage  
1)  
1)  
Delay of low-side  
timing  
measurement  
comparator  
tcdly(low)  
5
20  
25  
ns  
Delay of high-side tcdly(high)  
timing  
5
ns  
measurement  
comparator  
1) Not subject to production test, specified by design  
Datasheet, Z8F80164852  
134  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics BDRV  
26.3.5  
Drain source monitoring characteristics  
Table 71 Drain source monitoring  
VS = 4.4 V to 28 V, VSD = 5.4 V to 29 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C,  
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
-25% 0.125 +25%  
Drain source  
monitoring  
threshold  
VDSMONVTH  
V
BDRV_CTRL3.DSMON P_BDRV_05_01  
VTH<2:0>=000B  
1)  
-20% 0.25 +20%  
V
P_BDRV_05_02  
BDRV_CTRL3.DSMON  
VTH<2:0>=001B  
1)  
-15% 0.5  
+15%  
V
V
V
V
V
V
P_BDRV_05_03  
BDRV_CTRL3.DSMON  
VTH<2:0>=010B  
1)  
-15% 0.75 +15%  
-15% 1.00 +15%  
-15% 1.25 +15%  
P_BDRV_05_04  
BDRV_CTRL3.DSMON  
VTH<2:0>=011B  
1)  
P_BDRV_05_05  
BDRV_CTRL3.DSMON  
VTH<2:0>=100B  
1)  
P_BDRV_05_06  
BDRV_CTRL3.DSMON  
VTH<2:0>=101B  
1)  
-15% 1.5  
+15%  
P_BDRV_05_07  
BDRV_CTRL3.DSMON  
VTH<2:0>=110B  
1)  
-15% 1.75 +15%  
P_BDRV_05_08  
BDRV_CTRL3.DSMON  
VTH<2:0>=111B  
Drain source  
monitoring filter  
time  
tDS_FILT  
0.7  
1.7  
3.6  
7.5  
0.7  
1.7  
3.6  
7.5  
1
2
4
8
1
2
4
8
1.3  
2.3  
4.4  
8.5  
1.3  
2.3  
4.4  
8.5  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
1) SFR setting 0  
1) SFR setting 1  
1) SFR setting 2  
1) SFR setting 3  
1) SFR setting 0  
1) SFR setting 1  
1) SFR setting 2  
1) SFR setting 3  
P_BDRV_05_09  
P_BDRV_05_10  
P_BDRV_05_11  
P_BDRV_05_12  
P_BDRV_05_13  
P_BDRV_05_14  
P_BDRV_05_15  
P_BDRV_05_16  
Drain source  
monitoring  
blanking time  
tDS_BLANK  
1) Not subject to production test, specified by design  
Datasheet, Z8F80164852  
135  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics BDRV  
26.3.6  
Open load diagnosis currents characteristics  
Table 72 Open load diagnosis currents  
VS = 4.4 V to 28 V, VSD = 5.4 V to 29 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C,  
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Pull-Up diagnosis IPUDiag  
current  
-750  
900  
200  
-
-
-
-350  
µA IDISCHARGE=0 ; VSD6.4V; P_BDRV_06_01  
VSHx=5V; Vs5.4V  
Pull-Down  
IPDDiag  
1600 µA IDISCHARGE=0 ; VSD6.4V; P_BDRV_06_02  
VSHx=5V; Vs5.4V  
diagnosis current  
Effective Pull-Down IPDDiag_OD  
diagnosis current  
overdrive  
-
µA IDISCHARGE=0 ; VSD6.4V; P_BDRV_06_03  
VSHx=5V; Vs5.4V  
26.3.7  
Charge pump characteristics  
Table 73 Charge pump  
VS = 4.4 V to 28 V, VSD = 5.4 V to 29 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C,  
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Output voltage VCP VCPmin1  
8
-
11  
V
1) Bridge Driver  
P_BDRV_07_01  
vs. VSD  
enabled but not ON;  
C
C
CP1=220nF;  
CP2=220nF;  
ICP=7.6mA; VSD=5.4V;  
CP=250kHz  
f
Single-Stage Mode VCPsingle  
Output voltage VCP  
vs. VSD  
11.7  
-
16  
V
1) Bridge Driver  
P_BDRV_07_02  
P_BDRV_07_03  
enabled but not ON,  
Charge Pump in  
single-stage mode;  
C
CP1=220nF;  
CCP2=220nF;  
CP=18.9mA; VSD=18V;  
CP=250kHz  
I
f
Regulated output VCP  
11.7  
-
16  
V
1) Bridge Driver  
voltage VCP vs. VSD  
enabled but not ON;  
C
C
CP1=220nF;  
CP2=220nF;  
ICP=18.9mA; VSD8V;  
fCP=250kHz  
Datasheet, Z8F80164852  
136  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Electrical characteristics BDRV  
Table 73 Charge pump (cont’d)  
VS = 4.4 V to 28 V, VSD = 5.4 V to 29 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C,  
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Turn ON Time  
tON_VCP  
10  
-
70  
µs  
2) 1) from  
P_BDRV_07_04  
CPCLK_EN='1' to 25%  
of VCP; CCP1=220nF;  
CCP2=220nF;  
CVCP=470nF; VSD8V;  
f
CP=250kHz  
Rise time  
trise_VCP  
20  
-
96  
µs  
2) 1) from 25% to 75% P_BDRV_07_05  
of VCP; CCP1=220nF;  
CCP2=220nF;  
CVCP=470nF; VSD8V;  
fCP=250kHz  
1) Not subject to production test, specified by design  
2) This time applies when bit DRV_CP_CLK_CTRL.CPCLK_EN is set  
26.3.8  
VSD overvoltage characteristics  
