TLS203B0EJ V50 [INFINEON]

TLS203B0EJV50 是一款微功耗、低噪声、低压差的调节器。该器件能够实现 300 mA 的输出电流,290 mV 的压差。专为电池供电系统设计,30 μA 的低静态电流使其成为理想的选择。TLS203B0EJV50 的一个关键特性是其输出噪声较低。通过添加一个外部 10 nF 的旁路电容,可以在 10 Hz 至 100 kHz 的带宽内将输出噪音值下降至 42 μVRMS。TLS203B0EJV50 电压调节器在输入电容小至 3.3 μF 时也能保持其稳定性。可以使用小型陶瓷电容,不需要其他许多调节器所需的串联电阻。内部保护电路包括反向电池保护、电流限制和反向电流保护。TLS203B0EJV50 是5.0 V 固定输出电压的型号,采用 PG-DSO-8 散热焊盘封装。;
TLS203B0EJ V50
型号: TLS203B0EJ V50
厂家: Infineon    Infineon
描述:

TLS203B0EJV50 是一款微功耗、低噪声、低压差的调节器。该器件能够实现 300 mA 的输出电流,290 mV 的压差。专为电池供电系统设计,30 μA 的低静态电流使其成为理想的选择。TLS203B0EJV50 的一个关键特性是其输出噪声较低。通过添加一个外部 10 nF 的旁路电容,可以在 10 Hz 至 100 kHz 的带宽内将输出噪音值下降至 42 μVRMS。TLS203B0EJV50 电压调节器在输入电容小至 3.3 μF 时也能保持其稳定性。可以使用小型陶瓷电容,不需要其他许多调节器所需的串联电阻。内部保护电路包括反向电池保护、电流限制和反向电流保护。TLS203B0EJV50 是5.0 V 固定输出电压的型号,采用 PG-DSO-8 散热焊盘封装。

