TLT9251VLE [INFINEON]

AEC-Q100 Grade 0;
TLT9251VLE
型号: TLT9251VLE
厂家: Infineon    Infineon
描述:

AEC-Q100 Grade 0

文件: 总30页 (文件大小:1029K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLT9251VLE  
High Speed CAN FD Transceiver  
1
Overview  
Features  
Fully compliant to ISO 11898-2 (2016) and SAE J2284-4/-5  
PG-TSON-8  
Infineon automotive quality  
AEC-Q100 Grade 0 (Ta: -40°C to +150°C) qualification for high temperature mission profiles  
Guaranteed loop delay symmetry for CAN FD data frames up to 5 MBit/s  
Very low electromagnetic emission (EME) allows the use without additional common mode choke  
V
IO input for voltage adaption to the µC interface (3.3V & 5V)  
Bus Wake-up Pattern (WUP) function with optimized filter time (0.5µs -1.8µs) for worldwide OEM usage  
Stand-by mode with minimized quiescent current  
Transmitter supply VCC can be turned off in Stand-by Mode for additional quiescent current savings  
Wake-up indication on the RxD output  
Wide common mode range for electromagnetic immunity (EMI)  
Excellent ESD robustness +/-8kV (HBM) and +/-11kV (IEC 61000-4-2)  
Extended supply range on the VCC and VIO supply  
CAN short circuit proof to ground, battery, VCC and VIO  
TxD time-out function  
Very low CAN bus leakage current in power-down state  
Overtemperature protection  
Protected against automotive transients according ISO 7637 and SAE J2962-2 standards  
Green Product (RoHS compliant)  
Small, leadless TSON8 package designed for automated optical inspection (AOI)  
Potential applications  
Car powertrain and transmission applications  
Gateway Modules  
Body Control Modules (BCM)  
Engine Control Unit (ECUs)  
Datasheet  
1
Rev. 1.0  
2019-10-08  
www.infineon.com/automotive-transceiver  
High Speed CAN FD Transceiver  
TLT9251VLE  
Overview  
Product validation  
Qualified for automotive applications with higher temperature requirements as well as with extended lifetime  
requirements. Product validation according to AEC-Q100.  
Description  
Type  
Package  
Marking  
TLT9251VLE  
PG-TSON-8  
T9251V  
The TLT9251VLE is the latest Infineon high-speed CAN transceiver generation, used inside HS CAN networks  
for automotive and also for industrial applications. It is designed to fulfill the requirements of ISO 11898-2  
(2016) physical layer specification and respectively also the SAE standards J1939 and J2284.  
The TLT9251VLE is available in a small, leadless PG-TSON-8 package. The PG-TSON-8 package supports the  
solder joint requirements for automated optical inspection (AOI)and is RoHS compliant and halogen free.  
As an interface between the physical bus layer and the HS CAN protocol controller, the TLT9251VLE protects  
the microcontroller against interferences generated inside the network. A very high ESD robustness and the  
perfect RF immunity allows the use in automotive applications without adding additional protection devices,  
like suppressor diodes for example.  
While the transceiver TLT9251VLE is not supplied the bus is switched off and illustrates an ideal passive  
behavior with the lowest possible load to all other subscribers of the HS CAN network.  
Based on the high symmetry of the CANH and CANL output signals, the TLT9251VLE provides a very low level  
of electromagnetic emission (EME) within a wide frequency range. The TLT9251VLE fulfills even stringent EMC  
test limits without additional external circuit, like a common mode choke for example.  
The perfect transmitter symmetry combined with the optimized delay symmetry of the receiver enables the  
TLT9251VLE to support CAN FD data frames. Depending on the size of the network and the along coming  
parasitic effects the device supports bit rates up to 5 MBit/s.  
Dedicated low-power modes, like Stand-by mode provide very low quiescent currents while the device is  
powered up. In Stand-by mode the typical quiescent current on VIO is below 10 µA while the device can still be  
woken up by a bus signal on the HS CAN bus.  
Fail-safe features like overtemperature protection, output current limitation or the TxD time-out feature  
protect the TLT9251VLE and the external circuitry from irreparable damage.  
Datasheet  
2
Rev. 1.0  
2019-10-08  
High Speed CAN FD Transceiver  
TLT9251VLE  
Table of contents  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2
3
3.1  
3.2  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
4
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4.1  
4.2  
4.3  
5
High-speed CAN functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
5.1  
High-speed CAN physical layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
6
Modes of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Normal-operating mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Forced-receive-only mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Stand-by mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Power-down state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
6.1  
6.2  
6.3  
6.4  
7
Changing the mode of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Power-up and power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Mode change by the STB pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Mode changes by VCC undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Remote wake-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
7.1  
7.2  
7.3  
7.4  
8
Fail safe functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Short circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Unconnected logic pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
TxD time-out function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Overtemperature protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Delay time for mode change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
8.1  
8.2  
8.3  
8.4  
8.5  
9
9.1  
9.2  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Functional device characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
10  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
