TLS850D0TE V50 [INFINEON]

TLS850D0TEV50 是一款高性能的极低压差线性稳压器,采用 PGTO252-5 封装,适用于 5V 电源。这些稳压器的输入电压范围为 3 V 至 40 V,静态电流极低(仅 40μA),非常适合汽车或永久连接电池的任何其他电源系统。TLS850D0TAV50 的输出电压精度为 2%,最大输出电流高达 500 mA。新的回路概念结合了快速调节和非常好的稳定性,输出端只需要一个 1μF 的小型陶瓷电容即可。在低于 100 mA 的电流下,该设备的典型压差非常低,仅 70 mV。工作范围从仅 3 V 的输入电压开始(扩展工作范围)。因此,TLS850D0TAV50 也适用于需要在启动条件下运行的汽车系统。;
TLS850D0TE V50
型号: TLS850D0TE V50
厂家: Infineon    Infineon
描述:

TLS850D0TEV50 是一款高性能的极低压差线性稳压器,采用 PGTO252-5 封装,适用于 5V 电源。这些稳压器的输入电压范围为 3 V 至 40 V,静态电流极低(仅 40μA),非常适合汽车或永久连接电池的任何其他电源系统。TLS850D0TAV50 的输出电压精度为 2%,最大输出电流高达 500 mA。新的回路概念结合了快速调节和非常好的稳定性,输出端只需要一个 1μF 的小型陶瓷电容即可。在低于 100 mA 的电流下,该设备的典型压差非常低,仅 70 mV。工作范围从仅 3 V 的输入电压开始(扩展工作范围)。因此,TLS850D0TAV50 也适用于需要在启动条件下运行的汽车系统。

