TRAVEO? T2G CYT2CL [INFINEON]

32-bit TRAVEO™ T2G Arm® Cortex® for Cluster;
TRAVEO? T2G CYT2CL
型号: TRAVEO? T2G CYT2CL
厂家: Infineon    Infineon
描述:

32-bit TRAVEO™ T2G Arm® Cortex® for Cluster

文件: 总174页 (文件大小:1767K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CYT2CL  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
General description  
CYT2CL is a family of TRAVEO™ T2G microcontrollers targeted at automotive systems such as cluster entry units.  
CYT2CL has an Arm® Cortex®-M4 CPU for primary processing, and an Arm® Cortex®-M0+ CPU for peripheral and  
security processing. These devices contain embedded peripherals supporting controller area network with  
flexible data rate (CAN FD), local interconnect network (LIN), clock extension peripheral interface (CXPI), LCD  
controller. TRAVEO™ T2G devices are manufactured on an advanced 40-nm process. CYT2CL incorporates  
Infineon' low-power flash memory, multiple high-performance analog and digital peripherals, and enables the  
creation of a secure computing platform.  
Features  
Dual CPU subsystem  
- 160-MHz (max) 32-bit Arm® Cortex®-M4F CPU with  
• Single-cycle multiply  
• Single-precision floating point unit (FPU)  
• Memory protection unit (MPU)  
- 100-MHz (max) 32-bit Arm® Cortex®-M0+ CPU with  
• Single-cycle multiply  
• Memory protection unit  
- Inter-processor communication in hardware  
- Three DMA controllers  
• Peripheral DMA controller #0 (P-DMA0) with 76 channels  
• Peripheral DMA controller #1 (P-DMA1) with 84 channels  
• Memory DMA controller #0 (M-DMA0) with 4 channels  
Integrated memories  
- Up to 4160 KB of code-flash with an additional 128 KB of work-flash  
• Read-While-Write (RWW) allows updating the code-flash/work-flash while executing code from it  
• Single- and dual-bank modes (specifically for Firmware update Over The Air [FOTA])  
• Flash programming through SWD/JTAG interface  
- Up to 512 KB of SRAM with selectable retention granularity  
Crypto engine[1]  
- Supports Enhanced Secure Hardware Extension (eSHE) and Hardware Security Module (HSM)  
- Secure boot and authentication  
• Using digital signature verification  
• Using fast secure boot  
- AES: 128-bit blocks, 128-/192-/256-bit keys  
- 3DES: 64-bit blocks, 64-bit key  
- Vector unit supporting asymmetric key cryptography such as Rivest-Shamir-Adleman (RSA) and Elliptic Curve  
(ECC)  
- SHA-1/2/3: SHA-512, SHA-256, SHA-160 with variable length input data  
- CRC: supports CCITT CRC16 and IEEE-802.3 CRC32  
- True random number generator (TRNG) and pseudo random number generator (PRNG)  
- Galois/Counter Mode (GCM)  
Note  
1. Crypto engine features are available on select MPNs.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 1  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Features  
Functional safety for ASIL-B  
- Memory protection unit (MPU)  
- Shared memory protection unit (SMPU)  
- Peripheral protection unit (PPU)  
- Watchdog timer (WDT)  
- Multi-counter watchdog timer (MCWDT)  
- Low-voltage detector (LVD)  
- Brown-out detector (BOD)  
- Overvoltage detection (OVD)  
- Clock supervisor (CSV)  
• Supported in all power modes  
- Hardware error correction (SECDED ECC) on all safety-critical memories (SRAM, flash)  
Low-power 2.7-V to 5.5-V operation  
- Low-power Active, Sleep, Low-power Sleep, DeepSleep, and Hibernate modes for fine-grained power  
management  
- Configurable options for robust BOD  
• Two threshold levels (2.7 V and 3.0 V) for BOD on VDDD and VDDA_ADC  
• One threshold level (1.1 V) for BOD on VCCD  
Wakeup support  
- Up to four pins to wakeup from Hibernate mode  
- Wakeup recognition bit for each wakeup source  
- Up to 128 GPIO pins to wakeup from Sleep modes  
- Event Generator, SCB, Watchdog Timer, RTC alarms to wake from DeepSleep modes  
Clock sources  
- Internal main oscillator (IMO)  
- Internal low-speed oscillator (ILO)  
- External crystal oscillator (ECO)  
- Watch crystal oscillator (WCO)  
- Phase-locked loop (PLL)  
- Frequency-locked loop (FLL)  
- Low-power external crystal oscillator (LPECO)  
LCD controller  
- Up to four LCD controllers, with 32 segments (SEG) and four commons (COM)  
- Supports both Type A (standard) and Type B (low-power) drive waveforms  
- Three drive modes  
• PWM drive at 1/2 bias  
• PWM drive at 1/3 bias  
• Digital correlation  
- Operates in ACTIVE, SLEEP, and DeepSleep power modes  
- Digital contrast control  
Sound subsystem  
- Two time-division multiplexing (TDM) interfaces  
- Two pulse-code modulation-pulse width modulation (PCM-PWM) interfaces  
- Up to five sound generator (SG) interfaces  
- One PCM Audio stream mixer with five input streams  
Datasheet  
2
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Features  
Communication interfaces  
- Up to four CAN FD channels  
• Increased data rate (up to 8 Mbps) compared to classic CAN, limited by physical layer topology and  
transceivers  
• Compliant to ISO 11898-1:2015  
• Supports all the requirements of Bosch CAN FD Specification V1.0 for non-ISO CAN FD  
• ISO 16845:2015 certificate available  
- Up to 12 runtime-reconfigurable SCB (serial communication block) channels, each configurable as I2C, SPI,  
or UART  
- Up to two independent LIN channels  
• LIN protocol compliant with ISO 17987  
- Up to two CXPI channels with data rate up to 20 kbps  
Serial memory interface (SMIF)  
- One SPI (single, dual, quad, or octal), xSPI interface  
- On-the-fly encryption and decryption  
- Execute-In-Place (XIP) from external memory  
Timers  
- Up to 46 16-bit and 16 32-bit timer/counter pulse-width modulator (TCPWM) blocks for regular operations  
• Up to 12 16-bit counters optimized for motor-control operations (Equivalent to 6 stepper motor-control  
[SMC] channels with ZPD and slew rate control capability)  
• Supports timer, capture, quadrature decoding, pulse-width modulation (PWM), PWM with dead time (PW-  
M_DT), pseudo-random PWM (PWM_PR), and shift-register (SR) modes  
- Up to 16 Event Generation (EVTGEN) timers supporting cyclic wakeup from DeepSleep  
• Events trigger a specific device operation (such as execution of an interrupt handler, a SAR ADC conversion,  
and so on)  
Real time clock (RTC)  
- Year/Month/Date, Day-of-week, Hour:Minute:Second fields  
- Supports both 12- and 24-hour formats  
- Automatic leap-year correction  
I/O  
- Up to 140 Programmable I/Os  
- Two I/O types  
• GPIO Standard (GPIO_STD)  
• GPIO Enhanced (GPIO_ENH)  
• GPIO Stepper Motor Control (GPIO_SMC)  
• High-Speed I/O Standard with Low Noise (HSIO_STDLN)  
Regulators  
- Generates 1.1-V nominal core supply from a 2.7-V to 5.5-V input supply  
- Two types of regulators  
• DeepSleep  
• Core internal  
Programmable analog  
- One SAR A/D converter  
• Each ADC supports 32 logical channels, with 48 external channels. Any external channel can be connected  
to any logical channel in the SAR.  
• 12-bit resolution and sampling rates up to 1 Msps  
- The ADC also supports six internal analog inputs like:  
• Bandgap reference to establish absolute voltage levels  
• Calibrated diode for junction temperature calculations  
• Two AMUXBUS inputs and two direct connections to monitor supply levels  
- ADC supports addressing of external multiplexers  
- ADC has a sequencer supporting autonomous scanning of configured channels  
Datasheet  
3
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Features  
Smart I/O  
- One smart I/O block, which can perform Boolean operations on signals going to and from I/Os  
- Up to eight I/Os (GPIO_STD) supported  
Debug interface  
- JTAG controller and interface compliant to IEEE-1149.1-2001  
- Arm® SWD (serial wire debug) port  
- Supports Arm® Embedded Trace Macrocell (ETM) Trace  
• Data trace using SWD  
• Instruction and data trace using JTAG  
Compatible with industry-standard tools  
- GHS/MULTI or IAR EWARM for code development and debugging  
Packages  
- 144-LQFP, 16 × 16 × 1.7 mm (max), 0.4-mm lead pitch  
- 144-LQFP, 20 × 20 × 1.7 mm (max), 0.5-mm lead pitch  
- 176-LQFP, 24 × 24 × 1.7 mm (max), 0.5-mm lead pitch  
Datasheet  
4
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Table of contents  
Table of contents  
General description ...........................................................................................................................1  
Features ...........................................................................................................................................1  
Table of contents...............................................................................................................................5  
1 Features list ...................................................................................................................................6  
1.1 Peripheral instance list...........................................................................................................................................8  
2 Blocks and functionality..................................................................................................................9  
Block diagram...................................................................................................................................9  
3 Functional description ..................................................................................................................10  
3.1 CPU subsystem .....................................................................................................................................................10  
3.2 System resources..................................................................................................................................................11  
3.3 Peripherals ............................................................................................................................................................14  
3.4 I/Os.........................................................................................................................................................................18  
4 CYT2CL address map .....................................................................................................................20  
5 Flash base address map.................................................................................................................22  
6 Peripheral I/O map........................................................................................................................23  
7 CYT2CL clock diagram ...................................................................................................................25  
8 CYT2CL CPU start-up sequence ......................................................................................................26  
9 Pin assignment .............................................................................................................................27  
10 High-speed I/O matrix connections...............................................................................................31  
11 Package pin list and alternate functions .......................................................................................32  
12 Power pin assignments................................................................................................................37  
13 Alternate function pin assignments ..............................................................................................38  
14 Pin function description ..............................................................................................................44  
15 Interrupts and wake-up assignments............................................................................................47  
16 Core interrupt types....................................................................................................................56  
17 Trigger multiplexer .....................................................................................................................57  
18 Triggers group inputs ..................................................................................................................59  
19 Triggers group outputs................................................................................................................63  
20 Triggers one-to-one.....................................................................................................................64  
21 Peripheral clocks ........................................................................................................................67  
22 Faults.........................................................................................................................................69  
23 Peripheral protection unit fixed structure pairs.............................................................................72  
24 Bus masters................................................................................................................................83  
25 Miscellaneous configuration ........................................................................................................84  
26 Development support..................................................................................................................85  
26.1 Documentation ...................................................................................................................................................85  
26.2 Tools ....................................................................................................................................................................85  
27 Electrical specifications...............................................................................................................86  
27.1 Absolute maximum ratings ................................................................................................................................86  
27.2 Device-level specifications .................................................................................................................................90  
27.3 DC specifications.................................................................................................................................................91  
27.4 Reset specifications ............................................................................................................................................94  
27.5 I/O Specifications................................................................................................................................................95  
27.6 Analog peripherals............................................................................................................................................101  
27.7 AC specifications...............................................................................................................................................106  
27.8 Digital peripherals.............................................................................................................................................107  
27.9 Memory..............................................................................................................................................................119  
27.10 System resources............................................................................................................................................121  
27.11 Clock specifications ........................................................................................................................................134  
27.12 Clock timing diagrams ........................................................................................................... 141  
27.13 Sound subsystem specifications....................................................................................................................143  
Datasheet  
5
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Table of contents  
27.14 CXPI specifications..........................................................................................................................................146  
27.15 Serial memory interface specifications .........................................................................................................148  
27.16 LCD controller specifications .........................................................................................................................153  
28 Ordering information ................................................................................................................ 154  
28.1 Part number nomenclature..............................................................................................................................155  
29 Packaging ................................................................................................................................ 156  
30 Appendix.................................................................................................................................. 160  
30.1 Bootloading or End-of-line programming.......................................................................................................160  
30.2 External IP revisions..........................................................................................................................................161  
30.3 Internal IP revisions ..........................................................................................................................................161  
31 Acronyms ................................................................................................................................. 162  
32 Errata ...................................................................................................................................... 164  
Revision history ............................................................................................................................ 170  
Revision history change log............................................................................................................ 171  
Datasheet  
6
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Features list  
1
Features list  
Table 1-1  
CYT2CL feature list for all packages  
Package  
Features  
144-LQFP  
176-LQFP  
CPU  
Core  
32-bit Arm® Cortex®-M4F CPU and 32-bit Arm® Cortex®-M0+ CPU  
Functional safety  
ASIL-B  
Operation voltage for GPIO_STD  
Operation voltage for GPIO_ENH  
Operation voltage for GPIO_SMC  
Operation voltage for HSIO_STDLN  
Core voltage  
2.7 V to 5.5 V  
2.7 V to 5.5 V  
2.7 V to 5.5 V  
3.0 V to 3.6 V  
1.05 V to 1.15 V  
Arm® Cortex®-M4 160 MHz (max) and Arm® Cortex®-M0+ 100 MHz (max),  
related by integer frequency ratio (that is, 1:1, 1:2, 1:3, and so on)  
Operating frequency  
MPU, PPU  
Supported  
FPU  
Single precision (32-bit)  
DSP-MUL/DIV/MAC  
Memory  
Supported by Arm® Cortex®-M4F CPU  
Code-flash  
Work-flash  
SRAM (configurable for retention)  
ROM  
4160 KB (4032 KB/Large Sectors + 128 KB/Small Sectors)  
128 KB (96 KB/Large Sectors + 32 KB/Small Sectors)  
512 KB (SRAM0/256 KB + SRAM1/256 KB)  
32 KB  
Communication interfaces  
CAN0 (CAN-FD: Up to 8 Mbps)  
CAN1 (CAN-FD: Up to 8 Mbps)  
CAN RAM  
2 ch  
2 ch  
16 KB per instance (2 ch), 32 KB in total  
Serial communication block (SCB)  
LIN/UART master support  
CXPI controller  
12 ch  
2 ch  
2 ch  
Memory interfaces  
SMIF(SingleSPI/DualSPI/QuadSPI  
/Octal SPI / xSPI)  
1 ch (HSIO_STDLN at 100 MHz)  
Timers  
RTC  
1 ch  
34 ch  
12 ch  
16 ch  
TCPWM (16-bit)  
TCPWM (16-bit) SMC  
TCPWM (32-bit)  
External interrupts  
Analog  
108  
140  
1 Unit (SAR0, 32 logical channels)  
48 external channels  
12-bit, 1 Msps SAR ADC  
6 ch for Internal sampling  
Datasheet  
7
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Features list  
Table 1-1  
CYT2CL feature list for all packages (continued)  
Features  
Package  
144-LQFP  
176-LQFP  
Security  
Flash security (program/work read  
protection)  
Supported  
Flash chip erase enable  
eSHE/HSM  
Sound  
Configurable  
By separate firmware[2]  
Mixer  
PCM-PWM  
TDM  
Sound generator (SG)  
LCD controller  
Common  
1 ch (5 mixer sources)  
2 ch  
2 TDM structures (TDM0/1 with up to 16 ch)  
5 ch  
4
Segments  
Type  
Up to 32 segments  
Type A and Type B  
System  
P-DMA0 with 76 channels (32 general purpose), P-DMA1 with 84 channels  
(16 general purpose), and M-DMA0 with 4 channels  
DMA controller  
Internal main oscillator  
8 MHz  
Internal low-speed oscillator  
32.768 kHz (nominal)  
PLL  
FLL  
Input frequency: 3.988 to 33.34 MHz, PLL output frequency: up to 160 MHz  
Input frequency: 0.25 to 80 MHz, FLL output frequency: up to 100 MHz  
Watchdog timer and multi-counter  
Watchdog timer  
Supported  
Clock supervisor  
Cyclic wakeup  
Supported  
Supported  
GPIO standard (GPIO_STD)  
GPIO enhanced (GPIO_ENH)  
GPIO SMC (GPIO_SMC)  
HSIO standard low noise (HSIO_ST-  
DLN)  
66  
6
96  
8
24  
12  
Smart I/O (Blocks)  
Low-voltage detect  
Maximum ambient temperature  
Debug interface  
1 block, mapped through 8 I/Os  
Two, 26 selectable levels  
105°C for S-grade  
SWD/JTAG  
Debug trace  
Arm® Cortex®-M4 ETB size of 8 KB, Arm® Cortex®-M0+ MTB size of 4 KB  
Note  
2. Enhanced Secure Hardware Extension (eSHE) and Hardware Security Module (HSM) support are enabled by third-party firmware.  
Datasheet  
8
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Features list  
1.1  
Peripheral instance list  
The following table lists the instances supported under each package for communication peripherals, based on  
the minimum pins needed for the functionality.  
Table 1-2  
Module  
CXPI  
CAN0  
CAN1  
Peripheral instance list  
144-LQFP  
0/1  
176-LQFP  
0/1  
Minimum pin function set  
TX, RX  
TX, RX  
TX, RX  
TX, RX  
TX, RX  
SCL, SDA  
0/1  
0/1  
0/1  
0 to 11  
0 to 11  
0 to 11  
0/1  
0/1  
0 to 4  
0/1  
0/1  
0/1  
0/1  
0 to 11  
0 to 11  
0 to 11  
0/1  
0/1  
0 to 4  
0/1  
LIN0  
SCB/UART  
SCB/I2C  
SCB/SPI  
TDM/RX  
TDM/TX  
SG  
MISO, MOSI, CLK, SELECT0  
MCK, FSYNC, SCK, SD  
MCK, FSYNC, SCK, SD  
TONE, AMPL  
PWM  
LINE1/2_P/N  
Datasheet  
9
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Blocks and functionality  
2
Blocks and functionality  
Block diagram  
CPU Subsystem  
CYT2CL  
SWJ/MTB/CTI  
MXS40-HT  
ASIL-B  
SWJ/ETM/ITM/CTI  
eCT Flash  
CRYPTO  
AES, SHA, CRC,  
TRNG, RSA, ECC  
SRAM0  
SRAM1  
Up to 256 KB  
ROM  
32 KB  
Arm Cortex  
M0+  
100 MHz  
Up to 4160 KB Code-flash +  
128 KB Work-flash  
Arm Cortex M4  
160 MHz  
Up to 256 KB  
8 KB $  
8 KB $  
System Resources  
SRAM Controller  
SRAM Controller  
Initiator/MMIO  
ROM Controller  
FPU, NVIC, MPU  
FLASH Controller  
MUL, NVIC, MPU  
Power  
Sleep Control  
POR  
OVD  
BOD  
LVD  
System Interconnect (Multi Layer AHB, IPC, MPU/SMPU)  
Peripheral Interconnect (MMIO, PPU)  
REF  
PWRSYS-HT  
LDO  
PCLK  
Clock  
Clock Control  
Prog.  
Analog  
2xILO  
WDT  
ECO  
CSV  
IMO  
FLL  
SAR ADC  
(12-bit)  
3xPLL  
LPECO  
Reset  
Reset Control  
XRES  
Test  
TestMode Entry  
Digital DFT  
x1  
Analog DFT  
SARMUX  
48 ch  
WCO  
RTC  
Power Modes  
Active/Sleep  
LowePowerActive/Sleep  
High-Speed I/O Matrix, Smart I/O, Boundary Scan  
5x Smart I/O  
DeepSleep  
Up to 96x GPIO_STD, Up to 8x GPIO_ENH, 24x GPIO_SMC, 12x HSIO_STDLN  
Hibernate  
I/O Subsystem  
The Block diagram gives a simplified view of the interconnection between subsystems and blocks. CYT2CL has  
four major subsystems: CPU, system resources, peripherals, and I/O[3,4]. The color-coding shows the lowest  
power mode where the particular block is still functional.  
CYT2CL provides extensive support for programming, testing, debugging, and tracing of both hardware and  
firmware.  
Debug-on-chip functionality enables in-system debugging using the production device. It does not require  
special interfaces, debugging pods, simulators, or emulators.  
The JTAG interface is fully compatible with industry-standard third-party probes such as I-jet, J-Link, and GHS.  
The debug circuits are enabled by default.  
CYT2CL provides a high level of security with robust flash protection and the ability to disable features such as  
debug.  
Additionally, each device interface can be permanently disabled for applications concerned with phishing  
attacks from a maliciously reprogrammed device or attempts to defeat security by starting and interrupting flash  
programming sequences. All programming, debug, and test interfaces are disabled when maximum device  
security is enabled.  
Notes  
3. GPIO_STD supporting 2.7 V to 5.5 V VDDIO range.  
4. GPIO_ENH supporting 2.7 V to 5.5 V VDDIO range with higher currents at lower voltages.  
5. GPIO_SMC supporting 2.7 V to 5.5 V VDDIO range with currents higher than GPIO_ENH.  
6. HSIO_STDLN supporting 3.0 V to 3.6 V VDDIO range with high-speed signaling and programmable drive strength.  
Datasheet  
10  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Functional description  
3
Functional description  
CPU subsystem  
CPU  
3.1  
3.1.1  
The CYT2CL CPU subsystem contains a 32-bit Arm® Cortex®-M0+ CPU with MPU, and a 32-bit Arm® Cortex®-M4F  
CPU with MPU, and single-precision FPU. This subsystem also includes P-/M-DMA controllers, a cryptographic  
accelerator, code-flash of up to 4160 KB, 128 KB of work-flash, SRAM of up to 512 KB, and 32 KB of ROM.  
The Cortex®-M0+ CPU provides a secure, un-interruptible boot function. This guarantees that, following  
completion of the boot function, system integrity is valid and privileges are enforced. Shared resources (flash,  
SRAM, peripherals, and so on) can be accessed through bus arbitration, and exclusive accesses are supported by  
an inter-processor communication (IPC) mechanism using hardware semaphores.  
3.1.2  
DMA controllers  
CYT2CL has three DMA controllers: P-DMA0 with 32 general-purpose and 44 dedicated channels, P-DMA1 with 16  
general-purpose and 68 dedicated channels, and M-DMA0 with four channels. P-DMA is used for  
peripheral-to-memory and memory-to-peripheral data transfers and provides low latency for a large number of  
channels. Each P-DMA controller uses a single data-transfer engine that is shared by the associated channels.  
General purpose channels have a rich interconnect matrix including P-DMA cross triggering which enables  
demanding data-transfer scenarios. Dedicated channels have a single triggering input (such as an ADC channel)  
to handle common transfer needs. M-DMA is used for memory-to-memory data transfers and provides high  
memory bandwidth for a small number of channels. M-DMA uses a dedicated data-transfer engine for each  
channel. They support independent accesses to peripherals using the AHB multi-layer bus.  
3.1.3  
Flash  
CYT2CL has up to 4160 KB (4032 KB with a 32-KB sector size, and 128 KB with an 8-KB sector size) of code-flash  
with an additional work-flash of up to 128 KB (96 KB with 2-KB sector size, and 32 KB with 128-B sectors size).  
Work-flash is optimized for reprogramming many more times than code-flash. Code-flash supports  
Read-While-Write (RWW) operation allowing flash to be updated while the CPU is active. Both the code-flash and  
work-flash areas support dual-bank operation for over-the-air (OTA) programming.  
3.1.4  
SRAM  
CYT2CL has up to 512 KB of SRAM (512 KB) with two independent controllers. The first controller SRAM0 provides  
DeepSleep retention in 32-KB increments while SRAM1 is selectable between fully retained and not retained.  
3.1.5  
ROM  
CYT2CL has 32-KB ROM that contains boot and configuration routines. This ROM enables secure boot and authen-  
tication of user flash to guarantee a secure system.  
3.1.6  
Cryptography accelerator for security  
The cryptography accelerator implements (3)DES block cipher, AES block cipher, SHA hash, cyclic redundancy  
check, pseudo random number generation, true random number generation, galois/counter mode, and a vector  
unit to support asymmetric key cryptography such as RSA and ECC.  
Depending on the part number, this block is either completely or partially available or not available at all. See  
Ordering information for more details.  
Datasheet  
11  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Functional description  
3.2  
System resources  
Power system  
3.2.1  
The power system ensures that the supply voltage levels meet the requirements of each power mode, and  
provides a full-system reset when these levels are not valid. Internal power-on reset (POR) guarantees full-chip  
reset during the initial power ramp.  
Three Brown-Out Detection (BOD) circuits monitor the external supply voltages (VDDD, VDDA_ADC, VCCD). The BOD  
on VDDD and VCCD are initially enabled and cannot be disabled. The BOD on VDDA_ADC is initially disabled and can  
be enabled by the user. For the external supplies VDDD and VDDA_ADC, BOD circuits are software configurable with  
two settings; a 2.7-V minimum voltage that is robust for all internal signaling, and a 3.0-V minimum voltage, which  
is also robust for all I/O specifications (which are guaranteed at 2.7 V). The BOD on VCCD is provided as a safety  
measure and is not a robust detector.  
Three overvoltage detection (OVD) circuits are provided for monitoring external supplies (VDDD, VDDA_ADC, VCCD),  
and overcurrent detection circuits (OCD) for monitoring internal and external regulators. OVD thresholds on VDDD  
and VDDA_ADC are configurable with two settings; a 5.0-V and 5.5-V maximum voltage.  
Two voltage detection circuits are provided to monitor the external supply voltage (VDDD) for falling and rising  
levels, each configurable for one of the 26 selectable levels.  
All BOD, OVD, and OCD circuits on VDDD and VCCD generate a reset, because these protect the CPUs and fault logic.  
The BOD and OVD circuits on VDDA_ADC can be configured to generate either a reset, or a fault.  
3.2.2  
Regulators  
CYT2CL contains two regulators that provide power to the low-voltage core transistors: DeepSleep and core  
internal. These regulators accept a 2.7–5.5-V VDDD supply and provide a low-noise 1.1-V supply to various parts  
of the device. These regulators are automatically enabled and disabled by hardware and firmware when  
switching between power modes. The core internal regulators operate in Active mode, and provide power to the  
CPU subsystem and associated peripherals.  
3.2.2.1  
DeepSleep  
The DeepSleep regulator is used to maintain power to a small number of blocks when in DeepSleep mode. These  
blocks include the ILO and WDT timers, BOD detector, SCB0, SRAM memories, Smart I/O, and other configuration  
memories. The DeepSleep regulator is enabled when in DeepSleep mode, and the core internal regulator is  
disabled. It is disabled when XRES_L is asserted (LOW) and when the core internal regulator is disabled.  
3.2.2.2  
Core internal  
The core internal regulator supports load currents up to 150 mA, and is operational during device startup (boot  
process), and in Active/Sleep modes.  
3.2.3  
Clock system  
The CYT2CL clock system provides clocks to all subsystems that require them, and glitch-free switching between  
different clock sources. In addition, the clock system ensures that no metastable conditions occur.  
The clock system for CYT2CL consists of the 8-MHz IMO, two ILOs, three watchdog timers, three PLLs, an FLL, five  
clock supervisors (CSV), a 7.2- to 33.34-MHz ECO, a 4- to 8-MHz LPECO, and a 32.768-kHz WCO.  
The clock system supports two main clock domains: CLK_HF and CLK_LF.  
• CLK_HFx are the active domain clocks. Each can use any of the high-frequency clock sources including IMO,  
EXT_CLK, ECO, LPECO, FLL, or PLL.  
• CLK_LF is a DeepSleep domain clock and provides source for MCWDT or RTC modules. The reference clock for  
the CLK_LF domain is selectable from ILO0, ILO1, WCO, or disabled.  
Datasheet  
12  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Functional description  
Table 3-1  
Name  
CLK_HF destinations  
Description  
CLK_HF0  
CLK_HF1  
CLK_HF2  
CLK_HF3  
CLK_HF4  
CLK_HF5  
CPUSS clocks, PERI, and AHB infrastructure  
Event Generator, also available in HSIOM as an output  
Sound Subsystem #0  
Sound Subsystem #1  
Sound Subsystem #2  
SMIF #0  
3.2.3.1  
IMO clock source  
The IMO is the frequency reference in CYT2CL when no external reference is available or enabled. The IMO  
operates at a frequency of around 8 MHz.  
3.2.3.2  
ILO clock source  
An ILO is a low-power oscillator, nominally 32.768 kHz, which generates clocks for a watchdog timer when in  
DeepSleep mode. There are two ILOs to ensure CSV (clock supervisor) capability in DeepSleep mode. ILO-driven  
counters can be calibrated to the IMO, WCO, or ECO to improve their accuracy. ILO1 is also used for clock super-  
vision.  
3.2.3.3  
PLL and FLL  
A PLL (two 200 MHz and one 400 MHz) or FLL may be used to generate high-speed clocks from the IMO, ECO, or  
an EXT_CLK. The FLL provides a much faster lock than the PLL (5 µs instead of 35 µs) in exchange for a small  
amount (±2%) of frequency error[7] and a lower max output frequency (100 MHz instead of up to 400 MHz).  
400-MHz PLLs supports spread spectrum clock generation (SSCG) with down spreading.  
3.2.3.4  
Clock supervisor  
Each clock supervisor (CSV) allows one clock (reference) to supervise the behavior of another clock (monitored).  
Each CSV has counters for both the monitored and reference clocks. Parameters for each counter determine the  
frequency of the reference clock as well as the upper and lower frequency limits of the monitored clock. If the  
frequency range comparator detects a stopped clock or a clock outside the specified frequency range, an  
abnormal state is signaled and either a reset or an interrupt is generated.  
3.2.3.5  
EXT_CLK  
One of two I/Os can be used to provide an external clock input of up to 100 MHz. This clock can be used as the  
source clock for either the PLL or FLL, or can be used directly by the CLK_HF domain.  
3.2.3.6  
ECO  
The ECO provides high-frequency clocking using an external crystal connected to the ECO_IN and ECO_OUT pins.  
It supports fundamental mode (non-overtone) quartz crystals, in the range of 7.2 to 33.34 MHz. When used in  
conjunction with the PLL, it generates CPU and peripheral clocks up to device’s maximum frequency. ECO  
accuracy depends on the selected crystal. If the ECO is disabled, the associated pins can be used for any of the  
available I/O functions.  
Note  
7. Operation of reference-timed peripherals (such as a UART) with an FLL-based reference is not recommended due to the allowed  
frequency error.  
Datasheet  
13  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Functional description  
3.2.3.7  
LPECO  
The LPECO provides high-frequency clocking using an external crystal connected to the LPECO_IN and  
LPECO_OUT pins. It supports fundamental mode (non-overtone) quartz crystals, in the range of 3.99 to 8.01 MHz.  
LPECO can operate during DeepSleep, and Hibernate modes with significant lower current consumptions. It can  
also be used for real-time-clock applications. When used in conjunction with the PLL, it generates CPU and  
peripheral clocks up to device’s maximum frequency.  
3.2.3.8  
WCO  
The WCO is a low-power, watch-crystal oscillator intended for real-time-clock applications. It requires an external  
32.768-kHz crystal connected to the WCO_IN and WCO_OUT pins. The WCO can also be configured as a clock  
reference for CLK_LF, which is the clock source for the MCWDT and RTC.  
3.2.4  
Reset  
CYT2CL can be reset from a variety of sources, including software. Reset events are asynchronous and guarantee  
reversion to a known state. The reset cause (POR, BOD, OVD, overcurrent, XRES_L, WDT, MCWDT, software reset,  
fault, CSV, Hibernate wakeup, debug) is recorded in a register, which is sticky through reset and allows software  
to determine the cause of the reset. An XRES_L pin is available for external reset.  
3.2.5  
Watchdog timers  
CYT2CL has one watchdog timer (WDT) and two multi-counter watchdog timers (MCWDT).  
The WDT is a free-running counter clocked only by ILO0, which allows it to be used as a wakeup source from  
Hibernate. This allows watchdog operation during all power modes and needs to be serviced during a configured  
window, otherwise generates a watchdog reset, if not serviced before the timeout occurs. A watchdog reset is  
recorded in the Reset Cause register.  
An MCWDT is available for each of the CPU cores. These timers provide more capabilities than the WDT, and are  
only available in the Active, Sleep, and DeepSleep modes. These timers have multiple counters that can be used  
separately or cascaded to trigger interrupts and/or resets. They are clocked from ILO0 or the WCO.  
3.2.6  
Power modes  
CYT2CL has six different power modes:  
• Active – All peripherals are available  
• Low-Power Active (LPACTIVE) – Low-power profile of Active mode where all peripherals and the CPUs are  
available, but with limited capability  
• Sleep – All peripherals except the CPUs are available  
• Low-Power Sleep (LPSLEEP) – Low-power profile of Sleep mode where all peripherals except the CPUs are  
available, but with limited capability  
• DeepSleep – Only peripherals which work with CLK_LF are available  
• Hibernate – The device and I/O states are frozen; the device resets on wakeup  
Datasheet  
14  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Functional description  
3.3  
Peripherals  
3.3.1  
Peripheral clock dividers  
Integer and fractional clock dividers are provided for peripheral and timing purposes.  
Table 3-2 Clock dividers  
Divider  
Count  
11  
16  
Description  
div_8  
div_16  
Integer divider, 8 bits  
Integer divider, 16 bits  
div_16_5  
div_24_5  
4
11  
Fractional divider, 16.5 bits (16 integer bits, 5 fractional bits)  
Fractional divider, 24.5 bits (24 integer bits, 5 fractional bits)  
3.3.2  
Peripheral protection unit  
The Peripheral protection unit (PPU) controls and monitors unauthorized access from all masters (CPU,  
P-/M-DMA, Crypto, and any enabled debug interface) to the peripherals. It allows or restricts data transfers on the  
bus infrastructure. The access rules are enforced based on specific properties of a transfer, such as an address  
range for the transfer and access attributes (such as read/write, user/privilege, and secure/non-secure).  
3.3.3  
12-bit SAR ADC  
CYT2CL contains one 1-Msps SAR ADCs. This ADC can be clocked at up to 26.67 MHz and provide a 12-bit result in  
26 clock cycles.  
The references for the SAR ADC comes from a dedicated pair of inputs: VREFH and VREFL[8]  
.
CYT2CL supports 32 logical ADC channels which can select one of 54 input sources. Sources include 48 external  
inputs from I/Os, and six internal connections for diagnostic and monitoring purposes.  
The number of ADC channels (per ADC and package type) are listed in Table 1-1.  
SAR ADC has a sequencer, which autonomously cycles through the configured channels (sequencer scan) with  
zero-switching overhead (that is, the aggregate sampling bandwidth, when clocked at 26.67 MHz, is equal to 1  
Msps whether it is for a single channel or distributed over several channels). The sequencer switching is  
controlled through a state machine or firmware. The sequencer prioritizes trigger requests, enables the  
appropriate analog channel, controls ADC sampling, initiates ADC data conversion, manages results, and initiates  
subsequent conversions for repetitive or group conversions without CPU intervention.  
SAR ADC has two analog multiplexers used to connect the signals to be measured to the ADC. One is SARMUX0  
which has 24 GPIO_STD inputs (ADC[0]_0 to ADC[0]_23), and six additional inputs to measure internal signals  
such as a band-gap reference, a temperature sensor, VCCD, VDDA_ADC power supplies and AMUXBUSA/B signals.  
The other multiplexer is SARMUX1 which has 24 GPIO_SMC inputs (ADC[1]_0 to ADC[1]_23).  
CYT2CL has a temperature sensor. Software post processing is required to convert the temperature sensor  
reading into kelvin or Celsius values.  
To accommodate signals with varying source impedances and frequencies, it is possible to have different sample  
times programmed for each channel. ADC also supports range comparison, which allows fast detection of  
out-of-range values without having to wait for a sequencer scan to complete and for the CPU firmware to evaluate  
the measurement for out-of-range values.  
The ADC is not usable in DeepSleep and Hibernate modes as they require a high-speed clock. The ADC input  
reference voltage VREFH range is 2.7 V to VDDA_ADC and VREFL is VSSA_ADC  
.
Note  
8. VREF_L prevents IR drops in the VSSIO and VSSA_ADC paths from impacting the measurements. VREF_L, when properly connected,  
reduces or removes the impact of IR drops in the VSSIO and VSSA_ADC paths from measurements.  
Datasheet  
15  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Functional description  
3.3.4  
Timer/counter/PWM block (TCPWM)  
The TCPWM block consists of 16-bit (46 channels) and 32-bit (16 channels) counters with user-programmable  
period. Twelve of the 16-bit counters are optimized for DC and stepper motor-control operations. Each TCPWM  
counter contains a capture register to record the count at the time of an event, a period register (used to either  
stop or auto-reload the counter when its count is equal to the period register), and compare registers to generate  
signals that are used as PWM duty-cycle outputs.  
Each counter within the TCPWM block supports several functional modes such as timer, capture, quadrature,  
PWM, PWM with dead-time insertion (PWM_DT, 8-bit), pseudo-random PWM (PWM_PR), and shift-register.  
The TCPWM block also provides true and complement outputs, with programmable offset between them, to  
allow their use as deadband complementary PWM outputs. The TCPWM block also has a kill input (only for the  
PWM mode) to force outputs to a predetermined state; for example, this may be used in motor-drive systems  
when an overcurrent state is detected and the PWMs driving the FETs need to be shut off immediately (no time  
for software intervention).  
Twelve of the 16-bit counters are optimized for DC and stepper motor-control operations, these also have ZPD  
(Zero Point detection) and slew rate control capabilities. Two of these TCPWM channels constitute one SMC  
channel.  
3.3.5  
Serial Communication Blocks (SCB)  
CYT2CL contains 12 serial communication blocks, each configurable to support I2C, UART, or SPI.  
3.3.5.1  
I2C interface  
An SCB can be configured to implement a full I2C master (capable of multi-master arbitration) or slave interface.  
Each SCB configured for I2C can operate at speeds of up to 1 Mbps (Fast-mode Plus[9]) and has flexible buffering  
options to reduce the interrupt overhead and latency of the CPU. In addition, each SCB supports FIFO buffering  
for receive and transmit data, which, by increasing the time for the CPU to read the data, reduces the need for  
clock stretching. The2I2C interface is compatible with Standard, Fast-mode, and Fast-mode Plus devices as  
specified in the NXP I C-bus specification and user manual (UM10204). The I2C-bus I/O is implemented with GPIO  
in open-drain modes[10, 11]  
.
3.3.5.2  
UART interface  
When configured as a UART, each SCB provides a full-featured UART with maximum signaling rate determined  
by the configured peripheral-clock frequency and over-sampling rate. It supports infrared interface (IrDA) and  
SmartCard (ISO 7816) protocols, which are minor variants of the UART protocol. It also supports the 9-bit multi-  
processor mode that allows the addressing of peripherals connected over common Rx and Tx lines. Common  
UART functions such as parity, number of stop bits, break detect, and frame error are supported. FIFO buffering  
of transmit and receive data allows greater CPU service latencies to be tolerated.  
The LIN protocol is supported by the UART. LIN is based on a single-master multi-slave topology. There is one  
master node and multiple slave nodes on the LIN bus. The SCB UART supports only LIN slave functionality.  
Compared to the dedicated LIN blocks, an SCB/UART used for LIN requires a higher level of software interaction  
and increased CPU load.  
Notes  
9. I/Os drive level does not support the full bus capacitance in Fast-mode Plus speeds.  
10.This is not 100 percent compliant with the I2C-bus specification; I/Os are not high-voltage compliant, do not support the 20-mA sink  
requirement of Fast-mode Plus, and violate the leakage specification when no power is applied.  
11.See Table 27-10 'Serial Communication Block (SCB) specifications' for supported IO-cells and I2C modes.  
Datasheet  
16  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Functional description  
3.3.5.3  
SPI interface  
The SPI configuration supports full Motorola SPI, TI Synchronous Serial Protocol (SSP, essentially adds a start  
pulse that is used to synchronize SPI-based codecs), and National Microwire (a half-duplex form of SPI). The SPI  
interface can use the FIFO and operates with up to a 12.5-MHz SPI Clock. SCB also supports EZSPI[12] mode.  
SCB0 supports the following additional features:  
• Operable as a slave in DeepSleep mode  
• I2C slave EZ (EZI2C[13]) mode with up to 256-B data buffer for multi-byte communication without CPU  
intervention  
• I2C slave externally-clocked operations  
• Command/response mode with a 512-B data buffer for multi-byte communication without CPU intervention  
3.3.6  
CAN FD  
CYT2CL supports two CAN FD controller blocks, each supporting two CAN FD channel. All CAN FD controllers are  
compliant with the ISO 11898-1:2015 standard; an ISO 16845:2015 certificate is available. It also implements the  
time-triggered CAN (TTCAN) protocol specified in ISO 11898-4 (TTCAN protocol levels 1 and 2) completely in  
hardware. All functions concerning the handling of messages are implemented by the Rx and Tx handlers. The Rx  
handler manages message acceptance filtering, transfer of received messages from the CAN core to a message  
RAM, and provides receive-message status. The Tx handler is responsible for the transfer of transmit messages  
from the message RAM, to the CAN core, and provides transmit-message status.  
3.3.7  
Local interconnect network (LIN)  
CYT2CL contains up to two LIN channels. Each channel supports transmission/reception of data following the LIN  
protocol according to ISO standard 17987. Each LIN channel connects to an external transceiver through a 3-pin  
interface (including an enable function) and supports master and slave functionality. Each channel also supports  
classic and enhanced checksum, along with break detection during message reception and wake-up signaling.  
Break detection, sync field, checksum calculations, and error interrupts are handled in hardware.  
3.3.8  
Clock extension peripheral interface (CXPI)  
CYT2CL contains up to two CXPI channels compliant with JASO D015 and ISO standard 20794 including the  
controller specification.  
Each channel supports:  
• Master and slave functionality  
• Polling and event trigger method for both normal and long frames  
• Non-return to zero (NRZ) and PWM signaling modes  
• Collision resolution and carries sense multiple access  
• Wakeup pulse generation and detection  
• CRC8 and CRC16 for both normal and long frames  
• Error detection  
• Dedicated FIFO (16 B) for transmit and receive  
Notes  
12.The Easy SPI (EZSPI) protocol is based on the Motorola SPI operating in any mode (0, 1, 2, or 3). It allows communication between  
master and slave, and reduces the need for CPU intervention.  
13.The Easy I2C (EZI2C) protocol is a unique communication scheme built on top of the I2C protocol by Infineon. It uses a meta protocol  
around the standard I2C protocol to communicate to an I2C slave using indexed memory transfers. This reduces the need for CPU  
intervention.  
Datasheet  
17  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Functional description  
3.3.9  
Serial memory interface  
In addition to the internal flash memory, CYT2CL supports direct connection to 128 MB of external flash or RAM  
memory. This connection is made through either a xSPI or serial peripheral interface (SPI). xSPI allows  
connection to HYPERFLASH™ and HYPERRAM™ devices, while SPI (single, dual, quad, or octal SPI) can connect  
with serial flash memory. Code stored in memory connected through this interface allows execute-in-place (XIP)  
operation, which does not require the instructions to be first copied to internal memory, and on-the-fly  
encryption and decryption for environments requiring secure external data and code.  
3.3.10  
Sound subsystem  
CYT2CL supports the following,  
• Up to two time-division multiplexing (TDM) interfaces  
- Full-duplex transmitter and receiver operation  
- Independent transmitter or receiver operation, each in master or slave mode  
- Up to 16 channels, each channel can be individually enabled or disabled  
• Up to two pulse code modulation-pulse width modulation (PCM-PWM) interface  
- Conversion of PCM audio streaming to PWM signals  
- Up to 32-bit output sample resolution  
- Supports E- and H-bridge formats  
- Dead time insertion  
• Up to five sound generator (SG) interfaces  
- PWM modulated (amplitude, tone) sound generation  
- Separate volume and frequency control (two signals) and combined volume-frequency control (one signal)  
formats  
• One mixer supporting five input sources  
- Combines multiple PCM source streams into a single PCM destination stream  
- PCM source stream can be gain/volume controlled  
- Fixed PCM sample formatting (16-bit pairs)  
- LPF support by FIR filter  
- Fade-in and Fade-out control for both source and destination PCM streams  
3.3.11  
One-time-programmable (OTP) eFuse  
CYT2CL devices contain a 1024-bit OTP eFuse memory that can be used to store and access a unique and  
unalterable identifier or serial number for each device. eFuses are also used to control the device life-cycle  
(manufacturing, programming, normal operation, end-of-life, and so on) and the security state. Of the 1024 bits,  
192 are available for user purposes.  
3.3.12  
Event generator  
The event generator supports generation of interrupts and triggers in the Active mode and interrupts in the  
DeepSleep mode. The event generators are used to trigger a specific device function (execution of an interrupt  
handler, a SAR ADC conversion, and so on) and to provide a cyclic wakeup mechanism from the DeepSleep mode.  
They provide CPU-free triggers for device functions, and reduce CPU involvement in triggering device functions,  
thus reducing overall power consumption and processing overhead.  
3.3.13  
Trigger multiplexer  
CYT2CL supports connecting various peripherals using trigger signals. Triggers are used to inform a peripheral of  
the occurrence of an event or change of state. These triggers are used to affect or initiate some action in other  
peripherals. The trigger multiplexer is used to route triggers from a source peripheral to a destination. Triggers  
provide active logic functionality and are typically supported in the Active mode.  
Datasheet  
18  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Functional description  
3.4  
I/Os  
CYT2CL has up to 140 programmable I/Os.  
The I/Os are organized as logical entities called ports, which are a maximum of 8 bits wide. During power-on and  
reset, the I/Os are forced to the High-Z state. During the Hibernate mode, the I/Os are frozen.  
Every I/O can generate an interrupt (if enabled) and each port has an interrupt request (IRQ) and interrupt service  
routine (ISR) associated with it.  
The I/O port power source mapping is listed in Table 3-3. The associated supply determines the VOH, VOL, VIH, and  
VIL levels when configured for CMOS and Automotive thresholds.  
Table 3-3  
I/O port power source  
Supply  
Ports  
VDDD  
P0, P10, P11, P12, P13, P14, P15, P16, P17, P18, P19  
VDDIO_GPIO  
VDDIO_HSIO  
VDDIO_SMC  
P1, P2, P3, P4  
P8, P9  
P5, P6, P7  
Each I/O implements the following:  
• Programmable drive mode  
- High impedance  
- Resistive pull-up  
- Resistive pull-down  
- Open drain with strong pull-down  
- Open drain with strong pull-up  
- Strong pull-up or pull-down  
- Weak pull-up or pull-down  
CYT2CL has four types of programmable GPIOs: GPIO Standard, GPIO Enhanced, GPIO SMC, HSIO Standard with  
Low noise. Only GPIO_STD, GPIO_ENH, and GPIO_SMC have the capability to wakeup the device from DeepSleep  
mode.  
3.4.1  
GPIO  
Three types of GPIOs are supported:  
• GPIO_STD, GPIO_ENH, and GPIO_SMC  
These implement the following:  
• Configurable input threshold (CMOS, TTL, or Automotive)  
• Hold mode for latching previous state (used for retaining the I/O state in DeepSleep mode)  
• Analog input mode (input and output buffers disabled)  
• Edge-triggered interrupts on rising edge, falling edge, or on both the edges, on pin basis  
3.4.1.1  
GPIO standard (GPIO_STD)  
Supports standard automotive signaling across the 2.7-V to 5.5-V VDDIO range. GPIO Standard I/Os have multiple  
configurable drive levels, drive modes, and selectable input levels.  
3.4.1.2  
GPIO enhanced (GPIO_ENH)  
Supports extended functionality automotive signaling across the 2.7-V to 5.5-V VDDIO range with higher currents  
at lower voltages (full I2C timing support, slew-rate control).  
Datasheet  
19  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Functional description  
3.4.1.3  
GPIO SMC (GPIO_SMC)  
Provides significant drive strength than GPIO_STD and GPIO_ENH (Supports 30-mA drive).  
3.4.2  
HSIO  
These I/Os are optimized exclusively for high-speed signaling and do not support slew-rate control, DeepSleep  
operation, POR mode control, analog connections, or non-CMOS signaling levels. HSIOs support programmable  
drive strength. They are available only in Active mode.  
3.4.2.1  
HSIO standard low noise (HSIO_STDLN)  
Supports clocking and signaling up to 100 MHz. Also supports holding state during DeepSleep mode. Low noise  
version optimizes the noise generated by having specific modes for each interface support.  
3.4.3  
Port nomenclature  
Px.y describes a particular bit “y” available within an I/O port “x.”  
• For example, P4.2 reads “port 4, bit 2”.  
3.4.4  
Smart I/O  
Smart I/O allows Boolean operations on signals going to the I/O from the subsystems of the chip or on signals  
coming into the chip. CYT2CL has one Smart I/O block. Operation can be synchronous or asynchronous and the  
blocks operate in all device power modes except for the Hibernate mode.  
Datasheet  
20  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
CYT2CL address map  
4
CYT2CL address map  
The CYT2CL microcontroller supports the memory spaces shown in Figure 4-1:  
• Code-flash  
- 4160 KB (4032 KB + 128 KB) of code-flash, used in the single- or dual-bank mode based on the associated bit  
in the flash control register  
• Single-bank mode - 4160 KB  
• Dual-bank mode - 2080 KB per bank  
• Work-flash  
- 128 KB (96 KB + 32 KB) of work-flash, used in the single- or dual-bank mode based on the associated bit in the  
flash control register  
• Single-bank mode - 128 KB  
• Dual-bank mode - 64 KB per bank  
• 32 KB of secure ROM  
• 512 KB of SRAM (First 2 KB is reserved for internal usage)  
• 128 MB SMIF XIP  
Datasheet  
21  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
CYT2CL address map  
0xFFFF FFFF  
Arm System  
Space  
CPU & Debug Registers  
0xE000 0000  
0x43FF FFFF  
Reserved  
Peripheral  
Interconnect or  
Memory map  
Mainly used for on-chip peripherals  
e.g., AHB or APB Peripherals  
0x4000 0000  
0x1FFF FFFF  
Reserved  
128 MB  
Serial Memory Interface XIP  
SMIF_XIP  
0x1800 0000  
Reserved  
32 KB  
Reserved  
32 KB  
Alternate Flash  
Supervisory Region  
0x1780 7FFF  
0x1780 0000  
Used to store manufacture specific  
data like flash protection settings, trim  
settings, device addresses, serial numbers,  
calibration data, etc.  
Flash Supervisory  
Region  
0x1700 7FFF  
0x1700 0000  
Reserved  
0x1401 FFFF  
32 KB  
(128 B Small Sectors)  
Work flash used for long  
term data retention  
0x1401 8000  
0x1401 7FFF  
Work flash  
Code flash  
96 KB  
(2 KB Large Sectors)  
0x1400 0000  
0x1040 FFFF  
Reserved  
128 KB  
(8 KB Small Sectors)  
0x103F 0000  
0x103E FFFF  
Mainly used for user program code  
4032 KB  
(32 KB Large Sectors)  
0x1000 0000  
0x0807 FFFF  
Reserved  
256 KB  
SRAM1  
SRAM0  
General purpose RAM,  
mainly used for data  
0x0804 0000  
0x0803 FFFF  
254 KB  
2 KB  
0x0800 0800  
0x0800 0000  
Secured Boot ROM to set user specified  
protection levels, trim and configuration  
data, code authentication, jump to user mode etc.  
Reserved  
0x0000 7FFF  
0x0000 0000  
ROM  
32 KB  
Figure 4-1  
CYT2CL address map[14, 15]  
Notes  
14.The size representation is not up to scale.  
15.First 2KB of SRAM is reserved, not available for users. User must keep the power of first 32KB block of SRAM0 in enabled or retained  
in all Active, LP Active, Sleep, LP Sleep, DeepSleep modes.  
Datasheet  
22  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Flash base address map  
5
Flash base address map  
Table 5-1 through Table 5-6 give information about the sector mapping of the code- and work-flash regions  
along with their respective base addresses.  
Table 5-1  
Code-flash address mapping in single bank mode  
Code-flash Size (KB) Large Sectors (LS) Small Sectors (SS)  
4160 32 KB × 126 8 KB × 16  
Large Sector Base Address  
Small Sector Base Address  
0x1000 0000  
0x103F 0000  
Table 5-2  
Work-flash address mapping in single bank mode  
Work-flash Size (KB)  
Large Sectors  
Small Sectors  
Large Sector Base Address  
Small Sector Base Address  
128  
2 KB × 48  
128 B × 256  
0x1400 0000  
0x1401 8000  
Table 5-3  
Code-flash address mapping in dual bank mode (Mapping A)  
First Half  
LS Base  
Address  
First Half  
Second Half Second Half  
Code-flash  
Size (KB)  
First  
First  
Second  
Half LS  
Second  
Half SS  
SS Base  
Address  
LS Base  
Address  
SS Base  
Address  
Half LS  
Half SS  
4160  
32 KB × 63  
8KB × 8  
32 KB × 63  
8 KB × 8  
0x1000 0000 0x101F 8000 0x1200 0000 0x121F 8000  
Table 5-4  
Code-flash address mapping in dual bank mode (Mapping B)  
First Half  
LS Base  
Address  
First Half  
Second Half Second Half  
Code-flash  
Size (KB)  
First  
First  
Second  
Half LS  
Second  
Half SS  
SS Base  
Address  
LS Base  
Address  
SS Base  
Address  
Half LS  
Half SS  
4160  
32 KB × 63  
8 KB × 8  
32 KB × 63  
8 KB × 8  
0x1200 0000 0x121F 8000 0x1000 0000 0x101F 8000  
Table 5-5  
Work-flash address mapping in dual bank mode (Mapping A)  
First Half  
LS Base  
Address  
First Half  
Second Half Second Half  
Work-flash  
Size (KB)  
First  
First  
Second  
Half LS  
Second  
Half SS  
SS Base  
Address  
LS Base  
Address  
SS Base  
Address  
Half LS  
Half SS  
128  
2 KB × 24  
128 B × 128  
2 KB × 24  
128 B × 128 0x1400 0000 0x1400 C000 0x1500 0000 0x1500 C000  
Table 5-6  
Work-flash address mapping in dual bank mode (Mapping B)  
First Half  
LS Base  
Address  
First Half  
Second Half Second Half  
Work-flash  
Size (KB)  
First  
First  
Second  
Half LS  
Second  
Half SS  
SS Base  
Address  
LS Base  
Address  
SS Base  
Address  
Half LS  
Half SS  
128  
2 KB × 24  
128 B × 128  
2 KB × 24  
128 B × 128 0x1500 0000 0x1500 C000 0x1400 0000 0x1400 C000  
Datasheet  
23  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Peripheral I/O map  
6
Peripheral I/O map  
CYT2CL peripheral I/O map  
Description  
Table 6-1  
Base  
Instance  
size  
Section  
Instances  
Group Slave  
address  
Peripheral interconnect  
Peripheral group (0, 1, 2, 3, 4, 5, 6, 8, 9)  
Peripheral trigger group  
Peripheral 1:1 trigger group  
Peripheral interconnect, master interface  
PERI Programmable PPU  
PERI Fixed PPU  
0x4000 0000  
0x4000 4000  
0x4000 8000  
0x4000 C000  
0x4001 0000  
0x4001 0000  
0x4001 0800  
0x4010 0000  
0x4020 0000  
0x4021 0000  
0x4021 0000  
0x4022 0000  
0x4022 0000  
0x4022 1000  
0x4023 0000  
0x4023 2000  
0x4023 4000  
0x4024 0000  
9
0x20  
0x400  
0x400  
PERI  
0
0
13  
13  
[16]  
PERI_MS  
6
0x40  
0x40  
0
1
450  
Crypto  
CPUSS  
Cryptography component  
CPU subsystem (CPUSS)  
Fault structure subsystem  
Fault structures  
1
2
0
0
FAULT  
2
1
4
0x100  
Inter process communication  
IPC structures  
IPC  
8
8
0x20  
0x20  
2
2
IPC interrupt structures  
Protection  
PROT  
Shared memory protection unit structures  
Memory protection unit structures  
Flash controller  
16  
16  
0x40  
2
2
3
4
0x400  
FLASHC  
System Resources Sub-System Core Registers 0x4026 0000  
Clock Supervision High Frequency  
Clock Supervision Reference Frequency  
Clock Supervision Low Frequency  
Clock Supervision Internal Low Frequency  
Multi Counter WDT  
0x4026 1400  
0x4026 1710  
0x4026 1720  
0x4026 1730  
0x4026 8000  
0x4026 C000  
0x4027 0000  
0x4027 1000  
0x4028 0000  
0x4028 8000  
0x4029 0000  
0x4029 8000  
0x402A 0000  
0x402A 1000  
0x402C 0868  
0x4030 0000  
0x4031 0000  
3
1
1
1
2
1
0x10  
SRSS  
2
5
0x100  
Free Running WDT  
SRSS Backup Domain/RTC  
Backup Register  
BACKUP  
P-DMA  
2
2
2
2
6
7
8
9
4
0x04  
0x40  
0x40  
P-DMA0 Controller  
P-DMA0 channel structures  
P-DMA1 Controller  
76  
84  
P-DMA1 channel structures  
M-DMA0 Controller  
M-DMA  
M-DMA0 channels  
4
6
0x100  
0x04  
0x10  
0x80  
eFUSE  
HSIOM  
GPIO  
eFUSE Customer Data (192 bits)  
High-Speed I/O Matrix (HSIOM)  
GPIO port control/configuration  
2
3
3
10  
0
20  
20  
1
Note  
16.These six Programmable PPUs are configured by the Boot ROM and are available for the user based on the access rights. Refer to the  
device specific TRM to know more about the configuration of these programmable PPUs.  
Datasheet  
24  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Peripheral I/O map  
Table 6-1  
Section  
CYT2CL peripheral I/O map (continued)  
Base  
Instance  
size  
Description  
Instances  
Group Slave  
address  
Programmable I/O configuration  
SMART I/O port configuration  
Timer/Counter/PWM 0 (TCPWM0)  
TCPWM0 Group #0 (16-bit)  
TCPWM0 Group #1 (16-bit, Motor control)  
TCPWM0 Group #2 (32-bit)  
LCD Controller  
0x4032 0000  
0x4032 0C00  
0x4038 0000  
0x4038 0000  
0x4038 8000  
0x4039 0000  
0x403B 0000  
0x403B 0100  
0x403F 0000  
0x403F 0800  
0x4042 0000  
0x4042 0800  
0x4050 0000  
0x4050 8000  
SMARTIO  
3
2
1
0x100  
34  
12  
16  
0x80  
0x80  
0x80  
TCPWM  
3
3
LCD  
3
3
4
5
5
5
4
5
0
0
1
2
LCD Data  
4
16  
2
0x100  
0x20  
Event generator 0 (EVTGEN0)  
Event generator 0 comparator structures  
Serial Memory Interface 0 (SMIF0)  
SMIF0 Devices  
EVTGEN  
SMIF  
LIN  
0x80  
Local Interconnect Network 0 (LIN0)  
LIN0 Channels  
2
0x100  
Clock Extension Peripheral Interface 0 (CXPI0) 0x4051 0000  
CXPI  
CXPI0 Channels  
CAN0 controller  
Message RAM CAN0  
CAN1 controller  
Message RAM CAN1  
0x4051 8000  
0x4052 0000  
0x4053 0000  
0x4054 0000  
0x4055 0000  
0x4060 0000  
0x4081 0000  
0x4081 8000  
0x4082 0000  
0x4082 8000  
0x4083 0000  
0x4083 8000  
0x4088 0000  
0x4088 8000  
0x4088 C000  
0x4090 0000  
0x4090 0000  
0x4090 0800  
0x4090 1800  
2
2
0x100  
0x200  
0x1FFF  
0x200  
TTCANFD  
SCB  
2
12  
2
5
6
8
3
0-11  
0
0x1FFF  
0x10000  
2
Serial Communications Block (SPI/UART/I C)  
Time Division Multiplexer 0 (TDM0)  
TDM0 Structures  
0x200  
0x100  
0x100  
0x100  
Sound Generator 0 (SG0)  
SG0 Structures  
8
8
1
2
5
Sound  
Pulse Width Modulation 0 (PWM0)  
PWM0 Structures  
2
Mixer0  
Mixer0 Source Structures  
Mixer0 Destination Structures  
Programmable Analog Subsystem (PASS0)  
SAR0 channel controller  
SAR0 channel structures  
SAR1 channel structures  
5
1
8
9
4
0
SAR PASS  
24  
24  
0x40  
0x40  
Datasheet  
25  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
CYT2CL clock diagram  
7
CYT2CL clock diagram  
IMO EXT_CLK ECO  
WCO  
LS  
ILO0  
LS  
ILO1  
LS  
LPECO  
LS  
LPECO  
ECO  
Prescaler  
Prescaler  
LS  
MUX  
MUX  
MUX  
MUX  
MUX  
LS  
MUX  
MUX  
MUX  
MUX  
MUX  
MUX  
PLL#0  
PLL400#0  
PLL#1  
PLL200#1  
PLL#2  
PLL200#2  
MUX  
FLL  
CLK_ILO0  
LS  
CLK_  
PATH0  
CLK_  
PATH1  
CLK_  
PATH2  
CLK_  
PATH3  
CLK_  
PATH4  
CLK_REF_HF  
WDT  
MUX  
CLK_LF  
CLK_BAK  
RTC  
CSV  
MUX  
MUX  
MUX  
MUX  
MUX  
MUX  
MUX  
CLK_ILO0  
MCWDT  
Predivider  
(1/2/4/8)  
Predivider  
(1/2/4/8)  
Predivider  
(1/2/4/8)  
Predivider  
(1/2/4/8)  
Predivider  
(1/2/4/8)  
Predivider  
(1/2/4/8)  
Predivider  
(1/2/4/8)  
CLK_HF0  
CLK_HF1  
CLK_HF2  
CLK_HF3  
CLK_HF4  
CLK_HF5  
CLK_HF6  
CSV  
CSV  
CSV  
CSV  
CSV  
CSV  
CSV  
CSV  
CSV  
CSV  
CLK_ILO0  
CLK_LF  
CLK_ILO0  
CLK_REF_HF  
SMIF  
Event  
Generator  
ROM/SRAM/  
FLASH  
Divider  
(1-256)  
Divider  
(1-256)  
CM4  
CLK_FAST  
CLK_SLOW  
CLK_PERI  
CPUSS Fast  
Infrastructure  
Divider  
(1-256)  
CM0+  
CPUSS Slow  
Infrastructure  
P-DMA /  
M-DMA  
Divider  
(1-256)  
CRYPTO  
PERI  
CLK_GR3  
CLK_GR4  
CLK_GR5  
CLK_GR6  
CLK_GR9  
Divider  
(1-256)  
SRSS  
EFUSE  
TCPWM  
Segment LCD  
IOSS  
Divider  
(1-256)  
Divider  
(1-256)  
CAN FD  
LIN  
Divider  
(1-256)  
CXPI  
SCB[*]  
SCB[0]  
SAR ADC  
Serial Interface Clock  
LEGEND 1:  
LEGEND 2:  
CPUSS  
(Trace Clock)  
Active Domain  
DeepSleep Domain  
Hibernate Domain  
PCLK_TCPWM0_CLOCKS[x]  
PCLK_LCD0_CLOCK  
Peripheral  
Clock Dividers  
PCLK_SMARTTIO7_CLOCK  
PCLK_CANFD[x]_CLOCK_CAN[y]  
PCLK_LIN_CLOCK_CH_EN[x]  
PCLK_CXPI_CLOCK_CH_EN[x]  
PCLK_SCB[x]_CLOCK  
Relationship of Monitored Clock and  
Reference Clock  
PCLK_PASS_CLOCK_SAR0  
PCLK_CPUSS_CLOCK_TRACE_IN  
Monitored Clock  
TDM  
SG  
Reference Clock  
CSV  
Divider  
(1-256)  
CLK_GR8  
LEGEND 3:  
One Clock Line  
Multiple Clock Lines  
PWM  
MIXER  
Figure 7-1  
CYT2CL clock diagram  
Datasheet  
26  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
CYT2CL CPU start-up sequence  
8
CYT2CL CPU start-up sequence  
The following steps describe the start-up sequence:  
1. System Reset (@0x0000 0000)  
2. CM0+ executes ROM boot (@0x0000 0004)  
i. Applies trims  
ii. Applies Debug Access port (DAP) access restrictions and system protection from eFuse and supervisory  
flash  
iii.Authenticates flash boot (only in SECURE life-cycle stage) and transfers control to it  
3. CM0+ executes flash boot (from Supervisory flash @0x1700 2000)  
i. Debug pins are configured as per the SWD/JTAG spec[17]  
ii. Sets CM0+ vector offset register (CM0_VTOR part of the Arm® system space) to the beginning of flash  
(@0x1000 0000)  
iii.CM0+ branches to its Reset handler  
4. CM0+ starts execution  
i. Moves CM0+ vector table to SRAM (updates CM0+ vector table base)  
ii. Sets CM4_VECTOR_TABLE_BASE (@0x0000 0200) to the location of CM4 vector table mentioned in flash  
(specified in CM4 linker definition file)  
iii.Releases CM4 from reset  
iv.Continues execution of CM0+ user application  
5. CM4 executes directly from either code-flash or SRAM  
i. CM4 branches to its Reset handler  
ii. Continues execution of CM4 user application  
Note  
17.Port configuration of SWD/JTAG pins will be changed from the default GPIO mode to support debugging after the boot process, see  
Table 11-1 for pin assignments.  