ESD robustness according to IEC61000-4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Voltage adaption to the microcontroller supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Further application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
10.1  
10.2  
10.3  
10.4  
11  
12  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Datasheet  
3
Rev. 1.0  
2019-10-08  
High Speed CAN FD Transceiver  
TLT9251VLE  
Block diagram  
2
Block diagram  
3
5
VCC  
VIO  
Transmitter  
7
1
8
TxD  
STB  
CANH  
CANL  
Timeout  
Driver  
Temp-  
Protection  
6
Mode  
Control  
Receiver  
Normal-mode Receiver  
4
Mux  
RxD  
Wake-Logic  
& Filter  
Low-power Receiver  
GND  
VCC/2  
=
VIO  
N.C.  
Bus-biasing  
GND  
2
Figure 1  
Functional block diagram  
Datasheet  
4
Rev. 1.0  
2019-10-08  
High Speed CAN FD Transceiver  
TLT9251VLE  
Pin configuration  
3
Pin configuration  
3.1  
Pin assignment  
STB  
CANH  
CANL  
1
8
TxD  
GND  
VCC  
2
7
PAD  
3
4
6
5
RxD  
VIO  
(Top-side x-ray view)  
Figure 2  
Pin configuration  
3.2  
Pin definitions  
Table 1  
Pin No.  
1
Pin definitions and functions  
Symbol  
Function  
TxD  
Transmit Data Input;  
Internal pull-up to VIO, “low” for dominant state.  
2
3
GND  
Ground  
VCC  
Transmitter Supply Voltage;  
100 nF decoupling capacitor to GND required,  
V
CC can be turned off in stand-by mode.  
4
5
RxD  
Receive Data Output;  
“low” in dominant state.  
VIO  
Digital Supply Voltage;  
Supply voltage input to adapt the logical input and output voltage levels of the  
transceiver to the microcontroller supply.  
Supply for the low-power receiver.  
100 nF decoupling capacitor to GND required.  
6
CANL  
CANH  
STB  
CAN Bus Low Level I/O;  
“low” in dominant state.  
7
CAN Bus High Level I/O;  
“high” in dominant state.  
8
Stand-by Input;  
Internal pull-up to VIO, “low” for Normal-operating mode.  
PAD  
Connect to PCB heat sink area.  
Do not connect to other potential than GND.  
Datasheet  
5
Rev. 1.0  
2019-10-08  
High Speed CAN FD Transceiver  
TLT9251VLE  
General product characteristics  
4
General product characteristics  
4.1  
Absolute maximum ratings  
Table 2  
Absolute maximum ratings voltages, currents and temperatures1)  
All voltages with respect to ground; positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Voltages  
Transmitter supply voltage  
Digital supply voltage  
VCC  
-0.3  
-0.3  
-40  
6.0  
6.0  
40  
V
V
V
P_8.1.1  
P_8.1.2  
P_8.1.3  
VIO  
CANH and CANL DC voltage  
versus GND  
VCANH  
Differential voltage between VCAN_Diff  
CANH and CANL  
-40  
40  
V
V
P_8.1.4  
P_8.1.5  
P_8.1.6  
Voltages at the digital I/O pins: VMAX_IO1  
STB, RxD, TxD  
-0.3  
-0.3  
6.0  
Voltages at the digital I/O pins: VMAX_IO2  
VIO + 0.3 V  
STB, RxD, TxD  
Currents  
RxD output current  
Temperatures  
IRxD  
-5  
5
mA  
P_8.1.7  
Junction temperature  
Storage temperature  
ESD Resistivity  
Tj  
-40  
-55  
160  
150  
°C  
°C  
P_8.1.8  
P_8.1.9  
TS  
ESD immunity at CANH, CANL VESD_HBM_CAN -8  
versus GND  
8
kV  
kV  
V
HBM  
P_8.1.11  
P_8.1.12  
P_8.1.13  
(100 pF via 1.5 k)2)  
ESD immunity at all other pins VESD_HBM_ALL -2  
2
HBM  
(100 pF via 1.5 k)2)  
ESD immunity all pins  
VESD_CDM  
-750  
750  
CDM3)  
1) Not subject to production test, specified by design  
2) ESD susceptibility, Human Body Model “HBM” according to ANSI/ESDA/JEDEC JS-001  
3) ESD susceptibility, Charge Device Model “CDM” according to EIA/JESD22-C101 or ESDA STM5.3.1  
Note:  
Stresses above the ones listed here may cause permanent damage to the device. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability. Integrated  
protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal-operating range. Protection  
functions are not designed for continuos repetitive operation.  
Datasheet  
6
Rev. 1.0  
2019-10-08  
High Speed CAN FD Transceiver  
TLT9251VLE  
General product characteristics  
4.2  
Functional range  
Table 3  
Functional range  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Supply Voltages  
Transmitter supply voltage  
Digital supply voltage  
Thermal Parameters  
Junction temperature  
VCC  
VIO  
4.5  
3.0  
5.5  
5.5  
V
V
P_8.2.1  
P_8.2.2  
1)  
Tj  
-40  
150  
°C  
P_8.2.3  
1) Not subject to production test, specified by design.  
Note:  
Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics  
table.  
4.3  
Thermal resistance  
Note:  
This thermal data was generated in accordance with JEDEC JESD51 standards. For more  
information, please visit www.jedec.org.  
Table 4  
Thermal resistance1)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Thermal Resistances  
2)  
Junction to Ambient  
PG-TSON-8  
RthJA_TSON8  
65  
K/W  
P_8.3.1  
Thermal Shutdown (junction temperature)  
Thermal shutdown temperature,  
rising  
TJSD  
170  
5
180  
10  
190  
20  
°C  
K
temperature  
falling: Min. 150°C  
P_8.3.3  
P_8.3.4  
Thermal shutdown hysteresis  
T  
1) Not subject to production test, specified by design  
2) Specified RthJA value is according to Jedec JESD51-2,-7 at natural convection on FR4 2s2p board. The product  
(TLT9251VLE) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu)  
Datasheet  
7
Rev. 1.0  
2019-10-08  
High Speed CAN FD Transceiver  
TLT9251VLE  
High-speed CAN functional description  
5
High-speed CAN functional description  
HS CAN is a serial bus system that connects microcontrollers, sensors and actuators for real-time control  
applications. The use of the Controller Area Network (abbreviated CAN) within road vehicles is described by  
the international standard ISO 11898. According to the 7-layer OSI reference model the physical layer of a  
HS CAN bus system specifies the data transmission from one CAN node to all other available CAN nodes within  
the network. The physical layer specification of a CAN bus system includes all electrical specifications of a CAN  
network. The CAN transceiver is part of the physical layer specification. Several different physical layer  
