TLS4125D0EPV [INFINEON]

OPTIREG™开关TLS4125D0EPV是一款同步降压型DC-DC转换器,专为汽车应用而设计。该器件的电流能力为2.5 A,输出电压可调,  PWM模式下的反馈电压精度为+/- 1.5%。器件集成功率级、软启动和补偿功能,从而减少所需的外部组件数量,进而降低了系统成本并节省板空间。宽输入电压范围(3.7 V – 35V)和100%占空比运行模式使该器件适用汽车应用的电池启动场景。器件的宽开关频率范围使得可以选用适当的电感和电容。开关频率可以与外部时钟信号同步。在PWM模式下,可以启动扩频调频功能来改善电磁干扰。在轻负载时,器件在PFM模式下工作,电流消耗低,从而提高了效率。在停用模式下, 电流消耗降低到典型值1μA。TLS4125D0EPV能够检测输出电压的欠压或过压,并通过复位输出信号来反映。过流和过载保护可以避免出现过电流,从而在降压转换器输出端发生短路时保护器件。此外,集成的热关断功能还可以防止器件过热。增强裸露焊盘的PG-TSDSO-14封装能够提升器件热性能。;
TLS4125D0EPV
型号: TLS4125D0EPV
厂家: Infineon    Infineon
描述:

OPTIREG™开关TLS4125D0EPV是一款同步降压型DC-DC转换器,专为汽车应用而设计。该器件的电流能力为2.5 A,输出电压可调,  PWM模式下的反馈电压精度为+/- 1.5%。器件集成功率级、软启动和补偿功能,从而减少所需的外部组件数量,进而降低了系统成本并节省板空间。宽输入电压范围(3.7 V – 35V)和100%占空比运行模式使该器件适用汽车应用的电池启动场景。器件的宽开关频率范围使得可以选用适当的电感和电容。开关频率可以与外部时钟信号同步。在PWM模式下,可以启动扩频调频功能来改善电磁干扰。在轻负载时,器件在PFM模式下工作,电流消耗低,从而提高了效率。在停用模式下, 电流消耗降低到典型值1μA。TLS4125D0EPV能够检测输出电压的欠压或过压,并通过复位输出信号来反映。过流和过载保护可以避免出现过电流,从而在降压转换器输出端发生短路时保护器件。此外,集成的热关断功能还可以防止器件过热。增强裸露焊盘的PG-TSDSO-14封装能够提升器件热性能。