电池 调节器
文件: 总25页 (文件大小:2346K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLS203B0 V50  
Linear Voltage Post Regulator  
Low Dropout, Low Noise, 5V, 300mA  
TLS203B0EJV50  
TLS203B0LDV50  
Data Sheet  
Rev. 1.1, 2015-01-15  
Automotive Power  
Linear Voltage Post Regulator  
Low Dropout, Low Noise, 5V, 300mA  
TLS203B0EJV50  
TLS203B0LDV50  
1
Overview  
Features  
Low Noise down to 42 µVRMS (BW = 10 Hz to 100 kHz)  
300 mA Current Capability  
Low Quiescent Current: 30 µA  
Wide Input Voltage Range up to 20 V  
Internal circuitry working down to 2.3 V  
2.5% Output Voltage Accuracy (over full temperature and load range)  
Low Dropout Voltage: 290 mV  
Very low Shutdown Current: < 1 µA  
No Protection Diodes needed  
Fixed Output Voltage: 5.0 V  
PG-DSO-8 Exposed Pad  
Stable with 3.3 µF Output Capacitor  
Stable with Aluminium, Tantalum or Ceramic Output Capacitors  
Reverse Polarity Protection  
No Reverse Current  
Overcurrent and Overtemperature Protected  
PG-DSO-8 Exposed Pad and PG-TSON-10 Exposed Pad Package  
Suitable for use in Automotive Electronics as Post Regulator  
Green Product (RoHS compliant)  
PG-TSON-10  
AEC Qualified  
The TLS203B0 V50 is a micropower, low noise, low dropout voltage 5 V regulator. The device is capable of  
supplying an output current of 300 mA with a dropout voltage of 290 mV. Designed for use in battery-powered  
systems, the low quiescent current of 30 µA makes it an ideal choice.  
A key feature of the TLS203B0 V50 is its low output noise. By adding an external 10 nF bypass capacitor output  
noise values down to 42 µVRMS over a 10 Hz to 100 kHz bandwidth can be reached. The TLS203B0 V50 voltage  
regulator is stable with output capacitors as small as 3.3 µF. Small ceramic capacitors can be used without the  
series resistance required by many other linear voltage regulators.  
Internal protection circuitry includes reverse battery protection, current limiting and reverse current protection. The  
TLS203B0 V50 comes as 5.0 V fixed output voltage variant and is available in a PG-DSO-8 Exposed Pad as well  
as in a PG-TSON-10 Exposed Pad package.  
Type  
Package  
Marking  
203B0V50  
203B0V5  
TLS203B0EJV50  
TLS203B0LDV50  
PG-DSO-8 Exposed Pad  
PG-TSON-10  
Data Sheet  
2
Rev. 1.1, 2015-01-15  
TLS203B0EJV50  
TLS203B0LDV50  
Block Diagram  
2
Block Diagram  
Note: Pin numbers in block diagrams refer to the PG-DSO-8 Exposed Pad package type.  
Saturation  
Control  
TLS203B0  
I
8
5
1
Q
Over Current  
Protection  
Temperature  
Protection  
EN  
Bias  
Voltage  
reference  
4
BYP  
Error  
Amplifier  
2
SENSE  
6
GND  
Figure 1  
Block Diagram TLS203B0 V50  
Data Sheet  
3
Rev. 1.1, 2015-01-15  
TLS203B0EJV50  
TLS203B0LDV50  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment  
1
2
8
7
Q
I
SENSE  
NC  
NC  
3
4
6
5
GND  
EN  
9
BYP  
TLS203B0EJV50  
Figure 2  
Pin Configuration of TLS203B0EJV50 in PG-DSO-8 Exposed Pad  
Q
Q
1
2
3
4
5
10  
9
I
I
NC  
8
NC  
EN  
GND  
SENSE  
BYP  
7
11  
6
TLS203B0LDV50  
Figure 3  
Pin Configuration of TLS203B0LDV50 in PG-TSON-10  
Data Sheet  
4
Rev. 1.1, 2015-01-15  
TLS203B0EJV50  
TLS203B0LDV50  
Pin Configuration  
3.2  
Pin Definitions and Functions  
Pin  
Symbol  
Function  
1 (DSO-8 EP)  
1,2 (TSON-10)  
Q
Output. Supplies power to the load. For this pin a minimum output capacitor of  
3.3 µF is required to prevent oscillations. Larger output capacitors may be  
required for applications with large transient loads in order to limit peak voltage  
transients or when the regulator is applied in conjunction with a bypass capacitor.  
For more details please refer to “Application Information” on Page 19.  
2 (DSO-8 EP)  
4 (TSON-10)  
SENSE  
Output Sense. The SENSE pin is the input to the error amplifier. This allows to  
achieve an optimized regulation performance in case of small voltage drops Rp  
that occur between regulator and load. In applications where such drops are  
relevant they can be eliminated by connecting the SENSE pin directly at the load.  
In standard configuration the SENSE pin can be directly connected to Q. For  
further details please refer to the section “Kelvin Sense Connection” on  
Page 19.  
3, 7 (DSO-8 EP) NC  
3, 8 (TSON-10)  
No Connect. The NC Pins have no connection to any internal circuitry. Connect  
either to GND or leave open.  
4 (DSO-8 EP)  
5 (TSON-10)  
BYP  
Bypass. The BYP pin is used to bypass the reference of the TLS203B0 V50 to  
achieve low noise performance. The BYP-pin is clamped internally to ±0.6 V (i.e.  
one VBE). A small capacitor from the output Q to the BYP pin will bypass the  
reference to lower the output voltage noise 1). If not used this pin must be left  
unconnected.  
5 (DSO-8 EP)  
7 (TSON-10)  
EN  
Enable. With the EN pin the TLS203B0 V50 can be put into a low power shutdown  
state. The output will be off when the EN is pulled low. The EN pin can be driven  
either by 3.3 V or 5 V logic or as well by open-collector logic with pull-up resistor.  
The pull-up resistor is required to supply the pull-up current of the open-collector  
gate 2) and the EN pin current 3). Please note that if the EN pin is not used it must  
be connected to VI. It must not be left floating.  
6 (DSO-8 EP)  
6 (TSON-10)  
GND  
I
Ground.  
8 (DSO-8 EP)  
Input. The device is supplied by the input pin I. A capacitor at the input pin is  
required if the device is more than 6 inches away from the main input filter  
capacitor or if a non-negligible inductance is present at the input I 4). The  
TLS203B0 V50 is designed to withstand reverse voltages on the input pin I with  
respect to GND and output Q. In the case of reverse input (e.g. due to a wrongly  