standards of CAN networks have been developed in recent years. The TLT9251VLE is a high-speed CAN  
transceiver with a dedicated bus wake-up function as defined in the latest ISO 11898-2 HS CAN standard.  
5.1  
High-speed CAN physical layer  
VIO  
=
=
Digital supply voltage  
Transmitter supply voltage  
Transmit data input from  
the microcontroller  
TxD  
VCC  
TxD  
VIO  
=
RxD  
=
Receive data output to  
the microcontroller  
CANH =  
CANL =  
Bus level on the CANH  
input/output  
t
t
Bus level on the CANL  
input/output  
CANH  
CANL  
VDiff  
=
Differential voltage  
VCC  
between CANH and CANL  
VDiff = VCANH VCANL  
VDiff  
VCC  
“dominant” receiver threshold  
“recessive” receiver threshold  
t
RxD  
VIO  
tLoop(H,L)  
tLoop(L,H)  
t
Figure 3  
High-speed CAN bus signals and logic signals  
Datasheet  
8
Rev. 1.0  
2019-10-08  
High Speed CAN FD Transceiver  
TLT9251VLE  
High-speed CAN functional description  
The TLT9251VLE is a high-speed CAN transceiver, operating as an interface between the CAN controller and  
the physical bus medium. A HS CAN network is a two wire, differential network which allows data transmission  
rates up to 5 MBit/s. The characteristic for a HS CAN network are the two signal states on the CAN bus:  
dominant and recessive (see Figure 3).  
The CANH and CANL pins are the interface to the CAN bus and both pins operate as an input and output. The  
RxD and TxD pins are the interface to the microcontroller. The pin TxD is the serial data input from the CAN  
controller, the RxD pin is the serial data output to the CAN controller. As shown in Figure 1, the HS CAN  
transceiver TLT9251VLE includes a receiver and a transmitter unit, allowing the transceiver to send data to the  
bus medium and monitor the data from the bus medium at the same time. The HS CAN transceiver  
TLT9251VLE converts the serial data stream which is available on the transmit data input TxD, into a  
differential output signal on the CAN bus, provided by the CANH and CANL pins. The receiver stage of the  
TLT9251VLE monitors the data on the CAN bus and converts them to a serial, single-ended signal on the RxD  
output pin. A logical “low” signal on the TxD pin creates a dominant signal on the CAN bus, followed by a  
logical “low” signal on the RxD pin (see Figure 3). The feature, broadcasting data to the CAN bus and listening  
to the data traffic on the CAN bus simultaneously is essential to support the bit-to-bit arbitration within CAN  
networks.  
The voltage levels for HS CAN transceivers are defined in ISO 11898-2. Whether a data bit is dominant or  
recessive depends on the voltage difference between the CANH and CANL pins:  
VDiff = VCANH - VCANL.  
To transmit a dominant signal to the CAN bus the amplitude of the differential signal VDiff is higher than or  
equal to 1.5 V. To receive a recessive signal from the CAN bus the amplitude of the differential VDiff is lower than  
or equal to 0.5 V.  
“Partially-supplied” high-speed CAN networks are those where the CAN bus nodes of one common network  
have different power supply conditions. Some nodes are connected to the common power supply, while other  
nodes are disconnected from the power supply and in power-down state. Regardless of whether the CAN bus  
subscriber is supplied or not, each subscriber connected to the common bus media must not interfere in the  
communication. The TLT9251VLE is designed to support “partially-supplied” networks. In power-down state,  
the receiver input resistors are switched off and the transceiver input has a high resistance.  
For permanently supplied ECU's, the HS CAN transceiver TLT9251VLE provides a Stand-by mode. In Stand-by  
mode, the power consumption of the TLT9251VLE is optimized to a minimum, while the device is still able to  
recognize wake-up patterns on the CAN bus and signal the wake-up event to the external microcontroller.  
The voltage level on the digital input TxD and the digital output RxD is determined by the power supply level  
at the VIO pin. Depending on the voltage level at the VIO pin, the signal levels on the logic pins (STB, TxD and  
RxD) are compatible with microcontrollers having a 5 V or 3.3 V I/O supply. Usually the digital power supply VIO  
of the transceiver is connected to the I/O power supply of the microcontroller (see Figure 18).  
Datasheet  
9
Rev. 1.0  
2019-10-08  
High Speed CAN FD Transceiver  
TLT9251VLE  
Modes of operation  
6
Modes of operation  
The TLT9251VLE supports three different modes of operation (see Figure 4 and Table 5):  
Normal-operating mode  
Stand-by mode  
Forced-receive-only mode  
Mode changes are either triggered by the mode selection input pin STB or by an undervoltage event on the  
transmitter supply VCC. Wake-up events on the HS CAN bus are indicated on the RxD output pin in Stand-by  
mode, but no mode change is triggered by a wake-up event. An undervoltage event on the digital supply VIO  
powers down the TLT9251VLE.  
Normal-operating  
mode  
VIO “on”  
VCC “on”  
STB “0”  
VIO “on”  
VCC “on”  
STB “0”  
STB VCC  
VIO  
0
“on” “on”  
VIO “on”  
VCC “off”  
STB “0”  
VIO “on”  
VCC “on”  
STB “0”  
Forced-  
receive-only  
mode  
Power-down  
state  
VIO “on”  
VCC “off”  
STB “0”  
STB VCC  
VIO  
STB VCC  
VIO  
“X”  
“X”  
“off”  
0
“off” “on”  
VIO “on”  
VCC “X”  
STB “1”  
VIO “on”  
VCC “X”  
STB “1”  
Stand-by  
mode  
VIO “on”  
VCC “X”  
STB “1”  
STB VCC  
“X”  
VIO  
1
“on”  
Figure 4  
Mode state diagram  
Modes of operation  
Table 5  
Mode  
STB  
VIO VCC Bus Bias Transmitter Normal-mode Low-power  
Receiver  
Receiver  
Normal-operating  
Forced-receive-only  
Stand-by  
“low” “on” “on” VCC/2  
“low” “on” “off” GND  
“high” “on” “X” GND  
“on”  
“off”  
“off”  
“on”  
“off”  
“on”  
“off”  
“off”  
“on”  
Power-down state  
“X”  
“off” “X” floating “off”  
“off”  
“off”  
Datasheet  
10  
Rev. 1.0  
2019-10-08  
High Speed CAN FD Transceiver  
TLT9251VLE  
Modes of operation  
6.1  
Normal-operating mode  
In Normal-operating mode the transceiver TLT9251VLE sends and receives data from the HS CAN bus. All  