电池 稳压器
文件: 总29页 (文件大小:1154K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Dropout Linear Voltage Regulator  
TLS850D0TE  
TLS850D0TEV50  
TLS850D0TEV33  
Linear Voltage Regulator  
Data Sheet  
Rev. 1.0, 2016-10-07  
Automotive Power  
TLS850D0TE  
Table of Contents  
Table of Contents  
1
2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3
3.1  
3.2  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Assignment TLS850D0TEV50 and TLS850D0TEV33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Definitions and Functions TLS850D0TEV50 and TLS850D0TEV33 . . . . . . . . . . . . . . . . . . . . . . . 6  
4
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.1  
4.2  
4.3  
5
Block Description and Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Voltage Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Typical Performance Characteristics Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Typical Performance Characteristics Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Typical Performance Characteristics Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Typical Performance Characteristics Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
6
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Selection of External Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Input Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Output Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
6.1  
6.2  
6.2.1  
6.2.2  
6.3  
6.4  
6.5  
7
8
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Data Sheet  
2
Rev. 1.0, 2016-10-07  
Low Dropout Linear Voltage Regulator  
TLS850D0TE  
1
Overview  
Features  
Wide Input Voltage Range from 3.0 V to 40 V  
Fixed Output Voltage 5 V or 3.3 V  
Output Voltage Precision ±2 %  
Output Current Capability up to 500 mA  
Ultra Low Current Consumption typ. 40 µA  
Very Low Dropout Voltage typ. 70 mV @100 mA  
Stable with Ceramic Output Capacitor of 1 µF  
Delayed Reset at Power-On: 16.5 ms  
Enable, Undervoltage Reset, Overtemperature Shutdown  
Output Current Limitation  
Figure 1  
PG-TO252-5  
Wide Temperature Range  
Green Product (RoHS compliant)  
AEC Qualified  
Data Sheet  
3
Rev. 1.0, 2016-10-07  
TLS850D0TE  
Overview  
Functional Description  
The TLS850D0TE is a high performance very low dropout linear voltage regulator for 5 V (TLS850D0V50) or 3.3 V  
(TLS850D0V33) supply in a PG-TO252-5 package.  
With an input voltage range of 3 V to 40 V and very low quiescent of only 40 µA, these regulators are perfectly  
suitable for automotive or any other supply systems connected to the battery permanently. The TLS850D0TE  
provides an output voltage accuracy of 2 % and a maximum output current up to 500 mA.  
The new loop concept combines fast regulation and very good stability while requiring only one small ceramic  
capacitor of 1 µF at the output. At currents below 100 mA the device will have a very low typical dropout voltage  
of only 70 mV (for 5 V device) and 80 mV (for 3.3 V device). The operating range starts already at input voltages  
of only 3 V (extended operating range). This makes the TLS850D0TE also suitable to supply automotive systems  
that need to operate during cranking condition.  
The device can be switched on and off by the Enable feature as described in Chapter 5.5.  
The output voltage is supervised by the Reset feature, including Undervoltage Reset and delayed Reset at Power-  
On, more details can be found in Chapter 5.7.  
Internal protection features like output current limitation and overtemperature shutdown are implemented to  
protect the device against immediate damage due to failures like output short circuit to GND, over-current and  
over-temperatures.  
Choosing External Components  
An input capacitor CI is recommended to compensate line influences. The output capacitor CQ is necessary for  
the stability of the regulating circuit. TLS850D0TE is designed to be also stable with low ESR ceramic capacitors.  
Type  
Package  
Marking  
TLS850D0TEV50  
TLS850D0TEV33  
PG-TO252-5  
PG-TO252-5  
850D0V50  
850D0V33  
Data Sheet  
4
Rev. 1.0, 2016-10-07  
TLS850D0TE  
Block Diagram  
2
Block Diagram  
I
Q
Current  
Limitation  
RO  
Reset  
EN  
Enable  
Bandgap  
Reference  
Temperature  
Shutdown  
GND  
Figure 2  
Block Diagram TLS850D0TEV50 and TLS850D0TEV33  
Data Sheet  
5
Rev. 1.0, 2016-10-07  
TLS850D0TE  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment TLS850D0TEV50 and TLS850D0TEV33  
GND  
1
5
Figure 3  
Pin Configuration  
3.2  
Pin Definitions and Functions TLS850D0TEV50 and TLS850D0TEV33  
Pin  
Symbol  
Function  
1
I
Input  
It is recommended to place a small ceramic capacitor (e.g. 100 nF) to GND, close  
to the IC terminals, in order to compensate line influences. See also Chapter 6.2.1  
2
EN  
Enable (integrated pull-down resistor)  
Enable the IC with high level input signal;  
Disable the IC with low level input signal;  
3
4
GND  
RO  
Ground  
Reset Output (intergrated pull-up resistor to Q)  
Open collector output;  
Leave open if the reset function is not needed  
5
Q
Output Voltage  
Connect output capacitor CQ to GND close to the IC’s terminals, respecting the  
values specified for its capacitance and ESR in “Functional Range” on Page 8  
Heat  
Slug  
GND  
Heat Slug  
Connect to GND  
Connect to heatsink area;  
Data Sheet  
6
Rev. 1.0, 2016-10-07  
TLS850D0TE  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Table 1  
Absolute Maximum Ratings1)  
Tj = -40 °C to +150 °C; all voltages with respect to ground (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Number  
Min. Typ. Max.  
Input I, Enable EN  
Voltage  
VI, VEN  
-0.3  
-0.3  
45  
7
V
V
P_4.1.1  
P_4.1.3  
Output Q, Reset Output RO  
Voltage  
VQ, VRO  
Temperatures  
Junction Temperature  
Storage Temperature  
ESD Absorption  
Tj  