时钟 电池 开关 DC-DC转换器 软启动 过载保护
文件: 总43页 (文件大小:6078K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Features  
2.5 A step down regulator  
Input voltage from 3.7 V to 35 V  
Adjustable output voltage 3.0 V to 10.0 V  
±1.5% feedback voltage accuracy in PWM mode  
Ultra low current consumption 31 µA  
Integrated high side and low side power MOSFETs  
Peak current mode PWM regulation  
Light load PFM mode with improved efficiency  
Switching frequency range: 320 kHz to 560 kHz or 1.6 MHz to 2.8 MHz  
100% duty cycle operation  
Synchronization input  
Spread spectrum frequency modulation for improved EMI performance  
Soꢀ-start function  
Integrated compensation network  
Output discharge function in disabled state  
Ultra low current consumption in disabled state (typically 1 µA)  
Undervoltage monitoring  
Overvoltage monitoring  
Overcurrent protection and overload protection  
Input undervoltage shutdown  
Wide temperature range Tj = -40°C to 150°C  
Green Product (RoHS compliant)  
Potential applications  
Body  
ADAS  
Infotainment, telematics  
Navigation  
Product validation  
Qualified for automotive applications. Product validation according to AEC-Q100.  
Datasheet  
Please read the Important Notice and Warnings at the end of this document  
Rev. 1.02  
www.infineon.com/OPTIREG-switcher  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Description  
Description  
The OPTIREGswitcher TLS4125D0EPV is a 2.8 MHz synchronous step down regulator especially designed  
for automotive applications. The device has a current capability of 2.5 A, adjustable output voltage and  
a feedback voltage accuracy of ±1.5% in PWM mode. The integrated power stages, soꢀ-start feature and  
integrated compensation network reduce the required amount of external components and thus system costs  
and board space. The wide input voltage range and a 100% duty cycle operation mode make the device  
suitable for battery cranking scenarios in automotive applications. The wide switching frequency range allows  
the selection of appropriate coils and capacitors. The switching frequency can be synchronized to an external  
clock signal. Spread spectrum frequency modulation can be activated to improve the EMI performance in PWM  
operation. The device offers low current consumption in PFM mode at light loads to optimize efficiency. The  
TLS4125D0EPV can detect undervoltage and overvoltage conditions of the output voltage and indicates this  
with the reset output signal. Overcurrent and overload protections avoid excessive current to protect the device  
during short circuit conditions at the buck converter output. The integrated thermal shutdown feature protects  
the device from overheating. The enhanced PG-TSDSO-14 exposed pad package offers advantageous thermal  
performance in the application.  
Type  
Package  
Marking  
TLS4125D0EPV  
PG-TSDSO-14  
4125D0V  
Datasheet  
2
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Table of contents  
Table of contents  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2  
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
1
2
2.1  
2.2  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Pin definitions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3.1  
3.2  
3.3  
4
4.1  
Buck regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Functional description buck regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Regulation loop and operation modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
PWM (Pulse Width Modulation) mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
PFM (Pulse Frequency Modulation) mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Continuous conduction mode and discontinuous conduction mode . . . . . . . . . . . . . . . . . . . . .12  
High duty cycle operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Power-up and power-down control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Startup procedure with soꢀ-start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Active output discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Protection features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Overcurrent protection and overload protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Input undervoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Overtemperature protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Electrical characteristics buck regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Typical performance characteristics buck regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.1.1  
4.1.1.1  
4.1.1.2  
4.1.1.3  
4.1.1.4  
4.1.2  
4.1.2.1  
4.1.2.2  
4.1.3  
4.1.3.1  
4.1.3.2  
4.1.3.3  
4.2  
4.3  
5
5.1  
5.1.1  
5.1.2  
5.2  
Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Functional description oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Synchronization input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Spread spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Electrical characteristics oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Typical performance characteristics oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
5.3  
6
Current consumption and enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Datasheet  
3
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Table of contents  
6.1  
6.2  
6.3  
Functional description current consumption and enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Electrical characteristics current consumption and enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Typical performance characteristics current consumption and enable . . . . . . . . . . . . . . . . . . . . . . . 32  
7
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Functional description reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Electrical characteristics reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Typical performance characteristics reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
7.1  
7.2  
7.3  
8
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Output voltage adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Feedforward capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Additional information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
8.1  
8.2  
8.3  
8.4  
9
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Datasheet  
4
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Block diagram  
1
Block diagram  
VS  
VS  
EN  
Enable  
UVLO  
Internal  
supply  
Over-  
temperature  
shutdown  
Bandgap  
reference  
FREQ  
SW  
Control loop  
+ driver  
Oscillator  
SYNC  
SSON  
PGND  
FB  
Spread  
spectrum  
Soft-start  
ramp  
generator  
RO  
RT  
Reset  
AGND  
Figure 1  
Block diagram  
Datasheet  
5
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Pin configuration  
2
Pin configuration  
2.1  
Pin assignment  
TSDSO-14  
FB  
FREQ  
SYNC  
RO  
AGND  
EN  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
RT  
SSON  
SW  
SW  
PGND  
PGND  
VS  
VS  
8
Figure 2  
Pin configuration  
2.2  
Pin definitions and functions  
Pin  
Symbol Function  
1
FREQ  
Frequency selection input:  
Connect this pin to GND via resistor for frequency selection.  
Leave this pin open to set the default high switching frequency.  
Connect this pin to GND to set the default low switching frequency.  
2
3
SYNC  
RO  
Synchronization input:  
Connect this pin to external clock to synchronize the switching frequency.  
If this pin is not used, then connect it to GND.  
Reset output:  
Open drain reset output. Provides the reset output signal.  
If the reset feature is used, then connect this pin via external resistor to VCC or to an external  
pull-up voltage.  
If the reset feature is not used, then leave this pin open.  
4
5
AGND  
EN  
Analog ground:  
Connect this pin to GND using a low inductive, broad PCB trace.  
Enable input:  
This pin has an integrated pull-down resistor.  
"High" enables the device.  
"Low" disables the device.  
6, 7  
8, 9  
VS  
Supply voltage input:  
Connect this pin to supply voltage.  
Short pins 6 and 7 at the PCB.  
PGND  
Power ground:  
Connect this pin directly to GND using a low inductive, broad PCB trace.  
Short pins 8 and 9 at the PCB.  
10, 11 SW  
Regulator switch node:  
Datasheet  
6
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Pin configuration  
Pin  
Symbol Function  
Connect this pin to the buck converter power inductor.  
Short pins 10 and 11 at the PCB.  
12  
SSON  
Spread spectrum enable input:  
This pin has an integrated pull-down resistor.  
"High" enables spread spectrum.  
"Low" disables spread spectrum.  
13  
RT  
Reset configuration input:  
Connect this pin via a resistor to GND to adjust the reset delay time and the reset  
undervoltage threshold.  
Connect this pin to GND, if the reset function is not needed or to configure the default reset  
delay time and default undervoltage reset threshold.  
14  
FB  
Feedback input:  
Feedback input to the regulator. Connect this pin to the feedback resistor divider tap (see  
Output voltage adjustment).  
Exposed Connect the exposed pad to a heatsink area and to GND with low inductive and broad PCB  