Datasheet  
27  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Pin assignment  
9
Pin assignment  
VSSIO_HSIO  
P8.0  
1
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
VDDIO_GPIO  
VSSA_ADC  
VDDA_ADC  
VREFH  
P3.3  
2
P8.1  
3
P8.2  
4
P8.3  
5
VSSIO_HSIO  
VDDIO_HSIO  
P8.4  
6
P3.2  
7
P3.1  
8
P3.0  
P8.5  
9
P2.7  
P8.6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
P2.6  
P8.7  
P2.5  
VSSIO_HSIO  
VDDIO_HSIO  
P9.0  
P2.4  
P2.3  
P2.2  
P9.1  
P2.1  
P9.2  
P2.0  
P9.3  
P1.7  
VDDIO_HSIO  
VSSIO_HSIO  
VDDD  
P1.6  
P1.5  
P1.4  
VCCD  
P1.3  
VSSD  
P1.2  
P10.0  
P1.1  
176-LQFP  
P10.1  
P1.0  
P10.2  
XRES_L  
VSSD  
VCCD  
VDDD  
VDDD  
P0.3  
P10.3  
P10.4  
P11.0  
P11.1  
P11.2  
P11.3  
P0.2  
P11.4  
P0.1  
P11.5  
P0.0  
P11.6  
VSSD  
P19.6  
P19.5  
P19.4  
P19.3  
P19.2  
P19.1  
P19.0  
P18.7  
P18.6  
VSSD  
P11.7  
98  
P12.0  
97  
P12.1  
96  
P12.2  
95  
P12.3  
94  
P12.4  
93  
P12.5  
92  
P12.6  
91  
P12.7  
90  
VSSD  
89  
Figure 9-1  
176-LQFP pin assignment  
Datasheet  
28  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Pin assignment  
VSSIO_HSIO  
SCB10_CLK (0)/SCB10_RX (0)/SCB10_SDA (0)/IO_CLK_HF[2]/SPIHB_SELECT1 P8.0  
SCB10_MOSI (0)/SCB10_TX (0)/SCB10_SCL (0)/SPIHB_SELECT0 P8.1  
SCB10_MISO (0)/SCB10_RTS (0)/SPIHB_DATA7 P8.2  
1
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
VDDIO_GPIO  
2
VSSA_ADC  
3
VDDA_ADC  
4
VREFH  
SCB10_SEL0 (0)/SCB10_CTS (0)/SPIHB_DATA6 P8.3  
5
P3.3 PWM0_27/PWM0_26_N/TC0_25_TR/SCB8_SEL0 (1)/SCB8_CTS (1)/TRIG_IN[5]/ADC[0]_13  
P3.2 PWM0_26/PWM0_25_N/TC0_24_TR/EXT_MUX[0]_EN/SCB8_MISO (1)/SCB8_RTS (1)/TRIG_IN[4]/SWJ_TRSTN/ADC[0]_12  
P3.1 PWM0_25/PWM0_24_N/TC0_33_TR/EXT_MUX[0]_2/SCB8_MOSI (1)/SCB8_TX (1)/SCB8_SCL (1)/SWJ_SWDOE_TDI/ADC[0]_11  
P3.0 PWM0_24/PWM0_33_N/TC0_32_TR/EXT_MUX[0]_1/LIN1_EN/CXPI1_EN/SCB8_CLK (1)/SCB8_RX (1)/SCB8_SDA (1)/SWJ_SWDIO_TMS/ADC[0]_10  
P2.7 PWM0_H_15/PWM0_H_14_N/TC0_H_13_TR/EXT_MUX[0]_0/LIN1_TX/CXPI1_TX/TRIG_IN[3]/SWJ_SWCLK_TCLK/ADC[0]_9  
P2.6 PWM0_H_14/PWM0_H_13_N/TC0_H_12_TR/LIN1_RX/CXPI1_RX/TRIG_IN[0]/SWJ_SWO_TDO/HIBERNATE_WAKEUP[2]  
P2.5 PWM0_H_13/PWM0_H_12_N/TC0_H_11_TR/CAN0_1_RX/TRIG_DBG[0]/CAL_SUP_NZ/RTC_CAL/HIBERNATE_WAKEUP[1]  
P2.4 PWM0_H_12/PWM0_H_11_N/TC0_H_10_TR/LIN0_EN/CXPI0_EN/CAN0_1_TX/SCB8_SEL1 (0)/TRIG_IN[2]/ADC[0]_8  
P2.3 PWM0_H_11/PWM0_H_10_N/TC0_H_9_TR/LIN0_RX/CXPI0_RX/CAN0_0_RX/SCB8_SEL0 (0)/SCB8_CTS (0)/TRIG_IN[1]/ADC[0]_7/HIBERNATE_WAKEUP[0]  
P2.2 PWM0_H_10/PWM0_H_9_N/TC0_H_8_TR/LIN0_TX/CXPI0_TX/CAN0_0_TX/SCB8_MISO (0)/SCB8_RTS (0)/TRIG_DBG[1]/ADC[0]_6  
P2.1 PWM0_H_9/PWM0_H_8_N/TC0_H_7_TR/SCB8_MOSI (0)/SCB8_TX (0)/SCB8_SCL (0)/ADC[0]_5  
P2.0 PWM0_H_8/PWM0_H_7_N/TC0_H_6_TR/SCB8_CLK (0)/SCB8_RX (0)/SCB8_SDA (0)/ADC[0]_4  
P1.7 PWM0_H_7/PWM0_H_6_N/TC0_H_5_TR  
VSSIO_HSIO  
6
VDDIO_HSIO  
7
SCB10_SEL1 (0)/SPIHB_DATA5 P8.4  
8
EXT_CLK/SPIHB_DATA4 P8.5  
9
SCB11_CLK (0)/SCB11_RX (0)/SCB11_SDA (0)/SPIHB_DATA3 P8.6  
SCB11_MOSI (0)/SCB11_TX (0)/SCB11_SCL (0)/TRACE_DATA_3/SPIHB_DATA2 P8.7  
VSSIO_HSIO  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
VDDIO_HSIO  
SCB11_MISO (0)/SCB11_RTS (0)/TRACE_DATA_2/SPIHB_DATA1 P9.0  
SCB11_SEL0 (0)/SCB11_CTS (0)/TRACE_DATA_1/SPIHB_DATA0 P9.1  
SCB11_SEL1 (0)/TRACE_DATA_0/SPIHB_CLK P9.2  
TRACE_CLOCK/SPIHB_RWDS P9.3  
VDDIO_HSIO  
P1.6 PWM0_H_6/PWM0_H_5_N/TC0_H_4_TR  
VSSIO_HSIO  
P1.5 PWM0_H_5/PWM0_H_4_N/TC0_H_3_TR  
VDDD  
P1.4 PWM0_H_4/PWM0_H_3_N/TC0_H_2_TR/SCB7_SEL1 (0)  
VCCD  
P1.3 PWM0_H_3/PWM0_H_2_N/TC0_H_1_TR/SCB7_SEL0 (0)/SCB7_CTS (0)/FAULT_OUT_3/ADC[0]_3  
P1.2 PWM0_H_2/PWM0_H_1_N/TC0_H_0_TR/SCB7_MISO (0)/SCB7_RTS (0)/FAULT_OUT_2/ADC[0]_2  
P1.1 PWM0_H_1/PWM0_H_0_N/TC0_H_15_TR/SCB7_MOSI (0)/SCB7_TX (0)/SCB7_SCL (0)/FAULT_OUT_1/ADC[0]_1  
P1.0 PWM0_H_0/PWM0_H_15_N/TC0_H_14_TR/SCB7_CLK (0)/SCB7_RX (0)/SCB7_SDA (0)/FAULT_OUT_0/ADC[0]_0  
XRES_L  
VSSD  
PWM0_4/PWM0_3_N/SG_TONE[0] (1)/SCB2_CLK (1)/SCB2_RX (1)/SCB2_SDA (1)/LCD_SEG_0/LCD_COM_0 P10.0  
PWM0_5/PWM0_4_N/SG_AMPL[0] (1)/SCB2_MOSI (1)/SCB2_TX (1)/SCB2_SCL (1)/LCD_SEG_1/LCD_COM_1 P10.1  
PWM0_6/PWM0_5_N/SG_MCK[0] (1)/SCB2_MISO (1)/SCB2_RTS (1)/LCD_SEG_2/LCD_COM_2 P10.2  
PWM0_7/PWM0_6_N/SG_TONE[1] (1)/SCB2_SEL0 (1)/SCB2_CTS (1)/LCD_SEG_3/LCD_COM_3 P10.3  
PWM0_8/PWM0_7_N/SG_AMPL[1] (1)/LCD_SEG_4/LCD_COM_4 P10.4  
PWM0_9/PWM0_8_N/SG_MCK[1] (1)/SCB1_CLK (0)/SCB1_RX (0)/SCB1_SDA (0)/LCD_SEG_5/LCD_COM_5 P11.0  
PWM0_10/PWM0_9_N/SCB1_MOSI (0)/SCB1_TX (0)/SCB1_SCL (0)/LCD_SEG_6/LCD_COM_6 P11.1  
PWM0_H_0/PWM0_10_N/TDM_TX_MCK[0] (0)/TDM_RX_MCK[1] (0)/SCB1_MISO (0)/SCB1_RTS (0)/LCD_SEG_7/LCD_COM_7 P11.2  
PWM0_H_1/PWM0_H_0_N/TDM_TX_SCK[0] (0)/TDM_RX_SCK[1] (0)/SCB1_SEL0 (0)/SCB1_CTS (0)/LCD_SEG_8/LCD_COM_8 P11.3  
PWM0_H_2/PWM0_H_1_N/TC0_H_0_TR/TDM_TX_FSYNC[0] (0)/TDM_RX_FSYNC[1] (0)/SCB1_SEL1 (0)/LCD_SEG_9/LCD_COM_9 P11.4  
PWM0_11/PWM0_H_2_N/TC0_H_1_TR/TDM_TX_SD[0] (0)/TDM_RX_SD[1] (0)/SG_TONE[2] (1)/LCD_SEG_12/LCD_COM_12 P11.5  
PWM0_6/PWM0_11_N/SG_AMPL[2] (1)/LCD_SEG_13/LCD_COM_13 P11.6  
PWM0_7/PWM0_6_N/SG_MCK[2] (1)/TRIG_IN[18]/LCD_SEG_14/LCD_COM_14 P11.7  
PWM0_8/PWM0_7_N/TC0_H_2_TR/SG_TONE[0] (0)/SCB2_CLK (0)/SCB2_RX (0)/SCB2_SDA (0)/LCD_SEG_10/LCD_COM_10 P12.0  
PWM0_9/PWM0_8_N/SG_AMPL[0] (0)/SCB2_MOSI (0)/SCB2_TX (0)/SCB2_SCL (0)/LCD_SEG_11/LCD_COM_11 P12.1  
PWM0_10/PWM0_9_N/SG_MCK[0] (0)/SCB2_MISO (0)/SCB2_RTS (0)/LCD_SEG_15/LCD_COM_15 P12.2  
PWM0_11/PWM0_10_N/TDM_TX_MCK[1] (0)/TDM_RX_MCK[0] (0)/SCB2_SEL0 (0)/SCB2_CTS (0)/LCD_SEG_16/LCD_COM_16 P12.3  
PWM0_0/PWM0_11_N/TDM_TX_SCK[1] (0)/TDM_RX_SCK[0] (0)/SCB2_SEL1 (0)/LCD_SEG_17/LCD_COM_17 P12.4  
PWM0_1/PWM0_0_N/TDM_TX_FSYNC[1] (0)/TDM_RX_FSYNC[0] (0)/LCD_SEG_18/LCD_COM_18 P12.5  
PWM0_2/PWM0_1_N/TDM_TX_SD[1] (0)/TDM_RX_SD[0] (0)/LCD_SEG_19/LCD_COM_19 P12.6  
PWM0_3/PWM0_2_N/TRIG_IN[19]/LCD_SEG_20/LCD_COM_20 P12.7  
VSSD  
176-LQFP  
VSSD  
VCCD  
VDDD  
VDDD  
P0.3 ECO_OUT  
P0.2 EXT_CLK/ECO_IN  
P0.1 WCO_OUT/LPECO_OUT  
P0.0 WCO_IN/LPECO_IN  
VSSD  
98  
P19.6 PWM0_23/PWM0_22_N/LCD_SEG_31/LCD_COM_31  
97  
P19.5 PWM0_22/PWM0_21_N/LCD_SEG_30/LCD_COM_30  
96  
P19.4 PWM0_21/PWM0_20_N/TC0_33_TR/SCB6_SEL1 (1)/LCD_SEG_33/LCD_COM_33  
P19.3 PWM0_20/PWM0_19_N/TC0_32_TR/CAN1_0_RX/SCB6_SEL0 (1)/SCB6_CTS (1)/FAULT_OUT_3/LCD_SEG_32/LCD_COM_32  
P19.2 PWM0_19/PWM0_18_N/TC0_31_TR/LIN0_EN/CXPI0_EN/CAN1_0_TX/SCB6_MISO (1)/SCB6_RTS (1)/FAULT_OUT_2/LCD_SEG_29/LCD_COM_29  
P19.1 PWM0_18/PWM0_17_N/LIN0_RX/CXPI0_RX/CAN1_1_RX/SCB6_MOSI (1)/SCB6_TX (1)/SCB6_SCL (1)/FAULT_OUT_1/LCD_SEG_28/LCD_COM_28  
P19.0 PWM0_17/PWM0_16_N/LIN0_TX/CXPI0_TX/CAN1_1_TX/SCB6_CLK (1)/SCB6_RX (1)/SCB6_SDA (1)/FAULT_OUT_0/LCD_SEG_25/LCD_COM_25  
P18.7 PWM0_16/PWM0_15_N/TC0_23_TR/TRIG_IN[31]/LCD_SEG_27/LCD_COM_27  
P18.6 PWM0_15/PWM0_14_N/TC0_22_TR/TRIG_IN[30]  
95  
94  
93  
92  
91  
90  
89  
VSSD  
Figure 9-2  
176-LQFP pin assignment with alternate functions  
Datasheet  
29  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Pin assignment  
VSSIO_HSIO  
P8.0  
1
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
VDDIO_GPIO  
VSSA_ADC  
VDDA_ADC  
VREFH  
P3.3  
2
P8.1  
3
P8.2  
4
P8.3  
5
VSSIO_HSIO  
VDDIO_HSIO  
P8.4  
6
P3.2  
7
P3.1  
8
P3.0  
P8.5  
9
P2.7  
P8.6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
P2.6  
P8.7  
98  
P2.5  
VSSIO_HSIO  
VDDIO_HSIO  
P9.0  
97  
P2.4  
96  
P2.3  
95  
P2.2  
P9.1  
94  
P2.1  
P9.2  
93  
P2.0  
P9.3  
92  
P1.3  
VDDIO_HSIO  
VSSIO_HSIO  
VDDD  
91  
P1.2  
90  
P1.1  
144-LQFP  
89  
P1.0  
VCCD  
88  
XRES_L  
VSSD  
VCCD  
VDDD  
VDDD  
P0.3  
VSSD  
87  
P11.0  
86  
P11.1  
85  
P11.2  
84  
P11.3  
83  
P11.4  
82  
P0.2  
P11.5  
81  
P0.1  
P12.0  
80  
P0.0  
P12.1  
79  
VSSD  
P19.4  
P19.3  
P19.2  
P19.1  
P19.0  
VSSD  
P12.2  
78  
P12.3  
77  
P12.4  
76  
P12.5  
75  
P12.6  
74  
VSSD  
73  
Figure 9-3  
144-LQFP pin assignment  
Datasheet  
30  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Pin assignment  
VSSIO_HSIO  
1
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
VDDIO_GPIO  
SCB10_CLK (0)/SCB10_RX (0)/SCB10_SDA (0)/IO_CLK_HF[2]/SPIHB_SELECT1 P8.0  
2
VSSA_ADC  
SCB10_MOSI (0)/SCB10_TX (0)/SCB10_SCL (0)/SPIHB_SELECT0 P8.1  
3
VDDA_ADC  
SCB10_MISO (0)/SCB10_RTS (0)/SPIHB_DATA7 P8.2  
4
VREFH  
SCB10_SEL0 (0)/SCB10_CTS (0)/SPIHB_DATA6 P8.3  
5
P3.3 PWM0_27/PWM0_26_N/TC0_25_TR/SCB8_SEL0 (1)/SCB8_CTS (1)/TRIG_IN[5]/ADC[0]_13  
P3.2 PWM0_26/PWM0_25_N/TC0_24_TR/EXT_MUX[0]_EN/SCB8_MISO (1)/SCB8_RTS (1)/TRIG_IN[4]/SWJ_TRSTN/ADC[0]_12  
P3.1 PWM0_25/PWM0_24_N/TC0_33_TR/EXT_MUX[0]_2/SCB8_MOSI (1)/SCB8_TX (1)/SCB8_SCL (1)/SWJ_SWDOE_TDI/ADC[0]_11  
P3.0 PWM0_24/PWM0_33_N/TC0_32_TR/EXT_MUX[0]_1/LIN1_EN/CXPI1_EN/SCB8_CLK (1)/SCB8_RX (1)/SCB8_SDA (1)/SWJ_SWDIO_TMS/ADC[0]_10  
P2.7 PWM0_H_15/PWM0_H_14_N/TC0_H_13_TR/EXT_MUX[0]_0/LIN1_TX/CXPI1_TX/TRIG_IN[3]/SWJ_SWCLK_TCLK/ADC[0]_9  
P2.6 PWM0_H_14/PWM0_H_13_N/TC0_H_12_TR/LIN1_RX/CXPI1_RX/TRIG_IN[0]/SWJ_SWO_TDO/HIBERNATE_WAKEUP[2]  
P2.5 PWM0_H_13/PWM0_H_12_N/TC0_H_11_TR/CAN0_1_RX/TRIG_DBG[0]/CAL_SUP_NZ/RTC_CAL/HIBERNATE_WAKEUP[1]  
P2.4 PWM0_H_12/PWM0_H_11_N/TC0_H_10_TR/LIN0_EN/CXPI0_EN/CAN0_1_TX/SCB8_SEL1 (0)/TRIG_IN[2]/ADC[0]_8  
P2.3 PWM0_H_11/PWM0_H_10_N/TC0_H_9_TR/LIN0_RX/CXPI0_RX/CAN0_0_RX/SCB8_SEL0 (0)/SCB8_CTS (0)/TRIG_IN[1]/ADC[0]_7/HIBERNATE_WAKEUP[0]  
P2.2 PWM0_H_10/PWM0_H_9_N/TC0_H_8_TR/LIN0_TX/CXPI0_TX/CAN0_0_TX/SCB8_MISO (0)/SCB8_RTS (0)/TRIG_DBG[1]/ADC[0]_6  
P2.1 PWM0_H_9/PWM0_H_8_N/TC0_H_7_TR/SCB8_MOSI (0)/SCB8_TX (0)/SCB8_SCL (0)/ADC[0]_5  
P2.0 PWM0_H_8/PWM0_H_7_N/TC0_H_6_TR/SCB8_CLK (0)/SCB8_RX (0)/SCB8_SDA (0)/ADC[0]_4  
P1.3 PWM0_H_3/PWM0_H_2_N/TC0_H_1_TR/SCB7_SEL0 (0)/SCB7_CTS (0)/FAULT_OUT_3/ADC[0]_3  
P1.2 PWM0_H_2/PWM0_H_1_N/TC0_H_0_TR/SCB7_MISO (0)/SCB7_RTS (0)/FAULT_OUT_2/ADC[0]_2  
P1.1 PWM0_H_1/PWM0_H_0_N/TC0_H_15_TR/SCB7_MOSI (0)/SCB7_TX (0)/SCB7_SCL (0)/FAULT_OUT_1/ADC[0]_1  
P1.0 PWM0_H_0/PWM0_H_15_N/TC0_H_14_TR/SCB7_CLK (0)/SCB7_RX (0)/SCB7_SDA (0)/FAULT_OUT_0/ADC[0]_0  
XRES_L  
VSSIO_HSIO  
6
VDDIO_HSIO  
7
SCB10_SEL1 (0)/SPIHB_DATA5 P8.4  
8
EXT_CLK/SPIHB_DATA4 P8.5  
SCB11_CLK (0)/SCB11_RX (0)/SCB11_SDA (0)/SPIHB_DATA3 P8.6  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
SCB11_MOSI (0)/SCB11_TX (0)/SCB11_SCL (0)/TRACE_DATA_3/SPIHB_DATA2 P8.7  
VSSIO_HSIO  
98  
97  
VDDIO_HSIO  
96  
SCB11_MISO (0)/SCB11_RTS (0)/TRACE_DATA_2/SPIHB_DATA1 P9.0  
SCB11_SEL0 (0)/SCB11_CTS (0)/TRACE_DATA_1/SPIHB_DATA0 P9.1  
SCB11_SEL1 (0)/TRACE_DATA_0/SPIHB_CLK P9.2  
95  
94  
93  
TRACE_CLOCK/SPIHB_RWDS P9.3  
92  
VDDIO_HSIO  
91  
VSSIO_HSIO  
90  
144-LQFP  
VDDD  
89  
VCCD  
88  
VSSD  
87  
VSSD  
PWM0_9/PWM0_8_N/SG_MCK[1] (1)/SCB1_CLK (0)/SCB1_RX (0)/SCB1_SDA (0)/LCD_SEG_5/LCD_COM_5 P11.0  
PWM0_10/PWM0_9_N/SCB1_MOSI (0)/SCB1_TX (0)/SCB1_SCL (0)/LCD_SEG_6/LCD_COM_6 P11.1  
PWM0_H_0/PWM0_10_N/TDM_TX_MCK[0] (0)/TDM_RX_MCK[1] (0)/SCB1_MISO (0)/SCB1_RTS (0)/LCD_SEG_7/LCD_COM_7 P11.2  
PWM0_H_1/PWM0_H_0_N/TDM_TX_SCK[0] (0)/TDM_RX_SCK[1] (0)/SCB1_SEL0 (0)/SCB1_CTS (0)/LCD_SEG_8/LCD_COM_8 P11.3  
PWM0_H_2/PWM0_H_1_N/TC0_H_0_TR/TDM_TX_FSYNC[0] (0)/TDM_RX_FSYNC[1] (0)/SCB1_SEL1 (0)/LCD_SEG_9/LCD_COM_9 P11.4  
PWM0_11/PWM0_H_2_N/TC0_H_1_TR/TDM_TX_SD[0] (0)/TDM_RX_SD[1] (0)/SG_TONE[2] (1)/LCD_SEG_12/LCD_COM_12 P11.5  
PWM0_8/PWM0_7_N/TC0_H_2_TR/SG_TONE[0] (0)/SCB2_CLK (0)/SCB2_RX (0)/SCB2_SDA (0)/LCD_SEG_10/LCD_COM_10 P12.0  
PWM0_9/PWM0_8_N/SG_AMPL[0] (0)/SCB2_MOSI (0)/SCB2_TX (0)/SCB2_SCL (0)/LCD_SEG_11/LCD_COM_11 P12.1  
PWM0_10/PWM0_9_N/SG_MCK[0] (0)/SCB2_MISO (0)/SCB2_RTS (0)/LCD_SEG_15/LCD_COM_15 P12.2  
PWM0_11/PWM0_10_N/TDM_TX_MCK[1] (0)/TDM_RX_MCK[0] (0)/SCB2_SEL0 (0)/SCB2_CTS (0)/LCD_SEG_16/LCD_COM_16 P12.3  
PWM0_0/PWM0_11_N/TDM_TX_SCK[1] (0)/TDM_RX_SCK[0] (0)/SCB2_SEL1 (0)/LCD_SEG_17/LCD_COM_17 P12.4  
PWM0_1/PWM0_0_N/TDM_TX_FSYNC[1] (0)/TDM_RX_FSYNC[0] (0)/LCD_SEG_18/LCD_COM_18 P12.5  
PWM0_2/PWM0_1_N/TDM_TX_SD[1] (0)/TDM_RX_SD[0] (0)/LCD_SEG_19/LCD_COM_19 P12.6  
VSSD  
86  
VCCD  
85  
VDDD  
84  
VDDD  
83  
P0.3 ECO_OUT  
82  
P0.2 EXT_CLK/ECO_IN  
81  
P0.1 WCO_OUT/LPECO_OUT  
80  
P0.0 WCO_IN/LPECO_IN  
79  
VSSD  
78  
P19.4 PWM0_21/PWM0_20_N/TC0_33_TR/SCB6_SEL1 (1)/LCD_SEG_33/LCD_COM_33  
P19.3 PWM0_20/PWM0_19_N/TC0_32_TR/CAN1_0_RX/SCB6_SEL0 (1)/SCB6_CTS (1)/FAULT_OUT_3/LCD_SEG_32/LCD_COM_32  
P19.2 PWM0_19/PWM0_18_N/TC0_31_TR/LIN0_EN/CXPI0_EN/CAN1_0_TX/SCB6_MISO (1)/SCB6_RTS (1)/FAULT_OUT_2/LCD_SEG_29/LCD_COM_29  
P19.1 PWM0_18/PWM0_17_N/LIN0_RX/CXPI0_RX/CAN1_1_RX/SCB6_MOSI (1)/SCB6_TX (1)/SCB6_SCL (1)/FAULT_OUT_1/LCD_SEG_28/LCD_COM_28  
P19.0 PWM0_17/PWM0_16_N/LIN0_TX/CXPI0_TX/CAN1_1_TX/SCB6_CLK (1)/SCB6_RX (1)/SCB6_SDA (1)/FAULT_OUT_0/LCD_SEG_25/LCD_COM_25  
VSSD  
77  
76  
75  
74  
73  
Figure 9-4  
144-LQFP pin assignment with alternate functions  
Datasheet  
31  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
High-speed I/O matrix connections  
10  
High-speed I/O matrix connections  
Table 10-1  
HSIOM connections reference  
Name  
Number  
0
Description  
HSIOM_SEL_GPIO  
HSIOM_SEL_GPIO_DSI  
HSIOM_SEL_DSI_DSI  
HSIOM_SEL_DSI_GPIO  
HSIOM_SEL_AMUXA  
HSIOM_SEL_AMUXB  
HSIOM_SEL_AMUXA_DSI  
HSIOM_SEL_AMUXB_DSI  
HSIOM_SEL_ACT_0  
HSIOM_SEL_ACT_1  
HSIOM_SEL_ACT_2  
HSIOM_SEL_ACT_3  
HSIOM_SEL_DS_0  
HSIOM_SEL_DS_1  
HSIOM_SEL_DS_2  
HSIOM_SEL_DS_3  
HSIOM_SEL_ACT_4  
HSIOM_SEL_ACT_5  
HSIOM_SEL_ACT_6  
HSIOM_SEL_ACT_7  
HSIOM_SEL_ACT_8  
HSIOM_SEL_ACT_9  
HSIOM_SEL_ACT_10  
HSIOM_SEL_ACT_11  
HSIOM_SEL_ACT_12  
HSIOM_SEL_ACT_13  
HSIOM_SEL_ACT_14  
HSIOM_SEL_ACT_15  
HSIOM_SEL_DS_4  
HSIOM_SEL_DS_5  
HSIOM_SEL_DS_6  
HSIOM_SEL_DS_7  
GPIO controls 'out'  
Reserved  
1
2
3
4
5
6
7
8
9
Active functionality 0  
Active functionality 1  
Active functionality 2  
Active functionality 3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
DeepSleep functionality 0  
DeepSleep functionality 1  
DeepSleep functionality 2  
DeepSleep functionality 3  
Active functionality 4  
Active functionality 5  
Active functionality 6  
Active functionality 7  
Active functionality 8  
Active functionality 9  
Active functionality 10  
Active functionality 11  
Active functionality 12  
Active functionality 13  
Active functionality 14  
Active functionality 15  
DeepSleep functionality 4  
DeepSleep functionality 5  
DeepSleep functionality 6  
DeepSleep functionality 7  
Datasheet  
32  
002-32508 Rev. *F  
2022-10-20  
11  
Package pin list and alternate functions  
Most pins have alternate functionality, as specified in Table 11-1.  
Port 11 has the following additional features:  
• Ability to pass full-level analog signals to the SAR without clipping to VDDD in cases where VDDD < VDDA_ADC  
• Ability to simultaneously capture all three ADC signals with highest priority (ADC[0:2]_M)  
• Lower noise for the most sensitive sensors  
Table 11-1  
Pin selector and alternate pin functions in DeepSleep (DS) Mode, Analog, Smart I/O [23]  
Package  
DeepSleep Mapping  
Name  
176-LQFP 144-LQFP  
I/O Type  
HCon#12[18]  
DS#0[19, 20]  
HCon#13  
DS#1  
HCon#14  
HCon#15  
DS#3  
HCon#29  
DS#5  
Analog/HV  
Smart I/O  
Pin  
100  
101  
102  
103  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
Pin  
80  
81  
82  
83  
89  
90  
91  
92  
NA  
NA  
NA  
NA  
93  
94  
95  
96  
DS#2  
P0.0  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
WCO_IN, LPECO_IN[21]  
WCO_OUT,LPECO_OUT[21]  
ECO_IN[21]  
P0.1  
P0.2  
P0.3  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
P2.0  
P2.1  
P2.2  
P2.3  
ECO_OUT[21]  
ADC[0]_0  
ADC[0]_1  
ADC[0]_2  
ADC[0]_3  
ADC[0]_4  
ADC[0]_5  
ADC[0]_6  
ADC[0]_7  
HIBERNATE_WAKEUP[0]  
Notes  
18.High Speed I/O matrix connection (HCon) reference as per Table 10-1.  
19.DeepSleep ordering (DS#0, DS#1, DS#2) does not have any impact on choosing any alternate functions; the HSIOM module handles the individual alternate function assignment.  
20.All port pin functions available in DeepSleep mode are also available in Active mode.  
21.I/O pins that support an oscillator function (WCO or ECO) must be configured for high-impedance if the oscillator is enabled.  
22.This I/O will have increased leakage to ground when VDDD is below the POR threshold.  
23.For any function marked with an identifier (n), the AC timing is only guaranteed within the respective group “n.  
[23]  
Table 11-1  
Pin selector and alternate pin functions in DeepSleep (DS) Mode, Analog, Smart I/O (continued)  
Package  
DeepSleep Mapping  
Name  
176-LQFP 144-LQFP  
I/O Type  
HCon#12[18]  
DS#0[19, 20]  
HCon#13  
DS#1  
HCon#14  
HCon#15  
DS#3  
HCon#29  
DS#5  
Analog/HV  
Smart I/O  
Pin  
121  
122  
123  
124  
125  
126  
127  
128  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
146  
147  
148  
149  
150  
151  
152  
153  
156  
157  
158  
159  
160  
Pin  
97  
DS#2  
P2.4  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_SMC  
GPIO_SMC  
GPIO_SMC  
GPIO_SMC  
GPIO_SMC  
GPIO_SMC  
GPIO_SMC  
GPIO_SMC  
GPIO_SMC  
GPIO_SMC  
GPIO_SMC  
GPIO_SMC  
GPIO_SMC  
ADC[0]_8  
P2.5  
P2.6  
P2.7  
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
P4.0  
P4.1  
P4.2  
P4.3  
P4.4  
P4.5  
P4.6  
P4.7  
P5.0  
P5.1  
P5.2  
P5.3  
P5.4  
P5.5  
P5.6  
P5.7  
P6.0  
P6.1  
P6.2  
P6.3  
P6.4  
98  
RTC_CAL  
HIBERNATE_WAKEUP[1]  
HIBERNATE_WAKEUP[2]  
ADC[0]_9  
99  
SWJ_SWO_TDO  
SWJ_SWCLK_TCLK  
SWJ_SWDIO_TMS  
SWJ_SWDOE_TDI  
SWJ_TRSTN  
100  
101  
102  
103  
104  
110  
111  
NA  
ADC[0]_10  
ADC[0]_11  
ADC[0]_12  
ADC[0]_13  
ADC[0]_14  
ADC[0]_15  
ADC[0]_16  
ADC[0]_17  
ADC[0]_18  
ADC[0]_19  
ADC[0]_20  
ADC[0]_21  
ADC[0]_22  
ADC[0]_23  
ADC[1]_0  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
114  
115  
116  
117  
118  
119  
120  
121  
124  
125  
126  
127  
128  
ADC[1]_1  
ADC[1]_2  
ADC[1]_3  
ADC[1]_4  
ADC[1]_5  
ADC[1]_6  
ADC[1]_7  
ADC[1]_8  
ADC[1]_9  
ADC[1]_10  
ADC[1]_11  
ADC[1]_12  
[23]  
Table 11-1  
Pin selector and alternate pin functions in DeepSleep (DS) Mode, Analog, Smart I/O (continued)  
Package  
DeepSleep Mapping  
Name  
176-LQFP 144-LQFP  
I/O Type  
HCon#12[18]  
DS#0[19, 20]  
HCon#13  
DS#1  
HCon#14  
HCon#15  
DS#3  
HCon#29  
DS#5  
Analog/HV  
Smart I/O  
Pin  
161  
162  
163  
166  
167  
168  
169  
170  
171  
172  
173  
2
Pin  
129  
130  
131  
134  
135  
136  
137  
138  
139  
140  
141  
2
DS#2  
P6.5  
GPIO_SMC  
GPIO_SMC  
GPIO_SMC  
GPIO_SMC  
GPIO_SMC  
GPIO_SMC  
GPIO_SMC  
GPIO_SMC  
GPIO_SMC  
GPIO_SMC  
GPIO_SMC  
HSIO_STDLN  
HSIO_STDLN  
HSIO_STDLN  
HSIO_STDLN  
HSIO_STDLN  
HSIO_STDLN  
HSIO_STDLN  
HSIO_STDLN  
HSIO_STDLN  
HSIO_STDLN  
HSIO_STDLN  
HSIO_STDLN  
GPIO_STD  
ADC[1]_13  
P6.6  
P6.7  
P7.0  
P7.1  
P7.2  
P7.3  
P7.4  
P7.5  
P7.6  
P7.7  
P8.0  
P8.1  
P8.2  
P8.3  
P8.4  
P8.5  
P8.6  
P8.7  
P9.0  
P9.1  
P9.2  
P9.3  
P10.0  
P10.1  
P10.2  
P10.3  
P10.4  
P11.0  
P11.1  
P11.2  
ADC[1]_14  
ADC[1]_15  
ADC[1]_16  
ADC[1]_17  
ADC[1]_18  
ADC[1]_19  
ADC[1]_20  
ADC[1]_21  
ADC[1]_22  
ADC[1]_23  
SMARTIO7_0  
SMARTIO7_1  
SMARTIO7_2  
SMARTIO7_3  
SMARTIO7_4  
SMARTIO7_5  
SMARTIO7_6  
SMARTIO7_7  
3
3
4
4
5
5
8
8
9
9
10  
11  
14  
15  
16  
17  
23  
24  
25  
26  
27  
28  
29  
30  
10  
11  
14  
15  
16  
17  
NA  
NA  
NA  
NA  
NA  
23  
LCD_SEG_0  
LCD_COM_0  
LCD_COM_1  
LCD_COM_2  
LCD_COM_3  
LCD_COM_4  
LCD_COM_5  
LCD_COM_6  
LCD_COM_7  
GPIO_STD  
LCD_SEG_1  
LCD_SEG_2  
LCD_SEG_3  
LCD_SEG_4  
LCD_SEG_5  
LCD_SEG_6  
LCD_SEG_7  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
24  
GPIO_STD  
25  
GPIO_STD  
[23]  
Table 11-1  
Pin selector and alternate pin functions in DeepSleep (DS) Mode, Analog, Smart I/O (continued)  
Package  
DeepSleep Mapping  
Name  
176-LQFP 144-LQFP  
I/O Type  
HCon#12[18]  
DS#0[19, 20]  
HCon#13  
DS#1  
HCon#14  
HCon#15  
DS#3  
HCon#29  
DS#5  
Analog/HV  
Smart I/O  
Pin  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
46  
47  
48  
49  
50  
51  
Pin  
26  
27  
28  
NA  
NA  
29  
30  
31  
32  
33  
34  
35  
NA  
38  
39  
40  
41  
42  
43  
DS#2  
P11.3  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_ENH  
GPIO_ENH  
LCD_SEG_8  
LCD_COM_8  
LCD_COM_9  
LCD_COM_12  
LCD_COM_13  
LCD_COM_14  
LCD_COM_10  
LCD_COM_11  
LCD_COM_15  
LCD_COM_16  
LCD_COM_17  
LCD_COM_18  
LCD_COM_19  
LCD_COM_20  
LCD_COM_0  
LCD_COM_1  
LCD_COM_2  
LCD_COM_3  
LCD_COM_4  
LCD_COM_5  
P11.4  
P11.5  
P11.6  
P11.7  
P12.0  
P12.1  
P12.2  
P12.3  
P12.4  
P12.5  
P12.6  
P12.7  
P13.0  
P13.1  
P13.2  
P13.3  
P14.0  
P14.1  
LCD_SEG_9  
LCD_SEG_12  
LCD_SEG_13  
LCD_SEG_14  
LCD_SEG_10  
LCD_SEG_11  
LCD_SEG_15  
LCD_SEG_16  
LCD_SEG_17  
LCD_SEG_18  
LCD_SEG_19  
LCD_SEG_20  
LCD_SEG_0  
LCD_SEG_1  
LCD_SEG_2  
LCD_SEG_3  
LCD_SEG_4  
LCD_SEG_5  
SCB0_CLK (0)  
SCB0_MOSI (0)  
SCB0_SDA (0)  
SCB0_SCL (0)  
P14.2  
P14.3  
P14.4  
P14.5  
P14.6  
P14.7  
P15.0  
P15.1  
P15.2  
P15.3  
P15.4  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
44  
45  
46  
47  
NA  
NA  
48  
49  
50  
51  
52  
GPIO_ENH  
GPIO_ENH  
GPIO_ENH  
GPIO_ENH  
GPIO_ENH  
GPIO_ENH  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
LCD_SEG_6  
LCD_SEG_7  
LCD_SEG_8  
LCD_SEG_9  
LCD_SEG_10  
LCD_SEG_11  
LCD_SEG_12  
LCD_SEG_13  
LCD_SEG_14  
LCD_SEG_15  
LCD_SEG_16  
LCD_COM_6  
LCD_COM_7  
LCD_COM_8  
LCD_COM_9  
LCD_COM_10  
LCD_COM_11  
LCD_COM_12  
LCD_COM_13  
LCD_COM_14  
LCD_COM_15  
LCD_COM_16  
SCB0_MISO (0)  
SCB0_SEL0 (0)  
SCB0_SEL1 (0)  
SCB0_SEL2 (0)  
SCB0_SEL3 (0)  
[23]  
Table 11-1  
Pin selector and alternate pin functions in DeepSleep (DS) Mode, Analog, Smart I/O (continued)  
Package  
DeepSleep Mapping  
Name  
176-LQFP 144-LQFP  
I/O Type  
HCon#12[18]  
DS#0[19, 20]  
HCon#13  
DS#1  
HCon#14  
HCon#15  
DS#3  
HCon#29  
DS#5  
Analog/HV  
Smart I/O  
Pin  
63  
64  
65  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
90  
91  
92  
93  
94  
95  
96  
Pin  
53  
NA  
NA  
56  
57  
58  
59  
60  
NA  
61  
62  
63  
64  
65  
66  
NA  
NA  
67  
68  
69  
70  
71  
NA  
NA  
NA  
74  
75  
76  
77  
78  
DS#2  
P15.5  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
LCD_SEG_17  
LCD_COM_17  
LCD_COM_18  
LCD_COM_19  
LCD_COM_20  
LCD_COM_21  
LCD_COM_22  
LCD_COM_23  
LCD_COM_24  
LCD_COM_25  
LCD_COM_26  
LCD_COM_27  
LCD_COM_28  
LCD_COM_29  
LCD_COM_30  
LCD_COM_31  
LCD_COM_32  
LCD_COM_33  
LCD_COM_34  
LCD_COM_35  
LCD_COM_21  
LCD_COM_22  
LCD_COM_23  
LCD_COM_24  
P15.6  
P15.7  
P16.0  
P16.1  
P16.2  
P16.3  
P16.4  
P16.5  
P17.0  
P17.1  
P17.2  
P17.3  
P17.4  
P17.5  
P17.6  
P17.7  
P18.0  
P18.1  
P18.2  
P18.3  
P18.4  
P18.5  
P18.6[22]  
P18.7  
P19.0  
P19.1  
P19.2  
P19.3  
P19.4  
LCD_SEG_18  
LCD_SEG_19  
LCD_SEG_20  
LCD_SEG_21  
LCD_SEG_22  
LCD_SEG_23  
LCD_SEG_24  
LCD_SEG_25  
LCD_SEG_26  
LCD_SEG_27  
LCD_SEG_28  
LCD_SEG_29  
LCD_SEG_30  
LCD_SEG_31  
LCD_SEG_32  
LCD_SEG_33  
LCD_SEG_34  
LCD_SEG_35  
LCD_SEG_21  
LCD_SEG_22  
LCD_SEG_23  
LCD_SEG_24  
HIBERNATE_WAKEUP[3]  
LCD_SEG_27  
LCD_SEG_25  
LCD_SEG_28  
LCD_SEG_29  
LCD_SEG_32  
LCD_SEG_33  
LCD_COM_27  
LCD_COM_25  
LCD_COM_28  
LCD_COM_29  
LCD_COM_32  
LCD_COM_33  
[23]  
Table 11-1  
Pin selector and alternate pin functions in DeepSleep (DS) Mode, Analog, Smart I/O (continued)  
Package  
DeepSleep Mapping  
Name  
176-LQFP 144-LQFP  
I/O Type  
HCon#12[18]  
DS#0[19, 20]  
HCon#13  
DS#1  
HCon#14  
HCon#15  
DS#3  
HCon#29  
DS#5  
Analog/HV  
Smart I/O  
Pin  
97  
Pin  
NA  
NA  
DS#2  
P19.5  
P19.6  
GPIO_STD  
GPIO_STD  
LCD_SEG_30  
LCD_SEG_31  
LCD_COM_30  
LCD_COM_31  
98  
12  
Power pin assignments  
Table 12-1  
Power pin assignments  
Package  
Name  
Remarks  
176-LQFP  
105, 104, 88, 66, 45, 20  
133, 107, 99, 89, 67, 44, 22  
144-LQFP  
85, 84, 72, 54, 37, 20  
109, 87, 79, 73, 55, 36, 22  
VDDD  
VSS  
Main digital supply  
Main digital ground  
VDDIO_GPIO  
VDDIO_HSIO  
VSSIO_HSIO  
VDDIO_SMC  
VSSIO_SMC  
VCCD  
VREFH  
VDDA_ADC  
VSSA_ADC  
XRES_L  
132  
108  
144, 18, 13, 7  
19, 12, 6, 1  
142, 132, 123, 113  
Supply for GPIO_STD (2.7 - 5.5 V)  
Supply for HSIO_STDLN (3.0 - 3.6 V)  
HSIO_STDLN ground  
Supply for GPIO_SMC (2.7 - 5.5 V)  
GPIO_SMC ground  
Main regulated supply. Driven by LDO regulator  
High reference voltage for SAR  
Main analog supply (for PASS/SAR)  
Main analog ground (VREFL is shared with VSSA_ADC)  
Active low external reset input  
176, 18, 13, 7  
19, 12, 6, 1  
174, 164, 155, 145  
175, 165, 154, 144  
106, 21  
129  
130  
131  
108  
143, 133, 122, 112  
[24]  
86, 21  
105  
106  
107  
88  
Note  
24.The VCCD pins must be connected together to ensure a low-impedance connection. (see the requirement in Figure 27-2)  
13  
Table 13-1  
Alternate function pin assignments  
Alternate pin functions in active power mode  
[20, 27, 28]  
Active Mapping  
HCon#11 HCon#16 HCon#17 HCon#18 HCon#20  
Name HCon#8[25]  
HCon#9  
ACT#1  
HCon#10  
ACT#2  
HCon#21  
ACT#9  
HCon#22  
ACT#10  
HCon#23  
ACT#11  
HCon#24 HCon#25 HCon#26 HCon#27  
ACT#0[26]  
ACT#3  
ACT#4  
ACT#5  
ACT#6  
ACT#8  
ACT#12  
ACT#13  
ACT#14  
ACT#15  
P0.0  
P0.1  
P0.2  
P0.3  
EXT_CLK  
[29]  
P1.0  
P1.1  
P1.2  
P1.3  
PWM0_H_0  
PWM0_H_1  
PWM0_H_2  
PWM0_H_3  
PWM0_H_15_N  
PWM0_H_0_N  
PWM0_H_1_N  
PWM0_H_2_N  
TC0_H_14_TR  
TC0_H_15_TR  
TC0_H_0_TR  
TC0_H_1_TR  
SCB7_CLK (0)  
SCB7_MOSI (0)  
SCB7_MISO (0)  
SCB7_SEL0 (0)  
SCB7_SEL1 (0)  
SCB7_RX (0)  
SCB7_TX (0)  
SCB7_RTS (0)  
SCB7_CTS (0)  
SCB7_SDA (0)  
FAULT_OUT_  
0
[29]  
SCB7_SCL (0)  
FAULT_OUT_  
1
FAULT_OUT_  
2
FAULT_OUT_  
3
P1.4  
P1.5  
P1.6  
P1.7  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
P3.0  
P3.1  
P3.2  
P3.3  
PWM0_H_4  
PWM0_H_5  
PWM0_H_6  
PWM0_H_7  
PWM0_H_8  
PWM0_H_9  
PWM0_H_10  
PWM0_H_11  
PWM0_H_12  
PWM0_H_13  
PWM0_H_14  
PWM0_H_15  
PWM0_24  
PWM0_H_3_N  
PWM0_H_4_N  
PWM0_H_5_N  
PWM0_H_6_N  
PWM0_H_7_N  
PWM0_H_8_N  
PWM0_H_9_N  
PWM0_H_10_N  
PWM0_H_11_N  
PWM0_H_12_N  
PWM0_H_13_N  
PWM0_H_14_N  
PWM0_33_N  
TC0_H_2_TR  
TC0_H_3_TR  
TC0_H_4_TR  
TC0_H_5_TR  
TC0_H_6_TR  
TC0_H_7_TR  
TC0_H_8_TR  
TC0_H_9_TR  
TC0_H_10_TR  
TC0_H_11_TR  
TC0_H_12_TR  
TC0_H_13_TR  
TC0_32_TR  
[29]  
SCB8_CLK (0)  
SCB8_MOSI (0)  
SCB8_MISO (0)  
SCB8_SEL0 (0)  
SCB8_SEL1 (0)  
SCB8_RX (0)  
SCB8_TX (0)  
SCB8_RTS (0)  
SCB8_CTS (0)  
SCB8_SDA (0)  
[29]  
SCB8_SCL (0)  
LIN0_TX  
LIN0_RX  
LIN0_EN  
CXPI0_TX  
CAN0_0_TX  
CAN0_0_RX  
CAN0_1_TX  
CAN0_1_RX  
TRIG_DBG[1]  
TRIG_IN[1]  
TRIG_IN[2]  
TRIG_DBG[0]  
TRIG_IN[0]  
TRIG_IN[3]  
CXPI0_RX  
CXPI0_EN  
CAL_SUP_NZ  
LIN1_RX  
LIN1_TX  
LIN1_EN  
CXPI1_RX  
CXPI1_TX  
CXPI1_EN  
EXT_MUX[0]_0  
EXT_MUX[0]_1  
EXT_MUX[0]_2  
EXT_MUX[0]_EN  
[29]  
SCB8_CLK (1)  
SCB8_MOSI (1)  
SCB8_MISO (1)  
SCB8_SEL0 (1)  
SCB8_RX (1)  
SCB8_TX (1)  
SCB8_RTS (1)  
SCB8_CTS (1)  
SCB8_SDA (1)  
[29]  
PWM0_25  
PWM0_24_N  
TC0_33_TR  
SCB8_SCL (1)  
PWM0_26  
PWM0_25_N  
TC0_24_TR  
TRIG_IN[4]  
TRIG_IN[5]  
PWM0_27  
PWM0_26_N  
TC0_25_TR  
Notes  
25.High Speed I/O matrix connection (HCon) reference as per Table 10-1.  
26.Active Mode ordering (ACT#0, ACT#1, and so on) does not have any impact on choosing any alternate functions; HSIOM module will handle the individual alternate function assignmen  
27.Refer to Table 14-1 for more information on pin multiplexer abbreviations used.  
28.For any function marked with an identifier (n), the AC timing is only guaranteed within the respective group “n.  
29.See Table 27-10 'Serial Communication Block (SCB) specifications' for supported IO-cells and I2C modes.  