-40  
-55  
150  
150  
°C  
°C  
P_4.1.7  
P_4.1.8  
Tstg  
ESD Susceptibility to GND  
ESD Susceptibility to GND  
VESD  
VESD  
-2  
2
kV  
V
2) HBM  
3) CDM  
3) CDM  
P_4.1.9  
-500  
-750  
500  
750  
P_4.1.10  
P_4.1.13  
ESD Susceptibility Pin 1, 5 (corner pins) VESD1,5  
to GND  
V
1) Not subject to production test, specified by design.  
2) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS001 (1.5 k, 100 pF)  
3) ESD susceptibility, Charged Device Model “CDM” according JEDEC JESD22-C101  
Note:  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not  
designed for continuous repetitive operation.  
Data Sheet  
7
Rev. 1.0, 2016-10-07  
TLS850D0TE  
General Product Characteristics  
4.2  
Functional Range  
Table 2  
Functional Range  
Tj = -40 °C to +150 °C; all voltages with respect to ground (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Number  
Min.  
V
Max.  
40  
1)  
Input Voltage Range  
VI  
Q,nom + Vdr  
V
P_4.2.1  
P_4.2.3  
P_4.2.5  
P_4.2.6  
2)  
Extended Input Voltage Range  
Enable Voltage Range  
VI,ext  
VEN  
CQ  
3.0  
0
40  
V
40  
V
3)4)  
Output Capacitor’s  
1
µF  
Requirements for Stability  
3)  
ESR  
ESR(CQ) –  
Tj -40  
100  
150  
P_4.2.7  
P_4.2.9  
Junction Temperature  
°C  
1) Output current is limited internaly and depends on the input voltage, see Electrical Characteristics for more details.  
2) When VI is between VI,ext,min and VQ,nom + Vdr, VQ = VI - Vdr. When VI is below VI,ext,min, VQ can drop down to 0 V.  
3) Not subject to production test, specified by design.  
4) The minimum output capacitance requirement is applicable for a worst case capacitance tolerance of 30%  
Note:Within the functional or operating range, the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the Electrical Characteristics table.  
Data Sheet  
8
Rev. 1.0, 2016-10-07  
TLS850D0TE  
General Product Characteristics  
4.3  
Thermal Resistance  
Note:This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go  
to www.jedec.org.  
Table 3  
Thermal Resistance  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note /  
Test Condition  
Number  
Min.  
Max.  
Package Version PG-TO252-5  
Junction to Case  
1)  
RthJC  
RthJA  
RthJA  
3
K/W  
K/W  
K/W  
P_4.3.11  
P_4.3.12  
P_4.3.13  
Junction to Ambient  
26  
109  
1)2) 2s2p board  
1)3) 1s0p board,  
Junction to Ambient  
footprint only  
Junction to Ambient  
Junction to Ambient  
RthJA  
51  
40  
K/W  
K/W  
1)3) 1s0p board,  
300 mm2 heatsink  
area on PCB  
1)3) 1s0p board,  
600 mm2 heatsink  
area on PCB  
P_4.3.14  
P_4.3.15  
RthJA  
1) Not subject to production test, specified by design  
2) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product  
(Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm³ board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu).  
Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.  
3) Specified RthJA value is according to JEDEC JESD 51-3 at natural convection on FR4 1s0p board; The Product  
(Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm3 board with 1 copper layer (1 x 70µm Cu).  
Data Sheet  
9
Rev. 1.0, 2016-10-07  
TLS850D0TE  
Block Description and Electrical Characteristics  
5
Block Description and Electrical Characteristics  
5.1  
Voltage Regulation  
The output voltage VQ is divided by a resistor network. This fractional voltage is compared to an internal voltage  
reference and the pass transistor is driven accordingly.  
The control loop stability depends on the output capacitor CQ, the load current, the chip temperature and the  
internal circuit design. To ensure stable operation, the output capacitor’s capacitance and its equivalent series  
resistor (ESR) requirements given in “Functional Range” on Page 8 have to be maintained. For details, also see  
the typical performance graph “Output Capacitor Series Resistor ESR(CQ) versus Output Current IQ” on  
Page 15. As the output capacitor also has to buffer load steps, it should be sized according to the application’s  
needs.  
An input capacitor CI is recommended to compensate line influences. In order to block influences like pulses and  
HF distortion at input side, an additional reverse polarity protection diode and a combination of several capacitors  
for filtering should be used. Connect the capacitors close to the component’s terminals.  
In order to prevent overshoots during start-up, a smooth ramp up function is implemented. This ensures almost  
no output voltage overshoots during start-up, mostly independent from load and output capacitance.  
Whenever the load current exceeds the specified limit, e.g. in case of a short circuit, the output current is limited  
and the output voltage decreases.  
The overtemperature shutdown circuit prevents the IC from immediate destruction under fault conditions (e.g.  
output continuously short-circuit) by switching off the power stage. After the chip has cooled down, the regulator  
restarts. This leads to an oscillatory behavior of the output voltage until the fault is removed. However, junction  
temperatures above 150 °C are outside the maximum ratings and therefore significantly reduce the IC’s lifetime.  
Regulated  
Output Voltage  
Supply  
IQ  
II  
I
Q
Current  
Limitation  
RO  
Reset  
EN  
Enable  
C
CI  
VI  
VQ  
Bandgap  
Reference  
LOAD  
ESR  
Temperature  
Shutdown  
CQ  
GND  
Figure 4  
Voltage Regulation  
V
VI  
Vdr  
VQ,nom  
VI,ext,min  
VQ  
t
Figure 5  
Output Voltage vs. Input Voltage  
Data Sheet  
10  
Rev. 1.0, 2016-10-07  
TLS850D0TE  
Block Description and Electrical Characteristics  
Table 4  
Electrical Characteristics Voltage Regulator 5 V version  
Tj = -40 °C to +150 °C, VI = 13.5 V, all voltages with respect to ground (unless otherwise specified)  
Typical values are given at Tj = 25 °C  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Number  