attached battery) the device will act as if there is a diode in series with its input. In  
this way there will be no reverse current flowing into the regulator and no reverse  
voltage will appear at the load. Hence, the device will protect both - the device  
itself and the load.  
9, 10 (TSON-10)  
9 (DSO-8 EP)  
11 (TSON-10)  
Tab  
Exposed Pad. To ensure proper thermal performance, solder Pin 11 of TSON-10  
to the PCB ground and tie directly to Pin 6. In the case of DSO-8 EP as well solder  
Pin 9 (exposed pad) to the PCB ground and tie directly to Pin 6 (GND).  
1) A maximum value of 10 nF can be used for reducing output voltage noise over the bandwidth from 10 Hz to 100 kHz.  
2) Normally several microamperes.  
3) Typical value is 1 µA.  
4) In general the output impedance of a battery rises with frequency, so it is advisable to include a bypass capacitor in battery-  
powered circuits. Depending on actual conditions an input capacitor in the range of 1 to 10 µF is sufficient.  
Data Sheet  
5
Rev. 1.1, 2015-01-15  
TLS203B0EJV50  
TLS203B0LDV50  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Table 1  
Absolute Maximum Ratings 1)  
Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise  
specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
Input Voltage  
Voltage  
VI  
-20  
20  
V
P_4.1.1  
Output Voltage  
Voltage  
VQ  
-20  
-20  
20  
20  
V
V
P_4.1.2  
P_4.1.3  
Input to Output Differential Voltage VI - VQ  
Sense Pin  
Voltage  
VSENSE  
VBYP  
VEN  
-20  
-0.6  
-20  
20  
0.6  
20  
V
V
V
P_4.1.4  
P_4.1.5  
P_4.1.6  
BYP Pin  
Voltage  
Enable Pin  
Voltage  
Temperatures  
Junction Temperature  
Storage Temperature  
ESD Susceptibility  
All Pins  
Tj  
-40  
-55  
150  
150  
°C  
°C  
P_4.1.7  
P_4.1.8  
Tstg  
VESD  
VESD  
-2  
-1  
2
1
kV  
kV  
HBM 2)  
CDM 3)  
P_4.1.9  
All Pins  
P_4.1.10  
1) Not subject to production testing, specified by design.  
2) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS001 (1.5 k, 100 pF)  
3) ESD susceptibility, Charged Device Model “CDM” according JEDEC JESD22-C101  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not  
designed for continuous repetitive operation.  
Data Sheet  
6
Rev. 1.1, 2015-01-15  
TLS203B0EJV50  
TLS203B0LDV50  
General Product Characteristics  
4.2  
Functional Range  
Table 2  
Functional Range  
Parameter  
Symbol  
Values  
Unit Note / Test Condition Number  
Min.  
5.5  
Typ.  
Max.  
20  
Input Voltage Range  
VI  
V
P_4.2.1  
P_4.2.2  
OutputCapacitor’sRequirements CQ  
3.3  
µF  
C
BYP = 0 nF 1)  
for Stability  
OutputCapacitor’sRequirements CQ  
6.8  
µF  
0 nF < CBYP 10 nF 1) P_4.2.3  
for Stability  
2)  
1)  
ESR  
ESR  
3
P_4.2.4  
P_4.2.5  
Operating Junction Temperature Tj  
1) for further details see corresponding graph.  
-40  
125  
°C  
2) CBYP = 0 nF, CQ 3.3 µF; please note that for cases where a bypass capacitor at BYP is used – depending on the actual  
applied capacitance of CQ and CBYP a minimum requirement for ESR of CQ may apply.  
Note:Within the functional or operating range, the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the Electrical Characteristics table.  
4.3  
Thermal Resistance  
Note:This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go  
to www.jedec.org.  
Table 3  
Thermal Resistance 1)  
Symbol  
Parameter  
Values  
Typ.  
Unit  
Note /  
Test Condition  
Number  
Min.  
Max.  
TLS203B0EJV50 (PG-DSO-8 Exposed Pad)  
Junction to Case  
RthJC  
RthJA  
RthJA  
RthJA  
7.0  
39  
K/W  
K/W  
K/W  
K/W  
P_4.3.1  
P_4.3.2  
P_4.3.3  
2)  
Junction to Ambient  
Junction to Ambient  
Junction to Ambient  
155  
66  
Footprint only 3)  
300 mm2 heatsink P_4.3.4  
area on PCB 3)  
Junction to Ambient  
RthJA  
52  
K/W  
600 mm2 heatsink P_4.3.5  
area on PCB 3)  
TLS203B0LDV50 (PG-TSON-10)  
Junction to Case  
RthJC  
RthJA  
RthJA  
RthJA  
6.4  
53  
K/W  
K/W  
K/W  
K/W  
P_4.3.6  
P_4.3.7  
P_4.3.8  
2)  
Junction to Ambient  
Junction to Ambient  
183  
69  
Footprint only 3)  
300 mm2 heatsink P_4.3.9  
area on PCB 3)  
Junction to Ambient  
Junction to Ambient  
RthJA  
57  
7
K/W  
600 mm2 heatsink P_4.3.10  
area on PCB 3)  
1) Not subject to production test, specified by design.  
Data Sheet  
Rev. 1.1, 2015-01-15  
TLS203B0EJV50  
TLS203B0LDV50  
General Product Characteristics  
2) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product  
(Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70 µm Cu, 2 x 35 µm Cu).  
Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.  
3) Specified RthJA value is according to JEDEC JESD 51-3 at natural convection on FR4 1s0p board; The Product  
(Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm3 board with 1 copper layer (1 x 70 µm Cu).  
Data Sheet  
8
Rev. 1.1, 2015-01-15  
TLS203B0EJV50  
TLS203B0LDV50  
Electrical Characteristics  
5
Electrical Characteristics  
Table 4  
Electrical Characteristics  
-40 °C < Tj < 125 °C; all voltages with respect to ground; positive current defined flowing out of pin; unless  
otherwise specified.  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Number  
Min.  
Max.  
2.3  
Minimum Operating Voltage 1)  
Minimum Operating Voltage  
Output Voltage 2)  
VI,min  
VQ  
1.8  
V
V
IQ = 300 mA  
P_5.0.1  
P_5.0.2  
Output Voltage  
4.875 5.00  
5.125  
1mA < IQ < 300 mA ;  
6 V < VI < 20 V  
Line Regulation  
Line Regulation  
VQ  
1
25  
mV  
VI = 5.5 V to 20 V ;  
IQ = 1 mA  
P_5.0.3  
Load Regulation  
Load Regulation  
VQ  
VQ  
8
22  
43  
mV  
mV  
TJ = 25 °C ; VI = 6.0 V ;  
IQ = 1 to 300 mA  
P_5.0.4  
P_5.0.5  
Load Regulation  
VI = 6.0 V ;  
IQ = 1 to 300 mA  
Dropout Voltage 3)  
Dropout Voltage  
VDR  
130  