[20, 27, 28]  
Table 13-1  
Alternate pin functions in active power mode (continued)  
Active Mapping  
Name HCon#8[25]  
ACT#0[26]  
HCon#9  
HCon#10  
HCon#11 HCon#16 HCon#17 HCon#18 HCon#20  
HCon#21  
ACT#9  
HCon#22  
ACT#10  
HCon#23  
ACT#11  
HCon#24 HCon#25 HCon#26 HCon#27  
ACT#1  
ACT#2  
ACT#3  
ACT#4  
ACT#5  
ACT#6  
ACT#8  
ACT#12  
ACT#13  
ACT#14  
ACT#15  
P3.4  
P3.5  
P4.0  
P4.1  
P4.2  
P4.3  
P4.4  
P4.5  
P4.6  
P4.7  
P5.0  
P5.1  
P5.2  
P5.3  
P5.4  
P5.5  
P5.6  
P5.7  
P6.0  
P6.1  
P6.2  
P6.3  
P6.4  
P6.5  
P6.6  
P6.7  
P7.0  
P7.1  
P7.2  
P7.3  
P7.4  
PWM0_28  
PWM0_29  
PWM0_30  
PWM0_31  
PWM0_32  
PWM0_33  
PWM0_0  
PWM0_27_N  
TC0_26_TR  
PWM0_28_N  
PWM0_29_N  
PWM0_30_N  
PWM0_31_N  
PWM0_32_N  
PWM0_3_N  
TC0_27_TR  
TC0_28_TR  
TC0_29_TR  
TC0_30_TR  
TC0_31_TR  
CAN1_0_TX  
CAN1_0_RX  
CAN1_1_TX  
CAN1_1_RX  
LIN1_TX  
LIN1_RX  
LIN1_EN  
CXPI1_EN  
TRIG_IN[6]  
TRIG_IN[7]  
TRIG_IN[8]  
TRIG_IN[9]  
PWM0_1  
PWM0_0_N  
CXPI1_RX  
CXPI1_TX  
PWM0_2  
PWM0_1_N  
PWM0_3  
PWM0_2_N  
[29]  
PWM0_M_0  
PWM0_H_10  
PWM0_M_1  
PWM0_H_11  
PWM0_M_2  
PWM0_H_12  
PWM0_M_3  
PWM0_H_13  
PWM0_M_4  
PWM0_H_14  
PWM0_M_5  
PWM0_H_15  
PWM0_M_6  
PWM0_0  
PWM0_H_15_N  
PWM0_M_0_N  
PWM0_H_10_N  
PWM0_M_1_N  
PWM0_H_11_N  
PWM0_M_2_N  
PWM0_H_12_N  
PWM0_M_3_N  
PWM0_H_13_N  
PWM0_M_4_N  
PWM0_H_14_N  
PWM0_M_5_N  
PWM0_5_N  
EXT_MUX[1]_0  
EXT_MUX[1]_1  
EXT_MUX[1]_2  
EXT_MUX[1]_EN  
SCB9_CLK (0)  
SCB9_MOSI (0)  
SCB9_MISO (0)  
SCB9_SEL0 (0)  
SCB9_SEL1 (0)  
SCB9_RX (0)  
SCB9_TX (0)  
SCB9_RTS (0)  
SCB9_CTS (0)  
SCB9_SDA (0)  
[29]  
TC0_H_15_TR  
TC0_H_10_TR  
TC0_H_11_TR  
TC0_H_12_TR  
TC0_H_13_TR  
TC0_H_14_TR  
SCB9_SCL (0)  
TRIG_IN[10]  
TRIG_IN[11]  
TRIG_IN[12]  
TRIG_IN[13]  
SG_TONE[0] (2)  
SG_AMPL[0] (2)  
SG_TONE[1] (2)  
SG_AMPL[1] (2)  
SG_TONE[2] (2)  
SG_AMPL[2] (2)  
SG_TONE[3] (2)  
SG_AMPL[3] (2)  
SG_AMPL[4] (2)  
SG_TONE[4] (2)  
SG_MCK[0] (2)  
SG_MCK[1] (2)  
TRIG_IN[14]  
TRIG_IN[15]  
TRIG_IN[16]  
TRIG_IN[17]  
PWM0_M_6_N  
PWM0_0_N  
PWM0_M_7  
PWM0_1  
PWM0_M_7_N  
PWM0_1_N  
PWM0_M_8  
PWM0_2  
PWM0_M_8_N  
PWM0_2_N  
PWM0_M_9  
PWM0_3  
PWM0_M_9_N  
PWM0_3_N  
PWM0_M_10  
[20, 27, 28]  
Table 13-1  
Alternate pin functions in active power mode (continued)  
Active Mapping  
Name HCon#8[25]  
ACT#0[26]  
HCon#9  
HCon#10  
ACT#2  
HCon#11 HCon#16 HCon#17 HCon#18 HCon#20  
HCon#21  
HCon#22  
ACT#10  
HCon#23  
ACT#11  
HCon#24 HCon#25 HCon#26 HCon#27  
ACT#1  
ACT#3  
ACT#4  
ACT#5  
ACT#6  
ACT#8  
ACT#9  
ACT#12  
ACT#13  
ACT#14  
ACT#15  
P7.5  
P7.6  
P7.7  
P8.0  
PWM0_4  
PWM0_M_10_N  
SG_MCK[2] (2)  
PWM0_M_11  
PWM0_5  
PWM0_4_N  
SG_MCK[3] (2)  
SG_MCK[4] (2)  
PWM0_M_11_N  
SCB10_CLK (0)  
SCB10_MOSI (0)  
SCB10_MISO (0)  
SCB10_SEL0 (0)  
SCB10_SEL1 (0)  
SCB10_RX (0)  
SCB10_TX (0)  
SCB10_RTS (0)  
SCB10_CTS (0)  
SCB10_SDA  
IO_CLK_HF[2 SPIHB_SE-  
[29]  
(0)  
]
LECT1  
[29]  
P8.1  
P8.2  
P8.3  
P8.4  
P8.5  
P8.6  
P8.7  
P9.0  
P9.1  
P9.2  
P9.3  
SCB10_SCL (0)  
SPIHB_SE-  
LECT0  
SPIHB_-  
DATA7  
SPIHB_-  
DATA6  
SPIHB_-  
DATA5  
EXT_CLK  
SPIHB_-  
DATA4  
SCB11_CLK (0)  
SCB11_MOSI (0)  
SCB11_MISO (0)  
SCB11_SEL0 (0)  
SCB11_SEL1 (0)  
SCB11_RX (0)  
SCB11_TX (0)  
SCB11_RTS (0)  
SCB11_CTS (0)  
SCB11_SDA  
SPIHB_-  
DATA3  
[29]  
(0)  
[29]  
SCB11_SCL (0)  
TRACE_-  
DATA_3  
SPIHB_-  
DATA2  
TRACE_-  
DATA_2  
SPIHB_-  
DATA1  
TRACE_-  
DATA_1  
SPIHB_-  
DATA0  
TRACE_-  
DATA_0  
SPIHB_CLK  
TRACE_-  
CLOCK  
SPIHB_RWDS  
[29]  
P10.0  
P10.1  
P10.2  
P10.3  
P10.4  
P11.0  
P11.1  
P11.2  
PWM0_4  
PWM0_5  
PWM0_6  
PWM0_7  
PWM0_8  
PWM0_9  
PWM0_10  
PWM0_H_0  
PWM0_3_N  
PWM0_4_N  
PWM0_5_N  
PWM0_6_N  
PWM0_7_N  
PWM0_8_N  
PWM0_9_N  
PWM0_10_N  
SG_TONE[0] (1)  
SG_AMPL[0] (1)  
SG_MCK[0] (1)  
SG_TONE[1] (1)  
SG_AMPL[1] (1)  
SG_MCK[1] (1)  
SCB2_CLK (1)  
SCB2_MOSI (1)  
SCB2_MISO (1)  
SCB2_SEL0 (1)  
SCB2_RX (1)  
SCB2_TX (1)  
SCB2_RTS (1)  
SCB2_CTS (1)  
SCB2_SDA (1)  
[29]  
SCB2_SCL (1)  
[29]  
[29]  
SCB1_CLK (0)  
SCB1_MOSI (0)  
SCB1_MISO (0)  
SCB1_RX (0)  
SCB1_TX (0)  
SCB1_RTS (0)  
SCB1_SDA (0)  
SCB1_SCL (0)  
TDM_TX_MC TDM_RX_MCK[  
K[0] (0) 1] (0)  
P11.3  
P11.4  
PWM0_H_1  
PWM0_H_2  
PWM0_H_0_N  
PWM0_H_1_N  
TDM_TX_SC TDM_RX_SCK[1  
SCB1_SEL0 (0)  
SCB1_SEL1 (0)  
SCB1_CTS (0)  
K[0] (0)  
] (0)  
TC0_H_0_TR  
TC0_H_1_TR  
TDM_TX-  
_FSYNC[0]  
(0)  
TDM_RX-  
_FSYNC[1] (0)  
P11.5  
P11.6  
PWM0_11  
PWM0_6  
PWM0_H_2_N  
PWM0_11_N  
TDM_TX_SD TDM_RX_SD[1]  
[0] (0) (0)  
SG_TONE[2] (1)  
SG_AMPL[2] (1)  
[20, 27, 28]  
Table 13-1  
Alternate pin functions in active power mode (continued)  
Active Mapping  
Name HCon#8[25]  
ACT#0[26]  
HCon#9  
ACT#1  
HCon#10  
ACT#2  
HCon#11 HCon#16 HCon#17 HCon#18 HCon#20  
HCon#21  
HCon#22  
ACT#10  
HCon#23  
ACT#11  
HCon#24 HCon#25 HCon#26 HCon#27  
ACT#3  
ACT#4  
ACT#5  
ACT#6  
ACT#8  
ACT#9  
ACT#12  
ACT#13  
ACT#14  
ACT#15  
P11.7  
P12.0  
P12.1  
P12.2  
P12.3  
PWM0_7  
PWM0_8  
PWM0_9  
PWM0_10  
PWM0_11  
PWM0_6_N  
SG_MCK[2] (1)  
TRIG_IN[18]  
[29]  
PWM0_7_N  
PWM0_8_N  
PWM0_9_N  
PWM0_10_N  
TC0_H_2_TR  
SG_TONE[0] (0)  
SG_AMPL[0] (0)  
SG_MCK[0] (0)  
SCB2_CLK (0)  
SCB2_MOSI (0)  
SCB2_MISO (0)  
SCB2_SEL0 (0)  
SCB2_RX (0)  
SCB2_TX (0)  
SCB2_RTS (0)  
SCB2_CTS (0)  
SCB2_SDA (0)  
[29]  
SCB2_SCL (0)  
TDM_TX_MC TDM_RX_MCK[  
K[1] (0) 0] (0)  
P12.4  
P12.5  
PWM0_0  
PWM0_1  
PWM0_11_N  
PWM0_0_N  
TDM_TX_SC TDM_RX_SCK[0  
SCB2_SEL1 (0)  
K[1] (0)  
] (0)  
TDM_TX-  
_FSYNC[1]  
(0)  
TDM_RX-  
_FSYNC[0] (0)  
P12.6  
PWM0_2  
PWM0_1_N  
TDM_TX_SD TDM_RX_SD[0]  
[1] (0) (0)  
P12.7  
P13.0  
PWM0_3  
PWM0_4  
PWM0_2_N  
TRIG_IN[19]  
TRIG_IN[20]  
[29]  
PWM0_18_N  
TC0_25_TR  
TC0_26_TR  
TC0_27_TR  
TDM_TX_MC TDM_RX_MCK[  
K[0] (1) 1] (1)  
PWM_LINE1_P[0  
] (1)  
SCB4_CLK (1)  
SCB4_MOSI (1)  
SCB4_MISO (1)  
SCB4_RX (1)  
SCB4_TX (1)  
SCB4_RTS (1)  
SCB4_SDA (1)  
[29]  
P13.1  
P13.2  
PWM0_5  
PWM0_6  
PWM0_4_N  
PWM0_5_N  
TDM_TX_SC TDM_RX_SCK[1  
PWM_LINE1_N[0  
] (1)  
SCB4_SCL (1)  
TRIG_IN[21]  
K[0] (1)  
] (1)  
TDM_TX-  
_FSYNC[0]  
(1)  
TDM_RX-  
PWM_LINE2_P[0  
] (1)  
_FSYNC[1] (1)  
P13.3  
PWM0_7  
PWM0_6_N  
TC0_28_TR  
TDM_TX_SD TDM_RX_SD[1]  
[0] (1) (1)  
PWM_LINE2_N[0  
] (1)  
SCB4_SEL0 (1)  
SCB4_CTS (1)  
P14.0  
P14.1  
P14.2  
P14.3  
P14.4  
P14.5  
P14.6  
P14.7  
P15.0  
PWM0_H_3  
PWM0_H_4  
PWM0_H_5  
PWM0_8  
PWM0_7_N  
SG_TONE[1] (0)  
SG_AMPL[1] (0)  
SG_MCK[1] (0)  
SG_TONE[2] (0)  
SCB0_RX (0)  
SCB0_TX (0)  
SCB0_RTS (0)  
SCB0_CTS (0)  
PWM0_H_3_N  
PWM0_H_4_N  
PWM0_H_5_N  
PWM0_8_N  
TC0_H_3_TR  
TC0_H_4_TR  
TC0_H_5_TR  
TC0_29_TR  
TC0_30_TR  
SCB1_SDA (1)  
SCB1_SCL (1)  
SCB10_SDA (1)  
SCB10_SCL (1)  
SCB11_SDA (1)  
SCB11_SCL (1)  
PWM0_9  
PWM_MCK[0] (1) SG_AMPL[2] (0)  
PWM_MCK[1] (1) SG_MCK[2] (0)  
SG_TONE[3] (1)  
PWM0_10  
PWM0_11  
PWM0_12  
PWM0_13  
PWM0_9_N  
PWM0_10_N  
PWM0_11_N  
PWM0_12_N  
SG_AMPL[3] (1)  
[29]  
TDM_TX_MC TDM_RX_MCK[  
K[1] (1) 0] (1)  
PWM_LINE1_P[1 SG_MCK[3] (1)  
] (1)  
SCB3_CLK (0)  
SCB3_MOSI (0)  
SCB3_MISO (0)  
SCB3_RX (0)  
SCB3_TX (0)  
SCB3_RTS (0)  
SCB3_SDA (0)  
[29]  
P15.1  
P15.2  
PWM0_H_6  
PWM0_H_7  
PWM0_13_N  
TDM_TX_SC TDM_RX_SCK[0  
PWM_LINE1_N[1  
] (1)  
SCB3_SCL (0)  
K[1] (1)  
] (1)  
PWM0_H_6_N  
TDM_TX-  
_FSYNC[1]  
(1)  
TDM_RX-  
PWM_LINE2_P[1  
] (1)  
_FSYNC[0] (1)  
P15.3  
PWM0_14  
PWM0_H_7_N  
TC0_H_6_TR  
TC0_H_7_TR  
TDM_TX_SD TDM_RX_SD[0]  
[1] (1) (1)  
PWM_LINE2_N[1  
] (1)  
SCB3_SEL0 (0)  
SCB3_SEL1 (0)  
SCB3_CTS (0)  
P15.4  
P15.5  
PWM0_15  
PWM0_16  
PWM0_14_N  
PWM0_15_N  
TRIG_IN[22]  
TRIG_IN[23]  
SG_TONE[4] (1)  
[20, 27, 28]  
Table 13-1  
Alternate pin functions in active power mode (continued)  
Active Mapping  
Name HCon#8[25]  
ACT#0[26]  
HCon#9  
HCon#10  
ACT#2  
HCon#11 HCon#16 HCon#17 HCon#18 HCon#20  
HCon#21  
HCon#22  
ACT#10  
HCon#23  
ACT#11  
HCon#24 HCon#25 HCon#26 HCon#27  
ACT#1  
ACT#3  
ACT#4  
ACT#5  
ACT#6  
ACT#8  
ACT#9  
ACT#12  
ACT#13  
ACT#14  
ACT#15  
P15.6  
P15.7  
P16.0  
PWM0_17  
PWM0_18  
PWM0_19  
PWM0_16_N  
SG_AMPL[4] (1)  
TRIG_IN[24]  
PWM0_17_N  
PWM0_33_N  
SG_MCK[4] (1)  
TRIG_IN[25]  
[29]  
PWM_LINE1_P[0  
] (0)  
SCB4_CLK (0)  
SCB4_MOSI (0)  
SCB4_MISO (0)  
SCB4_SEL0 (0)  
SCB4_SEL1 (0)  
SCB4_RX (0)  
SCB4_TX (0)  
SCB4_RTS (0)  
SCB4_CTS (0)  
SCB4_SDA (0)  
[29]  
P16.1  
P16.2  
P16.3  
PWM0_H_8  
PWM0_H_9  
PWM0_20  
PWM0_19_N  
PWM0_H_8_N  
PWM0_H_9_N  
PWM_LINE1_N[0  
] (0)  
SCB4_SCL (0)  
PWM_LINE2_P[0  
] (0)  
TC0_H_8_TR  
TC0_H_9_TR  
PWM_LINE2_N[0  
] (0)  
P16.4  
P16.5  
P17.0  
PWM0_21  
PWM0_22  
PWM0_23  
PWM0_20_N  
PWM0_21_N  
PWM0_22_N  
PWM_MCK[0] (0) SG_MCK[3] (0)  
SG_MCK[4] (0)  
[29]  
PWM_LINE1_P[1  
] (0)  
SCB5_CLK (0)  
SCB5_MOSI (0)  
SCB5_MISO (0)  
SCB5_SEL0 (0)  
SCB5_SEL1 (0)  
SCB5_RX (0)  
SCB5_TX (0)  
SCB5_RTS (0)  
SCB5_CTS (0)  
SCB5_SDA (0)  
[29]  
P17.1  
P17.2  
P17.3  
PWM0_24  
PWM0_25  
PWM0_26  
PWM0_23_N  
PWM0_24_N  
PWM0_25_N  
TC0_20_TR  
TC0_21_TR  
TC0_22_TR  
PWM_LINE1_N[1  
] (0)  
SCB5_SCL (0)  
PWM_LINE2_P[1  
] (0)  
PWM_LINE2_N[1  
] (0)  
TRIG_IN[26]  
TRIG_IN[27]  
P17.4  
P17.5  
P17.6  
P17.7  
P18.0  
P18.1  
P18.2  
P18.3  
P18.4  
P18.5  
P18.6  
P18.7  
P19.0  
PWM0_27  
PWM0_28  
PWM0_29  
PWM0_30  
PWM0_31  
PWM0_32  
PWM0_33  
PWM0_12  
PWM0_13  
PWM0_14  
PWM0_15  
PWM0_16  
PWM0_17  
PWM0_26_N  
PWM0_27_N  
PWM0_28_N  
PWM0_29_N  
PWM0_30_N  
PWM0_31_N  
PWM0_32_N  
PWM0_23_N  
PWM0_12_N  
PWM0_13_N  
PWM0_14_N  
PWM0_15_N  
PWM0_16_N  
TC0_23_TR  
TC0_24_TR  
PWM_MCK[1] (0) SG_TONE[3] (0)  
SG_AMPL[3] (0)  
SG_TONE[4] (0)  
SG_AMPL[4] (0)  
[29]  
CAN0_1_TX  
CAN0_1_RX  
CAN0_0_TX  
CAN0_0_RX  
SCB6_CLK (0)  
SCB6_MOSI (0)  
SCB6_MISO (0)  
SCB6_SEL0 (0)  
SCB6_SEL1 (0)  
SCB6_RX (0)  
SCB6_TX (0)  
SCB6_RTS (0)  
SCB6_CTS (0)  
SCB6_SDA (0)  
[29]  
SCB6_SCL (0)  
LIN1_TX  
LIN1_RX  
LIN1_EN  
CXPI1_TX  
TC0_20_TR  
TC0_21_TR  
CXPI1_RX  
CXPI1_EN  
TRIG_IN[28]  
TRIG_IN[29]  
TRIG_IN[30]  
TRIG_IN[31]  
TC0_22_TR  
TC0_23_TR  
[29]  
LIN0_TX  
LIN0_RX  
LIN0_EN  
CXPI0_TX  
CXPI0_RX  
CXPI0_EN  
CAN1_1_TX  
CAN1_1_RX  
CAN1_0_TX  
CAN1_0_RX  
SCB6_CLK (1)  
SCB6_MOSI (1)  
SCB6_MISO (1)  
SCB6_SEL0 (1)  
SCB6_RX (1)  
SCB6_TX (1)  
SCB6_RTS (1)  
SCB6_CTS (1)  
SCB6_SDA (1)  
FAULT_OUT_  
0
[29]  
P19.1  
P19.2  
P19.3  
PWM0_18  
PWM0_19  
PWM0_20  
PWM0_17_N  
PWM0_18_N  
PWM0_19_N  
SCB6_SCL (1)  
FAULT_OUT_  
1
TC0_31_TR  
TC0_32_TR  
FAULT_OUT_  
2
FAULT_OUT_  
3
[20, 27, 28]  
Table 13-1  
Alternate pin functions in active power mode (continued)  
Active Mapping  
Name HCon#8[25]  
ACT#0[26]  
HCon#9  
HCon#10  
HCon#11 HCon#16 HCon#17 HCon#18 HCon#20  
HCon#21  
ACT#9  
HCon#22  
HCon#23  
ACT#11  
HCon#24 HCon#25 HCon#26 HCon#27  
ACT#12 ACT#13 ACT#14 ACT#15  
ACT#1  
ACT#2  
ACT#3  
ACT#4  
ACT#5  
ACT#6  
ACT#8  
ACT#10  
P19.4  
P19.5  
P19.6  
PWM0_21  
PWM0_22  
PWM0_23  
PWM0_20_N  
TC0_33_TR  
SCB6_SEL1 (1)  
PWM0_21_N  
PWM0_22_N  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Pin function description  
14  
Pin function description  
Table 14-1  
Sl. No. Pin  
Pin function description  
Module  
Description  
1
2
3
4
5
6
7
8
9
PWMx_y  
TCPWM  
TCPWM  
TCPWM  
TCPWM  
TCPWM  
TCPWM  
TCPWM  
TCPWM  
TCPWM  
TCPWM 16-bit PWM (no motor control), PWM_DT and PWM_PR line  
out, x-TCPWM block, y-counter number  
TCPWM 16-bit PWM (no motor control), PWM_DT and PWM_PR  
complementary line out (N), x-TCPWM block, y-counter number  
TCPWM 16-bit PWM with motor control line out, x-TCPWM block,  
y-counter number  
TCPWM 16-bit PWM with motor control complementary line out (N),  
x-TCPWM block, y-counter number  
TCPWM 32-bit PWM, PWM_DT and PWM_PR line out, x-TCPWM  
block, y-counter number  
TCPWM 32-bit PWM, PWM_DT and PWM_PR complementary line out  
(N), x-TCPWM block, y-counter number  
TCPWM 16-bit dedicated counter input triggers, x-TCPWM block,  
y-counter number, z-trigger number  
TCPWM 16-bit dedicated counter input triggers with motor control,  
x-TCPWM block, y-counter number, z-trigger number  
PWMx_y_N  
PWMx_M_y  
PWMx_M_y_N  
PWMx_H_y  
PWMx_H_y_N  
TCx_y_TRz  
TCx_M_y_TRz  
TCx_H_y_TRz  
TCPWM 32-bit dedicated counter input triggers, x-TCPWM block,  
y-counter number, z-trigger number  
10 SCBx_RX  
SCB  
UART Receive, x-SCB block  
11 SCBx_TX  
SCB  
UART Transmit, x-SCB block  
12 SCBx_RTS  
13 SCBx_CTS  
14 SCBx_SDA  
15 SCBx_SCL  
16 SCBx_MISO  
17 SCBx_MOSI  
18 SCBx_CLK  
19 SCBx_SELy  
20 LINx_RX  
SCB  
SCB  
SCB  
SCB  
SCB  
SCB  
SCB  
SCB  
UART Request to Send (Handshake), x-SCB block  
UART Clear to Send (Handshake), x-SCB block  
I2C Data line, x-SCB block  
I2C Clock line, x-SCB block  
SPI Master Input Slave Output, x-SCB block  
SPI Master Output Slave Input, x-SCB block  
SPI Serial Clock, x-SCB block  
SPI Slave Select, x-SCB block, y-select line  
LIN Receive line, x-LIN block  
LIN  
21 LINx_TX  
LIN  
LIN Transmit line, x-LIN block  
22 LINx_EN  
LIN  
LIN Enable line, x-LIN block  
23 CXPIx_RX  
24 CXPIx_TX  
25 CXPIx_EN  
26 CANx_y_TX  
27 CANx_y_RX  
28 CAL_SUP_NZ  
29 FAULT_OUT_x  
30 TRACE_DATA_x  
31 TRACE_CLOCK  
32 RTC_CAL  
CXPI  
CXPI  
CXPI  
CAN FD  
CAN FD  
CPUSS  
SRSS  
SRSS  
SRSS  
SRSS RTC  
CXPI Receive line, x-CXPI block  
CXPI Transmit line, x-CXPI block  
CXPI Enable line, x-CXPI block  
CAN Transmit line, x-CAN block, y-channel number  
CAN Receive line, x-CAN block, y-channel number  
ETAS Calibration support line  
Fault output line x-0 to 3  
Trace dataout line x-0 to 3  
Trace clock line  
RTC calibration clock input  
Datasheet  
46  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Pin function description  
Table 14-1  
Sl. No. Pin  
Pin function description (continued)  
Module  
Description  
33 SWJ_TRSTN  
34 SWJ_SWO_TDO  
35 SWJ_SWCLK_TCLK SRSS  
36 SWJ_SWDIO_TMS SRSS  
37 SWJ_SWDOE_TDI SRSS  
SRSS  
SRSS  
JTAG Test reset line (Active low)  
JTAG Test data output/SWO (Serial Wire Output)  
JTAG Test clock/SWD clock (Serial Wire Clock)  
JTAG Test mode select/SWD data (Serial Wire Data Input/Output)  
JTAG Test data input  
38 HIBER-  
NATE_WAKEUP[x]  
SRSS  
Hibernate wakeup line x-0 to 1  
39 ADC[x]_y  
40 ADC[x]_M  
41 EXT_MUX[x]_y  
42 EXT_MUX[x]_EN  
43 EXT_CLK  
PASS SAR  
PASS SAR  
PASS SAR  
PASS SAR  
SRSS  
SAR, channel, x-SAR number, y-channel number  
SAR motor control input, x-SAR number  
External SAR MUX inputs, x-MUX number, y-MUX input 0 to 2  
External SAR MUX enable line  
External clock input  
44 SG_AMPL[x]  
45 SG_MCK[x]  
46 SG_TONE[x]  
47 PWM_LINEx_N[y]  
48 PWM_LINEx_P[y]  
49 PWM_MCK[x]  
SG  
SG  
SG  
PCM PWM  
PCM PWM  
PCM PWM  
Sound generator (SG) amplitude output, x-SG module number  
Sound generator (SG) master clock input, x-SG module number  
Sound generator (SG) tone output, x-SG module number  
Audio PWM complementary output line, x-PWM module instance  
Audio PWM output line, x-PWM module instance  
Audio PWM master clock input, x-PWM module instance  
TDM receive frame sync, x-TDM module number  
TDM receive master clock input, x-TDM module number  
TDM receive bit clock, x-TDM module number  
TDM receive serial data, x-TDM module number  
TDM transmit frame sync, x-TDM module number  
TDM transmit master clock input, x-TDM module number  
TDM transmit bit clock, x-TDM module number  
TDM transmit serial data, x-TDM module number  
SMIF interface clock  
50 TDM_RX_FSYNC[x] TDM  
51 TDM_RX_MCK[x]  
52 TDM_RX_SCK[x]  
53 TDM_RX_SD[x]  
TDM  
TDM  
TDM  
54 TDM_TX_FSYNC[x] TDM  
55 TDM_TX_MCK[x]  
56 TDM_TX_SCK[x]  
57 TDM_TX_SD[x]  
58 SPIHB_CLK  
59 SPIHB_RWDS  
60 SPIHB_SELx  
61 SPIHB_DATAx  
62 LCD_SEG_x  
TDM  
TDM  
TDM  
SMIF  
SMIF  
SMIF  
SMIF  
LCD  
SMIF (SPI/xSPI) read-write-data-strobe line  
SMIF (SPI/xSPI) memory select line, x-select line number  
SMIF (SPI/xSPI) memory data read and write line, x-0 to 7 data lines  
LCD segment lines x-0 to 35  
63 LCD_COM_x  
64 IO_CLK_HF[2]  
LCD  
SRSS  
LCD common lines x-0 to 35  
CLK_HF2 clock output  
Datasheet  
47  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Interrupts and wake-up assignments  
15  
Interrupts and wake-up assignments  
Table 15-1  
Peripheral interrupt assignments and wake-up sources  
Interrupt  
0
Source  
Power Mode  
Description  
cpuss_interrupts_ipc_0_IRQn  
cpuss_interrupts_ipc_1_IRQn  
cpuss_interrupts_ipc_2_IRQn  
cpuss_interrupts_ipc_3_IRQn  
cpuss_interrupts_ipc_4_IRQn  
cpuss_interrupts_ipc_5_IRQn  
cpuss_interrupts_ipc_6_IRQn  
cpuss_interrupts_ipc_7_IRQn  
cpuss_interrupts_fault_0_IRQn  
cpuss_interrupts_fault_1_IRQn  
cpuss_interrupts_fault_2_IRQn  
cpuss_interrupts_fault_3_IRQn  
srss_interrupt_backup_IRQn  
srss_interrupt_mcwdt_0_IRQn  
srss_interrupt_mcwdt_1_IRQn  
srss_interrupt_wdt_IRQn  
DeepSleep CPUSS Inter Process Communication Interrupt #0  
DeepSleep CPUSS Inter Process Communication Interrupt #1  
DeepSleep CPUSS Inter Process Communication Interrupt #2  
DeepSleep CPUSS Inter Process Communication Interrupt #3  
DeepSleep CPUSS Inter Process Communication Interrupt #4  
DeepSleep CPUSS Inter Process Communication Interrupt #5  
DeepSleep CPUSS Inter Process Communication Interrupt #6  
DeepSleep CPUSS Inter Process Communication Interrupt #7  
DeepSleep CPUSS Fault Structure #0 Interrupt  
DeepSleep CPUSS Fault Structure #1 Interrupt  
DeepSleep CPUSS Fault Structure #2 Interrupt  
DeepSleep CPUSS Fault Structure #3 Interrupt  
DeepSleep BACKUP domain Interrupt  
DeepSleep Multi Counter Watchdog Timer #0 interrupt  
DeepSleep Multi Counter Watchdog Timer #1 interrupt  
DeepSleep Hardware Watchdog Timer interrupt  
DeepSleep Other combined Interrupts for SRSS (LVD, CLK_CAL)  
DeepSleep Event generator timer DeepSleep domain interrupt  
DeepSleep Serial Communication Block#0 (DeepSleep capable)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
17  
18  
19  
20  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
50  
52  
53  
srss_interrupt_IRQn  
evtgen_0_interrupt_dpslp_IRQn  
scb_0_interrupt_IRQn  
ioss_interrupt_vdd_IRQn  
DeepSleep I/O Supply (V  
, V  
, V ) state change Interrupt  
DDD  
DDA_ADC  
DDIO  
ioss_interrupt_gpio_dpslp_IRQn  
ioss_interrupts_gpio_0_IRQn  
ioss_interrupts_gpio_1_IRQn  
ioss_interrupts_gpio_2_IRQn  
ioss_interrupts_gpio_3_IRQn  
ioss_interrupts_gpio_4_IRQn  
ioss_interrupts_gpio_5_IRQn  
ioss_interrupts_gpio_6_IRQn  
ioss_interrupts_gpio_7_IRQn  
ioss_interrupts_gpio_10_IRQn  
ioss_interrupts_gpio_11_IRQn  
ioss_interrupts_gpio_12_IRQn  
ioss_interrupts_gpio_13_IRQn  
ioss_interrupts_gpio_14_IRQn  
ioss_interrupts_gpio_15_IRQn  
ioss_interrupts_gpio_16_IRQn  
ioss_interrupts_gpio_17_IRQn  
ioss_interrupts_gpio_18_IRQn  
ioss_interrupts_gpio_19_IRQn  
ioss_interrupt_gpio_act_IRQn  
ioss_interrupts_gpio_8_IRQn  
ioss_interrupts_gpio_9_IRQn  
DeepSleep Consolidated interrupt for DeepSleep ports  
DeepSleep GPIO_STD Port #0 Interrupt  
DeepSleep GPIO_STD Port #1 Interrupt  
DeepSleep GPIO_STD Port #2 Interrupt  
DeepSleep GPIO_STD Port #3 Interrupt  
DeepSleep GPIO_STD Port #4 Interrupt  
DeepSleep GPIO_SMC Port #5 Interrupt  
DeepSleep GPIO_SMC Port #6 Interrupt  
DeepSleep GPIO_SMC Port #7 Interrupt  
DeepSleep GPIO_STD Port #10 Interrupt  
DeepSleep GPIO_STD Port #11 Interrupt  
DeepSleep GPIO_STD Port #12 Interrupt  
DeepSleep GPIO_STD Port #13 Interrupt  
DeepSleep GPIO_ENH Port #14 Interrupt  
DeepSleep GPIO_STD Port #15 Interrupt  
DeepSleep GPIO_STD Port #16 Interrupt  
DeepSleep GPIO_STD Port #17 Interrupt  
DeepSleep GPIO_STD Port #18 Interrupt  
DeepSleep GPIO_STD Port #19 Interrupt  
Active  
Active  
Active  
Consolidated interrupt for active I/O ports  
HSIO_STDLN Port #8 Interrupt  
HSIO_STDLN Port #9 Interrupt  
Datasheet  
48  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Interrupts and wake-up assignments  
Table 15-1  
Peripheral interrupt assignments and wake-up sources (continued)  
Interrupt  
70  
Source  
Power Mode  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Description  
Crypto Accelerator Interrupt  
FLASH Macro Interrupt  
CM4 Floating Point operation fault  
CM0+ CTI (Cross Trigger Interface) #0  
CM0+ CTI#1  
CM4 CTI#0  
CM4 CTI#1  
Event Generator Active domain interrupt  
SMIF#0 Interrupt  
CAN#0, Consolidated Interrupt #0 for all three channels  
CAN#0, Consolidated Interrupt #1 for all three channels  
CAN#1, Consolidated Interrupt #0 for all three channels  
CAN#1, Consolidated Interrupt #1 for all three channels  
CAN#0, Interrupt #0, Channel #0  
CAN#0, Interrupt #0, Channel #1  
CAN#0, Interrupt #1, Channel #0  
CAN#0, Interrupt #1, Channel #1  
CAN#1, Interrupt #0, Channel #0  
CAN#1, Interrupt #0, Channel #1  
CAN#1, Interrupt #1, Channel #0  
CAN#1, Interrupt #1, Channel #1  
LIN#0, Channel #0 Interrupt  
LIN#0, Channel #1 Interrupt  
CXPI#0 Channel #0 Interrupt  
CXPI#0 Channel #1 Interrupt  
SCB#1 Interrupt  
cpuss_interrupt_crypto_IRQn  
cpuss_interrupt_fm_IRQn  
cpuss_interrupts_cm4_fp_IRQn  
cpuss_interrupts_cm0_cti_0_IRQn  
cpuss_interrupts_cm0_cti_1_IRQn  
cpuss_interrupts_cm4_cti_0_IRQn  
cpuss_interrupts_cm4_cti_1_IRQn  
evtgen_0_interrupt_IRQn  
smif_0_interrupt_IRQn  
canfd_0_interrupt0_IRQn  
canfd_0_interrupt1_IRQn  
canfd_1_interrupt0_IRQn  
canfd_1_interrupt1_IRQn  
canfd_0_interrupts0_0_IRQn  
canfd_0_interrupts0_1_IRQn  
canfd_0_interrupts1_0_IRQn  
canfd_0_interrupts1_1_IRQn  
canfd_1_interrupts0_0_IRQn  
canfd_1_interrupts0_1_IRQn  
canfd_1_interrupts1_0_IRQn  
canfd_1_interrupts1_1_IRQn  
lin_0_interrupts_0_IRQn  
71  
72  
74  
75  
76  
77  
80  
81  
86  
87  
88  
89  
90  
91  
96  
97  
102  
103  
108  
109  
114  
115  
130  
131  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
160  
161  
162  
163  
164  
165  
166  
167  
lin_0_interrupts_1_IRQn  
cxpi_0_interrupts_0_IRQn  
cxpi_0_interrupts_1_IRQn  
scb_1_interrupt_IRQn  
scb_2_interrupt_IRQn  
scb_3_interrupt_IRQn  
scb_4_interrupt_IRQn  
scb_5_interrupt_IRQn  
scb_6_interrupt_IRQn  
scb_7_interrupt_IRQn  
scb_8_interrupt_IRQn  
scb_9_interrupt_IRQn  
scb_10_interrupt_IRQn  
scb_11_interrupt_IRQn  
pass_0_interrupts_sar_0_IRQn  
pass_0_interrupts_sar_1_IRQn  
pass_0_interrupts_sar_2_IRQn  
pass_0_interrupts_sar_3_IRQn  
pass_0_interrupts_sar_4_IRQn  
pass_0_interrupts_sar_5_IRQn  
pass_0_interrupts_sar_6_IRQn  
pass_0_interrupts_sar_7_IRQn  
SCB#2 Interrupt  
SCB#3 Interrupt  
SCB#4 Interrupt  
SCB#5 Interrupt  
SCB#6 Interrupt  
SCB#7 Interrupt  
SCB#8 Interrupt  
SCB#9 Interrupt  
SCB#10 Interrupt  
SCB#11 Interrupt  
SAR#0, Logical Channel#0 Interrupt  
SAR#0, Logical Channel#1 Interrupt  
SAR#0, Logical Channel#2 Interrupt  
SAR#0, Logical Channel#3 Interrupt  
SAR#0, Logical Channel#4 Interrupt  
SAR#0, Logical Channel#5 Interrupt  
SAR#0, Logical Channel#6 Interrupt  
SAR#0, Logical Channel#7 Interrupt  
Datasheet  
49  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Interrupts and wake-up assignments  
Table 15-1  
Peripheral interrupt assignments and wake-up sources (continued)  
Interrupt  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
288  
289  
290  
291  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
Source  
Power Mode  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Description  
SAR#0, Logical Channel#8 Interrupt  
SAR#0, Logical Channel#9 Interrupt  
SAR#0, Logical Channel#10 Interrupt  
SAR#0, Logical Channel#11 Interrupt  
SAR#0, Logical Channel#12 Interrupt  
SAR#0, Logical Channel#13 Interrupt  
SAR#0, Logical Channel#14 Interrupt  
SAR#0, Logical Channel#15 Interrupt  
SAR#0, Logical Channel#16 Interrupt  
SAR#0, Logical Channel#17 Interrupt  
SAR#0, Logical Channel#18 Interrupt  
SAR#0, Logical Channel#19 Interrupt  
SAR#0, Logical Channel#20 Interrupt  
SAR#0, Logical Channel#21 Interrupt  
SAR#0, Logical Channel#22 Interrupt  
SAR#0, Logical Channel#23 Interrupt  
SAR#0, Logical Channel#24 Interrupt  
SAR#0, Logical Channel#25 Interrupt  
SAR#0, Logical Channel#26 Interrupt  
SAR#0, Logical Channel#27 Interrupt  
SAR#0, Logical Channel#28 Interrupt  
SAR#0, Logical Channel#29 Interrupt  
SAR#0, Logical Channel#30 Interrupt  
SAR#0, Logical Channel#31 Interrupt  
CPUSS M-DMA#0, Channel#0 Interrupt  
CPUSS M-DMA#0, Channel#1 Interrupt  
CPUSS M-DMA#0, Channel#2 Interrupt  
CPUSS M-DMA#0, Channel#3 Interrupt  
CPUSS P-DMA#0, Channel#0 Interrupt  
CPUSS P-DMA#0, Channel#1 Interrupt  
CPUSS P-DMA#0, Channel#2 Interrupt  
CPUSS P-DMA#0, Channel#3 Interrupt  
CPUSS P-DMA#0, Channel#4 Interrupt  
CPUSS P-DMA#0, Channel#5 Interrupt  
CPUSS P-DMA#0, Channel#6 Interrupt  
CPUSS P-DMA#0, Channel#7 Interrupt  
CPUSS P-DMA#0, Channel#8 Interrupt  
CPUSS P-DMA#0, Channel#9 Interrupt  
CPUSS P-DMA#0, Channel#10 Interrupt  
CPUSS P-DMA#0, Channel#11 Interrupt  
CPUSS P-DMA#0, Channel#12 Interrupt  
CPUSS P-DMA#0, Channel#13 Interrupt  
CPUSS P-DMA#0, Channel#14 Interrupt  
CPUSS P-DMA#0, Channel#15 Interrupt  
pass_0_interrupts_sar_8_IRQn  
pass_0_interrupts_sar_9_IRQn  
pass_0_interrupts_sar_10_IRQn  
pass_0_interrupts_sar_11_IRQn  
pass_0_interrupts_sar_12_IRQn  
pass_0_interrupts_sar_13_IRQn  
pass_0_interrupts_sar_14_IRQn  
pass_0_interrupts_sar_15_IRQn  
pass_0_interrupts_sar_16_IRQn  
pass_0_interrupts_sar_17_IRQn  
pass_0_interrupts_sar_18_IRQn  
pass_0_interrupts_sar_19_IRQn  
pass_0_interrupts_sar_20_IRQn  
pass_0_interrupts_sar_21_IRQn  
pass_0_interrupts_sar_22_IRQn  
pass_0_interrupts_sar_23_IRQn  
pass_0_interrupts_sar_24_IRQn  
pass_0_interrupts_sar_25_IRQn  
pass_0_interrupts_sar_26_IRQn  
pass_0_interrupts_sar_27_IRQn  
pass_0_interrupts_sar_28_IRQn  
pass_0_interrupts_sar_29_IRQn  
pass_0_interrupts_sar_30_IRQn  
pass_0_interrupts_sar_31_IRQn  
cpuss_interrupts_dmac_0_IRQn  
cpuss_interrupts_dmac_1_IRQn  
cpuss_interrupts_dmac_2_IRQn  
cpuss_interrupts_dmac_3_IRQn  
cpuss_interrupts_dw0_0_IRQn  
cpuss_interrupts_dw0_1_IRQn  
cpuss_interrupts_dw0_2_IRQn  
cpuss_interrupts_dw0_3_IRQn  
cpuss_interrupts_dw0_4_IRQn  
cpuss_interrupts_dw0_5_IRQn  
cpuss_interrupts_dw0_6_IRQn  
cpuss_interrupts_dw0_7_IRQn  
cpuss_interrupts_dw0_8_IRQn  
cpuss_interrupts_dw0_9_IRQn  
cpuss_interrupts_dw0_10_IRQn  
cpuss_interrupts_dw0_11_IRQn  
cpuss_interrupts_dw0_12_IRQn  
cpuss_interrupts_dw0_13_IRQn  
cpuss_interrupts_dw0_14_IRQn  
cpuss_interrupts_dw0_15_IRQn  
Datasheet  
50  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Interrupts and wake-up assignments  
Table 15-1  
Peripheral interrupt assignments and wake-up sources (continued)  
Interrupt  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
350  
351  
352  
353  
354  
355  
Source  
Power Mode  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Description  
cpuss_interrupts_dw0_16_IRQn  
cpuss_interrupts_dw0_17_IRQn  
cpuss_interrupts_dw0_18_IRQn  
cpuss_interrupts_dw0_19_IRQn  
cpuss_interrupts_dw0_20_IRQn  
cpuss_interrupts_dw0_21_IRQn  
cpuss_interrupts_dw0_22_IRQn  
cpuss_interrupts_dw0_23_IRQn  
cpuss_interrupts_dw0_24_IRQn  
cpuss_interrupts_dw0_25_IRQn  
cpuss_interrupts_dw0_26_IRQn  
cpuss_interrupts_dw0_27_IRQn  
cpuss_interrupts_dw0_28_IRQn  
cpuss_interrupts_dw0_29_IRQn  
cpuss_interrupts_dw0_30_IRQn  
cpuss_interrupts_dw0_31_IRQn  
cpuss_interrupts_dw0_32_IRQn  
cpuss_interrupts_dw0_33_IRQn  
cpuss_interrupts_dw0_34_IRQn  
cpuss_interrupts_dw0_35_IRQn  
cpuss_interrupts_dw0_36_IRQn  
cpuss_interrupts_dw0_37_IRQn  
cpuss_interrupts_dw0_38_IRQn  
cpuss_interrupts_dw0_39_IRQn  
cpuss_interrupts_dw0_40_IRQn  
cpuss_interrupts_dw0_41_IRQn  
cpuss_interrupts_dw0_42_IRQn  
cpuss_interrupts_dw0_43_IRQn  
cpuss_interrupts_dw0_44_IRQn  
cpuss_interrupts_dw0_45_IRQn  
cpuss_interrupts_dw0_46_IRQn  
cpuss_interrupts_dw0_47_IRQn  
cpuss_interrupts_dw0_48_IRQn  
cpuss_interrupts_dw0_49_IRQn  
cpuss_interrupts_dw0_50_IRQn  
cpuss_interrupts_dw0_51_IRQn  
cpuss_interrupts_dw0_52_IRQn  
cpuss_interrupts_dw0_53_IRQn  
cpuss_interrupts_dw0_54_IRQn  
cpuss_interrupts_dw0_55_IRQn  
cpuss_interrupts_dw0_56_IRQn  
cpuss_interrupts_dw0_57_IRQn  
cpuss_interrupts_dw0_58_IRQn  
cpuss_interrupts_dw0_59_IRQn  
CPUSS P-DMA#0, Channel#16 Interrupt  
CPUSS P-DMA#0, Channel#17 Interrupt  
CPUSS P-DMA#0, Channel#18 Interrupt  
CPUSS P-DMA#0, Channel#19 Interrupt  
CPUSS P-DMA#0, Channel#20 Interrupt  
CPUSS P-DMA#0, Channel#21 Interrupt  
CPUSS P-DMA#0, Channel#22 Interrupt  
CPUSS P-DMA#0, Channel#23 Interrupt  
CPUSS P-DMA#0, Channel#24 Interrupt  
CPUSS P-DMA#0, Channel#25 Interrupt  
CPUSS P-DMA#0, Channel#26 Interrupt  
CPUSS P-DMA#0, Channel#27 Interrupt  
CPUSS P-DMA#0, Channel#28 Interrupt  
CPUSS P-DMA#0, Channel#29 Interrupt  
CPUSS P-DMA#0, Channel#30 Interrupt  
CPUSS P-DMA#0, Channel#31 Interrupt  
CPUSS P-DMA#0, Channel#32 Interrupt  
CPUSS P-DMA#0, Channel#33 Interrupt  
CPUSS P-DMA#0, Channel#34 Interrupt  
CPUSS P-DMA#0, Channel#35 Interrupt  
CPUSS P-DMA#0, Channel#36 Interrupt  
CPUSS P-DMA#0, Channel#37 Interrupt  
CPUSS P-DMA#0, Channel#38 Interrupt  
CPUSS P-DMA#0, Channel#39 Interrupt  
CPUSS P-DMA#0, Channel#40 Interrupt  
CPUSS P-DMA#0, Channel#41 Interrupt  
CPUSS P-DMA#0, Channel#42 Interrupt  
CPUSS P-DMA#0, Channel#43 Interrupt  
CPUSS P-DMA#0, Channel#44 Interrupt  
CPUSS P-DMA#0, Channel#45 Interrupt  
CPUSS P-DMA#0, Channel#46 Interrupt  
CPUSS P-DMA#0, Channel#47 Interrupt  
CPUSS P-DMA#0, Channel#48 Interrupt  
CPUSS P-DMA#0, Channel#49 Interrupt  
CPUSS P-DMA#0, Channel#50 Interrupt  
CPUSS P-DMA#0, Channel#51 Interrupt  
CPUSS P-DMA#0, Channel#52 Interrupt  
CPUSS P-DMA#0, Channel#53 Interrupt  
CPUSS P-DMA#0, Channel#54 Interrupt  
CPUSS P-DMA#0, Channel#55 Interrupt  
CPUSS P-DMA#0, Channel#56 Interrupt  
CPUSS P-DMA#0, Channel#57 Interrupt  
CPUSS P-DMA#0, Channel#58 Interrupt  
CPUSS P-DMA#0, Channel#59 Interrupt  
Datasheet  
51  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Interrupts and wake-up assignments  
Table 15-1  
Peripheral interrupt assignments and wake-up sources (continued)  
Interrupt  
356  
357  
358  
359  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
370  
371  
424  
425  
426  
427  
428  
429  
430  
431  
432  
433  
434  
435  
436  
437  
438  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449  
450  
451  
Source  
Power Mode  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Description  
cpuss_interrupts_dw0_60_IRQn  
cpuss_interrupts_dw0_61_IRQn  
cpuss_interrupts_dw0_62_IRQn  
cpuss_interrupts_dw0_63_IRQn  
cpuss_interrupts_dw0_64_IRQn  
cpuss_interrupts_dw0_65_IRQn  
cpuss_interrupts_dw0_66_IRQn  
cpuss_interrupts_dw0_67_IRQn  
cpuss_interrupts_dw0_68_IRQn  
cpuss_interrupts_dw0_69_IRQn  
cpuss_interrupts_dw0_70_IRQn  
cpuss_interrupts_dw0_71_IRQn  
cpuss_interrupts_dw0_72_IRQn  
cpuss_interrupts_dw0_73_IRQn  
cpuss_interrupts_dw0_74_IRQn  
cpuss_interrupts_dw0_75_IRQn  
cpuss_interrupts_dw1_0_IRQn  
cpuss_interrupts_dw1_1_IRQn  
cpuss_interrupts_dw1_2_IRQn  
cpuss_interrupts_dw1_3_IRQn  
cpuss_interrupts_dw1_4_IRQn  
cpuss_interrupts_dw1_5_IRQn  
cpuss_interrupts_dw1_6_IRQn  
cpuss_interrupts_dw1_7_IRQn  
cpuss_interrupts_dw1_8_IRQn  
cpuss_interrupts_dw1_9_IRQn  
cpuss_interrupts_dw1_10_IRQn  
cpuss_interrupts_dw1_11_IRQn  
cpuss_interrupts_dw1_12_IRQn  
cpuss_interrupts_dw1_13_IRQn  
cpuss_interrupts_dw1_14_IRQn  
cpuss_interrupts_dw1_15_IRQn  
cpuss_interrupts_dw1_16_IRQn  
cpuss_interrupts_dw1_17_IRQn  
cpuss_interrupts_dw1_18_IRQn  
cpuss_interrupts_dw1_19_IRQn  
cpuss_interrupts_dw1_20_IRQn  
cpuss_interrupts_dw1_21_IRQn  
cpuss_interrupts_dw1_22_IRQn  
cpuss_interrupts_dw1_23_IRQn  
cpuss_interrupts_dw1_24_IRQn  
cpuss_interrupts_dw1_25_IRQn  
cpuss_interrupts_dw1_26_IRQn  
cpuss_interrupts_dw1_27_IRQn  
CPUSS P-DMA#0, Channel#60 Interrupt  
CPUSS P-DMA#0, Channel#61 Interrupt  
CPUSS P-DMA#0, Channel#62 Interrupt  
CPUSS P-DMA#0, Channel#63 Interrupt  
CPUSS P-DMA#0, Channel#64 Interrupt  
CPUSS P-DMA#0, Channel#65 Interrupt  
CPUSS P-DMA#0, Channel#66 Interrupt  
CPUSS P-DMA#0, Channel#67 Interrupt  
CPUSS P-DMA#0, Channel#68 Interrupt  
CPUSS P-DMA#0, Channel#69 Interrupt  
CPUSS P-DMA#0, Channel#70 Interrupt  
CPUSS P-DMA#0, Channel#71 Interrupt  
CPUSS P-DMA#0, Channel#72 Interrupt  
CPUSS P-DMA#0, Channel#73 Interrupt  
CPUSS P-DMA#0, Channel#74 Interrupt  
CPUSS P-DMA#0, Channel#75 Interrupt  
CPUSS P-DMA#1, Channel#0 Interrupt  
CPUSS P-DMA#1, Channel#1 Interrupt  
CPUSS P-DMA#1, Channel#2 Interrupt  
CPUSS P-DMA#1, Channel#3 Interrupt  
CPUSS P-DMA#1, Channel#4 Interrupt  
CPUSS P-DMA#1, Channel#5 Interrupt  
CPUSS P-DMA#1, Channel#6 Interrupt  
CPUSS P-DMA#1, Channel#7 Interrupt  
CPUSS P-DMA#1, Channel#8 Interrupt  
CPUSS P-DMA#1, Channel#9 Interrupt  
CPUSS P-DMA#1, Channel#10 Interrupt  
CPUSS P-DMA#1, Channel#11 Interrupt  
CPUSS P-DMA#1, Channel#12 Interrupt  
CPUSS P-DMA#1, Channel#13 Interrupt  
CPUSS P-DMA#1, Channel#14 Interrupt  
CPUSS P-DMA#1, Channel#15 Interrupt  
CPUSS P-DMA#1, Channel#16 Interrupt  
CPUSS P-DMA#1, Channel#17 Interrupt  
CPUSS P-DMA#1, Channel#18 Interrupt  
CPUSS P-DMA#1, Channel#19 Interrupt  
CPUSS P-DMA#1, Channel#20 Interrupt  
CPUSS P-DMA#1, Channel#21 Interrupt  
CPUSS P-DMA#1, Channel#22 Interrupt  
CPUSS P-DMA#1, Channel#23 Interrupt  
CPUSS P-DMA#1, Channel#24 Interrupt  
CPUSS P-DMA#1, Channel#25 Interrupt  
CPUSS P-DMA#1, Channel#26 Interrupt  
CPUSS P-DMA#1, Channel#27 Interrupt  
Datasheet  
52  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Interrupts and wake-up assignments  
Table 15-1  
Peripheral interrupt assignments and wake-up sources (continued)  
Interrupt  
452  
453  
454  
455  
456  
457  
458  
459  
460  
461  
462  
463  
464  
465  
466  
467  
468  
469  
470  
471  
472  
473  
474  
475  
476  
477  
478  
479  
480  
481  
482  
483  
484  
485  
486  
487  
488  
489  
490  
491  
492  
493  
494  
495  
Source  
Power Mode  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Description  
cpuss_interrupts_dw1_28_IRQn  
cpuss_interrupts_dw1_29_IRQn  
cpuss_interrupts_dw1_30_IRQn  
cpuss_interrupts_dw1_31_IRQn  
cpuss_interrupts_dw1_32_IRQn  
cpuss_interrupts_dw1_33_IRQn  
cpuss_interrupts_dw1_34_IRQn  
cpuss_interrupts_dw1_35_IRQn  
cpuss_interrupts_dw1_36_IRQn  
cpuss_interrupts_dw1_37_IRQn  
cpuss_interrupts_dw1_38_IRQn  
cpuss_interrupts_dw1_39_IRQn  
cpuss_interrupts_dw1_40_IRQn  
cpuss_interrupts_dw1_41_IRQn  
cpuss_interrupts_dw1_42_IRQn  
cpuss_interrupts_dw1_43_IRQn  
cpuss_interrupts_dw1_44_IRQn  
cpuss_interrupts_dw1_45_IRQn  
cpuss_interrupts_dw1_46_IRQn  
cpuss_interrupts_dw1_47_IRQn  
cpuss_interrupts_dw1_48_IRQn  
cpuss_interrupts_dw1_49_IRQn  
cpuss_interrupts_dw1_50_IRQn  
cpuss_interrupts_dw1_51_IRQn  
cpuss_interrupts_dw1_52_IRQn  
cpuss_interrupts_dw1_53_IRQn  
cpuss_interrupts_dw1_54_IRQn  
cpuss_interrupts_dw1_55_IRQn  
cpuss_interrupts_dw1_56_IRQn  
cpuss_interrupts_dw1_57_IRQn  
cpuss_interrupts_dw1_58_IRQn  
cpuss_interrupts_dw1_59_IRQn  
cpuss_interrupts_dw1_60_IRQn  
cpuss_interrupts_dw1_61_IRQn  
cpuss_interrupts_dw1_62_IRQn  
cpuss_interrupts_dw1_63_IRQn  
cpuss_interrupts_dw1_64_IRQn  
cpuss_interrupts_dw1_65_IRQn  
cpuss_interrupts_dw1_66_IRQn  
cpuss_interrupts_dw1_67_IRQn  
cpuss_interrupts_dw1_68_IRQn  
cpuss_interrupts_dw1_69_IRQn  
cpuss_interrupts_dw1_70_IRQn  
cpuss_interrupts_dw1_71_IRQn  
CPUSS P-DMA#1, Channel#28 Interrupt  
CPUSS P-DMA#1, Channel#29 Interrupt  
CPUSS P-DMA#1, Channel#30 Interrupt  
CPUSS P-DMA#1, Channel#31 Interrupt  
CPUSS P-DMA#1, Channel#32 Interrupt  
CPUSS P-DMA#1, Channel#33 Interrupt  
CPUSS P-DMA#1, Channel#34 Interrupt  
CPUSS P-DMA#1, Channel#35 Interrupt  
CPUSS P-DMA#1, Channel#36 Interrupt  
CPUSS P-DMA#1, Channel#37 Interrupt  
CPUSS P-DMA#1, Channel#38 Interrupt  
CPUSS P-DMA#1, Channel#39 Interrupt  
CPUSS P-DMA#1, Channel#40 Interrupt  
CPUSS P-DMA#1, Channel#41 Interrupt  
CPUSS P-DMA#1, Channel#42 Interrupt  
CPUSS P-DMA#1, Channel#43 Interrupt  
CPUSS P-DMA#1, Channel#44 Interrupt  
CPUSS P-DMA#1, Channel#45 Interrupt  
CPUSS P-DMA#1, Channel#46 Interrupt  
CPUSS P-DMA#1, Channel#47 Interrupt  
CPUSS P-DMA#1, Channel#48 Interrupt  
CPUSS P-DMA#1, Channel#49 Interrupt  
CPUSS P-DMA#1, Channel#50 Interrupt  
CPUSS P-DMA#1, Channel#51 Interrupt  
CPUSS P-DMA#1, Channel#52 Interrupt  
CPUSS P-DMA#1, Channel#53 Interrupt  
CPUSS P-DMA#1, Channel#54 Interrupt  
CPUSS P-DMA#1, Channel#55 Interrupt  
CPUSS P-DMA#1, Channel#56 Interrupt  
CPUSS P-DMA#1, Channel#57 Interrupt  
CPUSS P-DMA#1, Channel#58 Interrupt  
CPUSS P-DMA#1, Channel#59 Interrupt  
CPUSS P-DMA#1, Channel#60 Interrupt  
CPUSS P-DMA#1, Channel#61 Interrupt  
CPUSS P-DMA#1, Channel#62 Interrupt  
CPUSS P-DMA#1, Channel#63 Interrupt  
CPUSS P-DMA#1, Channel#64 Interrupt  
CPUSS P-DMA#1, Channel#65 Interrupt  
CPUSS P-DMA#1, Channel#66 Interrupt  
CPUSS P-DMA#1, Channel#67 Interrupt  
CPUSS P-DMA#1, Channel#68 Interrupt  
CPUSS P-DMA#1, Channel#69 Interrupt  
CPUSS P-DMA#1, Channel#70 Interrupt  
CPUSS P-DMA#1, Channel#71 Interrupt  
Datasheet  
53  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Interrupts and wake-up assignments  
Table 15-1  
Peripheral interrupt assignments and wake-up sources (continued)  
Interrupt  
496  
497  
498  
499  
500  
501  
502  
503  
504  
505  
506  
507  
552  
553  
554  
555  
556  
557  
558  
559  
560  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
571  
572  
573  
574  
575  
576  
577  
578  
579  
580  
581  
582  
583  
Source  
Power Mode  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Description  
cpuss_interrupts_dw1_72_IRQn  
cpuss_interrupts_dw1_73_IRQn  
cpuss_interrupts_dw1_74_IRQn  
cpuss_interrupts_dw1_75_IRQn  
cpuss_interrupts_dw1_76_IRQn  
cpuss_interrupts_dw1_77_IRQn  
cpuss_interrupts_dw1_78_IRQn  
cpuss_interrupts_dw1_79_IRQn  
cpuss_interrupts_dw1_80_IRQn  
cpuss_interrupts_dw1_81_IRQn  
cpuss_interrupts_dw1_82_IRQn  
cpuss_interrupts_dw1_83_IRQn  
tcpwm_0_interrupts_0_IRQn  
tcpwm_0_interrupts_1_IRQn  
tcpwm_0_interrupts_2_IRQn  
tcpwm_0_interrupts_3_IRQn  
tcpwm_0_interrupts_4_IRQn  
tcpwm_0_interrupts_5_IRQn  
tcpwm_0_interrupts_6_IRQn  
tcpwm_0_interrupts_7_IRQn  
tcpwm_0_interrupts_8_IRQn  
tcpwm_0_interrupts_9_IRQn  
tcpwm_0_interrupts_10_IRQn  
tcpwm_0_interrupts_11_IRQn  
tcpwm_0_interrupts_12_IRQn  
tcpwm_0_interrupts_13_IRQn  
tcpwm_0_interrupts_14_IRQn  
tcpwm_0_interrupts_15_IRQn  
tcpwm_0_interrupts_16_IRQn  
tcpwm_0_interrupts_17_IRQn  
tcpwm_0_interrupts_18_IRQn  
tcpwm_0_interrupts_19_IRQn  
tcpwm_0_interrupts_20_IRQn  
tcpwm_0_interrupts_21_IRQn  
tcpwm_0_interrupts_22_IRQn  
tcpwm_0_interrupts_23_IRQn  
tcpwm_0_interrupts_24_IRQn  
tcpwm_0_interrupts_25_IRQn  
tcpwm_0_interrupts_26_IRQn  
tcpwm_0_interrupts_27_IRQn  
tcpwm_0_interrupts_28_IRQn  
tcpwm_0_interrupts_29_IRQn  
tcpwm_0_interrupts_30_IRQn  
tcpwm_0_interrupts_31_IRQn  
CPUSS P-DMA#1, Channel#72 Interrupt  
CPUSS P-DMA#1, Channel#73 Interrupt  
CPUSS P-DMA#1, Channel#74 Interrupt  
CPUSS P-DMA#1, Channel#75 Interrupt  
CPUSS P-DMA#1, Channel#76 Interrupt  
CPUSS P-DMA#1, Channel#77 Interrupt  
CPUSS P-DMA#1, Channel#78 Interrupt  
CPUSS P-DMA#1, Channel#79 Interrupt  
CPUSS P-DMA#1, Channel#80 Interrupt  
CPUSS P-DMA#1, Channel#81 Interrupt  
CPUSS P-DMA#1, Channel#82 Interrupt  
CPUSS P-DMA#1, Channel#83 Interrupt  
TCPWM0 Group#0, Counter#0 Interrupt  
TCPWM0 Group#0, Counter#1 Interrupt  
TCPWM0 Group#0, Counter#2 Interrupt  
TCPWM0 Group#0, Counter#3 Interrupt  
TCPWM0 Group#0, Counter#4 Interrupt  
TCPWM0 Group#0, Counter#5 Interrupt  
TCPWM0 Group#0, Counter#6 Interrupt  
TCPWM0 Group#0, Counter#7 Interrupt  
TCPWM0 Group#0, Counter#8 Interrupt  
TCPWM0 Group#0, Counter#9 Interrupt  
TCPWM0 Group#0, Counter#10 Interrupt  
TCPWM0 Group#0, Counter#11 Interrupt  
TCPWM0 Group#0, Counter#12 Interrupt  
TCPWM0 Group#0, Counter#13 Interrupt  
TCPWM0 Group#0, Counter#14 Interrupt  
TCPWM0 Group#0, Counter#15 Interrupt  
TCPWM0 Group#0, Counter#16 Interrupt  
TCPWM0 Group#0, Counter#17 Interrupt  
TCPWM0 Group#0, Counter#18 Interrupt  
TCPWM0 Group#0, Counter#19 Interrupt  
TCPWM0 Group#0, Counter#20 Interrupt  
TCPWM0 Group#0, Counter#21 Interrupt  
TCPWM0 Group#0, Counter#22 Interrupt  
TCPWM0 Group#0, Counter#23 Interrupt  
TCPWM0 Group#0, Counter#24 Interrupt  
TCPWM0 Group#0, Counter#25 Interrupt  
TCPWM0 Group#0, Counter#26 Interrupt  
TCPWM0 Group#0, Counter#27 Interrupt  
TCPWM0 Group#0, Counter#28 Interrupt  
TCPWM0 Group#0, Counter#29 Interrupt  
TCPWM0 Group#0, Counter#30 Interrupt  
TCPWM0 Group#0, Counter#31 Interrupt  
Datasheet  
54  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Interrupts and wake-up assignments  
Table 15-1  
Peripheral interrupt assignments and wake-up sources (continued)  
Interrupt  
584  
585  
616  
617  
618  
619  
620  
621  
622  
623  
624  
625  
626  
627  
680  
681  
682  
683  
684  
685  
686  
687  
688  
689  
690  
691  
692  
693  
694  
695  
752  
753  
754  
755  
760  
761  
762  
763  
764  
768  
769  
780  
781  
782  
Source  
Power Mode  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Description  
TCPWM0 Group#0, Counter#32 Interrupt  
TCPWM0 Group#0, Counter#33 Interrupt  
TCPWM0 Group#1, Counter#0 Interrupt  
TCPWM0 Group#1, Counter#1 Interrupt  
TCPWM0 Group#1, Counter#2 Interrupt  
TCPWM0 Group#1, Counter#3 Interrupt  
TCPWM0 Group#1, Counter#4 Interrupt  
TCPWM0 Group#1, Counter#5 Interrupt  
TCPWM0 Group#1, Counter#6 Interrupt  
TCPWM0 Group#1, Counter#7 Interrupt  
TCPWM0 Group#1, Counter#8 Interrupt  
TCPWM0 Group#1, Counter#9 Interrupt  
TCPWM0 Group#1, Counter#10 Interrupt  
TCPWM0 Group#1, Counter#11 Interrupt  
TCPWM0 Group#2, Counter#0 Interrupt  
TCPWM0 Group#2, Counter#1 Interrupt  
TCPWM0 Group#2, Counter#2 Interrupt  
TCPWM0 Group#2, Counter#3 Interrupt  
TCPWM0 Group#2, Counter#4 Interrupt  
TCPWM0 Group#2, Counter#5 Interrupt  
TCPWM0 Group#2, Counter#6 Interrupt  
TCPWM0 Group#2, Counter#7 Interrupt  
TCPWM0 Group#2, Counter#8 Interrupt  
TCPWM0 Group#2, Counter#9 Interrupt  
TCPWM0 Group#2, Counter#10 Interrupt  
TCPWM0 Group#2, Counter#11 Interrupt  
TCPWM0 Group#2, Counter#12 Interrupt  
TCPWM0 Group#2, Counter#13 Interrupt  
TCPWM0 Group#2, Counter#14 Interrupt  
TCPWM0 Group#2, Counter#15 Interrupt  
TDM0 TX #0 Interrupt  
tcpwm_0_interrupts_32_IRQn  
tcpwm_0_interrupts_33_IRQn  
tcpwm_0_interrupts_256_IRQn  
tcpwm_0_interrupts_257_IRQn  
tcpwm_0_interrupts_258_IRQn  
tcpwm_0_interrupts_259_IRQn  
tcpwm_0_interrupts_260_IRQn  
tcpwm_0_interrupts_261_IRQn  
tcpwm_0_interrupts_262_IRQn  
tcpwm_0_interrupts_263_IRQn  
tcpwm_0_interrupts_264_IRQn  
tcpwm_0_interrupts_265_IRQn  
tcpwm_0_interrupts_266_IRQn  
tcpwm_0_interrupts_267_IRQn  
tcpwm_0_interrupts_512_IRQn  
tcpwm_0_interrupts_513_IRQn  
tcpwm_0_interrupts_514_IRQn  
tcpwm_0_interrupts_515_IRQn  
tcpwm_0_interrupts_516_IRQn  
tcpwm_0_interrupts_517_IRQn  
tcpwm_0_interrupts_518_IRQn  
tcpwm_0_interrupts_519_IRQn  
tcpwm_0_interrupts_520_IRQn  
tcpwm_0_interrupts_521_IRQn  
tcpwm_0_interrupts_522_IRQn  
tcpwm_0_interrupts_523_IRQn  
tcpwm_0_interrupts_524_IRQn  
tcpwm_0_interrupts_525_IRQn  
tcpwm_0_interrupts_526_IRQn  
tcpwm_0_interrupts_527_IRQn  
tdm_0_interrupts_tx_0_IRQn  
tdm_0_interrupts_rx_0_IRQn  
tdm_0_interrupts_tx_1_IRQn  
tdm_0_interrupts_rx_1_IRQn  
sg_0_interrupts_0_IRQn  
TDM0 RX #0 Interrupt  
TDM0 TX #1 Interrupt  
TDM0 RX #1 Interrupt  
SG0 #0 Interrupt  
SG0 #1 Interrupt  
SG0 #2 Interrupt  
SG0 #3 Interrupt  
SG0 #4 Interrupt  
PCM-PWM0 #0 Interrupt  
PCM-PWM0 #1 Interrupt  
MIXER0 Destination interrupt  
MIXER0 Source #0 Interrupt  
sg_0_interrupts_1_IRQn  
sg_0_interrupts_2_IRQn  
sg_0_interrupts_3_IRQn  
sg_0_interrupts_4_IRQn  
pwm_0_interrupts_0_IRQn  
pwm_0_interrupts_1_IRQn  
mixer_0_interrupt_dst_IRQn  
mixer_0_interrupts_src_0_IRQn  
mixer_0_interrupts_src_1_IRQn  
MIXER0 Source #1 Interrupt  
Datasheet  
55  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Interrupts and wake-up assignments  
Table 15-1  
Peripheral interrupt assignments and wake-up sources (continued)  
Interrupt  
783  
Source  
Power Mode  
Active  
Description  
MIXER0 Source #2 Interrupt  
MIXER0 Source #3 Interrupt  
MIXER0 Source #4 Interrupt  
mixer_0_interrupts_src_2_IRQn  
mixer_0_interrupts_src_3_IRQn  
mixer_0_interrupts_src_4_IRQn  
784  
785  
Active  
Active  
Datasheet  
56  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Core interrupt types  
16  
Core interrupt types  
Table 16-1  
Core interrupt types  
Interrupt  
Source  
CPUIntIdx0_IRQn[30]  
CPUIntIdx1_IRQn[30]  
CPUIntIdx2_IRQn  
CPUIntIdx3_IRQn  
CPUIntIdx4_IRQn  
CPUIntIdx5_IRQn  
CPUIntIdx6_IRQn  
CPUIntIdx7_IRQn  
Internal0_IRQn  
Internal1_IRQn  
Internal2_IRQn  
Internal3_IRQn  
Internal4_IRQn  
Internal5_IRQn  
Internal6_IRQn  
Internal7_IRQn  
Power Mode  
DeepSleep  
DeepSleep  
DeepSleep  
DeepSleep  
DeepSleep  
DeepSleep  
DeepSleep  
DeepSleep  
Active  
Description  
CPU User Interrupt #0  
CPU User Interrupt #1  
CPU User Interrupt #2  
CPU User Interrupt #3  
CPU User Interrupt #4  
CPU User Interrupt #5  
CPU User Interrupt #6  
CPU User Interrupt #7  
Internal Software Interrupt #0  
Internal Software Interrupt #1  
Internal Software Interrupt #2  
Internal Software Interrupt #3  
Internal Software Interrupt #4  
Internal Software Interrupt #5  
Internal Software Interrupt #6  
Internal Software Interrupt #7  
0
1
2
3
4
5
6
7
8
9
Active  
Active  
Active  
Active  
Active  
Active  
Active  
10  
11  
12  
13  
14  
15  
Note  
30.User interrupt cannot be used for CM0+ application, as it is used internally by system calls. Note, this does not impact CM4 application.  