Min. Typ. Max.  
Output Voltage Precision  
Output Voltage Precision  
VQ  
VQ  
4.9  
5.0  
5.0  
7.5  
5.1  
5.1  
18  
V
V
0.05 mA < IQ < 500 mA  
5.95 V < VI < 28 V  
P_5.1.3  
P_5.1.4  
P_5.1.7  
4.9  
0.05 mA < IQ < 200 mA  
5.44 V < VI < 40 V  
Output Voltage Start-up  
slew rate  
dVQ/dt 3.0  
V/ms VI > 18 V/ms  
CQ = 1 µF  
0.5 V < VQ < 4.5 V  
650 1100 mA 0 V < VQ < 4.8 V  
Output Current Limitation  
IQ,max  
501  
P_5.1.9  
Load Regulation  
steady-state  
VQ,load -20  
-1.5  
5
mV  
IQ = 0.05 mA to 500 mA  
VI = 6 V  
P_5.1.11  
Line Regulation  
steady-state  
VQ,line -20  
0
20  
mV  
VI = 8 V to 32 V  
IQ = 5 mA  
P_5.1.13  
P_5.1.16  
P_5.1.17  
P_5.1.18  
P_5.1.19  
P_5.1.20  
Dropout Voltage  
Vdr = VI - VQ  
Vdr  
175 425 mV 1) IQ = 250 mA  
Dropout Voltage  
Vdr = VI - VQ  
Vdr  
70  
59  
170 mV 1) IQ = 100 mA  
Power Supply Ripple Rejection  
PSRR  
Tj,sd  
Tj,sdh  
dB  
2) fripple = 100 Hz  
ripple = 0.5 Vpp  
V
Overtemperature Shutdown  
Threshold  
151  
200 °C  
2) Tj increasing  
Overtemperature Shutdown  
Threshold Hysteresis  
15  
K
2) Tj decreasing  
1) Measured when the output voltage VQ has dropped 100 mV from the nominal value obtained at VI = 13.5V  
2) Not subject to production test, specified by design  
Data Sheet  
11  
Rev. 1.0, 2016-10-07  
TLS850D0TE  
Block Description and Electrical Characteristics  
Table 5  
Electrical Characteristics Voltage Regulator 3.3 V version  
Tj = -40 °C to +150 °C, VI = 13.5 V, all voltages with respect to ground (unless otherwise specified)  
Typical values are given at Tj = 25 °C  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Number  
Min. Typ. Max.  
Output Voltage Precision  
Output Voltage Precision  
VQ  
VQ  
3.23 3.3  
3.37  
3.37  
18  
V
V
0.05 mA < IQ < 500 mA  
4.23 V < VI < 28 V  
P_5.1.23  
P_5.1.24  
P_5.1.27  
3.23 3.3  
0.05 mA < IQ < 200 mA  
3.72 V < VI < 40 V  
Output Voltage Start-up  
slew rate  
dVQ/dt 3.0  
7.5  
V/ms VI > 18 V/ms  
CQ = 1 µF  
0.33 V < VQ < 2.97 V  
650 1100 mA 0 V < VQ < 3.1 V  
Output Current Limitation  
IQ,max  
501  
P_5.1.29  
P_5.1.31  
Load Regulation  
steady-state  
VQ,load -20  
-1.5  
5
mV  
IQ = 0.05 mA to 500 mA  
VI = 6 V  
Line Regulation  
steady-state  
VQ,line -15  
0
15  
mV  
VI = 8 V to 32 V  
IQ = 5 mA  
P_5.1.33  
P_5.1.36  
P_5.1.37  
P_5.1.38  
P_5.1.39  
P_5.1.40  
Dropout Voltage  
Vdr = VI - VQ  
Vdr  
200 430 mV 1) IQ = 250 mA  
Dropout Voltage  
Vdr = VI - VQ  
Vdr  
80  
63  
175 mV 1) IQ = 100 mA  
Power Supply Ripple Rejection  
PSRR  
Tj,sd  
Tj,sdh  
dB  
2) fripple = 100 Hz  
ripple = 0.5 Vpp  
V
Overtemperature Shutdown  
Threshold  
151  
200 °C  
2) Tj increasing  
Overtemperature Shutdown  
Threshold Hysteresis  
15  
K
2) Tj decreasing  
1) Measured when the output voltage VQ has dropped 100 mV from the nominal value obtained at VI = 13.5V  
2) Not subject to production test, specified by design  
Data Sheet  
12  
Rev. 1.0, 2016-10-07  
TLS850D0TE  
Block Description and Electrical Characteristics  
5.2  
Typical Performance Characteristics Voltage Regulator  
Typical Performance Characteristics  
Output Voltage VQ versus  
Output Voltage VQ versus  
Junction Temperature Tj (3.3 V version)  
Junction Temperature Tj (5 V version)  
3.5  
IQ = 100mA  
IQ = 100mA  
3.45  
3.4  
5.15  
5.1  
5.05  
5
3.35  
3.3  
3.25  
3.2  
4.95  
4.9  
3.15  
3.1  
4.85  
4.8  
0
50  
100  
150  
0
50  
100  
150  
Tj [°C]  
Tj [°C]  
Dropout Voltage Vdr versus  
Dropout Voltage Vdr versus  
Junction Temperature Tj (3.3 V version)  
Junction Temperature Tj (5 V version)  
350  
350  
IQ = 100 mA  
IQ = 100 mA  
IQ = 250 mA  
300  
IQ = 250 mA  
300  
VQ = 3.3 V  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
0
0
−40  
0
50  
Tj [°C]  
100  
150  
−40  
0
50  
Tj [°C]  
100  
150  
Data Sheet  
13  
Rev. 1.0, 2016-10-07  
TLS850D0TE  
Block Description and Electrical Characteristics  
Load Regulation VQ,load versus  
Output Current Change IQ  
Line Regulation VQ,line versus  
Input Voltage VI  
8
0
−2  
IQ = 5 mA  
Tj = −40 o  
Tj = 25 o  
Tj = 150 oC  
C
C
6
4
−4  
−6  
2
−8  
−10  
−12  
0
−2  
−4  
−6  
−8  
−14  
VI = 6 V  
−16  
Tj = −40 o  
C
Tj = 25 o  
Tj = 150 oC  
100 200  
C
−18  
−20  
0
300  
IQ [mA]  
400  
500  
10  
15  
20  
25  
30  
VI [V]  
Output Voltage VQ versus  
Output Voltage VQ versus  
Input Voltage VI (3.3 V version)  
Input Voltage VI (5 V version)  
4
6
Tj = −40 °C  
Tj = −40 °C  
Tj = 25 °C  
Tj = 25 °C  
3.5  
5
Tj = 150 °C  
Tj = 150 °C  
IQ = 100 mA  
3
IQ = 100 mA  
4
2.5  
2
3
2
1
0
1.5  
1
0.5  
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
VI [V]  
VI [V]  
Data Sheet  
14  
Rev. 1.0, 2016-10-07  
TLS850D0TE  
Block Description and Electrical Characteristics  
Power Supply Ripple Rejection PSRR versus  
ripple frequency f  
Output Capacitor Series Resistor ESR(CQ) versus  
Output Current IQ  
80  
103  
VQ = 3.3 V  
VQ = 5 V  
70  
Unstable Region  
102  
60  
50  
40  
30  
101  
Stable Region  
100  
20  
10−1  
IQ = 10 mA  
C
Q = 1 μF  
ripple = 0.5 Vpp  
T = 25 o  
CQ = 1 μF  
10  
V
C
Tj = 25 o  
C
j
0
10−2  
0.05  
10−2  
10−1  
100  
101  
102  
103  
1
10  
IQ [mA]  
100  
500  
f [kHz]  
Maximum Output Current IQ versus  
Input Voltage VI  
Dropout Voltage Vdr versus  
Output Current IQ  
1200  
1000  
800  
500  
VQ = 3.3 V  
450  
VQ = 5 V  
Tj = 25 o  
C
400  
350  
300  
250  
200  
150  
100  
50  
600  
400  
VQ = 0 V  
Tj = −40 oC  
Tj = 25 oC  
Tj = 150 oC  
30  
200  
0
0
0
100  
200  
300  
400  
500  
0
10  
20  
40  
IQ [mA]  
VI [V]  
Data Sheet  
15  
Rev. 1.0, 2016-10-07  
TLS850D0TE  
Block Description and Electrical Characteristics  
5.3  
Current Consumption  
Table 6  
Electrical Characteristics Current Consumption  
Tj = -40 °C to +150 °C, VI = 13.5 V (unless otherwise specified)  