Table 74 VSD Overvoltage  
VS = 4.4 V to 28 V, Grade 0 devices: Tj = -40°C to +175°C, Grade 1 devices: Tj = -40°C to +150°C, all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
1)  
1)  
1)  
VSD Overvoltage  
Rising  
VSD_OV  
32  
1.3  
10  
-
38  
2.5  
14  
V
P_BDRV_08_01  
P_BDRV_08_02  
P_BDRV_08_03  
VSD Overvoltage  
Hysteresis  
VSD_OV_hyst  
tVSD_OV_filt  
1.9  
12  
V
VSD Overvoltage  
Filter Time  
µs  
1) Not subject to production test, specified by design  
Datasheet, Z8F80164852  
137  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Package information  
27  
Package information  
Figure 46 PG-TQFP-48-10  
Datasheet, Z8F80164852  
138  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Package information  
Figure 47 PG-LQFP-64-28  
Figure 48 PG-LQFP-64-31  
Datasheet, Z8F80164852  
139  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Package information  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
Further information on packages  
https://www.infineon.com/packages  
Datasheet, Z8F80164852  
140  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Abbreviations  
28  
Abbreviations  
The following acronyms and terms are used within this document. List see in Table 75.  
Table 75 Acronyms  
Acronyms  
100TP  
AHB  
Name  
100 Time Programmable  
Advanced High-performance Bus  
Advanced Peripheral Bus  
Automotive Safety Integrity Level  
Back Electro Magnetic Force  
Controller Area Network  
Charge Pump for MOSFET driver  
Direct Memory Access  
APB  
ASIL  
BEMF  
CAN  
CP  
DMA  
ECC  
Error Correction Code  
EEPROM  
FS  
Electrically Erasable Programmable Read Only Memory  
Functional Safety  
FSM  
Finite State Machine  
GPIO  
HiZ  
General Purpose Input Output  
High impedance  
IEN  
Interrupt Enable  
LDO  
Low DropOut voltage regulator  
Long Open Window (for WDT)  
Least Significant Bit  
LOW  
LSB  
LQFP  
MCTRL  
MCU  
MPU  
MRST  
MSB  
MTSR  
N-FET  
NMI  
Low profile Quad Flat Package  
Motor control  
Micro Controller Unit  
Memory Protection Unit  
Master Receive Slave Transmit  
Most Significant Bit  
Master Transmit Slave Receive  
N-channel Field Effect Transistor  
Non-Maskable Interrupt  
Nested Vector Interrupt Controller  
Non-Volatile Memory  
NVIC  
NVM  
OSC  
Oscillator  
OT  
Overtemperature  
OTP  
One Time Programmable  
Peripheral Bridge  
PBA  
PC  
Program Counter  
Datasheet, Z8F80164852  
141  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Abbreviations  
Table 75 Acronyms (cont’d)  
Acronyms  
PD  
Name  
Pull Down  
PLL  
Phase Locked Loop  
PMU  
PPB  
Power Management Unit  
Private Peripheral Bus  
PSRAM  
PSW  
PU  
Program Static Random Access Memory  
Program Status Word  
Pull Up  
PWM  
RAM  
ROM  
SCB  
Pulse Width Modulation  
Random Access Memory  
Read Only Memory  
Short Circuit to Battery  
Short Circuit to Ground  
Single Error Correction Double Error Detection  
Special Function Register  
System on Chip  
SCG  
SECDED  
SFR  
SoC  
SOW  
SPI  
Short Open Window (for WDT)  
Serial Peripheral Interface  
Static Random Access Memory  
Safe Switch Off (path)  
SRAM  
SSO  
SWD  
TAP  
Arm® Serial Wire Debug  
Test Access Port (for test and debug)  
Temperature Compensation Control Register  
Test Mode Select  
TCCR  
TMS  
TSD  
Thermal Shut Down  
TQFP  
UART  
UV  
Thin Quad Flat Package  
Universal Asynchronous Receiver Transmitter  
Undervoltage  
VBG  
Voltage reference Band Gap  
Voltage Controlled Oscillator  
Watchdog timer in SCU-DM  
VCO  
WDT  
Datasheet, Z8F80164852  
142  
Rev. 1.1  
2023-06-19  
MOTIX™ TLE989x/TLE988x  
Microcontroller with CAN-FD and NFET Driver for BLDC Applications  
Revision history  
29  
Revision history  
Revision Date  
Changes  
Rev. 1.1 2023-06-19 Updated P_GEN_10_13  
Rev. 1.0 2023-05-15 Initial version  
Datasheet, Z8F80164852  
143  
Rev. 1.1  
2023-06-19  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2023-06-19  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2023 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
Document reference  
Z8F80164852  