Datasheet  
57  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Trigger multiplexer  
17  
Trigger multiplexer  
Green number in mux means Mux TriggerGroupNr.  
[0:31]  
[0:15]  
[0:3]  
[0:1]  
[0:1]  
[1:32]  
[33:48]  
[49:52]  
[57:58]  
[59:60]  
[61:84]  
[85:88]  
P-DMA0: PDMA0_TR_OUT[0:75]  
P-DMA1: PDMA1_TR_OUT[0:83]  
M-DMA: MDMA_TR_OUT[0:3]  
CAN[0]: CAN0_TT_TR_OUT[0:1]  
CAN[1]: CAN1_TT_TR_OUT[0:1]  
HSIOM: HSIOM_IO_INPUT[0:31]  
CPUSS: FAULT_TR_OUT[0:3]  
[0:15]  
0
P-DMA0: PDMA0_TR_IN[0:15]  
[0:23]  
[0:3]  
[0:33]  
[0:11]  
[0:15]  
[0:1]  
[0:1]  
[0:3]  
[1:34]  
[39:50]  
[51:66]  
[83:84]  
[85:86]  
[87:90]  
TCPWM[0]16: TCPWM0_16_TR_OUT0[0:33]  
TCPWM[0]16M: TCPWM0_16M_TR_OUT0[0:11]  
TCPWM[0]32: TCPWM0_32_TR_OUT0[0:15]  
PASS[0]: PASS_GEN_TR_OUT[0:1]  
[0:15]  
1
P-DMA0: PDMA0_TR_IN[16:31]  
CPUSS: CTI_TR_OUT[0:1]  
EVTGEN: EVTGEN_TR_OUT[0:15]  
[0:15]  
[0:31]  
[24:31]  
[1:16]  
[17:48]  
[49:56]  
[0:15]  
[0:3]  
P-DMA1: PDMA1_TR_IN[0:15]  
M-DMA: MDMA_TR_IN[0:3]  
2
3
[0:7]  
[0:7]  
[1:8]  
[9:16]  
[0:31]  
[0:15]  
[0:3]  
[0:33]  
[0:11]  
[0:15]  
1
[1:32]  
[33:48]  
[49:52]  
[57:90]  
[95:106]  
[107:122]  
[139]  
SMIF[0]: SMIF0_TX_TR_OUT  
SMIF[0]: SMIF0_RX_TR_OUT  
TDM[0]: TDM0_TX_TR_OUT[0:1]  
TDM[0]: TDM0_RX_TR_OUT[0:1]  
SG[0]: SG0_TR_COMPLETE[0:4]  
[0:19]  
4
TCPWM[0]: TCPWM0_ALL_CNT_TR_IN[0:1  
1
[140]  
[0:1]  
[0:1]  
[0:4]  
[0:1]  
[0:4]  
1
[151:152]  
[155:156]  
[159:163]  
[164:165]  
[166:170]  
[171]  
PWM[0]: PWM0_TX_TR_OUT[0:1]  
MIXER[0]: MIXER0_TR_SRC_REQ_OUT[0:4]  
MIXER[0]: MIXER0_TR_DST_REQ_OUT  
[0:1]  
[0:1]  
[0:1]  
[0:1]  
[0:1]  
[0:1]  
[0:1]  
[0:1]  
[4:11]  
[1:2]  
[3:4]  
[5:6]  
CAN[0]: CAN0_DBG_TR_OUT[0:1]  
CAN[0]: CAN0_FIFO0_TR_OUT[0:1]  
CAN[0]: CAN0_FIFO1_TR_OUT[0:1]  
CAN[1]: CAN1_DBG_TR_OUT[0:1]  
CAN[1]: CAN1_FIFO0_TR_OUT[0:1]  
CAN[1]: CAN1_FIFO1_TR_OUT[0:1]  
[7:8]  
[9:10]  
[11:12]  
[13:14]  
[15:16]  
[17:24]  
[0:11]  
5
TCPWM[0]: TCPWM0_ALL_CNT_TR_IN[20  
[0:15]  
[0:11]  
[0:11]  
[0:11]  
[0:1]  
[0:31]  
[0:1]  
[0:3]  
[1:16]  
[17, 20, … , 50]  
[18, 21, … , 51]  
[19, 22, … , 52]  
[53:54]  
[55:86]  
[103:104]  
[105:108]  
[109:110]  
[111:112]  
SCB[0:11]: SCB_TX_TR_OUT[0:11]  
SCB[0:11]: SCB_RX_TR_OUT[0:11]  
SCB[0:11]: SCB_I2C_SCL_TR_OUT[0:11]  
[0:27]  
6
TCPWM[0]: TCPWM0_ALL_CNT_TR_IN[32  
[0:1]  
[0:1]  
CXPI[0]: CXPI_TX_TR_OUT[0:1]  
CXPI[0]: CXPI_RX_TR_OUT[0:1]  
[0:31]  
[0:33]  
[0:11]  
[0:15]  
[0:7]  
[1:32]  
[33:66]  
[71:82]  
[83:98]  
[115:122]  
[123]  
[0:3]  
7
8
PASS: PASS_GEN_TR_IN[0:3]  
[12]  
[0:1]  
[0:1]  
[1:2]  
[3:4]  
[0:1]  
[2:3]  
CAN[0]: CAN0_TT_TR_IN[0:1]  
CAN[1]: CAN1_TT_TR_IN[0:1]  
[0]  
[1]  
[2:3]  
[4]  
[5]  
[6]  
[8]  
[9]  
HSIOM: HSIOM_IO_OUTPUT[0]  
HSIOM: HSIOM_IO_OUTPUT[1]  
CPUSS: CTI_TR_IN[0:1]  
PERI: PERI_DEBUG_FREEZE_TR_IN  
PASS: PASS_DEBUG_FREEZE_TR_IN  
SRSS: SRSS_WDT_DEBUG_FREEZE_TR_  
SRSS: SRSS_MCWDT_DEBUG_FREEZE_  
SRSS: SRSS_MCWDT_DEBUG_FREEZE_  
TCPWM[0]: TCPWM0_DEBUG_FREEZE_TR  
TDM[0]: TDM0_DEBUG_FREEZE_TR_IN  
SG[0]: SG0_DEBUG_FREEZE_TR_IN  
PWM[0]: PWM0_DEBUG_FREEZE_TR_IN  
MIXER[0]: MIXER0_DEBUG_FREEZE_TR_  
[1:5]  
[6:10]  
[11:15]  
TR_GROUP10_OUTPUT[0:4]  
TR_GROUP11_OUTPUT[0:4]  
TR_GROUP12_OUTPUT[0:4]  
9
[10]  
[12]  
[13]  
[14]  
[15]  
[0:76]  
[0:11]  
[0:11]  
[0:11]  
[0:1]  
[0:1]  
[0:1]  
[0:1]  
[0:1]  
[0:1]  
[0:1]  
[0:1]  
[0:1]  
[1:76]  
[77:88]  
[89:100]  
[101:112]  
[113:114]  
[115:116]  
[117:118]  
[119:120]  
[121:122]  
[123:124]  
[125:126]  
[127:128]  
[129:130]  
[131:134]  
[135:150]  
[0:4]  
10  
TR_GROUP9_INPUT[1:5]  
[0:3]  
[0:15]  
[0:15]  
[0:11]  
[0:33]  
1
[1:16]  
[33:44]  
[45:78]  
[83]  
[84]  
1
[0:1]  
[0:1]  
[0:4]  
[0:1]  
[0:4]  
1
[95:96]  
[99:100]  
[103:107]  
[108:109]  
[111:115]  
[116]  
[0:4]  
11  
TR_GROUP9_INPUT[6:10]  
[0:31]  
[0:1]  
[0:1]  
[123:154]  
[171:172]  
[173:174]  
[0:83]  
[0:3]  
[0:84]  
[85:88]  
[0:15]  
[0:11]  
[0:33]  
[0:1]  
[93:108]  
[125:136]  
[137:170]  
[175:176]  
TCPWM[0]32: TCPWM0_32_TR_OUT1[0:15]  
TCPWM[0]16M: TCPWM0_16M_TR_OUT1[0:11]  
TCPWM[0]16: TCPWM0_16_TR_OUT1[0:33]  
[0:4]  
12  
TR_GROUP9_INPUT[11:15]  
Figure 17-1  
Trigger multiplexer[31]  
Note  
31.The diagram shows only the TRIG_LABEL, final trigger formation based on the formula TRIG_{PREFIX(IN/OUT)}_{MUX_x}_{TRIG_LABE  
/ TRIG_{PREFIX(IN_1TO1/OUT_1TO1)}_{x}_{TRIG_LABEL} (see Table 18-1, Table 19-1, and Table 20-1.)  
Datasheet  
58  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Trigger multiplexer  
One-To-One TriggerGroupNr = 0  
P-DMA0: PDMA0_TR_IN[32, 35]  
[0:1]  
[0:1]  
[0:1]  
[0:31]  
1
[0, 3]  
[1, 4]  
[2, 5]  
[6:37]  
[38]  
CAN[0]: CAN0_DBG_TR_OUT[0:1]  
CAN[0]: CAN0_FIFO0_TR_OUT[0:1]  
P-DMA0: PDMA0_TR_IN[33, 36]  
P-DMA0: PDMA0_TR_IN[34, 37]  
P-DMA0: PDMA0_TR_IN[38:69]  
P-DMA0: PDMA0_TR_IN[70]  
P-DMA0: PDMA0_TR_IN[71]  
P-DMA0: PDMA0_TR_IN[72:73]  
P-DMA0: PDMA0_TR_IN[74:75]  
CAN[0]: CAN0_FIFO1_TR_OUT[0:1]  
PASS[0]: PASS0_CH_DONE_TR_OUT[0:31]  
SMIF[0]: SMIF0_TX_TR_OUT  
SMIF[0]: SMIF0_RX_TR_OUT  
1
[39]  
[0:1]  
[0:1]  
[40:41]  
[42:43]  
CXPI[0]: CXPI0_TX_TR_OUT[0:1]  
CXPI[0]: CXPI0_RX_TR_OUT[0:1]  
One-To-One TriggerGroupNr = 1  
[0:11]  
[0:11]  
[0:1]  
[0:1]  
[0:1]  
[0:4]  
1
[0, 2, … , 22]  
[1, 3, … , 23]  
[24, 27]  
[25, 28]  
[26, 29]  
[32:36]  
P-DMA1: PDMA1_TR_IN[16, 18, … , 38]  
P-DMA1: PDMA1_TR_IN[17, 19, … , 39]  
P-DMA1: PDMA1_TR_IN[40, 43]  
P-DMA1: PDMA1_TR_IN[41, 44]  
P-DMA1: PDMA1_TR_IN[42, 45]  
P-DMA1: PDMA1_TR_IN[48:52]  
P-DMA1: PDMA1_TR_IN[53]  
SCB[0:11]: SCB[0:11]_TX_TR_OUT  
SCB[0:11]: SCB[0:11]_RX_TR_OUT  
CAN[1]: CAN1_DBG_TR_OUT[0:1]  
CAN[1]: CAN1_FIFO0_TR_OUT[0:1]  
CAN[1]: CAN1_FIFO1_TR_OUT[0:1]  
MIXER[0]: MIXER0_TR_SRC_REQ_OUT[0:4]  
[37]  
MIXER[0]: MIXER0_TR_DST_REQ_OUT  
TDM[0]: TDM0_TX_TR_OUT[0:1]  
[0:1]  
[0:1]  
[0:4]  
[0:1]  
[52:53]  
P-DMA1: PDMA1_TR_IN[68:69]  
P-DMA1: PDMA1_TR_IN[72:73]  
P-DMA1: PDMA1_TR_IN[76:80]  
P-DMA1: PDMA1_TR_IN[81:82]  
[56:57]  
TDM[0]: TDM0_RX_TR_OUT[0:1]  
SG[0]: SG0_TR_COMPLETE[0:4]  
PWM[0]: PWM0_TX_TR_OUT[0:1]  
[60:64]  
[65:66]  
One-To-One TriggerGroupNr = 2  
[0:19]  
[0:19]  
TCPWM[0]16: TCPWM0_16_ONE-CNT_TR_IN[0:19]  
TCPWM[0]16M: TCPWM0_16M_ONE_CNT_TR_IN[0:11]  
PASS[0]: PASS0_CH_RANGEVIO_TR_OUT[0:31]  
[20:31]  
[20:31]  
One-To-One TriggerGroupNr = 3  
[0:19]  
[0:11]  
[0:19]  
TCPWM[0]16: TCPWM0_16_TR_OUT1[0:19]  
TCPWM[0]16M: TCPWM0_16M_TR_OUT1[0:11]  
PASS[0]: PASS0_CH_TR_IN[0:19]  
PASS[0]: PASS0_CH_TR_IN[20:31]  
[20:31]  
One-To-One TriggerGroupNr = 4  
CAN[1]: CAN1_DBG_TR_ACK[0:1]  
[40, 43]  
[32, 35]  
[24:25]  
[26:27]  
[0:1]  
[0:1]  
[0:1]  
[0:1]  
P-DMA1: PDMA1_TR_OUT[40, 43]  
P-DMA0: PDMA0_TR_OUT[32, 35]  
One-To-One TriggerGroupNr = 5  
CAN[0]: CAN0_DBG_TR_ACK[0:1]  
One-To-One TriggerGroupNr = 6  
LIN[0]: LIN0_CMD_TR_IN[0:1]  
TCPWM[0]16: TCPWM0_16_TR_OUT1[24:25]  
One-To-One TriggerGroupNr = 7  
CXPI[0]: CXPI0_CMD_TR_IN[0:1]  
TCPWM[0]16: TCPWM0_16_TR_OUT1[26:27]  
Figure 17-2  
Triggers one-to-one[31]  
Datasheet  
59  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Triggers group inputs  
18  
Triggers group inputs  
Table 18-1  
Trigger inputs  
Input  
Trigger  
Description  
MUX Group 0: P-DMA0_0_15 trigger multiplexer  
1:32  
PDMA0_TR_OUT[0:31]  
Allow P-DMA#0 to chain to itself. Channels 0 - 32 are general purpose channels available  
for chaining[32]  
33:48  
49:52  
57:58  
59:60  
61:84  
85:88  
PDMA1_TR_OUT[0:15]  
MDMA_TR_OUT[0:3]  
CAN0_TT_TR_OUT[0:1]  
CAN1_TT_TR_OUT[0:1]  
HSIOM_IO_INPUT[0:23]  
FAULT_TR_OUT[0:3]  
Cross connections from P-DMA#1 to P-DMA#0, Channels 0-15 are used  
Cross connections from M-DMA#0 to P-DMA#0  
CAN#0 TT Sync Outputs  
CAN#1 TT Sync Outputs  
I/O Inputs  
Fault events  
MUX Group 1: P-DMA0_16_31 trigger multiplexer  
1:34  
TCPWM0_16_TR_OUT0[0:33]  
TCPWM0_16M_TR_OUT0[0:11]  
TCPWM0_32_TR_OUT0[0:15]  
PASS_GEN_TR_OUT[0:1]  
CTI_TR_OUT[0:1]  
16-bit TCPWM#0 counters  
16-bit Motor enhanced TCPWM#0 counters  
32-bit TCPWM#0 counters  
PASS#0 SAR events  
39:50  
51:66  
83:84  
85:86  
87:90  
Trace events  
EVTGEN_TR_OUT[0:3]  
Event generator triggers  
MUX Group 2: P-DMA1_0_15 trigger multiplexer  
1:16  
17:48  
49:56  
PDMA1_TR_OUT[0:15]  
PDMA0_TR_OUT[0:31]  
HSIOM_IO_INPUT[24:31]  
Allow P-DMA#1 to chain to itself. Channels 0–15 are dedicated for chaining  
Cross connections from P-DMA#0 to P-DMA#1, channels 0-31 are used.  
I/O Inputs  
MUX Group 3: M-DMA0 trigger multiplexer  
1:8  
TCPWM0_16_TR_OUT0[0:7]  
TCPWM0_32_TR_OUT0[0:7]  
16-bit TCPWM#0 counters  
32-bit TCPWM#0 counters  
9:16  
MUX Group 4: TCPWM0 Trigger multiplexer  
1:32  
33:48  
PDMA0_TR_OUT[0:31]  
General purpose P-DMA#0 triggers  
General purpose P-DMA#1 triggers  
AHB M-DMA#0 triggers  
16-bit TCPWM#0 counters  
16-bit Motor enhanced TCPWM#0 counters  
32-bit TCPWM#0 counters  
SMIF#0 TX trigger  
PDMA1_TR_OUT[0:15]  
49:52  
MDMA_TR_OUT[0:3]  
57:90  
TCPWM0_16_TR_OUT0[0:33]  
TCPWM0_16M_TR_OUT0[0:11]  
TCPWM0_32_TR_OUT0[0:15]  
SMIF0_TX_TR_OUT  
95:106  
107:122  
139  
140  
SMIF0_RX_TR_OUT  
SMIF#0 RX trigger  
151:152  
155:156  
159:163  
164:165  
166:170  
171  
TDM0_TX_TR_OUT[0:1]  
TDM0_RX_TR_OUT[0:1]  
SG0_TX_TR_OUT[0:4]  
TDM#0 TX trigger  
TDM#0 RX trigger  
SG#0 TX trigger  
PWM0_TX_TR_OUT[0:1]  
MIXER0_TR_SRC_REQ_OUT[0:4]  
MIXER0_TR_DST_REQ_OUT  
PWM#0 TX trigger  
MIXER#0 SRC trigger  
MIXER#0 DST trigger  
MUX Group 5: TCPWM0_20_31 Trigger multiplexer  
1:2  
3:4  
CAN0_DBG_TR_OUT[0:1]  
CAN0_FIFO0_TR_OUT[0:1]  
CAN#0 DMA events  
CAN#0 FIFO0 events  
Note  
32.“x:y” depicts a range starting from ‘x’ through ‘y.  
Datasheet  
60  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Triggers group inputs  
Table 18-1  
Trigger inputs (continued)  
Input  
5:6  
Trigger  
CAN0_FIFO1_TR_OUT[0:1]  
CAN1_DBG_TR_OUT[0:1]  
CAN1_FIFO0_TR_OUT[0:1]  
CAN1_FIFO1_TR_OUT[0:1]  
CAN0_TT_TR_OUT[0:1]  
CAN1_TT_TR_OUT[0:1]  
EVTGEN_TR_OUT[4:11]  
Description  
CAN#0 FIFO1 events  
CAN#1 DMA events  
7:8  
9:10  
CAN#1 FIFO0 events  
CAN#1 FIFO1 events  
CAN#0 TT Sync Outputs  
CAN#1 TT Sync Outputs  
Event generator triggers  
11:12  
13:14  
15:16  
17:24  
MUX Group 6: TCPWM0_32_59 Trigger Multiplexer  
1:16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
TCPWM0_16_TR_OUT1[0:15]  
SCB_TX_TR_OUT[0]  
16-bit TCPWM#0 counters  
SCB#0 TX trigger  
SCB#0 RX trigger  
SCB#0 I2C trigger  
SCB#1 TX trigger  
SCB#1 RX trigger  
SCB#1 I2C trigger  
SCB#2 TX trigger  
SCB#2 RX trigger  
SCB#2 I2C trigger  
SCB#3 TX trigger  
SCB#3 RX trigger  
SCB#3 I2C trigger  
SCB#4 TX trigger  
SCB#4 RX trigger  
SCB#4 I2C trigger  
SCB#5 TX trigger  
SCB#5 RX trigger  
SCB#5 I2C trigger  
SCB#6 TX trigger  
SCB#6 RX trigger  
SCB#6 I2C trigger  
SCB#7 TX trigger  
SCB#7 RX trigger  
SCB#7 I2C trigger  
SCB#8 TX trigger  
SCB#8 RX trigger  
SCB#8 I2C trigger  
SCB#9 TX trigger  
SCB#9 RX trigger  
SCB#9 I2C trigger  
SCB#10 TX trigger  
SCB#10 RX trigger  
SCB#10 I2C trigger  
SCB#11 TX trigger  
SCB#11 RX trigger  
SCB#11 I2C trigger  
SCB_RX_TR_OUT[0]  
SCB_I2C_SCL_TR_OUT[0]  
SCB_TX_TR_OUT[1]  
SCB_RX_TR_OUT[1]  
SCB_I2C_SCL_TR_OUT[1]  
SCB_TX_TR_OUT[2]  
SCB_RX_TR_OUT[2]  
SCB_I2C_SCL_TR_OUT[2]  
SCB_TX_TR_OUT[3]  
SCB_RX_TR_OUT[3]  
SCB_I2C_SCL_TR_OUT[3]  
SCB_TX_TR_OUT[4]  
SCB_RX_TR_OUT[4]  
SCB_I2C_SCL_TR_OUT[4]  
SCB_TX_TR_OUT[5]  
SCB_RX_TR_OUT[5]  
SCB_I2C_SCL_TR_OUT[5]  
SCB_TX_TR_OUT[6]  
SCB_RX_TR_OUT[6]  
SCB_I2C_SCL_TR_OUT[6]  
SCB_TX_TR_OUT[7]  
SCB_RX_TR_OUT[7]  
SCB_I2C_SCL_TR_OUT[7]  
SCB_TX_TR_OUT[8]  
SCB_RX_TR_OUT[8]  
SCB_I2C_SCL_TR_OUT[8]  
SCB_TX_TR_OUT[9]  
CB_RX_TR_OUT[9]  
SCB_I2C_SCL_TR_OUT[9]  
SCB_TX_TR_OUT[10]  
SCB_RX_TR_OUT[10]  
SCB_I2C_SCL_TR_OUT[10]  
SCB_TX_TR_OUT[11]  
SCB_RX_TR_OUT[11]  
SCB_I2C_SCL_TR_OUT[11]  
Datasheet  
61  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Triggers group inputs  
Table 18-1  
Trigger inputs (continued)  
Input  
53:54  
Trigger  
PASS_GEN_TR_OUT[0:1]  
HSIOM_IO_INPUT[0:31]  
CTI_TR_IN[0:1]  
Description  
PASS#0 SAR events  
I/O inputs  
55:86  
103:104  
105:108  
109:110  
111:112  
Trace events  
FAULT_TR_OUT[0:3]  
CXPI_TX_TR_OUT[0:1]  
CXPI_RX_TR_OUT[0:1]  
Fault events  
CXPI#0 transmit events  
CXPI#0 receive events  
MUX Group 7: PASS0 SAR trigger multiplexer  
1:32  
33:66  
71:82  
83:98  
115:122  
123  
PDMA0_TR_OUT[0:31]  
General purpose P-DMA#0 triggers  
16-bit TCPWM#0 counters  
TCPWM0_16_TR_OUT0[0:33]  
TCPWM0_16M_TR_OUT0[0:11]  
TCPWM0_32_TR_OUT0[0:15]  
HSIOM_IO_INPUT[0:7]  
16-bit Motor enhanced TCPWM#0 counters  
32-bit TCPWM#0 counters  
I/O Inputs  
EVTGEN_TR_OUT[12]  
Event generator triggers  
MUX Group 8: CAN TT Sync  
1:2  
3:4  
CAN0_TT_TR_OUT[0:1]  
CAN1_TT_TR_OUT[0:1]  
CAN#0 TT Sync Outputs  
CAN#1 TT Sync Outputs  
MUX Group 9: Debug MUX  
1:5  
6:10  
11:15  
TR_GROUP10_OUTPUT[0:4]  
Output from debug reduction multiplexer #1  
Output from debug reduction multiplexer #2  
Output from debug reduction multiplexer #3  
TR_GROUP11_OUTPUT[0:4]  
TR_GROUP12_OUTPUT[0:4]  
MUX Group 10: Debug Reduction #1  
1:76  
PDMA0_TR_OUT[0:75]  
General purpose P-DMA#0 triggers  
SCB TX triggers  
SCB RX triggers  
SCB I2C triggers  
CAN#0 DMA  
77:88  
SCB_TX_TR_OUT[0:11]  
SCB_RX_TR_OUT[0:11]  
SCB_I2C_SCL_TR_OUT[0:11]  
CAN0_DBG_TR_OUT[0:1]  
CAN0_FIFO0_TR_OUT[0:1]  
CAN0_FIFO1_TR_OUT[0:1]  
CAN0_TT_TR_OUT[0:1]  
CAN1_DBG_TR_OUT[0:1]  
CAN1_FIFO0_TR_OUT[0:1]  
CAN1_FIFO1_TR_OUT[0:1]  
CAN1_TT_TR_OUT[0:1]  
CTI_TR_OUT[0:1]  
89:100  
101:112  
113:114  
115:116  
117:118  
119:120  
121:122  
123:124  
125:126  
127:128  
129:130  
131:134  
135:150  
CAN#0 FIFO0  
CAN#0 FIFO1  
CAN#0 TT Sync Outputs  
CAN#1 DMA  
CAN#1 FIFO0  
CAN#1 FIFO1  
CAN#1 TT Sync Outputs  
Trace events  
FAULT_TR_OU[0:3]  
Fault events  
EVTGEN_TR_OUT[0:15]  
EVTGEN Triggers  
MUX Group 11: Debug Reduction #2  
1:16  
33:44  
45:78  
83  
TCPWM0_32_TR_OUT0[0:15]  
32-bit TCPWM#0 counters  
16-bit Motor enhanced TCPWM#0 counters  
16-bit TCPWM#0 counters  
SMIF#0 TX trigger  
TCPWM0_16M_TR_OUT0[0:11]  
TCPWM0_16_TR_OUT0[0:33]  
SMIF0_TX_TR_OUT  
84  
SMIF0_RX_TR_OUT  
SMIF#0 RX trigger  
95:96  
99:100  
103:107  
TDM0_TX_TR_OUT[0:1]  
TDM0_RX_TR_OUT[0:1]  
SG0_TX_TR_OUT[0:4]  
TDM#0 TX trigger  
TDM#0 RX trigger  
SG#0 TX trigger  
Datasheet  
62  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Triggers group inputs  
Table 18-1  
Trigger inputs (continued)  
Input  
108:109  
111:115  
116  
Trigger  
PWM0_TX_TR_OUT[0:1]  
MIXER0_TR_SRC_REQ_OUT[0:4]  
MIXER0_TR_DST_REQ_OUT  
HSIOM_IO_INPUT[0:31]  
CXPI_TX_TR_OUT[0:1]  
Description  
PWM#0 TX trigger  
MIXER#0 SRC trigger  
MIXER#0 DST trigger  
I/O inputs  
123:154  
171:172  
173:174  
CXPI#0 TX trigger  
CXPI#0 RX trigger  
CXPI_RX_TR_OUT[0:1]  
MUX Group 12: Debug Reduction #3  
1:84  
PDMA1_TR_OUT[0:83]  
General purpose P-DMA#1 triggers  
M-DMA#0 triggers  
85:88  
MDMA_TR_OUT[0:3]  
93:108  
125:136  
137:170  
175:176  
TCPWM0_32_TR_OUT1[0:15]  
TCPWM0_16M_TR_OUT1[0:11]  
TCPWM0_16_TR_OUT1[0:33]  
PASS_GEN_TR_OUT[0:1]  
32-bit TCPWM#0 counters  
16-bit Motor enhanced TCPWM#0 counters  
16-bit TCPWM#0 counters  
PASS#0 SAR events  
Datasheet  
63  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Triggers group outputs  
19  
Triggers group outputs  
Table 19-1  
Trigger outputs  
Output  
Trigger  
Description  
MUX Group 0: P-DMA0_0_15 trigger multiplexer  
0:15 PDMA0_TR_IN[0:15]  
MUX Group 1: P-DMA0_16_31 trigger multiplexer  
0:15 PDMA0_TR_IN[16:31]  
MUX Group 2: P-DMA1_0_15 trigger multiplexer  
0:15 PDMA1_TR_IN[0:15]  
MUX Group 3: M-DMA0 trigger multiplexer  
0:3 MDMA_TR_IN[0:3]  
MUX Group 4: TCPWM0 Trigger multiplexer  
Triggers to P-DMA#0[0:15]  
Triggers to P-DMA#0[16:31]  
Triggers to P-DMA#1  
Triggers to M-DMA#0  
Triggers to TCPWM#0  
Triggers to TCPWM#0  
Triggers to TCPWM#0  
Triggers to PASS#0 SAR  
0:19  
TCPWM0_ALL_CNT_TR_IN[0:19]  
MUX Group 5: TCPWM0_20_31 Trigger multiplexer  
0:11  
MUX Group 6: TCPWM0_32_59 Trigger multiplexer  
0:27 TCPWM0_ALL_CNT_TR_IN[32:59]  
MUX Group 7: PASS0 SAR trigger multiplexer  
0:3 PASS_GEN_TR_IN[0:3]  
MUX Group 8: CAN TT Sync  
TCPWM0_ALL_CNT_TR_IN[20:31]  
0:1  
2:3  
CAN0_TT_TR_IN[0:1]  
CAN1_TT_TR_IN[0:1]  
CAN#0 TT Sync Inputs  
CAN#1 TT Sync Inputs  
MUX Group 9: Debug MUX  
0
1
HSIOM_IO_OUTPUT[0]  
To HSIOM as an output  
HSIOM_IO_OUTPUT[1]  
To HSIOM as an output  
2:3  
4
CTI_TR_IN[0:1]  
To the Cross Trigger system  
PERI_DEBUG_FREEZE_TR_IN  
PASS_DEBUG_FREEZE_TR_IN  
SRSS_WDT_DEBUG_FREEZE_TR_IN  
SRSS_MCWDT_DEBUG_FREEZE_TR_IN[1]  
SRSS_MCWDT_DEBUG_FREEZE_TR_IN[0]  
TCPWM0_DEBUG_FREEZE_TR_IN  
TDM0_DEBUG_FREEZE_TR_IN  
SG0_DEBUG_FREEZE_TR_IN  
PWM0_DEBUG_FREEZE_TR_IN  
MIXER0_DEBUG_FREEZE_TR_IN  
Signal to Freeze PERI operation  
Signal to Freeze PASS#0 SAR operation  
Signal to Freeze WDT operation  
Signal to Freeze MCWDT#1 operation  
Signal to Freeze MCWDT#0 operation  
Signal to Freeze TCPWM#0 operation  
Signal to Freeze TDM#0 operation  
Signal to Freeze SG0# operation  
Signal to Freeze PWM#0 operation  
Signal to Freeze MIXER#0 operation  
5
6
8
9
10  
12  
13  
14  
15  
MUX Group 10: Debug Reduction #1  
0:4  
TR_GROUP9_INPUT[1:5]  
To main debug multiplexer  
To main debug multiplexer  
To main debug multiplexer  
MUX Group 11: Debug Reduction #2  
0:4  
TR_GROUP9_INPUT[6:10]  
MUX Group 12: Debug Reduction #3  
0:4  
TR_GROUP9_INPUT[11:15]  
Datasheet  
64  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Triggers one-to-one  
20  
Triggers one-to-one  
Table 20-1  
Triggers 1:1  
Input  
Trigger In  
Trigger Out  
Description  
MUX Group 0: CAN0 to P-DMA0 Triggers  
0
1
CAN0_DBG_TR_OUT[0]  
CAN0_FIFO0_TR_OUT[0]  
CAN0_FIFO1_TR_OUT[0]  
CAN0_DBG_TR_OUT[1]  
CAN0_FIFO0_TR_OUT[1]  
CAN0_FIFO1_TR_OUT[1]  
PASS0_CH_DONE_TR_OUT[0:31]  
SMIF0_TX_TR_OUT  
PDMA0_TR_IN[32]  
CAN0, Channel #0 P-DMA0 trigger  
PDMA0_TR_IN[33]  
PDMA0_TR_IN[34]  
PDMA0_TR_IN[35]  
PDMA0_TR_IN[36]  
PDMA0_TR_IN[37]  
PDMA0_TR_IN[38:69]  
PDMA0_TR_IN[70]  
PDMA0_TR_IN[71]  
PDMA0_TR_IN[72:73]  
PDMA0_TR_IN[74:75]  
CAN0, Channel #0 FIFO0 trigger  
CAN0, Channel #0 FIFO1 trigger  
CAN0, Channel #1 P-DMA0 trigger  
CAN0, Channel #1 FIFO0 trigger  
CAN0, Channel #1 FIFO1 trigger  
PASS0 SAR0 to P-DMA0 direct connect  
SMIF TX to P-DMA0 Trigger  
2
3
4
5
6:37  
38  
39  
SMIF0_RX_TR_OUT  
SMIF RX to P-DMA0 Trigger  
40:41  
42:43  
CXPI0_TX_TR_OUT[0:1]  
CXPI0_RX_TR_OUT[0:1]  
CXPI 0 TX P-DMA0 Triggers  
CXPI 0 RX P-DMA0 Triggers  
MUX Group 1: SCBx to P-DMA1 Triggers  
0
SCB0_TX_TR_OUT  
SCB0_RX_TR_OUT  
SCB1_TX_TR_OUT  
SCB1_RX_TR_OUT  
SCB2_TX_TR_OUT  
SCB2_RX_TR_OUT  
SCB3_TX_TR_OUT  
SCB3_RX_TR_OUT  
SCB4_TX_TR_OUT  
SCB4_RX_TR_OUT  
SCB5_TX_TR_OUT  
SCB5_RX_TR_OUT  
SCB6_TX_TR_OUT  
SCB6_RX_TR_OUT  
SCB7_TX_TR_OUT  
SCB7_RX_TR_OUT  
SCB8_TX_TR_OUT  
SCB8_RX_TR_OUT  
SCB9_TX_TR_OUT  
SCB9_RX_TR_OUT  
SCB10_TX_TR_OUT  
SCB10_RX_TR_OUT  
SCB11_TX_TR_OUT  
SCB11_RX_TR_OUT  
CAN1_DBG_TR_OUT[0]  
CAN1_FIFO0_TR_OUT[0]  
CAN1_FIFO1_TR_OUT[0]  
CAN1_DBG_TR_OUT[1]  
CAN1_FIFO0_TR_OUT[1]  
CAN1_FIFO1_TR_OUT[1]  
PDMA1_TR_IN[16]  
PDMA1_TR_IN[17]  
PDMA1_TR_IN[18]  
PDMA1_TR_IN[19]  
PDMA1_TR_IN[20]  
PDMA1_TR_IN[21]  
PDMA1_TR_IN[22]  
PDMA1_TR_IN[23]  
PDMA1_TR_IN[24]  
PDMA1_TR_IN[25]  
PDMA1_TR_IN[26]  
PDMA1_TR_IN[27]  
PDMA1_TR_IN[28]  
PDMA1_TR_IN[29]  
PDMA1_TR_IN[30]  
PDMA1_TR_IN[31]  
PDMA1_TR_IN[32]  
PDMA1_TR_IN[33]  
PDMA1_TR_IN[34]  
PDMA1_TR_IN[35]  
PDMA1_TR_IN[36]  
PDMA1_TR_IN[37]  
PDMA1_TR_IN[38]  
PDMA1_TR_IN[39]  
PDMA1_TR_IN[40]  
PDMA1_TR_IN[41]  
PDMA1_TR_IN[42]  
PDMA1_TR_IN[43]  
PDMA1_TR_IN[44]  
PDMA1_TR_IN[45]  
SCB0 to P-DMA1 Trigger  
SCB0 to P-DMA1 Trigger  
SCB1 to P-DMA1 Trigger  
SCB1 to P-DMA1 Trigger  
SCB2 to P-DMA1 Trigger  
SCB2 to P-DMA1 Trigger  
SCB3 to P-DMA1 Trigger  
SCB3 to P-DMA1 Trigger  
SCB4 to P-DMA1 Trigger  
SCB4 to P-DMA1 Trigger  
SCB5 to P-DMA1 Trigger  
SCB5 to P-DMA1 Trigger  
SCB6 to P-DMA1 Trigger  
SCB6 to P-DMA1 Trigger  
SCB7 to P-DMA1 Trigger  
SCB7 to P-DMA1 Trigger  
SCB8 to P-DMA1 Trigger  
SCB8 to P-DMA1 Trigger  
SCB9 to P-DMA1 Trigger  
SCB9 to P-DMA1 Trigger  
SCB10 to P-DMA1 Trigger  
SCB10 to P-DMA1 Trigger  
SCB11 to P-DMA1 Trigger  
SCB11 to P-DMA1 Trigger  
CAN1 Channel #0 P-DMA1 trigger  
CAN1 Channel #0 FIFO0 trigger  
CAN1 Channel #0 FIFO1 trigger  
CAN1 Channel #1 P-DMA1 trigger  
CAN1 Channel #1 FIFO0 trigger  
CAN1 Channel #1 FIFO1 trigger  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
Datasheet  
65  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Triggers one-to-one  
Table 20-1  
Triggers 1:1 (continued)  
Input  
32:36  
37  
Trigger In  
MIXER0_TR_SRC_REQ_OUT[0:4]  
MIXER0_TR_DST_REQ_OUT  
TDM0_TX_TR_OUT[0:1]  
TDM0_RX_TR_OUT[0:1]  
SG0_TX_TR_OUT[0:4]  
Trigger Out  
Description  
PDMA1_TR_IN[48:52]  
MIXER0 to P-DMA1 trigger  
MIXER0 to P-DMA1 trigger  
TDM0 TX to P-DMA1 trigger  
TDM0 RX to P-DMA1 trigger  
SG0 TX to P-DMA1 trigger  
PWM0 TX to P-DMA1 trigger  
PDMA1_TR_IN[53]  
52:53  
56:57  
60:64  
65:66  
PDMA1_TR_IN[68:69]  
PDMA1_TR_IN[72:73]  
PDMA1_TR_IN[76:80]  
PDMA1_TR_IN[81:82]  
PWM0_TX_TR_OUT[0:1]  
MUX Group 2: PASS SARx to TCPWM1 direct connect  
[33]  
0
PASS0_CH_RANGEVIO_TR_OUT[0]  
PASS0_CH_RANGEVIO_TR_OUT[1]  
PASS0_CH_RANGEVIO_TR_OUT[2]  
PASS0_CH_RANGEVIO_TR_OUT[3]  
PASS0_CH_RANGEVIO_TR_OUT[4]  
PASS0_CH_RANGEVIO_TR_OUT[5]  
PASS0_CH_RANGEVIO_TR_OUT[6]  
PASS0_CH_RANGEVIO_TR_OUT[7]  
PASS0_CH_RANGEVIO_TR_OUT[8]  
PASS0_CH_RANGEVIO_TR_OUT[9]  
PASS0_CH_RANGEVIO_TR_OUT[10]  
PASS0_CH_RANGEVIO_TR_OUT[11]  
PASS0_CH_RANGEVIO_TR_OUT[12]  
PASS0_CH_RANGEVIO_TR_OUT[13]  
PASS0_CH_RANGEVIO_TR_OUT[14]  
PASS0_CH_RANGEVIO_TR_OUT[15]  
PASS0_CH_RANGEVIO_TR_OUT[16]  
PASS0_CH_RANGEVIO_TR_OUT[17]  
PASS0_CH_RANGEVIO_TR_OUT[18]  
PASS0_CH_RANGEVIO_TR_OUT[19]  
PASS0_CH_RANGEVIO_TR_OUT[20]  
PASS0_CH_RANGEVIO_TR_OUT[21]  
PASS0_CH_RANGEVIO_TR_OUT[22]  
PASS0_CH_RANGEVIO_TR_OUT[23]  
PASS0_CH_RANGEVIO_TR_OUT[24]  
PASS0_CH_RANGEVIO_TR_OUT[25]  
PASS0_CH_RANGEVIO_TR_OUT[26]  
PASS0_CH_RANGEVIO_TR_OUT[27]  
PASS0_CH_RANGEVIO_TR_OUT[28]  
PASS0_CH_RANGEVIO_TR_OUT[29]  
PASS0_CH_RANGEVIO_TR_OUT[30]  
PASS0_CH_RANGEVIO_TR_OUT[31]  
TCPWM0_16_ONE_CNT_TR_IN[0]  
TCPWM0_16_ONE_CNT_TR_IN[1]  
TCPWM0_16_ONE_CNT_TR_IN[2]  
TCPWM0_16_ONE_CNT_TR_IN[3]  
TCPWM0_16_ONE_CNT_TR_IN[4]  
TCPWM0_16_ONE_CNT_TR_IN[5]  
TCPWM0_16_ONE_CNT_TR_IN[6]  
TCPWM0_16_ONE_CNT_TR_IN[7]  
TCPWM0_16_ONE_CNT_TR_IN[8]  
TCPWM0_16_ONE_CNT_TR_IN[9]  
TCPWM0_16_ONE_CNT_TR_IN[10]  
TCPWM0_16_ONE_CNT_TR_IN[11]  
TCPWM0_16_ONE_CNT_TR_IN[12]  
TCPWM0_16_ONE_CNT_TR_IN[13]  
TCPWM0_16_ONE_CNT_TR_IN[14]  
TCPWM0_16_ONE_CNT_TR_IN[15]  
TCPWM0_16_ONE_CNT_TR_IN[16]  
TCPWM0_16_ONE_CNT_TR_IN[17]  
TCPWM0_16_ONE_CNT_TR_IN[18]  
TCPWM0_16_ONE_CNT_TR_IN[19]  
TCPWM0_16M_ONE_CNT_TR_IN[0]  
TCPWM0_16M_ONE_CNT_TR_IN[1]  
TCPWM0_16M_ONE_CNT_TR_IN[2]  
TCPWM0_16M_ONE_CNT_TR_IN[3]  
TCPWM0_16M_ONE_CNT_TR_IN[4]  
TCPWM0_16M_ONE_CNT_TR_IN[5]  
TCPWM0_16M_ONE_CNT_TR_IN[6]  
TCPWM0_16M_ONE_CNT_TR_IN[7]  
TCPWM0_16M_ONE_CNT_TR_IN[8]  
TCPWM0_16M_ONE_CNT_TR_IN[9]  
TCPWM0_16M_ONE_CNT_TR_IN[10]  
TCPWM0_16M_ONE_CNT_TR_IN[11]  
SAR0 ch#0 , range violation to TCPWM0 Group#0 Counter#00 trig=0  
SAR0 ch#1, range violation to TCPWM0 Group#0 Counter#01 trig=0  
SAR0 ch#2, range violation to TCPWM0 Group#0 Counter#02 trig=0  
SAR0 ch#3, range violation to TCPWM0 Group#0 Counter#03 trig=0  
SAR0 ch#4, range violation to TCPWM0 Group#0 Counter#04 trig=0  
SAR0 ch#5, range violation to TCPWM0 Group#0 Counter#05 trig=0  
SAR0 ch#6, range violation to TCPWM0 Group#0 Counter#06 trig=0  
SAR0 ch#7, range violation to TCPWM0 Group#0 Counter#07 trig=0  
SAR0 ch#8, range violation to TCPWM0 Group#0 Counter#08 trig=0  
SAR0 ch#9, range violation to TCPWM0 Group#0 Counter#09 trig=0  
SAR0 ch#10, range violation to TCPWM0 Group#0 Counter#10 trig=0  
SAR0 ch#11, range violation to TCPWM0 Group#0 Counter#11 trig=0  
SAR0 ch#12, range violation to TCPWM0 Group#0 Counter#12 trig=0  
SAR0 ch#13, range violation to TCPWM0 Group#0 Counter#13 trig=0  
SAR0 ch#14, range violation to TCPWM0 Group#0 Counter#14 trig=0  
SAR0 ch#15, range violation to TCPWM0 Group#0 Counter#15 trig=0  
SAR0 ch#16, range violation to TCPWM0 Group#0 Counter#16 trig=0  
SAR0 ch#17, range violation to TCPWM0 Group#0 Counter#17 trig=0  
SAR0 ch#18, range violation to TCPWM0 Group#0 Counter#18 trig=0  
SAR0 ch#19, range violation to TCPWM0 Group#0 Counter#19 trig=0  
SAR0 ch#20, range violation to TCPWM0 Group#1 Counter#00 trig=0  
SAR0 ch#21, range violation to TCPWM0 Group#1 Counter#01 trig=0  
SAR0 ch#22, range violation to TCPWM0 Group#1 Counter#02 trig=0  
SAR0 ch#23, range violation to TCPWM0 Group#1 Counter#03 trig=0  
SAR0 ch#24, range violation to TCPWM0 Group#1 Counter#04 trig=0  
SAR0 ch#25, range violation to TCPWM0 Group#1 Counter#05 trig=0  
SAR0 ch#26, range violation to TCPWM0 Group#1 Counter#06 trig=0  
SAR0 ch#27, range violation to TCPWM0 Group#1 Counter#07 trig=0  
SAR0 ch#28, range violation to TCPWM0 Group#1 Counter#08 trig=0  
SAR0 ch#29, range violation to TCPWM0 Group#1 Counter#09 trig=0  
SAR0 ch#30, range violation to TCPWM0 Group#1 Counter#10 trig=0  
SAR0 ch#31, range violation to TCPWM0 Group#1 Counter#11 trig=0  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
MUX Group 3: TCPWM0 to PASS SARx  
0:19 TCPWM0_16_TR_OUT1[0:19]  
PASS0_CH_TR_IN[0:19]  
TCPWM0 Group #0 Counter #00 through 19 (PWM0_0 to PWM0_19) to  
SAR0 ch#0 through SAR0 ch#19  
Note  
33.Each logical channel of SAR ADC[x] can be connected to any of the SAR ADC[x]_y external pin. (x = 0, or 1, or, 2 and y=0 to max 31)  
Datasheet  
66  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Triggers one-to-one  
Table 20-1  
Triggers 1:1 (continued)  
Input  
Trigger In  
Trigger Out  
Description  
20:31  
TCPWM0_16M_TR_OUT1[0:11]  
PASS0_CH_TR_IN[20:31]  
TCPWM0 Group #1 Counter #00 through 11 (PWM0_M_0 to PWM0_M_11)  
to SAR0 ch#20 through SAR0 ch#31  
MUX Group 4: Acknowledge triggers from P-DMA1 to CAN1  
0
1
PDMA1_TR_OUT[40]  
PDMA1_TR_OUT[43]  
CAN1_DBG_TR_ACK[0]  
CAN1_DBG_TR_ACK[1]  
CAN1 Channel#0 P-DMA1 acknowledge  
CAN1 Channel#1 P-DMA1 acknowledge  
MUX Group 5: Acknowledge triggers from P-DMA0 to CAN0  
0
1
PDMA0_TR_OUT[32]  
PDMA0_TR_OUT[35]  
CAN0_DBG_TR_ACK[0]  
CAN0_DBG_TR_ACK[1]  
CAN0 Channel#0 P-DMA0 acknowledge  
CAN0 Channel#1 P-DMA0 acknowledge  
MUX Group 6: TCPWM0 to LIN0 triggers  
0:1 TCPWM0_16_TR_OUT1[24:25]  
MUX Group 7: TCPWM0_TO_CXPI (TCPWM0 to CXPI)  
LIN0_CMD_TR_IN[0:1]  
CXPI0_CMD_TR_IN[0:1]  
TCPWM0 (Group #0 Counter #24 to #25) to LIN0  
TCPWM0 (Group #0 Counter #24 to #25) to CXPI0  
0:1  
TCPWM0_16_TR_OUT1[26:27]  
Datasheet  
67  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Peripheral clocks  
21  
Peripheral clocks  
Table 21-1  
Peripheral clock assignments  
Output  
Destination  
PCLK_CPUSS_CLOCK_TRACE_IN  
PCLK_SMARTIO7_CLOCK  
PCLK_CANFD0_CLOCK_CAN0  
PCLK_CANFD0_CLOCK_CAN1  
PCLK_CANFD1_CLOCK_CAN0  
PCLK_CANFD1_CLOCK_CAN1  
PCLK_LIN0_CLOCK_CH_EN0  
PCLK_LIN0_CLOCK_CH_EN1  
PCLK_CXPI0_CLOCK_CH_EN0  
PCLK_CXPI0_CLOCK_CH_EN1  
PCLK_SCB0_CLOCK  
PCLK_SCB1_CLOCK  
PCLK_SCB2_CLOCK  
PCLK_SCB3_CLOCK  
PCLK_SCB4_CLOCK  
PCLK_SCB5_CLOCK  
PCLK_SCB6_CLOCK  
PCLK_SCB7_CLOCK  
PCLK_SCB8_CLOCK  
Description  
0
1
2
3
4
5
6
7
8
Trace clock  
SMART I/O#7  
CAN#0, Channel#0  
CAN#0, Channel#1  
CAN#1, Channel#0  
CAN#1, Channel#1  
LIN#0, Channel#0  
LIN#0, Channel#1  
CXPI#0 Channel#0  
CXPI#0 Channel#1  
SCB#0  
SCB#1  
SCB#2  
SCB#3  
SCB#4  
SCB#5  
SCB#6  
SCB#7  
SCB#8  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
PCLK_SCB9_CLOCK  
PCLK_SCB10_CLOCK  
PCLK_SCB11_CLOCK  
SCB#9  
SCB#10  
SCB#11  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
PCLK_PASS0_CLOCK_SAR0  
PCLK_LCD0_CLOCK  
SAR#0  
LCD Controller  
PCLK_TCPWM0_CLOCKS0  
PCLK_TCPWM0_CLOCKS1  
PCLK_TCPWM0_CLOCKS2  
PCLK_TCPWM0_CLOCKS3  
PCLK_TCPWM0_CLOCKS4  
PCLK_TCPWM0_CLOCKS5  
PCLK_TCPWM0_CLOCKS6  
PCLK_TCPWM0_CLOCKS7  
PCLK_TCPWM0_CLOCKS8  
PCLK_TCPWM0_CLOCKS9  
PCLK_TCPWM0_CLOCKS10  
PCLK_TCPWM0_CLOCKS11  
PCLK_TCPWM0_CLOCKS12  
PCLK_TCPWM0_CLOCKS13  
PCLK_TCPWM0_CLOCKS14  
PCLK_TCPWM0_CLOCKS15  
PCLK_TCPWM0_CLOCKS16  
PCLK_TCPWM0_CLOCKS17  
PCLK_TCPWM0_CLOCKS18  
PCLK_TCPWM0_CLOCKS19  
PCLK_TCPWM0_CLOCKS20  
PCLK_TCPWM0_CLOCKS21  
PCLK_TCPWM0_CLOCKS22  
PCLK_TCPWM0_CLOCKS23  
PCLK_TCPWM0_CLOCKS24  
PCLK_TCPWM0_CLOCKS25  
PCLK_TCPWM0_CLOCKS26  
PCLK_TCPWM0_CLOCKS27  
TCPWM#0 Group #0, Counter #0  
TCPWM#0 Group #0, Counter #1  
TCPWM#0 Group #0, Counter #2  
TCPWM#0 Group #0, Counter #3  
TCPWM#0 Group #0, Counter #4  
TCPWM#0 Group #0, Counter #5  
TCPWM#0 Group #0, Counter #6  
TCPWM#0 Group #0, Counter #7  
TCPWM#0 Group #0, Counter #8  
TCPWM#0 Group #0, Counter #9  
TCPWM#0 Group #0, Counter #10  
TCPWM#0 Group #0, Counter #11  
TCPWM#0 Group #0, Counter #12  
TCPWM#0 Group #0, Counter #13  
TCPWM#0 Group #0, Counter #14  
TCPWM#0 Group #0, Counter #15  
TCPWM#0 Group #0, Counter #16  
TCPWM#0 Group #0, Counter #17  
TCPWM#0 Group #0, Counter #18  
TCPWM#0 Group #0, Counter #19  
TCPWM#0 Group #0, Counter #20  
TCPWM#0 Group #0, Counter #21  
TCPWM#0 Group #0, Counter #22  
TCPWM#0 Group #0, Counter #23  
TCPWM#0 Group #0, Counter #24  
TCPWM#0 Group #0, Counter #25  
TCPWM#0 Group #0, Counter #26  
TCPWM#0 Group #0, Counter #27  
Datasheet  
68  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Peripheral clocks  
Table 21-1  
Peripheral clock assignments (continued)  
Output  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
Destination  
PCLK_TCPWM0_CLOCKS28  
PCLK_TCPWM0_CLOCKS29  
PCLK_TCPWM0_CLOCKS30  
PCLK_TCPWM0_CLOCKS31  
PCLK_TCPWM0_CLOCKS32  
PCLK_TCPWM0_CLOCKS33  
PCLK_TCPWM0_CLOCKS256  
PCLK_TCPWM0_CLOCKS257  
PCLK_TCPWM0_CLOCKS258  
PCLK_TCPWM0_CLOCKS259  
PCLK_TCPWM0_CLOCKS260  
PCLK_TCPWM0_CLOCKS261  
PCLK_TCPWM0_CLOCKS262  
PCLK_TCPWM0_CLOCKS263  
PCLK_TCPWM0_CLOCKS264  
PCLK_TCPWM0_CLOCKS265  
PCLK_TCPWM0_CLOCKS266  
PCLK_TCPWM0_CLOCKS267  
PCLK_TCPWM0_CLOCKS512  
PCLK_TCPWM0_CLOCKS513  
PCLK_TCPWM0_CLOCKS514  
PCLK_TCPWM0_CLOCKS515  
PCLK_TCPWM0_CLOCKS516  
PCLK_TCPWM0_CLOCKS517  
PCLK_TCPWM0_CLOCKS518  
PCLK_TCPWM0_CLOCKS519  
PCLK_TCPWM0_CLOCKS520  
Description  
TCPWM#0 Group #0, Counter #28  
TCPWM#0 Group #0, Counter #29  
TCPWM#0 Group #0, Counter #30  
TCPWM#0 Group #0, Counter #31  
TCPWM#0 Group #0, Counter #32  
TCPWM#0 Group #0, Counter #33  
TCPWM#0 Group #1, Counter #0  
TCPWM#0 Group #1, Counter #1  
TCPWM#0 Group #1, Counter #2  
TCPWM#0 Group #1, Counter #3  
TCPWM#0 Group #1, Counter #4  
TCPWM#0 Group #1, Counter #5  
TCPWM#0 Group #1, Counter #6  
TCPWM#0 Group #1, Counter #7  
TCPWM#0 Group #1, Counter #8  
TCPWM#0 Group #1, Counter #9  
TCPWM#0 Group #1, Counter #10  
TCPWM#0 Group #1, Counter #11  
TCPWM#0 Group #2, Counter #0  
TCPWM#0 Group #2, Counter #1  
TCPWM#0 Group #2, Counter #2  
TCPWM#0 Group #2, Counter #3  
TCPWM#0 Group #2, Counter #4  
TCPWM#0 Group #2, Counter #5  
TCPWM#0 Group #2, Counter #6  
TCPWM#0 Group #2, Counter #7  
TCPWM#0 Group #2, Counter #8  
79  
80  
81  
82  
83  
84  
85  
PCLK_TCPWM0_CLOCKS521  
PCLK_TCPWM0_CLOCKS522  
PCLK_TCPWM0_CLOCKS523  
PCLK_TCPWM0_CLOCKS524  
PCLK_TCPWM0_CLOCKS525  
PCLK_TCPWM0_CLOCKS526  
PCLK_TCPWM0_CLOCKS527  
TCPWM#0 Group #2, Counter #9  
TCPWM#0 Group #2, Counter #10  
TCPWM#0 Group #2, Counter #11  
TCPWM#0 Group #2, Counter #12  
TCPWM#0 Group #2, Counter #13  
TCPWM#0 Group #2, Counter #14  
TCPWM#0 Group #2, Counter #15  
Datasheet  
69  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Faults  
22  
Faults  
Table 22-1  
Fault assignments  
Fault  
Source  
Description  
CM0+ MPU/SMPU violation.  
DATA0[31:0]: Violating address.  
DATA1[0]: User read.  
DATA1[1]: User write.  
DATA1[2]: User execute.  
DATA1[3]: Privileged read.  
DATA1[4]: Privileged write.  
DATA1[5]: Privileged execute.  
DATA1[6]: Non-secure.  
0
CPUSS_MPU_VIO_0  
DATA1[11:8]: Master identifier.  
DATA1[15:12]: Protection context identifier.  
DATA1[31]: '0' MPU violation; '1': SMPU violation.  
1
2
CPUSS_MPU_VIO_1  
CRYPTO SMPU violation. See CPUSS_MPU_VIO_0 description.  
CPUSS_MPU_VIO_2  
CPUSS_MPU_VIO_3  
CPUSS_MPU_VIO_4  
CPUSS_MPU_VIO_15  
CPUSS_MPU_VIO_16  
P-DMA#0 MPU/SMPU violation. See CPUSS_MPU_VIO_0 description.  
P-DMA#1 MPU/SMPU violation. See CPUSS_MPU_VIO_0 description.  
M-DMA#0 MPU/SMPU violation. See CPUSS_MPU_VIO_0 description.  
Test Controller MPU/SMPU violation. See CPUSS_MPU_VIO_0 description.  
CM4 system bus AHB-Lite interface MPU violation. See CPUSS_MPU_VIO_0 description.  
3
4
15  
16  
CM4 code bus AHB-Lite interface MPU violation for non flash controller accesses.  
See CPUSS_MPU_VIO_0 description.  
17  
18  
CPUSS_MPU_VIO_17  
CPUSS_MPU_VIO_18  
CM4 code bus AHB-Lite interface MPU violation for flash controller accesses.  
See CPUSS_MPU_VIO_0 description.  
Peripheral protection SRAM correctable ECC violation  
DATA0[10:0]: Violating address.  
26  
27  
PERI_PERI_C_ECC  
PERI_PERI_NC_ECC  
DATA1[7:0]: Syndrome of SRAM word.  
Peripheral protection SRAM non-correctable ECC violation  
CM0+ Peripheral Master Interface PPU violation  
DATA0[31:0]: Violating address.  
DATA1[0]: User read.  
DATA1[1]: User write.  
DATA1[2]: User execute.  
DATA1[3]: Privileged read.  
28  
PERI_MS_VIO_0  
DATA1[4]: Privileged write.  
DATA1[5]: Privileged execute.  
DATA1[6]: Non-secure.  
DATA1[11:8]: Master identifier.  
DATA1[15:12]: Protection context identifier.  
DATA1[31:28]: “0”: master interface, PPU violation, “1': timeout detected, “2”: bus error,  
other: undefined.  
CM4 Peripheral Master Interface PPU violation.  
See PERI_MS_VIO_0 description.  
29  
30  
31  
PERI_MS_VIO_1  
PERI_MS_VIO_2  
PERI_MS_VIO_3  
P-DMA0 Peripheral Master Interface PPU violation.  
See PERI_MS_VIO_0 description.  
P-DMA1 Peripheral Master Interface PPU violation.  
See PERI_MS_VIO_0 description.  
Peripheral group #0 violation  
DATA0[31:0]: Violating address.  
DATA1[0]: User read.  
DATA1[1]: User write.  
DATA1[2]: User execute.  
DATA1[3]: Privileged read.  
32  
PERI_GROUP_VIO_0  
DATA1[4]: Privileged write.  
DATA1[5]: Privileged execute.  
DATA1[6]: Non-secure.  
DATA1[11:8]: Master identifier.  
DATA1[15:12]: Protection context identifier.  
DATA1[31:28]: “0”: decoder or peripheral bus error, other: undefined.  
33  
34  
35  
36  
37  
38  
PERI_GROUP_VIO_1  
PERI_GROUP_VIO_2  
PERI_GROUP_VIO_3  
PERI_GROUP_VIO_4  
PERI_GROUP_VIO_5  
PERI_GROUP_VIO_6  
Peripheral Group #1 violation. See PERI_GROUP_VIO_0 description.  
Peripheral Group #2 violation. See PERI_GROUP_VIO_0 description.  
Peripheral Group #3 violation. See PERI_GROUP_VIO_0 description.  
Peripheral Group #4 violation. See PERI_GROUP_VIO_0 description.  
Peripheral Group #5 violation. See PERI_GROUP_VIO_0 description.  
Peripheral Group #6 violation. See PERI_GROUP_VIO_0 description.  
Datasheet  
70  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Faults  
Table 22-1  
Fault assignments (continued)  
Fault  
Source  
Description  
40  
41  
PERI_GROUP_VIO_8  
PERI_GROUP_VIO_9  
Peripheral Group #8 violation. See PERI_GROUP_VIO_0 description.  
Peripheral Group #9 violation. See PERI_GROUP_VIO_0 description.  
Flash controller main flash bus error  
FAULT_DATA0[26:0]: Violating address. Append 5'b00010 as most significant bits to derive  
32-bit system address.  
48  
CPUSS_FLASHC_MAIN_BUS_ERROR  
FAULT_DATA1[11:8]: Master identifier.  
Flash controller main flash correctable ECC violation  
DATA[26:0]: Violating address. Append 5'b00010 as most significant bits to derive 32-bit  
system address.  
49  
CPUSS_FLASHC_MAIN_C_ECC  
DATA1[7:0]: Syndrome of 64-bit word (at address offset 0x00).  
DATA1[15:8]: Syndrome of 64-bit word (at address offset 0x08).  
DATA1[23:16]: Syndrome of 64-bit word (at address offset 0x10).  
DATA1[31:24]: Syndrome of 64-bit word (at address offset 0x18).  
Flash controller main flash non-correctable ECC violation.  
See CPUSS_FLASHC_MAIN_C_ECC description.  
50  
51  
CPUSS_FLASHC_MAIN_NC_ECC  
Flash controller work flash bus error  
FAULT_DATA0[26:0]: Violating address. Append 5'b00010 as most significant bits to derive  
32-bit system address.  
CPUSS_FLASHC_WORK_BUS_ERROR  
FAULT_DATA1[11:8]: Master identifier.  
Flash controller work flash correctable ECC violation  
DATA0[26:0]: Violating address. Append 5'b00010 as most significant bits to derive 32-bit  
system address.  