Typical values are given at Tj = 25 °C  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Number  
Min. Typ. Max.  
Current Consumption  
Iq = II  
Iq,off  
Iq,off  
Iq  
1.3  
5
µA  
µA  
µA  
µA  
µA  
V
V
EN = 0 V; Tj < 105 °C  
EN = 0.4 V; Tj < 125 °C  
P_5.3.1  
P_5.3.3  
P_5.3.4  
P_5.3.7  
P_5.3.11  
Current Consumption  
Iq = II  
8
Current Consumption  
Iq = II - IQ  
40  
62  
62  
52  
77  
82  
IQ = 0.05 mA  
Tj = 25 °C  
Current Consumption  
Iq = II - IQ  
Iq  
IQ = 0.05 mA  
Tj < 125 °C  
1) IQ = 500 mA  
Tj < 125 °C  
Current Consumption  
Iq = II - IQ  
Iq  
1) Not subject to production test, specified by design  
Data Sheet  
16  
Rev. 1.0, 2016-10-07  
TLS850D0TE  
Block Description and Electrical Characteristics  
5.4  
Typical Performance Characteristics Current Consumption  
Typical Performance Characteristics  
Current Consumption Iq versus  
Output Current IQ  
Current Consumption Iq versus  
Input Voltage VI  
200  
100  
Tj = 25 o  
C
Tj = −40 °C  
180  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Tj = 25 °C  
Tj = 150 °C  
160  
VEN = 5 V  
IQ = 50 uA  
140  
120  
100  
80  
60  
40  
20  
0
0
100  
200  
300  
400  
500  
5
10  
15  
20  
VI [V]  
25  
30  
35  
40  
IQ [mA]  
Data Sheet  
17  
Rev. 1.0, 2016-10-07  
TLS850D0TE  
Block Description and Electrical Characteristics  
5.5  
Enable  
The TLS850D0TE can be switched on and off by the Enable feature: Connect a HIGH level as specified below  
(e.g. the battery voltage) to pin EN to enable the device; connect a LOW level as specified below (e.g. GND) to  
shut it down. The enable has a built in hysteresis to avoid toggling between ON/OFF state, if signals with slow  
slopes are applied to the EN input.  
Table 7  
Electrical Characteristics Enable  
Tj = -40 °C to +150 °C, VI = 13.5 V, all voltages with respect to ground (unless otherwise specified)  
Typical values are given at Tj = 25 °C  
Parameter  
Symbol  
Values  
Unit  
Note / Test Condition  
Number  
Min. Typ. Max.  
High Level Input Voltage  
Low Level Input Voltage  
Enable Threshold Hysteresis  
High Level Input Current  
High Level Input Current  
VEN,H  
VEN,L  
VEN,Hy  
IEN,H  
2
V
VQ settled  
VQ 0.1 V  
P_5.5.1  
P_5.5.2  
P_5.5.3  
P_5.5.4  
P_5.5.6  
P_5.5.7  
0.8  
V
100  
mV  
µA  
µA  
MΩ  
3.5  
22  
2.6  
V
V
EN = 3.3 V  
IEN,H  
EN 18 V  
Enable internal pull-down resistor REN  
0.95 1.5  
Data Sheet  
18  
Rev. 1.0, 2016-10-07  
TLS850D0TE  
Block Description and Electrical Characteristics  
5.6  
Typical Performance Characteristics Enable  
Typical Performance Characteristics  
Input Current IIN versus  
Input Voltage VIN (condition: VEN = 0 V)  
Enabled Input Current IEN versus  
Enabled Input Voltage VEN  
30  
50  
Tj = −40 °C  
Tj = −40 °C  
45  
Tj = 25 °C  
Tj = 25 °C  
25  
Tj = 150 °C  
Tj = 150 °C  
40  
35  
30  
25  
20  
15  
10  
5
VEN = 0V  
20  
15  
10  
5
0
0
0
10  
20  
30  
40  
0
10  
20  
30  
40  
VIN [V]  
VEN [V]  
Output Voltage VQ versus  
Output Voltage VQ versus  
time (EN switched ON, 5 V version)  
time (EN switched ON, 3.3 V version)  
6
6
5
4
3
2
5
4
3
2
IQ = 100 mA  
Tj = −40 °C  
IQ = 100 mA  
Tj = −40 °C  
Tj = 25 °C  
Tj = 150 °C  
VEN  
Tj = 25 °C  
Tj = 150 °C  
VEN  
1
0
1
0
0
500  
1000  
t [us]  
1500  
2000  
0
500  
1000  
t [us]  
1500  
2000  
Data Sheet  
19  
Rev. 1.0, 2016-10-07  
TLS850D0TE  
Block Description and Electrical Characteristics  
5.7  
Reset  
The TLS850D0TE’s output voltage is supervised by the Reset feature, including Undervoltage Reset and delayed  
Reset at Power-On.  
The Undervoltage Reset function sets the pin RO to LOW, in case VQ is falling for any reason below the Reset  
Threshold VRT,low  
.
When the regulator is powered on, the pin RO is held at LOW for the duration of the Power-On Reset Delay Time  
trd.  
Supply  
I
Q
VDD  
RRO,int  
CQ  
Control  
RO  
Reset  
S
R
IRO  
Reference  
Q
OR  
Micro-  
Controller  
Timer  
GND  
GND  
Figure 6  
Block Diagram Reset Circuit  
Reset Delay Time  
The Reset Delay Time trd is fix defined according to Table 8.  
Table 8  
Reset DelayTime  
Reset delay timing  
trd  
fix  
16.5 ms  
Power-On Reset Delay Time  
The power-on reset delay time is defined by the parameter trd and allows a microcontroller and oscillator to start  
up. This delay time is the time period from exceeding the upper reset switching threshold VRT,high until the reset is  
released by switching the reset output “RO” from “LOW” to “HIGH”.  
Undervoltage Reset Delay Time  
Unlike the power-on reset delay time, the undervoltage reset delay time is defined by the parameter trd and  
considers an output undervoltage event where the output voltage VQ trigger the VRT,low threshold.  
Reset Blanking Time  
The reset blanking time trr,blank avoids that short undervoltage spikes trigger an unwanted reset “low” signal.  
Data Sheet  
20  
Rev. 1.0, 2016-10-07  
TLS850D0TE  
Block Description and Electrical Characteristics  
Reset Reaction Time  
In case the output voltage of the regulator drops below the output undervoltage lower reset threshold VRT,low, the  
reset output “RO” is set to low, after the delay of the internal reset reaction time trr,int. The reset blanking time trr,blank  
is part of the reset reaction time trr,int  
.
Reset Output “RO”  
The reset output “RO” is an open collector output with an integrated pull-up resistor. In case a lower-ohmic “RO”  
signal is desired, an external pull-up resistor can be connected to the output “Q”. Since the maximum “RO” sink  
current is limited, the minimum value of the optional external resistor “RRO,ext” is given in Table “Reset Output  
RO” on Page 22.  
Reset Output “RO” Low for VQ 1 V  
In case of an undervoltage reset condition reset output “RO” is held “low” for VQ 1 V, even if the input “I” is not  