functions are active (see also Figure 4 and Table 5):  
The transmitter is active and drives the serial data stream on the TxD input pin to the bus pins CANH and  
CANL.  
The normal-mode receiver is active and converts the signals from the bus to a serial data stream on the RxD  
output.  
The low-power receiver is turned off.  
The RxD output pin indicates the data received by the normal-mode receiver.  
The bus biasing is connected to VCC/2.  
The STB input pin is active and changes the mode of operation.  
The TxD time-out function is enabled and disconnects the transmitter in case a time-out is detected.  
The overtemperature protection is enabled and disconnects the transmitter in case an overtemperature is  
detected.  
The undervoltage detection on VCC is enabled and triggers a mode change to Forced-receive-only in case  
an undervoltage event is detected.  
The undervoltage detection on VIO is enabled and powers down the device in case of detection.  
Normal-operating mode is entered from Stand-by mode and Forced-receive-only mode, when the STB input  
pin is set to logical “low”.  
Normal-operating mode can only be entered when all supplies are available:  
The transmitter supply VCC is available (VCC > VCC(UV,R)).  
The digital supply VIO is available (VIO > VIO(UV,R)).  
6.2  
Forced-receive-only mode  
The Forced-receive-only mode is a fail-safe mode of the TLT9251VLE, which will be entered when the  
transmitter supply VCC is not available and the STB pin is logical “low”. The following functions are available  
(see also Figure 4 and Table 5):  
The transmitter is disabled and the data available on the TxD input is blocked.  
The normal-mode receiver is enabled.  
The low-power receiver is turned off.  
The RxD output pin indicates the data received by the normal-mode receiver.  
The bus biasing is connected to GND.  
The STB input pin is active and changes the mode of operation to Stand-by mode, if logical “high”.  
The TxD time-out function is disabled.  
The overtemperature protection is disabled.  
The undervoltage detection on VCC is active.  
The undervoltage detection on VIO is enabled and powers down the device in case of detection.  
Forced-receive-only mode is entered from power-down state if the STB input pin is set to logical “low” and  
the digital supply VIO is available (VIO > VIO(UV,R)).  
Forced-receive-only mode is entered from Normal-operating mode by an undervoltage event on the  
transmitter supply VCC  
.
Datasheet  
11  
Rev. 1.0  
2019-10-08  
High Speed CAN FD Transceiver  
TLT9251VLE  
Modes of operation  
6.3  
Stand-by mode  
The Stand-by mode is the power save mode of the TLT9251VLE. In Stand-by mode most of the functions are  
turned off and the TLT9251VLE is monitoring the bus for a valid wake-up pattern (WUP). The following  
functions are available (see also Figure 4 and Table 5):  
The transmitter is disabled and the data available on the TxD input is blocked.  
The normal-mode receiver is disabled.  
The low-power receiver is turned on and monitors the bus for a valid wake-up pattern (WUP).  
The RxD output pin follows the Bus signal after WUP detection.  
The bus biasing is connected to GND.  
The STB input pin is active and changes the mode of operation.  
The TxD time-out function is disabled.  
The overtemperature protection is disabled.  
The undervoltage detection on VCC is disabled. In Stand-by mode the device can operate without the  
transmitter supply VCC  
.
The undervoltage detection on VIO is enabled and powers down the device in case of detection.  
The Stand-by mode can be entered from Normal-operating mode and Forced-receive-only mode by setting  
the STB pin to logical “high”.  
To enter Stand-by mode the digital supply VIO needs to be available (VIO > VCC(UV,R)).  
6.4  
Power-down state  
Independent of the transmitter supply VCC and of the status at STB input pin the TLT9251VLE is powered down  
if the supply voltage VIO < VIO(UV,F) (see Figure 4).  
In the power-down state the differential input resistors of the receiver are switched off. The CANH and CANL  
bus interface of the TLT9251VLE is floating and acts as a high-impedance input with a very small leakage  
current. The high-ohmic input does not influence the recessive level of the CAN network and allows an  
optimized EME performance of the entire HS CAN network. In power-down state the transceiver is an invisible  
node to the bus.  
Datasheet  
12  
Rev. 1.0  
2019-10-08  
High Speed CAN FD Transceiver  
TLT9251VLE  
Changing the mode of operation  
7
Changing the mode of operation  
7.1  
Power-up and power-down  
The HS CAN transceiver TLT9251VLE powers up by applying the digital supply VIO to the device (VIO > VIO(U,R)).  
After powering up, the device enters one out of three operating modes (see Figure 5 and Figure 6).  
Depending on the condition of the transmitter supply voltage VCC and the mode selection pin STB the device  
can enter every mode of operation after the power-up:  
V
V
CC is available and STB input is set to “low” - Normal-operating mode  
CC is disabled and the STB input is set to “low” - Forced-receive-only mode  
STB input is set to “high” - Stand-by mode  
The device TLT9251VLE powers down when the VIO supply falls below the undervoltage detection threshold  
(VIO < VIO(U,F)), regardless if the transmitter supply VCC is available or not. The power-down detection is active in  
every mode of operation.  
VIO “on”  
Normal-operating  
VCC “on”  
mode  
STB “0”  
STB VCC  
VIO  
0
“on” “on”  
VIO “off”  
VIO “on”  
VCC “off”  
STB “0”  
Forced-  
receive-only  
mode  
power-down  
state  
STB VCC  
VIO  
STB VCC  
VIO  
VIO “off”  
“X”  
“X”  
“off”  
VIO “off”  
0
“off” “on”  
VIO “on”  
STB “1”  
Stand-by  
mode  
VIO “off”  
“blue” -> indicates the event triggering the  
power-up or power-down  
“red” -> indicates the condition which is  
required to reach a certain operating mode  
STB VCC  
VIO  
1
“X”  
“on”  
Figure 5  
Power-up and power-down  