52  
53  
CPUSS_FLASHC_WORK_C_ECC  
CPUSS_FLASHC_WORK_NC_ECC  
DATA1[6:0]: Syndrome of 32-bit word.  
Flash controller work-flash non-correctable ECC violation.  
See CPUSS_FLASHC_WORK_C_ECC description.  
Flash controller CM0+ cache correctable ECC violation  
DATA0[26:0]: Violating address.  
DATA1[6:0]: Syndrome of 32-bit SRAM word (at address offset 0x0).  
DATA1[14:8]: Syndrome of 32-bit SRAM word (at address offset 0x4).  
DATA1[22:16]: Syndrome of 32-bit SRAM word (at address offset 0x8).  
DATA1[30:24]: Syndrome of 32-bit SRAM word (at address offset 0xC).  
54  
CPUSS_FLASHC_CM0_CA_C_ECC  
Flash controller CM0+ cache non-correctable ECC violation.  
See CPUSS_FLASHC_CM0_CA_C_ECC description.  
55  
56  
57  
CPUSS_FLASHC_CM0_CA_NC_ECC  
CPUSS_FLASHC_CM4_CA_C_ECC  
CPUSS_FLASHC_CM4_CA_NC_ECC  
Flash controller CM4 cache correctable ECC violation.  
See CPUSS_FLASHC_CM0_CA_C_ECC description.  
Flash controller CM4 cache non-correctable ECC violation.  
See CPUSS_FLASHC_CM0_CA_C_ECC description.  
System memory controller 0 correctable ECC violation  
DATA0[31:0]: Violating address.  
58  
CPUSS_RAMC0_C_ECC  
DATA1[6:0]: Syndrome of 32-bit SRAM code word.  
System memory controller 0 non-correctable ECC violation.  
See CPUSS_RAMC0_C_ECC description.  
59  
60  
61  
CPUSS_RAMC0_NC_ECC  
CPUSS_RAMC1_C_ECC  
CPUSS_RAMC1_NC_ECC  
System memory controller 1 correctable ECC violation.  
See CPUSS_RAMC0_C_ECC description.  
System memory controller 1 non-correctable ECC violation.  
See CPUSS_RAMC0_C_ECC description.  
Crypto memory correctable ECC violation  
DATA0[31:0]: Violating address.  
DATA1[6:0]: Syndrome of Least Significant 32-bit SRAM.  
DATA1[14:8]: Syndrome of Most Significant 32-bit SRAM.  
64  
CPUSS_CRYPTO_C_ECC  
CRYPTO memory non-correctable ECC violation.  
See CPUSS_CRYPTO_C_ECC description.  
65  
70  
CPUSS_CRYPTO_NC_ECC  
CPUSS_DW0_C_ECC  
Datawire0 memory correctable ECC violation  
DATA0[11:0]: Violating DW SRAM address (word address, assuming byte addressable).  
DATA1[6:0]: Syndrome of 32-bit SRAM code word.  
P-DMA#0 memory non-correctable ECC violation.  
See CPUSS_DW0_C_ECC description.  
71  
72  
73  
CPUSS_DW0_NC_ECC  
CPUSS_DW1_C_ECC  
CPUSS_DW1_NC_ECC  
P-DMA#1 memory correctable ECC violation.  
See CPUSS_DW0_C_ECC description.  
P-DMA#1 memory non-correctable ECC violation.  
See CPUSS_DW0_C_ECC description.  
Flash code storage SRAM memory correctable ECC violation  
DATA0[15:0]: Address location in the eCT Flash SRAM.  
DATA1[6:0]: Syndrome of 32-bit SRAM word.  
74  
75  
CPUSS_FM_SRAM_C_ECC  
CPUSS_FM_SRAM_NC_ECC  
Flash code storage SRAM memory non-correctable ECC violation:  
See CPUSS_FM_SRAMC_C_ECC description.  
Datasheet  
71  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Faults  
Table 22-1  
Fault assignments (continued)  
Fault  
Source  
Description  
CAN#0 message buffer correctable ECC violation  
DATA0[15:0]: Violating address.  
80  
81  
CANFD_0_CAN_C_ECC  
DATA0[22:16]: ECC violating data[38:32] from MRAM.  
DATA0[27:24]: Master ID: 0-7 = CAN channel ID within cluster, 8 = AHB I/F  
DATA1[31:0]: ECC violating data[31:0] from MRAM.  
CAN#0 message buffer non-correctable ECC violation  
DATA0[15:0]: Violating address.  
DATA0[22:16]: ECC violating data[38:32] from MRAM (not for Address Error).  
DATA0[27:24]: Master ID: 0-7 = CAN channel ID within cluster, 8 = AHB I/F  
DATA0[30]: Write access, only possible for Address Error  
CANFD_0_CAN_NC_ECC  
DATA0[31]: Address Error: a CAN channel did an MRAM access above MRAM_SIZE  
DATA1[31:0]: ECC violating data[31:0] from MRAM (not for Address Error).  
CAN#1 message buffer correctable ECC violation.  
See CANFD_0_CAN_C_ECC description.  
82  
83  
CANFD_1_CAN_C_ECC  
CANFD_1_CAN_NC_ECC  
CAN#1 message buffer non-correctable ECC violation.  
See CANFD_0_CAN_NC_ECC description.  
Consolidated fault output for clock supervisors. Multiple CSV can detect a violation at the  
same time.  
DATA0[15:0]: CSV violation occurred on corresponding CLK_HF* root clock  
DATA0[24]: CSV violation occurred on reference clock for CLK_HF CSVs  
DATA0[25]: CSV violation occurred on CLK_LF  
90  
91  
SRSS_FAULT_CSV  
SRSS_FAULT_SSV  
DATA0[26]: CSV violation occurred on CLK_ILO0  
DATA0[27]: CSV violation occurred on CLK_BAK  
Consolidated fault output for supply supervisors. Multiple counters can detect a violation  
at the same time.  
DATA0[0]: BOD detected on VDDA_ADC  
DATA0[1]: OVD detected on VDDA_ADC  
DATA0[16]: violation detected on LVD/HVD #1  
DATA0[17]: violation detected on LVD/HVD #2  
Fault output for MCWDT#0 (all sub-counters). Multiple counters can detect a violation at  
the same time.  
DATA0[0]: MCWDT sub counter 0 LOWER_LIMIT  
DATA0[1]: MCWDT sub counter 0 UPPER_LIMIT  
DATA0[2]: MCWDT sub counter 1 LOWER_LIMIT  
DATA0[3]: MCWDT sub counter 1 UPPER_LIMIT  
92  
93  
SRSS_FAULT_MCWDT0  
SRSS_FAULT_MCWDT1  
Fault output for MCWDT#1 (all sub-counters).  
See SRSS_FAULT_MCWDT#0 description.  
Datasheet  
72  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Peripheral protection unit fixed structure pairs  
23  
Peripheral protection unit fixed structure pairs  
Protection pair is a pair PPU structures, a master and a slave structure. The master structure protects the slave  
structure, and the slave structure protects resources such as peripheral registers, or the peripheral itself.  
Table 23-1  
PPU fixed structure pairs  
Pair No.  
PPU fixed structure pair  
Address  
0x40000000  
0x40002000  
0x40004010  
0x40004030  
0x40004050  
0x40004060  
0x40004080  
0x400040A0  
0x400040C0  
0x40004100  
0x40004120  
0x40008000  
0x40100000  
0x40101000  
0x40102000  
0x40102100  
0x40102120  
0x40108000  
0x40200000  
0x40201000  
0x40202000  
0x40208000  
0x4020A000  
0x40210000  
0x40210100  
0x40210200  
0x40210300  
0x40220000  
0x40220020  
0x40220040  
0x40220060  
0x40220080  
0x402200A0  
0x402200C0  
0x402200E0  
0x40221000  
0x40221020  
0x40221040  
0x40221060  
Size  
Description  
Peripheral Interconnect main  
Peripheral interconnect secure  
Peripheral Group #0 main  
Peripheral Group #1 main  
Peripheral Group #2 main  
Peripheral Group #3 main  
Peripheral Group #4 main  
Peripheral Group #5 main  
Peripheral Group #6 main  
Peripheral Group #8 main  
Peripheral Group #9 main  
Peripheral trigger multiplexer  
Crypto main  
0
PERI_MAIN  
PERI_SECURE  
0x00002000  
0x00000004  
0x00000004  
0x00000004  
0x00000004  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00008000  
0x00000400  
0x00000800  
0x00000100  
0x00000004  
0x00000004  
0x00002000  
0x00000400  
0x00001000  
0x00000200  
0x00001000  
0x00001000  
0x00000100  
0x00000100  
0x00000100  
0x00000100  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000010  
0x00000010  
0x00000010  
0x00000010  
1
2
PERI_GR0_GROUP  
PERI_GR1_GROUP  
PERI_GR2_GROUP  
PERI_GR3_GROUP  
PERI_GR4_GROUP  
PERI_GR5_GROUP  
PERI_GR6_GROUP  
PERI_GR8_GROUP  
PERI_GR9_GROUP  
PERI_TR  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
CRYPTO_MAIN  
CRYPTO_CRYPTO  
CRYPTO_BOOT  
Crypto MMIO (Memory Mapped I/O)  
Crypto boot  
CRYPTO_KEY0  
Crypto Key #0  
CRYPTO_KEY1  
Crypto Key #1  
CRYPTO_BUF  
Crypto buffer  
CPUSS_CM4  
CM4 CPU core  
CPUSS_CM0  
CM0+ CPU core  
CPUSS_BOOT[34]  
CPUSS_CM0_INT  
CPUSS_CM4_INT  
FAULT_STRUCT0_MAIN  
FAULT_STRUCT1_MAIN  
FAULT_STRUCT2_MAIN  
FAULT_STRUCT3_MAIN  
IPC_STRUCT0_IPC  
IPC_STRUCT1_IPC  
IPC_STRUCT2_IPC  
IPC_STRUCT3_IPC  
IPC_STRUCT4_IPC  
IPC_STRUCT5_IPC  
IPC_STRUCT6_IPC  
IPC_STRUCT7_IPC  
IPC_INTR_STRUCT0_INTR  
IPC_INTR_STRUCT1_INTR  
IPC_INTR_STRUCT2_INTR  
IPC_INTR_STRUCT3_INTR  
CPUSS boot  
CPUSS CM0+ interrupts  
CPUSS CM4 interrupts  
CPUSS Fault Structure #0 main  
CPUSS Fault Structure #1 main  
CPUSS Fault Structure #2 main  
CPUSS Fault Structure #3 main  
CPUSS IPC Structure #0  
CPUSS IPC Structure #1  
CPUSS IPC Structure #2  
CPUSS IPC Structure #3  
CPUSS IPC Structure #4  
CPUSS IPC Structure #5  
CPUSS IPC Structure #6  
CPUSS IPC Structure #7  
CPUSS IPC Interrupt Structure #0  
CPUSS IPC Interrupt Structure #1  
CPUSS IPC Interrupt Structure #2  
CPUSS IPC Interrupt Structure #3  
Note  
34.Fixed PPU is configured inside the Boot and user is not allowed to change the attributes of this PPU.  
Datasheet  
73  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Peripheral protection unit fixed structure pairs  
Table 23-1  
PPU fixed structure pairs (continued)  
Pair No.  
PPU fixed structure pair  
Address  
0x40221080  
0x402210A0  
0x402210C0  
0x402210E0  
0x40230000  
0x40234000  
0x40237800  
0x40237C00  
0x40240000  
0x40240008  
0x40240200  
0x40240400  
0x40240480  
0x40240500  
0x40240580  
0x40240600  
0x40240680  
0x4024F000  
0x4024F400  
0x4024F500  
0x40260000  
0x40261000  
0x40262000  
0x40268000  
0x40268100  
0x40268080  
0x40268180  
0x4026C000  
0x4026C040  
0x40270000  
0x40280000  
0x40290000  
0x40280100  
0x40290100  
0x40288000  
0x40288040  
0x40288080  
0x402880C0  
0x40288100  
0x40288140  
0x40288180  
0x402881C0  
0x40288200  
0x40288240  
0x40288280  
Size  
Description  
CPUSS IPC Interrupt Structure #4  
CPUSS IPC Interrupt Structure #5  
CPUSS IPC Interrupt Structure #6  
CPUSS IPC Interrupt Structure #7  
Peripheral protection SMPU main  
Peripheral protection MPU #0 main  
Peripheral protection MPU #14 main  
Peripheral protection MPU #15 main  
Flash controller main  
Flash controller command  
Flash controller tests  
Flash controller CM0+  
Flash controller CM4  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
IPC_INTR_STRUCT4_INTR  
IPC_INTR_STRUCT5_INTR  
0x00000010  
0x00000010  
0x00000010  
0x00000010  
0x00000040  
0x00000004  
0x00000004  
0x00000400  
0x00000008  
0x00000004  
0x00000100  
0x00000080  
0x00000080  
0x00000004  
0x00000004  
0x00000004  
0x00000004  
0x00000080  
0x00000008  
0x00000004  
0x00000400  
0x00001000  
0x00002000  
0x00000080  
0x00000080  
0x00000040  
0x00000040  
0x00000020  
0x00000020  
0x00010000  
0x00000100  
0x00000100  
0x00000080  
0x00000080  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
IPC_INTR_STRUCT6_INTR  
IPC_INTR_STRUCT7_INTR  
PROT_SMPU_MAIN  
PROT_MPU0_MAIN  
PROT_MPU14_MAIN  
PROT_MPU15_MAIN  
FLASHC_MAIN  
FLASHC_CMD  
FLASHC_DFT  
FLASHC_CM0  
FLASHC_CM4  
FLASHC_CRYPTO  
FLASHC_DW0  
Flash controller Crypto  
Flash controller P-DMA#0  
Flash controller P-DMA#1  
Flash controller M-DMA#0  
Flash management  
FLASHC_DW1  
FLASHC_DMAC  
FLASHC_FlashMgmt[34]  
FLASHC_MainSafety  
FLASHC_WorkSafety  
SRSS_GENERAL  
Flash controller main safety  
Flash controller work safety  
SRSS General  
SRSS_MAIN  
SRSS main  
SRSS_SECURE  
SRSS secure  
MCWDT0_CONFIG  
MCWDT1_CONFIG  
MCWDT0_MAIN  
MCWDT #0 configuration  
MCWDT #1 configuration  
MCWDT #0 main  
MCWDT1_MAIN  
MCWDT #1 main  
WDT_CONFIG  
System WDT configuration  
System WDT main  
WDT_MAIN  
BACKUP_BACKUP  
DW0_DW  
SRSS backup  
P-DMA#0 main  
DW1_DW  
P-DMA#1 main  
DW0_DW_CRC  
P-DMA#0 CRC  
DW1_DW_CRC  
P-DMA#1 CRC  
DW0_CH_STRUCT0_CH  
DW0_CH_STRUCT1_CH  
DW0_CH_STRUCT2_CH  
DW0_CH_STRUCT3_CH  
DW0_CH_STRUCT4_CH  
DW0_CH_STRUCT5_CH  
DW0_CH_STRUCT6_CH  
DW0_CH_STRUCT7_CH  
DW0_CH_STRUCT8_CH  
DW0_CH_STRUCT9_CH  
DW0_CH_STRUCT10_CH  
P-DMA#0 Channel #0  
P-DMA#0 Channel #1  
P-DMA#0 Channel #2  
P-DMA#0 Channel #3  
P-DMA#0 Channel #4  
P-DMA#0 Channel #5  
P-DMA#0 Channel #6  
P-DMA#0 Channel #7  
P-DMA#0 Channel #8  
P-DMA#0 Channel #9  
P-DMA#0 Channel #10  
Datasheet  
74  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Peripheral protection unit fixed structure pairs  
Table 23-1  
PPU fixed structure pairs (continued)  
Pair No.  
PPU fixed structure pair  
Address  
0x402882C0  
0x40288300  
0x40288340  
0x40288380  
0x402883C0  
0x40288400  
0x40288440  
0x40288480  
0x402884C0  
0x40288500  
0x40288540  
0x40288580  
0x402885C0  
0x40288600  
0x40288640  
0x40288680  
0x402886C0  
0x40288700  
0x40288740  
0x40288780  
0x402887C0  
0x40288800  
0x40288840  
0x40288880  
0x402888C0  
0x40288900  
0x40288940  
0x40288980  
0x402889C0  
0x40288A00  
0x40288A40  
0x40288A80  
0x40288AC0  
0x40288B00  
0x40288B40  
0x40288B80  
0x40288BC0  
0x40288C00  
0x40288C40  
0x40288C80  
0x40288CC0  
0x40288D00  
0x40288D40  
0x40288D80  
0x40288DC0  
Size  
Description  
P-DMA#0 Channel #11  
84  
85  
DW0_CH_STRUCT11_CH  
DW0_CH_STRUCT12_CH  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
P-DMA#0 Channel #12  
P-DMA#0 Channel #13  
P-DMA#0 Channel #14  
P-DMA#0 Channel #15  
P-DMA#0 Channel #16  
P-DMA#0 Channel #17  
P-DMA#0 Channel #18  
P-DMA#0 Channel #19  
P-DMA#0 Channel #20  
P-DMA#0 Channel #21  
P-DMA#0 Channel #22  
P-DMA#0 Channel #23  
P-DMA#0 Channel #24  
P-DMA#0 Channel #25  
P-DMA#0 Channel #26  
P-DMA#0 Channel #27  
P-DMA#0 Channel #28  
P-DMA#0 Channel #29  
P-DMA#0 Channel #30  
P-DMA#0 Channel #31  
P-DMA#0 Channel #32  
P-DMA#0 Channel #33  
P-DMA#0 Channel #34  
P-DMA#0 Channel #35  
P-DMA#0 Channel #36  
P-DMA#0 Channel #37  
P-DMA#0 Channel #38  
P-DMA#0 Channel #39  
P-DMA#0 Channel #40  
P-DMA#0 Channel #41  
P-DMA#0 Channel #42  
P-DMA#0 Channel #43  
P-DMA#0 Channel #44  
P-DMA#0 Channel #45  
P-DMA#0 Channel #46  
P-DMA#0 Channel #47  
P-DMA#0 Channel #48  
P-DMA#0 Channel #49  
P-DMA#0 Channel #50  
P-DMA#0 Channel #51  
P-DMA#0 Channel #52  
P-DMA#0 Channel #53  
P-DMA#0 Channel #54  
P-DMA#0 Channel #55  
86  
DW0_CH_STRUCT13_CH  
DW0_CH_STRUCT14_CH  
DW0_CH_STRUCT15_CH  
DW0_CH_STRUCT16_CH  
DW0_CH_STRUCT17_CH  
DW0_CH_STRUCT18_CH  
DW0_CH_STRUCT19_CH  
DW0_CH_STRUCT20_CH  
DW0_CH_STRUCT21_CH  
DW0_CH_STRUCT22_CH  
DW0_CH_STRUCT23_CH  
DW0_CH_STRUCT24_CH  
DW0_CH_STRUCT25_CH  
DW0_CH_STRUCT26_CH  
DW0_CH_STRUCT27_CH  
DW0_CH_STRUCT28_CH  
DW0_CH_STRUCT29_CH  
DW0_CH_STRUCT30_CH  
DW0_CH_STRUCT31_CH  
DW0_CH_STRUCT32_CH  
DW0_CH_STRUCT33_CH  
DW0_CH_STRUCT34_CH  
DW0_CH_STRUCT35_CH  
DW0_CH_STRUCT36_CH  
DW0_CH_STRUCT37_CH  
DW0_CH_STRUCT38_CH  
DW0_CH_STRUCT39_CH  
DW0_CH_STRUCT40_CH  
DW0_CH_STRUCT41_CH  
DW0_CH_STRUCT42_CH  
DW0_CH_STRUCT43_CH  
DW0_CH_STRUCT44_CH  
DW0_CH_STRUCT45_CH  
DW0_CH_STRUCT46_CH  
DW0_CH_STRUCT47_CH  
DW0_CH_STRUCT48_CH  
DW0_CH_STRUCT49_CH  
DW0_CH_STRUCT50_CH  
DW0_CH_STRUCT51_CH  
DW0_CH_STRUCT52_CH  
DW0_CH_STRUCT53_CH  
DW0_CH_STRUCT54_CH  
DW0_CH_STRUCT55_CH  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
Datasheet  
75  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Peripheral protection unit fixed structure pairs  
Table 23-1  
PPU fixed structure pairs (continued)  
Pair No.  
PPU fixed structure pair  
Address  
0x40288E00  
0x40288E40  
0x40288E80  
0x40288EC0  
0x40288F00  
0x40288F40  
0x40288F80  
0x40288FC0  
0x40289000  
0x40289040  
0x40289080  
0x402890C0  
0x40289100  
0x40289140  
0x40289180  
0x402891C0  
0x40289200  
0x40289240  
0x40289280  
0x402892C0  
0x40298000  
0x40298040  
0x40298080  
0x402980C0  
0x40298100  
0x40298140  
0x40298180  
0x402981C0  
0x40298200  
0x40298240  
0x40298280  
0x402982C0  
0x40298300  
0x40298340  
0x40298380  
0x402983C0  
0x40298400  
0x40298440  
0x40298480  
0x402984C0  
0x40298500  
0x40298540  
0x40298580  
0x402985C0  
0x40298600  
Size  
Description  
P-DMA#0 Channel #56  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
DW0_CH_STRUCT56_CH  
DW0_CH_STRUCT57_CH  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
P-DMA#0 Channel #57  
P-DMA#0 Channel #58  
P-DMA#0 Channel #59  
P-DMA#0 Channel #60  
P-DMA#0 Channel #61  
P-DMA#0 Channel #62  
P-DMA#0 Channel #63  
P-DMA#0 Channel #64  
P-DMA#0 Channel #65  
P-DMA#0 Channel #66  
P-DMA#0 Channel #67  
P-DMA#0 Channel #68  
P-DMA#0 Channel #69  
P-DMA#0 Channel #70  
P-DMA#0 Channel #71  
P-DMA#0 Channel #72  
P-DMA#0 Channel #73  
P-DMA#0 Channel #74  
P-DMA#0 Channel #75  
P-DMA#1 Channel #0  
P-DMA#1 Channel #1  
P-DMA#1 Channel #2  
P-DMA#1 Channel #3  
P-DMA#1 Channel #4  
P-DMA#1 Channel #5  
P-DMA#1 Channel #6  
P-DMA#1 Channel #7  
P-DMA#1 Channel #8  
P-DMA#1 Channel #9  
P-DMA#1 Channel #10  
P-DMA#1 Channel #11  
P-DMA#1 Channel #12  
P-DMA#1 Channel #13  
P-DMA#1 Channel #14  
P-DMA#1 Channel #15  
P-DMA#1 Channel #16  
P-DMA#1 Channel #17  
P-DMA#1 Channel #18  
P-DMA#1 Channel #19  
P-DMA#1 Channel #20  
P-DMA#1 Channel #21  
P-DMA#1 Channel #22  
P-DMA#1 Channel #23  
P-DMA#1 Channel #24  
DW0_CH_STRUCT58_CH  
DW0_CH_STRUCT59_CH  
DW0_CH_STRUCT60_CH  
DW0_CH_STRUCT61_CH  
DW0_CH_STRUCT62_CH  
DW0_CH_STRUCT63_CH  
DW0_CH_STRUCT64_CH  
DW0_CH_STRUCT65_CH  
DW0_CH_STRUCT66_CH  
DW0_CH_STRUCT67_CH  
DW0_CH_STRUCT68_CH  
DW0_CH_STRUCT69_CH  
DW0_CH_STRUCT70_CH  
DW0_CH_STRUCT71_CH  
DW0_CH_STRUCT72_CH  
DW0_CH_STRUCT73_CH  
DW0_CH_STRUCT74_CH  
DW0_CH_STRUCT75_CH  
DW1_CH_STRUCT0_CH  
DW1_CH_STRUCT1_CH  
DW1_CH_STRUCT2_CH  
DW1_CH_STRUCT3_CH  
DW1_CH_STRUCT4_CH  
DW1_CH_STRUCT5_CH  
DW1_CH_STRUCT6_CH  
DW1_CH_STRUCT7_CH  
DW1_CH_STRUCT8_CH  
DW1_CH_STRUCT9_CH  
DW1_CH_STRUCT10_CH  
DW1_CH_STRUCT11_CH  
DW1_CH_STRUCT12_CH  
DW1_CH_STRUCT13_CH  
DW1_CH_STRUCT14_CH  
DW1_CH_STRUCT15_CH  
DW1_CH_STRUCT16_CH  
DW1_CH_STRUCT17_CH  
DW1_CH_STRUCT18_CH  
DW1_CH_STRUCT19_CH  
DW1_CH_STRUCT20_CH  
DW1_CH_STRUCT21_CH  
DW1_CH_STRUCT22_CH  
DW1_CH_STRUCT23_CH  
DW1_CH_STRUCT24_CH  
Datasheet  
76  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Peripheral protection unit fixed structure pairs  
Table 23-1  
PPU fixed structure pairs (continued)  
Pair No.  
PPU fixed structure pair  
Address  
0x40298640  
0x40298680  
0x402986C0  
0x40298700  
0x40298740  
0x40298780  
0x402987C0  
0x40298800  
0x40298840  
0x40298880  
0x402988C0  
0x40298900  
0x40298940  
0x40298980  
0x402989C0  
0x40298A00  
0x40298A40  
0x40298A80  
0x40298AC0  
0x40298B00  
0x40298B40  
0x40298B80  
0x40298BC0  
0x40298C00  
0x40298C40  
0x40298C80  
0x40298CC0  
0x40298D00  
0x40298D40  
0x40298D80  
0x40298DC0  
0x40298E00  
0x40298E40  
0x40298E80  
0x40298EC0  
0x40298F00  
0x40298F40  
0x40298F80  
0x40298FC0  
0x40299000  
0x40299040  
0x40299080  
0x402990C0  
0x40299100  
0x40299140  
Size  
Description  
P-DMA#1 Channel #25  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
DW1_CH_STRUCT25_CH  
DW1_CH_STRUCT26_CH  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
P-DMA#1 Channel #26  
P-DMA#1 Channel #27  
P-DMA#1 Channel #28  
P-DMA#1 Channel #29  
P-DMA#1 Channel #30  
P-DMA#1 Channel #31  
P-DMA#1 Channel #32  
P-DMA#1 Channel #33  
P-DMA#1 Channel #34  
P-DMA#1 Channel #35  
P-DMA#1 Channel #36  
P-DMA#1 Channel #37  
P-DMA#1 Channel #38  
P-DMA#1 Channel #39  
P-DMA#1 Channel #40  
P-DMA#1 Channel #41  
P-DMA#1 Channel #42  
P-DMA#1 Channel #43  
P-DMA#1 Channel #44  
P-DMA#1 Channel #45  
P-DMA#1 Channel #46  
P-DMA#1 Channel #47  
P-DMA#1 Channel #48  
P-DMA#1 Channel #49  
P-DMA#1 Channel #50  
P-DMA#1 Channel #51  
P-DMA#1 Channel #52  
P-DMA#1 Channel #53  
P-DMA#1 Channel #54  
P-DMA#1 Channel #55  
P-DMA#1 Channel #56  
P-DMA#1 Channel #57  
P-DMA#1 Channel #58  
P-DMA#1 Channel #59  
P-DMA#1 Channel #60  
P-DMA#1 Channel #61  
P-DMA#1 Channel #62  
P-DMA#1 Channel #63  
P-DMA#1 Channel #64  
P-DMA#1 Channel #65  
P-DMA#1 Channel #66  
P-DMA#1 Channel #67  
P-DMA#1 Channel #68  
P-DMA#1 Channel #69  
DW1_CH_STRUCT27_CH  
DW1_CH_STRUCT28_CH  
DW1_CH_STRUCT29_CH  
DW1_CH_STRUCT30_CH  
DW1_CH_STRUCT31_CH  
DW1_CH_STRUCT32_CH  
DW1_CH_STRUCT33_CH  
DW1_CH_STRUCT34_CH  
DW1_CH_STRUCT35_CH  
DW1_CH_STRUCT36_CH  
DW1_CH_STRUCT37_CH  
DW1_CH_STRUCT38_CH  
DW1_CH_STRUCT39_CH  
DW1_CH_STRUCT40_CH  
DW1_CH_STRUCT41_CH  
DW1_CH_STRUCT42_CH  
DW1_CH_STRUCT43_CH  
DW1_CH_STRUCT44_CH  
DW1_CH_STRUCT45_CH  
DW1_CH_STRUCT46_CH  
DW1_CH_STRUCT47_CH  
DW1_CH_STRUCT48_CH  
DW1_CH_STRUCT49_CH  
DW1_CH_STRUCT50_CH  
DW1_CH_STRUCT51_CH  
DW1_CH_STRUCT52_CH  
DW1_CH_STRUCT53_CH  
DW1_CH_STRUCT54_CH  
DW1_CH_STRUCT55_CH  
DW1_CH_STRUCT56_CH  
DW1_CH_STRUCT57_CH  
DW1_CH_STRUCT58_CH  
DW1_CH_STRUCT59_CH  
DW1_CH_STRUCT60_CH  
DW1_CH_STRUCT61_CH  
DW1_CH_STRUCT62_CH  
DW1_CH_STRUCT63_CH  
DW1_CH_STRUCT64_CH  
DW1_CH_STRUCT65_CH  
DW1_CH_STRUCT66_CH  
DW1_CH_STRUCT67_CH  
DW1_CH_STRUCT68_CH  
DW1_CH_STRUCT69_CH  
Datasheet  
77  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Peripheral protection unit fixed structure pairs  
Table 23-1  
PPU fixed structure pairs (continued)  
Pair No.  
PPU fixed structure pair  
Address  
0x40299180  
0x402991C0  
0x40299200  
0x40299240  
0x40299280  
0x402992C0  
0x40299300  
0x40299340  
0x40299380  
0x402993C0  
0x40299400  
0x40299440  
0x40299480  
0x402994C0  
0x402A0000  
0x402A1000  
0x402A1100  
0x402A1200  
0x402A1300  
0x402C0000  
0x402C0800  
0x402F0000  
0x40300000  
0x40300010  
0x40300020  
0x40300030  
0x40300040  
0x40300050  
0x40300060  
0x40300070  
0x40300080  
0x40300090  
0x403000A0  
0x403000B0  
0x403000C0  
0x403000D0  
0x403000E0  
0x403000F0  
0x40300100  
0x40300110  
0x40300120  
0x40300130  
0x40302000  
0x40302200  
0x40310000  
Size  
Description  
P-DMA#1 Channel #70  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
DW1_CH_STRUCT70_CH  
DW1_CH_STRUCT71_CH  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000010  
0x00000100  
0x00000100  
0x00000100  
0x00000100  
0x00000200  
0x00000200  
0x00001000  
0x00000008  
0x00000008  
0x00000008  
0x00000008  
0x00000008  
0x00000008  
0x00000008  
0x00000008  
0x00000008  
0x00000008  
0x00000008  
0x00000008  
0x00000008  
0x00000008  
0x00000008  
0x00000008  
0x00000008  
0x00000008  
0x00000008  
0x00000008  
0x00000010  
0x00000010  
0x00000040  
P-DMA#1 Channel #71  
P-DMA#1 Channel #72  
P-DMA#1 Channel #73  
P-DMA#1 Channel #74  
P-DMA#1 Channel #75  
P-DMA#1 Channel #76  
P-DMA#1 Channel #77  
P-DMA#1 Channel #78  
P-DMA#1 Channel #79  
P-DMA#1 Channel #80  
P-DMA#1 Channel #81  
P-DMA#1 Channel #82  
P-DMA#1 Channel #83  
M-DMA#0 main  
DW1_CH_STRUCT72_CH  
DW1_CH_STRUCT73_CH  
DW1_CH_STRUCT74_CH  
DW1_CH_STRUCT75_CH  
DW1_CH_STRUCT76_CH  
DW1_CH_STRUCT77_CH  
DW1_CH_STRUCT78_CH  
DW1_CH_STRUCT79_CH  
DW1_CH_STRUCT80_CH  
DW1_CH_STRUCT81_CH  
DW1_CH_STRUCT82_CH  
DW1_CH_STRUCT83_CH  
DMAC_TOP  
DMAC_CH0_CH  
M-DMA#0 Channel #0  
M-DMA#0 Channel #1  
M-DMA#0 Channel #2  
M-DMA#0 Channel #3  
EFUSE control  
DMAC_CH1_CH  
DMAC_CH2_CH  
DMAC_CH3_CH  
EFUSE_CTL  
EFUSE_DATA  
EFUSE data  
BIST  
Built-in self test  
HSIOM_PRT0_PRT  
HSIOM_PRT1_PRT  
HSIOM_PRT2_PRT  
HSIOM_PRT3_PRT  
HSIOM_PRT4_PRT  
HSIOM_PRT5_PRT  
HSIOM_PRT6_PRT  
HSIOM_PRT7_PRT  
HSIOM_PRT8_PRT  
HSIOM_PRT9_PRT  
HSIOM_PRT10_PRT  
HSIOM_PRT11_PRT  
HSIOM_PRT12_PRT  
HSIOM_PRT13_PRT  
HSIOM_PRT14_PRT  
HSIOM_PRT15_PRT  
HSIOM_PRT16_PRT  
HSIOM_PRT17_PRT  
HSIOM_PRT18_PRT  
HSIOM_PRT19_PRT  
HSIOM_AMUX  
HSIOm Port #0  
HSIOm Port #1  
HSIOm Port #2  
HSIOm Port #3  
HSIOm Port #4  
HSIOm Port #5  
HSIOm Port #6  
HSIOm Port #7  
HSIOm Port #8  
HSIOm Port #9  
HSIOm Port #10  
HSIOm Port #11  
HSIOm Port #12  
HSIOm Port #13  
HSIOm Port #14  
HSIOm Port #15  
HSIOm Port #16  
HSIOm Port #17  
HSIOm Port #18  
HSIOm Port #19  
HSIOm Analog multiplexer  
HSIOm monitor  
HSIOM_MON  
GPIO_PRT0_PRT  
GPIO_STD Port #0  
Datasheet  
78  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Peripheral protection unit fixed structure pairs  
Table 23-1  
PPU fixed structure pairs (continued)  
Pair No.  
PPU fixed structure pair  
Address  
0x40310080  
0x40310100  
0x40310180  
0x40310200  
0x40310280  
0x40310300  
0x40310380  
0x40310400  
0x40310480  
0x40310500  
0x40310580  
0x40310600  
0x40310680  
0x40310700  
0x40310780  
0x40310800  
0x40310880  
0x40310900  
0x40310980  
0x40310040  
0x403100C0  
0x40310140  
0x403101C0  
0x40310240  
0x403102C0  
0x40310340  
0x403103C0  
0x40310440  
0x403104C0  
0x40310540  
0x403105C0  
0x40310640  
0x403106C0  
0x40310740  
0x403107C0  
0x40310840  
0x403108C0  
0x40310940  
0x403109C0  
0x40314000  
0x40315000  
0x40320700  
0x40380000  
0x40380080  
0x40380100  
Size  
Description  
GPIO_STD Port #1  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
GPIO_PRT1_PRT  
GPIO_PRT2_PRT  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000040  
0x00000040  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000040  
0x00000008  
0x00000100  
0x00000080  
0x00000080  
0x00000080  
GPIO_STD Port #2  
GPIO_PRT3_PRT  
GPIO_PRT4_PRT  
GPIO_PRT5_PRT  
GPIO_PRT6_PRT  
GPIO_PRT7_PRT  
GPIO_PRT8_PRT  
GPIO_PRT9_PRT  
GPIO_PRT10_PRT  
GPIO_PRT11_PRT  
GPIO_PRT12_PRT  
GPIO_PRT13_PRT  
GPIO_PRT14_PRT  
GPIO_PRT15_PRT  
GPIO_PRT16_PRT  
GPIO_PRT17_PRT  
GPIO_PRT18_PRT  
GPIO_PRT19_PRT  
GPIO_PRT0_CFG  
GPIO_PRT1_CFG  
GPIO_PRT2_CFG  
GPIO_PRT3_CFG  
GPIO_PRT4_CFG  
GPIO_PRT5_CFG  
GPIO_PRT6_CFG  
GPIO_PRT7_CFG  
GPIO_PRT8_CFG  
GPIO_PRT9_CFG  
GPIO_PRT10_CFG  
GPIO_PRT11_CFG  
GPIO_PRT12_CFG  
GPIO_PRT13_CFG  
GPIO_PRT14_CFG  
GPIO_PRT15_CFG  
GPIO_PRT16_CFG  
GPIO_PRT17_CFG  
GPIO_PRT18_CFG  
GPIO_PRT19_CFG  
GPIO_GPIO  
GPIO_STD Port #3  
GPIO_STD Port #4  
GPIO_SMC Port #5  
GPIO_SMC Port #6  
GPIO_SMC Port #7  
HSIO_STDLN Port #8  
HSIO_STDLN Port #9  
GPIO_STD Port #10  
GPIO_STD Port #11  
GPIO_STD Port #12  
GPIO_STD Port #13  
GPIO_ENH Port #14  
GPIO_STD Port #15  
GPIO_STD Port #16  
GPIO_STD Port #17  
GPIO_STD Port #18  
GPIO_STD Port #19  
GPIO_STD Port #0 configuration  
GPIO_STD Port #1 configuration  
GPIO_STD Port #2 configuration  
GPIO_STD Port #3 configuration  
GPIO_STD Port #4 configuration  
GPIO_SMC Port #5 configuration  
GPIO_SMC Port #6 configuration  
GPIO_SMC Port #7 configuration  
HSIO_STDLN Port #8 configuration  
HSIO_STDLN Port #9 configuration  
GPIO_STD Port #10 configuration  
GPIO_STD Port #11 configuration  
GPIO_STD Port #12 configuration  
GPIO_STD Port #13 configuration  
GPIO_ENH Port #14 configuration  
GPIO_STD Port #15 configuration  
GPIO_STD Port #16 configuration  
GPIO_STD Port #17 configuration  
GPIO_STD Port #18 configuration  
GPIO_STD Port #19 configuration  
GPIO main  
GPIO_TEST  
GPIO test  
SMARTIO_PRT7_PRT  
TCPWM0_GRP0_CNT0_CNT  
TCPWM0_GRP0_CNT1_CNT  
TCPWM0_GRP0_CNT2_CNT  
SMART I/O #7  
TCPWM#0 Group #0, Counter #0  
TCPWM#0 Group #0, Counter #1  
TCPWM#0 Group #0, Counter #2  
Datasheet  
79  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Peripheral protection unit fixed structure pairs  
Table 23-1  
PPU fixed structure pairs (continued)  
Pair No.  
PPU fixed structure pair  
Address  
0x40380180  
0x40380200  
0x40380280  
0x40380300  
0x40380380  
0x40380400  
0x40380480  
0x40380500  
0x40380580  
0x40380600  
0x40380680  
0x40380700  
0x40380780  
0x40380800  
0x40380880  
0x40380900  
0x40380980  
0x40380A00  
0x40380A80  
0x40380B00  
0x40380B80  
0x40380C00  
0x40380C80  
0x40380D00  
0x40380D80  
0x40380E00  
0x40380E80  
0x40380F00  
0x40380F80  
0x40381000  
0x40381080  
0x40388000  
0x40388080  
0x40388100  
0x40388180  
0x40388200  
0x40388280  
0x40388300  
0x40388380  
0x40388400  
0x40388480  
0x40388500  
0x40388580  
0x40390000  
0x40390080  
Size  
Description  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
350  
351  
352  
353  
TCPWM0_GRP0_CNT3_CNT  
TCPWM0_GRP0_CNT4_CNT  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
TCPWM#0 Group #0, Counter #3  
TCPWM#0 Group #0, Counter #4  
TCPWM#0 Group #0, Counter #5  
TCPWM#0 Group #0, Counter #6  
TCPWM#0 Group #0, Counter #7  
TCPWM#0 Group #0, Counter #8  
TCPWM#0 Group #0, Counter #9  
TCPWM#0 Group #0, Counter #10  
TCPWM#0 Group #0, Counter #11  
TCPWM#0 Group #0, Counter #12  
TCPWM#0 Group #0, Counter #13  
TCPWM#0 Group #0, Counter #14  
TCPWM#0 Group #0, Counter #15  
TCPWM#0 Group #0, Counter #16  
TCPWM#0 Group #0, Counter #17  
TCPWM#0 Group #0, Counter #18  
TCPWM#0 Group #0, Counter #19  
TCPWM#0 Group #0, Counter #20  
TCPWM#0 Group #0, Counter #21  
TCPWM#0 Group #0, Counter #22  
TCPWM#0 Group #0, Counter #23  
TCPWM#0 Group #0, Counter #24  
TCPWM#0 Group #0, Counter #25  
TCPWM#0 Group #0, Counter #26  
TCPWM#0 Group #0, Counter #27  
TCPWM#0 Group #0, Counter #28  
TCPWM#0 Group #0, Counter #29  
TCPWM#0 Group #0, Counter #30  
TCPWM#0 Group #0, Counter #31  
TCPWM#0 Group #0, Counter #32  
TCPWM#0 Group #0, Counter #33  
TCPWM#0 Group #1, Counter #0  
TCPWM#0 Group #1, Counter #1  
TCPWM#0 Group #1, Counter #2  
TCPWM#0 Group #1, Counter #3  
TCPWM#0 Group #1, Counter #4  
TCPWM#0 Group #1, Counter #5  
TCPWM#0 Group #1, Counter #6  
TCPWM#0 Group #1, Counter #7  
TCPWM#0 Group #1, Counter #8  
TCPWM#0 Group #1, Counter #9  
TCPWM#0 Group #1, Counter #10  
TCPWM#0 Group #1, Counter #11  
TCPWM#0 Group #2, Counter #0  
TCPWM#0 Group #2, Counter #1  
TCPWM0_GRP0_CNT5_CNT  
TCPWM0_GRP0_CNT6_CNT  
TCPWM0_GRP0_CNT7_CNT  
TCPWM0_GRP0_CNT8_CNT  
TCPWM0_GRP0_CNT9_CNT  
TCPWM0_GRP0_CNT10_CNT  
TCPWM0_GRP0_CNT11_CNT  
TCPWM0_GRP0_CNT12_CNT  
TCPWM0_GRP0_CNT13_CNT  
TCPWM0_GRP0_CNT14_CNT  
TCPWM0_GRP0_CNT15_CNT  
TCPWM0_GRP0_CNT16_CNT  
TCPWM0_GRP0_CNT17_CNT  
TCPWM0_GRP0_CNT18_CNT  
TCPWM0_GRP0_CNT19_CNT  
TCPWM0_GRP0_CNT20_CNT  
TCPWM0_GRP0_CNT21_CNT  
TCPWM0_GRP0_CNT22_CNT  
TCPWM0_GRP0_CNT23_CNT  
TCPWM0_GRP0_CNT24_CNT  
TCPWM0_GRP0_CNT25_CNT  
TCPWM0_GRP0_CNT26_CNT  
TCPWM0_GRP0_CNT27_CNT  
TCPWM0_GRP0_CNT28_CNT  
TCPWM0_GRP0_CNT29_CNT  
TCPWM0_GRP0_CNT30_CNT  
TCPWM0_GRP0_CNT31_CNT  
TCPWM0_GRP0_CNT32_CNT  
TCPWM0_GRP0_CNT33_CNT  
TCPWM0_GRP1_CNT0_CNT  
TCPWM0_GRP1_CNT1_CNT  
TCPWM0_GRP1_CNT2_CNT  
TCPWM0_GRP1_CNT3_CNT  
TCPWM0_GRP1_CNT4_CNT  
TCPWM0_GRP1_CNT5_CNT  
TCPWM0_GRP1_CNT6_CNT  
TCPWM0_GRP1_CNT7_CNT  
TCPWM0_GRP1_CNT8_CNT  
TCPWM0_GRP1_CNT9_CNT  
TCPWM0_GRP1_CNT10_CNT  
TCPWM0_GRP1_CNT11_CNT  
TCPWM0_GRP2_CNT0_CNT  
TCPWM0_GRP2_CNT1_CNT  
Datasheet  
80  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Peripheral protection unit fixed structure pairs  
Table 23-1  
PPU fixed structure pairs (continued)  
Pair No.  
PPU fixed structure pair  
Address  
0x40390100  
0x40390180  
0x40390200  
0x40390280  
0x40390300  
0x40390380  
0x40390400  
0x40390480  
0x40390500  
0x40390580  
0x40390600  
0x40390680  
0x40390700  
0x40390780  
0x403B0000  
0x403F0000  
0x40420000  
0x40500000  
0x40508000  
0x40508100  
0x40510000  
0x40518000  
0x40518100  
0x40520000  
0x40520200  
0x40540000  
0x40540200  
0x40521000  
0x40541000  
0x40530000  
0x40550000  
0x40600000  
0x40610000  
0x40620000  
0x40630000  
0x40640000  
0x40650000  
0x40660000  
0x40670000  
0x40680000  
0x40690000  
0x406A0000  
0x406B0000  
0x40818000  
0x40818200  
Size  
Description  
TCPWM#0 Group #2, Counter #2  
TCPWM#0 Group #2, Counter #3  
TCPWM#0 Group #2, Counter #4  
TCPWM#0 Group #2, Counter #5  
TCPWM#0 Group #2, Counter #6  
TCPWM#0 Group #2, Counter #7  
TCPWM#0 Group #2, Counter #8  
TCPWM#0 Group #2, Counter #9  
TCPWM#0 Group #2, Counter #10  
TCPWM#0 Group #2, Counter #11  
TCPWM#0 Group #2, Counter #12  
TCPWM#0 Group #2, Counter #13  
TCPWM#0 Group #2, Counter #14  
TCPWM#0 Group #2, Counter #15  
Segment LCD Controller#0  
Event generator #0  
354  
355  
356  
357  
358  
359  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
370  
371  
372  
373  
374  
375  
376  
377  
378  
379  
380  
381  
382  
383  
384  
385  
386  
387  
388  
389  
390  
391  
392  
393  
394  
395  
396  
397  
398  
TCPWM0_GRP2_CNT2_CNT  
TCPWM0_GRP2_CNT3_CNT  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00010000  
0x00001000  
0x00001000  
0x00000008  
0x00000100  
0x00000100  
0x00000008  
0x00000100  
0x00000100  
0x00000200  
0x00000200  
0x00000200  
0x00000200  
0x00000100  
0x00000100  
0x00010000  
0x00010000  
0x00010000  
0x00010000  
0x00010000  
0x00010000  
0x00010000  
0x00010000  
0x00010000  
0x00010000  
0x00010000  
0x00010000  
0x00010000  
0x00010000  
0x00000100  
0x00000100  
TCPWM0_GRP2_CNT4_CNT  
TCPWM0_GRP2_CNT5_CNT  
TCPWM0_GRP2_CNT6_CNT  
TCPWM0_GRP2_CNT7_CNT  
TCPWM0_GRP2_CNT8_CNT  
TCPWM0_GRP2_CNT9_CNT  
TCPWM0_GRP2_CNT10_CNT  
TCPWM0_GRP2_CNT11_CNT  
TCPWM0_GRP2_CNT12_CNT  
TCPWM0_GRP2_CNT13_CNT  
TCPWM0_GRP2_CNT14_CNT  
TCPWM0_GRP2_CNT15_CNT  
LCD0  
EVTGEN0  
SMIF0_MAIN  
Serial Memory Interface #0  
LIN#0, main  
LIN0_MAIN  
LIN0_CH0_CH  
LIN#0, Channel #0  
LIN0_CH1_CH  
LIN#0, Channel #1  
CXPI0_MAIN  
CXPI#0, main  
CXPI0_CH0_CH  
CXPI#0, Channel #0  
CXPI0_CH1_CH  
CXPI#0, Channel #1  
CANFD0_CH0_CH  
CANFD0_CH1_CH  
CANFD1_CH0_CH  
CANFD1_CH1_CH  
CANFD0_MAIN  
CAN#0, Channel #0  
CAN#0, Channel #1  
CAN#1, Channel #0  
CAN#1, Channel #1  
CAN#0 main  
CANFD1_MAIN  
CAN#1 main  
CANFD0_BUF  
CAN#0 buffer  
CANFD1_BUF  
CAN#1 buffer  
SCB0  
Serial Communication Block#0  
Serial Communication Block#1  
Serial Communication Block#2  
Serial Communication Block#3  
Serial Communication Block#4  
Serial Communication Block#5  
Serial Communication Block#6  
Serial Communication Block#7  
Serial Communication Block#8  
Serial Communication Block#9  
Serial Communication Block#10  
Serial Communication Block#11  
TDM#0 TX Structure #0  
SCB1  
SCB2  
SCB3  
SCB4  
SCB5  
SCB6  
SCB7  
SCB8  
SCB9  
SCB10  
SCB11  
TDM0_TDM_STRUCT0_TDM_TX_STRUCT_TX  
TDM0_TDM_STRUCT1_TDM_TX_STRUCT_TX  
TDM#0 TX Structure #1  
Datasheet  
81  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Peripheral protection unit fixed structure pairs  
Table 23-1  
PPU fixed structure pairs (continued)  
Pair No.  
PPU fixed structure pair  
Address  
0x40818100  
0x40818300  
0x40828000  
0x40828100  
0x40828200  
0x40828300  
0x40828400  
0x40830000  
0x40838000  
0x40838100  
0x40888000  
0x40888100  
0x40888200  
0x40888300  
0x40888400  
0x4088C000  
0x40900000  
0x40901000  
0x40900800  
0x40900840  
0x40900880  
0x409008C0  
0x40900900  
0x40900940  
0x40900980  
0x409009C0  
0x40900A00  
0x40900A40  
0x40900A80  
0x40900AC0  
0x40900B00  
0x40900B40  
0x40900B80  
0x40900BC0  
0x40900C00  
0x40900C40  
0x40900C80  
0x40900CC0  
0x40900D00  
0x40900D40  
0x40900D80  
0x40900DC0  
0x40900E00  
0x40900E40  
0x40900E80  
Size  
Description  
TDM#0 RX Structure #0  
399  
400  
401  
402  
403  
404  
405  
406  
407  
408  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
432  
433  
434  
435  
436  
437  
438  
439  
440  
441  
442  
443  
TDM0_TDM_STRUCT0_TDM_RX_STRUCT_RX  
TDM0_TDM_STRUCT1_TDM_RX_STRUCT_RX  
SG0_SG_STRUCT0_TX  
0x00000100  
0x00000100  
0x00000100  
0x00000100  
0x00000100  
0x00000100  
0x00000100  
0x00000010  
0x00000100  
0x00000100  
0x00000100  
0x00000100  
0x00000100  
0x00000100  
0x00000100  
0x00000100  
0x00000400  
0x00000008  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
TDM#0 RX Structure #1  
SG#0 TX Structure #0  
SG#0 TX Structure #1  
SG#0 TX Structure #2  
SG#0 TX Structure #3  
SG#0 TX Structure #4  
PWM#0 Main  
SG0_SG_STRUCT1_TX  
SG0_SG_STRUCT2_TX  
SG0_SG_STRUCT3_TX  
SG0_SG_STRUCT4_TX  
PWM0_MAIN  
PWM0_TX0_TX  
PWM#0 TX0  
PWM0_TX1_TX  
PWM#0 TX1  
MIXER0_MIXER_SRC_STRUCT0_SRC  
MIXER0_MIXER_SRC_STRUCT1_SRC  
MIXER0_MIXER_SRC_STRUCT2_SRC  
MIXER0_MIXER_SRC_STRUCT3_SRC  
MIXER0_MIXER_SRC_STRUCT4_SRC  
MIXER0_MIXER_DST_STRUCT_DST  
PASS0_SAR0_SAR  
MIXER#0 Source Structure #0  
MIXER#0 Source Structure #1  
MIXER#0 Source Structure #2  
MIXER#0 Source Structure #3  
MIXER#0 Source Structure #4  
MIXER#0 Destination Structure  
PASS SAR#0  
PASS0_SAR1_SAR  
PASS SAR#1  
PASS0_SAR0_CH0_CH  
SAR#0, Channel #0  
SAR#0, Channel #1  
SAR#0, Channel #2  
SAR#0, Channel #3  
SAR#0, Channel #4  
SAR#0, Channel #5  
SAR#0, Channel #6  
SAR#0, Channel #7  
SAR#0, Channel #8  
SAR#0, Channel #9  
SAR#0, Channel #10  
SAR#0, Channel #11  
SAR#0, Channel #12  
SAR#0, Channel #13  
SAR#0, Channel #14  
SAR#0, Channel #15  
SAR#0, Channel #16  
SAR#0, Channel #17  
SAR#0, Channel #18  
SAR#0, Channel #19  
SAR#0, Channel #20  
SAR#0, Channel #21  
SAR#0, Channel #22  
SAR#0, Channel #23  
SAR#0, Channel #24  
SAR#0, Channel #25  
SAR#0, Channel #26  
PASS0_SAR0_CH1_CH  
PASS0_SAR0_CH2_CH  
PASS0_SAR0_CH3_CH  
PASS0_SAR0_CH4_CH  
PASS0_SAR0_CH5_CH  
PASS0_SAR0_CH6_CH  
PASS0_SAR0_CH7_CH  
PASS0_SAR0_CH8_CH  
PASS0_SAR0_CH9_CH  
PASS0_SAR0_CH10_CH  
PASS0_SAR0_CH11_CH  
PASS0_SAR0_CH12_CH  
PASS0_SAR0_CH13_CH  
PASS0_SAR0_CH14_CH  
PASS0_SAR0_CH15_CH  
PASS0_SAR0_CH16_CH  
PASS0_SAR0_CH17_CH  
PASS0_SAR0_CH18_CH  
PASS0_SAR0_CH19_CH  
PASS0_SAR0_CH20_CH  
PASS0_SAR0_CH21_CH  
PASS0_SAR0_CH22_CH  
PASS0_SAR0_CH23_CH  
PASS0_SAR0_CH24_CH  
PASS0_SAR0_CH25_CH  
PASS0_SAR0_CH26_CH  
Datasheet  
82  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Peripheral protection unit fixed structure pairs  
Table 23-1  
PPU fixed structure pairs (continued)  
Pair No.  
PPU fixed structure pair  
Address  
0x40900EC0  
0x40900F00  
0x40900F40  
0x40900F80  
0x40900FC0  
0x409F0000  
Size  
Description  
SAR#0, Channel #27  
444  
445  
446  
447  
448  
449  
PASS0_SAR0_CH27_CH  
PASS0_SAR0_CH28_CH  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00001000  
SAR#0, Channel #28  
SAR#0, Channel #29  
SAR#0, Channel #30  
SAR#0, Channel #31  
PASS0 SAR main  
PASS0_SAR0_CH29_CH  
PASS0_SAR0_CH30_CH  
PASS0_SAR0_CH31_CH  
PASS0_TOP  
Datasheet  
83  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Bus masters  
24  
Bus masters  
The Arbiter (part of flash controller) performs priority-based arbitration based on the master identifier. Each bus  
master has a dedicated 4-bit master identifier. This master identifier is used for bus arbitration and IPC function-  
ality.  
Table 24-1  
ID No.  
Bus masters for access and protection control  
Master ID  
Description  
0
1
2
3
4
CPUSS_MS_ID_CM0  
Master ID for Cortex®-M0+ CPU  
Master ID for Crypto  
CPUSS_MS_ID_CRYPTO  
CPUSS_MS_ID_DW0  
CPUSS_MS_ID_DW1  
CPUSS_MS_ID_DMAC  
Master ID for P-DMA#0  
Master ID for P-DMA#1  
Master ID for M-DMA#0  
14 CPUSS_MS_ID_CM4  
15 CPUSS_MS_ID_TC  
Master ID for Cortex®-M4 CPU  
Master ID for DAP Tap Controller  
Datasheet  
84  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Miscellaneous configuration  
25  
Miscellaneous configuration  
Table 25-1  
Miscellaneous configuration for CYT2CL devices  
Number/  
Sl. No.  
Configuration  
Description  
instances  
Number of clock paths. One for each of FLL, PLL, Direct  
and CSV  
0
SRSS_NUM_CLKPATH  
6
1
2
3
4
5
SRSS_NUM_HFROOT  
PERI_PC_NR  
6
8
Number of CLK_HFs roots present  
Number of protection contexts  
PERI_CLOCK_NR  
85  
11  
16  
4
Number of programmable clocks (outputs)  
Number of divide-by-8 clock dividers  
Number of divide-by-16 clock dividers  
Number of divide-by-16.5 clock dividers  
Number of divide-by-24.5 clock dividers  
Number of MPU regions in CM0+  
PERI_DIV_8_NR  
PERI_DIV_16_NR  
PERI_DIV_16_5_NR  
PERI_DIV_24_5_NR  
CPUSS_CM0P_MPU_NR  
CPUSS_CM4_MPU_NR  
6
7
8
11  
8
8
Number of MPU regions in CM4  
Number of 32-bit words in the IP internal memory  
buffer (to allow for a 256-B, 512-B, 1-KB, 2-KB, 4-KB,  
8-KB, 16-KB, and 32-KB memory buffer)  
9
CPUSS_CRYPTO_BUFF_SIZE  
2048  
4
10 CPUSS_FAULT_FAULT_NR  
11 CPUSS_IPC_IPC_NR  
Number of fault structures  
Number of IPC structures  
0 - Reserved for CM0+ access  
1 - Reserved for CM4 access  
2 - Reserved for DAP access  
Remaining for user purposes  
8
Number of EZ memory bytes. This memory is used in  
EZ mode, CMD_RESP mode and FIFO mode.  
Note: Only SCB0 supports EZ mode  
12 SCB0_EZ_DATA_NR  
256  
13 CPUSS_PROT_SMPU_STRUCT_NR  
14 TCPWM_TR_ONE_CNT_NR  
16  
1
Number of SMPU protection structures  
Number of input triggers per counter, routed to one  
counter  
Number of input triggers routed to all counters, based  
on the pin package  
15 TCPWM_TR_ALL_CNT_NR  
16 TCPWM_GRP_NR  
60  
3
Number of TCPWM#0 counter groups  
TCPWM_GRP_NR0_GRP_GRP_CNT  
17  
34  
Number of counters per TCPWM#0 Group #0  
_NR  
TCPWM_GRP_NR0_CNT_GRP_CNT  
Counter width in number of bits per TCPWM#0  
Group #0  
18  
16  
12  
16  
16  
32  
_WIDTH  
TCPWM_GRP_NR1_GRP_GRP_CNT  
19  
Number of counters per TCPWM#0 Group #1  
_NR  
TCPWM_GRP_NR1_CNT_GRP_CNT  
Counter width in number of bits per TCPWM#0  
Group #1  
20  
_WIDTH  
TCPWM_GRP_NR2_GRP_GRP_CNT  
21  
Number of counters per TCPWM#0 Group #2  
_NR  
TCPWM_GRP_NR2_CNT_GRP_CNT  
Counter width in number of bits per TCPWM#0  
Group #2  
22  
_WIDTH  
CANFD0_MRAM_SIZE / CANFD1_M-  
23  
16  
16  
Message RAM size in kB shared by all the channels  
Number of Event Generator comparator structures  
RAM_SIZE  
24 EVTGEN_COMP_STRUCT_NR  
Datasheet  
85  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Development support  
26  
Development support  
CYT2CL has a rich set of documentation, programming tools, and online resources to assist during the devel-  
opment process. Visit www.infineon.com to find out more.  
26.1  
Documentation  
A suite of documentation supports CYT2CL to ensure that you can find answers to your questions quickly. This  
section contains a list of some of the key documents.  
26.1.1  
Software user guide  
A step-by-step guide for using the sample driver library along with third-party IDEs such as IAR EWARM and GHS  
Multi.  
26.1.2  
Technical reference manual  
The technical reference manual (TRM) contains all the technical detail needed to use a CYT2CL device, including  
a complete description of all registers. The TRM is available in the documentation section at www.infineon.com.  
26.2  
Tools  
CYT2CL is supported on third-party development tool ecosystems such as IAR and GHS. CYT2CL is also supported  
by Infineon programming utilities for programming, erasing, or reading using Infineon’s MiniProg4 or Segger  
J-link. More details are available in the documentation section at www.infineon.com.  
Datasheet  
86  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
27  
Electrical specifications  
27.1  
Absolute maximum ratings  
Use of this device under conditions outside the Min and Max limits listed in Table 27-1 may cause permanent  
damage to the device. Exposure to conditions within the limits of Table 27-1 but beyond those of normal  
operation for extended periods of time may affect device reliability. The maximum storage temperature is 150°C  
in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When operated under condi-  
tions within the limits of Table 27-1 but beyond those of normal operation, the device may not operate to speci-  
fication.  
Power considerations  
The average chip-junction temperature, TJ, in °C, may be calculated using Equation 1:  
TJ = TA + PD  JA  
Equation. 1  
Where:  
TA is the ambient temperature in °C.  
JA is the package junction-to-ambient thermal resistance, in °C/W.  
θ
PD is the sum of PINT and PIO (PD = PINT + PIO).  
PINT is the chip internal power. (PINT = VDDD × IDD + VDDA_ADC × IVDDA  
)
PIO represents the power dissipation on input and output pins; user determined.  
For most applications, PIO < PINT and may be neglected.  
On the other hand, PIO may be significant if the device is configured to continuously drive external modules  
and/or memories.  