supplied and the voltage VI drops below 1 V. This is achieved by supplying the reset circuit from the output  
capacitor.  
VI  
t
t < trr,blank  
VQ  
VRH  
VRT,high  
VRT,low  
1 V  
t
trd  
trr,int  
trd  
trr,int  
trd  
trr,int  
VRO  
trd  
1V  
VRO,low  
t
Thermal  
Shutdown  
Input  
Voltage Dip  
Under-  
voltage  
Spike at Over-  
output load  
Figure 7  
Typical Timing Diagram Reset  
Data Sheet  
21  
Rev. 1.0, 2016-10-07  
TLS850D0TE  
Block Description and Electrical Characteristics  
Table 9  
Electrical Characteristics Reset  
Tj = -40 °C to +150 °C, VI = 13.5 V, all voltages with respect to ground (unless otherwise specified)  
Typical values are given at Tj = 25 °C  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Number  
Min. Typ. Max.  
Output Undervoltage Reset 5V Version only  
Output Undervoltage Reset Upper VRT,high  
Switching Threshold  
4.6  
4.5  
60  
4.7  
4.6  
100  
4.8  
4.7  
V
VQ increasing  
P_5.7.1  
P_5.7.2  
P_5.7.3  
P_5.7.4  
Output Undervoltage Reset Lower VRT,low  
Switching Threshold - Default  
V
VQ decreasing  
Output Undervoltage Reset  
Switching Hysteresis  
VRT,hy  
VRH  
mV  
mV  
Output Undervoltage Reset  
200 400  
Headroom VQ - VRT  
Output Undervoltage Reset 3V3 Version only  
Output Undervoltage Reset Upper VRT,high  
Switching Threshold  
3.08 3.15 3.22  
V
VQ increasing  
P_5.7.5  
P_5.7.6  
P_5.7.7  
P_5.7.8  
Output Undervoltage Reset Lower VRT,low  
Switching Threshold - Default  
3.0  
60  
3.05 3.13  
V
VQ decreasing  
Output Undervoltage Reset  
Switching Hysteresis  
VRT,hy  
VRH  
100  
mV  
mV  
Output Undervoltage Reset  
100 250  
Headroom VQ - VRT  
Reset Output RO  
Reset Output Low Voltage  
VRO,low  
0.2  
0.4  
V
1 V VQ VRT;  
P_5.7.40  
R
RO 5.1 kΩ  
Reset Output  
Internal Pull-Up Resistor  
RRO,int  
RRO,ext  
13  
20  
36  
kΩ  
kΩ  
internally connected to Q P_5.7.41  
Reset Output External  
Pull-up Resistor to VQ  
5.1  
1 V VQ VRT  
RO 0.4 V  
;
P_5.7.42  
V
Reset Delay Timing  
Reset Delay Time  
trd  
13.2 16.5 19.8 ms  
Fixed Timing  
P_5.7.44  
P_5.7.22  
P_5.7.46  
P_5.7.23  
P_5.7.36  
Reset blanking time  
trr,blank  
trr,blank  
trr,int  
6
µs  
µs  
µs  
µs  
1) for VQ,nom = 3.3 V  
2) for VQ,nom = 5 V  
for VQ,nom = 3.3 V  
for VQ,nom = 5 V  
Reset blanking time  
7
Internal Reset Reaction Time  
Internal Reset Reaction Time  
7
20  
33  
trr,int  
10  
1) Not subject to production test, specified by design.  
2) Not subject to production test, specified by design.  
Data Sheet  
22  
Rev. 1.0, 2016-10-07  
TLS850D0TE  
Block Description and Electrical Characteristics  
5.8  
Typical Performance Characteristics Reset  
Typical Performance Characteristics  
Undervoltage Reset Threshold VRT versus  
Junction Temperature Tj (3.3 V version)  
Undervoltage Reset Threshold VRT versus  
Junction Temperature Tj (5 V version)  
3.5  
3.4  
3.3  
3.2  
3.1  
3
5
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
4.3  
2.9  
2.8  
IQ = 1 mA  
IQ = 1 mA  
2.7  
4.2  
V
Q = 3.3 V  
VRT, high  
VRT, low  
V
Q = 5 V  
VRT, high  
VRT, low  
2.6  
2.5  
4.1  
4
0
50  
100  
150  
0
50  
100  
150  
Tj [°C]  
Tj [°C]  
Power On Reset Delay Time trd versus  
Junction Temperature Tj  
Internal Reset Reaction Time trr,int versus  
Junction Temperature Tj  
20  
25  
20  
15  
10  
5
VQ = 3.3 V  
VQ = 5 V  
18  
16  
14  
12  
10  
8
6
4
2
0
−40  
0
50  
100  
150  
0
50  
Tj [°C]  
100  
150  
Tj [°C]  
Data Sheet  
23  
Rev. 1.0, 2016-10-07  
TLS850D0TE  
Application Information  
6
Application Information  
6.1  
Application Diagram  
Note:The following information is given as a hint for the implementation of the device only and shall not be  
regarded as a description or warranty of a certain functionality, condition or quality of the device.  
Supply  
Regulated Output Voltage  
I
Q
Load  
e. g.  
Micro  
Controller  
XC22xx  
DI1  
Current  
Limitation  
RO  
Reset  
EN  
DI2  
CI2  
CI1  
CQ  
1µF  
100nF  
<45V  
47µF  
Enable  
Bandgap  
Reference  
Temperature  
Shutdown  
GND  
GND  
e.g. Ignition  
Figure 8  
Application Diagram  
Note:This is a very simplified example of an application circuit. The function must be verified in the real application.  
6.2  
Selection of External Components  
6.2.1  
Input Pin  
The typical input circuitry for a linear voltage regulator is shown in the application diagram above.  
A ceramic capacitor at the input, in the range of 100 nF to 470 nF, is recommended to filter out the high frequency  
disturbances imposed by the line e.g. ISO pulses 3a/b. This capacitor must be placed very close to the input pin  
of the linear voltage regulator on the PCB.  
An aluminum electrolytic capacitor in the range of 10 µF to 470 µF is recommended as an input buffer to smooth  
out high energy pulses, such as ISO pulse 2a. This capacitor should be placed close to the input pin of the linear  
voltage regulator on the PCB.  
An overvoltage suppressor diode can be used to further suppress any high voltage beyond the maximum rating  
of the linear voltage regulator and protect the device against any damage due to over-voltage.  
The external components at the input are not mandatory for the operation of the voltage regulator, but they are  
recommended in case of possible external disturbances.  
6.2.2  
Output Pin  
An output capacitor is mandatory for the stability of linear voltage regulators.  
The requirement to the output capacitor is given in “Functional Range” on Page 8. The graph “Output  
Capacitor Series Resistor ESR(CQ) versus Output Current IQ” on Page 15 shows the stable operation range  
of the device.  
Data Sheet  
24  
Rev. 1.0, 2016-10-07  
TLS850D0TE  
Application Information  
TLS850D0TE is designed to be also stable with low ESR capacitors. According to the automotive requirements,  