transmitter supply voltage VCC = “don’t care”  
VIO  
V
IO undervoltage monitor  
VIO(UV,R)  
tPOFF  
hysteresis  
VIO(UV,H)  
V
IO undervoltage monitor  
VIO(UV,F)  
tPON  
t
any mode of operation  
Power-down state  
“X” = don’t care  
Stand-by mode  
STB  
"0" for Normal-operating mode  
"1" for Stand-by mode  
“high” due the internal  
pull-up resistor1)  
1) assuming no external signal applied  
t
Figure 6  
Power-up and power-down timings  
Datasheet  
13  
Rev. 1.0  
2019-10-08  
High Speed CAN FD Transceiver  
TLT9251VLE  
Changing the mode of operation  
7.2  
Mode change by the STB pin  
When the TLT9251VLE is supplied with the digital voltage VIO the internal logic works and mode change by the  
mode selection pin STB is possible.  
By default the STB input pin is logical “high” due to the internal pull-up current source to VIO. Changing the STB  
input pin to logical “low” in Stand-by mode triggers a mode change to Normal-operating mode (see Figure 7).  
To enter Normal-operating mode the transmitter supply VCC needs to be available.  
Stand-by mode can be entered from Normal-operating mode and Forced-receive-only mode by setting the  
STB pin to logical “high”. While changing the mode of operation from Normal-operating mode or Forced-  
receive-only mode to Stand-by mode, the transceiver TLT9251VLE turns off the transmitter and switches from  
the normal-mode receiver to the low-power receiver. Entering Forced-receive-only mode from Stand-by  
mode is not possible by the STB pin. The device remains in Stand-by mode independently of the VCC supply  
voltage.  
Normal-operating  
mode  
STB VCC  
VIO  
0
“on” “on”  
VIO “on”  
VCC “on”  
STB “0”  
Forced-  
receive-only  
mode  
Power-down  
state  
STB VCC  
“X” “X”  
VIO  
“off”  
STB VCC  
VIO  
0
“off” “on”  
VIO “on”  
STB “1”  
VIO “on”  
STB “1”  
Stand-by  
mode  
STB VCC  
VIO  
1
“X”  
“on”  
Figure 7  
Mode selection by the STB pin  
Datasheet  
14  
Rev. 1.0  
2019-10-08  
High Speed CAN FD Transceiver  
TLT9251VLE  
Changing the mode of operation  
7.3  
Mode changes by VCC undervoltage  
When the transmitter supply VCC (VCC < VCC(U/F)) is in undervoltage condition, the TLT9251VLE might not be able  
to provide the correct bus levels on the CANH and CANL output pins. To avoid any interference with the  
network the TLT9251VLE blocks the transmitter and changes the mode of operation when an undervoltage  
event is detected (see Figure 8 and Figure 9).  
In Normal-operating mode an undervoltage event on transmitter supply VCC (VCC < VCC(U/F)) triggers a mode  
change to Forced-receive-only mode.  
In Forced-receive-only mode the undervoltage detection VCC (VCC < VCC(U/F)) is enabled. In Stand-by mode the  
undervoltage detection is disabled. In these modes the TLT9251VLE can operate without the transmitter  
supply VCC  
.
Normal-operating  
mode  
VIO “on”  
VCC “on”  
STB “0”  
STB VCC  
VIO  
0
“on” “on”  
VIO “on”  
VCC “off”  
STB “0”  
Forced-  
power-down  
state  
Receive-only  
mode  
STB VCC  
“X” “X”  
VIO  
“off”  
STB VCC  
VIO  
0
“off” “on”  
Stand-by  
mode  
STB VCC  
“X”  
VIO  
1
“on”  
Figure 8  
Mode changes by undervoltage events on VCC  
digital supply voltage VIO = “on”  
VCC  
V
CC undervoltage monitor  
VCC(UV,R)  
tDelay(UV)_F  
hysteresis  
VCC(UV,H)  
V
CC undervoltage monitor  
VCC(UV,F)  
tDelay(UV)_R  
t
Normal-operating mode  
Forced-receive only mode  
Normal-operating mode  
STB  
t
Assuming the STB remains “low”, for example the STB pin is  
connected to GND.  
Figure 9  
Undervoltage on the transmitter supply VCC  
Datasheet  
15  
Rev. 1.0  
2019-10-08  
High Speed CAN FD Transceiver  
TLT9251VLE  
Changing the mode of operation  
7.4  
Remote wake-up  
The TLT9251VLE has a remote wake-up feature also called bus wake-up feature according to the ISO 11898-2  
(2016). In Stand-by mode the low-power receiver monitors the activity on the CAN bus and in case it detects a  
wake-up pattern it indicates the wake-up signal on the RxD output pin.  
The low-power receiver is supplied by the digital supply VIO and therefore in Stand-by mode the transmitter  
supply VCC can be turned off.  
In Stand-by mode a wake-up event on the HS CAN is flagged on the RxD output pin (see Figure 11). The  
transceiver remains in the currently selected mode of operation. No mode change is applied due to the wake-  
up event (see Figure 10).  
Stand-by  
Indication on  
mode  
RxD if wake-  
up pattern  
detected  
STB VCC  
VIO  
1
“X”  
“on”  
VIO “on”  
STB “1”  
Bus wake-up  
pattern  
Figure 10 Remote wake-up  
A bus wake-up is triggered by a dedicated valid wake-up pattern. The defined wake-up pattern avoids any  
false wake-up by spikes which might be on the HS CAN bus or by a permanent bus shortage.  
The internal wake-up flag will be reset when:  
A mode change to Normal-operating mode is applied during the wake-up pattern.  
A power-down event occurs on the digital supply VIO.  
Within the maximum wake-up time tWAKE, the wake-up pattern contents a dominant signal with the pulse  
width tFilter, followed by a recessive signal with the pulse width tFilter and another dominant signal with the  
pulse width tFilter (see Figure 11). The RxD output remains logical “high” as long no wake-up event has been  
detected.  
Datasheet  
16  
Rev. 1.0  
2019-10-08  
High Speed CAN FD Transceiver  
TLT9251VLE  
Changing the mode of operation  
t < tWake  
VDiff  
VDiff_LP_D  
t > tFilter  
t > tFilter  
tWU  
VDiff_LP_R  
t > tFilter  
t
t
VIO  
RxD  
30% of VIO  
wake-up  
detected  
Figure 11 Remote wake-up signal  
After a wake-up event has been detected the RxD output follows the CANH/CANL input pins. Dominant and  
recessive signals are indicated on the RxD output as logical “high” and “low” with the delay of tWU as long their  
pulse width exceeds the filter time tFilter (see also Figure 12).  
VDiff  
tWU  
tWU  
VDiff_LP_D  
tWU  
VDiff_LP_R  
t
RxD  
t
wake-up  
detected  
Figure 12 RxD signal after wake-up detection  
Datasheet  
17  
Rev. 1.0  
