TLF11251LD [INFINEON]

OPTIREG™ PMIC (Automotive);
TLF11251LD
型号: TLF11251LD
厂家: Infineon    Infineon
描述:

OPTIREG™ PMIC (Automotive)

集成电源管理电路
文件: 总25页 (文件大小:1084K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPTIREGPMIC TLF11251LD  
2.5 A half bridge with integrated driver and level shifte  
Features  
Integrated PMOS and NMOS complementary output bridge with 2.5 A  
current capability  
Integrated gate drivers  
Single control input with an integrated dead time logic for optimized  
control and high efficiency  
Output current sensing  
Output current limitation  
Overtemperature protection  
Low quiescent current  
No external dead time adjustment required  
Green Product (RoHS compliant)  
Potential applications  
Companion for the OPTIREGPMIC TLF3558xxxx for core voltage regulation of AURIXTC3xx microcontroller in:  
Electric power steering  
Battery management  
Inverter applications  
Engine management  
Domain control  
Product validation  
Qualified for automotive applications. Product validation according to AEC-Q100.  
Description  
The OPTIREGPMIC TLF11251LD is a 2.5 A half bridge with integrated driver and level shifeꢀ. It also contains  
a high side P-channel MOSFET and a low side N-channel MOSFET in a single package. The integrated level  
shifinꢁ stage allows for conversion of the input logic signals to the supply voltage level of the gate drivers. The  
input signal levels are CMOS compatible. The level shifeꢀ and the gate driver provide a dead time generation  
to simplify the interface with the embedded core voltage regulator of the AURIXTC3xx microcontroller. The  
low propagation delay allows for use in closed loop control applications with limited requirements for timing.  
The output stage allows for a high switching frequency. The TLF11251LD integrates protection features against  
overcurrent at the high side MOSFET and at the low side MOSFET as well as against overtemperature events.  
Internal power-on reset releases the digital logic and ensures its operation for the supply voltage within the  
specified range.  
Datasheet  
Please read the sections "Important notice" and "Warnings" at the end of this document  
Rev. 1.03  
2022-11-25  
www.infineon.com/OPTIREG-PMIC  
OPTIREGPMIC TLF11251LD  
2.5 A half bridge with integrated driver and level shifte  
Description  
Type  
Package  
Marking  
TLF11251LD  
PG-TSON-10  
11251  
Datasheet  
2
Rev. 1.03  
2022-11-25  
OPTIREGPMIC TLF11251LD  
2.5 A half bridge with integrated driver and level shifte  
Table of contents  
Table of contents  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2
2.1  
2.2  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin definitions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3.1  
3.2  
3.3  
4
4.1  
4.2  
Block description and electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Logical inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Control parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Functional description control parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Electrical characteristics control parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Output stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Functional description output stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Electrical characteristics output stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Typical performance characteristics output stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Protection functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Undervoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Functional description undervoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Electrical characteristics undervoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Overcurrent protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Functional description overcurrent protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Electrical characteristics overcurrent protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Overtemperature protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Functional description overtemperature protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Electrical characteristics overtemperature protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