ceramic capacitors with X5R or X7R dielectrics are recommended.  
The output capacitor should be placed as close as possible to the regulator’s output and GND pins and on the  
same side of the PCB as the regulator itself.  
In case of rapid transients of input voltage or load current, the capacitance should be dimensioned in accordance  
and verified in the real application that the output stability requirements are fulfilled.  
6.3  
Thermal Considerations  
Knowing the input voltage, the output voltage and the load profile of the application, the total power dissipation  
can be calculated:  
PD = (VI - VQ) × IQ + VI × Iq  
(1)  
with  
PD: continuous power dissipation  
VI : input voltage  
VQ: output voltage  
IQ: output current  
Iq: quiescent current  
The maximum acceptable thermal resistance RthJA can then be calculated:  
RthJA,max = ( Tj,max - Ta ) / PD  
(2)  
with  
T
j,max: maximum allowed junction temperature  
Ta: ambient temperature  
Based on the above calculation the proper PCB type and the necessary heat sink area can be determined with  
reference to the specification in “Thermal Resistance” on Page 9.  
Example  
Application conditions:  
VI = 13.5 V  
VQ = 5 V  
IQ = 175 mA  
Ta = 85 °C  
Calculation of RthJA,max  
:
PD = (VI VQ) × IQ + VI × Iq  
= (13.5 V – 5 V) × 175 mA  
= 1.487 W  
(VI × Iq can be neglected because of very low Iq)  
RthJA,max = (Tj,max Ta) / PD  
= (150 °C – 85 °C) / 1.487 W = 43.71 K/W  
Data Sheet  
25  
Rev. 1.0, 2016-10-07  
TLS850D0TE  
Application Information  
As a result, the PCB design must ensure a thermal resistance RthJA lower than 43.71 K/W. According to “Thermal  
Resistance” on Page 9, at least 600 mm2 heatsink area is needed on the FR4 1s0p PCB, or the FR4 2s2p board  
can be used to ensure a proper cooling for the TLS850D0TE in package.  
6.4  
Reverse Polarity Protection  
TLS850D0TE is not self protected against reverse polarity faults and must be protected by external components  
against negative supply voltage. An external reverse polarity diode is needed. The absolute maximum ratings of  
the device as specified in “Absolute Maximum Ratings” on Page 7 must be kept.  
6.5  
Further Application Information  
For further information you may contact http://www.infineon.com/  
Data Sheet  
26  
Rev. 1.0, 2016-10-07  
TLS850D0TE  
Package Outlines  
7
Package Outlines  
+0.15  
-0.05  
6.5  
A
+0.05  
-0.10  
5.7 MAX.1)  
2.3  
+0.08  
-0.04  
B
(5)  
0.5  
+0.20  
-0.01  
0.9  
0...0.15  
0.15 MAX.  
per side  
+0.08  
±0.1  
5 x 0.6  
1.14  
0.5  
-0.04  
0.1 B  
4.56  
M
0.25  
A B  
1) Includes mold flashes on each side.  
All metal surfaces tin plated, except area of cut.  
Figure 9  
PG-TO252-5  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with  
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e  
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further information on alternative packages, please visit our website:  
http://www.infineon.com/packages.  
Dimensions in mm  
Data Sheet  
27  
Rev. 1.0, 2016-10-07  
TLS850D0TE  
Revision History  
8
Revision History  
Revision  
Date  
Changes  
Data Sheet - Initial version  
1.0  
2016-10-07  
Data Sheet  
28  
Rev. 1.0, 2016-10-07  
Trademarks of Infineon Technologies AG  
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™,  
EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, LITIX™, MIPAQ™,  
ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™,  
ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SPOC™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.  
Other Trademarks  
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited,  
UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of  
Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay  
Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association  
Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc.  
MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA  
MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave  
Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of  
Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc.  
TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas  
Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.  
Last Trademarks Update 2011-11-11  
www.infineon.com  
Edition 2016-10-07  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
Legal Disclaimer  
The information given in this document shall in  
no event be regarded as  
Warnings  
Due to technical requirements, components  
may contain dangerous substances. For  
information on the types in question, please  
contact the nearest Infineon Technologies  
Office. Infineon Technologies components may  
be used in life-support devices or systems only  
with the express written approval of Infineon  
Technologies, if a failure of such components  
can reasonably be expected to cause the failure  
of that life-support device or system or to affect  
the safety or effectiveness of that device or  
system. Life support devices or systems are  
intended to be implanted in the human body or  
to support and/or maintain and sustain and/or  
protect human life. If they fail, it is reasonable to  
assume that the health of the user or other  
persons may be endangered.  
a guarantee of  
conditions or characteristics. With respect to any  
examples or hints given herein, any typical  
values stated herein and/or any information  
regarding the application of the device, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation, warranties of non-  
infringement of intellectual property rights of  
any third party.  
© 2016 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Information  
For further information on technology, delivery  
terms and conditions and prices, please contact  
the nearest Infineon Technologies Office  
(www.infineon.com).  