相关型号:

TLE9893-2QKW62S

The MOTIX™ TLE9893-2QKW62S is part of the MOTIX™ TLE989x product family. It is a fully integra

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9893-2QTA62

The MOTIX™ TLE9893-2QTA62 is part of the MOTIX™ TLE989x product family. It is a fully integrat

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9893-2QTA62S

The MOTIX™ TLE9893-2QTA62S is part of the MOTIX™ TLE989x product family. It is a fully integra

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9893-2QTW62S

The MOTIX™ TLE9893-2QTW62S is part of the MOTIX™ TLE989x product family. It is a fully integra

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLED2043

4-CHANNEL WHITE LED DRIVER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLED2043IGQNR

LED DISPLAY DRIVER, PBGA20, MO-225BC, VFBGA-20

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ROCHESTER

TLED2043IGQNR

LED DISPLAY DRIVER, PBGA20, MO-225BC, VFBGA-20

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLED2043IPW

4-CHANNEL WHITE LED DRIVER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLED2043IPWR

LED DISPLAY DRIVER, PDSO20, PLASTIC, MO-153, TSSOP-20

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLEGC1002

Panel Circuit Indicator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TLEGC1007

Visible LED, SINGLE COLOR LED, GREEN, 1.1 mm

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TLEGD1050

TOSHIBA LED Lamp

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MARKTECH