190  
mV  
IQ = 10 mA ; VI = VQ,nom  
TJ = 25 °C  
;
;
P_5.0.6  
Dropout Voltage  
Dropout Voltage  
VDR  
VDR  
250  
220  
mV  
mV  
IQ = 10 mA ; VI = VQ,nom  
P_5.0.7  
P_5.0.8  
170  
IQ = 50 mA ; VI = VQ,nom  
TJ = 25 °C  
Dropout Voltage  
Dropout Voltage  
VDR  
VDR  
320  
240  
mV  
mV  
IQ = 50 mA ; VI = VQ,nom  
P_5.0.9  
200  
IQ = 100 mA ;  
P_5.0.10  
VI = VQ,nom ; TJ = 25 °C  
Dropout Voltage  
Dropout Voltage  
VDR  
VDR  
340  
320  
mV  
mV  
IQ = 100 mA ; VI = VQ,nom P_5.0.11  
290  
IQ = 300 mA ;  
P_5.0.12  
VI = VQ,nom ; TJ = 25 °C  
Dropout Voltage  
VDR  
410  
mV  
IQ = 300 mA ; VI = VQ,nom P_5.0.13  
Quiescent Current  
Quiescent Current  
(Active-Mode, EN-pin high)  
Iq  
Iq  
30  
60  
1
µA  
µA  
VI = VQ,nom  
IQ = 0 mA  
;
P_5.0.14  
P_5.0.15  
Quiescent Current  
(Off-Mode, EN-pin low)  
0.1  
VI = 6 V ; VEN = 0 V ;  
TJ = 25 °C  
GND Pin Current 4)  
GND Pin Current  
IGND  
IGND  
50  
100  
850  
µA  
µA  
VI = VQ,nom  
IQ = 1 mA  
;
P_5.0.16  
P_5.0.17  
GND Pin Current  
Data Sheet  
300  
VI = VQ,nom ;  
IQ = 50 mA  
9
Rev. 1.1, 2015-01-15  
TLS203B0EJV50  
TLS203B0LDV50  
Electrical Characteristics  
Table 4  
Electrical Characteristics (cont’d)  
-40 °C < Tj < 125 °C; all voltages with respect to ground; positive current defined flowing out of pin; unless  
otherwise specified.  
Parameter  
Symbol  
Values  
Typ.  
0.7  
Unit  
Note / Test Condition  
Number  
Min.  
Max.  
GND Pin Current  
GND Pin Current  
IGND  
IGND  
2.2  
mA  
mA  
VI = VQ,nom  
IQ = 100 mA  
VI = VQ,nom  
;
P_5.0.18  
P_5.0.19  
4
12  
;
IQ = 300 mA  
Enable  
Enable Threshold High  
Enable Threshold Low  
EN Pin Current 5)  
Vth,EN  
Vtl,EN  
IEN  
0.8  
0.65  
0.01  
1
2.0  
V
VQ = Off to On  
VQ = On to Off  
P_5.0.20  
P_5.0.21  
P_5.0.22  
P_5.0.23  
0.25  
V
µA  
µA  
V
V
EN = 0 V ; TJ = 25 °C  
EN = 20V ; TJ = 25 °C  
EN Pin Current 5)  
IEN  
Output Voltage Noise 6)  
Output Voltage Noise  
eno  
55  
µVRMS CQ = 10 µF ;  
BYP = 10 nF ;  
P_5.0.24  
C
IQ = 300 mA ;  
BW = 10 Hz to 100 kHz  
Output Voltage Noise  
eno  
44  
µVRMS CQ = 10 µF  
+250mresistorinseries;  
BYP = 10 nF ;  
P_5.0.25  
C
IQ = 300 mA ;  
BW = 10 Hz to 100 kHz  
Output Voltage Noise  
Output Voltage Noise  
eno  
42  
42  
µVRMS CQ = 22 µF  
BYP = 10 nF ;  
P_5.0.26  
P_5.0.27  
C
IQ = 300 mA ;  
BW = 10 Hz to 100 kHz  
eno  
µVRMS CQ = 22 µF  
+250mresistorinseries;  
BYP = 10 nF ;  
C
IQ = 300 mA ;  
BW = 10 Hz to 100 kHz  
Power Supply Ripple Rejection 6)  
Power Supply Ripple Rejection PSRR  
65  
dB  
VI - VQ = 1.5 V (avg) ;  
P_5.0.28  
V
RIPPLE = 0.5 Vpp ;  
fr = 120 Hz ; IQ = 300 mA  
Output Current Limitation  
Output Current Limit  
Output Current Limit  
IQ,limit  
IQ,limit  
320  
320  
mA  
mA  
VI = 7 V ; VQ = 0 V  
P_5.0.29  
P_5.0.30  
VI = VQ,nom + 1 V  
VQ = -0.1 V  
Input Reverse Leakage Current  
Input Reverse Leakage  
Reverse Output Current 7)  
Reverse Output Current  
Ileak,rev  
1
mA  
µA  
VI = -20 V ; VQ = 0 V  
P_5.0.31  
IReverse  
10  
20  
VQ = VQ,nom ; VI < VQ,nom ; P_5.0.32  
TJ = 25 °C  
Data Sheet  
10  
Rev. 1.1, 2015-01-15  
TLS203B0EJV50  
TLS203B0LDV50  
Electrical Characteristics  
1) This parameter defines the minimum input voltage for which the device is powered up and provides the maximum nominal  
output current of 300 mA. Under this minimum input voltage condition the TLS203B0 V50 starts to be in tracking mode and  
the output voltage will typically be in the range of around 1 V while providing the 300 mA.  
2) The operation conditions are limited by the maximum junction temperature. The regulated output voltage specification will  
only apply for conditions where the limit of the maximum junction temperature is fulfilled. It will therefore not apply for all  
possible combinations of input voltage and output current. When operating at maximum input voltage, the output current  
must be limited for thermal reasons. The same holds true when operating at maximum output current where the input  
voltage range must be limited for thermal reasons.  
3) The dropout voltage is the minimum input to output voltage differential needed to maintain regulation at a specified output  
current. In dropout, the output voltage will be equal to VI - VDR  
4) GND-pin current is tested with VI = VQ,nom and a current source load. This means that this parameter is tested while being  
in the dropout region. The GND pin current will in most cases decrease slightly at higher input voltages - please also refer  
to the corresponding typical performance graphs.  
5) The EN pin current flows into EN pin.  
6) Not subject to production test, specified by design.  
7) Reverse output current is tested with the I pin grounded and the Q pin forced to the rated output voltage. This current flows  
into the Q pin and out of the GND pin.  
Note:The listed characteristics are ensured over the operating range of the integrated circuit. Typical  
characteristics specified mean values expected over the production spread. If not otherwise specified,  
typical characteristics apply at TA = 25 °C and the given supply voltage.  
Data Sheet  
11  
Rev. 1.1, 2015-01-15  
TLS203B0EJV50  
TLS203B0LDV50  
Electrical Characteristics  
5.1  
Typical Performance Characteristics  
Dropout Voltage VDR versus  
Output Current IQ  
Guaranteed Dropout Voltage VDR versus  
Output Current IQ  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
Δ = Guaranteed Limits  
450  
400  
350  
300  
250  
200  
150  
100  
50  
Tj = −40 °C  
Tj = 25 °C  
Tj = 125 °C  
Tj 25 °C  
Tj 125 °C  
0
0
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
IQ [A]  
IQ [A]  
Dropout Voltage VDR versus  
Junction Temperature Tj  