4.2.1  
4.2.2  
4.3  
4.3.1  
4.3.2  
4.3.3  
4.4  
4.4.1  
4.4.1.1  
4.4.1.2  
4.4.2  
4.4.2.1  
4.4.2.2  
4.4.3  
4.4.3.1  
4.4.3.2  
5
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
5.1  
Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
6
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Datasheet  
3
Rev. 1.03  
2022-11-25  
OPTIREGPMIC TLF11251LD  
2.5 A half bridge with integrated driver and level shifte  
Table of contents  
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Datasheet  
4
Rev. 1.03  
2022-11-25  
OPTIREGPMIC TLF11251LD  
2.5 A half bridge with integrated driver and level shifte  
1 Block diagram  
1
Block diagram  
Figure 1  
Block diagram  
Datasheet  
5
Rev. 1.03  
2022-11-25  
OPTIREGPMIC TLF11251LD  
2.5 A half bridge with integrated driver and level shifte  
2 Pin configuration  
2
Pin configuration  
2.1  
Pin assignment  
SW  
SW  
10  
9
VS  
VS  
1
2
PGND  
VCC  
PGND  
GND  
8
Heat sink  
3
4
5
7
LSCON  
PWM  
6
Figure 2  
Pin configuration  
Datasheet  
6
Rev. 1.03  
2022-11-25  
OPTIREGPMIC TLF11251LD  
2.5 A half bridge with integrated driver and level shifte  
2 Pin configuration  
2.2  
Pin definitions and functions  
Pin  
Symbol  
Function  
1, 2  
SW  
Switch node:  
Half bridge drains; typically connected to the input of the LC filter in buck circuits  
3, 8  
4
PGND  
GND  
Power ground:  
Half bridge low side source  
Ground;  
Logical ground  
5
LSCON  
Bridge control scheme:  
Defines the low side state during PWM input "high".  
Switch to "high" enables synchronous control of high side and low side, based on PWM  
input state.  
Switch to "low" disables low side control.  
6
7
PWM  
Control input:  
Input for the logical signal that controls the state of the half bridge transistors. Switch to  
"high" opens the high side switch and closes the low side switch. Switch to "low" closes  
the high side switch and opens the low side switch.  
VCC  
VS  
Supply voltage input:  
Supply voltage for the PWM and LSCON inputs; typically the same as the supply of  
microcontroller output pins.  
9, 10  
Supply voltage input:  
Supply to gate drivers, connected to half bridge high side source.  
Heat sink Connect to heat sink area.  
Connect to GND and to PGND.  
Datasheet  
7
Rev. 1.03  
2022-11-25  
OPTIREGPMIC TLF11251LD  
2.5 A half bridge with integrated driver and level shifte  
3 General product characteristics  
3
General product characteristics  
3.1  
Absolute maximum ratings  
Table 1  
Absolute maximum ratings1)  
Tj = -40°C to 150°C; all voltages with respect to ground; positive current flowing into pin (unless otherwise  
specified).  
Parameter  
Symbol  
Values  
Unit Note or condition  
Number  
Min. Typ. Max.  
Voltages  
Supply voltage VS  
Supply voltage VCC  
Switch node SW  
Input PWM  
VS  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
7.0  
7.0  
7.0  
7.0  
7.0  
V
V
V
V
V
P_3.1.1  
P_3.1.2  
P_3.1.3  
P_3.1.4  
P_3.1.5  
Vcc  
VSW  
VPWM  
VLSCON  
Input LSCON  
Currents  
Continuous drain current high  
side  
IDHS  
IDLS  
IDHS  
IDLS  
-2.5  
A
A
A
A
PWM = off  
P_3.1.6  
P_3.1.7  
P_3.1.8  
P_3.1.9  
Continuous drain current low  
side  
2.5  
PWM = on  
Pulsed drain current high side  
-4.4  
Valid during active  
overcurrent protection  
Pulsed drain current low side  
4.4  
Valid during active  
overcurrent protection  
Temperatures  
Junction temperature  
Storage temperature  
ESD susceptibility  
Tj  
-40  
-55  
150  
150  
°C  
°C  
P_3.1.10  
P_3.1.11  
Tstg  
ESD susceptibility all pins  
ESD susceptibility all pins  
VESD  
VESD  
-2  
2
kV  
V
2) HBM  
3) CDM  
3) CDM  
P_3.1.12  
P_3.1.13  
P_3.1.14  
-500  
-750  
500  
750  
ESD susceptibility (corner pins) VESD  
V
1)  
2)  
3)  
Not subject to production test, specified by design.  
Human body model (HBM) robustness according to ANSI/ESDA/JEDEC JS-001 (1.5 kΩ, 100 pF).  
Charged device model (CDM) robustness according to JEDEC JESD22-C101.  
Notes:  
1.  
Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods of time may affect device reliability.  
Integrated protection functions are designed to prevent IC destruction under fault conditions described in  
the datasheet. Fault conditions are considered as outside the normal operating range. Protection functions  