pad trace.  
Datasheet  
7
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
General product characteristics  
3
General product characteristics  
3.1  
Absolute maximum ratings  
Table 1  
Absolute maximum ratings1)  
Tj = -40°C to 150°C; all voltages with respect to ground (unless otherwise specified)  
Parameter  
Symbol  
Values  
Min. Typ.  
Unit Note or  
condition  
Number  
Max.  
Voltages  
Enable input  
Enable input  
VEN  
-20  
-20  
35  
42  
V
V
P_3.1.1  
P_3.1.2  
VEN,dyn  
2) Transients  
present on this  
pin  
Synchronization input  
Spread spectrum enable input  
Frequency selection  
Reset output  
VSYNC  
VSSON  
VFREQ  
VRO  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
6
6
6
6
6
V
V
V
V
V
V
V
P_3.1.3  
P_3.1.4  
P_3.1.5  
P_3.1.6  
P_3.1.7  
P_3.1.8  
P_3.1.9  
Reset configuration  
Feedback input  
VRT  
VFB  
1.5  
Buck switch output  
VSW  
VVS + 0.3  
Minimum -2.0 V  
in transient  
condition (single  
event < 15 ns)  
Supply voltage input  
Supply voltage input  
VVS  
-0.3  
-0.3  
35  
42  
V
V
P_3.1.10  
P_3.1.11  
VVS,dyn  
2) Transients  
present on this  
pin  
Power GND  
VPGND  
VAGND  
-0.3  
-0.3  
0.3  
0.3  
V
V
P_3.1.12  
P_3.1.13  
Analog GND  
Temperatures  
Junction temperature  
Storage temperature  
ESD susceptibility  
ESD susceptibility to GND  
ESD susceptibility to GND  
Tj  
-40  
-55  
150  
150  
°C  
°C  
P_3.1.14  
P_3.1.15  
Tstg  
VESD,HBM -2  
2
kV  
V
3) HBM  
4) CDM  
P_3.1.16  
P_3.1.17  
VESD,CDM -500  
500  
1
Not subject to production test, specified by design.  
Transients between 35 V and 42 V can be tolerated for a total lifetime duration shorter than 48 s.  
ESD susceptibility, Human Body Model (HBM) according to ANSI/ESDA/JEDEC JS-001 (1.5 kΩ, 100 pF).  
ESD susceptibility, Charged Device Model (CDM) according to JEDEC JESD22-C101.  
2
3
4
Datasheet  
8
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
General product characteristics  
Table 1  
Absolute maximum ratings1) (continued)  
Tj = -40°C to 150°C; all voltages with respect to ground (unless otherwise specified)  
Parameter  
Symbol  
Values  
Min. Typ.  
Unit Note or  
condition  
Number  
Max.  
750  
ESD susceptibility corner pins 1, 7, 8, VESD,CDM,C -750  
V
4) CDM  
P_3.1.18  
14 to GND  
Notes:  
1.  
Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods of time may affect device reliability.  
Integrated protection functions are designed to prevent IC destruction under fault conditions described in  
the data sheet. Fault conditions are considered as outside the normal operating range. Protection functions  
are not designed for continuous repetitive operation.  
2.  
3.2  
Functional range  
Table 2  
Functional range  
Tj = -40°C to 150°C; all voltages with respect to ground (unless otherwise specified)  
Parameter  
Symbol  
Values  
Min. Typ.  
Unit Note or condition  
Number  
Max.  
Supply voltage decreasing  
VVS,dec  
3.7  
35  
V
V
5) Minimum value  
represents low  
battery voltage  
P_3.2.1  
condition (cranking)  
Supply voltage increasing  
VVS,inc  
6.0  
35  
Minimum value  
represents startup  
condition  
P_3.2.2  
Enable input  
VEN  
VCC  
0
35  
10  
V
P_3.2.3  
P_3.2.6  
P_3.2.9  
P_3.2.12  
P_3.2.13  
P_3.2.15  
Output voltage adjust range  
SYNC input voltage  
Reset output voltage  
Output current  
3.0  
0
V
VSYNC  
VRO,hi  
ICC  
5.2  
5.2  
2.5  
150  
V
6)  
0
V
0
A
°C  
Junction temperature  
Tj  
-40  
1
Not subject to production test, specified by design.  
ESD susceptibility, Charged Device Model (CDM) according to JEDEC JESD22-C101.  
With 3.7 V < VVS < 6 V, a reduced performance of parameter settings applies to feedback voltage accuracy,  
synchronization and the reset function.  
4
5
6
Allowed pull-up voltage applied via pull-up resistance to pin RO.  
Datasheet  
9
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
General product characteristics  
Note:  
Within the functional or operating range, the IC operates as described in the circuit description. The  
electrical characteristics are specified within the conditions given in the electrical characteristics  
table.  
3.3  
Thermal resistance  
Table 3  
Thermal resistance7)  
Parameter  
Symbol  
Values  
Unit Note or condition Number  
Min.  
Typ. Max.  
Junction to case  
RthJC  
8.6  
34  
K/W  
K/W 8) 2s2p  
K/W 9) 1s0p + 600 mm² P_3.3.3  
K/W 9) 1s0p + 300 mm² P_3.3.4  
K/W 9) 1s0p footprint  
P_3.3.1  
P_3.3.2  
Junction to ambient  
Junction to ambient  
Junction to ambient  
Junction to ambient  
RthJA,1  
RthJA,2  
RthJA,3  
RthJA,4  
45  
54  
116  
P_3.3.5  
Note:  
This thermal data was generated in accordance with JEDEC JESD51 standards. For more information  
visit www.jedec.org.  
7
Not subject to production test, specified by design.  
8
Specified RthJA value is according to JEDEC JESD51-2,-5,-7 at natural convection on FR4 2s2p board; the  
product (chip and package) was simulated on a 76.2 × 114.3 × 1.5 mm3 board with two inner copper layers  
(2 × 70 µm Cu, 2 × 35 µm Cu). Where applicable, a thermal via array next to the package contacted the first  
inner copper layer.  
Specified RthJA value is according to JEDEC JESD 51-3 at natural convection on FR4 1s0p board; the  
product (IC and package) was simulated on a 76.2 × 114.3 × 1.5 mm3 board with 1 copper layer (1 × 70 µm  
Cu).  
9
Datasheet  
10  
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Buck regulator  
4
Buck regulator  
4.1  
Functional description buck regulator  
The TLS4125D0EPV is a synchronous current mode step down (buck) regulator with selectable switching  
frequency fOSC. The device regulates the output voltage in pulse width modulation (PWM) or in pulse frequency  
modulation (PFM) mode and automatically moves between both modes on load change or input voltage  
change. At low input voltage conditions, for example during battery cranking, the device can operate at a duty  
cycle of 100%.  
4.1.1  
Regulation loop and operation modes  
Figure 3 shows the regulation loop. An external resistor divider is connected between VCC and AGND. The  
intermediate point VFB is connected to pin FB. The error amplifier processes the difference between scaled  
output feedback voltage and internal reference voltage to provide a reference current to the PWM comparator.  
The PWM comparator compares that reference current to a scaled version of the inductor current to determine  
the PWM duty cycle that is required for stable output voltage regulation. In PFM mode the error amplifier output  
signal also serves to modulate the switching frequency.  
The control logic supervises the handover between operation modes and triggers the drivers of high side PMOS  
power stage and the low side NMOS power stage accordingly. For the modes of PWM, PFM and 100% duty cycle  
operation see PWM (Pulse Width Modulation) mode, PFM (Pulse Frequency Modulation) mode, Continuous  
conduction mode and discontinuous conduction mode and High duty cycle operation respectively.  
VS  
VCC  
Current  
sense  
Internal  
comp.  
R1  
R2  
FB  
Error  
amp.  
LOUT  
VCC  
Control  
logic  
SW  
PWM  
comp.  
Soft-  
start  
Voltage  
reference  
GND  
COUT  
Slope  
compensation  
Oscillator  
Clock  
PGND  
Clock  
manager  
GND  
SYNC  
AGND  
Figure 3  
Functional block diagram buck regulator  
4.1.1.1  
PWM (Pulse Width Modulation) mode  
At high load the TLS4125D0EPV operates with the configured switching frequency fOSC in PWM mode. In PWM  
mode the device modulates the duty cycle to achieve a regulated output voltage. The nominal switching  
frequency can be set using one of the following methods, see Oscillator:  
by an external resistor connected at pin FREQ  
from a synchronization signal applied at the SYNC pin  
The pulse width modulation is based on peak current mode detection to achieve a fast reaction time and  
an optimized feedback accuracy. The PWM comparator processes the current signal detected at the high  
Datasheet  
11  
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Buck regulator  
side power stage as well as the current signals of the slope compensation and the error amplifier to adjust  
the switching duty cycle to regulate the output voltage accordingly. With a duty cycle above 50% the slope  
compensation ensures system stability. This is achieved by avoidance of subharmonic oscillations of the output  
inductor current.  
Due to a current sense signal inaccuracy at the beginning of each high side switch conduction phase, a short  
blanking time is required to mask the output of the current sense before processing it. The blanking time  
defines the minimum allowed on-time ton,min of the high side PMOS power stage and therefore the point of  
transition from PWM to PFM operation.  
4.1.1.2  
PFM (Pulse Frequency Modulation) mode  
The device can operate at constant on-time ton,min of the high side PMOS power stage to achieve a stable output  
voltage at light load or high input voltage conditions. In PFM mode the device operates at a constant on-time  
and modulates the switching frequency to regulate the output voltage. The switching frequency is lower than  