Datasheet  
87  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-1  
Absolute maximum ratings  
Details/  
Spec ID Parameter  
Description  
Min  
Typ  
Max  
Units  
conditions  
[35]  
SID10  
VDDD_ABS  
Power supply voltage (VDDD  
)
VSS – 0.3  
VSS + 6.0  
V
See Table 3-3 for  
assignment of ports to  
supply domains  
See Table 3-3 for  
assignment of ports to  
supply domains  
[35]  
SID10A  
SID10B  
SID10C  
VDDIO_GPIO_ABS  
VDDIO_SMC_ABS  
VDDIO_HSIO_ABS  
Power supply voltage (VDDIO_GPIO  
)
VSS – 0.3  
VSS – 0.3  
VSS + 6.0  
VSS + 6.0  
VSS + 6.0  
V
V
V
See Table 3-3 for  
assignment of ports to  
supply domains  
[35]  
Power supply voltage (VDDIO_SMC  
)
See Table 3-3 for  
assignment of ports to  
supply domains  
[35]  
Power supply voltage (VDDIO_HSIO  
Analog power supply voltage  
)
VSS – 0.3  
SID11  
SID12  
VDDA_ADC_ABS  
VREFH_ABS  
V
SSA_ADC – 0.3  
VSSA_ADC + 6.0  
VSSA_ADC + 6.0  
V
V
(VDDA_ADC)  
[35] Supply for SAR ADC  
SAR Analog reference voltage,  
HIGH[35]  
VSSA_ADC – 0.3  
VSSA_ADC – 0.3  
VSS – 0.3  
VREFH VDDA_ADC + 0.3 V  
SID12A  
SID13  
VREFL_ABS  
VCCD_ABS  
SAR Analog reference voltage,  
LOW[35]  
VSSA_ADC + 0.3  
VSS + 1.21  
V
V
V
Power supply voltage (VCCD  
)
See Table 3-3 for  
assignment of ports to  
supply domains  
SID15A  
VI_GPIO_ABS  
Input voltage[35]  
VSS – 0.5  
VDDIO_GPIO + 0.5  
See Table 3-3 for  
assignment of ports to  
supply domains  
SID15B  
SID15C  
SID16  
VI_SMC_ABS  
VI_HSIO_ABS  
VI_ADC_ABS  
VO_GPIO_ABS  
VO_SMC_ABS  
VO_HSIO_ABS  
Input voltage[35]  
VSS – 0.5  
VSS – 0.5  
VDDIO_SMC + 0.5  
VDDIO_HSIO + 0.5  
VDDA_ADC + 0.3  
VDDIO_GPIO + 0.3  
VDDIO_SMC + 0.3  
VDDIO_HSIO + 0.3  
V
V
V
V
V
V
See Table 3-3 for  
assignment of ports to  
supply domains  
Input voltage[35]  
See Table 3-3 for  
assignment of ports to  
supply domains  
Analog input voltage[35]  
Output voltage[35]  
Output voltage[35]  
Output voltage[35]  
VSSA_ADC – 0.3  
VSS – 0.3  
See Table 3-3 for  
assignment of ports to  
supply domains  
SID17A  
SID17B  
SID17C  
See Table 3-3 for  
assignment of ports to  
supply domains  
VSS – 0.3  
See Table 3-3 for  
assignment of ports to  
supply domains  
VSS – 0.3  
SID18  
|ICLAMP_ABS  
ICLAMP_ABS  
|ICLAMP_ABS  
|
Maximum clamp current[36, 37, 38, 39]  
Total maximum clamp current  
–5  
5
mA  
mA  
mA  
Applicable to GPIO pins  
SID18A  
Applicable to GPIO pins in  
total for VDDIO_GPIO  
–25  
–52  
25  
52  
SID18B  
|
Maximum clamp current[36, 37, 38, 39]  
Applicable to SMC I/O pins  
Applicable to SMC I/O pins  
clamping current occurred  
by sudden switching-off of  
inductive load (stepper  
motor coil) in total for  
VDDIO_SMC  
SID18C  
ICLAMP_ABS  
Total maximum clamp current  
–624  
624  
mA  
SID18D  
SID18E  
|ICLAMP_ABS  
|
Maximum clamp current[36, 37, 38, 39]  
Total maximum clamp current  
–5  
5
mA  
mA  
Applicable to HSIO_STDLN  
Applicable to I/O pins in  
total for VDDIO_HSIO  
ICLAMP_ABS  
–25  
25  
Notes  
35.These parameters are based on the condition that VSS = VSSA_ADC = 0.0 V.  
36.A current-limiting resistor must be provided such that the current at the I/O pin does not exceed rated values at any time, including  
during power transients. See Figure 27-4 for more information on the recommended circuit.  
37.VDDIO must be sufficiently loaded or protected to prevent the clamp current from pulling it above the normal operating range.  
38.Clamp current can be applied only when the part is powered, and for ports between each pair of VDDIO/VSSIO pins (excluding ADC  
pins, ECO_IN/OUT, LPECO_IN/LPECO_OUT, WCO_IN/OUT and XRES_L).  
39.When the conditions of [36], [37], [38] and SID18/A/B/C/D/E are met, |ICLAMP_ABS| supersedes VI_ABS  
.
Datasheet  
88  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-1  
Absolute maximum ratings (continued)  
Details/  
Spec ID Parameter  
Description  
Min  
Typ  
Max  
Units  
conditions  
LOW-level maximum output current  
for GPIO[40]  
SID20  
IOL1_GPIO_ABS  
IOL2_GPIO_ABS  
IOL3_GPIO_ABS  
IOL4_GPIO_ABS  
IOL_GPIO_ABS  
IOL_SMC_ABS  
3.5  
7
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Setting is 1 mA  
LOW-level maximum output current  
for GPIO[40]  
SID21  
Setting is 2 mA  
Setting is 5 mA  
Setting is 6 mA  
LOW-level maximum output current  
for GPIO[40]  
SID22  
10  
LOW-level maximum output current  
for GPIO[40]  
SID22A  
SID26  
10  
LOW-level total output current for  
GPIO[41]  
50  
LOW-level maximum output current  
for SMC[42]  
SID26A  
SID26B  
SID26I  
SID26G  
SID26H  
SID27  
52  
Setting is 30 mA at –40°C  
25°C < TA 105°C  
LOW-level total output current for  
SMC[43]  
IOL_SMC_ABS  
IOL_SMC_ABS  
IOL_HSIO_ABS  
IOL_HSIO_ABS  
IOH1_GPIO_ABS  
IOH2_GPIO_ABS  
IOH3_GPIO_ABS  
IOH3_GPIO_ABS  
IOH1_GPIO_ABS  
IOH_SMC_ABS  
IOH_SMC_ABS  
IOH_HSIO_ABS  
IOH_HSIO_ABS  
300  
450  
15  
LOW-level total output current for  
GPIO_SMC[43]  
–40°C TA 25°C  
LOW-level maximum output current  
for HSIO[44]  
LOW-level total output current for  
HSIO[45]  
150  
–3.5  
–7  
HIGH-level maximum output current  
for GPIO[40]  
Setting is 1 mA  
Setting is 2 mA  
Setting is 5 mA  
Setting is 6 mA  
HIGH-level maximum output current  
for GPIO[40]  
SID28  
HIGH-level maximum output current  
for GPIO[40]  
SID29  
–10  
–10  
–50  
–52  
–300  
–15  
–150  
HIGH-level maximum output current  
for GPIO[40]  
SID29A  
SID33  
HIGH-level total output current for  
GPIO[41]  
HIGH-level maximum output current  
for SMC[42]  
SID33A  
SID33B  
SID33G  
SID33H  
Setting is 30 mA at –40 °C  
HIGH-level total output current for  
SMC[43]  
HIGH-level maximum output current  
for HSIO[44]  
HIGH-level total output current for  
HSIO[45]  
SID34_3  
SID36  
PD  
Power dissipation  
1800  
105  
150  
150  
mW  
°C  
°C  
°C  
V
TA  
Operating ambient temperature  
Storage temperature  
–40  
–55  
–40  
2000  
For S-grade devices  
SID38  
TSTG  
TJ  
SID39  
Operating junction temperature  
SID39A  
VESD_HBM  
Electrostatic discharge human body  
model  
SID39B1  
SID39B2  
SID39C  
VESD_CDM1  
VESD_CDM2  
ILU  
Electrostatic discharge charged  
device model for corner pins  
750  
500  
V
V
Electrostatic discharge charged  
device model for all other pins  
The maximum pin current the device  
can tolerate before triggering a  
latch-up  
–100  
100  
mA  
Notes  
40.The maximum output current is the peak current flowing through any one GPIO I/O.  
41.The total output current is the maximum current flowing through all GPIO I/Os (GPIO_STD, and GPIO_ENH).  
42.The maximum output current is the peak current flowing through any one SMC I/O.  
43.The total output current is the maximum current flowing through all SMC I/Os (GPIO_SMC).  
44.The maximum output current is the peak current flowing through any one HSIO I/O.  
45.The total output current is the maximum current flowing through all HSIO I/Os (HSIO_STDLN)  
Datasheet  
89  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
VDDD or VDDIO  
Current  
limiting  
resistor  
Protection  
Diode  
+B input  
Protection  
Diode  
VSS  
Example of a recommended circuit[46]  
Figure 27-1  
WARNING:  
Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current, or  
temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings.  
Note  
46.+B is the positive battery voltage around 45 V.  
Datasheet  
90  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
27.2  
Device-level specifications  
Table 27-2  
Recommended operating conditions  
Spec ID Parameter  
Description  
Min  
Typ  
Max  
Units Details/conditions  
Recommended operating conditions  
SID40  
VDDD  
VDDA_ADC  
VDDIO_GPIO  
VDDIO_SMC  
,
Power supply voltage[47]  
2.7[48]  
5.5[49]  
V
,
,
SID40M VDDD  
Power supply voltage  
2.7[48]  
3
3.6  
5.5  
V
V
When using I2S or  
TDM or (PCM)PWM  
V
for this product,  
SID40A VDDIO_EFP  
Power supply voltage for  
eFuse programming[50]  
DDD  
when programming  
eFuses  
SID40B VDDIO_HSIO Power supply voltage  
3.0  
3.76  
3.3  
10  
3.6  
11  
V
µF  
SID41A  
CS1  
Smoothing capacitor[51, 52]  
VCCD  
VREF_L  
CS1  
VSS  
VSSA  
Single-point connection  
between analog and  
digital grounds  
Figure 27-2  
Smoothing capacitor  
Notes  
47.Ensure VDDIO_GPIO 0.8 × VDDA_ADC when SARMUX0 is enabled.  
48.3.0 V ±10% is supported with a lower BOD setting option. This setting provides robust protection for internal timing but BOD reset  
occurs at a voltage below the specified operating conditions. A higher BOD setting option is available (consistent with down to 3.0 V)  
and guarantees that all operating conditions are met.  
49.5.0 V ±10% is supported with a higher OVD setting option. This setting provides robust protection for internal and interface timing,  
but OVD reset occurs at a voltage above the specified operating conditions. A lower OVD setting option is available (consistent with  
up to 5.0 V) and guarantees that all operating conditions are met. Voltage overshoot to a higher OVD setting range for VDDD and  
VDDA_ADC is permissible, provided the duration is less than 2 hours cumulated. Note that during overshoot voltage condition electrical  
parameters are not guaranteed.  
50.eFuse programming must be executed with the part in a “quiet” state, with minimal activity (preferably only JTAG or a single LIN/CAN  
channel on VDDD domain).  
51.Smoothing capacitor, CS1 is required per chip (not per VCCD pin). The VCCD pins must be connected together to ensure a  
low-impedance connection (see the requirement in Figure 27-2).  
52.Capacitors used for power supply decoupling or filtering are operated under a continuous DC-bias. Many capacitors used with DC  
power across them provide less than their target capacitance, and their capacitance is not constant across their working voltage  
range. When selecting capacitors for use with this device, ensure that the selected components provide the required capacitance  
under the specific operating conditions of temperature and voltage used in your design. While the temperature coefficient is normally  
found within a parts catalog (such as, X7R, C0G, Y5V), the matching voltage coefficient may only be available on the component  
datasheet or direct from the manufacturer. Use of components that do not provide the required capacitance under the actual  
operating conditions may cause the device to operate to less than datasheet specifications.  
Datasheet  
91  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
27.3  
DC specifications  
Table 27-3  
DC specifications, CPU current and transition time specifications  
All specifications are valid for –40°C T 105°C and for 2.7 V to 5.5 V except where noted.  
A
Spec ID Parameter  
Description  
Min Typ Max Units  
Details/conditions  
SID56_2  
I
Execute from flash;  
Cortex®-M4 CPU in Active  
mode, all peripherals  
enabled  
52  
140  
mA Typ: T = 25°C, V  
= 5.0 V,  
DDD  
DD1  
A
process typ (TT)  
Max: T = 105°C, T = 150°C, V  
= 5.5 V,  
A
J
DDD  
process worst (FF)  
(Maximum expected V  
J
when  
DDD  
T = 150°C is reached due to self-heating)  
SID50A_2  
I
Cortex®-M4/M0+ CPUs in  
Sleep mode  
7
26  
mA Clocks running at max frequency, All  
CPUs in Sleep mode.  
DD1  
All peripherals, peripheral clocks,  
interrupts, CSV, DMA, ECO are disabled.  
No IO toggling.  
Typ: T = 25°C, V  
= 5.0 V,  
A
DDD  
process typ (TT)  
Max: T = 85°C, V  
= 5.5 V,  
A
DDD  
process worst (FF)  
SID50C_2  
I
Cortex®-M4/M0+ CPUs in  
Sleep mode (room temp)  
12  
mA Clocks running at max frequency, All  
CPUs in Sleep mode. All peripherals,  
peripheral clocks, interrupts, CSV, DMA,  
ECO are disabled. No I/O toggling.  
DD1  
Max: T = 25°C, V  
= 5.5 V,  
DDD  
A
process worst (FF)  
SID59_2  
SID59A_2  
SID60_2  
SID64_2  
I
I
I
I
32 KB SRAM retention,  
LPECO(4 MHz) operation  
in DeepSleep mode  
140  
µA Deep Sleep Mode (RTC at 32 kHz and  
EVTGEN operating, all other peripherals  
off, CAN MRAM disabled),  
DD_DS32A  
DD_DS32A  
DD_DS32B  
DD_DS32C  
Typ: T = 25°C, V  
= 5.0 V,  
DDD  
A
process typ (TT)  
32 KB SRAM retention,  
LPECO(4 MHz) operation  
in DeepSleep mode  
(room temp)  
240  
920  
750  
µA Deep Sleep Mode (RTC at 32 kHz and  
EVTGEN operating, all other peripherals  
off, CAN MRAM disabled),  
Max: V  
= 5.5 V, T = 25°C,  
A
DDD  
process worst (FF)  
32 KB SRAM retention,  
LPECO(4 MHz) operation  
in DeepSleep mode  
µA DeepSleep Mode (RTC at 32 kHz and  
Event generator operating, all other  
peripherals off, CAN MRAM disabled),  
Max: V  
= 5.5 V, T = 85°C,  
A
DDD  
process worst (FF)  
32 KB SRAM retention,  
ILO operation in  
40  
µA DeepSleep Mode (RTC at 32 kHz and  
Event generator operating, all other  
peripherals off, CAN MRAM disabled)  
DeepSleep mode  
Typ: T = 25°C, V  
= 5.0 V,  
A
DDD  
process typ (TT)  
Max: T = 85°C, V  
= 5.5 V,  
A
DDD  
process worst (FF)  
SID64A_2  
I
32 KB SRAM retention,  
ILO operation in  
DeepSleep mode (room  
temp)  
140  
µA DeepSleep Mode (RTC at 32kHz and  
Event generator operating, all other  
peripherals off, CAN MRAM disabled)  
DD_DS32D  
Max: T = 25°C, V  
= 5.5 V,  
DDD  
A
process worst (FF)  
Hibernate Mode  
SID66  
I
V
current,  
20  
40  
µA T = 25°C using ILO,  
DD_HIB1  
DDD  
A
Hibernate Mode + RTC at  
32.768 KHz  
V
= 5.0 V  
DDD  
SID66A  
I
V
current,  
µA T = 25°C, using WCO,  
A
DD_HIB2  
DDD  
Hibernate Mode + RTC at  
32.768 KHz  
V
= 5.0 V  
DDD  
Datasheet  
92  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-3  
DC specifications, CPU current and transition time specifications (continued)  
All specifications are valid for –40°C T 105°C and for 2.7 V to 5.5 V except where noted.  
A
Spec ID Parameter  
Description  
Min Typ Max Units  
Details/conditions  
SID66B  
SID66C  
SID66D  
I
I
I
V
current,  
75  
µA T = 85°C, using WCO,  
DD_HIB3  
DD_HIB4  
DD_HIB5  
DDD  
A
Hibernate Mode + RTC at  
32.768 KHz  
V
= 5.5 V  
DDD  
V
current,  
150  
215  
µA T = 25°C using LPECO 4 MHz, 20-pF load  
A
DDD  
Hibernate Mode + RTC at  
32.768 KHz  
of LPECO, V  
= 5.0 V  
DDD  
V
current,  
µA T = 85°C, using LPECO 4 MHz, 20-pF load  
A
DDD  
Hibernate Mode + RTC at  
32.768 KHz  
of LPECO, V  
= 5.5 V  
DDD  
Power Mode Transition Times  
SID69  
t
Power down time from  
ACTIVE to DEEPSLEEP  
(using the internal  
regulator)  
2.5  
26  
µs When IMO is already running and all  
HFCLK roots are at least 8 MHz. HFCLK  
roots that are slower than this will  
require additional time to turn off.  
ACT_DS  
SID67  
t
DeepSleep to Active  
transition time (IMO  
clock, flash execution)  
µs When using 8 MHz IMO. Measured from  
wakeup interrupt during DeepSleep  
until Flash execution.  
DS_ACT  
T –5°C  
A
Note: At temperatures below –5°C the  
DeepSleep to Active transition time can be  
higher than the max time indicated by as  
much as 20 µs  
SID67A  
SID67B  
t
t
DeepSleep to Active  
transition time (FLL  
clock, flash execution)  
26  
60  
µs When using FLL to generate 96 MHz from  
the 8-MHz IMO. Measured from wakeup  
interrupt during DeepSleep until Flash  
execution.  
DS_ACT_FLL  
T –5°C  
A
Note: At temperatures below –5°C the  
DeepSleep to Active transition time can be  
higher than the max time indicated by as  
much as 20 µs  
DeepSleep to Active  
transition time (PLL  
clock)  
µs When using PLL to generate 96 MHz from  
the 8-MHz IMO. Measured from wakeup  
interrupt during DeepSleep until PLL  
locks.  
DS_ACT_PLL  
T –5°C  
A
Note: At temperatures below –5°C the  
DeepSleep to Active transition time can be  
higher than the max time indicated by as  
much as 20 µs  
SID68  
t
t
t
Release time from HV  
reset (POR, BOD, OVD,  
OCD, WDT, Hibernate  
wakeup, or XRES_L) until  
CM0+ begins executing  
ROM boot  
8
265  
10  
µs Without boot runtime.  
Guaranteed by design  
HIB_ACT  
LVR_ACT  
LVR_DS  
SID68A  
SID68B  
Release time from LV  
reset (Fault, Internal  
system reset, MCWDT, or  
CSV) during Active/Sleep  
until CM0+ begins  
µs Without boot runtime.  
Guaranteed by design  
executing ROM boot  
Release time from LV  
reset (Fault, or MCWDT)  
during DeepSleep until  
CM0+ begins executing  
ROM boot  
15  
µs Without boot runtime.  
Guaranteed by design  
Datasheet  
93  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-3  
DC specifications, CPU current and transition time specifications (continued)  
All specifications are valid for –40°C T 105°C and for 2.7 V to 5.5 V except where noted.  
A
Spec ID Parameter  
Description  
Min Typ Max Units  
Details/conditions  
SID79  
t
Pulse width for wakeup  
from Hibernate mode on  
HIBERANTE_WAKEUP  
pins  
90  
ns Guaranteed by design  
HIBWAKE-  
UP_PW  
SID80A  
SID80B  
SID81A  
t
t
t
ROM boot startup time or  
wakeup time from  
hibernate in NORMAL  
protection state  
1700  
2300  
190  
µs FAST_BOOT = 1,  
CM0+ clocked at 100 MHz  
RB_N  
RB_S  
FB  
ROM boot startup time or  
wakeup time from  
hibernate in SECURE  
protection state  
µs FAST_BOOT = 1,  
CM0+ clocked at 100 MHz  
Flash boot startup time  
or wakeup time from  
hibernate in  
µs FAST_BOOT = 1,  
TOC2_FLAGS=0x2CF,  
CM0+ clocked at 100 MHz,  
Listen window = 0 ms  
NORMAL/SECURE  
protection state  
FAST_BOOT = 1, TOC2_FLAGS = 0x24F, CM0+  
clocked at 100 MHz, Listen window = 0 ms,  
Public key exponent e = 0x010001,  
App size is 64 KB with the last  
SID81B  
SID81C  
t
t
Flash boot with app  
authentication time in  
NORMAL/SECURE  
protection state  
5000  
8150  
µs  
FB_A  
FB_B  
256 bytes being a digital signature in  
RSASSA-PKCS1-v1.5 Valid for RSA2K.  
FAST_BOOT = 1, TOC2_FLAGS = 0x24F, CM0+  
clocked at 100 MHz, Listen window = 0 ms,  
Public key exponent e = 0x010001,  
App size is 64 KB with the last  
Flash boot with app  
authentication time in  
NORMAL/SECURE  
protection state  
µs  
384 bytes being a digital signature in  
RSASSA-PKCS1-v1.5 Valid for RSA3K.  
Regulator Specifications  
SID600  
V
Internal regulator core  
supply voltage (transient  
range)  
1.05 1.1  
1.15  
150  
20  
V
CCD  
SID601_2  
SID602  
I
I
I
I
Regulator operating  
current in  
80  
1.5  
µA Guaranteed by design  
µA Guaranteed by design  
DDD_ACT  
DDD_DPSLP  
RUSH  
Active/Sleep mode  
Regulator operating  
current in  
DeepSleep mode  
SID603_2  
SID604_2  
In-rush current  
375  
150  
mA Average V  
current until C  
DDD S1  
(connected to VCCD pin) is charged after  
Active regulator is turned on.  
Internal regulator output  
current for operation  
mA Without triggering OVD  
OUT  
Datasheet  
94  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
27.4  
Reset specifications  
Table 27-4  
XRES_L Reset  
Spec ID Parameter  
Description  
Min  
Typ  
Max  
Units  
Details/conditions  
XRES_L DC specifications  
SID73  
IDD_XRES  
IDD when XRES_L  
asserted  
1.7  
mA Typ: TA = 25°C,  
VDDD = 5 V,  
process typ (TT)  
Max: TA = 105°C,  
VDDD = 5.5 V,  
process worst (FF)  
SID74  
SID75  
VIH  
VIL  
Input voltage HIGH  
threshold  
0.7 × VDDD  
V
V
CMOS input  
Input voltage LOW  
threshold  
0.3 × VDDD  
CMOS input  
SID76  
SID77  
SID78  
RPULLUP  
CIN  
Pull-up resistor  
7
20  
5
kΩ  
pF  
V
Input capacitance  
VHYSXRES  
Input voltage hysteresis 0.05 × VDDD  
XRES_L AC specifications  
SID70  
tXRES_ACT  
XRES_L release to Active  
transition time  
265  
µs Without boot runtime.  
Guaranteed by design  
SID71  
SID72  
tXRES_PW  
tXRES_FT  
XRES_L pulse width  
5
µs  
ns  
Pulse suppression width  
100  
release  
HV/LV reset  
System clock  
System reset  
release  
RESET  
ACTIVE  
4
MODES  
1
2
3
1:  
2:  
3:  
4:  
SID68/68A/68B: Time from HV/LV reset release until CM0+ begins executing ROM boot  
SID80A/80B: ROM boot code operation  
SID81A/81B/81C: Flash boot code operation  
User code operation  
Figure 27-3  
Reset sequence  
Datasheet  
95  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
27.5  
I/O Specifications  
Table 27-5  
I/O specifications  
Spec ID Parameter  
Description  
Min  
Typ  
Max  
Units  
Details/conditions  
VDDIO_GPIO (standard 5 V I/O) Specifications for GPIO_STD ports except GPIO_ENH  
SID650  
SID651  
SID651D  
SID652  
SID652D  
SID653  
SID653D  
SID654  
SID654D  
SID655  
SID655D  
SID656  
SID656D  
SID657  
SID657D  
VOL1  
VOL2  
VOL2  
VOL3  
VOL3  
VOL4  
VOL4  
VOH1  
VOH1  
VOH2  
VOH2  
VOH3  
VOH3  
VOH4  
VOH4  
Output voltage LOW level  
Output voltage LOW level  
Output voltage LOW level  
Output voltage LOW level  
Output voltage LOW level  
Output voltage LOW level  
Output voltage LOW level  
0.6  
V
IOL = 6 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b00,  
VDDIO_GPIO 4.5 V  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
IOL = 5 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b0X,  
VDDIO_GPIO 4.5 V  
IOL = 2 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b0X,  
2.7 V VDDIO_GPIO < 4.5 V  
IOL = 2 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b10,  
V
DDIO_GPIO 4.5 V  
IOL = 1 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b10,  
2.7 V VDDIO_GPIO < 4.5 V  
IOL = 1 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b11,  
V
DDIO_GPIO 4.5 V  
IOL = 0.5 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b11,  
2.7 V VDDIO_GPIO < 4.5 V  
Output voltage HIGH level VDDIO_GPIO  
0.5  
IOH = –5 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b00,  
V
DDIO_GPIO 4.5 V  
Output voltage HIGH level VDDIO_GPIO  
0.5  
IOH = –2 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b00,  
2.7 V VDDIO_GPIO < 4.5 V  
Output voltage HIGH level VDDIO_GPIO  
0.5  
IOH = –5 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b01,  
V
DDIO_GPIO 4.5 V  
Output voltage HIGH level VDDIO_GPIO  
0.5  
IOH = –2 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b01,  
2.7 V VDDIO_GPIO < 4.5 V  
Output voltage HIGH level VDDIO_GPIO  
0.5  
IOH = –2 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b10,  
V
DDIO_GPIO 4.5 V  
Output voltage HIGH level VDDIO_GPIO  
0.5  
IOH = –1 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b10,  
2.7 V VDDIO_GPIO < 4.5 V  
Output voltage HIGH level VDDIO_GPIO  
0.5  
IOH = –1 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b11,  
V
DDIO_GPIO 4.5 V  
Output voltage HIGH level VDDIO_GPIO  
0.5  
IOH = –0.5 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b11,  
2.7 V VDDIO_GPIO < 4.5 V  
SID658  
SID659  
SID660  
RPD  
Pull-down resistance  
Pull-up resistance  
25  
25  
50  
50  
100  
100  
kΩ  
kΩ  
V
RPU  
VIH_CMOS  
Input voltage HIGH  
0.7 ×  
CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0  
CFG_IN/VTRIP_SEL<0:0> = 0b0  
threshold in CMOS mode  
VDDIO_GPIO  
SID661  
SID662  
VIH_TTL  
Input voltage HIGH  
2
V
V
CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0  
CFG_IN/VTRIP_SEL<0:0> = 0b1  
threshold in TTL mode  
VIH_AUTO  
Input voltage HIGH  
0.8 ×  
CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b1  
CFG_IN/VTRIP_SEL<0:0> = 0b0  
4.5 V VDDIO_GPIO 5.5 V  
threshold in AUTO mode  
VDDIO_GPIO  
SID663  
SID664  
SID665  
VIL_CMOS  
VIL_TTL  
Input voltage LOW  
0.3 ×  
V
V
V
CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0  
CFG_IN/VTRIP_SEL<0:0> = 0b0  
threshold in CMOS mode  
VDDIO_GPIO  
Input voltage LOW  
0.8  
CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0  
CFG_IN/VTRIP_SEL<0:0> = 0b1  
threshold in TTL mode  
VIL_AUTO  
Input voltage LOW  
threshold in AUTO mode  
0.5 ×  
VDDIO_GPIO  
CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b1  
CFG_IN/VTRIP_SEL<0:0> = 0b0  
4.5 V VDDIO_GPIO 5.5 V  
SID666  
VHYST_CMOS  
Hysteresis in CMOS mode  
0.05 ×  
V
CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0  
CFG_IN/VTRIP_SEL<0:0> = 0b0  
VDDIO_GPIO  
Datasheet  
96  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-5  
I/O specifications (continued)  
Spec ID Parameter  
Description  
Hysteresis in AUTO mode  
Min  
Typ  
Max  
Units  
Details/conditions  
CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b1  
CFG_IN/VTRIP_SEL<0:0> = 0b0  
4.5 V VDDIO_GPIO 5.5 V  
SID668  
VHYST_AUTO  
0.05 ×  
V
VDDIO_GPIO  
SID669  
SID670  
Cin  
IIL  
Input pin capacitance  
Input leakage current  
5
1
pF  
µA  
Test condition: 10/100MHz  
–1  
VDDIO_GPIO = VDDD = VDDA_ADC = 5.5 V,  
V
SS < VI < VDDIO_GPIO  
-40°C TA 105°C  
This is valid for the pin which do not have  
ADC input functionality.  
SID671  
SID672  
tR_F_FAST  
tR_F_FAST  
Rise time or fall time (10%  
1
1
10  
20  
ns  
ns  
CFG_OUT/DRIVE_SEL<1:0> = 0b00, 20-pF  
load, entire VDDIO_GPIO range  
to 90% of VDDIO_GPIO  
)
Rise time or fall time (10%  
to 90% of VDDIO_GPIO  
CFG_OUT/DRIVE_SEL<1:0> = 0b00, 50-pF  
load, entire VDDIO_GPIO range,  
Guaranteed by design  
)
SID673  
SID674  
SID675  
tR_F_FAST  
tR_F_FAST  
tR_F_FAST  
Rise time or fall time (10%  
to 90% of VDDIO_GPIO  
1
1
1
20  
20  
20  
ns  
ns  
ns  
CFG_OUT/DRIVE_SEL<1:0> = 0b01, 20-pF  
load, entire VDDIO_GPIO range,  
Guaranteed by design  
)
Rise time or fall time (10%  
to 90% of VDDIO_GPIO  
CFG_OUT/DRIVE_SEL<1:0> = 0b10, 10-pF  
load, entire VDDIO_GPIO range,  
Guaranteed by design  
)
Rise time or fall time (10%  
to 90% of VDDIO_GPIO  
CFG_OUT/DRIVE_SEL<1:0> = 0b11, 6-pF  
load, entire VDDIO_GPIO range,  
Guaranteed by design  
)
GPIO_SMC Specifications (Stepper Motor Control, 5 V I/Os)  
SID650A  
SID651A  
SID651E  
SID652A  
SID652E  
SID653A  
SID653E  
SID653B  
VOL2  
VOL2  
VOL2  
VOL3  
VOL3  
VOL4  
VOL4  
VOL5  
Output voltage LOW level  
Output voltage LOW level  
Output voltage LOW level  
Output voltage LOW level  
Output voltage LOW level  
Output voltage LOW level  
Output voltage LOW level  
Output voltage LOW level  
0.6  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
V
V
V
V
V
V
V
V
IOL = 6 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b01,  
V
DDIO_SMC 4.5 V  
IOL = 5 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b01,  
V
DDIO_SMC 4.5 V  
IOL = 2 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b01,  
2.7 V VDDIO_SMC < 4.5 V  
IOL = 2 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b10,  
V
DDIO_SMC 4.5 V  
IOL = 1 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b10,  
2.7 V VDDIO_SMC < 4.5 V  
IOL = 1 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b11,  
V
DDIO_SMC 4.5 V  
IOL = 0.5 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b11,  
2.7 V VDDIO_SMC < 4.5 V  
IOL = 30 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b00,  
CFG_OUT/SLOW<0:0> = 0b1,  
25°C TA 105°C,  
V
DDIO_SMC 4.5 V  
SID653C  
SID653H  
VOL5  
Output voltage LOW level  
Output voltage LOW level  
0.5  
0.5  
V
V
IOL = 40 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b00,  
CFG_OUT/SLOW<0:0> = 0b1,  
–30°C TA 25°C,  
VDDIO_SMC 4.5 V  
VOL5  
IOL = 52 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b00,  
CFG_OUT/SLOW<0:0> = 0b1,  
–40°C TA –30°C,  
VDDIO_SMC 4.5 V  
SID654A  
SID654E  
VOH2  
Output voltage HIGH level VDDIO_SMC  
0.5  
V
V
IOH = –5 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b01,  
V
DDIO_SMC 4.5 V  
VOH2  
Output voltage HIGH level VDDIO_SMC  
0.5  
IOH = –2 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b01,  
2.7 V VDDIO_SMC < 4.5 V  
Datasheet  
97  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-5  
I/O specifications (continued)  
Description  
Spec ID Parameter  
Min  
Typ  
Max  
Units  
Details/conditions  
SID656A  
SID656E  
SID657A  
SID657E  
SID657B  
VOH3  
VOH3  
VOH4  
VOH4  
VOH5  
Output voltage HIGH level VDDIO_SMC  
V
IOH = –2 mA,  
0.5  
CFG_OUT/DRIVE_SEL<1:0> = 0b10,  
VDDIO_SMC 4.5 V  
Output voltage HIGH level VDDIO_SMC  
0.5  
V
V
V
V
IOH = –1 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b10,  
2.7 V VDDIO_SMC < 4.5 V  
Output voltage HIGH level VDDIO_SMC  
0.5  
IOH = –1 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b11,  
VDDIO_SMC 4.5 V  
Output voltage HIGH level VDDIO_SMC  
0.5  
IOH = –0.5 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b11,  
2.7 V VDDIO_SMC < 4.5 V  
Output voltage HIGH level VDDIO_SMC  
0.5  
IOL = –30 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b00,  
CFG_OUT/SLOW<0:0> = 0b1,  
25°C TA 105°C,  
VDDIO_SMC 4.5 V  
SID657C  
SID657I  
VOH5  
Output voltage HIGH level VDDIO_SMC  
0.5  
V
V
IOL = –40 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b00,  
CFG_OUT/SLOW<0:0> = 0b1,  
–30°C TA 25°C,  
VDDIO_SMC 4.5 V  
VOH5  
Output voltage HIGH level VDDIO_SMC  
0.5  
IOL = –52 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b00,  
CFG_OUT/SLOW<0:0> = 0b1,  
–40°C TA –30°C,  
V
DDIO_SMC 4.5 V  
SID658A  
SID659A  
SID659B  
SID660A  
RPD  
Pull-down resistance  
Pull-up resistance  
25  
25  
50  
50  
100  
100  
2.55  
kΩ  
kΩ  
V
RPU  
VOUT  
VIH_CMOS  
Mid range voltage level  
2.45  
0.7 ×  
CFG/DRIVE_MODE<2:0> = 0b001  
Input voltage HIGH  
V
CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0  
CFG_IN/VTRIP_SEL<0:0> = 0b0  
threshold in CMOS mode  
VDDIO_SMC  
SID661A  
SID662A  
VIH_TTL  
Input voltage HIGH  
2.0  
V
V
CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0  
CFG_IN/VTRIP_SEL<0:0> = 0b1  
threshold in TTL mode  
VIH_AUTO  
Input voltage HIGH  
threshold in AUTO mode  
0.8 ×  
VDDIO_SMC  
CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b1  
CFG_IN/VTRIP_SEL<0:0> = 0b0  
4.5 V VDDIO_SMC 5.5 V  
SID663A  
SID664A  
SID665A  
VIL_CMOS  
VIL_TTL  
Input voltage LOW  
0.3 × VDDIO_SMC  
0.8  
V
V
V
CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0  
CFG_IN/VTRIP_SEL<0:0> = 0b0  
threshold in CMOS mode  
Input voltage LOW  
CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0  
CFG_IN/VTRIP_SEL<0:0> = 0b1  
threshold in TTL mode  
VIL_AUTO  
Input voltage LOW  
0.5 × VDDIO_SMC  
CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b1  
CFG_IN/VTRIP_SEL<0:0> = 0b0  
4.5 V VDDIO_SMC 5.5 V  
threshold in AUTO mode  
SID666A  
SID668A  
VHYST_CMOS  
VHYST_AUTO  
Hysteresis in CMOS mode  
Hysteresis in AUTO mode  
0.05 ×  
V
V
CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0  
CFG_IN/VTRIP_SEL<0:0> = 0b0  
VDDIO_SMC  
0.05 ×  
VDDIO_SMC  
CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b1  
CFG_IN/VTRIP_SEL<0:0> = 0b0  
4.5 V VDDIO_SMC 5.5 V  
SID669A  
SID670A  
CIN  
IIL  
Input pin capacitance  
Input leakage current  
7
2
pF  
µA  
For 10 MHz and 100 MHz  
–2  
VDDIO_SMC = VDDD = 5.5 V,  
V
SS < VI < VDDIO_SMC  
–40°C TA 105°C  
This is valid for the pin which do not have  
ADC input functionality.  
SID673A  
SID674A  
tR_F_FAST  
Rise time or fall time (10%  
1
1
20  
20  
ns  
ns  
5-mA drive strength  
to 90% of VDDIO_SMC  
)
20-pF load, CFG_OUT/DRIVE_SEL<1:0> =  
0b01, CFG_OUT/SLOW<0:0> = 0b0,  
guaranteed by design  
tR_F_FAST  
Rise time or fall time (10%  
to 90% of VDDIO_SMC  
2-mA drive strength  
)
10-pF load, CFG_OUT/DRIVE_SEL<1:0> =  
0b10, CFG_OUT/SLOW<0:0> = 0b0,  
guaranteed by design  
Datasheet  
98  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-5  
I/O specifications (continued)  
Spec ID Parameter  
Description  
Min  
1
Typ  
Max  
20  
Units  
ns  
Details/conditions  
1-mA drive strength  
6-pF load, CFG_OUT/DRIVE_SEL<1:0> =  
0b11, CFG_OUT/SLOW<0:0> = 0b0,  
guaranteed by design  
SID675A  
SID676A  
tR_F_FAST  
Rise time or fall time (10%  
to 90% of VDDIO_SMC  
)
tR_F_SMC_SLOW  
Fall time (10% to 90% of  
VDDIO_SMC  
15  
80  
ns  
30-mA drive strength  
No load,  
)
CFG_OUT/DRIVE_SEL<1:0> = 0b00,  
CFG_OUT/SLOW<0:0> = 0b1  
SID676B  
SID676C  
tR_F_SMC_SLOW  
Rise time or fall time (10%  
to 90% of VDDIO_SMC  
25  
100  
200  
ns  
ns  
30-mA drive strength  
85-pF load, CFG_OUT/DRIVE_SEL<1:0> =  
0b00, CFG_OUT/SLOW<0:0> = 0b1  
)
tR_F_SMC_SLOW  
Rise time or fall time (10%  
to 90% of VDDIO_SMC  
100  
30-mA drive strength  
2.7-nF load, CFG_OUT/DRIVE_SEL<1:0> =  
0b00, CFG_OUT/SLOW<0:0> = 0b1  
)
GPIO_ENH Specifications  
SID650C  
SID650D  
SID651C  
SID652C  
SID652F  
SID653F  
SID653G  
SID654C  
SID654G  
SID655C  
SID656C  
SID657G  
SID657H  
VOL1  
VOL1  
VOL1  
VOL3  
VOL3  
VOL4  
VOL4  
VOH1  
VOH1  
VOH3  
VOH3  
VOH4  
VOH4  
Output voltage LOW level  
Output voltage LOW level  
Output voltage LOW level  
Output voltage LOW level  
Output voltage LOW level  
Output voltage LOW level  
Output voltage LOW level  
0.6  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
V
V
V
V
V
V
V
V
V
V
V
V
V
IOL = 6 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b0X,  
V
DDIO_GPIO 4.5 V  
IOL = 5 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b0X,  
V
DDIO_GPIO 4.5 V  
IOL = 2 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b0X,  
2.7 V VDDIO_GPIO < 4.5 V  
IOL = 2 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b10,  
V
DDIO_GPIO 4.5 V  
IOL = 1 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b10,  
2.7 V VDDIO_GPIO < 4.5 V  
IOL = 1 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b11,  
V
DDIO_GPIO 4.5 V  
IOL = 0.5 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b11,  
2.7 V VDDIO_GPIO < 4.5 V  
Output voltage HIGH level VDDIO_GPIO  
0.5  
IOH = –5 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b0X,  
V
DDIO_GPIO 4.5 V  
Output voltage HIGH level VDDIO_GPIO  
0.5  
IOH = –2 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b0X,  
2.7 V VDDIO_GPIO < 4.5 V  
Output voltage HIGH level VDDIO_GPIO  
0.5  
IOH = –2 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b10,  
V
DDIO_GPIO 4.5 V  
Output voltage HIGH level VDDIO_GPIO  
0.5  
IOH = –1 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b10,  
2.7 V VDDIO_GPIO < 4.5 V  
Output voltage HIGH level VDDIO_GPIO  
0.5  
IOH = –1 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b11,  
V
DDIO_GPIO 4.5 V  
Output voltage HIGH level VDDIO_GPIO  
0.5  
IOH = –0.5 mA,  
CFG_OUT/DRIVE_SEL<1:0> = 0b11,  
2.7 V VDDIO_GPIO < 4.5 V  
SID658C  
SID659C  
SID660C  
RPD  
Pull-down resistance  
Pull-up resistance  
25  
25  
50  
50  
100  
100  
kΩ  
kΩ  
V
RPU  
VIH_CMOS  
Input voltage HIGH  
0.7 ×  
CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0  
CFG_IN/VTRIP_SEL<0:0> = 0b0  
threshold in CMOS mode  
VDDIO_GPIO  
SID661C  
SID662C  
VIH_TTL  
Input voltage HIGH  
2
V
V
CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0  
CFG_IN/VTRIP_SEL<0:0> = 0b1  
threshold in TTL mode  
VIH_AUTO  
Input voltage HIGH  
threshold in AUTO mode  
0.8 ×  
VDDIO_GPIO  
CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b1  
CFG_IN/VTRIP_SEL<0:0> = 0b0  
4.5 V VDDIO_GPIO 5.5 V  
SID663C  
VIL_CMOS  
Input voltage LOW  
0.3 ×  
V
CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0  
CFG_IN/VTRIP_SEL<0:0> = 0b0  
threshold in CMOS mode  
VDDIO_GPIO  
Datasheet  
99  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-5  
I/O specifications (continued)  
Spec ID Parameter  
Description  
Min  
Typ  
Max  
0.8  
Units  
Details/conditions  
SID664C  
SID665C  
VIL_TTL  
Input voltage LOW  
V
CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0  
threshold in TTL mode  
CFG_IN/VTRIP_SEL<0:0> = 0b1  
VIL_AUTO  
Input voltage LOW  
threshold in AUTO mode  
0.5 ×  
VDDIO_GPIO  
V
CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b1  
CFG_IN/VTRIP_SEL<0:0> = 0b0  
4.5 V VDDIO_GPIO 5.5 V  
SID666C  
SID668C  
VHYST_CMOS  
VHYST_AUTO  
Hysteresis in CMOS mode  
Hysteresis in AUTO mode  
0.05 ×  
V
V
CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0  
CFG_IN/VTRIP_SEL<0:0> = 0b0  
VDDIO_GPIO  
0.05 ×  
CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b1  
CFG_IN/VTRIP_SEL<0:0> = 0b0  
4.5 V VDDIO_GPIO 5.5 V  
VDDIO_GPIO  
SID669C  
SID670C  
CIN  
IIL  
Input pin capacitance  
Input leakage current  
5
1
pF  
µA  
Test condition: 10/100MHz  
–1  
VDDIO_GPIO = VDDD = 5.5 V,  
V
SS < VI < VDDIO_GPIO  
–40 °C TA 105 °C  
SID671C  
SID672C  
SID673C  
SID674C  
SID675C  
SID676E  
tR_F_FAST  
tR_F_FAST  
tR_F_FAST  
tR_F_FAST  
tR_F_FAST  
tF_I2C_SLOW  
Rise time or fall time (10%  
1
1
1
1
1
10  
20  
ns  
ns  
ns  
ns  
ns  
ns  
20-pF load, CFG_OUT/DRIVE_SEL<1:0> =  
0b00, CFG_OUT/SLOW<0:0> = 0b0, entire  
to 90% of VDDIO_GPIO  
)
V
DDIO_GPIO range  
Rise time or fall time (10%  
to 90% of VDDIO_GPIO  
50-pF load, CFG_OUT/DRIVE_SEL<1:0> =  
0b00, CFG_OUT/SLOW<0:0> = 0b0, entire  
)
V
DDIO_GPIO range, Guaranteed by design  
Rise time or fall time (10%  
to 90% of VDDIO_GPIO  
20  
20-pF load, CFG_OUT/DRIVE_SEL<1:0> =  
0b01, CFG_OUT/SLOW<0:0> = 0b0, entire  
)
V
DDIO_GPIO range, Guaranteed by design  
Rise time or fall time (10%  
to 90% of VDDIO_GPIO  
20  
10-pF load, CFG_OUT/DRIVE_SEL<1:0> =  
0b10, CFG_OUT/SLOW<0:0> = 0b0, entire  
)
V
DDIO_GPIO range, Guaranteed by design  
Rise time or fall time (10%  
to 90% of VDDIO_GPIO  
20  
6-pF load, CFG_OUT/DRIVE_SEL<1:0> =  
0b11, CFG_OUT/SLOW<0:0> = 0b0, entire  
)
V
DDIO_GPIO range, Guaranteed by design  
Fall time (30% to 70% of  
VDDIO_GPIO  
20 ×  
(VDDIO_GPIO  
5.5)  
250  
10-pF to 400-pF load,  
)
/
CFG_OUT/DRIVE_SEL<1:0> = 0b00,  
CFG_OUT/SLOW<0:0> = 0b1,  
minimum external  
R
PU = 400 Ω  
SID677C  
SID678C  
tR_F_SLOW  
Rise time or fall time (10%  
to 90% of VDDIO_GPIO  
20 ×  
(VDDIO_GPIO  
5.5)  
160  
250  
ns  
ns  
20-pF load, CFG_OUT/DRIVE_SEL<1:0> =  
0b00, CFG_OUT/SLOW<0:0> = 0b1,  
output frequency = 1 MHz  
)
/
/
tR_F_SLOW  
Rise time or fall time (10%  
to 90% of VDDIO_GPIO  
20 ×  
(VDDIO_GPIO  
5.5)  
400-pF load, CFG_OUT/DRIVE_SEL<1:0>  
= 0b00, CFG_OUT/SLOW<0:0> = 0b1,  
output frequency = 400 kHz,  
)
Guaranteed by design  
HSIO_STDLN Specifications (3 V I/Os)  
SID651F  
VOL0  
Output LOW voltage level  
0.2  
0.4  
V
V
IOL = 0.1 mA,  
CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<  
4:0> = 0b0000  
SID654I  
VOL1  
Output LOW voltage level  
IOL = 10 mA,  
CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<  
4:0> = 0b0001,  
3.0 V VDDIO_HSIO 3.6 V  
SID655G  
SID656G  
SID656H  
VOL2  
VOL3  
VOL4  
Output LOW voltage level  
Output LOW voltage level  
Output LOW voltage level  
0.4  
0.4  
0.4  
V
V
V
IOL = 2 mA,  
CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<  
4:0> = 0b0010,  
3.0 V VDDIO_HSIO 3.6 V  
IOL = 1 mA,  
CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<  
4:0> = 0b0011,  
3.0 V VDDIO_HSIO 3.6 V  
IOL = 0.5 mA,  
CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<  
4:0> = 0b0100,  
3.0 V VDDIO_HSIO 3.6 V  
Datasheet  
100  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-5  
I/O specifications (continued)  
Description  
Spec ID Parameter  
Min  
Typ  
Max  
Units  
Details/conditions  
IOH = –0.1 mA,  
CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<  
4:0> = 0b0000  
SID658D  
SID661F  
VOH0  
Output HIGH voltage level VDDIO_HSIO  
V
0.2  
VOH1  
Output HIGH voltage level VDDIO_HSIO  
0.4  
V
V
V
V
IOH = –10 mA,  
CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<  
4:0> = 0b0001,  
3.0 V VDDIO_HSIO 3.6 V  
SID662F  
SID663E  
SID663F  
VOH2  
VOH3  
VOH4  
Output HIGH voltage level VDDIO_HSIO  
0.4  
IOH = –2 mA,  
CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<  
4:0> = 0b0010,  
3.0 V VDDIO_HSIO 3.6 V  
Output HIGH voltage level VDDIO_HSIO  
0.4  
IOH = –1 mA,  
CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<  
4:0> = 0b0011,  
3.0 V VDDIO_HSIO 3.6 V  
Output HIGH voltage level VDDIO_HSIO  
0.4  
IOH = –0.5 mA,  
CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<  
4:0> = 0b0100,  
3.0 V VDDIO_HSIO 3.6 V  
SID664D  
SID665F  
SID667G  
RPD  
RPU  
VIH0  
Pull-down resistance  
Pull-up resistance  
25  
25  
50  
50  
100  
100  
kΩ  
kΩ  
V
Input Voltage HIGH  
threshold  
0.7 ×  
CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0  
CFG_IN/VTRIP_SEL<0:0> = 0b0  
VDDIO_HSIO  
SID667I  
SID671F  
SID671G  
SID674D  
VIH1  
Input Voltage HIGH  
threshold  
2
V
V
V
V
CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0  
CFG_IN/VTRIP_SEL<0:0> = 0b1  
VIL0  
Input Voltage LOW  
threshold  
0.3 ×  
CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0  
CFG_IN/VTRIP_SEL<0:0> = 0b0  
VDDIO_HSIO  
VIL1  
Input Voltage LOW  
threshold  
0.8  
CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0  
CFG_IN/VTRIP_SEL<0:0> = 0b1  
VHYST_CMOS  
Hysteresis in CMOS mode  
0.05 ×  
VDDIO_HSIO  
CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0  
CFG_IN/VTRIP_SEL<0:0> = 0b0  
SID675D  
SID676H  
CIN  
Input pin capacitance  
Input leakage current  
5
1
pF  
µA  
Test condition: 10/100MHz  
VDDIO_HSIO = 3.6 V,  
IIL12  
–1  
V
SS < VI < VDDIO_HSIO  
–40°C TA 105°C  
GPIO Input Specifications  
SID98  
tFT  
Analog glitch filter (pulse  
suppression width)  
50[53]  
ns  
ns  
One filter per port group (required for  
some I2C speeds)  
SID99  
tINT  
Minimum pulse width for  
GPIO interrupt  
160  
Note  
53.If longer pulse suppression width is required, use Smart I/O.  
Datasheet  
101  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
27.6  
Analog peripherals  
SAR ADC  
27.6.1  
0xFFF  
0xFFE  
0xFFD  
Actual conversion  
characteristics  
1.5 LSb  
1 LSb (N - 1) + 0.5 LSb  
VNT  
0x003  
0x002  
0x001  
Actual conversion  
characteristics  
Ideal  
characteristics  
0.5 LSb  
VREFH  
VREFL  
Analog input  
[LSb]  
[V]  
Total error of digital output N = ( VNT {1 LSb × (N – 1) + 0.5 LSb} ) / 1 LSb  
1 LSb (Ideal value) = (VREFH – VREFL) / 4096  
N: A/D converter digital output value  
VZT (Ideal value): VREFL + 0.5 LSb [V]  
VFST (Ideal value): VREFH – 1.5 LSb [V]  
VNT: Voltage at which the digital output changes from N – 1 to N  
Figure 27-4  
Table 27-6  
ADC characteristics and error definitions  
12-Bit SAR ADC DC specifications  
Spec ID Parameter  
SID100 A_RES  
SID101 VA_INV  
SID102 VREFH  
Description  
SAR ADC resolution  
Input voltage range  
SAR ADC HIGH reference  
voltage range  
Min  
VREFL  
2.7  
Typ  
Max  
12  
VREFH  
VDDA_ADC  
Units Details/conditions  
bits  
V
V
V
V
ADC performance  
degrades when high  
reference is higher  
than supply  
ADC performance  
degrades when low  
reference is lower  
than ground  
SID103 VREFL  
SAR ADC LOW reference VSSA_ADC  
voltage range  
VSSA_ADC  
SID103A VBAND_GAP  
Internal band gap  
reference voltage  
0.882  
0.9  
0.918  
Datasheet  
102  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Differential linearity error  
Integral linearity error  
0xFFF  
Ideal  
characteristics  
Actual conversion  
characteristics  
N + 1  
0xFFE  
VFST  
Actual conversion  
characteristics  
(Measured value)  
(1 LSb [N - 1] + VZT )  
0xFFD  
N
VNT  
(Measured value)  
0x004  
0x003  
0x002  
0x001  
N - 1  
Actual conversion  
characteristics  
V(N  
+
1)T  
(Measured value)  
VNT  
(Measured value)  
Ideal  
characteristics  
Actual conversion  
characteristics  
N -2  
VZT  
(Measured value)  
VREFL  
Analog input  
VREFL  
Analog input  
VREFH  
VREFH  
Integral linearity error of digital output N = (VNT  
{1 LSb × (N  
1) + VZT}) / 1 LSb  
[LSb]  
[LSb]  
Differential linearity error of digital output N = (V(N + 1)T – VNT  
1 LSb = (VFST – VZT ) / 4094  
1 LSb ) / 1 LSb  
[V]  
V
V
ZT: Voltage for which digital output changes from 0x000 to 0x001  
FST: Voltage for which digital output changes from 0xFFE to 0xFFF.  
Figure 27-5  
Integral and differential linearity errors  
EXTERNAL CIRCUIT  
INTERNAL EQUIVALENT CIRCUIT  
VDDIO  
Channel selection MUX and ADC  
REXT  
RVIN  
CVIN  
CEXT  
CIN  
ESD Protection  
R
EXT: Source impedance  
CEXT: On-PCB capacitance  
IN: I /O pad or Input capa citance  
RVIN: ADC equivalent input resistance  
VIN: ADC equivalent input capacitance  
C
C
K: Constant for sampling accuracy, K = ln(abs(4096/LSbSA MPLE))  
Sampling Time (tSAMPLE) requirement is shown in the following equation  
tSA MPLE > K x { CVIN x ( RVIN + REXT ) + ( CIN + CEXT ) x (REXT) } [seconds]  
K = value of 9.0 is recommended to get ±0.5 LSb sampling accuracy at 12-bit (LSbSA MPLE = ±0.5)  
Figure 27-6  
ADC equivalent circuit for analog input  
Datasheet  
103  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-7  
SAR ADC AC specifications  
Spec ID Parameter  
Description  
Min  
Typ  
Max  
Units Details/conditions  
SID104 VZT  
Zero transition voltage  
–20  
20  
mV VDDA_ADC = 2.7 V to 5.5 V,  
–40°C TA 105°C  
before offset  
adjustment  
SID105 VFST  
Full-scale transition  
voltage  
–20  
2
20  
mV VDDA_ADC = 2.7 V to 5.5 V,  
–40°C TA 105°C  
before offset  
adjustment  
SID114 fADC  
SID113 tS_4P5  
ADC operating frequency  
26.67  
MHz  
Analog input sample time 412  
(4.5 V VDDA_ADC) for  
ns SARMUX0 inputs are  
direct into the ADC  
channels of SARMUX0  
Guaranteed by design  
SID113A tS_2P7  
Analog input sample time 824  
(2.7 V VDDA_ADC) for  
ns SARMUX0 inputs are  
direct into the ADC  
channels of SARMUX0  
Guaranteed by design  
SID113B tS_DR_4P5  
Analog input sample time  
when input is from  
2
µs Guaranteed by design  
µs Guaranteed by design  
µs Guaranteed by design  
diagnostic reference (4.5  
V VDDA_ADC  
)
SID113C tS_DR_2P7  
Analog input sample time 2.5  
when input is from  
diagnostic reference (2.7  
V VDDA_ADC  
)
SID113D tS_TS  
SID106 tST1  
Analog input sample time  
for temperature sensor  
Max throughput (sample  
per second) for channels  
of SARMUX0  
7
1
Msps 4.5 V VDDA_ADC 5.5 V,  
80 MHz / 3 = 26.67 MHz,  
11 sampling cycles,  
15 conversion cycles  
SID106A tST2  
Max throughput (sample  
per second) for channels  
of SARMUX0  
0.5  
Msps 2.7 V VDDA_ADC < 4.5 V,  
80 MHz / 6 = 13.3 MHz,  
11 sampling cycles,  
15 conversion cycles  
SID107 CVIN  
SID108 RVIN1  
SID108A RVIN2  
SID108B RDREF1  
SID108C RDREF2  
ADC input sampling  
capacitance  
Input path ON resistance  
(4.5 V to 5.5 V)  
Input path ON resistance  
(2.7 V to 4.5 V)  
4.8  
9.4  
13.9  
40  
pF Guaranteed by design  
kΩ Guaranteed by design  
kΩ Guaranteed by design  
kΩ Guaranteed by design  
kΩ Guaranteed by design  
%
Diagnostic path ON  
resistance (4.5 V to 5.5 V)  
Diagnostic path ON  
50  
resistance (2.7 V to 4.5 V)  
SID119 ACC_RLAD Diagnostic reference  
resistor ladder accuracy  
–4  
4
Datasheet  
104  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-7  
SAR ADC AC specifications (continued)  
Spec ID Parameter  
SID109 A_TE  
Description  
Total error  
Min  
–5  
Typ  
Max  
5
Units Details/conditions  
LSb VDDA_ADC = VREFH = 2.7 V  
to 5.5 V,  
VREFL = VSSA_ADC  
–40°C TA 105°C  
Total Error after offset  
and gain adjustment at  
12-bit resolution mode  
SID110 A_INL  
SID111 A_DNL  
SID112 A_GE  
Integral nonlinearity  
–2.5  
2.5  
1.9  
7
LSb  
LSb  
LSb  
V
DDA_ADC = 2.7 V to 5.5 V,  
–40°C TA 105°C  
DDA_ADC = 2.7 V to 5.5 V,  
–40°C TA 105°C  
DDA_ADC = 2.7 V to 5.5 V,  
–40°C TA 105°C  
Differential nonlinearity –0.99  
V
Measure the ADC output  
with input switching  
throughallinputchannels  
of one ADC  
–7  
V
SID115 IAIC  
SID115D IAIC  
SID115A IAIC2  
SID115E IAIC2  
Analog input leakage  
current (GPIO_STD)  
–350  
350  
1075  
165  
nA When input pad is  
selected for  
conversion,  
V
DDA_ADC = VREFH = 2.7 V  
to 5.5 V,  
–40°C TA 105°C  
Analog input leakage  
current (GPIO_SMC)  
–1075  
nA When input pad is  
selected for  
conversion,  
V
DDA_ADC = VREFH = 2.7 V  
to 5.5 V,  
–40°C TA 105°C  
Analog input leakage  
current (GPIO_STD)  
nA When input pad is not  
selected for  
conversion,  
V
DDA_ADC = VREFH = 2.7 V  
to 5.5 V,  
–40°C TA 105°C  
Analog input leakage  
current (GPIO_SMC)  
1015  
nA When input pad is not  
selected for  
conversion,  
V
DDA_ADC = VREFH = 2.7 V  
to 5.5 V,  
–40°C TA 105°C  
SID116 IDIAGREF  
SID117 IVDDA  
Diagnostic reference  
current  
Analog power supply  
current while ADC is  
operating  
70  
µA  
360  
550  
µA Per enabled ADC,  
without diagnosis  
SID117A IVDDA_DS  
Analog power supply  
current while ADC is not  
operating  
1
21  
µA Per enabled ADC  
Datasheet  
105  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-7  
SAR ADC AC specifications (continued)  
Spec ID Parameter  
Description  
Min  
Typ  
Max  
Units Details/conditions  
SID118 IVREF  
Analog reference voltage  
current while ADC is  
operating  
360  
550  
µA Per enabled ADC,  
without diagnosis  
SID118A IVREF_LEAK Analog reference voltage  
current while ADC is not  
1.8  
5
µA Per enabled ADC  
operating  
SID118B tS_4P5_1  
Analog input sample time 824  
(4.5 V VDDA_ADC) for  
ns Additional delay for  
SARMUX1 due to  
channels of SARMUX1  
additional switches in  
the path to the ADC  
Guaranteed by Design  
SID118C tS_2P7_1  
Analog input sample time 1648  
(2.7 V VDDA_ADC) for  
ns Additional delay for  
SARMUX1 due to  
channels of SARMUX1  
additional switches in  
the path to the ADC  
Guaranteed by Design  
SID119A tST3  
SID119B tST4  
Max throughput (sample  
per second) for channels  
of SARMUX1  
0.5  
Msps 4.5 V VDDA_ADC 5.5 V,  
80 MHz / 6 = 13.3 MHz,  
11 sampling cycles,  
15 conversion cycles  
Max throughput (sample  
per second) for channels  
of SARMUX1  
0.25  
Msps 2.7 V VDDA_ADC < 4.5 V,  
80 MHz / 12 = 6.67 MHz,  
11 sampling cycles,  
15 conversion cycles  
Datasheet  
106  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
27.6.2  
Temperature sensor  
Table 27-8  
Temperature sensor specifications  
Spec ID Parameter  
Description  
Min  
Typ  
Max  
Units  
Details/conditions  
SID201 TSENSACC_TR Temperature sensor  
accuracy trimmed  
–5  
5
°C This spec is valid for the  
following two conditions:  
1. 3.0 V VDDA_ADC=VREFH  
3.6 V and  
3.0 V VDDD 3.6 V  
2. 4.5 V VDDA_ADC=VREFH  
5.5 V and  
4.5 V VDDD 5.5 V  
(Calibrated accuracy by  
factory trimming)  
SID202 TSENSAC-  
Temperature sensor  
accuracy standard  
–10  
10  
°C This spec applies to all valid  
combinations for  
C_STD  
VDDA_ADC = VREFH and VDDD  
which are not covered by  
SID201 (Uncalibrated  
accuracy)  
,
27.7  
AC specifications  
Unless otherwise noted, the timings are defined with the guidelines mentioned in the Figure 27-7  
Definition of rise / fall times  
VDDD or VDDIO_x  
80 %  
80 %  
20 %  
20 %  
VSS or VSSIO_x  
tR  
tF  
Time Reference Point Definition  
VDDD or VDDIO_x  
0.5 x VDDD or VDDIO_x  
VSS or VSSIO_x  
Timing Reference Points  
Figure 27-7  
AC timings specifications  
Datasheet  
107  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
27.8  
Digital peripherals  
Table 27-9  
Timer/Counter/PWM (TCPWM) specifications  
Spec ID Parameter  
SID120 fC  
SID121 tPWMENEXT  
Description  
TCPWM operating frequency  
Input trigger pulse width for  
all trigger events  
Min  
2 / fC  
Typ  
Max Units Details/conditions  
100  
MHz fC = peripheral clock  
ns Trigger Events can be  
Stop, Start, Reload,  
Count, Capture, or Kill  
depending on which  
mode of operation is  
selected.  