are not designed for continuous repetitive operation.  
2.  
Datasheet  
8
Rev. 1.03  
2022-11-25  
OPTIREGPMIC TLF11251LD  
2.5 A half bridge with integrated driver and level shifte  
3 General product characteristics  
3.2  
Functional range  
Table 2  
Functional range  
Symbol  
Parameter  
Values  
Typ.  
Unit Note or condition Number  
Min.  
3.5  
VCC,nom 2.35  
Max.  
7.0  
Supply voltage range VS  
Supply voltage range VCC  
VS,nom  
V
P_3.2.1  
P_3.2.2  
P_3.2.3  
7.0  
V
1)  
Supply voltage VS transient dVS/dt -120  
120  
V/ms  
slew rate  
1)  
Supply voltage VCC  
transient slew rate  
dVCC/dt -120  
120  
V/ms  
P_3.2.4  
Junction temperature  
Tj  
-40  
150  
35  
°C  
P_3.2.5  
P_3.2.9  
Supply current total,  
normal operation  
IC,norm  
mA  
PWM input @  
1.8 MHz  
Supply current total, no  
switching  
IC,ns  
200  
µA  
VS < 5.8 V;  
Vcc < 5.1 V;  
Tj < 85°C  
P_3.2.10  
1)  
Not subject to production test, specified by design.  
Note:  
Within the functional range, the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the electrical characteristics table.  
Datasheet  
9
Rev. 1.03  
2022-11-25  
OPTIREGPMIC TLF11251LD  
2.5 A half bridge with integrated driver and level shifte  
3 General product characteristics  
3.3  
Thermal resistance  
Table 3  
Thermal resistance1)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
condition  
Number  
Min.  
RthJCT(HS) 51.6  
Max.  
57.0  
Junction to case top, high side  
Junction to case top, low side  
K/W  
K/W  
K/W  
P_3.3.1  
P_3.3.2  
P_3.3.3  
RthJCT(LS) 64.5  
RthJCB(HS) 6.3  
71.2  
6.9  
Junction to case bottom, high  
side  
Junction to case bottom, low side RthJCB(LS) 9.4  
Junction to ambient RthJA  
10.4  
K/W  
K/W  
2)  
P_3.3.4  
P_3.3.5  
54.5  
1)  
2)  
Not subject to production test, specified by design.  
Specified RthJA value is according to JEDEC JESD51-2,-5,-7 at natural convection on FR4 2s2p board; the product (chip and  
package) was simulated on a 76.2 × 114.3 × 1.5 mm3 board with two inner copper layers (2 × 70 µm Cu, 2 × 35 µm Cu). Where  
applicable, a thermal via array next to the package contacted the first inner copper layer.  
Note:  
This thermal data was generated in accordance with JEDEC JESD51 standards. For more information  
visit www.jedec.org.  
Datasheet  
10  
Rev. 1.03  
2022-11-25  
OPTIREGPMIC TLF11251LD  
2.5 A half bridge with integrated driver and level shifte  
4 Block description and electrical characteristics  
4
Block description and electrical characteristics  
The device simplifies the interface of microcontroller control outputs to the half bridge.  
4.1  
Logical inputs  
A single PWM input controls the state of the half bridge MOSFETs. The inverted logical scheme translates the  
PWM input state to the gate signal shifeꢂ to the output supply level, thus the device switches the high side  
MOSFET off during PWM logical on-state, and it switches them on during PWM logical off state. The built-in  
dead time control circuitry prevents a shoot-through condition over the MOSFET bridge and improves system  
efficiency while used in buck power conversion circuits. No external dead time adjustment is required.  
In addition to the PWM input, the LSCON input determines the low side MOSFET control scheme and allows  
for both synchronous as well as asynchronous operation in buck converter applications. Logical off state at the  
LSCON input switches off the low side MOSFET independently of the PWM input signal, so that the device only  
controls the high side MOSFET.  
A permanent logical on state at the LSCON input allows both high side and low side operation according to  
PWM input state with the internal dead time generation. If such operation is required, then the LSCON input can  
be pulled-up or connected directly to the VCC supply rail.  
The device interprets a toggling input signal at LSCON as a control request for synchronous low side and  
high side MOSFET switching. In this case the device generates dead time internally in accordance with  
the PWM input timing. Frequency detection at LSCON inputs detect toggling input signals within the  
acceptable range referred to as tdet  
.
Table 4  
Switching states  
LSCON  
On  
PWM  
1) On  
2) Off  
On  
High side MOSFET  
Low side MOSFET  
Off  
On  
Off  
On  