Quiescent Current versus  
Junction Temperature Tj  
500  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
IQ = 10 mA  
450  
IQ = 50 mA  
IQ = 100 mA  
400  
IQ = 300 mA  
350  
300  
250  
200  
150  
100  
50  
VI = 6 V  
IQ = 0 mA .  
VEN = V  
I
0
0
−50  
0
50  
Tj [°C]  
100  
−50  
0
50  
Tj [°C]  
100  
Data Sheet  
12  
Rev. 1.1, 2015-01-15  
TLS203B0EJV50  
TLS203B0LDV50  
Electrical Characteristics  
Output Voltage VQ versus  
Junction Temperature TJ  
Quiescent Current Iq versus  
Input Voltage VI  
800  
700  
600  
500  
400  
300  
200  
100  
0
5.08  
5.06  
5.04  
5.02  
5
4.98  
4.96  
4.94  
VQ,nom = 5.0 V  
IQ,nom = 0 mA  
VEN = V  
I
Tj = 25 °C  
4.92  
IQ = 1 mA  
4.9  
−50  
0
50  
Tj [°C]  
100  
0
2
4
6
8
10  
VI [V]  
GND Pin Current IGND versus  
Input Voltage VI  
GND Pin Current IGND versus  
Input Voltage VI  
1600  
8
RLoad = 5.0 kΩ / IQ = 1 mA*  
RLoad = 100 Ω / IQ = 50 mA*  
RLoad = 50.0 Ω / IQ = 100 mA*  
RLoad = 16.7 Ω / IQ = 300 mA*  
1400  
1200  
1000  
800  
600  
400  
200  
0
7
6
5
4
3
2
1
0
[* for VQ = 5.0 V]  
Tj = 25°C  
[* for VQ = 5.0 V]  
Tj = 25°C  
0
2
4
6
8
10  
0
2
4
6
8
10  
VI [V]  
VI [V]  
Data Sheet  
13  
Rev. 1.1, 2015-01-15  
TLS203B0EJV50  
TLS203B0LDV50  
Electrical Characteristics  
GND Pin Current IGND versus  
Output Current IQ  
EN Pin Threshold (On-to-Off) versus  
Junction Temperature TJ  
1.2  
1
5
1 mA  
300 mA  
VI = 6 V  
Tj = 25 ° C  
4.5  
4
3.5  
3
0.8  
0.6  
0.4  
0.2  
0
2.5  
2
1.5  
1
0.5  
0
−50  
0
50  
Tj [°C]  
100  
0
50  
100  
150  
200  
250  
300  
IQ [mA]  
EN Pin Threshold (Off-to-On) versus  
EN Pin Input Current versus  
Junction Temperature TJ  
EN Pin Voltage VEN  
1.2  
1
1.4  
1.2  
1
Tj = 25 °C  
VI = 20 V  
1 mA  
300 mA  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
−50  
0
50  
Tj [°C]  
100  
0
5
10  
VEN [V]  
15  
20  
Data Sheet  
14  
Rev. 1.1, 2015-01-15  
TLS203B0EJV50  
TLS203B0LDV50  
Electrical Characteristics  
EN Pin Current versus  
Current Limit versus  
Junction Temperature TJ  
Input Voltage VI  
1.6  
1.4  
1.2  
1
1
VQ = 0 V  
VEN = 20 V  
T = 25 ° C  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
j
0.8  
0.6  
0.4  
0.2  
0
−50  
0
50  
Tj [°C]  
100  
0
1
2
3
4
5
6
7
VI [V]  
Current Limit versus  
Reverse Output Current versus  
Junction Temperature TJ  
Output Voltage VQ  
1.2  
1
90  
VQ.nom = 5.0 V (V50)  
VI = 7 V  
VQ = 0 V  
80  
70  
VI = 0 V  
Tj = 25 °C  
0.8  
0.6  
0.4  
0.2  
0
60  
50  
40  
30  
20  
10  
0
−50  
0
50  
Tj [°C]  
100  
0
2
4
6
8
10  
VQ [V]  
Data Sheet  
15  
Rev. 1.1, 2015-01-15  
TLS203B0EJV50  
TLS203B0LDV50  
Electrical Characteristics  
Reverse Output Current versus  
Minimum Input Voltage 1) versus  
Junction Temperature TJ  
Junction Temperature TJ  
22  
2.5  
VQ.nom = 5.0 V (V50)  
20  
18  
2
1.5  
1
VI = 0 V  
16  
14  
12  
10  
8
6
0.5  
0
4
IQ = 1 mA  
2
IQ = 300 mA  
0
−50  
0
50  
Tj [°C]  
100  
−50  
0
50  
Tj [°C]  
100  
Load Regulation versus  
Junction Temperature TJ  
5
V50: V = 6.0 V; VQ.nom = 5.0 V  
I
0
−5  
−10  
−15  
−20  
−25  
ΔILoad = 1 mA to 300 mA  
−50  
0
50  
Tj [°C]  
100  
1) VI,min is referred here as the minimum input voltage for which the requested current is provided and VQ reaches 1 V.  
Data Sheet  
16  
Rev. 1.1, 2015-01-15  
TLS203B0EJV50  
TLS203B0LDV50  
Electrical Characteristics  
ESR Stability versus  
ESR(CQ) with CBYP = 10 nF versus  
Output Current IQ (for CQ = 3.3 µF)  
Output Capacitance CQ  
3
2.5  
2
101  
CByp = 10 nF  
measurement limit  
ESRmax CByp = 0 nF  
100  
stable region above blue line  
ESRmin CByp = 0 nF  
ESRmax CByp = 10 nF  
ESRmin CByp = 10 nF  
1.5  
1
CQ = 3.3 µF  
(0.06 Ω is measurement limit)  
0.5  
0
10−1  
0
50  
100  
150  
200  
250  
300  
2
3
4
5
6
7
IQ [mA]  
CQ [µF]  
Input Ripple Rejection PSRR versus  
Input Ripple Rejection PSRR versus  
Frequency f  
Junction Temperature TJ  
100  
72  
70  
68  
66  
64  
62  
VI = VQnom + 1.5 V  
Vripple = 0.5 Vpp  
CQ = 10 µF  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
60  
VI = VQnom + 1.5 V  
Vripple = 0.5 Vpp  
fripple = 120 Hz  
CQ = 10 µF  
58  
56  
54  
52  
IQ =300mA CBYP =0 nF  
IQ =300mA CBYP =10nF  
IQ =50mA CBYP =0 nF  
IQ =50mA CBYP =10nF  
IQ = 300mA; CBYP = 0 nF  
IQ = 300mA; CBYP = 10nF  
50  
Tj [°C]  
10  
100  
1k  
10k  
100k  
−50  
0
100  
f [Hz]  
Data Sheet  
17  
Rev. 1.1, 2015-01-15  
TLS203B0EJV50  
TLS203B0LDV50  
Electrical Characteristics  
Output Noise Spectral Density versus  
Output Noise Spectral Density versus  
Frequency f (CQ = 10 µF, IQ = 50 mA)  
Frequency f (CQ = 22 µF, IQ = 50 mA)  
101  
101  
CQ = 10 µF  
IQ = 50 mA  
CQ = 22 µF  
IQ = 50 mA  
100  
100  
10−1  
10−1  
CByp = 0 nF; ESR(CQ)=0  
CByp = 10 nF; ESR(CQ)=0  
CByp = 0 nF; ESR(CQ)=0  
CByp = 10 nF; ESR(CQ)=0  
CByp = 10 nF; ESR(CQ)=250mΩ  
CByp = 10 nF; ESR(CQ)=250mΩ  
10−2  
101  
10−2  
101  
102  
103  
f [Hz]  
104  
105  
102  
103  
f [Hz]  
104  
105  
Transient Response CBYP= 0 nF  
Transient Response CBYP= 10 nF  
0,3  
0,15  
CQ = 10 µF  
CQ = 10 µF  
CBYP  
VI  
=
=
0 nF  
6V  
CBYP = 10 nF  
0,2  
0,1  
0
0,1  
VI  
=
6V  
0,05  
0
-0,1  
-0,2  
-0,3  
-0,05  
-0,1  
-0,15  
0
100  
200  
300  
400  
500  
Time (μs)  
600  
700  
800  
900  
1000  
0
20  
40  
60  
80  
100  
Time / [μs]  
120  
140  
160  
180  
200  
400  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
IQ : 100 to 300mA  
IQ : 100 to 300mA  
0
0
0
100  
200  
300  
400  
500  
Time (μs)  
600  
700  
800  
900  
1000  
0
20  
40  
60  
80  
100  
Time / [μs]  
120  
140  
160  
180  
200  
Data Sheet  
18  
Rev. 1.1, 2015-01-15  
TLS203B0EJV50  
TLS203B0LDV50  
Application Information  