SID122 tPWMEXT  
Output trigger pulse widths  
2 / fC  
ns Minimum possible  
width of Overflow,  
Underflow, and CC  
(Counter equals  
Compare value) trigger  
outputs  
SID123 tCRES  
Resolution of counter  
PWM resolution  
1 / fC  
ns Minimum time  
between successive  
counts  
ns Minimum pulse width  
of PWM output  
ns Minimum pulse width  
between Quadrature  
phase inputs.  
SID124 tPWMRES  
SID125 tQRES  
1 / fC  
2 / fC  
Quadrature inputs  
resolution  
TCPWM Timing Diagrams  
VIH  
VIL  
Input Signal  
1
2
1
2
VOH  
VOL  
Output Signal  
1: tPWMENEXT, tQRES  
2: tPWMEXT  
Figure 27-8  
TCPWM timing diagrams  
Datasheet  
108  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-10 Serial communication block (SCB) specifications  
Spec ID  
SID129  
Parameter  
Description  
SCB operating frequency  
SCB transition in SPI mode  
Min  
Typ  
Max  
100  
4
Units Details/conditions  
f
MHz  
ns  
SCB  
SID129_2  
t
SPI_TRANS  
2
I C Interface-Standard-mode  
Recommended I/O Configuration:  
GPIO_STD: CFG_OUT/DRIVE_SEL<1:0> = 0b01, CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG/DRIVE_MODE<2:0> = 0b100  
GPIO_ENH: CFG_OUT/DRIVE_SEL<1:0> = 0b00, CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG/DRIVE_MODE<2:0> = 0b100, CFG_OUT/SLOW<0:0>  
= 0b1  
GPIO_SMC: CFG_OUT/DRIVE_SEL<1:0> = 0b01, CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG/DRIVE_MODE<2:0> = 0b100, CFG_OUT/SLOW<0:0>  
= 0b0  
HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<4:0>=0b00010, CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG/DRIVE_MODE<2:0> = 0b100  
(Note: SID138 is not valid for HSIO_STDLN)  
SID130  
SID131  
SID132  
SID133  
SID134  
SID135  
SID136  
SID138  
f
SCL clock frequency  
100  
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCL  
t
t
t
t
t
t
t
Hold time, START condition  
Low period of SCL  
4000  
4700  
4000  
4700  
0
HD;STA  
LOW  
High period of SCL  
HIGH  
Setup time for a repeated START  
Data hold time, for receiver  
Data setup time  
SU;STA  
HD;DAT  
SU;DAT  
F
250  
Fall time of SCL and SDA  
300  
Input and output  
Output: Only valid for  
GPIO_ENH,  
GPIO_SMC,  
GPIO_STD  
SID139  
SID140  
SID141  
SID142  
t
t
Setup time for STOP  
4000  
4700  
ns  
ns  
pF  
ns  
SU;STO  
Bus-free time between START and STOP  
Capacitive load for each bus line  
BUF  
C
400  
3450  
B
t
Time for data signal from SCL LOW to SDA  
output  
VD;DAT  
SID143  
t
Data valid acknowledge time  
3450  
ns  
VD;ACK  
2
I C Interface-Fast-mode  
Recommended I/O Configuration:  
GPIO_STD: CFG_OUT/DRIVE_SEL<1:0> = 0b01, CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG/DRIVE_MODE<2:0> = 0b100  
(Note: SID158 is not valid for GPIO_STD)  
GPIO_ENH: CFG_OUT/DRIVE_SEL<1:0> = 0b00, CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG/DRIVE_MODE<2:0> = 0b100, CFG_OUT/SLOW<0:0>  
= 0b1  
GPIO_SMC: CFG_OUT/DRIVE_SEL<1:0> = 0b01, CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG/DRIVE_MODE<2:0> = 0b100, CFG_OUT/SLOW<0:0>  
= 0b1  
HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<4:0>=0b00010, CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG/DRIVE_MODE<2:0> = 0b100  
(Note: SID158 is not valid for HSIO_STDLN)  
[54]  
SID150  
SID151  
SID152  
SID153  
SID154  
SID155  
SID156  
SID158  
f
SCL clock frequency  
400  
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCL_F  
t
t
t
t
t
t
t
Hold time, START condition  
Low period of SCL  
600  
1300  
600  
600  
0
HD;STA_F  
LOW_F  
HIGH_F  
SU;STA  
HD;DAT  
SU;DAT  
F
High period of SCL  
Setup time for a repeated START  
Data hold time, for receiver  
Data setup time  
100  
Fall time of SCL and SDA  
20 ×  
DDIO_GPIO  
300  
Input and output  
Output: Only valid for  
GPIO_ENH,  
(V  
/
5.5)  
GPIO_SMC  
SID159  
SID160  
SID161  
t
t
Setup time for STOP  
600  
1300  
ns  
ns  
pF  
SU;STO  
Bus free time between START and STOP  
Capacitive load for each bus line  
BUF  
C
400  
B
Notes  
54.To drive full bus load at 400 kHz, 6 mA IOL is required at 0.6 V VOL  
.
55.To drive full bus load at 1 MHz, 20 mA IOL is required at 0.4 V VOL. However, this device does not support it.  
Datasheet  
109  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-10 Serial communication block (SCB) specifications (continued)  
Spec ID  
SID162  
Parameter  
Description  
Min  
Typ  
Max  
Units Details/conditions  
t
t
t
Time for data signal from SCL LOW to SDA  
output  
900  
ns  
VD;DAT  
SID163  
Data valid acknowledge time  
900  
50  
ns  
ns  
VD;ACK  
SP  
SID164  
Pulse width of spikes that must be suppressed  
by the input filter  
2
I C Interface-Fast-Plus mode  
Recommended I/O Configuration:  
GPIO_STD: CFG_OUT/DRIVE_SEL<1:0> = 0b01, CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG/DRIVE_MODE<2:0> = 0b100  
(Note: SID178 is not valid for GPIO_STD)  
GPIO_ENH: CFG_OUT/DRIVE_SEL<1:0> = 0b00, CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG/DRIVE_MODE<2:0> = 0b100, CFG_OUT/SLOW<0:0>  
= 0b1  
GPIO_SMC: CFG_OUT/DRIVE_SEL<1:0> = 0b01, CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG/DRIVE_MODE<2:0> = 0b100, CFG_OUT/SLOW<0:0>  
= 0b0 (Note: SID178 is not valid for GPIO_SMC)  
HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<4:0> = 0b00010, CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG/DRIVE_MODE<2:0> = 0b100  
(Note: SID178 is not valid for HSIO_STDLN)  
[55]  
SID170  
SID171  
SID172  
SID173  
SID174  
SID175  
SID176  
SID178  
f
SCL clock frequency  
1
MHz  
ns  
SCL_FP  
t
t
t
t
t
t
t
Hold time, START condition  
Low period of SCL  
260  
500  
260  
260  
0
HD;STA_FP  
LOW_FP  
HIGH_FP  
SU;STA  
HD;DAT  
SU;DAT  
F
ns  
High period of SCL  
ns  
Setup time for a repeated START  
Data hold time, for receiver  
Data setup time  
ns  
ns  
50  
ns  
Fall time of SCL and SDA  
20 ×  
DDIO_GPIO  
160  
ns  
Input and output,  
20pF load  
Output: Only for  
GPIO_ENH  
(V  
/5.5)  
SID179  
SID180  
SID181  
SID182  
t
t
Setup time for STOP  
260  
500  
ns  
ns  
pF  
ns  
SU;STO  
Bus free time between START and STOP  
Capacitive load for each bus line  
BUF  
C
20  
450  
B
t
Time for data signal from SCL LOW to SDA  
output  
VD;DAT  
SID183  
SID184  
t
t
Data valid acknowledge time  
450  
50  
ns  
ns  
VD;ACK  
Pulse width of spikes that must be suppressed  
by the input filter  
SP  
SPI Interface  
Recommended I/O Configuration: (Applicable to all below SPI modes)  
HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<4:0> =0b00010, CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG_SLEW_EXT/SLEW<2:0>  
=0b000  
For SPI speeds 12.5 MHz  
GPIO_STD: CFG_OUT/DRIVE_SEL<1:0> = 0b01, CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0  
GPIO_ENH: CFG_OUT/DRIVE_SEL<1:0> = 0b01, CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG_OUT/SLOW<0:0> = 0b0  
GPIO_SMC: CFG_OUT/DRIVE_SEL<1:0> = 0b01, CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG_OUT/SLOW<0:0> = 0b0  
SPI Interface Master (Full-clock mode: LATE_MISO_SAMPLE = 1, GPIO)  
Do not use half-clock  
mode:  
SID190  
SID191  
f
SPI operating frequency  
12.5  
MHz  
SPI  
LATE_MISO_SAMPLE =  
0 SPI Master (Full-clock  
mode:  
LATE_MISO_SAMPLE =  
1) - 12.5 Mbps for  
instances on  
GPIO_STD, GPIO_ENH,  
GPIO_SMC  
SPI Master (Full-clock  
mode:  
t
SPI Master: MOSI valid after SCLK driving edge  
15  
ns  
DMO  
LATE_MISO_SAMPLE =  
1) - 12.5 Mbps for  
instances on  
GPIO_STD, GPIO_ENH,  
GPIO_SMC  
Datasheet  
110  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-10 Serial communication block (SCB) specifications (continued)  
Spec ID  
SID192  
Parameter  
Description  
Min  
Typ  
Max  
Units Details/conditions  
SPI Master (Full-clock  
mode:  
t
t
t
t
t
SPI Master: MISO valid before SCLK capturing  
edge  
40  
ns  
ns  
ns  
ns  
ns  
DSI  
LATE_MISO_SAMPLE =  
1) - 12.5 Mbps for  
instances on  
GPIO_STD, GPIO_ENH,  
GPIO_SMC  
SPI Master (Full-clock  
mode:  
SID193  
SID194  
SID195  
SID196  
SPI Master: Previous MOSI data hold time  
SPI SCLK pulse width HIGH or LOW  
0
HMO  
LATE_MISO_SAMPLE =  
1) - 12.5 Mbps for  
instances on  
GPIO_STD, GPIO_ENH,  
GPIO_SMC  
SPI Master (Full-clock  
mode:  
0.4 ×  
0.5 ×  
0.6 ×  
W_SCLK_H_L  
(1 / f  
)
(1 / f  
)
(1 / f  
)
SPI  
SPI  
SPI  
LATE_MISO_SAMPLE =  
1) – 12.5 Mbps  
for instances on  
GPIO_STD, GPIO_ENH,  
GPIO_SMC  
SPI Master (Full-clock  
mode:  
SPI Master: MOSI valid after SSEL falling edge  
(CPHA=0)  
0
12  
VSS  
LATE_MISO_SAMPLE =  
1) – 12.5 Mbps  
for instances on  
GPIO_STD, GPIO_ENH,  
GPIO_SMC  
SPI Master (Full-clock  
mode:  
SPI Master: MISO hold time after SCLK  
capturing edge  
DHI  
LATE_MISO_SAMPLE =  
1) – 12.5 Mbps  
for instances on  
GPIO_STD, GPIO_ENH,  
GPIO_SMC  
Min is half clock period  
SID198  
SID199  
SID197  
t
t
SSEL valid, before the first SCK capturing edge 0.5 × (1 /  
ns  
ns  
pF  
EN_SETUP  
f
)
SPI  
Min is half clock period  
SSEL hold, after the last SCK capturing edge  
SPI Capacitive Load  
0.5 × (1 /  
EN_SHOLD  
f
)
SPI  
C
20  
SPIM_MS  
SPI Interface Master (Full-clock mode: LATE_MISO_SAMPLE = 1, HSIO)  
Do not use half-clock  
mode:  
SID190A  
f
SPI operating frequency  
20  
MHz  
SPI  
LATE_MISO_SAMPLE =  
0
SPI Master (Full-clock  
mode:  
LATE_MISO_SAMPLE =  
1) - 20 Mbps  
For 20 Mbps, SCB  
operating frequency  
(fSCB) must be  
configured to 80 MHz.  
for instances on  
HSIO_STDLN  
SPI Master (Full-clock  
mode:  
SID191A  
t
SPI Master: MOSI valid after SCLK driving edge  
9
ns  
DMO  
LATE_MISO_SAMPLE =  
1) – 20 Mbps  
For 20 Mbps, SCB  
operating frequency  
(fSCB) must be  
configured to 80 MHz  
for instances on  
HSIO_STDLN  
Datasheet  
111  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-10 Serial communication block (SCB) specifications (continued)  
Spec ID  
SID192A  
Parameter  
Description  
Min  
Typ  
Max  
Units Details/conditions  
SPI Master (Full-clock  
mode:  
t
t
t
t
t
SPI Master: MISO valid before SCLK capturing  
edge  
25  
ns  
ns  
ns  
ns  
ns  
DSI  
LATE_MISO_SAMPLE =  
1) – 20 Mbps  
For 20 Mbps, SCB  
operating frequency  
(fSCB) must be  
configured to 80 MHz  
for instances on  
HSIO_STDLN  
SPI Master (Full-clock  
mode:  
SID193A  
SID194A  
SID195A  
SID196A  
SPI Master: Previous MOSI data hold time  
0
HMO  
LATE_MISO_SAMPLE =  
1) – 20 Mbps  
For 20 Mbps, SCB  
operating frequency  
(fSCB) must be  
configured to 80 MHz  
for instances on  
HSIO_STDLN  
SPI Master (Full-clock  
mode:  
SPI SCLK pulse width HIGH or LOW  
0.4 × (1 /  
0.5 ×  
0.6 ×  
W_SCLK_H_L  
f
)
(1 / f  
)
(1 /f  
)
SPI  
SPI  
SPI  
LATE_MISO_SAMPLE =  
1) – 20 Mbps  
For 20 Mbps, SCB  
operating frequency  
(fSCB) must be  
configured to 80 MHz  
for instances on  
HSIO_STDLN  
SPI Master (Full-clock  
mode:  
SPI Master: MOSI valid after SSEL falling edge  
(CPHA=0)  
12  
VSS  
LATE_MISO_SAMPLE =  
1) – 20 Mbps  
For 20 Mbps, SCB  
operating frequency  
(fSCB) must be  
configured to 80 MHz  
for instances on  
HSIO_STDLN  
SPI Master (Full-clock  
mode:  
SPI Master: MISO hold time after SCLK  
capturing edge  
0
DHI  
LATE_MISO_SAMPLE =  
1) – 20 Mbps  
For 20 Mbps, SCB  
operating frequency  
(fSCB) must be  
configured to 80 MHz  
for instances on  
HSIO_STDLN  
SID197A  
SID198A  
C
SPI Capacitive Load  
20  
pF  
ns  
SPIM_MS  
Min is half clock period  
Min is half clock period  
t
SSEL valid, before the first SCK capturing edge 0.5 × (1 /  
EN_SETUP  
f
)
SPI  
SID199A  
t
SSEL hold, after the last SCK capturing edge  
0.5 × (1 /  
ns  
EN_SHOLD  
f
)
SPI  
SPI Interface Slave (internally clocked, GPIO and HSIO)  
SPI Slave, internally  
clocked  
SID205  
SID206  
SID207  
SID208  
SID209  
SID210  
f
SPI operating frequency  
5
12.5  
MHz  
ns  
SPI_INT  
SPI Slave, internally  
clocked  
t
t
t
t
t
SPI Slave: MOSI Valid before Sclock capturing  
edge  
DMI_INT  
DSO_INT  
SPI Slave, internally  
clocked  
SPI Slave: MISO Valid after Sclock driving edge,  
in the internal-clocked mode  
60  
ns  
SPI Slave, internally  
clocked  
SPI Slave: Previous MISO data hold time  
3
ns  
HSO_INT  
SPI Slave, internally  
clocked  
SPI Slave: SSEL valid to first SCK valid edge  
33  
33  
ns  
EN_SETUP_INT  
EN_HOLD_INT  
SPI Slave, internally  
clocked  
SPI Slave Select active (LOW) from last SCLK  
hold  
ns  
Datasheet  
112  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-10 Serial communication block (SCB) specifications (continued)  
Spec ID  
SID211  
Parameter  
Description  
Min  
Typ  
Max  
Units Details/conditions  
SPI Slave, internally  
clocked  
t
t
t
t
t
t
t
t
SPI Slave: from SSEL valid, to SCK falling edge  
before the first data bit  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
pF  
EN_SETUP_PRE  
SPI Slave, internally  
clocked  
SID212  
SID213  
SID214  
SID215  
SID216  
SID217  
SID218  
SID219  
SPI Slave: from SCK falling edge before the  
first data bit, to SSEL invalid  
20  
20  
20  
40  
32  
32  
20  
EN_HOLD_PRE  
EN_SETUP_CO  
EN_HOLD_CO  
SPI Slave, internally  
clocked  
SPI Slave: from SSEL valid, to SCK falling edge  
in the first data bit  
SPI Slave, internally  
clocked  
SPI Slave: from SCK falling edge in the first  
data bit, to SSEL invalid  
SPI Slave, internally  
clocked  
SPI Slave Select inactive time  
SPI SCLK pulse width HIGH  
SPI SCLK pulse width LOW  
SPI MOSI hold from SCLK  
SPI Capacitive Load  
W_DIS_INT  
W_SCLKH_INT  
W_SCLKL_INT  
SIH_INT  
SPI Slave, internally  
clocked  
SPI Slave, internally  
clocked  
SPI Slave, internally  
clocked  
SPI Slave, internally  
clocked  
C
20  
SPI_INT  
SPI Interface Slave (externally clocked, GPIO and HSIO)  
SPI Slave, externally  
clocked: 12.5 Mbps  
SID220  
SID221  
SID222  
f
SPI operating frequency  
8
12.5  
MHz  
ns  
SPI_EXT  
SPI Slave, externally  
clocked: 12.5 Mbps  
t
SPI Slave: MOSI Valid before Sclock capturing  
edge  
DMI_EXT  
DSO_EXT  
SPI Slave, externally  
clocked: 12.5 Mbps  
t
SPI Slave: MISO Valid after Sclock driving edge,  
in the external-clocked mode  
30  
ns  
SPI Slave, externally  
clocked: 12.5 Mbps  
SID223  
SID224  
SID225  
SID226  
SID227  
SID228  
SID229  
SID230  
SID231  
t
t
t
t
t
t
t
SPI Slave: Previous MISO data hold time  
5
20  
20  
20  
32  
32  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
pF  
ns  
HSO_EXT  
SPI Slave, externally  
clocked: 12.5 Mbps  
SPI Slave: SSEL valid to first SCK valid edge  
EN_SETUP_EXT  
EN_HOLD_EXT  
SPI Slave, externally  
clocked: 12.5 Mbps  
SPI Slave Select active (LOW) from last SCLK  
hold  
SPI Slave, externally  
clocked: 12.5 Mbps  
SPI Slave Select inactive time  
SPI SCLK pulse width HIGH  
SPI SCLK pulse width LOW  
SPI MOSI hold from SCLK  
SPI Capacitive Load  
W_DIS_EXT  
W_SCLKH_EXT  
W_SCLKL_EXT  
SIH_EXT  
SPI Slave, externally  
clocked: 12.5 Mbps  
SPI Slave, externally  
clocked: 12.5 Mbps  
SPI Slave, externally  
clocked: 12.5 Mbps  
SPI Slave, externally  
clocked: 12.5 Mbps  
C
20  
33  
SPIS_EXT  
VSS_EXT  
SPI Slave, externally  
clocked: 12.5 Mbps  
t
SPI Slave: MISO valid after SSEL falling edge  
(CPHA = 0)  
SPI Interface Slave (internally clocked, SMC I/O)  
SPI Slave, internally  
clocked  
SID205_2  
SID206_2  
SID207_2  
SID208_2  
SID209_2  
SID210_2  
SID211_2  
f
SPI operating frequency  
5
12.5  
MHz  
ns  
SPI_INT  
SPI Slave, internally  
clocked  
t
t
t
t
t
t
SPI Slave: MOSI Valid before Sclock capturing  
edge  
DMI_INT  
DSO_INT  
SPI Slave, internally  
clocked  
SPI Slave: MISO Valid after Sclock driving edge,  
in the internal-clocked mode  
64  
ns  
SPI Slave, internally  
clocked  
SPI Slave: Previous MISO data hold time  
3
ns  
HSO_INT  
SPI Slave, internally  
clocked  
SPI Slave: SSEL valid to first SCK valid edge  
33  
33  
20  
ns  
EN_SETUP_INT  
EN_HOLD_INT  
SPI Slave, internally  
clocked  
SPI Slave Select active (LOW) from last SCLK  
hold  
ns  
SPI Slave, internally  
clocked  
SPI Slave: from SSEL valid, to SCK falling edge  
before the first data bit  
ns  
EN_SETUP_PRE  
Datasheet  
113  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-10 Serial communication block (SCB) specifications (continued)  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Units Details/conditions  
SPI Slave, internally  
clocked  
SID212_2  
t
t
t
t
t
t
t
SPI Slave: from SCK falling edge before the  
first data bit, to SSEL invalid  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
pF  
EN_HOLD_PRE  
SPI Slave, internally  
clocked  
SID213_2  
SID214_2  
SID215_2  
SID216_2  
SID217_2  
SID218_2  
SID219_2  
SPI Slave: from SSEL valid, to SCK falling edge  
in the first data bit  
20  
20  
40  
36  
36  
20  
EN_SETUP_CO  
EN_HOLD_CO  
SPI Slave, internally  
clocked  
SPI Slave: from SCK falling edge in the first  
data bit, to SSEL invalid  
SPI Slave, internally  
clocked  
SPI Slave Select inactive time  
SPI SCLK pulse width HIGH  
SPI SCLK pulse width LOW  
SPI MOSI hold from SCLK  
SPI Capacitive Load  
W_DIS_INT  
W_SCLKH_INT  
W_SCLKL_INT  
SIH_INT  
SPI Slave, internally  
clocked  
SPI Slave, internally  
clocked  
SPI Slave, internally  
clocked  
SPI Slave, internally  
clocked  
C
20  
SPIS_INT  
SPI Interface Slave (externally clocked, SMC I/O)  
SPI Slave, externally  
clocked: 12.5 Mbps  
SID220_2  
SID221_2  
SID222_2  
SID223_2  
SID224_2  
SID225_2  
SID226_2  
SID227_2  
SID228_2  
SID229_2  
SID230_2  
SID231_2  
f
SPI operating frequency  
8
12.5  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
pF  
ns  
SPI_EXT  
SPI Slave, externally  
clocked: 12.5 Mbps  
t
t
t
t
t
t
t
t
t
SPI Slave: MOSI Valid before Sclock capturing  
edge  
DMI_EXT  
SPI Slave, externally  
clocked: 12.5 Mbps  
SPI Slave: MISO Valid after Sclock driving edge,  
in the external-clocked mode  
34  
DSO_EXT  
SPI Slave, externally  
clocked: 12.5 Mbps  
SPI Slave: Previous MISO data hold time  
5
HSO_EXT  
SPI Slave, externally  
clocked: 12.5 Mbps  
SPI Slave: SSEL valid to first SCK valid edge  
20  
20  
20  
36  
36  
5
EN_SETUP_EXT  
EN_HOLD_EXT  
SPI Slave, externally  
clocked: 12.5 Mbps  
SPI Slave Select active (LOW) from last SCLK  
hold  
SPI Slave, externally  
clocked: 12.5 Mbps  
SPI Slave Select inactive time  
SPI SCLK pulse width HIGH  
SPI SCLK pulse width LOW  
SPI MOSI hold from SCLK  
SPI Capacitive Load  
W_DIS_EXT  
W_SCLKH_EXT  
W_SCLKL_EXT  
SIH_EXT  
SPI Slave, externally  
clocked: 12.5 Mbps  
SPI Slave, externally  
clocked: 12.5 Mbps  
SPI Slave, externally  
clocked: 12.5 Mbps  
SPI Slave, externally  
clocked: 12.5 Mbps  
C
20  
37  
SPIS_EXT  
VSS_EXT  
SPI Slave, externally  
clocked: 12.5 Mbps  
t
SPI Slave: MISO valid after SSEL falling edge  
(CPHA = 0)  
SPI Interface Slave (externally clocked, 20 MHz)  
SID220A  
SID221A  
SID222A  
SID223A  
SID224A  
SID225A  
SID226A  
SID227A  
f
SPI operating frequency  
5
20  
MHz SPI Slave, externally  
clocked: 20 Mbps  
SPI_EXT  
t
t
t
t
t
t
t
SPI Slave: MOSI Valid before Sclock capturing  
edge  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SPI Slave, externally  
clocked: 20 Mbps  
DMI_EXT  
SPI Slave: MISO Valid after Sclock driving edge,  
in the external-clocked mode  
18  
SPI Slave, externally  
clocked: 20 Mbps  
DSO_EXT  
SPI Slave: Previous MISO data hold time  
5
SPI Slave, externally  
clocked: 20 Mbps  
HSO_EXT  
SPI Slave: SSEL valid to first SCK valid edge  
20  
20  
20  
20  
SPI Slave, externally  
clocked: 20 Mbps  
EN_SETUP_EXT  
EN_HOLD_EXT  
W_DIS_EXT  
SPI Slave Select active (LOW) from last SCLK  
hold  
SPI Slave, externally  
clocked: 20 Mbps  
SPI Slave Select inactive time  
SPI Slave, externally  
clocked: 20 Mbps  
SPI SCLK pulse width HIGH  
SPI Slave, externally  
clocked: 20 Mbps  
W_SCLKH_EXT  
Datasheet  
114  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-10 Serial communication block (SCB) specifications (continued)  
Spec ID  
SID228A  
Parameter  
Description  
Min  
Typ  
Max  
Units Details/conditions  
t
t
SPI SCLK pulse width LOW  
20  
ns  
SPI Slave, externally  
clocked: 20 Mbps  
W_SCLKL_EXT  
SID229A  
SID230A  
SID231A  
SPI MOSI hold from SCLK  
SPI Capacitive Load  
5
ns  
SPI Slave, externally  
clocked: 20 Mbps  
SIH_EXT  
C
20  
23  
pF SPI Slave, externally  
clocked: 20 Mbps  
SPIS_EXT  
VSS_EXT  
t
SPI Slave: MISO valid after SSEL falling edge  
(CPHA = 0)  
ns  
SPI Slave, externally  
clocked: 20 Mbps  
UART Interface  
Recommended I/O Configuration:  
GPIO_STD: CFG_OUT/DRIVE_SEL<1:0> = 0b01, CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0  
GPIO_ENH: CFG_OUT/DRIVE_SEL<1:0> = 0b01, CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG_OUT/SLOW<0:0> = 0b0  
GPIO_SMC: CFG_OUT/DRIVE_SEL<1:0> = 0b01, CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG_OUT/SLOW<0:0> = 0b0  
HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<4:0> =0b00010, CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG_SLEW_EXT/SLEW<2:0>  
=0b000  
SID240  
f
Signaling rate  
10  
Mbps  
BPS  
8
9
7
70%  
30%  
70%  
70%  
70%  
30%  
6
SDA  
SCL  
30%  
30%  
12  
8
9
4
70%  
70%  
70%  
70%  
30%  
70%  
30%  
30%  
30%  
30%  
30%  
30%  
2
1
3
START condition  
11  
70%  
30%  
70%  
30%  
70%  
70%  
SDA  
SCL  
30%  
70%  
2
14  
10  
13  
70%  
70%  
30%  
9th clock  
5
Repeated START  
condition  
STOP condition  
START condition  
1: SCL clock period = 1/fSCL  
2: Hold time, START condition = tHD;STA  
3: LOW period of SCL = tLOW  
4: HIGH period of SCL = tHIGH  
5: Setup time for a repeated START = tSU;STA  
6: Data hold time, for receiver = tHD;DAT  
7: Data setup time = tSU;DAT  
8: Fall time of SCL and SDA = tF  
9: Rise time of SCL and SDA = tR  
10: Setup time for STOP = tSU;STO  
11: Bus-free time between START and STOP = tBUF  
12: Time for data signal from SCL LOW to SDA output = tVD;DAT  
13: Data valid acknowledge time = tVD;ACK  
14: Pulse width of spikes that must be suppressed by the input filter = tSP  
Figure 27-9  
I2C timing diagrams  
Datasheet  
115  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
SPI Master Timing Diagrams (LATE_MISO_SAMPLE=1)  
CPHA=0  
9
SSEL  
2
1
3
SCLK  
(CPOL=0)  
4
4
SCLK  
(CPOL=1)  
5
6
MISO  
(input)  
7
8
MOSI  
(output)  
1: SCLK period = 1 / fSPI  
2: Enable lead time (setup) = tEN_SETUP = Depends on SPI_CTRL.SSEL_SETUP_DEL (Refer to the Register TRM)  
3: Enable trail time (hold) = tEN_HOLD = Depends on SPI_CTRL.SSEL_HOLD_DEL (Refer to the Register TRM)  
4: SCLK high or low time = tW_SCLK_H_L  
5: Input data setup time = tDSI  
6: Input data hold time = tDHI  
7: Output data valid after SCLK driving edge = tDMO  
8: Output data hold time = tHMO  
9: SSEL high pulse width = Depends on SPI_CTRL.SSEL_INTER_FRAME_DEL (Refer to the Register TRM)  
Figure 27-10 SPI master timing diagrams with LOW clock phase  
Datasheet  
116  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
SPI Master Timing Diagrams (LATE_MISO_SAMPLE=1)  
CPHA=1  
9
SSEL  
2
3
1
SCLK  
(CPOL=0)  
4
4
SCLK  
(CPOL=1)  
5
6
MISO  
(input)  
7
8
MOSI  
(output)  
1: SCLK period = 1 / fSPI  
2: Enable lead time (setup) = tEN_SETUP = Depends on SPI_CTRL.SSEL_SETUP_DEL (Refer to the Register TRM)  
3: Enable trail time (hold) = tEN_HOLD = Depends on SPI_CTRL.SSEL_HOLD_DEL (Refer to the Register TRM)  
4: SCLK high or low time = tW_SCLK_H_L  
5: Input data setup time = tDSI  
6: Input data hold time = tHDI  
7: Output data valid after SCLK driving edge = tDMO  
8: Output data hold time = tHMO  
9: SSEL high pulse width = Depends on SPI_CTRL.SSEL_INTER_FRAME_DEL (Refer to the Register TRM)  
Figure 27-11 SPI master timing diagrams with HIGH clock phase  
Datasheet  
117  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
SPI Slave Timing Diagrams  
CPHA=0  
10  
SSEL  
2
1
3
SCLK  
(CPOL=0)  
4
4
SCLK  
(CPOL=1)  
8
7
9
MISO  
(output)  
5
6
MOSI  
(input)  
1: SCLK period = 1 / fSPI_EXT  
2: enable lead time (setup) = tEN_SETUP_EXT  
3: enable trail time (hold) = tEN_HOLD_EXT  
4: SCLK high or low time = tw_SCLKH_EXT = tw_SCLKL_EXT  
5: input data setup time = tDMI_EXT  
6: input data hold time = tSIH_EXT  
7: output data valid after SCLK driving edge = tDSO_EXT  
8: output data valid after SSEL falling edge (CPHA=0) = tVSS_EXT  
9: output data hold time = tHSO  
10: SSEL high pulse width = tDIS_EXT  
Figure 27-12 SPI slave timing diagrams with LOW clock phase  
Datasheet  
118  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
SPI slave Timing Diagrams  
CPHA=1  
9
SSEL  
2
3
1
SCLK  
(CPOL=0)  
4
SCLK  
(CPOL=1)  
7
8
MISO  
(output)  
5
6
MOSI  
(input)  
1: SCLK period = 1 / fSPI_EXT  
2: enable lead time (setup) = tEN_SETUP_EXT  
3: enable trail time (hold) = tEN_HOLD_EXT  
4: SCLK high or low time = tw_SCLKH_EXT = tw_SCLKL_EXT  
5: input data setup time = tDMI_EXT  
6: input data hold time = tSIH_EXT  
7: output data valid after SCLK driving edge = tDSO_EXT  
8: output data hold time = tHSO  
9: SSEL high pulse width = tDIS_EXT  
Figure 27-13 SPI slave timing diagrams with HIGH clock phase  
Datasheet  
119  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
27.8.1  
LIN specifications  
Table 27-11 LIN specifications  
Spec ID Parameter  
Description  
Min  
Typ Max Units Details/conditions  
SID249 fLIN  
Internal clock frequency to  
the LIN block  
100 MHz  
SID250 BR_NOM  
SID250A BR_REF  
Bit rate on the LIN bus  
1
1
20  
kbps Guaranteed by design  
Bit rate on the LIN bus (not in  
standard LIN specification)  
for re-flashing in LIN slave  
mode  
115.2 kbps Guaranteed by design  
27.8.2  
CAN FD specifications  
Table 27-12 CAN FD specifications  
Spec ID Parameter Description  
Min  
Typ Max Units Details/conditions  
SID630  
SID631  
fHCLK  
fCCLK  
System clock (HCLK)  
frequency  
CAN clock (CCLK) frequency  
100  
MHz fCCLK fHCLK,  
guaranteed by design  
MHz fCCLK fHCLK,  
guaranteed by design  
100  
27.9  
Memory  
Table 27-13 Flash DC specifications  
Spec ID Parameter  
SID257A VPE  
Description  
Erase and program voltage  
Min  
2.7  
Typ  
Max Units Details/conditions  
5.5  
V
Table 27-14 Flash AC specifications  
Spec ID Parameter Description  
Min  
Typ  
Max Units Details/conditions  
SID257  
fFO  
Maximum operation  
frequency  
100  
MHz Zero wait access to  
code-flash memory up  
to 100 MHz  
Zero wait access with  
cache hit up to 320 MHz  
SID254  
SID255  
SID258  
tERS_SUS  
Maximum time from erase  
suspend command till erase  
is indeed suspend  
37.5  
µs  
tERS_RES_SUS Minimum time allowed from 250  
erase resume to erase  
µs Guaranteed by design  
suspend  
Blank Check time for Work  
Flash N-byte  
tBC_WF  
10 + 0.3 µs At 100 MHz, N 4 and  
× N  
multiple of 4, excludes  
system overhead time  
SID258A tAA_BC_ENTRY Time to enter Blank Check  
mode  
5
5
µs  
µs  
SID258B tAA_BC_EXIT  
Time to exit Blank Check  
mode  
SID259  
SID260  
tSECTORE-  
RASE1  
Sector erase time  
(code-flash: 32 KB)  
45  
15  
90  
30  
ms Includes internal  
preprogramming time  
ms Includes internal  
preprogramming time  
tSECTORE-  
RASE2  
Sector erase time  
(code-flash: 8 KB)  
Datasheet  
120  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-14 Flash AC specifications (continued)  
Spec ID Parameter  
Description  
Min  
Typ  
Max Units Details/conditions  
SID261  
SID262  
SID263  
SID264  
SID265  
SID266  
SID267  
tSECTORE-  
RASE3  
Sector erase time  
80  
160  
ms Includes internal  
preprogramming time  
ms Includes internal  
preprogramming time  
µs Excludes system  
overhead time  
µs Excludes system  
overhead time  
µs Excludes system  
overhead time  
µs Excludes system  
overhead time  
(work-flash, 2 KB)  
tSECTORE-  
RASE4  
Sector erase time  
(work-flash, 128 B)  
5
15  
tWRITE1  
64-bit write time (code-flash)  
30  
40  
60  
tWRITE2  
tWRITE3  
tWRITE4  
tFRET1  
256-bit write time  
(code-flash)  
4096-bit write time  
(code-flash)  
70  
320 1200  
32-bit write time (work-flash)  
30  
60  
Code-flash retention.  
20  
years Temperature at  
write/erase time.  
1000 program/erase cycles  
TA +85°C average  
SID182T1 tFRET2  
Code-flash retention.  
50  
20  
10  
50  
years Temperature at  
write/erase time.  
100 program/erase cycles  
TA +30°C average  
SID268  
SID269  
tFRET3  
Work-flash retention.  
125,000 program/erase  
cycles  
Work-flash retention.  
250,000 program/erase  
cycles  
years Temperature at  
write/erase time.  
TA +85°C average  
tFRET4  
years Temperature at  
write/erase time.  
TA +85°C average  
SID182T2 tFRET5  
Work-flash retention.  
years Temperature at  
write/erase time.  
1000 program/erase cycles  
TA +30°C average  
SID612  
SID613  
ICC_ACT2  
ICC_ACT3  
Program operating current  
(code or work-flash)  
Erase operating current  
(code- or work-flash)  
15  
15  
62  
62  
mA VDDD = 5 V, VCCD = 1.1 V  
Guaranteed by design  
mA VDDD = 5 V, VCCD = 1.1 V  
Guaranteed by design  
Datasheet  
121  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
27.10  
System resources  
Table 27-15 System resources  
Spec ID Parameter  
Power-on-reset specifications  
Details/  
Description  
Min  
Typ  
Max  
Units  
conditions  
SID270  
V
POR rising trip voltage  
1.5  
2.35  
V
Guaranteed by  
design  
POR_R  
SID276  
SID271  
SID272  
V
V
POR falling trip voltage  
1.45  
20  
2.1  
300  
3
V
POR_F  
POR_H  
Level detection hysteresis  
mV  
µs  
t
Delay between V  
rising  
DDD  
Guaranteed by  
design  
DLY_POR  
through 2.3 V and POR reset  
output rising through V  
Power off time  
/ 2  
DDD  
SID273  
t
350  
µs  
V
< 1.45 V  
DDD  
POFF  
Does not apply to  
SID274A and  
SID274B  
SID274A  
POR_RR1  
V
power ramp rate with robust  
1
100  
100  
mV/µs Applies to ramp up  
and ramp down  
DDD  
BOD - XRES_L asserted  
(BOD operation is guaranteed)  
SID274B POR_RR1  
V
power ramp rate with robust  
mV/µs Applies to ramp up  
and ramp down  
DDD  
BOD - XRES_L de-asserted  
(BOD operation is guaranteed)  
SID275  
POR_RR2  
V
power ramp rate without  
100  
1000  
mV/µs This ramp doesnot  
support robust  
BOD  
DDD  
robust BOD  
t
must be  
POFF  
satisfied.  
Applies to ramp up  
and ramp down  
High-voltage BOD (HV BOD) specifications  
SID500  
SID501  
SID502  
SID503  
VTR_2P7_R  
VTR_2P7_F  
VTR_3P0_R  
VTR_3P0_F  
HV BOD 2.7 V trimmed rising  
trip point for VDDD and  
VDDA_ADC (default)  
HV BOD 2.7 V trimmed falling  
trip point for VDDD and  
VDDA_ADC (default)  
HV BOD 3.0 V trimmed rising  
trip point for VDDD and  
VDDA_ADC  
HV BOD 3.0 V trimmed falling  
trip point for VDDD and  
VDDA_ADC  
2.474  
2.55  
2.627  
V
V
V
V
2.449 2.525 2.601  
2.765  
2.74  
2.85  
2.936  
2.91  
2.825  
SID505  
SID506  
SID507  
HVBOD_RR_A Power ramp rate: VDDD and  
VDDA_ADC (Active)  
HVBOD_RR_DS Power ramp rate: VDDD and  
VDDA_ADC (DeepSleep)  
tDLY_ACT_HVBOD Active mode delay between  
VDDD falling/rising through  
100  
10  
mV/µs  
mV/µs  
0.5  
µs Guaranteed by  
design  
VTR_2P7_F/R or VTR_3P0_F/R and  
an internal HV BOD output  
transitioning through VDDD / 2  
Datasheet  
122  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-15 System resources (continued)  
Details/  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Units  
conditions  
SID507A tDLY_ACT_H-  
Active mode delay between  
VDDA_ADC falling/rising  
through VTR_2P7_F/R or  
VTR_3P0_F/R and internal HV  
BOD output transitioning  
through VDDD / 2  
1
µs Guaranteed by  
design  
VBOD_A  
SID507B tDLY_DS_HVBOD DeepSleep mode delay  
between VDDD/VDDA_ADC  
4
µs Guaranteed by  
design  
falling/rising through  
VTR_2P7_F/R or VTR_3P0_F/R and  
an internal HV BOD output  
transitioning through VDDD / 2  
SID508  
tRES_HVBOD  
Response time of HV BOD,  
VDDD/VDDA_ADC supply. HV BOD  
guaranteed to generate pulse  
for VDDD/VDDA_ADC pulse width  
greater than this. (For  
100  
ns  
Guaranteed by  
design  
falling-then-rising supply at  
max ramp rate; pulse width is  
time below VTR_2P7_F or  
VTR_3P0_F  
)
Low-voltage BOD (LV BOD) specifications  
SID510  
SID511  
SID515  
VTR_R_LVBOD  
VTR_F_LVBOD  
LV BOD trimmed rising trip  
point for VCCD  
LV BOD trimmed falling trip  
point for VCCD  
0.917 0.945 0.973  
V
V
0.892  
0.92  
0.948  
1
tDLY_ACT_LVBOD Active delay between VCCD  
falling/rising through  
µs Guaranteed by  
design  
VTR_R/F_LVBOD and an internal  
LV BOD output transitioning  
through VDDD / 2  
SID515A tDLY_DS_LVBOD DeepSleep mode delay  
between VCCD falling/rising  
12  
µs Guaranteed by  
design  
through VTR_R/F_LVBOD and an  
internal LV BOD output transi-  
tioning through VDDD / 2  
SID516  
tRES_LVBOD  
Response time of LV BOD. LV  
BOD guaranteed to generate  
pulse for VCCD pulse width  
greater than this. (For  
100  
ns  
Guaranteed by  
design  
falling-then-rising supply at  
max ramp rate; pulse width is  
time below VTR_F_LVBOD  
)
Low-voltage detector (LVD) DC specifications  
SID520  
SID521  
SID522  
VTR_2P8_F  
VTR_2P9_F  
VTR_3P0_F  
LVD 2.8 V trimmed falling trip Typ – 4% 2800 Typ + 4% mV  
point for VDDD  
LVD 2.9 V trimmed falling trip Typ – 4% 2900 Typ + 4% mV  
point for VDDD  
LVD 3.0 V trimmed falling trip Typ – 4% 3000 Typ + 4% mV  
point for VDDD  
Datasheet  
123  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-15 System resources (continued)  
Details/  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Units  
conditions  
SID523  
VTR_3P1_F  
LVD 3.1 V trimmed falling trip Typ – 4% 3100 Typ + 4% mV  
point for VDDD  
SID524  
SID525  
SID526  
SID527  
SID528  
SID529  
SID530  
SID531  
SID532  
SID533  
SID534  
SID535  
SID536  
SID537  
SID538  
SID539  
SID540  
SID541  
SID542  
SID543  
SID544  
SID545  
VTR_3P2_F  
VTR_3P3_F  
VTR_3P4_F  
VTR_3P5_F  
VTR_3P6_F  
VTR_3P7_F  
VTR_3P8_F  
VTR_3P9_F  
VTR_4P0_F  
VTR_4P1_F  
VTR_4P2_F  
VTR_4P3_F  
VTR_4P4_F  
VTR_4P5_F  
VTR_4P6_F  
VTR_4P7_F  
VTR_4P8_F  
VTR_4P9_F  
VTR_5P0_F  
VTR_5P1_F  
VTR_5P2_F  
VTR_5P3_F  
LVD 3.2 V trimmed falling trip Typ – 4% 3200 Typ + 4% mV  
point for VDDD  
LVD 3.3 V trimmed falling trip Typ – 4% 3300 Typ + 4% mV  
point for VDDD  
LVD 3.4 V trimmed falling trip Typ – 4% 3400 Typ + 4% mV  
point for VDDD  
LVD 3.5 V trimmed falling trip Typ – 4% 3500 Typ + 4% mV  
point for VDDD  
LVD 3.6 V trimmed falling trip Typ – 4% 3600 Typ + 4% mV  
point for VDDD  
LVD 3.7 V trimmed falling trip Typ – 4% 3700 Typ + 4% mV  
point for VDDD  
LVD 3.8 V trimmed falling trip Typ – 4% 3800 Typ + 4% mV  
point for VDDD  
LVD 3.9 V trimmed falling trip Typ – 4% 3900 Typ + 4% mV  
point for VDDD  
LVD 4.0 V trimmed falling trip Typ – 4% 4000 Typ + 4% mV  
point for VDDD  
LVD 4.1 V trimmed falling trip Typ – 4% 4100 Typ + 4% mV  
point for VDDD  
LVD 4.2 V trimmed falling trip Typ – 4% 4200 Typ + 4% mV  
point for VDDD  
LVD 4.3 V trimmed falling trip Typ – 4% 4300 Typ + 4% mV  
point for VDDD  
LVD 4.4 V trimmed falling trip Typ – 4% 4400 Typ + 4% mV  
point for VDDD  
LVD 4.5 V trimmed falling trip Typ – 4% 4500 Typ + 4% mV  
point for VDDD  
LVD 4.6 V trimmed falling trip Typ – 4% 4600 Typ + 4% mV  
point for VDDD  
LVD 4.7 V trimmed falling trip Typ – 4% 4700 Typ + 4% mV  
point for VDDD  
LVD 4.8 V trimmed falling trip Typ – 4% 4800 Typ + 4% mV  
point for VDDD  
LVD 4.9 V trimmed falling trip Typ – 4% 4900 Typ + 4% mV  
point for VDDD  
LVD 5.0 V trimmed falling trip Typ – 4% 5000 Typ + 4% mV  
point for VDDD  
LVD 5.1 V trimmed falling trip Typ – 4% 5100 Typ + 4% mV  
point for VDDD  
LVD 5.2 V trimmed falling trip Typ – 4% 5200 Typ + 4% mV  
point for VDDD  
LVD 5.3 V trimmed falling trip Typ – 4% 5300 Typ + 4% mV  
point for VDDD  
Datasheet  
124  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-15 System resources (continued)  
Details/  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Units  
conditions  
SID546  
VTR_2P8_R  
LVD 2.8 V trimmed rising trip Typ – 4% 2825 Typ + 4% mV Same as  
point for VDDD  
VTR_2P8_F + 25 mV  
SID547  
SID548  
SID549  
SID550  
SID551  
SID552  
SID553  
SID554  
SID555  
SID556  
SID557  
SID558  
SID559  
SID560  
SID561  
SID562  
SID563  
SID564  
SID565  
SID566  
SID567  
SID568  
VTR_2P9_R  
VTR_3P0_R  
VTR_3P1_R  
VTR_3P2_R  
VTR_3P3_R  
VTR_3P4_R  
VTR_3P5_R  
VTR_3P6_R  
VTR_3P7_R  
VTR_3P8_R  
VTR_3P9_R  
VTR_4P0_R  
VTR_4P1_R  
VTR_4P2_R  
VTR_4P3_R  
VTR_4P4_R  
VTR_4P5_R  
VTR_4P6_R  
VTR_4P7_R  
VTR_4P8_R  
VTR_4P9_R  
VTR_5P0_R  
LVD 2.9 V trimmed rising trip Typ – 4% 2925 Typ + 4% mV Same as  
point for VDDD  
VTR_2P9_F + 25 mV  
LVD 3.0 V trimmed rising trip Typ – 4% 3025 Typ + 4% mV Same as  
point for VDDD  
VTR_3P0_F + 25 mV  
LVD 3.1 V trimmed rising trip Typ – 4% 3125 Typ + 4% mV Same as  
point for VDDD  
VTR_3P1_F + 25 mV  
LVD 3.2 V trimmed rising trip Typ – 4% 3225 Typ + 4% mV Same as  
point for VDDD  
VTR_3P2_F + 25 mV  
LVD 3.3 V trimmed rising trip Typ – 4% 3325 Typ + 4% mV Same as  
point for VDDD  
VTR_3P3_F + 25 mV  
LVD 3.4 V trimmed rising trip Typ – 4% 3425 Typ + 4% mV Same as  
point for VDDD  
VTR_3P4_F + 25 mV  
LVD 3.5 V trimmed rising trip Typ – 4% 3525 Typ + 4% mV Same as  
point for VDDD  
VTR_3P5_F + 25 mV  
LVD 3.6 V trimmed rising trip Typ – 4% 3625 Typ + 4% mV Same as  
point for VDDD  
VTR_3P6_F + 25 mV  
LVD 3.7 V trimmed rising trip Typ – 4% 3725 Typ + 4% mV Same as  
point for VDDD  
VTR_3P7_F + 25 mV  
LVD 3.8 V trimmed rising trip Typ – 4% 3825 Typ + 4% mV Same as  
point for VDDD  
VTR_3P8_F + 25 mV  
LVD 3.9 V trimmed rising trip Typ – 4% 3925 Typ + 4% mV Same as  
point for VDDD  
VTR_3P9_F + 25 mV  
LVD 4.0 V trimmed rising trip Typ – 4% 4025 Typ + 4% mV Same as  
point for VDDD  
VTR_4P0_F + 25 mV  
LVD 4.1 V trimmed rising trip Typ – 4% 4125 Typ + 4% mV Same as  
point for VDDD  
VTR_4P1_F + 25 mV  
LVD 4.2 V trimmed rising trip Typ – 4% 4225 Typ + 4% mV Same as  
point for VDDD  
VTR_4P2_F + 25 mV  
LVD 4.3 V trimmed rising trip Typ – 4% 4325 Typ + 4% mV Same as  
point for VDDD  
VTR_4P3_F + 25 mV  
LVD 4.4 V trimmed rising trip Typ – 4% 4425 Typ + 4% mV Same as  
point for VDDD  
VTR_4P4_F + 25 mV  
LVD 4.5 V trimmed rising trip Typ – 4% 4525 Typ + 4% mV Same as  
point for VDDD  
VTR_4P5_F + 25 mV  
LVD 4.6 V trimmed rising trip Typ – 4% 4625 Typ + 4% mV Same as  
point for VDDD  
VTR_4P6_F + 25 mV  
LVD 4.7 V trimmed rising trip Typ – 4% 4725 Typ + 4% mV Same as  
point for VDDD  
VTR_4P7_F + 25 mV  
LVD 4.8 V trimmed rising trip Typ – 4% 4825 Typ + 4% mV Same as  
point for VDDD  
VTR_4P8_F + 25 mV  
LVD 4.9 V trimmed rising trip Typ – 4% 4925 Typ + 4% mV Same as  
point for VDDD  
VTR_4P9_F + 25 mV  
LVD 5.0 V trimmed rising trip Typ – 4% 5025 Typ + 4% mV Same as  
point for VDDD VTR_5P0_F + 25 mV  
Datasheet  
125  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-15 System resources (continued)  
Details/  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Units  
conditions  
SID569  
VTR_5P1_R  
LVD 5.1 V trimmed rising trip Typ – 4% 5125 Typ + 4% mV Same as  
point for VDDD  
VTR_5P1_F + 25 mV  
SID570  
SID571  
VTR_5P2_R  
VTR_5P3_R  
LVD 5.2 V trimmed rising trip Typ – 4% 5225 Typ + 4% mV Same as  
point for VDDD  
VTR_5P2_F + 25 mV  
LVD 5.3 V trimmed rising trip Typ – 4% 5325 Typ + 4% mV Same as  
point for VDDD  
VTR_5P3_F + 25 mV  
SID573  
SID574  
LVD_RR_A  
LVD_RR_DS  
Power ramp rate: VDDD (Active)  
Power ramp rate: VDDD  
(DeepSleep)  
100  
10  
mV/µs  
mV/µs  
SID575  
tDLY_ACT_LVD  
Active mode delay between  
VDDD falling/rising through  
LVD rising/falling point and an  
internal LVD output  
1
µs Guaranteed by  
design  
transitioning through VDDD / 2  
SID575A tDLY_DS_LVD  
DeepSleep mode delay  
between VDDD falling/rising  
through LVD rising/falling  
point and an internal LVD  
output transitioning through  
VDDD / 2  
4
µs Guaranteed by  
design  
SID576  
tRES_LVD  
Response time of LVD, VDDD  
supply. LVD guaranteed to  
generate pulse for VDDD pulse  
width greater than this. (For  
falling-then-rising supply at  
max ramp rate; pulse width is  
time below LVD falling trip  
point.)  
100  
ns  
Guaranteed by  
design  
High-voltage OVD (HV OVD) specifications  
SID580  
SID581  
SID582  
SID583  
VTR_5P0_R  
VTR_5P0_F  
VTR_5P5_R  
VTR_5P5_F  
HV OVD 5.0-V trimmed rising  
trip point for VDDD and  
VDDA_ADC  
HV OVD 5.0-V trimmed falling  
trip point for VDDD and  
VDDA_ADC  
HV OVD 5.5-V trimmed rising  
trip point for VDDD and  
VDDA_ADC (default)  
HV OVD 5.5-V trimmed falling  
trip point for VDDD and  
VDDA_ADC (default)  
5.049 5.205 5.361  
V
V
V
V
5.025  
5.548  
5.18  
5.72  
5.335  
5.892  
5.524 5.695 5.866  
SID585  
SID586  
SID587  
HVOVD_RR_A Power ramp rate: VDDD and  
VDDA_ADC (Active)  
HVOVD_RR_DS Power ramp rate: VDDD and  
VDDA_ADC (DeepSleep)  
tDLY_ACT_HVOVD Active mode delay between  
VDDD falling/rising through  
100  
10  
1
mV/µs  
mV/µs  
µs Guaranteed by  
design  
VTR_5P0_F/R or VTR_5P5_F/R and  
an internal HV OVD output  
transitioning through VDDD / 2  
Datasheet  
126  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-15 System resources (continued)  
Details/  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Units  
conditions  
SID587A tDLY_ACT_H-  
Active mode delay between  
VDDA_ADC falling/rising  
1.5  
µs Guaranteed by  
design  
VOVD_A  
through VTR_5P0_F/R or  
VTR_5P5_F/R and an internal HV  
OVD output transitioning  
through VDDD / 2  
SID587B tDLY_DS_HVOVD DeepSleep mode delay  
between VDDD/VDDA_ADC  
4
µs Guaranteed by  
design  
falling/rising through  
VTR_5P0_F/R or VTR_5P5_F/R and  
an internal HV OVD output  
transitioning through VDDD / 2  
SID588  
tRES_HVOVD  
Response time of HV OVD HV  
OVD guaranteed to generate  
pulse for VDDD/VDDA_ADC pulse  
width greater than this. (For  
rising-then-falling supply at  
max ramp rate; pulse width is  
time above VTR_5P0_R or  
100  
ns  
Guaranteed by  
design  
VTR_5P5_R  
)
Low-voltage OVD (LV OVD) specifications  
SID590  
SID591  
VTR_R_LVOVD  
VTR_F_LVOVD  
LV OVD trimmed rising trip  
point for VCCD  
LV OVD trimmed falling trip  
point for VCCD  
Typ – 3% 1300 Typ + 3% mV  
Typ – 3% 1275 Typ + 3% mV Same as  
VTR_R_LVOVD  
25 mV  
SID595  
tDLY_ACT_LVOVD Active mode delay between  
VCCD falling/rising through  
VTR_F/R_LVOVD and an internal  
LV OVD output transitioning  
through VDDD / 2  
1
12  
µs Guaranteed by  
design  
SID595A tDLY_DS_LVOVD DeepSleep mode delay  
between VCCD falling/rising  
µs Guaranteed by  
design  
through VTR_F/R_LVOVD and an  
internal LV OVD output transi-  
tioning through VDDD / 2  
SID596  
tRES_LVOVD  
Response time of LV OVD. LV  
OVD guaranteed to generate  
pulse for VCCD pulse width  
greater than this. (For  
100  
ns  
Guaranteed by  
design  
rising-then-falling supply at  
max ramp rate; pulse width is  
time above VTR_R_LVOVD  
)
Over current detection (OCD) specifications  
SID598_A IOCD  
Over current detection range  
for internal Active regulator  
Over current detection range  
for internal DeepSleep  
regulator  
156  
18  
315  
72  
mA  
mA  
SID599  
IOCD_DPSLP  
Datasheet  
127  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
VDDD  
CPU and  
CPU and  
Peripherals  
Regulators  
I/O  
Peripherals  
Regulators  
I/O  
6.0 V  
Reset  
By HV OVD  
High-Z  
HV OVD rising trip  
(Default: 5.548 V to  
5.892 V)  
Normal  
Operation  
Normal  
Operation  
Enable  
Reset  
By  
XRES_L  
Disable  
High-Z  
HV BOD rising trip  
(Default: 2.474 V to  
2.627 V)  
Reset  
By HV BOD  
POR rising trip  
(1.5 V to 2.35 V)  
Reset  
High-Z  
By POR  
CMOS threshold  
(0.7 V)  
Disable  
OFF  
OFF  
-0.3 V  
VDDD  
XRES_L  
LOW Level  
HIGH Level  
Figure 27-14 Device operations supply range  
2.3 V  
VDDD  
tDLY_POR  
Internal reset by POR  
VDDD  
tPOFF  
1.45 V  
Figure 27-15 POR specifications  
Datasheet  
128  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
VDDD, VDDA_ADC  
VTR_2P7_R or VTR_3P0_R  
VTR_2P7_F or VTR_3P0_F  
Internal HV BOD signal  
tDLY_ACT/DS_HVBOD  
tDLY_ACT/DS_HVBOD  
VDDD, VDDA_ADC  
tRES_HVBOD  
VTR_2P7_F or VTR_3P0_F  
Figure 27-16 High-voltage BOD specifications  
Datasheet  
129  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
VCCD  
VTR_R_LVBOD  
VTR_F_LVBOD  
Internal LV BOD signal  
tDLY_ACT/DS_LVBOD  
tDLY_ACT/DS_LVBOD  
VCCD  
tRES_LVBOD  
VTR_F_LVBOD  
Figure 27-17 Low-voltage BOD specifications  
Datasheet  
130  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
VTR_5P0_R or VTR_5P5_R  
VTR_5P0_F or VTR_5P5_F  
VDDD/VDDA_ADC  
Internal HV OVD signal  
tDLY_ACT/DS_HVOVD  
tDLY_ACT/DS_HVOVD  
VTR_5P0_R or VTR_5P5_R  
tRES_HVOVD  
VDDD/VDDA_ADC  
Figure 27-18 High-voltage OVD specifications  
Datasheet  
131  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
VTR_R_LVOVD  
VTR_F_LVOVD  
VCCD  
Internal LV OVD signal  
tDLY_ACT/DS_LVOVD  
tDLY_ACT/DS_LVOVD  
VTR_R_LVOVD  
tRES_LVOVD  
VCCD  
Figure 27-19 Low-voltage OVD specifications  
Datasheet  
132  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
VDDD  
LVD rising detection point  
LVD falling detection point  
Internal LVD signal  
tDLY_ACT/DS_LVD  
tDLY_ACT/DS_LVD  
VDDD  
tRES_LVD  
LVD falling detection point  
Figure 27-20 LVD specifications  
Table 27-16 SWD interface specifications  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max Units Details/conditions  
Recommended I/O Configuration:  
GPIO_STD: CFG_OUT/DRIVE_SEL<1:0> =0b00, CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b1  
SID300  
SID301  
SID302  
SID303  
SID304  
f
SWD clock input frequency  
SWDI setup time  
10  
MHz 2.7 V V  
5.5 V  
SWDCLK  
DDIO_GPIO  
SWDCLK  
SWDCLK  
SWDCLK  
SWDCLK  
t
t
t
t
0.25 × T  
ns  
ns  
ns  
ns  
T = 1 / f  
T = 1 / f  
T = 1 / f  
T = 1 / f  
SWDI_SETUP  
SWDI_HOLD  
SWDO_VALID  
SWDO_HOLD  
SWDI hold time  
0.25 × T  
0.5 × T  
SWDO valid time  
1
SWDO hold time  
Datasheet  
133  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-17 JTAG AC specifications  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max Units Details/conditions  
Recommended I/O Configuration:  
GPIO_STD: CFG_OUT/DRIVE_SEL<1:0> = 0b00, CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b1  
SID620  
SID621  
SID622  
SID623  
SID624  
SID625  
SID626  
SID627  
tJCKH  
tJCKL  
tJCP  
tJSU  
tJH  
tJZX  
tJXZ  
tJCO  
TCK HIGH time  
TCK LOW time  
25  
25  
62.5  
6.25  
6.25  
25  
25  
25  
ns 30-pF load on TDO  
ns 30-pF load on TDO  
ns 30-pF load on TDO  
ns 30-pF load on TDO  
ns 30-pF load on TDO  
ns 30-pF load on TDO  
ns 30-pF load on TDO  
ns 30-pF load on TDO  
TCK clock period  
TDI/TMS setup time  
TDI/TMS hold time  
TDO High-Z to active  
TDO active to High-Z  
TDO clock to output  
tJCKH  
tJCKL  
tJCP  
TCK  
tJH  
tJSU  
TDI/TMS  
tJCO  
tJXZ  
tJZX  
TDO  
Figure 27-21 JTAG specifications  
Table 27-18 Trace specifications  
Spec ID Parameter  
Description  
Min  
Typ  
Max Units Details/conditions  
Recommended I/O Configuration:  
HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<4:0> =0b00000, CFG_SLEW_EXT/SLEW<0:0> = 0b0  
SID1412A CTRACE  
SID1412 tTRACE_CYC  
Trace Capacitive Load  
Trace clock period  
20  
30  
pF  
ns Trace clock cycle time  
for 50 MHz  
SID1413 tTRACE_CLKL Trace clock LOW pulse width  
SID1414 tTRACE_CLKH Trace clock HIGH pulse width  
SID1415 tTRACE_SETUP Trace data setup time  
2
2
2
ns Clock low pulse width  
ns Clock high pulse width  
ns Trace data setup time,  
CLK_PERI 75 MHz  
SID1416 tTRACE_HOLD Trace data hold time  
SID1415A tTRACE_SETUP Trace data setup time  
SID1416A tTRACE_HOLD Trace data hold time  
1
3
2
ns Trace data hold time,  
CLK_PERI 75 MHz  
ns Trace data setup time,  
CLK_PERI < 75 MHz  
ns Trace data hold time,  
CLK_PERI < 75 MHz  
Datasheet  
134  
002-32508 Rev. *F  
2022-10-20  
27.11  
Clock specifications  
The basic requirement on the clock frequency dependency of the cores is that the Cortex®-M0+ core should run at an integer divider from the Cortex®-M4  
core clock. Example combinations are listed in the Table 27-19.  