Off  
On  
Off  
On  
On  
Off  
Off  
Off  
On  
Off  
On  
Off  
On  
Off  
Off  
Off  
Toggling between on and off3) On  
Off  
Toggling between on and off On  
stopped4)  
Off  
(< tfil)  
Toggling between on and off On  
Off  
On  
Off  
On  
On  
Off  
Off  
Off  
stopped  
(> tfil); LSCON: on  
Toggling between on and off Off  
stopped  
(> tfil); LSCON: on  
Toggling between on and off On  
stopped  
(> tfil); LSCON: off  
Toggling between on and off Off  
stopped  
(> tfil); LSCON: off  
(table continues...)  
Datasheet  
11  
Rev. 1.03  
2022-11-25  
OPTIREGPMIC TLF11251LD  
2.5 A half bridge with integrated driver and level shifte  
4 Block description and electrical characteristics  
Table 4  
LSCON  
(continued) Switching states  
PWM  
High side MOSFET  
Low side MOSFET  
1)  
2)  
3)  
On: "high"  
Off: "low"  
Toggling between on and off: The device detects switching on and off at a frequency corresponding to the detection range tdet at  
the LSCON input.  
Toggling between on and off stopped: Afeꢀ the toggling between on and off, the device detects a permanent on or off state.  
4)  
The switching states in Table 4 are only valid for device input supplies within the operational range and if no  
protection feature is active.  
If the PWM pin is not connected, then the integrated weak pull-up ensures a defined level.  
If an AURIXTC3xx microcontroller controls the device, then place an additional pull-down resistor at the  
LSCON input to keep the low side MOSFET switched off during power-down, see Application information.  
Datasheet  
12  
Rev. 1.03  
2022-11-25  
OPTIREGPMIC TLF11251LD  
2.5 A half bridge with integrated driver and level shifte  
4 Block description and electrical characteristics  
4.2  
Control parameters  
4.2.1  
Functional description control parameters  
The device provides a high frequency switching capability with a low propagation delay. The input stage and  
the drivers can react to fast changing PWM signals and provide a tres resolution to the on-time of the input  
signal with a pulse duration longer than tpulse. The "low" state pulse duration is limited to tpulse, min  
.
The total propagation time tprop is the time from the "low" to "high" edge transition or from the "high"  
to "low" edge transition at the PWM input to the SW output level transitions to 10% or 90% of VS supply  
level accordingly. The internal dead time generation provides optimal efficiency during switching phases and  
performs the state change of the switching node SW within the specified propagation delay.  
The device is optimized for a switching frequency in a buck converter application from 0.3 MHz to 2 MHz.  
PWM Input  
Test circuit  
Vs  
VIH  
tpulse  
Min accepted pulse:  
tpulse,min=65ns  
VIL  
15..25 Ohm  
15..25 Ohm  
PWM  
SW  
DUT  
SW output  
GND  
PGND  
tprop,fe  
0.9*Vs  
tpulse ± |tres|  
tprop,re  
0.1*Vs  
Figure 3  
Control timing diagram  
Datasheet  
13  
Rev. 1.03  
2022-11-25  
OPTIREGPMIC TLF11251LD  
2.5 A half bridge with integrated driver and level shifte  
4 Block description and electrical characteristics  
4.2.2  
Electrical characteristics control parameters  
Table 5  
Electrical characteristics control parameters  
VS = 3.5 V to 7 V; VCC = 2.35 V to 7 V; Tj = -40°C to 150°C; all voltages with respect to ground; positive current  
flowing into pin (unless otherwise specified).  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
Number  
Min.  
Max.  
60  
Propagation time, PWM  
falling edge  
tprop,fe  
ns  
ns  
ns  
High side drain  
connected to  
resistive load;  
VCC > 3.0 V;  
VS > 4.5 V  
P_4.2.1  
Propagation time, PWM  
rising edge  
tprop,re  
60  
Low side drain  
connected to  
resistive load;  
VCC > 3.0 V;  
VS > 4.5 V  
1)  
P_4.2.2  
P_4.2.3  
Minimum pulse width input tpulse,  
65  
min  
1)  
1)  
1)  
Pulse resolution time  
tres  
3
ns  
ns  
ns  
P_4.2.4  
P_4.2.5  
P_4.2.6  
P_4.2.7  
Dead time "high" to "low"  
Dead time "low" to "high"  
tdead,hl  
tdead,lh  
15  
18  
LSCON frequency detector  
frequency range  
fdet,lscon 0.72  
MHz –  
1)  
LSCON frequency detector  
filter time  
tfil,lscon  
3
µs  
P_4.2.8  
Logic inputs  
Input voltage "high"  
Input voltage "low"  
Input voltage hysteresis  
Input capacitance  
VIH  
0.67 × Vcc  
V
CMOS function  