in PWM mode. For further information about the PFM boundary condition and the frequency modulation  
depending on load and on input voltage, see Typical performance characteristics buck regulator.  
In PFM mode with light load the device offers optimized efficiency with reduced current consumption.  
4.1.1.3  
Continuous conduction mode and discontinuous conduction mode  
Continuous conduction mode (CCM)  
The device operates at a continuously rising or falling triangular positive inductor current. The on-time and the  
switching duty cycle mainly depend on the ratio of output voltage to input voltage.  
Boundary condition for CCM → DCM transition  
With a decrease of the load current during continuous conduction mode, the minimum valley inductor current  
can obtain approximately zero, which is the boundary condition for the discontinuous conduction mode.  
Further reduction of the load current leads to discontinuous conduction mode.  
Discontinuous conduction mode (DCM)  
The device turns off the low side power stage to avoid a negative inductor current. Further reduction of the load  
current reduces the on-time and leads to transition from PWM into PFM when obtaining the minimum on-time.  
IL  
High load  
PWM-CCM  
t
IL  
CCM-DCM  
boundary  
t
IL  
Medium-low load  
PWM-DCM  
t
IL  
Low load  
PFM-DCM  
t
Figure 4  
Typical example inductor current waveforms for CCM and DCM  
Datasheet  
12  
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Buck regulator  
4.1.1.4  
High duty cycle operation  
In 100% duty cycle mode the high side PMOS power stage constantly conducts current. If the input voltage is  
close to the nominal output voltage or lower, then the device enters this operation mode, see Figure 5.  
If the input voltage is decreased (for example during a battery cranking scenario) and the device moves from  
regulation to the 100% duty cycle mode, then the output voltage tracks the input voltage as accurate as  
possible down to an input voltage VVS of 3.7 V. During steady state operation, the difference of the output  
voltage and the tracked input voltage as well as the entry point into 100% duty cycle mainly depend on the  
voltage drop at the resistance Ron,hs of the high side PMOS power stage, which in turn depends on the load  
current ICC. Parasitic elements of external application circuitry and components, such as the output inductor  
series resistance, increase the voltage drop.  
At high duty cycles close to 100%, the loop might not propagate very short off-times and compensates this by  
skipping switching cycles to ensure a smooth transition to 100% duty cycle with a stable output voltage.  
Commonly, regulators with adjustable output voltage are more sensitive towards noise injected into the  
feedback path due to the external resistor divider. The current sense signal processing for accurate peak current  
detection may reach its resolution limit at high duty cycles close to 100% due to low peak to peak inductor  
currents. Therefore an optimized PCB layout and suitable external components are crucial to avoid irregular  
cycles of the switching frequency and to maintain a stable output voltage.  
VVS  
VCC  
VCC = VCC,nom  
Voltage  
t
t
100%  
Duty-  
cycle  
Regulation  
Tracking  
Regulation  
Figure 5  
Typical 100% duty cycle mode tracking behavior  
Datasheet  
13  
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Buck regulator  
4.1.2  
Power-up and power-down control  
The following features of the device control power up and power down, see Table 4 for electrical characteristics:  
Startup with soꢀ-start  
Active output discharge  
4.1.2.1  
Startup procedure with soꢀ-start  
The soꢀ-start function of the TLS4125D0EPV controls the ramp-up of the output voltage with defined timing  
tstart during startup, see Figure 6. If VVS > VVS,on, then a "high" signal VEN,hi at pin EN triggers the startup  
procedure. During startup the internal supply establishes a stable state and the device initializes the switching  
frequency and the reset function according to the configuration. The regulator then increases the output  
voltage Vcc by ramping up the internal voltage reference connected to the error amplifier.  
VVS  
VVS > VVS,on  
0 V  
t
VEN  
VEN,hi  
0 V  
t
VCC  
Initialization  
Soft-start  
VCC,nom  
95% of VCC,nom  
5% of VCC,nom  
0 V  
tinit  
tstart  
t
Figure 6  
Typical startup procedure  
4.1.2.2  
Active output discharge  
The active output discharge function of the TLS4125D0EPV controls the ramp-down of the output voltage  
during power down, see Figure 7. If the device detects a "low" signal VEN,lo at the EN pin, then it switches on the  
integrated discharge transistor connected to the SW pin in order to discharge the output capacitor COUT via the  
output inductor LOUT. The typical on-resistance Rdc of the discharge transistor is 55 Ω.  
VS  
LOUT  
VCC  
SW  
Discharge  
Internal  
supply  
current  
COUT  
Discharge  
transistor  
EN  
Discharge  
control  
GND  
GND  
Figure 7  
Active output discharge block diagram  
Datasheet  
14  
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Buck regulator  
4.1.3  
Protection features  
The device offers features that are designed to protect it from fault events such as overcurrent, overload, input  
undervoltage and overtemperature, see Table 4.  
4.1.3.1  
Overcurrent protection and overload protection  
If the sensed current through the high side PMOS power stage exceeds the buck peak overcurrent limit IBUOC  
aꢀer the blanking time of the current sense, then the device switches off the high side power stage for the  
remaining time of the current cycle. Active current limitation can decrease the output voltage level.  
If the sensed freewheeling current through the low side NMOS power stage exceeds the overload limit IBUOL  
,
then the device prevents the high side PMOS power stage from switching on in the subsequent clock cycles to  
avoid overheating. The overload threshold level is set to a higher value than the overcurrent threshold level.  
If an overload condition and an undervoltage condition occur for longer than 3 ms typically, then the device  
detects a short circuit at the output voltage node and shuts down. Aꢀer a waiting time of typically 1 s, the  
device restarts with a soꢀ-start.  
4.1.3.2  
Input undervoltage shutdown  
The device incorporates an undervoltage shutdown function. If the input voltage VVS drops below the input  
undervoltage shutdown threshold VVS,off, then the device shuts down.  
4.1.3.3  
Overtemperature protection  
The integrated overtemperature protection turns off the device in case of a too high junction temperature. The  
typical junction thermal shutdown temperature is 175°C. Aꢀer the device has cooled down by the amount of the  
typical junction temperature hysteresis 10 K and a subsequent waiting time of typically 1 s, the device restarts  
with a soꢀ-start to resume normal operation. The thermal shutdown is an integrated protection function to  
prevent the immediate destruction of the device during fault conditions. However, a junction temperature  
above 150°C is outside of the maximum ratings and reduces the lifetime of the device.  
Datasheet  
15  
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Buck regulator  
4.2  
Electrical characteristics buck regulator  
Table 4  
Electrical characteristics buck regulator  
VVS = 6 V to 35 V; Tj = -40°C to 150°C; all voltages with respect to ground (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or condition  
Number  
Min. Typ. Max.  
Feedback voltage accuracy  
Feedback voltage accuracy  
VFB,PWM -1.5  
VFB,PFM,1 -2  
+1.5  
+3.5  
%
%
V
6 V ≤ VVS ≤ 35 V;  
PWM mode  
P_4.2.1  
P_4.2.2  
P_4.2.5  
Feedback voltage accuracy  
6 V ≤ VVS ≤ 35 V;  
PFM mode  
Feedback voltage VFB  
VFB  
0.8  
MOSFETs  
High side MOSFET on-  
resistance  
Ron,hs  
Ron,ls  
120  
70  
240  
150  
mΩ ICC = 100 mA  
mΩ ICC = 100 mA  
P_4.2.7  
P_4.2.9  
Low side MOSFET on-  
resistance  
Regulation loop  
10)  
Maximum duty cycle  
Dmax  
100  
%
P_4.2.11  
P_4.2.12  
11)  
Minimum on-time,  
high frequency  
ton,min,hf  
78  
ns  
I
= 1.5 A;  
CC  
valid for high frequency  
operation range  
11)  
Minimum on-time,  
low frequency  
ton,min,lf  
308  
ns  
I
= 1.5 A;  
P_4.2.13  
CC  
valid for low frequency  
operation range  
Startup and active discharge12)  
Soꢀ-start time  
tstart  
0.8  
1
1.2  
2.6  
6.0  
ms VCC rising from 5% to 95% of P_4.2.14  
nominal VCC level  
Startup initialization time  
tinit  
ms time from rising edge of VEN P_4.2.15  
(0 V to VEN,hi ) until soꢀ-start  
Input voltage startup  
threshold  
VVS,on  
2.6  
V
VVS increasing;  
VEN ≥ 2 V  
P_4.2.16  
Output discharge resistance  
Rdc  
55  
VEN = 0 V;  
P_4.2.17  
VVS = 13.5 V;  
VSW = 100 mV  
Current limitation  
Buck peak overcurrent limit  
IBUOC  
3.3  
3.9  
4.5  
A
P_4.2.19  
10  
See Functional range and High duty cycle operation.  
Specified by design, not subject to production test.  
See Power-up and power-down control  
11  
12  
Datasheet  
16  
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Buck regulator  
Table 4  
Electrical characteristics buck regulator (continued)  