2019-10-08  
High Speed CAN FD Transceiver  
TLT9251VLE  
Fail safe functions  
8
Fail safe functions  
8.1  
Short circuit protection  
The CANH and CANL bus pins are proven to cope with a short circuit fault against GND and against the supply  
voltages. A current limiting circuit protects the transceiver against damages. If the device is heating up due to  
a continuous short on the CANH or CANL, the internal overtemperature protection switches off the bus  
transmitter.  
8.2  
Unconnected logic pins  
All logic input pins have an internal pull-up current source to VIO. In case the VIO and VCC supply is activated and  
the logical pins are open, the TLT9251VLE enters into the Stand-by mode by default.  
8.3  
TxD time-out function  
The TxD time-out feature protects the CAN bus against permanent blocking in case the logical signal on the  
TxD pin is continuously “low”. A continuous “low” signal on the TxD pin might have its root cause in a locked-  
up microcontroller or in a short circuit on the printed circuit board, for example.  
In Normal-operating mode, a logical “low” signal on the TxD pin for the time t > tTxD enables the TxD time-out  
feature and the TLT9251VLE disables the transmitter (see Figure 13). The receiver is still active and the data  
on the bus continues to be monitored by the RxD output pin.  
TxD  
t
t > tTxD  
TxD time–out released  
TxD time-out  
CANH  
CANL  
t
t
RxD  
Figure 13 TxD time-out function  
Figure 13 illustrates how the transmitter is deactivated and activated again. A permanent “low” signal on the  
TxD input pin activates the TxD time-out function and deactivates the transmitter. To release the transmitter  
after a TxD time-out event, the TLT9251VLE requires a signal change on the TxD input pin from logical “low”  
to logical “high”.  
8.4  
Overtemperature protection  
The TLT9251VLE has an integrated overtemperature detection to protect the TLT9251VLE against thermal  
overstress of the transmitter. The overtemperature protection is only active in Normal-operating mode. In  
Datasheet  
18  
Rev. 1.0  
2019-10-08  
High Speed CAN FD Transceiver  
TLT9251VLE  
Fail safe functions  
case of an overtemperature condition, the temperature sensor will disable the transmitter while the  
transceiver remains in Normal-operating mode. After the device has cooled down the transmitter is activated  
again (see Figure 14). A hysteresis is implemented within the temperature sensor.  
TJSD (shut down temperature)  
cool down  
TJ  
ΔT  
switch-on transmitter  
t
t
CANH  
CANL  
TxD  
t
t
RxD  
Figure 14 Overtemperature proctection  
8.5  
Delay time for mode change  
The HS CAN transceiver TLT9251VLE changes the mode of operation within the time window tMode. During the  
mode change from Stand-by mode to non-low power mode the RxD output pin is permanently set to logical  
“high” and does not reflect the status on the CANH and CANL input pins.  
After the mode change is completed, the transceiver TLT9251VLE releases the RxD output pin.  
Datasheet  
19  
Rev. 1.0  
2019-10-08  
High Speed CAN FD Transceiver  
TLT9251VLE  
Electrical characteristics  
9
Electrical characteristics  
The electrical characteristics are specified in the defined temperature range. Beyond this temperature range  
and below the absolute maximum rating the TLT9251VLE operates as described in the circuit description,  
parameter deviation is possible.  
9.1  
Functional device characteristics  
Table 6  
Electrical characteristics  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; RL = 60 ; -40 °C < Tj < 150 °C; all voltages with respect to ground; positive  
current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Current Consumption  
Current consumption at VCC  
Normal-operating,  
recessive state  
ICC_R  
ICC_D  
IIO  
2
4
mA VTxD = VIO;  
STB = 0 V;  
P_9.1.1  
P_9.1.2  
P_9.1.3  
V
Current consumption at VCC  
Normal-operating mode,  
dominant state  
38  
48  
1.5  
mA VTxD = VSTB = 0 V;  
Current consumption at VIO  
mA VSTB = 0 V;  
Normal-operating mode  
VDiff = 0 V;  
VTxD = VIO;  
Current consumption at VCC  
Stand-by mode  
ICC(STB)  
IIO(STB)  
7
5
µA  
µA  
µA  
VTxD = VSTB = VIO;  
P_9.1.4  
P_9.1.5  
P_9.1.6  
Current consumption at VIO  
Stand-by mode  
15  
12  
VTxD = VSTB = VIO;  
0 V < VCC < 5.5 V;  
1)  
Current consumption at VIO  
IIO(STB)_85  
V
= VSTB = VIO;  
TxD  
Stand-by mode  
TJ < 85°C;  
0 V < VCC < 5.5 V;  
Current consumption at VCC  
Forced-receive-only mode  
ICC(FROM)  
1
mA VTxD = VSTB = 0 V;  
0 V < VCC < VCC(UV,F)  
P_9.1.10  
P_9.1.11  
;
;
VDiff = 0 V;  
Current consumption at VIO  
Forced-receive-only mode  
IIO(FROM)  
0.8  
1.5  
mA VTxD = VSTB = 0 V;  
0 V < VCC < VCC(UV,F)  
VDiff = 0 V;  
Supply resets  
VCC undervoltage monitor  
rising edge  
VCC(UV,R)  
VCC(UV,F)  
VCC(UV,H)  
VIO(UV,R)  
3.8  
3.8  
4.35 4.5  
4.25 4.5  
V
P_9.1.12  
P_9.1.13  
P_9.1.14  
P_9.1.15  
VCC undervoltage monitor  
falling edge  
V
1)  
VCC undervoltage monitor  
hysteresis  
100  
mV  
V
VIO undervoltage monitor  
2.0  
2.55 3.0  
rising edge  
Datasheet  
20  
Rev. 1.0  
2019-10-08  
High Speed CAN FD Transceiver  
TLT9251VLE  
Electrical characteristics  
Table 6  
Electrical characteristics (cont’d)  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; RL = 60 ; -40 °C < Tj < 150 °C; all voltages with respect to ground; positive  
current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
VIO undervoltage monitor  
falling edge  
VIO(UV,F)  
VIO(UV,H)  
2.0  
2.4  
150  
3.0  
V
P_9.1.16  
P_9.1.17  
P_9.1.18  
1)  
VIO undervoltage monitor  
hysteresis  
mV  
µs  
VCC undervoltage delay time  
tDelay(UV)_F  
tDelay(UV)_R  
30  
100  
1) (see Figure 9);  
VIO delay time power-up  
VIO delay time power-down  
Receiver output RxD  
tPON  
280  
100  
µs  
µs  
1) (see Figure 6);  
1) (see Figure 6);  
P_9.1.19  
P_9.1.20  
tPOFF  
“High” level output current  
IRxD,H  
IRxD,L  
1
-4  
4
-1  
mA VRxD = VIO - 0.4 V;  
Diff < 0.5 V;  
mA VRxD = 0.4 V;  
Diff > 0.9 V;  
P_9.1.21  
P_9.1.22  