6
Application Information  
Note:The following information is given as a hint for the implementation of the device only and shall not be  
regarded as a description or warranty of a certain functionality, condition or quality of the device.  
TLS203B0  
VI  
VQ  
I
Q
CI  
SENSE  
RLoad  
CQ  
CBYP  
1µF  
10nF  
10µF  
EN  
BYP  
GND  
GND  
Typical Application Circuit TLS203B0 V50  
Figure 4  
Note:This is a very simplified example of an application circuit. The function must be verified in the real  
application. 1) 2)  
The TLS203B0 V50 is a 300 mA low dropout regulator with very low quiescent current and Enable-functionality.  
The device is capable of supplying 300 mA at a dropout voltage of 290 mV. Output voltage noise numbers down  
to 42 µVRMS can be achieved over a 10 Hz to 100 kHz bandwidth with the addition of a 10 nF reference bypass  
capacitor. The usage of a reference bypass capacitor will additionally improve transient response of the regulator,  
lowering the settling time for transient load conditions. The device has a low operating quiescent current of typical  
30 µA that drops to less than 1 µA in shutdown (EN-pin pulled to low level). The device also incorporates several  
protection features which makes it ideal for battery-powered systems. It is protected against both reverse input  
and reverse output voltages.  
6.1  
Kelvin Sense Connection  
The SENSE pin of the TLS203B0 V50 is the input to the error amplifier. An optimum regulation will be obtained at  
the point where the SENSE pin is connected to the output pin Q of the regulator. In critical applications however  
small voltage drops may be caused by the resistance Rp of the PC-traces and thus may lower the resulting voltage  
at the load. This effect may be eliminated by connecting the SENSE pin to the output as close as possible at the  
load (see Figure 5). Please note that the voltage drop across the external PC trace will add up to the dropout  
voltage of the regulator.  
1) Please note that in case a non-negligible inductance at the input pin I is present, e.g. due to long cables, traces, parasitics,  
etc, a bigger input capacitor CI may be required to filter its influence. As a rule of thumb if the I pin is more than six inches  
away from the main input filter capacitor an input capacitor value of CI = 10 µF is recommended.  
2) For specific needs a small optional resistor may be placed in series to very low ESR output capacitors CQ for enhanced  
noise performance (for details please see “Bypass Capacitance and Low Noise Performance” on Page 20).  
Data Sheet  
19  
Rev. 1.1, 2015-01-15  
TLS203B0EJV50  
TLS203B0LDV50  
Application Information  
TLS203B0  
RP  
I
Q
VI  
CI  
SENSE  
RLoad  
CQ  
EN  
BYP  
GND  
RP  
Figure 5  
Kelvin Sense Connection  
6.2  
Bypass Capacitance and Low Noise Performance  
The TLS203B0 V50 regulator may be used in combination with a bypass capacitor connecting the output pin Q to  
the BYP pin in order to minimize output voltage noise1). This capacitor will bypass the reference of the regulator,  
providing a low frequency noise pole. The noise pole provided by such a bypass capacitor will lower the output  
voltage noise in the considered bandwidth. Actual numbers of the output voltage noise of the TLS203B0 V50 will  
- next to the bypass capacitor itself - be dependent on the capacitance of the applied output capacitor CQ and its  
ESR: In case of applying a bypass capacitor of 10 nF in combination with a (low ESR) ceramic CQ of 10 µF output  
voltage noise numbers will be in the range of typical 55 µVRMS. This output noise level can be reduced to typical  
44 µVRMS under the same conditions by adding a small resistor of ~250 min series to the 10 µF ceramic output  
capacitor acting as additional ESR. A reduction of the output voltage noise can also be achieved by increasing  
capacitance of the output capacitor. For CQ = 22 µF (ceramic low ESR) the output voltage noise will be typically  
around 42 µVRMS. For output capacitor values of 22 µF or bigger adding resistance in series to CQ does not further  
lower output noise numbers significantly anymore. For further details please also see “Output Voltage Noise”  
on Page 10,, of the Electrical Characteristics. Please note that next to reducing the output voltage noise level the  
usage of a bypass capacitor has the additional benefit of improving transient response which will be also explained  
in the next chapter. However one needs to take into consideration that on the other hand the regulator start-up  
time is proportional to the size of the bypass capacitor and slows down to values around 15 ms when using a 10 nF  
bypass capacitor in combination with a 10 µF CQ output capacitor.  
6.3  
Output Capacitance and Transient Response  
The TLS203B0 V50 is designed to be stable with a wide range of output capacitors. The ESR of the output  
capacitor is an essential parameter with regard to stability, most notably with small capacitors. A minimum output  
capacitor of 3.3 µF with an ESR of 3 or less is recommended to prevent oscillations. Like in general for LDO’s  
the output transient response of the TLS203B0 V50 will be a function of the output capacitance. Larger values of  
output capacitance decrease peak deviations and thus improve transient response for larger load current  
changes. Bypass capacitors, used to decouple individual components powered by the TLS203B0 V50 will  
increase the effective output capacitor value. Please note that with the usage of bypass capacitors for low noise  
operation either larger values of output capacitors may be needed or a minimum ESR requirement of CQ may have  