VVS = 6 V to 35 V; Tj = -40°C to 150°C; all voltages with respect to ground (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or condition  
Number  
Min. Typ. Max.  
Overload current limit  
IBUOL  
3.9  
4.4  
5.1  
A
A
P_4.2.21  
P_4.2.22  
Overload overcurrent gap  
IBUOL,gap 0.05 0.5  
Overload current limit is  
typically 0.5 A above buck  
peak overcurrent limit  
Undervoltage shutdown  
Input undervoltage shutdown VVS,off  
threshold  
3.3  
3.55  
420  
V
VVS decreasing  
P_4.2.23  
P_4.2.24  
Input undervoltage shutdown VVS,hys  
180  
280  
mV  
hysteresis  
Datasheet  
17  
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Buck regulator  
4.3  
Typical performance characteristics buck regulator  
FREQ: 2.2 MHz; VVS = 13.5 V; Tj = 25°C (if not otherwise specified). The shown performance characteristics was  
measured on a 4 layer FR4 printed circuit board with external components as recommended in Application  
information.  
Efficiency  
Efficiency  
FREQ: 440 kHz; Tj = 25°C; VCC = 5 V  
FREQ: 440 kHz; Tj = 25°C; VCC = 5 V  
Efficiency  
Efficiency  
FREQ: 2.2 MHz; Tj = 25°C; VCC = 5 V  
FREQ: 2.2 MHz; Tj = 25°C; VCC = 5 V  
Datasheet  
18  
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Buck regulator  
Efficiency  
Efficiency  
FREQ: 440 kHz; Tj = 25°C; VCC = 3.3 V  
FREQ: 440 kHz; Tj = 25°C; VCC = 3.3 V  
Efficiency  
Efficiency  
FREQ: 2.2 MHz; Tj = 25°C; VCC = 3.3 V  
FREQ: 2.2 MHz; Tj = 25°C; VCC = 3.3 V  
Datasheet  
19  
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Buck regulator  
Line regulation  
Load regulation  
ICC = 1 A; VCC = 5 V  
VVS = 13.5 V; VCC = 5 V  
Line regulation  
Load regulation  
ICC = 1 A; VCC = 3.3 V  
VVS = 13.5 V; VCC = 3.3 V  
Datasheet  
20  
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Buck regulator  
Output voltage precision  
Output voltage precision  
ICC = 200 mA; VCC = 5 V  
ICC = 200 mA; VCC = 3.3 V  
Line regulation (low load)  
Line regulation (low load)  
ICC = 100 µA; VCC = 5 V  
ICC = 100 µA; VCC = 3.3 V  
Datasheet  
21  
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Buck regulator  
High side MOSFET on-resistance  
Low side MOSFET on-resistance  
ICC = 100 mA  
ICC = 100 mA  
Output discharge resistance  
Input undervoltage shutdown threshold  
VEN = 0 V; VSW = 100 mV  
VVS decreasing  
Datasheet  
22  
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Buck regulator  
PFM frequency modulation (CCM)  
PFM frequency modulation (CCM)  
FREQ: 440 kHz; ICC = 1.5 A; VCC = 5 V  
FREQ: 2.2 MHz; ICC = 1.5 A; VCC = 5 V  
PFM frequency modulation (DCM)  
PFM frequency modulation (DCM)  
FREQ: 440 kHz; Tj = 25°C; VCC = 5 V  
FREQ: 2.2 MHz; Tj = 25°C; VCC = 5 V  
Datasheet  
23  
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Buck regulator  
PFM frequency modulation (CCM)  
PFM frequency modulation (CCM)  
FREQ: 440 kHz; ICC = 1.5 A; VCC = 3.3 V  
FREQ: 2.2 MHz; ICC = 1.5 A; VCC = 3.3 V  
PFM frequency modulation (DCM)  
PFM frequency modulation (DCM)  
FREQ: 440 kHz; Tj = 25°C; VCC = 3.3 V  
FREQ: 2.2 MHz; Tj = 25°C; VCC = 3.3 V  
Datasheet  
24  
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Buck regulator  
PFM boundary  
PFM boundary  
Tj = 25°C; VCC = 3.3 V  
Tj = 25°C; VCC = 5 V  
Buck peak overcurrent limit  
Overload current limit  
VVS = 13.5 V  
VVS = 13.5 V  
Datasheet  
25  
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Buck regulator  
Load step response  
Load step response  
ICC: 0.6 A to 2 A to 0.6 A; VCC = 5 V  
ICC: 0.6 A to 2 A to 0.6 A; VCC = 3.3 V  
VCC [100 mV/div]  
ICC [2 A/div]  
VCC [100 mV/div]  
ICC [2 A/div]  
3.3  
V
5 V  
0.6 A  
0.6 A  
-0.5  
0
0.5  
1
1.5  
-0.5  
0
0.5  
1
1.5  
t [ms]  
t [ms]  
Datasheet  
26  
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Oscillator  
5
Oscillator  
5.1  
Functional description oscillator  
The integrated clock provides a constant frequency to the regulation loop. In PWM mode the device switches on  
and off the high side and low side power stages at the oscillator frequency fOSC  
.
The oscillator frequency can be set by connecting a resistor RFREQ between the FREQ pin and ground, see Table  
5, Table 6 and Table 7. The device sets the selected switching frequency during startup.  
Table 5  
FREQ configuration for typical oscillator frequencies in the low frequency range  
RFREQ [kΩ]13)  
fOSC [kHz]  
320  
2.2  
3.3  
4.7  
360  
400  
≤ 1.0 (or connect FREQ pin directly to GND)  
44014)  
6.8  
10  
15  
480  
520  
560  
Table 6  
FREQ configuration for typical oscillator frequencies in the high frequency range  
RFREQ [kΩ]15)  
fOSC [MHz]  
22  
33  
47  
1.6  
1.8  
2.0  
≥ 200 (or leave FREQ pin open)  
2.216)  
68  
2.4  
100  
150  
2.6  
2.8  
5.1.1  
Synchronization input  
In PWM mode the device can synchronize the switching frequency to an external oscillator connected to the  
SYNC pin. The internal clock manager triggers at the falling edge of the external signal. The phase shiꢀ towards  
the switching frequency can be adjusted with the duty cycle of the external oscillator. 50% duty cycle of the  
external oscillator corresponds to a phase shiꢀ of approximately zero. A suitable setting of RFREQ is required  
so that the internal operation frequency is equal to the corresponding external synchronization frequency or  
above it. This is a prerequisite for the automatic transitions between PWM mode and PFM mode.  
As soon as the startup is completed and the device accepts the external signal at the SYNC pin, the  
synchronization turns active.  
13  
Resistor tolerance ≤ 5%.  
Default oscillator low frequency.  
Resistor tolerance ≤ 5%.  
Default oscillator high frequency.  
14  
15  
16  
Datasheet  
27  
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Oscillator  
5.1.2  
Spread spectrum  
In PWM mode, when used without an external clock at the SYNC pin, the TLS4125D0EPV can apply spread  
spectrum to optimize EMI performance. The device modulates the switching frequency up and down by a  
triangle waveform with a typical frequency of 8.3 kHz within a range of typically ±7.5% of the selected oscillator  
frequency. The logical signal on the SSON pin switches spread spectrum on or off.  
5.2  
Electrical characteristics oscillator  
Table 7  
Electrical characteristics oscillator  
VVS = 6 V to 35 V; Tj = -40°C to 150°C; all voltages with respect to ground (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or condition Number  
Min.  
Typ. Max.  
Frequency setting  
Default oscillator low frequency  
fosc,1  
396  
440  
2.2  
484  
kHz  
RFREQ ≤ 1.0 kΩ or  
connect FREQ pin  
directly to GND  
P_5.2.1  
Default oscillator high frequency  
fosc,2  
1.98  
2.42  
MHz RFREQ ≥ 200 kΩ or P_5.2.2  
leave FREQ pin  
open  
Oscillator frequency  
Oscillator frequency  
Oscillator frequency  
Oscillator frequency  
Oscillator frequency  
Oscillator frequency  
Oscillator frequency  
Oscillator frequency  
Oscillator frequency  
Oscillator frequency  
Oscillator frequency  
Oscillator frequency  
Synchronization input  
fosc,3  
fosc,4  
fosc,5  
fosc,6  
fosc,7  
fosc,8  
fosc,9  
fosc,10  
fosc,11  
fosc,12  
fosc,13  
fosc,14  
288  
324  
360  
432  
468  
504  
1.44  
1.62  
1.8  
320  
360  
400  
480  
520  
560  
1.6  
1.8  
2.0  
2.4  
2.6  
2.8  
352  
396  
440  
528  
572  
616  
1.76  
1.98  
2.2  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
RFREQ = 2.2 kΩ  
RFREQ = 3.3 kΩ  
RFREQ = 4.7 kΩ  
RFREQ = 6.8 kΩ  
RFREQ = 10 kΩ  
RFREQ = 15 kΩ  
P_5.2.3  
P_5.2.4  
P_5.2.5  
P_5.2.6  
P_5.2.7  
P_5.2.8  
P_5.2.9  
P_5.2.10  
P_5.2.11  
P_5.2.12  
P_5.2.13  
P_5.2.14  
MHz RFREQ = 22 kΩ  
MHz RFREQ = 33 kΩ  
MHz RFREQ = 47 kΩ  
MHz RFREQ = 68 kΩ  
MHz RFREQ = 100 kΩ  
MHz RFREQ = 150 kΩ  
2.16  
2.34  
2.52  
2.64  
2.86  
3.08  
Synchronization low frequency  
capture range  
fsync,lf  
320  
1.6  
3.0  
560  
2.8  
kHz  
17) valid for  
oscillator low  
frequency range  
P_5.2.15  
P_5.2.16  
Synchronization high frequency  
capture range  
fsync,hf  
MHz 17) valid for  
oscillator high  
frequency range  
17) 5.5V ≤ VVS ≤ 35 V P_5.2.17  
SYNC "high" signal  
VSYNC,hi  
V
17  
Synchronization of PWM to the falling edge.  
Datasheet  
28  
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Oscillator  
Table 7  
Electrical characteristics oscillator (continued)  
VVS = 6 V to 35 V; Tj = -40°C to 150°C; all voltages with respect to ground (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or condition Number  
Min.  
Typ. Max.  
17)  
SYNC "low" signal  
VSYNC,lo  
0.8  
600  
1
V
P_5.2.21  
P_5.2.22  
P_5.2.25  
P_5.2.26  
P_5.2.28  
17)  
SYNC signal hysteresis  
SYNC "high" input current  
SYNC "low" input current  
SYNC signal duty cycle  
Spread spectrum  
VSYNC,hys 45  
255  
0.1  
0.1  
mV  
µA  
µA  
%
ISYNC,hi  
ISYNC,lo  
DSYNC  
VSYNC = 5 V  
VSYNC = 0 V  
1
10  
90  
Spread spectrum "high" signal  
VSSON,hi 2.0  
VSSON,lo  
V
V
Enables spread  
spectrum  
P_5.2.29  
P_5.2.30  
Spread spectrum "low" signal  
0.8  
Disables spread  
spectrum  
Spread spectrum enable hysteresis VSSON,hys 100  
250  
1
1000  
1.25  
mV  
µA  
P_5.2.31  
P_5.2.32  
Spread spectrum enable "high"  
input current  
ISSON,hi  
fSS,mod  
fSS,range  
0.7  
7.5  