相关型号:

TLS850D0TEV33

Low Dropout Linear Voltage Regulator
INFINEON

TLS850D0TEV50

Low Dropout Linear Voltage Regulator
INFINEON

TLS850D0TEV50ATMA1

Fixed Positive LDO Regulator, 5V, 0.425V Dropout, PSFM5, TO-252 , 5 PIN
INFINEON

TLS850F0TA V33

TLS850F0TAV33 是一款高性能的极低压差线性稳压器,采用 PGTO263-7 封装,适用于 3.3 V 电源。这些稳压器的输入电压范围为 3 V 至 40 V,静态电流极低(仅 40μA),非常适合汽车或永久连接电池的任何其他电源系统。TLS850F0TAV33 的输出电压精度为 2%,最大输出电流高达 500 mA。新的回路概念结合了快速调节和非常好的稳定性,输出端只需要一个 1μF 的小型陶瓷电容即可。在低于 100 mA 的电流下,该设备的典型压差非常低,仅 80 mV。工作范围从仅 3 V 的输入电压开始(扩展工作范围)。因此,TLS850F0TAV33 也适用于需要在启动条件下运行的汽车系统。
INFINEON

TLS850F0TAV33

Fixed Positive LDO Regulator, 3.3V, 0.43V Dropout, PSSO7, GREEN, PLASTIC, TO-263, 7 PIN
INFINEON

TLS850F0TAV33ATMA1

Fixed Positive LDO Regulator, 3.3V, 0.43V Dropout, PSSO7, GREEN, PLASTIC, TO-263, 7 PIN
INFINEON

TLS850F0TAV50

Fixed Positive LDO Regulator, 5V, 0.425V Dropout, PSSO7, GREEN, PLASTIC, TO-263, 7 PIN
INFINEON

TLS850F0TAV50ATMA1

Fixed Positive LDO Regulator, 5V, 0.425V Dropout, PSSO7, GREEN, PLASTIC, TO-263, 7 PIN
INFINEON
INFINEON

TLS857J008C1F

CAPACITOR, TANTALUM, NON SOLID, POLARIZED, 8V, 850uF, THROUGH HOLE MOUNT, AXIAL LEADED
VISHAY

TLS857M008C1F

CAPACITOR, TANTALUM, NON SOLID, POLARIZED, 8V, 850uF, THROUGH HOLE MOUNT, AXIAL LEADED
VISHAY

TLS866J100C1F

CAPACITOR, TANTALUM, NON SOLID, POLARIZED, 100V, 86uF, THROUGH HOLE MOUNT, AXIAL LEADED
VISHAY