P_4.2.9  
VIL  
0.33 × Vcc  
V
CMOS function  
P_4.2.10  
P_4.2.11  
P_4.2.12  
VIHYS  
CIN  
0.05  
V
1)  
10  
pF  
1)  
Not subject to production test, specified by design.  
Datasheet  
14  
Rev. 1.03  
2022-11-25  
OPTIREGPMIC TLF11251LD  
2.5 A half bridge with integrated driver and level shifte  
4 Block description and electrical characteristics  
4.3  
Output stage  
4.3.1  
Functional description output stage  
The P-N-channel output half bridge of the device can operate at a switching frequency up to 2 MHz nominal  
range, providing very low power dissipation in synchronous buck converter topology. The P-channel MOSFET  
used as high side switch eliminates the need for a charge pump circuitry and improves the EMI performance.  
The output stage delivers a minimum output current of 2.5 A within the specified voltage and temperature  
range.  
4.3.2  
Electrical characteristics output stage  
Table 6  
Electrical characteristics output stage  
VS = 3.5 V to 7 V; VCC = 2.35 V to 7 V; Tj = -40°C to 150°C; all voltages with respect to ground; positive current  
flowing into pin (unless otherwise specified).  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
condition  
Number  
Min.  
Max.  
100  
On-state resistance high side RONHS  
mΩ  
mΩ  
mΩ  
mΩ  
Tj ≤ 150°C;  
Id = -2 A;  
Vs = 5.8 V  
1) Tj ≤ 85°C;  
Id = -2 A;  
Vs = 5.8 V  
P_4.3.1  
70  
P_4.3.2  
P_4.3.3  
P_4.3.4  
On-state resistance low side RONLS  
105  
75  
Tj ≤ 150°C;  
Id = 2 A;  
Vs = 5.8 V  
1) Tj ≤ 85°C;  
Id = 2 A;  
Vs = 5.8 V  
Body diode forward voltage VDFHS  
0.67  
0.72  
0.95  
0.91  
V
V
Ifw = 2 A  
P_4.3.5  
P_4.3.6  
high side  
Body diode forward voltage VDFLS  
low side  
Ifw = 2 A  
1)  
Not subject to production test, specified by design.  
Datasheet  
15  
Rev. 1.03  
2022-11-25  
OPTIREGPMIC TLF11251LD  
2.5 A half bridge with integrated driver and level shifte  
4 Block description and electrical characteristics  
4.3.3  
Typical performance characteristics output stage  
Maximum on-state resistance high side RONHS  
(PWM = "low") versus Tj = -40°C, 25°C, 150°C  
Maximum on-state resistance low side RONLS  
(PWM = "high") versus Tj = -40°C, 25°C, 150°C  
Datasheet  
16  
Rev. 1.03  
2022-11-25  
OPTIREGPMIC TLF11251LD  
2.5 A half bridge with integrated driver and level shifte  
4 Block description and electrical characteristics  
4.4  
Protection functions  
The following integrated protection functions prevent the device and the output circuitry from destruction as  
well as from operation under unspecified conditions:  
High side and low side overcurrent detection and limitation  
Undervoltage shutdown  
Overtemperature protection  
The device reacts within the time specified for each protection feature. This is related to the state change of the  
half bridge MOSFETs independent from the PWM input signal. The device performs the input logic reset release  
at VS voltage exceeding the minimum functional limit of 3.5 V, where protection functions are also operational.  
For the VCC voltage below VCCUV, the output half bridge MOSFETs remain in the off-state and the output switch  
node SW is floating.  
4.4.1  
Undervoltage shutdown  
4.4.1.1  
Functional description undervoltage shutdown  
The device monitors the input supply VCC for undervoltage conditions. If the output voltage drops below the  
Vccuv limit, then the device switches off the high side MOSFET and the low side MOSFET, so that the device is  
only operational within the specified supply limits. The voltage hysteresis circuitry Vccuvh protects from noise  
conditions.  
4.4.1.2  
Electrical characteristics undervoltage shutdown  
Table 7  
Electrical characteristics undervoltage shutdown  
VS = 3.5 V to 7 V; Tj = -40°C to 150°C; all voltages with respect to ground; positive current flowing into pin (unless  
otherwise specified).  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
condition  
Number  
Min.  
1.95  
Max.  
2.28  
Undervoltage limit at VCC  
supply  
Vccuv  
Vccuvh  
Vuvr  
V
VCC falling  
P_4.4.2.1  
P_4.4.2.2  
P_4.4.2.3  
Undervoltage detector  
hysteresis  
0.05  
0.1  
3
V
1)  
Undervoltage detector  
reaction time  
µs  
1)  
Not subject to production test, specified by design.  
Datasheet  
17  
Rev. 1.03  
2022-11-25  
OPTIREGPMIC TLF11251LD  