VSSON = 5.0 V  
Spread spectrum modulation  
frequency  
8.3  
9.3  
kHz  
%
Spread spectrum P_5.2.33  
enabled  
Spread spectrum modulation  
range  
±7.5  
Spread spectrum P_5.2.34  
enabled  
17  
Synchronization of PWM to the falling edge.  
Datasheet  
29  
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Oscillator  
5.3  
Typical performance characteristics oscillator  
Oscillator (low frequency)  
Oscillator (high frequency)  
VVS = 13.5 V; FREQ: 440 kHz  
VVS = 13.5 V; FREQ: 2.2 MHz  
Datasheet  
30  
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Current consumption and enable  
6
Current consumption and enable  
6.1  
Functional description current consumption and enable  
A "high" signal VEN,hi at the EN pin switches on the regulator. In on-state the device can operate at very low  
current consumption IVS,on to improve the efficiency with low load in PFM mode.  
A "low" signal VEN,lo at the EN pin switches the regulator off. In turned off-state, the current consumption IVS,off  
of the device is 1 µA typically. If the EN pin is leꢀ open, then an internal pull-down resistor REN,int ensures that  
the device remains switched off.  
6.2  
Electrical characteristics current consumption and enable  
Table 8  
Electrical characteristics current consumption and enable  
VVS = 6 V to 35 V; Tj = -40°C to 150°C; all voltages with respect to ground (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
Number  
Min.  
Max.  
Current consumption  
Current consumption in off- IVS,off  
state  
1
2
µA  
µA  
VEN = 0 V;  
VVS = 13.5 V;  
Tj < 85°C  
P_6.2.1  
P_6.2.2  
Current consumption in on- IVS,on  
31  
65  
VEN = 5.0 V;  
state  
VVS = 13.5 V;  
Tj < 85°C;  
not switching18)  
Enable  
Enable "high" signal  
Enable "low" signal  
Enable hysteresis  
VEN,hi  
VEN,lo  
VEN,hys  
2.0  
V
P_6.2.3  
P_6.2.4  
P_6.2.5  
P_6.2.6  
P_6.2.7  
P_6.2.8  
0.8  
1000  
1
V
100  
400  
0.6  
2.5  
8
mV  
µA  
µA  
MΩ  
Enable "high" input current IEN,hi,1  
Enable "high" input current IEN,hi,2  
VEN = 5.0 V  
VEN = 13.5 V  
VEN = 2.0 V  
3.5  
10.4  
Enable, internal resistor to REN,int  
5.6  
GND  
18  
The current consumption is tested while the output voltage is forced to a slightly higher value than the  
nominal output voltage to prevent switching activities of the regulator.  
Datasheet  
31  
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Current consumption and enable  
6.3  
Typical performance characteristics current consumption and  
enable  
Current consumption in off-state  
VVS = 13.5 V; VEN = 0 V  
Current consumption in on-state  
VVS = 13.5 V; VEN = 5 V; no switching  
Enable "high" input current  
VVS = 13.5 V  
Datasheet  
32  
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Reset  
7
Reset  
7.1  
Functional description reset  
The reset function supervises the regulator output voltage VCC by monitoring the feedback voltage VFB. The  
device indicates the reset status at the RO pin. RO "high" indicates, that the output voltage is within the desired  
reset thresholds. RO "low" indicates that the output voltage is outside the desired reset thresholds. As long as  
the device operates within the specified range, the reset function is active, see Table 10 and Functional range.  
Reset output RO  
The reset output pin RO is an open drain structure and needs to be pulled up to VCC or to a voltage rail via an  
external pull-up resistor RRO, which must be chosen according to the maximum pull-up current IRO,lo. During  
battery cranking conditions of the input voltage VVS, the reset feature is active down to an input voltage VVS of  
2.8 V.  
Power-on reset delay time  
Power-on reset delay time tRD,PWR-on is the time period from completion of the soꢀ-start until the device  
releases the reset by switching the reset output RO from "low" to "high", see Figure 8. An external resistor RRT  
connected to the RT pin determines the value of power-on reset delay time tRD,PWR-on, see Table 9.  
Reset undervoltage, overvoltage and delay time  
In contrast to the power-on reset delay time tRD,PWR-on, the reset delay time tRD refers to an output undervoltage  
or output overvoltage event during operation, see Figure 8. If VFB drops below the undervoltage reset threshold  
VRT,UV,th, then the device sets the reset signal at the RO to "low". When the output voltage recovers and VFB  
exceeds the undervoltage reset threshold plus the hysteresis (VRT,UV,th + VRT,UV,hys), then the device sets the  
RO pin to "high" aꢀer the reset delay time tRD. In accordance with the undervoltage reset delay time, the  
overvoltage reset delay time tRD considers an output overvoltage event. If case VFB exceeds the overvoltage  
reset threshold VRT,OV,th, then the device sets the RO pin to "low". When the output voltage recovers and VFB  
drops below the overvoltage reset threshold minus the hysteresis (VRT,OV,th - VRT,OV,hys), then the device sets the  
RO pin to "high" aꢀer the reset delay time tRD. An external resistor RRT connected to the RT pin determines the  
value of the reset delay time tRD along with the reset undervoltage threshold VRT,UV,th, see Table 9. The device  
sets the selected reset delay time and reset threshold during initialization phase. The value of the overvoltage  
reset threshold VRT,OV,th is fixed.  
Reset reaction time  
If the output voltage of the regulator drops below the output undervoltage reset threshold VRT,UV,th or rises  
above the output overvoltage reset threshold VRT,OV,th, then this triggers the internal output voltage monitoring  
circuit. If that condition lasts longer than the blanking time tr,blank (see Table 10), then the device sets the reset  
signal at the RO pin to "low". If the output overvoltage or undervoltage condition lasts shorter than tr,blank, then  
the device keeps the reset signal "high". This prevents a microcontroller reset due to very short distortions of  
the output voltage, see Figure 8.  
Datasheet  
33  
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Reset  
Table 9  
RT configuration for typical values of power-on, undervoltage, overvoltage reset delay  
time and undervoltage reset threshold  
RRT [kΩ]19)  
tRD,PWR-on [ms]  
tRD [ms]  
VRT,UV,th [% of VFB]  
20)  
≤ 1.0 (or connect to GND)  
0.06  
0.06  
0.06  
0.06  
1.9  
0.03  
0.03  
0.03  
0.03  
1.3  
-8  
2.2  
-14  
-25  
-40  
-8  
3.3  
4.7  
6.8  
10  
1.9  
1.3  
-14  
-25  
-40  
-14  
-25  
-40  
-8  
15  
1.9  
1.3  
22  
1.9  
1.3  
33  
7.7  
5.1  
47  
7.7  
5.1  
68  
7.7  
5.1  
100  
15.4  
15.4  
7.7  
10.2  
10.2  
5.1  
150  
-14  
-8  
≥ 200 (or leave open)  
V
EN  
V
V
EN,hi  
EN,lo  
Soft-  
start  
Undervoltage  
Short undervoltage  
Undervoltage  
Overvoltage  
t
VCC  
t < tr,blank  
V
V
RT,OV,th  
RT,UV,th  
t
VRO  
t
RD,PWR-on  
t
r,blank  
t
RD  
t
r,blank  
t
RD  
t
r,blank  
t
RD  
VPU  
V
RO,lo  
t
Figure 8  
Reset timing diagram21)  
19  
Resistor tolerance ≤ 5%.  
In relation to the typical feedback voltage level 0.8 V.  
The diagram neglects the reset undervoltage hysteresis and reset overvoltage hysteresis to improve the  
20  
21  
overview. VRO is connected to an external pull-up voltage VPU via an external pull-up resistor. The input  
voltage VVS is set to a level higher than VVS,on  
.
Datasheet  
34  
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Reset  
7.2  
Electrical characteristics reset  
Table 10  
Electrical characteristics reset  
VVS = 6 V to 35 V; Tj = -40°C to 150°C; all voltages with respect to ground (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or condition  
Number  
Min. Typ. Max.  
Reset output RO  
Reset output "low" voltage VRO,lo  
0.4  
1.5  
1
V
VEN ≥ 2 V;  
IRO ≤ 1.5 mA  
P_7.2.1  
P_7.2.2  
P_7.2.3  
Reset output "low" pull-up IRO,lo  
current  
mA  
µA  
VEN ≥ 2 V;  
VRO = 0.4 V  
Reset output "high"  
leakage current  
IRO,hi  
VRO = 5 V  
Output overvoltage reset threshold  
Output overvoltage reset  
threshold increasing  
VRT,OV,th  
5
7
1
9
2
%
%
percentage of VFB  
percentage of VFB  
P_7.2.4  
P_7.2.5  
Output overvoltage reset  
hysteresis  
VRT,OV,hys  
Output undervoltage reset threshold22)  
Output undervoltage reset VRT,UV,th,1  
threshold decreasing -8%  
-10  
-16  
-27  
-42  
-8  
-6  
%
%
%
%
%
percentage of VFB  
percentage of VFB  
percentage of VFB  
percentage of VFB  
percentage of VFB  
P_7.2.6  
P_7.2.7  
P_7.2.8  
P_7.2.9  
P_7.2.10  
Output undervoltage reset VRT,UV,th,2  
threshold decreasing -14%  
-14  
-25  
-40  
1
-12  
-23  
-38  
2
Output undervoltage reset VRT,UV,th,3  
threshold decreasing -25%  
Output undervoltage reset VRT,UV,th,4  
threshold decreasing -40%  
Output undervoltage reset VRT,UV,hys  
hysteresis  
Reset delay timing22)  
Power-on reset delay time tRD,PWR-on,1 15  
60 µs  
60  
90  
µs  
P_7.2.11  
P_7.2.12  
P_7.2.13  
P_7.2.14  
P_7.2.15  
Power-on reset delay time tRD,PWR-on,2 1.7  
1.9 ms  
1.9  
7.7  
2.2  
8.6  
17.1  
95  
ms  
ms  
ms  
µs  
Power-on reset delay time tRD,PWR-on,3 6.9  
7.7 ms  
Power-on reset delay time tRD,PWR-on,4 13.9 15.4  
15.4 ms  
Reset delay time 30 µs  
tRD,1  
15  
30  
22  
For RT configuration see Table 9  
Datasheet  
35  