to be considered (see also typical performance graph “ESR(CQ) with CBYP = 10 nF versus Output Capacitance  
1) a good quality low leakage capacitor is recommended.  
Data Sheet  
20  
Rev. 1.1, 2015-01-15  
TLS203B0EJV50  
TLS203B0LDV50  
Application Information  
CQ” on Page 17 as example). In conjunction with the usage of a 10 nF bypass capacitor an output capacitor CQ ≥  
6.8 µF is recommended. The benefit of a bypass capacitor to the transient response performance is impressive  
and illustrated as one example in Figure 6 where the transient response of the TLS203B0 V50 to one and the  
same load step from 100 mA to 300 mA is shown with and without a 10 nF bypass capacitor: for the given  
configuration of CQ = 10 µF with no bypass capacitor the load step will settle in the range of less than 200 µs while  
for CQ = 10 µF in conjunction with a 10 nF bypass capacitor the same load step will settle in the range of 20 µs.  
Due to the shorter reaction time of the regulator by adding the bypass capacitor not only the settling time improves  
but also output voltage deviations due to load steps are sharply reduced.  
0,3  
C_BYP = 0nF  
C_BYP = 10nF  
CQ = 10 µF  
BYP = 0 vs 10nF  
VI = 6 V  
C
0,2  
0,1  
0
-0,1  
-0,2  
-0,3  
0
100  
200  
300  
400  
500  
Time (μs)  
600  
700  
800  
900  
1000  
Figure 6  
Influence of CBYP: example of transient response to one and the same load step with and  
without CBYP of 10 nF (IQ: 100 mA to 300 mA)  
6.4  
Protection Features  
The TLS203B0 V50 regulators incorporate several protection features which make them ideal for use in battery-  
powered circuits. In addition to normal protection features associated with monolithic regulators like current limiting  
and thermal limiting the device is protected against reverse input voltage, reverse output voltage and reverse  
voltages from output to input.  
Current limit protection and thermal overload protection are intended to protect the device against current overload  
conditions at the output of the device. For normal operation the junction temperature must not exceed 125 °C.  
The input of the device will withstand reverse voltages of 20 V. Current flowing into the device will be limited to  
less than 1 mA (typically less than 100 µA) and no negative voltage will appear at the output. The device will  
protect both itself and the load. This provides protection against batteries being plugged backwards.  
The output of the TLS203B0 V50 can be pulled below ground without damaging the device. If the input is left open-  
circuit or grounded, the output can be pulled below ground by 20 V. Under such conditions the output of the device  
by itself behaves like an open circuit with practically no current flowing out of the pin 1). In more application relevant  
cases however where the output is connected to the SENSE pin there will be a small current of typically less than  
100 µA present from this origin. If the input is powered by a voltage source the output will source the short circuit  
current of the device and will protect itself by thermal limiting. In this case grounding the EN pin will turn off the  
device and stop the output from sourcing the short-circuit current.  
In circuits where a backup battery is required, several different input/output conditions can occur. The output  
voltage may be held up while the input is either pulled to ground, pulled to some intermediate voltage or is left  
open-circuit. Current flow back into the output will follow the curve as shown in Figure 7 below.  
1) typically < 1 µA for the mentioned conditions, VQ being pulled below ground with other pins either grounded or open.  
Data Sheet  
21  
Rev. 1.1, 2015-01-15  
TLS203B0EJV50  
TLS203B0LDV50  
Application Information  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VQ.nom = 5.0 V (V50)  
VI = 0 V  
Tj = 25 °C  
0
2
4
6
8
10  
VQ [V]  
Figure 7  
Reverse Output Current  
Data Sheet  
22  
Rev. 1.1, 2015-01-15  
TLS203B0EJV50  
TLS203B0LDV50  
Package Outlines  
7
Package Outlines  
0.35 x 45˚  
1)  
±0.1  
3.9  
0.1 C D 2x  
+0.06  
9
0.1  
0.08  
Seating Plane  
C
C
0.64±0.25  
±0.2  
0.2  
1.27  
2)  
M
±0.09  
0.41  
D 8x  
6
M
0.2  
C A-B D 8x  
D
Bottom View  
±0.2  
3
A
1
4
8
5
1
4
8
5
B
0.1 C A-B 2x  
1)  
±0.1  
4.9  
Index Marking  
1) Does not include plastic or metal protrusion of 0.15 max. per side  
2) Dambar protrusion shall be maximum 0.1 mm total in excess of lead width  
3) JEDEC reference MS-012 variation BA  
PG-DSO-8-27-PO V01  
Figure 8  
PG-DSO-8 Exposed Pad package outlines  
±0.1  
2.58  
±0.1  
0.1  
±0.1  
±0.1  
±0.1  
3.3  
0.36  
0.53  
0.05  
Z
Pin 1 Marking  
±0.1  
0.5  
Pin 1 Marking  
±0.1  
0.25  
PG-TSON-10-2-PO V02  
Z (4:1)  
0.07 MIN.  
Figure 9  
PG-TSON-10 Package Outlines  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with  
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e  
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further information on alternative packages, please visit our website:  
http://www.infineon.com/packages.  
Dimensions in mm  
Data Sheet  
23  
Rev. 1.1, 2015-01-15  
TLS203B0EJV50  
TLS203B0LDV50  
Revision History  
8
Revision History  
Revision  
Date  
Changes  
Data Sheet - Revision 1.1:  
1.1  
2015-01-15  
PG-TSON-10 package variant added: Product Overview, Pin Configuration,  
Thermal Resistance, etc - wording and description added / updated  
accordingly.  
Editorial changes.  
1.0  
2014-06-30  
Data Sheet - Initial Release  
Data Sheet  
24  
Rev. 1.1, 2015-01-15  
Edition 2015-01-15  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2015 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  