2.5 A half bridge with integrated driver and level shifte  
4 Block description and electrical characteristics  
4.4.2  
Overcurrent protection  
4.4.2.1  
Functional description overcurrent protection  
The overcurrent protection works in a cycle-by-cycle limitation mode. If the sensed input drain current exceeds  
the peak current limit Ioc, lim during a switching cycle, then the device switches off the high side MOSFET and  
the switch node SW current decreases. If the overcurrent protection circuitry is active, then the device limits the  
PWM input duty cycle for each cycle.  
During startup or with VCC supply power cycle afeꢀ the logic reset is released, the overcurrent protection  
remains inactive for the number of PWM pulses npwm,st to avoid accidental activation due to startup current  
overshoot.  
Figure 4  
Overcurrent protection example  
Datasheet  
18  
Rev. 1.03  
2022-11-25  
OPTIREGPMIC TLF11251LD  
2.5 A half bridge with integrated driver and level shifte  
4 Block description and electrical characteristics  
4.4.2.2  
Electrical characteristics overcurrent protection  
Table 8  
Electrical characteristics overcurrent protection  
VS = 3.5 V to 7 V; VCC = 2.35 V to 7 V; Tj = -40°C to 150°C; all voltages with respect to ground; positive current  
flowing into pin (unless otherwise specified).  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
condition  
Number  
Min.  
-4.4  
Max.  
-2.6  
5500  
Overcurrent sensing limit  
Ioc, lim  
A
P_4.4.3.1  
Startup protection inactive, npwm,st  
number of PWM pulses  
VCC rising above P_4.4.3.2  
VCC,min  
Datasheet  
19  
Rev. 1.03  
2022-11-25  
OPTIREGPMIC TLF11251LD  
2.5 A half bridge with integrated driver and level shifte  
4 Block description and electrical characteristics  
4.4.3  
Overtemperature protection  
4.4.3.1  
Functional description overtemperature protection  
If an overtemperature condition TjOT occurs, then the integrated temperature sensor disables the device by  
switching off the high side and low side MOSFETs. Only if both the temperature decreases by the hysteresis  
temperature dTj and the temperature falls below TjSO, then the MOSFETs resume operation.  
4.4.3.2  
Electrical characteristics overtemperature protection  
Table 9  
Electrical characteristics overtemperature protection1)  
VS = 3.5 V to 7 V; VCC = 2.35 V to 7 V; Tj = -40°C to 150°C; all voltages with respect to ground; positive current  
flowing into pin (unless otherwise specified).  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
condition  
Number  
Min.  
175  
Max.  
200  
Overtemperature shutdown TjOT  
Switch-on temperature TjSO  
°C  
°C  
°C  
P_4.4.4.1  
P_4.4.4.2  
P_4.4.4.3  
165  
Overtemperature switch-on dTj  
hysteresis  
15  
1)  
Not subject to production test, specified by design.  
Datasheet  
20  
Rev. 1.03  
2022-11-25  
OPTIREGPMIC TLF11251LD  
2.5 A half bridge with integrated driver and level shifte  
5 Application information  
5
Application information  
Note:  
The following information is given as an example for the implementation of the device only and shall  
not be regarded as a description or warranty of a certain functionality, condition or quality of the  
device.  
5.1  
Application diagram  
In the target application scenario the device is the counterpart for an AURIXTC3xx microcontroller for core  
voltage generation with the system power supply TLF35584. The device configuration allows connectivity with  
the half bridge control output of the microcontroller’s embedded voltage regulator core (EVRC) converter,  
which generates the core voltage Vdd. The device only supports power supply topologies that use ꢂiffeꢀent  
sources for the microcontroller supply domain Vext and the EVRC input VS, expecting ꢂiffeꢀent voltage levels. VS  
must exceed VCC during startup, in normal operation and during power-down.  
Figure 5  
Application diagram  
Note:  
This figure is a simplified example of an application circuit. The function must be verified in the  
application.  
As soon as VS voltage reaches 3.5 V during power-up, the device releases the internal logic reset. During this  
phase the central function logic is operational. Only if VCC is within the specified range, then the device reacts  