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Reset  
Table 10  
Electrical characteristics reset (continued)  
VVS = 6 V to 35 V; Tj = -40°C to 150°C; all voltages with respect to ground (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or condition  
Number  
Min. Typ. Max.  
Reset delay time 1.3 ms  
Reset delay time 5.1 ms  
Reset delay time 10.2 ms  
Reset blanking time  
tRD,2  
1.1  
4.6  
9.3  
2
1.3  
5.1  
10.2  
5
1.5  
5.7  
11.4  
10  
ms  
ms  
ms  
µs  
P_7.2.16  
P_7.2.17  
P_7.2.18  
P_7.2.19  
tRD,3  
tRD,4  
tr,blank  
Datasheet  
36  
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Reset  
7.3  
Typical performance characteristics reset  
Output undervoltage reset threshold  
Output overvoltage reset threshold  
VVS = 13.5 V  
VVS = 13.5 V  
Datasheet  
37  
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Application information  
8
Application information  
Note:  
The following information is given as an example for the implementation of the device only and shall  
not be regarded as a description or warranty of a certain functionality, condition or quality of the  
device.  
DIN *)  
LIN **)  
VBAT  
CIN3 **)  
CIN2  
CIN1  
VS  
VS  
EN  
Enable signal (e.g. from IGN)  
Enable  
UVLO  
Internal  
supply  
Over  
temperature  
shutdown  
Bandgap  
reference  
RFREQ *)  
FREQ  
LOUT  
SW  
Control loop  
+ driver  
VCC  
CFF  
R1  
R2  
Oscillator  
Synchronisation signal (e.g. from µC)  
SYNC  
SSON  
PGND  
FB  
COUT  
High signal  
(e.g. VCC)  
Spread  
spectrum  
ON/OFF control for  
spread spectrum  
VPU  
pull-up voltage  
Soft-start  
ramp  
generator  
RRO  
RO  
RT  
Reset  
Reset signal  
(e.g. indicate output voltage status to µC)  
RRT *)  
AGND  
*) optional  
**) optional for improved EMI performance  
Figure 9  
Application diagram  
Note:  
This figure is a simplified example of an application circuit. The function must be verified in the  
application.  
Datasheet  
38  
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Application information  
Table 11  
Name  
Recommended values for components in the application diagram  
Value23)  
Switching  
frequency range range  
Output voltage  
Component type  
CIN1  
CIN2  
LOUT  
100 nF  
10 µF  
22 µH  
Ceramic X7R capacitor; 50 V  
Ceramic X7R capacitor; 50 V  
320 kHz to  
560 kHz  
Shielded power inductor; ISAT > IBUOC  
DCR < 70 mΩ  
COUT  
LOUT  
COUT  
LOUT  
88 µF24)  
2.2 µH  
320 kHz to  
560 kHz  
22 µF (x4) ceramic X7R capacitor; 16 V  
1.6 MHz to  
2.8 MHz  
3 V ≤ VCC ≤ 5 V  
Shielded power inductor; ISAT > IBUOC  
DCR < 70 mΩ  
44 µF24)  
4.7 µH  
1.6 MHz to  
2.8 MHz  
3 V ≤ VCC ≤ 5 V  
5 V < VCC ≤ 10 V  
22 µF (x2) ceramic X7R capacitor; 16 V  
1.6 MHz to  
2.8 MHz  
Shielded power inductor; ISAT > IBUOC  
DCR < 70 mΩ  
COUT  
22 µF24)  
1.6 MHz to  
2.8 MHz  
5 V < VCC ≤ 10 V  
22 µF ceramic X7R capacitor; 25 V  
8.1  
Output voltage adjustment  
The output voltage of the TLS4125D0EPV can be adjusted with an external voltage divider connected to the FB  
pin. To achieve a high output voltage accuracy, a resistor R2 < 160 kΩ is recommended. By neglecting the current  
flowing into the FB pin, the desired resistance R1 can be calculated depending on the required nominal output  
voltage VCC  
:
V
CC  
FB  
R = R  
1  
1
2
V
Equation 1  
8.2  
Feedforward capacitor  
An additional feedforward capacitor CFF between the output voltage node VCC and the feedback pin FB might be  
required for stable operation (see Figure 9). A good starting value is a feedforward capacitor of 10 pF, but the  
best value may be higher due to additional parasitic capacitance at the FB pin to GND resulting from the PCB  
layout. The capacitance must match the conditions of the application.  
23  
Typical condition  
24  
For maintenance of loop stability it is recommended to use capacitors with a limited voltage derating at  
the typical output voltage level. A capacitor in parallel can be added to match the recommended typical  
capacitance value as close as possible.  
Datasheet  
39  
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Application information  
8.3  
Layout recommendations  
Introduction  
A switch mode power supply is a potential source of electromagnetic disturbance, which may affect the  
application environment as well as the device itself. This can lead to sporadic malfunction including regulator  
instability or irreversible damage depending on the amount of generated disturbance.  
Main types of electromagnetic disturbance:  
Radiated emission  
Conducted emission  
Radiated emission  
Radiated emission is caused by circulating currents and voltage oscillations. Alternating currents appear in so  
called current windows, which are defined by the area of the circulating current within the corresponding filter  
stage at the input or the output of the regulator. Voltage oscillations are mainly caused by resonant circuits  
induced by parasitic inductance and capacitance of the PCB layout.  
The following PCB layout design recommendations help to minimize radiated emission:  
Place external components close to the device to reduce parasitic elements of the PCB layout and to  
keep the area of circulating currents small. At the same time some distance should be kept between the  
components to avoid coupling.  
Reduce the switching area at pin SW to minimize the inductance and especially the parasitic capacitance.  
The parasitic capacitance can be further reduced by removing inner GND layers below the switching area.  
Routing of other signal traces below the switching area should be avoided generally.  
Use GND layers to shield areas with alternating currents or voltage oscillations.  
Conducted emission  
Conducted emission consists of voltage oscillations, which occur permanently or by occasion at the regulator  
input or output connection. Their frequency range can exceed 100 MHz and they are superimposed to the input  
voltage VVS and to the output voltage VCC. This might disturb other components of the application.  
Countermeasures against conducted disturbances are the same as against radiated emission. The following  
recommendations can further reduce the conducted emission:  
Reduce high frequency conducted emission by placing well connected small ceramic filter capacitors (1 nF  
to 220 nF) with low ESR and low ESL in parallel to the input capacitors as close as possible to the input pin  
VS and in parallel to the output capacitor COUT close to the output inductor LOUT  
.
Reduce noise injected into the battery supply line by using a π-filter, for example consisting of CIN1, CIN2  
,
CIN3 and LIN. This requires additional capacitors and an inductor. The filter must be designed according to  
the requirements of the application.  
8.4  
Additional information  
Please contact Infineon:  
for information regarding the pin behavioral assessment  
for application notes with more detailed information about this device  
for any further information visit https://www.infineon.com/  
Datasheet  
40  
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Package information  
9
Package information  
1)  
4.9±0.1  
1)  
3.9±0.1  
0.1  
0.1  
2x  
2x  
0.67±0.25  
C
0.08 C  
Coplanarity  
Seating  
Plane  
6±0.2  
0.2 D  
14x  
2)  
0.25±0.05  
0.25  
A-B C  
14x  
Bottom View  
A
14  
8
8
14  
1
7
7
1
0.15  
0.15  
D
Index  
Marking  
B
0.65  
4±0.1  
A-B  
1) Does not include plastic or metal protrusion of 0.15 max. per side  
2) Dambar protrusion shall be maximum 0.1 mm total in excess of lead width.  
All dimensions are in units mm  
The drawing is in compliance with ISO 128-30, Projection Method 1 [  
]
Figure 10  
PG-TSDSO-14  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with  
government regulations the device is available as a Green Product. Green Products are RoHS compliant (Pb-free  
finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
Information on alternative packages  
Please visit www.infineon.com/packages.  
Datasheet  
41  
Rev. 1.02  
2021-02-05  
OPTIREGswitcher TLS4125D0EPV  
2.8 MHz synchronous step down regulator  
Revision history  
Revision history  
Version Date  
Changes  
Rev. 1.02 2021-02-05 Editorial changes  
Rev. 1.01 2020-10-15 Editorial changes  
Rev. 1.0 2020-03-20 Initial datasheet  
Datasheet  
42  
Rev. 1.02  
2021-02-05  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
Edition 2021-02-05  
Published by  
IMPORTANT NOTICE  
WARNINGS  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer’s compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer’s products and any use of the product of  
Infineon Technologies in customer’s applications.  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
Except as otherwise explicitly approved by Infineon  
Technologies in  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or  
any consequences of the use thereof can reasonably  
be expected to result in personal injury.  
Infineon Technologies AG  
81726 Munich, Germany  
a written document signed by  
©
2021 Infineon Technologies AG  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Document reference  
IFX-Z8F64777586  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to such  
application.  