V
“Low” level output current  
V
Transmission input TxD  
“High” level input voltage  
threshold  
VTxD,H  
VTxD,L  
0.5  
0.7  
V
V
recessive state;  
dominant state;  
P_9.1.26  
P_9.1.27  
× VIO × VIO  
“Low” level input voltage  
threshold  
0.3  
× VIO × VIO  
0.4  
1)  
Input hysteresis  
VHYS(TxD)  
ITxD,H  
ITxD,L  
CTxD  
200  
mV  
µA  
µA  
pF  
P_9.1.28  
P_9.1.29  
P_9.1.30  
P_9.1.31  
P_9.1.32  
“High” level input current  
“Low” level input current  
Input capacitance  
-2  
-200  
2
VTxD = VIO;  
-20  
10  
4
VTxD = 0 V;  
1)  
TxD permanent dominant  
time-out, optional  
tTxD  
1
ms  
Normal-operating  
mode;  
stand-by input STB  
“High” level input voltage  
threshold  
VSTB,H  
VSTB,L  
0.5  
0.7  
V
V
Stand-by mode;  
P_9.1.36  
P_9.1.37  
× VIO × VIO  
“Low” level input voltage  
threshold  
0.3  
× VIO × VIO  
0.4  
Normal-operating  
mode;  
“High” level input current  
“Low” level input current  
Input hysteresis  
ISTB,H  
-2  
2
µA  
µA  
mV  
pF  
VSTB = VIO;  
P_9.1.38  
P_9.1.39  
P_9.1.42  
P_9.1.43  
ISTB,L  
-200  
-20  
VSTB = 0 V;  
1)  
VHYS(STB)  
C(STB)  
200  
1)  
Input capacitance  
Bus receiver  
10  
Differential range dominant  
Normal-operating mode  
VDiff_D_Range 0.9  
8.0  
V
-12 V VCMR 12 V;  
P_9.1.46  
Datasheet  
21  
Rev. 1.0  
2019-10-08  
High Speed CAN FD Transceiver  
TLT9251VLE  
Electrical characteristics  
Table 6  
Electrical characteristics (cont’d)  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; RL = 60 ; -40 °C < Tj < 150 °C; all voltages with respect to ground; positive  
current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Differential range recessive  
Normal-operating mode  
VDiff_R_Range -3.0  
0.5  
V
-12 V VCMR 12 V;  
P_9.1.48  
P_9.1.49  
P_9.1.50  
1)  
Differential receiver hysteresis VDiff,hys  
Normal-operating mode  
30  
mV  
V
Differential range threshold  
dominant  
Stand-by mode  
VDiff_D_STB_R 1.15  
8.0  
0.4  
-12 V VCMR 12 V;  
ange  
Differential range recessive  
Stand-by mode  
VDiff_R_STB_R -3.0  
V
-12 V VCMR 12 V;  
P_9.1.51  
ange  
Common mode range  
CMR  
-12  
6
12  
50  
V
P_9.1.52  
P_9.1.53  
Single ended internal  
resistance  
RCAN_H  
RCAN_L  
,
kΩ  
recessive state;  
-2 V VCANH 7 V;  
-2 V VCANL 7 V;  
Differential internal resistance RDiff  
12  
100  
kΩ  
recessive state;  
-2 V VCANH 7 V;  
-2 V VCANL 7 V;  
P_9.1.54  
Input resistance deviation  
between CANH and CANL  
Ri  
-3  
3
%
1) recessive state;  
VCANH = VCANL = 5 V;  
2) recessive state  
P_9.1.55  
P_9.1.56  
P_9.1.57  
Input capacitance CANH,  
CANL versus GND  
CIn  
20  
10  
40  
20  
pF  
pF  
Differential input capacitance CInDiff  
2) recessive state  
Bus transmitter  
CANL, CANH recessive  
output voltage  
Normal-operating mode  
VCANL,H  
2.0  
-50  
0.5  
2.75  
1.5  
2.5  
3.0  
50  
V
VTxD = VIO;  
no load;  
P_9.1.58  
P_9.1.59  
P_9.1.60  
P_9.1.61  
P_9.1.62  
P_9.1.63  
CANH, CANL recessive  
output voltage difference  
Normal-operating mode  
VDiff_R_NM  
=
mV VTxD = VIO;  
VCANH  
VCANL  
-
no load;  
CANL dominant  
output voltage  
Normal-operating mode  
VCANL  
2.25  
4.5  
2.5  
3.3  
V
V
V
V
VTxD = 0 V;  
50 < RL < 65 ;  
4.75 V < VCC < 5.25 V;  
CANH dominant  
output voltage  
Normal-operating mode  
VCANH  
VTxD = 0 V;  
50 < RL < 65 ;  
4.75 V < VCC < 5.25 V;  
Differential voltage dominant VDiff_D_NM  
Normal-operating mode  
VDiff = VCANH - VCANL  
2.0  
2.0  
VTxD = 0 V;  
50 < RL < 65 ;  
4.75 V < VCC < 5.25 V;  
Differential voltage dominant VDiff_EXT_BL 1.4  
extended bus load  
Normal-operating mode  
VTxD = 0 V;  
45 < RL < 70 ;  
4.75 V < VCC < 5.25 V;  
Datasheet  
22  
Rev. 1.0  
2019-10-08  
High Speed CAN FD Transceiver  
TLT9251VLE  
Electrical characteristics  
Table 6  
Electrical characteristics (cont’d)  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; RL = 60 ; -40 °C < Tj < 150 °C; all voltages with respect to ground; positive  
current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Differential voltage dominant VDiff_HEXT_BL 1.5  
high extended bus load  
5.0  
V
VTxD = 0 V;  
RL = 2240 ;  
P_9.1.64  
Normal-operating mode  
4.75 V < VCC < 5.25 V;  
static behavior;1)  
CANH, CANL recessive  
output voltage difference  
Stand-by mode  
VDiff_STB  
-0.2  
-0.1  
0.2  
0.1  
V
V
V
no load;  
P_9.1.65  
P_9.1.66  
CANL, CANH recessive  
output voltage  
Stand-by mode  
VCANL,H  
no load;  
Driver symmetry  
VSYM  
0.9 × 1.0 × 1.1 ×  
VCC  
1) 3) C1 = 4.7 nF;  
P_9.1.67  
P_9.1.68  
(VSYM = VCANH + VCANL  
)
VCC  
VCC  
CANL short circuit current  
CANH short circuit current  
Leakage current, CANH  
Leakage current, CANL  
ICANLsc  
40  
75  
115  
mA VCANLshort = 18 V;  
t < tTxD  
;
VTxD = 0 V;  
ICANHsc  
-115 -75  
-40  
5
mA VCANHshort = -3 V;  
P_9.1.70  
P_9.1.71  
P_9.1.72  
P_9.1.190  
t < tTxD  
;
VTxD = 0 V;  
ICANH,lk  
-5  
-5  
µA  
µA  
VCC = VIO = 0 V;  
0 V < VCANH 5 V;  
VCANH = VCANL;  
ICANL,lk  
5
VCC = VIO = 0 V;  
0 V < VCANL 5 V;  
VCANH = VCANL  
;
CANH, CANL output voltage  
difference slope, recessive to  
dominant  
Vdiff_slope_rd  
70  
V/µs 1) 30 % to 70 % of  
measured differential  
bus voltage;  
C2 = 100 pF; RL = 60 ;  
4.75 V < VCC < 5.25 V;  
CANH, CANL output voltage  
difference slope, dominant to  
recessive  
Vdiff_slope_dr  
70  
V/µs 1) 70 % to 30 % of  
measured differential  
bus voltage;  
P_9.1.191  
P_9.1.73  
C2 = 100 pF; RL = 60 ;  
4.75 V < VCC < 5.25 V;  
Dynamic CAN-transceiver characteristics  
Propagation delay  
TxD-to-RxD  
tLoop  
80  
215  
ns  
C1 = 0 pF;  
C2 = 100 pF;  
CRxD = 15 pF;  
(see Figure 16)  
Datasheet  
23  
Rev. 1.0  
2019-10-08  
High Speed CAN FD Transceiver  
TLT9251VLE  
Electrical characteristics  
Table 6  
Electrical characteristics (cont’d)  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; RL = 60 ; -40 °C < Tj < 150 °C; all voltages with respect to ground; positive  
current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Propagation delay  
increased load  
TxD-to-RxD  
tLoop_150  
80  
330  
ns  