to the input signals LSCON and PWM as specified. However, the operational VCC voltage minimum is specified at  
2.35 V, which allows for early device readiness, even if the microcontroller is not yet operational.  
The VGATEP output of the microcontroller controls the PWM signal, while the VGATEN output is connected  
to LSCON. The microcontroller typically starts in an open loop mode, controlling only VGATEP and allowing  
for fast Vdd voltage ramp-up and startup. Afeꢀ ramp-up time, the EVRC starts to control the high side and  
low side MOSFETs of the half bridge. The LSCON input detects this phase with the frequency detector. If the  
microcontroller is switched into power-down mode and if the high side and low side control signals are off,  
Datasheet  
21  
Rev. 1.03  
2022-11-25  
OPTIREGPMIC TLF11251LD  
2.5 A half bridge with integrated driver and level shifte  
5 Application information  
then the frequency detector recognizes it as a request to set the SW output floating. Therefore add a pull-down  
resistor for the LSCON signal in order to limit its possible variation during the power-down phase afeꢀ the  
supply voltage reaches the hard reset limit of the microcontroller.  
Figure 6  
Start-up and ramp-down example  
Table 10 shows the required nominal values of the discrete components for proper operation.  
Table 10  
Nominal values of discrete components  
Component name  
Nominal value  
10 µF  
Acceptable variation  
Note  
CVS  
30%  
Input capacitor  
Output capacitor  
Output inductor  
LSCON input pull-down  
CVDD  
LVDD  
RLSCON  
22 µF  
30%  
3.3 µH  
30% (@ 1.8 MHz)  
20%  
6.2 kΩ  
Datasheet  
22  
Rev. 1.03  
2022-11-25  
OPTIREGPMIC TLF11251LD  
2.5 A half bridge with integrated driver and level shifte  
6 Package information  
6
Package information  
0.36±0.1  
1±0.1  
2.58±0.1  
3.3±0.1  
0.05  
0.5  
INDEX MARKING  
0.53±0.1  
INDEX MARKING  
0.07 MIN.  
0.25±0.1  
ALL DIMENSIONS ARE IN UNITS MM  
THE DRAWING IS IN COMPLIANCE WITH ISO 128 & PROJECTION METHOD 1 [  
]
Figure 7  
PG-TSON-10  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a Green Product. Green Products are RoHS compliant  
(Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
Information on alternative packages  
Please visit www.infineon.com/packages.  
Datasheet  
23  
Rev. 1.03  
2022-11-25  
OPTIREGPMIC TLF11251LD  
2.5 A half bridge with integrated driver and level shifte  
Revision history  
Revision history  
Revision Date  
Changes  
1.03  
2022-11-25  
Editorial changes  
1.02  
1.01  
1.0  
2021-02-05  
2021-01-14  
2020-01-23  
Editorial changes  
Editorial changes  
Datasheet created  
Datasheet  
24  
Rev. 1.03  
2022-11-25  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
Edition 2022-11-25  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
Important notice  
Warnings  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsꢁaꢀantie”).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer’s compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer’s products and any use of the product of  
Infineon Technologies in customer’s applications.  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or  
any consequences of the use thereof can reasonably  
be expected to result in personal injury.  
©
2022 Infineon Technologies AG  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Document reference  
IFX-Z8F80033844  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to such  
application.  

相关型号:

TLF12501

current sensing, current & temperture reporting, over-current protection & flag, over-temperature protection & shutdown, high-side short detection & flag, bootstrap under-voltage protection, VDRV under-voltage lockout, 3.3V tri-state PWM-input, auto-sleep- & deep-sleep-mode
INFINEON

TLF12UA102W2R0

Single Phase EMI Filter
TAIYO YUDEN

TLF12UA102WR04

Single Phase EMI Filter
TAIYO YUDEN

TLF12UA103W0R7

Single Phase EMI Filter
TAIYO YUDEN

TLF12UA1503R0N

Single Phase EMI Filter
TAIYO YUDEN

TLF12UA202W1R6

Single Phase EMI Filter
TAIYO YUDEN

TLF12UA203W0R5

Single Phase EMI Filter
TAIYO YUDEN

TLF12UA3001R7N

Single Phase EMI Filter
TAIYO YUDEN

TLF12UA303W0R4

Single Phase EMI Filter
TAIYO YUDEN

TLF12UA303W2R0

Single Phase EMI Filter
TAIYO YUDEN

TLF12UA802W0R8

Single Phase EMI Filter
TAIYO YUDEN

TLF12UB102W1R5

Single Phase EMI Filter
TAIYO YUDEN