相关型号:

TLS413S

LED Display, 7 SEG NUMERIC DISPLAY, RED, 25.4 mm
TOSHIBA

TLS414S

LED Display, 7 SEG NUMERIC DISPLAY, RED, 38.1 mm
TOSHIBA

TLS415S

LED Display, 7 SEG NUMERIC DISPLAY, RED, 38.1 mm
TOSHIBA

TLS416S

LED Display, 7 SEG NUMERIC DISPLAY, RED, 38.1 mm
TOSHIBA

TLS417S

LED Display, 7 SEG NUMERIC DISPLAY, RED, 38.1 mm
TOSHIBA

TLS436J100C1C

CAPACITOR, TANTALUM, NON SOLID, POLARIZED, 100V, 43uF, THROUGH HOLE MOUNT, AXIAL LEADED
VISHAY

TLS436M100C1C

CAPACITOR, TANTALUM, NON SOLID, POLARIZED, 100V, 43uF, THROUGH HOLE MOUNT, AXIAL LEADED
VISHAY

TLS437J008C1C

CAPACITOR, TANTALUM, NON SOLID, POLARIZED, 8V, 430uF, THROUGH HOLE MOUNT, AXIAL LEADED
VISHAY

TLS437M008C1C

CAPACITOR, TANTALUM, NON SOLID, POLARIZED, 8V, 430uF, THROUGH HOLE MOUNT, AXIAL LEADED
VISHAY

TLS475M100C1A

CAPACITOR, TANTALUM, NON SOLID, POLARIZED, 100V, 4.7uF, THROUGH HOLE MOUNT, AXIAL LEADED
VISHAY

TLS476J050C1B

CAPACITOR, TANTALUM, NON SOLID, POLARIZED, 50V, 47uF, THROUGH HOLE MOUNT, AXIAL LEADED
VISHAY

TLS476K010C1A

CAPACITOR, TANTALUM, NON SOLID, POLARIZED, 10V, 47uF, THROUGH HOLE MOUNT, AXIAL LEADED
VISHAY