相关型号:

TLS203B0EJV

Adjustable Positive LDO Regulator, 1.22V Min, 20V Max, 0.4V Dropout, PDSO8, GREEN, PLASTIC, MS-012BA, DSO-8
INFINEON

TLS203B0EJV33

Fixed Positive LDO Regulator
INFINEON

TLS203B0EJV33XUMA1

Fixed Positive LDO Regulator, 3.3V, 0.4V Dropout, PDSO8, DS0-8
INFINEON

TLS203B0EJV50

Fixed Positive LDO Regulator,
INFINEON

TLS203B0EJV50XUMA1

Fixed Positive LDO Regulator, 5V, 0.41V Dropout, PDSO8, DSO-8
INFINEON

TLS203B0EJVXUMA1

Adjustable Positive LDO Regulator, 1.22V Min, 20V Max, 0.4V Dropout, PDSO8, GREEN, PLASTIC, MS-012BA, DSO-8
INFINEON

TLS203B0LD V33

TLS203B0 V33 是一款微功耗、低噪声、低压差的调节器。该器件能够实现 300 mA 的输出电流,270 mV 的压差。专为电池供电系统设计,30 μA 的低静态电流使其成为理想的选择。
INFINEON

TLS203B0LDV

Linear Voltage Post Regulator
INFINEON

TLS203B0LDV33

Linear Voltage Post Regulator
INFINEON

TLS203B0LDV33XUMA1

Fixed Positive LDO Regulator, 3.3V, 0.4V Dropout, PDSO10, GREEN, PLASTIC, TSON-10
INFINEON

TLS203B0LDV50

Fixed Positive LDO Regulator,
INFINEON

TLS203B0LDV50XUMA1

Fixed Positive LDO Regulator, 5V, 0.41V Dropout, PDSO10, TSON-10
INFINEON