1)C1 = 0 pF;  
C2 = 100 pF;  
RxD = 15 pF;  
P_9.1.74  
C
RL = 150 ;  
Delay Times  
1)  
Delay time for mode change tMode  
20  
1.8  
10  
5
µs  
µs  
ms  
µs  
P_9.1.79  
P_9.1.81  
P_9.1.82  
P_9.1.83  
CAN activity filter time  
Bus wake-up time-out  
Bus wake-up delay time  
CAN FD characteristics  
tFilter  
tWake  
tWU  
0.5  
0.8  
1) (see Figure 11);  
1) (see Figure 11);  
(see Figure 11);  
Received recessive bit width tBit(RxD)_2M 400  
at 2 MBit/s  
500  
200  
500  
200  
550  
220  
530  
210  
40  
ns  
ns  
ns  
ns  
ns  
ns  
C2 = 100 pF;  
CRxD = 15 pF;  
P_9.1.84  
P_9.1.85  
P_9.1.86  
P_9.1.87  
P_9.1.88  
P_9.1.89  
tBit = 500 ns;  
(see Figure 17);  
Received recessive bit width tBit(RxD)_5M 120  
at 5 MBit/s  
C2 = 100 pF;  
CRxD = 15 pF;  
tBit = 200 ns;  
(see Figure 17);  
Transmitted recessive bit  
width at 2 MBit/s  
tBit(Bus)_2M 435  
C2 = 100 pF;  
CRxD = 15 pF;  
tBit = 500 ns;  
(see Figure 17);  
Transmitted recessive bit  
width at 5 MBit/s  
tBit(Bus)_5M 155  
C2 = 100 pF;  
CRxD = 15 pF;  
tBit = 200 ns;  
(see Figure 17);  
Receiver timing symmetry at tRec_2M  
2 MBit/s  
tRec_2M = tBit(RxD)_2M - tBit(Bus)_2M  
-65  
-45  
C2 = 100 pF;  
CRxD = 15 pF;  
tBit = 500 ns;  
(see Figure 17);  
Receiver timing symmetry at tRec_5M  
5 MBit/s  
15  
C2 = 100 pF;  
CRxD = 15 pF;  
tRec_5M = tBit(RxD)_5M - tBit(Bus)_5M  
tBit = 200 ns;  
(see Figure 17);  
1) Not subject to production test, specified by design  
2) Not subject to production test, specified by design, S2P-Method; f = 10 MHz  
3) VSYM shall be observed during dominant and recessive state and also during the transition from dominant to  
recessive and vice versa, while TxD is stimulated by a square wave signal with a frequency of 1 MHz.  
Datasheet  
24  
Rev. 1.0  
2019-10-08  
High Speed CAN FD Transceiver  
TLT9251VLE  
Electrical characteristics  
9.2  
Diagrams  
5
VIO  
100 nF  
7
6
CANH  
1
8
TxD  
STB  
RL/2  
C2  
TLT9251V  
C1  
4
3
RxD  
VCC  
RL/2  
CRxD  
CANL  
GND  
2
100 nF  
Figure 15 Test circuit for dynamic characteristics  
TxD  
0.7 x VIO  
0.3 x VIO  
t
t
VDiff  
tLoop(H,L)  
tLoop(L,H)  
RxD  
0.7 x VIO  
0.3 x VIO  
t
Figure 16 Timing diagrams for dynamic characteristics  
TxD  
0.7 x VIO  
0.3 x VIO  
0.3 x VIO  
t
t
5 x tBit  
tBit  
tLoop(H,L)  
tBit(Bus)  
VDiff = VCANH - VCANL  
VDiff  
0.9 V  
0.5 V  
tLoop(L,H)  
tBit(RxD)  
RxD  
0.7 x VIO  
0.3 x VIO  
t
Figure 17 Recessive bit time for five dominant bits followed by one recessive bit  
Datasheet  
25  
Rev. 1.0  
2019-10-08  
High Speed CAN FD Transceiver  
TLT9251VLE  
Application information  
10  
Application information  
10.1  
ESD robustness according to IEC61000-4-2  
Tests for ESD robustness according to IEC61000-4-2 “Gun test” (150 pF, 330 ) have been performed. The  
results and test conditions are available in a separate test report.  
Table 7  
ESD robustness according to IEC61000-4-2  
Performed Test  
Result  
Unit  
kV  
Remarks  
Electrostatic discharge voltage at pin CANH and CANL versus GND +11  
Electrostatic discharge voltage at pin CANH and CANL versus GND -11  
1)Positive pulse  
1)Negative pulse  
kV  
1) Not subject to production test. ESD susceptibility “ESD GUN” according to GIFT / ICT paper: “EMC Evaluation of CAN  
Transceivers, version IEC TS62228”, section 4.3. (DIN EN61000-4-2)  
Tested by external test facility (IBEE Zwickau)  
10.2  
Application example  
VBAT  
I
Q1  
Q2  
22 μF  
TLE4476D  
GND  
100 nF  
CANH  
CANL  
EN  
100 nF  
3
VCC  
100 nF  
VIO  
22 μF  
5
8
1
4
120  
Ohm  
TLT9251V  
VCC  
Out  
Out  
In  
STB  
TxD  
RxD  
7
6
CANH  
CANL  
Microcontroller  
e.g. XC22xx  
GND  
GND  
2
I
Q1  
22 μF  
TLE4476D  
GND  
100 nF  
EN  
Q2  
3
VCC  
100 nF  
VIO  
100 nF  
22 μF  
5
8
1
4
TLT9251V  
VCC  
Out  
Out  
In  
STB  
TxD  
RxD  
7
6
CANH  
CANL  
Microcontroller  
e.g. XC22xx  
GND  
120  
Ohm  
GND  
2
example ECU design  
CANH  
CANL  
Figure 18 Application circuit  
Datasheet  
26  
Rev. 1.0  
2019-10-08  
High Speed CAN FD Transceiver  
TLT9251VLE  
Application information  
10.3  
Voltage adaption to the microcontroller supply  
To adapt the digital input and output levels of the TLT9251VLE to the I/O levels of the microcontroller, connect  
the power supply pin VIO to the microcontroller voltage supply (see Figure 18).  
Note:  
In case no dedicated digital supply voltage VIO is required in the application, connect the digital  
supply voltage VIO to the transmitter supply VCC  
.
10.4  
Further application information  
For further information you may visit: http://www.infineon.com/automotive-transceiver  
Datasheet  
27  
Rev. 1.0  
2019-10-08  
High Speed CAN FD Transceiver  
TLT9251VLE  
Package outline  
11  
Package outline  
Figure 19 PG-TSON-8 (Plastic Thin Small Outline Nonleaded)  
Green product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS compliant  
(i.e. Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further information on alternative packages, please visit our website:  
http://www.infineon.com/packages.  
Dimensions in mm  
Datasheet  
28  
Rev. 1.0  
2019-10-08  
High Speed CAN FD Transceiver  
TLT9251VLE  
Revision history  
12  
Revision history  
Revision  
Date  
Changes  
1.0  
2019-10-08 Initial datasheet  
Datasheet  
29  
Rev. 1.0  
2019-10-08  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2019-10-08  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2019 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
a written document signed by  
Document reference  
Z8F66182058  

相关型号:

TLT9252VLC

AEC-Q100 Grade 0
INFINEON

TLT9255WLC

AEC-Q100 Grade 0
INFINEON

TLU1410A-00-12

PCB Terminal,
WINCHESTER

TLU1410A-1-12

PCB Terminal,
WINCHESTER

TLU1410A-10-12

PCB Terminal
WINCHESTER

TLU1410A-11-12

PCB Terminal,
WINCHESTER

TLU1410A-112-12

PCB Terminal,
WINCHESTER

TLU1410A-113-12

PCB Terminal
WINCHESTER

TLU1410A-17-12

PCB Terminal,
WINCHESTER

TLU1410A-18-12

PCB Terminal,
WINCHESTER

TLU1410A-2-12

暂无描述
WINCHESTER

TLU1410A-3-12

PCB Terminal,
WINCHESTER