Table 27-19 Clock requirements  
Core Cortex®-M4 Clock (MHz)  
Core Cortex®-CM0+ Clock (MHz)  
160  
100  
80  
80  
100  
80  
Table 27-20 Root and intermediate clocks[56, 57]  
Maximum permitted clock frequency (MHz)[58]  
PLL/FLL Clock source: IMO[60, 61]  
Maximum  
permitted  
PLL/FLL Clock source: ECO/LPECO[59]  
Root Clock  
clock  
Source  
Description  
frequency  
(MHz)[58]  
Integer  
160  
SSCG  
NA  
Fractional  
Integer  
153  
100  
95  
SSCG  
NA  
Fractional  
PLL200#1  
FLL  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
160  
100  
100  
100  
NA  
NA  
CLK_HF0  
Root clock for CPUSS (CM0+, CM4), PERI (CLK_SLOW, CLK_PERI)  
PLL200#1  
FLL  
100  
NA  
NA  
100  
NA  
97  
NA  
PLL200#1  
FLL  
100  
NA  
95  
NA  
Event generator (CLK_REF), clock output on EXT_CLK pins (when  
used as output)  
CLK_HF1  
CLK_HF2  
100  
NA  
97  
NA  
PLL400#0 / PLL200#2 /  
EXT_CLK  
200  
100  
200  
100  
200  
100  
196  
NA  
198  
NA  
191  
100  
191  
100  
191  
100  
189  
NA  
191  
NA  
200  
200  
200  
Sound Subsystem #0 root clock, (CLK_IF_SRSS0)  
Sound Subsystem #1 root clock (CLK_IF_SRSS1)  
Sound Subsystem #2 root clock (CLK_IF_SRSS2)  
FLL  
PLL400#0 / PLL200#2 /  
EXT_CLK  
196  
NA  
198  
NA  
189  
NA  
191  
NA  
CLK_HF3  
CLK_HF4  
FLL  
PLL400#0 / PLL200#2 /  
EXT_CLK  
196  
NA  
198  
NA  
189  
NA  
191  
NA  
FLL  
Notes  
56.Intermediate clocks that are not listed have the same limitations as that of their parent clock.  
57.Table indicates guaranteed mapping between a root clock (CLK_HFx) and the PLL.  
58.Maximum clock frequency after the corresponding clock source (PLL/FLL + dividers). All internal tolerances and affects are covered by these frequencies.  
59.For ECO, LPECO: up to ±150 ppm uncertainty of the external clock source are tolerated by design.  
60.The IMO operation frequency tolerance is included.  
61.ROM and flash boot execution with IMO/FLL at 100 MHz is guaranteed by design.  
Table 27-20 Root and intermediate clocks[56, 57] (continued)  
Maximum permitted clock frequency (MHz)[58]  
Maximum  
permitted  
clock  
PLL/FLL Clock source: IMO[60, 61]  
PLL/FLL Clock source: ECO/LPECO[59]  
Root Clock  
Source  
Description  
frequency  
(MHz)[58]  
Integer  
200  
SSCG  
NA  
Fractional  
Integer  
191  
SSCG  
NA  
Fractional  
PLL200#2  
FLL  
NA  
NA  
NA  
NA  
CLK_HF5  
CLK_HF6  
CLK_FAST  
200  
SMIF#0 root clock  
100  
NA  
100  
NA  
ILO  
NA  
CSV Dedicated (< 1MHz)  
CLK_HF0  
FLL  
160  
100  
100  
100  
100  
100  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
153  
100  
95  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
160  
100  
100  
Generated by dividing CLK_HF0, intermediate clock for CM4  
CLK_HF0  
FLL  
Generated by clock gating CLK_PERI, intermediate clock for  
CM0+, Crypto, P-DMA, M-DMA  
CLK_SLOW  
CLK_PERI  
97  
CLK_HF0  
FLL  
95  
Generated by clock gating CLK_HF0, intermediate clock for LIN,  
SCB, PASS, CAN, TCPWM,CXPI, IOSS, CPU trace  
97  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-21 IMO AC specifications  
Details/  
Spec ID  
Parameter  
fIMO  
Description  
Min  
Typ  
Max Units  
conditions  
SID310  
IMO operating frequency  
7.632  
8
8.368 MHz Accuracy after  
factory trimming  
SID311  
SID312  
tSTARTIMO  
IMO startup time  
IMO current  
7.5  
µs Startup time to  
90% of final  
frequency  
IIMO_ACT  
13.5  
22  
µA Guaranteed by  
design  
Table 27-22 ILO AC specifications  
Spec ID  
SID320  
Parameter  
fILOTRIM  
Description  
Min  
Typ  
Max  
Units  
Details/conditions  
ILO operating frequency 30.965 32.768 34.57  
kHz 5.5% accuracy after  
factory trimming  
SID321  
SID323  
tSTARTILO  
IILO  
ILO startup time  
ILO current  
8
12  
µs Startup time to 90% of  
final frequency  
nA Guaranteed by design  
500  
2800  
Table 27-23 LPECO specifications  
Spec ID Parameter Description  
Min  
Typ  
Max Units  
Details/conditions  
Drive level protection DL 100  
µW, ESR 200 Ω Crystal load  
capacitance (CL)  
SID325  
SID329  
SID354  
SID326  
SID355  
SID356  
SID357  
SID327  
fLPECO  
LPECO operating frequency 3.99  
8.01 MHz  
5 pF to 25 pF  
Shared with GPIO, Load:  
10 pF  
ILPECO_4M  
ILPECO_4M  
ILPECO_4M  
ILPECO_4M  
ILPECO_8M  
ILPECO_8M  
ILPECO_8M  
LPECO current at 4 MHz  
LPECO current at 4 MHz  
LPECO current at 4 MHz  
LPECO current at 4 MHz  
LPECO current at 8 MHz  
LPECO current at 8 MHz  
LPECO current at 8 MHz  
93  
110  
125  
145  
155  
165  
175  
190  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
BACKUP_LPECO_CTL/LPECO_  
AMPDET_EN<0:0>=0b0  
Shared with GPIO, Load:  
15 pF  
97  
BACKUP_LPECO_CTL/LPECO_  
AMPDET_EN<0:0>=0b0  
Shared with GPIO, Load:  
20 pF  
106  
115  
140  
149  
165  
BACKUP_LPECO_CTL/LPECO_  
AMPDET_EN<0:0>=0b0  
Shared with GPIO, Load:  
25 pF  
BACKUP_LPECO_CTL/LPECO_  
AMPDET_EN<0:0>=0b0  
Shared with GPIO, Load:  
10 pF  
BACKUP_LPECO_CTL/LPECO_  
AMPDET_EN<0:0>=0b0  
Shared with GPIO, Load:  
15 pF  
BACKUP_LPECO_CTL/LPECO_  
AMPDET_EN<0:0>=0b0  
Shared with GPIO, Load:  
20 pF  
BACKUP_LPECO_CTL/LPECO_  
AMPDET_EN<0:0>=0b0  
Datasheet  
137  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-23 LPECO specifications (continued)  
Spec ID Parameter  
Description  
Min  
Typ  
Max Units  
Details/conditions  
Shared with GPIO, Load:  
SID358  
ILPECO_8M  
LPECO current at 8 MHz  
183  
220  
µA  
25 pF  
BACKUP_LPECO_CTL/LPECO_  
AMPDET_EN<0:0>=0b0  
SID328  
tSTART_LPECO LPECO startup time[62]  
10  
ms  
Startup time to 90% of final  
frequency  
VDDD  
MCU  
ITrim  
Rf  
RTrim  
LPECO_IN: External crystal oscillator input pin  
LPECO_OUT: External crystal oscillator output pin  
C1, C2: Load Capacitors  
LPECO_IN  
C3*, C4*: Stray Capacitance of the PCB  
C1  
C2  
C3*  
C4*  
GTrim  
VSS  
VSS  
LPECO_OUT  
Rd  
0R  
Rd  
FTrim  
Figure 27-22 LPECO connection scheme[63]  
Notes  
62.Mainly depending on the chosen external crystal.  
63.See the family-specific Architecture TRM for more information on crystal requirements (002-19314, TRAVEO™ T2G Automotive Body  
Controller Entry Family Architecture Technical Reference Manual (TRM)).  
Datasheet  
138  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-24 ECO specifications  
Spec ID Parameter  
Description  
Crystal frequency range  
Min  
7.2  
100  
Typ  
Max Units Details/conditions  
33.34 MHz  
SID330  
SID332  
fECO  
RFDBK  
Feedback resistor value.  
400  
kΩ Guaranteed by design  
Min: RTRIM = 3; Max: RTRIM = 0  
with 100 kΩ step size on RTRIM  
SID333  
IECO3  
ECO current at TJ = 150 °C  
1200 2000  
µA Maximum operation  
current at 33 MHz  
crystal, up to 18 pF  
load  
ms Startup time to 90% of  
final frequency  
SID334  
SID335  
tSTART_7M  
7.2 MHz ECO startup time[64]  
10  
1
tSTART_33M 33 MHz ECO startup time[64]  
ms Startup time to 90% of  
final frequency  
VDDD  
MCU  
ITrim  
Rf  
RTrim  
ECO_IN: External crystal oscillator input pin  
ECO_OUT: External crystal oscillator output pin  
C1, C2: Load Capacitors  
ECO_IN  
VSSD  
C3*, C4*: Stray Capacitance of the PCB  
C1  
C2  
C3*  
C4*  
GTrim  
VSSD  
ECO_OUT  
Rd  
0R  
Rd  
FTrim  
Figure 27-23 ECO connection scheme[65]  
Notes  
64.Mainly depending on the chosen external crystal.  
65.See the family-specific Architecture TRM for more information on crystal requirements (002-33175, TRAVEO™ T2G Automotive MCU  
cluster entry architecture technical reference manual).  
Datasheet  
139  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-25 PLL specifications  
Spec ID Parameter  
Description  
Min  
Typ  
Max Units  
Details/conditions  
PLL Specifications for “PLL without SSCG and Fractional Operation” (PLL200)  
Time from stable  
reference clock until PLL  
SID340  
tPLL200_LOCK Time to achieve PLL lock  
35  
µs frequency is within 0.1%  
of final value and lock  
indicator is set  
Output frequency from  
fOUT  
10.998  
3.988  
200.03  
SID341  
SID346  
MHz  
PLL block (PLL_OUT)  
fIN  
PLL input frequency  
(Reference Clock fREF  
33.34 MHz  
)
SID347  
IPLL_200M  
PLL operating current  
0.87  
1.85  
mA fOUT = 200 MHz  
VCO frequency, clock output  
of 'Voltage Control Oscillator  
(VCO)'  
SID348C fPLL_VCO  
169.9745  
400.06 MHz  
Phase Detector Frequency,  
clock output of the  
SID349C fPLL_PFD  
3.988  
–0.25  
8.0012 MHz  
Reference Divider (Q) and  
Feedback Divider (P)  
For 125 ns  
Guaranteed by design  
f
f
f
f
: 320 MHz or 400 MHz  
: 40 MHz to 200 MHz  
: 8 MHz  
PLL_VCO  
PLL_OUT  
PLL_PFD  
SID342  
SID343  
SID344  
PLL_LJIT1 Long term jitter  
0.25  
0.5  
ns  
ns  
ns  
: ECO  
PLL_IN  
For 500 ns  
Guaranteed by design  
f
f
f
f
: 320 MHz or 400 MHz  
: 40 MHz to 200 MHz  
: 8 MHz  
PLL_VCO  
PLL_OUT  
PLL_PFD  
PLL_LJIT2 Long term jitter  
–0.5  
–0.5  
: ECO  
PLL_IN  
For 1000 ns  
Guaranteed by design  
f
f
f
f
: 320 MHz or 400 MHz  
: 40 MHz to 200 MHz  
: 8 MHz  
PLL_VCO  
PLL_OUT  
PLL_PFD  
PLL_LJIT3 Long term jitter  
0.5  
: ECO  
PLL_IN  
For 10000 ns  
Guaranteed by design  
f
f
f
f
: 320 MHz or 400 MHz  
: 40 MHz to 200 MHz  
: 8 MHz  
PLL_VCO  
PLL_OUT  
PLL_PFD  
SID345A1 PLL_LJIT5 Long term jitter  
–0.75  
0.75  
ns  
µs  
: ECO  
PLL_IN  
PLL Specifications for “PLL with SSCG and Fractional Operation” (PLL400)  
SID340A tPLL400_LOCK Time to achieve PLL lock  
50  
SID341A fOUT  
Output frequency from  
PLL block (PLL_OUT)  
24.996  
400.06 MHz  
SID343A SPREAD_D Spread spectrum  
modulation depth  
SID343B fSPREAD_MR Spread spectrum  
modulation rate  
0.5  
3
%
Downspread only,  
triangle modulation  
32  
kHz Selected by modulation  
divider from fPFD  
SID346A fIN  
PLL input frequency  
(Reference Clock fREF  
PLL operating current  
3.988  
33.34 MHz  
)
SID347A IPLL_400M  
1.4  
2.2 mA fOUT = 400 MHz  
Datasheet  
140  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-25 PLL specifications (continued)  
Spec ID Parameter  
SID348A fPFD_S  
Description  
Phase Detector  
Min  
3.988  
Typ  
Max Units  
Details/conditions  
20.003 MHz Fractional operation OFF  
20.003 MHz Fractional operation ON  
800.12 MHz  
Frequency, clock output  
of the Reference Divider  
(Q) and Feedback Divider  
(P)  
SID349A fPFD_F  
SID345A fVCO  
Phase Detector  
7.9988  
399.94  
Frequency, clock output  
of the Reference Divider  
(Q) and Feedback Divider  
(P)  
VCO frequency,  
Clock output of 'Voltage  
Control Oscillator (VCO)'  
For 125 ns  
Guaranteed by Design  
f
: 800 MHz  
VCO  
SID342D1 PLL400_LJIT1 Long term jitter  
SID343D1 PLL400_LJIT2 Long term jitter  
SID344D1 PLL400_LJIT3 Long term jitter  
–0.25  
–0.5  
–1  
0.25  
0.5  
1
ns (spreading is off)  
f
f
f
: ECO  
IN  
PFD  
OUT  
: 4 MHz  
: 100 MHz to 400 MHz  
For 500 ns  
Guaranteed by Design  
f
: 800 MHz  
VCO  
ns (spreading is off)  
f
f
f
: ECO  
IN  
PFD  
OUT  
: 4 MHz  
: 100 MHz to 400 MHz  
For 1000 ns  
Guaranteed by Design  
f
: 800 MHz  
VCO  
ns (spreading is off)  
f
f
f
: ECO  
IN  
PFD  
OUT  
: 4 MHz  
: 100 MHz to 400 MHz  
For 10000 ns  
Guaranteed by Design  
f
: 800 MHz  
VCO  
SID345E1 PLL400_LJIT5 Long term jitter  
–1.5  
1.5  
ns (spreading is off)  
f
f
f
: ECO  
IN  
PFD  
OUT  
: 4 MHz  
: 100 MHz to 400 MHz  
Table 27-26 FLL specifications  
Spec ID Parameter  
Description  
Min  
Typ  
Max Units  
Details/conditions  
SID350 tFLL_WAKE  
FLL wake up time  
5
µs Wakeup with < 10°C temperature  
change while in DeepSleep.  
fFLL_IN = 8 MHz,  
fFLL_OUT = 100 MHz,  
Time from stable reference clock  
until FLL frequency is within 5%  
of final value  
SID351 fFLL_OUT  
SID352 FLL_CJIT  
SID353 fFLL_IN  
Output frequency  
from FLL block  
24  
–1  
100  
1
MHz Output range of FLL divided-by-2  
output  
FLL frequency  
accuracy  
%
This is added to the error of the  
source  
Input frequency  
0.25  
100  
MHz  
Datasheet  
141  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-27 WCO specifications  
Spec ID  
Parameter  
fWCO  
Description  
Min  
Typ  
Max Units Details/conditions  
Tuning Fork Crystal with  
following parameters:  
DL (drive level) 0.5 µW,  
ESR 130 kΩ  
SID360  
Watch crystal frequency  
32.768  
kHz  
SID361  
SID362  
SID363  
WCO_DC  
tSTART_WCO  
IWCO  
WCO duty cycle  
WCO start up time[66]  
WCO current  
10  
90  
1000  
%
ms  
1.4  
µA AGC = OFF  
VDDD  
MCU  
Rf  
WCO_IN: Watch crystal oscillator input pin  
WCO_OUT: Watch crystal oscillator output pin  
C1, C2: Load Capacitors  
WCO_IN  
C3*, C4*: Stray Capacitance of the PCB  
C1  
C2  
C3*  
C4*  
VSSD  
VSSD  
WCO_OUT  
Rd  
0R  
Figure 27-24 WCO connection scheme[67]  
Table 27-28 External clock input specifications  
Spec ID Parameter  
Description  
Min  
Typ  
Max Units Details/conditions  
For EXT_CLK pin (all  
input level settings:  
CMOS, TTL, Automotive)  
SID366  
SID367  
fEXT  
External clock input frequency 0.25  
100  
MHz  
EXT_DC  
Duty cycle  
45  
55  
%
Notes  
66.Mainly depending on the chosen external crystal.  
67.See the family-specific Architecture TRM for more information on crystal requirements (002-33175, TRAVEO™ T2G Automotive MCU  
cluster entry architecture technical reference manual).  
Datasheet  
142  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
27.12  
Clock timing diagrams  
ECO: 4 MHz  
PLL: 200 MHz  
FLL: 100 MHz  
Active  
CLK_ECO_CONFIG.ECO_EN  
ECO_OUT  
4 MHz  
CLK_ECO_STATUS.ECO_READY  
10 ms  
CLK_PLL_CONFIG.ENABLE  
CLK_PLL_STATUS.LOCKED  
200 MHz  
35 µs  
PLL_OUTPUT  
CLK_FLL_CONFIG.FLL_ENABLE  
CCO is already up-and-running  
CLK_FLL_STATUS.LOCKED  
5 µs  
100 MHz  
FLL_OUTPUT  
Figure 27-25 ECO to PLL or FLL diagram  
Datasheet  
143  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
WCO: 32.768 kHz  
FLL: 100 MHz  
Active  
CTL.WCO_EN  
WCO_OUT  
32.768 kHz  
STATUS.WCO_OK  
1000 ms  
CLK_FLL_CONFIG.FLL_ENABLE  
CLK_FLL_STATUS.LOCKED  
CCO is already up-and-running  
5 µs  
100 MHz  
FLL_OUTPUT  
Figure 27-26 WCO to FLL diagram  
Table 27-29 MCWDT timeout specifications  
Spec ID Parameter  
Description  
Min  
Typ Max Units  
Details/conditions  
SID410 tMCWDT1  
Minimum MCWDT  
timeout  
57.85  
µs When using the ILO  
(32 kHz + 5.5%) and 16-bit MCWDT  
counter  
Guaranteed by design  
SID411 tMCWDT2  
Maximum MCWDT  
timeout  
2.12  
s
When using the ILO  
(32 kHz – 5.5%) and 16-bit MCWDT  
counter  
Guaranteed by design  
Table 27-30 WDT timeout specifications  
Spec ID Parameter  
Description  
Min  
Typ Max Units  
Details/conditions  
When using the ILO  
SID412 tWDT1  
Minimum WDT timeout 57.85  
38.53  
µs  
(32 kHz + 5.5%) and 32-bit WDT counter  
Guaranteed by design  
When using the ILO  
SID413 tWDT2  
SID414 tWDT3  
Maximum WDT timeout  
Default WDT timeout  
h
(32 kHz – 5.5%) and 32-bit WDT counter  
Guaranteed by design  
When using the ILO and 32-bit WDT  
counter at 0x8000 (default value),  
guaranteed by design  
1000  
ms  
Datasheet  
144  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
27.13  
Sound subsystem specifications  
Table 27-31 Sound subsystem specifications  
Spec ID  
I2S I/O Settings  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details/conditions  
Recommended I/O configuration:  
GPIO_STD: CFG_OUT/DRIVE_SEL<1:0> =0b01, CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b1  
I2S Serial Clock Frequency  
SID796  
tSCLK  
Serial clock period  
162  
ns  
Guaranteed by design  
No feature is used for low  
frequency I2S operation:  
DUT RX Master:  
* RX_IF_CTL.LATE_SAMPLE = 0  
* RX_IF_CTL.LATE_CAPTURE =  
0b00  
DUT TX Slave: No special config-  
uration  
DUT RX Slave:  
* RX_IF_CTL.LATE_SAMPLE = 0  
I2S can only be used at  
2.7 V VDDD 3.6 V  
SID797  
SID798  
SID799  
tHC  
Serial clock high time  
Serial clock low time  
Master clock period  
0.35 ×  
tSCLK  
0.35 ×  
tSCLK  
ns  
ns  
ns  
Guaranteed by design  
Guaranteed by design  
Guaranteed by design  
tLC  
tMCLK  
20  
I2S can only be used at  
2.7 V VDDD 3.6 V  
I2S Transmitter Timing  
SID740  
SID741  
SID743  
tDTR  
Delay from rising edge of  
TX_CLK to transition on  
TX_SD/TX_FSYNC (WS)  
Delay from rising edge of  
TX_CLK to transition on  
TX_SD/TX_FSYNC (WS)  
0
0.8 ×  
tSCLK  
ns  
ns  
ns  
Guaranteed by design  
Guaranteed by design  
tHTR  
t
TX Slave: Hold on  
1.8  
HR_WS_POL  
TX_FSYNC (WS) after the  
1st edge following the  
driving edge of TX_CLK  
(SCK_POLARITY = 0,  
half-cycle hold)  
_0  
I2S Receiver Timing  
SID751  
tSR  
Setup on RX_SD/RX_FSYNC  
(WS) before the rising edge to  
RX_CLK  
0.2 × tSCLK  
ns  
ns  
Guaranteed by Design  
Setup time is independent from  
RX_IF_CTL.LATE_SAMPLE,  
RX_IF_CTL.LATE_CAPTURE or  
SCK_POLARITY setting  
SID752A  
tHR  
Hold on RX_SD/RX_FSYNC  
(WS) after the rising edge to  
RX_CLK  
1.8  
Guaranteed by Design  
Sampling edge w.r.t driving edge  
of RX_SCLK: 1st edge (0.5 x tSCLK  
)
RX-Master:  
RX_IF_CTL.LATE_SAMPLE = 0,  
RX_IF_CTL.LATE_CAPTURE =  
0b00  
RX-Slave: SCK_POLARITY = 0  
SID753  
SID754  
SID755  
tSCLK_TRANS SCLK transition timing  
tMCLK_TRANS MCLK transition timing  
tDATA_TRANS DATA transition timing  
1
1
1
8
8
8
ns  
ns  
ns  
20% to 80%  
20% to 80%  
20% to 80%  
Datasheet  
145  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-31 Sound subsystem specifications (continued)  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details/conditions  
TDM I/O Settings  
Recommended I/O configuration:  
For serial clock up to 25 MHz  
GPIO_STD: CFG_OUT/DRIVE_SEL<1:0> = 0b01, CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b1  
TDM Serial Clock  
SID1000B  
tSCLK  
Serial clock period, TDM[x]  
(x=0 through 1)  
40  
ns  
Guaranteed by Design  
TX Master:  
TX_IF_CTL.SCK_POLARITY = 0  
RX Master:  
RX_IF_CTL.LATE_SAMPLE = 1  
RX_IF_CTL.LATE_CAPTURE =  
0b00  
TX Slave:  
Set TX_IF_CTL.SCK_POLARITY =  
1
RX Slave:  
RX_IF_CTL.SCK_POLARITY= 0  
TDM can only be used at  
2.7 V VDDD 3.6 V  
SID1000D  
tSCLK  
Serial clock period, TDM[x]  
(x=0 through 1)  
80  
ns  
Guaranteed by Design  
TX Master:  
TX_IF_CTL.SCK_POLARITY = 0  
RX Master:  
RX_IF_CTL.LATE_SAMPLE = 1  
RX_IF_CTL.LATE_CAPTURE =  
0b00  
TX Slave:  
Set TX_IF_CTL.SCK_POLARITY =  
1
RX Slave:  
RX_IF_CTL.SCK_POLARITY = 0  
TDM can only be used at  
2.7 V VDDD 3.6 V  
SID1001  
SID1002  
SID1010A  
tHC  
Serial clock high time  
Serial clock low time  
Master clock input period  
0.35 ×  
tSCLK  
0.35 ×  
tSCLK  
ns  
ns  
ns  
Guaranteed by design  
Guaranteed by design  
tLC  
tMCLK  
20  
MCLK must be SCLK*2; The  
maximum output frequency of  
the TDM depends on the used I/O  
type.  
SID1002B  
SID1002D  
tMCLK  
tMCLK_IH  
Master clock output period  
Master clock input HIGH time  
40  
0.45 ×  
tMCLK  
ns  
ns  
SID1002E  
tMCLK_IL  
Master clock input LOW time  
0.45 ×  
tMCLK  
ns  
TDM Transmit Timing  
SID1003  
SID1004  
SID1011  
tDTR  
Delay from rising edge of  
TX_CLK to transition on  
TX_SD/TX_FSYNC (WS)  
Delay from rising edge of  
TX_CLK to transition on  
TX_SD/TX_FSYNC (WS)  
0
0.8 ×  
tSCLK  
ns  
ns  
ns  
Guaranteed by design  
Guaranteed by design  
tHTR  
tHR_WS_POL_0 TX Slave: Hold on TX_FSYNC  
(WS) after the 1st edge  
1.8  
following the driving edge of  
TX_CLK (SCK_POLARITY = 0,  
half-cycle hold)  
Datasheet  
146  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-31 Sound subsystem specifications (continued)  
Spec ID  
SID1012  
Parameter  
tHR_WS_POL_1 TX Slave: Hold on TX_FSYNC  
(WS) after the 2nd edge  
Description  
Min  
1.8  
Typ  
Max  
Units  
ns  
Details/conditions  
following the driving edge of  
TX_CLK (SCK_POLARITY = 1,  
zero-cycle hold)  
TDM Receive Timing  
SID1005  
tSR  
Setup on RX_SD/RX_FSYNC 0.2 × tSCLK  
(WS) before the 1st edge  
following the driving edge of  
RX_CLK  
ns  
ns  
Guaranteed by Design  
Setup time is independent from  
RX_IF_CTL.LATE_SAMPLE,  
RX_IF_CTL.LATE_CAPTURE and  
SCK_POLARITY setting  
SID1006C  
tHR  
Hold on RX_SD/RX_FSYNC  
(WS) after the 1st edge  
following the driving edge of  
RX_CLK  
1.8  
1.8  
1.8  
Guaranteed by Design  
Sampling edge w.r.t driving edge  
of RX_SCLK: 1st edge (0.5 x tSCLK  
)
RX-Master:  
RX_IF_CTL.LATE_SAMPLE = 0,  
RX_IF_CTL.LATE_CAPTURE =  
0b00  
RX-Slave: SCK_POLARITY = 0  
SID1006D  
SID1006E  
tHR  
Hold on RX_SD/RX_FSYNC  
(WS) after the 2nd edge  
following the driving edge of  
RX_CLK  
ns  
ns  
Guaranteed by Design  
Sampling edge w.r.t driving edge  
of RX_SCLK: 2nd edge (1 x tSCLK  
)
RX-Master:  
RX_IF_CTL.LATE_SAMPLE = 1,  
RX_IF_CTL.LATE_CAPTURE =  
0b00  
RX-Slave: SCK_POLARITY = 1  
tHR  
Hold on RX_SD/RX_FSYNC  
(WS) after the 3rd edge  
following the driving edge of  
RX_CLK  
Guaranteed by Design  
Sampling edge w.r.t driving edge  
of RX_SCLK: 3rd edge (1.5 x tSCLK  
)
RX-Master:  
RX_IF_CTL.LATE_SAMPLE = 0,  
RX_IF_CTL.LATE_CAPTURE =  
0b01  
RX Slave: Not Applicable  
TDM Transition Timing  
SID1007B  
tSCLK_TRANS SCLK transition timing  
tMCLK_TRANS MCLK transition timing  
tDATA_TRANS DATA transition timing  
1
1
0.15 ×  
tSCLK  
0.15 ×  
tSCLK  
0.15 ×  
tSCLK  
ns  
ns  
ns  
Guaranteed by design  
Guaranteed by design  
Guaranteed by design  
SID1008  
SID1009B  
(PCM) PWM  
Recommended I/O configuration:  
GPIO_STD: CFG_OUT/DRIVE_SEL<1:0> = 0b01  
GPIO_ENH: CFG_OUT/DRIVE_SEL<1:0> = 0b01  
GPIO_SMC: CFG_OUT/DRIVE_SEL<1:0> = 0b01  
SID1100_2  
tPW_2  
Pulse width on CH1_P,  
CH1_N, CH2_P, CH2_N for  
GPIO  
20  
ns  
PWM clock 40 MHz, min pulse  
width nom.  
25 ns – 20% max distortion  
(PCM) PWM can only be used at  
2.7 V VDDD 3.6 V  
Guaranteed by design  
SID1101  
SID1110  
SID1111  
fPWM  
tMCLK  
PWM sample frequency  
Master clock input period  
15  
10  
40  
60  
50  
kHz Guaranteed by design  
ns  
%
Guaranteed by design  
Guaranteed by design  
tMCLKI_DUTY Master clock input duty cycle  
Sound Generator  
Recommended I/O configuration:  
GPIO_STD: CFG_OUT/DRIVE_SEL<1:0> = 0b01  
GPIO_ENH: CFG_OUT/DRIVE_SEL<1:0> = 0b01  
GPIO_SMC: CFG_OUT/DRIVE_SEL<1:0> = 0b01  
SID1102  
SID1103  
SID1104  
fPWM  
tMCLK  
PWM sample frequency  
Master clock input period  
15  
10  
40  
60  
50  
kHz Guaranteed by design  
ns  
%
Guaranteed by design  
Guaranteed by design  
tMCLKI_DUTY Master clock input duty cycle  
Datasheet  
147  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
27.14  
CXPI specifications  
Table 27-32 CXPI specifications  
Details/  
Spec ID Parameter  
Description  
Min  
Typ  
Max  
Units  
conditions  
SID1400 fCLK_AHB  
CLK_PERI clock frequency  
100  
MHz Guaranteed by  
design,  
AHB Interface  
clock  
SID1402 tBIT_CONT  
Width of clock disparity against  
the bit width tBIT_REF of nominal  
signaling rate  
–0.5  
+0.5  
%
Guaranteed by  
design  
SID1403 tRX_0_HI_CONT The time that should be detected 0.02  
the receiving node is HIGH level.  
tBIT tBIT = 1 / fBRC,  
Guaranteed by  
design  
SID1404 tTX_DIF_CONT Difference of width of LOW-level at 0.05  
the constant threshold that  
tBIT tBIT = 1 / fBRC,  
Guaranteed by  
design  
receiving node should discrim-  
inate logic ‘1’ and logic ‘0’  
tTX_DIF_CONT  
=
t
TX_0_LO tTX_1_LO  
SID1405 tTX_0_P-  
At the time of logical value ‘0’  
outputs, time from the LOW level  
detection of the communication  
bus unit falling the voltage  
“TH_dom.  
At the time of logical value ‘0’  
outputs, time from the LOW-level  
detection of the communication  
bus unit falling the voltage  
“TH_dom.  
0.01  
tBIT tBIT = 1 / fBRC,  
D_CONT[68]  
CTL0.FILTER_EN  
bit = '0',  
Guaranteed by  
design  
SID1406 tTX_0_P-  
0.0125  
tBIT tBIT = 1 / fBRC,  
D_CONT[68]  
CTL0.FILTER_EN  
bit = '1',  
Guaranteed by  
design  
SID1407 tRX_0_FF_-  
Delay from external serial data  
input pin to a flop. This is a  
standard to satisfy AC.11.  
Delay from a flop to external serial  
data output pin. This is a standard  
to satisfy AC.11.  
20  
80  
ns  
ns  
Guaranteed by  
design  
CONST  
SID1408 tTX_0_FF_-  
Guaranteed by  
design  
CONST  
SID1409 BR  
SID1411 OS  
Bit rate  
Oversampling factor  
20  
400  
kbps  
Note  
68.The AC spec, according to the CXPI controller specification, is maximum 0.01 tBIT. The AC spec, according to the CXPI system specifi-  
cation, including transceiver or driver/receiver is maximum 0.1 tBIT  
.
Datasheet  
148  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
tBIT_REF x (1 + dtBIT_CONT  
)
tBIT_REF  
tBIT_REF x (1 + dtBIT_CONT  
)
TXD  
tBIT_REF  
RXD  
tTX_1_REF  
tTX_1_REF  
tTX_L_REF tBIT_REF x dtTX_1_DIF_CONT  
RXD  
TXD  
tTX_0_PD_CONT  
Figure 27-27 CXPI specifications  
Datasheet  
149  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
27.15  
Serial memory interface specifications  
Table 27-33 xSPI specifications  
Spec ID  
Parameter  
Description  
Min  
Max  
Units  
xSPI (JEDEC JESD251 xSPI200)  
Recommended I/O configuration:  
xSPI200  
xSPI200: HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<4:0> =0b00001, CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0,  
CFG_SLEW_EXT/SLEW<0:0> = 0b0  
SID1500_3  
SID1500_3CM  
SID1501_3  
SID1502_3  
SID1502_3CM  
SID1503_3HV  
SID1504_3  
SID1505_3  
SID1506_3HV  
SID1507_3  
SID1507_3CM  
SID1508_3  
SID1508_3CM  
SID1509_3  
SID1509_3CM  
SID1511_3  
SID1512_3  
SID1513_3  
SID1514_3  
SID1515_3  
SID1516_3  
SID1517_3  
SID1518_3  
tCK  
Interface clock period (JEDEC)  
Interface clock period (CMOS)  
Allowable clock distortion[69]  
Minimum clock pulse width (JEDEC)  
Minimum clock pulse width (CMOS)  
Output slew rate with respect to VOH/VOL  
Output setup time of DS and I/O[7:0] to CK  
Output hold time of DS and I/O[7:0] to CK  
Input slew rate with respect to VIH/VIL  
Input min pulse width of DS (JEDEC)  
Input min pulse width of DS (CMOS)  
Input DS to I/O[7:0] valid time (JEDEC)  
Input DS to I/O[7:0] valid time (CMOS)  
Input I/O[7:0] invalid to DS time (JEDEC)  
Input I/O[7:0] invalid to DS time (CMOS)  
CK LOW to CS LOW  
10  
10  
ns  
ns  
ns  
ns  
ns  
V/ns  
ns  
ns  
V/ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCK  
tCKDCD  
tCKMPW  
tCKMPW  
OUT_SR  
tOSU  
0.05×tCK  
4.5  
4.5  
1.03  
1.1  
1.1  
1.03  
4.1  
4.1  
tOH  
IN_SR  
tDSMPW  
tDSMPW  
tRQ  
0.9  
0.9  
0.9  
0.9  
tRQ  
tRQH  
tRQH  
tCKLCSL  
tCSLCKH  
tCKLCSH  
tCSHCKH  
tDSLCSH  
tCSHDST  
tCSLDSL  
tDSTCSL  
8
CS LOW to CK HIGH  
8
CK LOW to CS HIGH  
8
CS HIGH to CK HIGH  
8
DS LOW to CS HIGH  
8
CS HIGH to DS High-Z  
10  
CS LOW to DS LOW  
0
DS High-Z to CS LOW  
0
Table 27-34 xSPI (JEDEC JESD251) Delay tap recommended configuration  
xSPI200  
Feature  
Rx  
2
Rx  
6
Delay Tap Selection (DELAY_TAP_SEL/DELAY_TAPS_NR_LOG2<7:0>)  
Delay Line Selection (CTL/DELAY_LINE_SEL<2:0>)  
0
0
Note  
69.PLL#400 with SSCG = 0, fractional divider = off.  
Datasheet  
150  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-35 Input, output supported voltage reference levels  
Supported modes for voltage reference levels  
CMOS JEDEC  
Signal  
Clock  
V = (50% × V  
)
DDIO_HSIO  
T
RWDS (output)  
DQ[7:0] (output)  
RWDS (input)  
DQ[7:0] (input)  
V = (50% × V  
)
)
V
V
/V = 70% / 30% × V  
OH OL  
T
DDIO_HSIO  
DDIO_HSIO  
DDIO_HSIO  
/V = 70% / 30% × V  
DDIO_HSIO  
V = (50% × V  
T
OH OL  
V = (50% × V  
)
T
DDIO_HSIO  
V = (50% × V  
)
V /V = 70% / 30% × V  
IH IL DDIO_HSIO  
T
DDIO_HSIO  
Notes  
One of the modes (“CMOS, JEDEC”) needs to be selected depending on the requirements of the actual memory.  
Some parameters may be available and listed separately for the individual modes. The corresponding mode will be mentioned in the  
parameter description.  
Parameters without explicit mode description (e.g. tOSU) are applicable for all modes but the voltage reference level as per the table still  
applies.  
tCK  
VDDIO_HSIO  
Data  
Strobe  
VT  
tDSMPW  
tDSMPW  
VSSIO _HSIO  
tRQ  
tRQ H  
VIH  
VIL  
Data  
Input  
Valid Window  
Valid Window  
tRDV  
VSSIO_HSIO  
Figure 27-28 xSPI master data input timing reference level (JEDEC)  
tCK  
VDDIO_HSIO  
tCKDCD  
Clock  
Output  
VT  
tCKMPW  
tCKMPW  
tCKDCD  
tOH  
VSSIO_HSI O  
tOSU  
tOSU  
tOH  
VOH  
VOL  
Data  
Ouput  
Valid  
Valid  
Figure 27-29 xSPI master data output timing reference level (JEDEC)  
Datasheet  
151  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
tCKLCSH tCSHCKH  
tCKLCSL  
tCSLCKH  
Chip  
select  
CK  
Figure 27-30 xSPI clock to chip select timing diagram  
tCKLCSL  
tCSLCKH  
tDSLCSH  
tCSHCKH  
Chip  
select  
tCSHDST  
CK  
DS  
tCSLDS  
tDSTCSL  
Figure 27-31 xSPI data strobe to chip select timing diagram  
Datasheet  
152  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-36 Standard SPI specifications  
Spec ID Parameter  
Description  
Min Typ Max Units  
Details/conditions  
Standard SPI SDR  
Recommended I/O configuration:  
HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<4:0> = 0b00001, CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG_SLEW_EXT/SLEW<2:0>  
=0b000  
DLL Tap settings for RX:  
CTL/DELAY_LINE_SEL<2:0> = 0, DELAY_TAP_SEL/DELAY_TAPS_NR_LOG2<7:0> = 2  
All timings aligned with respect to VT = (50% × VDDIO_HSIO).  
SID1600_2  
SID1601  
t
t
Interface clock period  
Clock pulse width  
10  
ns  
ns  
15-pF output loads, 3.3 V  
15-pF output loads  
CK  
0.45 ×  
0.55 ×  
CK  
CKPW  
t
t
CK  
SID1602_HS  
SID1602_LS  
t
t
CS# active setup to CK  
CK  
4
ns  
ns  
15-pF output loads,  
CSS  
(f > 50 MHz)  
f
> 50 MHz  
CK  
Guaranteed by design  
15-pF output loads,  
CS# active setup to CK  
5
CSS  
(f 50 MHz)  
f
50 MHz  
CK  
CK  
Guaranteed by design  
SID1603  
SID1604  
SID1605_2  
t
t
t
CS# active hold to CK (mode 0)  
CS# active hold to CK (mode 3)  
4
6
ns  
ns  
ns  
15-pF output loads  
CSH0  
CSH3  
OSU  
Guaranteed by design  
15-pF output loads  
Guaranteed by design  
Output setup time of DQ[7:0] to 2.1  
15-pF output loads  
CK high (f = 100 MHz)  
CK  
For other frequencies:  
t
= t  
CK_min  
OSU_min  
+ 0.45 × (t  
OSU OSU_min CK  
- t  
)
t
= value at MIN of  
SID1605_2  
t
= value at MIN of  
CK_min  
SID1600_2  
= actual clock period  
t
CK  
SID1606_2  
t
Output hold time of DQ[7:0] to  
2.1  
ns  
15-pF output loads  
OH  
CK high (f = 100 MHz)  
CK  
For other frequencies:  
t
t
t
= t  
CK_min  
+ 0.45 × (t  
-
OH  
OH_min  
CK  
)
= value at MIN of  
OH_min  
SID1606_2  
t
= value at MIN of  
CK_min  
SID1600_2  
= actual clock period  
t
CK  
SID1607  
SID1607A  
SID1608  
t
t
t
CK low to DQ[7:0] input valid  
time  
DQ[7:0] input setup time  
1
6.7  
ns  
ns  
ns  
Delay line is enabled  
IN_V  
ISU  
IH  
1.25  
1.5  
Delay line is disabled  
(bypassed)  
Delay line is disabled  
(bypassed)  
DQ[7:0] input hold time  
SID1609  
SID1610  
t
t
Input data valid time of DQ[7:0] 3.8  
ns  
ns  
Delay line is enabled  
RDV  
CS  
CS# HIGH time (Read)  
10  
15-pF output loads  
Guaranteed by design  
SID1610A  
t
CS# High time (Read when Reset  
feature and Quad mode are  
both enabled and aborted  
transaction)  
20  
ns  
15-pF output loads  
CS  
Guaranteed by design  
SID1610B  
SID1611  
t
t
CS# High time (Program / Erase) 50  
8
ns  
ns  
15-pF output loads  
CS  
Guaranteed by design  
CS# inactive to output disable  
time  
15-pF output loads  
DIS  
Guaranteed by design  
Datasheet  
153  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
Table 27-36 Standard SPI specifications (continued)  
Spec ID Parameter  
Description  
Min Typ Max Units  
Details/conditions  
Standard SPI DDR  
Recommended I/O configuration:  
HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<4:0> =0b00001, CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG_SLEW_EXT/SLEW<2:0>  
=0b000  
DLL Tap settings for RX:  
CTL/DELAY_LINE_SEL<2:0> = 0, DELAY_TAP_SEL/DELAY_TAPS_NR_LOG2<7:0> = 2  
All timings aligned with respect to VT = (50% × VDDIO_HSIO).  
SID1700_2  
t
t
t
Interface clock period  
12.5  
ns  
ns  
ns  
15-pF output loads,  
3.3 V  
15-pF output loads  
CK  
SID1701  
Clock pulse width  
0.45 ×  
0.55 ×  
CK  
CKPW  
CSS  
t
t
CK  
SID1702_HS  
CS# active setup to CK  
4
15-pF output loads,  
(f > 50 MHz)  
f
> 50 MHz  
CK  
CK  
Guaranteed by design  
15-pF output loads,  
SID1702_LS  
t
CS# active setup to CK  
5
4
ns  
CSS  
(f 50 MHz)  
f
50 MHz  
CK  
CK  
Guaranteed by design  
SID1703  
t
t
CS# active hold to CK (mode 0)  
ns  
ns  
15-pF output loads  
CSH0  
Guaranteed by design  
SID1705_2  
Output setup time of DQ[7:0] to 2.1  
15-pF output loads  
OSU  
CK edge (f = 80MHz)  
CK  
For other frequencies:  
t
= t  
CK_min  
OSU_min  
+ 0.225 ×  
OSU_min  
OSU  
CK  
(t – t  
)
t
= value at MIN of  
SID1705_2  
= value at MIN of  
t
CK_min  
SID1700_2  
= actual clock period  
t
CK  
SID1706_2  
t
Output hold time of DQ[7:0] to  
1.6  
ns  
15-pF output loads  
OH  
CK edge (f = 80MHz)  
CK  
For other frequencies:  
t
= t  
CK_min  
OH_min  
+ 0.225 × (t  
OH  
OH_min CK  
– t  
)
t
= value at MIN of  
SID1706_2  
= value at MIN of  
t
CK_min  
SID1700_2  
= actual clock period  
t
CK  
SID1707  
t
t
t
t
t
t
CK edge to DQ[7:0] input valid  
time  
DQ[7:0] input setup time  
1
6.7  
ns  
ns  
ns  
ns  
ns  
ns  
Delay line is enabled  
IN_V  
ISU  
IH  
SID1707A  
SID1708  
1.25  
1.5  
Delay line is disabled  
(bypassed)  
Delay line is disabled  
(bypassed)  
DQ[7:0] input hold time  
SID1709_2  
SID1710  
Input data valid time of DQ[7:0] 3.5  
Delay line is enabled  
RDV  
CS  
(f 80 MHz)  
CK  
CS# High time (Read)  
10  
20  
15-pF output loads  
Guaranteed by design  
SID1710A  
CS# High time (Read when Reset  
feature and Quad mode are  
both enabled and aborted  
transaction)  
15-pF output loads  
CS  
Guaranteed by design  
SID1710B  
SID1711  
t
t
CS# High time (Program / Erase) 50  
8
ns  
ns  
15-pF output loads  
CS  
Guaranteed by design  
CS# inactive to output disable  
time  
15-pF output loads  
DIS  
Guaranteed by design  
Datasheet  
154  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Electrical specifications  
CK  
1
8
10  
Chip  
select  
4
9
2
3
7
6
LSB OUT  
MSB OUT  
Data  
LSB IN  
5
MSB IN  
Read timing  
Write timing  
1: CS# active setup to CK = tCSS  
2: Data setup time = tISU  
3: Data hold time = tIH  
4: CK low to DQ[7:0] input valid time = tIN_V  
5: Read data valid time of DQ[7:0] = tRDV  
6: Output setup of DQ[7:0] to CK rise = tOSU  
7: Output hold time of DQ[7:0] from CK rise = tOH  
8: CS# active hold to CK = tCSH  
9: CS# inactive to output disable = tDIS  
10: Chip select HIGH time = tCS  
Figure 27-32 SDR write and read timing diagram  
CK  
8
10  
1
4
3
4
Chip  
select  
9
7
7
3
6
6
2
2
MSB IN  
LSB IN  
MSB OUT  
LSB OUT  
Data  
5
Read timing  
Write timing  
1: CS# active setup time to CK = tCSS  
2: Data setup time = tISU  
3: Data hold time = tIH  
4: CK edge low to DQ[7:0] input valid time = tIN_V  
5: Read data valid time of DQ[7:0] = tRDV  
6: Output setup time of DQ[7:0] to CK edge = tOSU  
7: Output hold time of DQ[7:0] from CK edge = tOH  
8: CS# active hold time to CK = tCSH  
9: CS# inactive to output disable time = tDIS  
10: CS# HIGH time = tCS  
Figure 27-33 DDR write and read timing diagram  
27.16  
LCD controller specifications  
Table 27-37 LCD controller specifications  
Details/  
Spec ID Parameter  
Description  
LCD frame rate  
Min  
Typ  
Max  
150  
Units  
Hz  
conditions  
SID1243 fLCD_FR  
10  
Datasheet  
155  
002-32508 Rev. *F  
2022-10-20  
28  
Ordering information  
The CYT2CL microcontroller part numbers and features are listed in Table 28-1. The Arm® TAP JTAG ID is 0x6BA0 0477.  
Table 28-1  
CYT2CL Ordering information[70]  
CYT2CL7BAS  
CYT2CLHBAS  
CYT2CL8BAS  
CYT2CL7BAAQ0AZSGS 144-LQFP[76] 4160[71] 128[72] 512  
48  
48  
48  
12  
12  
12  
2
2
2
4
4
4
2
2
2
32 S x 4 C[73] 1x  
1x  
1x  
1x  
1x  
1x  
1x  
2x  
2x  
2x  
S[74] 0x1EC03069[75]  
CYT2CLHBAAQ0AZSGS 144-LQFP[77] 4160  
128  
128  
512  
512  
32 S x 4 C  
32 S x 4 C  
1x  
1x  
S
S
0x1EC05069  
0x1EC01069  
CYT2CL8BAAQ0AZSGS 176-LQFP 4160  
Notes  
70.Supported shipment types are “Tray” (default) and “Tape and Reel. Add the character ‘T’ at the end to get the ordering code for “Tape and Reel” shipment type.  
71.Code-flash size 4160 KB = 32 KB × 126 (Large Sectors) + 8 KB × 16 (Small Sectors).  
72.Work-flash size 128 KB = 2 KB × 48 (Large Sectors) + 128 B × 256 (Small Sectors).  
73.32 Segments and 4 Commons.  
74.S-grade Temperature (–40°C to 105°C).  
75.JTAG ID CODE bits 12 through 27, represents the Silicon ID of the device.  
76.Package pin pitch is 0.5 mm.  
77.Package pin pitch is 0.4 mm.  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Ordering information  
28.1  
Part number nomenclature  
Table 28-2  
Device code nomenclature  
Field Description  
Value  
Meaning  
CY  
T
Cypress Prefix  
CY  
T
2
Category  
TRAVEO™  
2
Family  
TRAVEO™ T2G (Core M4)  
Cluster Entry  
B
Application  
C
L
D
Code-flash/Work-flash/SRAM quantity  
4160 KB / 128 KB / 512 KB  
176-LQFP  
8
P
Packages  
7
144-LQFP (0.5 mm Pitch)  
144-LQFP (0.4 mm Pitch)  
Security on (HSM), RSA - 3K  
No options  
H
B
A
S
H
I
Hardware option  
Marketing option  
Temperature grade  
C
S-grade (–40°C to 105°C)  
Table 28-3  
Ordering code nomenclature  
Field Description  
Value  
Meaning  
CY  
T
Cypress Prefix  
CY  
T
Category  
TRAVEO™  
2
Family name  
2
TRAVEO™ T2G (Core M4)  
Cluster Entry  
B
Application  
C
D
Code-flash/Work-flash/SRAM quantity  
L
4160 KB / 128 KB / 512 KB  
176-LQFP  
8
P
Packages  
7
144-LQFP (0.5 mm Pitch)  
144-LQFP (0.4 mm Pitch)  
Security on (HSM), RSA - 3K  
No options  
H
H
I
Hardware option  
Marketing option  
Revision  
B
A
R
F
X
K
C
A
First revision  
Fab location  
Q
UMC (Fab 12i) Singapore  
Reserved  
Reserved  
0
Package code  
Temperature grade  
AZ  
S
LQFP  
S-grade (–40°C to 105°C)  
Engineering samples  
Standard grade of automotive  
Tray shipment  
ES  
GS  
Blank  
T
Q
S
Quality grade  
Shipment type  
Tape and reel shipment  
Datasheet  
157  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Packaging  
29  
Packaging  
CYT2CL is offered in the packages listed in the Table 29-1.  
Table 29-1  
Package  
Package information  
Contact/  
[78]  
[82]  
Dimensions  
Coefficient of Thermal Expansion  
I/O pins  
Lead Pitch  
[79]  
[80]  
176-LQFP  
144-LQFP  
144-LQFP  
24 × 24 × 1.7 mm (max)  
20 × 20 × 1.7 mm (max)  
16 × 16 × 1.7 mm (max)  
0.5 mm  
0.5 mm  
0.4 mm  
a1 = 8.5 ppm/°C, a2 = 33.8 ppm/°C  
140  
108  
108  
[79]  
[80]  
a1 = 8.5 ppm/°C, a2 = 33.7 ppm/°C  
[79]  
[80]  
a1 = 8.5 ppm/°C, a2 = 33.65 ppm/°C  
Table 29-2  
Parameter  
Package characteristics[81]  
Description  
Conditions  
Min  
Typ  
Max  
Units  
T
Operating ambient  
temperature  
S-grade  
–40  
105  
°C  
A
T
Operating junction  
temperature  
150  
°C  
J
144 LQFP (0.4 mm)  
144 LQFP (0.5 mm)  
176 LQFP  
23.0  
23.1  
21.8  
15.3  
15.0  
14.8  
5.2  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
Package thermal resistance,  
R
[78]  
θJA  
θJB  
θJC  
junction to ambient θ  
JA  
144 LQFP (0.4 mm)  
144 LQFP (0.5 mm)  
176 LQFP  
R
R
Package θ  
JB  
144 LQFP (0.4 mm)  
144 LQFP (0.5 mm)  
176 LQFP  
Package thermal resistance,  
junction to case θ  
5.3  
JC  
4.5  
Table 29-3  
Solder reflow peak temperature, package moisture sensitivity level (MSL), IPC/JEDEC  
J-STD-2  
Maximum time at peak temperature  
Package  
Maximum peak temperature (°C)  
MSL  
(seconds)  
144 LQFP (0.4 mm)  
144 LQFP (0.5 mm)  
176 LQFP  
260  
260  
260  
30  
30  
30  
3
3
3
Notes  
78.The dimensions (column 2) are valid for room temperature.  
79.a1 = CTE (Coefficient of Thermal Expansion) value below Tg (ppm/°C) (Tg is glass transition temperature which is 131°C).  
80.a2 = CTE value above Tg (ppm/°C).  
81.Board condition complies to JESD51-7 (4 Layers).  
82.The numbers are estimated values based simulation only and are based on a single bill of material combination per package type.  
Datasheet  
158  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Packaging  
4
D
5
7
D1  
132  
89  
89  
132  
133  
133  
88  
88  
E1  
E
5
4
7
3
6
176  
45  
45  
176  
1
44  
44  
1
e
2
5 7  
3
0.10  
A-B  
C
A-B  
D
BOTTOM VIEW  
0.20  
C A-B D  
b
0.08  
C
D
8
TOP VIEW  
2
A
c
9
θ
A
SEATING  
PLANE  
A1  
0.25  
A'  
b
L1  
10  
0.08  
C
SECTION A-A'  
L
SIDE VIEW  
DIMENSIONS  
SYMBOL  
MIN. NOM. MAX.  
1.70  
A
A1  
b
0.05  
0.17 0.22 0.27  
0.09 0.20  
0.15  
c
D
26.00 BSC  
24.00 BSC  
0.50 BSC  
D1  
e
E
26.00 BSC  
24.00 BSC  
E1  
L
0.45 0.60 0.75  
1.00 REF  
L1  
θ
0°  
8°  
002-15150 *A  
Figure 29-1  
Package outline – 176-LQFP  
Datasheet  
159  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Packaging  
4
4
5
D
D
5
7
7
D1  
D1  
108  
73  
73  
108  
109  
109  
72  
72  
E1  
E
E
E1  
5
7
5
7
4
4
3
3
6
C
144  
144  
37  
37  
1
36  
36  
1
2
5
D
7
BOTTOM VIEW  
e
3
0.10  
C A-B  
0.20  
A-B D  
b
0.08  
C
A-B  
D
8
TOP VIEW  
2
A
9
c
A
A1  
SEATING  
PLANE  
0.25  
b
L1  
10  
A'  
SECTION A-A'  
L
0.08  
C
SIDE VIEW  
DIMENSIONS  
MIN. NOM. MAX.  
1.70  
SYMBOL  
A
A1  
b
0.05  
0.17 0.22 0.27  
0.09 0.20  
0.15  
c
D
22.00 BSC  
20.00 BSC  
0.50 BSC  
D1  
e
E
22.00 BSC  
20.00 BSC  
E1  
L
0.45 0.60 0.75  
1.00 REF  
L1  
002-13015 *B  
Figure 29-2  
Package outline – 144-LQFP (0.5 mm)  
Datasheet  
160  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Packaging  
4
D
5
7
D1  
108  
73  
73  
108  
109  
109  
72  
72  
E1  
E
5
4
7
3
6
144  
144  
37  
37  
1
36  
36  
1
2
5
D
7
8
e
3
0.10  
C
A-B  
0.20  
C
A-B D  
0.07  
C
A-B  
D
b
2
A
A
9
SEATING  
PLANE  
θ
A'  
c
0.08  
C
0.25  
A1  
b
10  
L1  
SECTION A-A'  
L
DIMENSIONS  
SYMBOL  
MIN. NOM. MAX.  
1.70  
A
A1  
b
0.05  
0.145 0.18 0.215  
0.115 0.195  
18.00 BSC  
0.15  
c
D
D1  
e
16.00 BSC  
0.40 BSC  
E
18.00 BSC  
E1  
L
16.00 BSC  
0.45 0.60 0.75  
1.00 REF  
L1  
θ
0°  
8°  
002-14045 *A  
Figure 29-3  
Package outline – 144-LQFP (0.4 mm)  
Datasheet  
161  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Appendix  
30  
Appendix  
30.1  
Bootloading or End-of-line programming  
• Triggered at device startup, if a trigger condition is applied  
• Either CAN or LIN communication may be used  
• Bootloader polls for the communication on CAN or LIN at separate time frames, until the overall 300-second  
timeout is reached  
• If a boot loader command is received on either communication interface, the polling stops and boot loader  
starts using this interface  
150 ms  
10 ms  
10 ms  
CAN,  
100 Kbps  
Polling  
CAN,  
500 Kbps  
Polling  
LIN,  
20 Kbps  
Polling  
CAN,  
100 Kbps  
Polling  
Bootloader  
Stopped  
….  
Overall bootloading time, if no communication ( 300 s)  
Figure 30-1  
Table 30-1  
Bootloading sequence  
CAN interface details  
Sl. No.  
CAN interface  
Configuration  
1
2
3
4
5
6
7
8
9
CAN Mode  
CAN Instance  
CAN TX  
CAN RX  
CAN Transceiver EN (High)  
CAN Transceiver EN (Low)  
CAN RX Message ID  
CAN TX Message ID  
Baud  
Classic CAN  
CAN0, Channel#0  
P18.2 / CAN0_0_TX  
P18.3 / CAN0_0_RX  
P19.2  
P19.3  
0x1A1  
0x1B1  
100 or 500 kbps alternating  
VSS  
CAN  
Transceiver  
TRAVEOTM T2G MCU  
NSTB  
EN  
EN (Low)  
EN (High)  
TX  
TX  
RX  
RX  
Figure 30-2  
MCU to CAN transceiver connections  
Datasheet  
162  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Appendix  
Table 30-2  
LIN interface details  
LIN interface  
Sl. No.  
Configuration  
LIN0, Channel#0  
Slave  
1
2
LIN type  
LIN mode  
3
4
LIN checksum type  
LIN TX  
Classic  
P19.0 / LIN0_0_TX  
5
LIN RX  
P19.1 / LIN0_0_RX  
6
7
8
LIN EN / EN (High)  
LIN EN (Low)  
LIN TX PID  
P19.2  
P19.3  
0x46  
9
LIN RX PID  
0x45  
10  
11  
12  
Baud  
20 or 115.2 kbps  
11  
1 bit  
Break field length  
Break delimiter length  
VDDD / VDDIO  
LIN  
Transceiver  
TRAVEOTM T2G MCU  
EN (Low)  
EN (High)  
EN  
TX  
RX  
TX  
RX  
Figure 30-3  
MCU to LIN transceiver connections  
30.2  
External IP revisions  
Table 30-3  
External IP revisions  
Module  
IP  
mxttcanfd  
armcm0p  
armcm4  
armcoresighttk  
Revision  
M_TTCAN IP revision: Rev.3.2.3  
Cortex®-M0+-r0p1  
Vendor  
Bosch  
Arm®  
Arm®  
Arm®  
CAN FD  
Arm® Cortex®-M0+  
Arm® Cortex®-M4  
Arm® Coresight  
Cortex®-M4-r0p1  
CoreSight-SoC-TM100-r3p2  
30.3  
Internal IP revisions  
Table 30-4  
Internal IP revisions  
Module  
Revision  
SMIF  
SMIF version 3.0 (Variant v3.1)  
Datasheet  
163  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Acronyms  
31  
Acronyms  
Table 31-1  
Acronyms used in the document  
Acronym  
A/D  
Description  
Analog to Digital  
Acronym  
IRQ  
Description  
Interrupt request  
ABS  
Absolute  
JTAG  
LDO  
Joint test action group  
Low drop out regulators  
ADC  
Analog to Digital converter  
Advanced encryption standard  
AES  
LIN  
Local Interconnect Network,  
a communications protocol  
AHB  
AMBA (advanced microcontroller bus  
architecture) high-performance bus,  
Arm® data transfer bus  
LVD  
OTA  
Low voltage detection  
Arm®  
Advanced RISC machine, a CPU archi-  
tecture  
Over-the-air programming  
ASIL  
Automotive safety integrity level  
Brown-out detection  
OTP  
One-time programmable  
Overvoltage detection  
BOD  
OVD  
CAN FD  
Controller Area Network with Flexible  
Data rate  
P-DMA  
Peripheral-Direct Memory Access same as  
DW  
CMOS  
Complementary metal-oxide-semicon-  
ductor  
PLL  
Phase Locked Loop  
CPU  
CRC  
Central Processing Unit  
POR  
PPU  
Power-on reset  
Cyclic redundancy check, an  
error-checking protocol  
Peripheral protection unit  
CSV  
CTI  
Clock supervisor  
PRNG  
PWM  
Pseudorandom number generator  
Pulse-width modulation  
Microcontroller Unit  
Cross trigger interface  
Clock Extension Peripheral Interface  
Data encryption standard  
Design-For-Test  
CXPI  
DES  
DFT  
DW  
MCU  
MCWDT  
M-DMA  
MISO  
Multi-counter watchdog timer  
Memory-Direct Memory Access  
SPI Master-in slave-out  
Datawire same as P-DMA  
ECC  
Error correcting code/Elliptical curve  
cryptography  
MMIO  
Memory mapped I/O  
ECO  
ETM  
EVTGEN  
FLL  
External crystal oscillator  
Embedded Trace Macrocell  
Event Generator  
MOSI  
MPU  
MTB  
MUL  
MUX  
NVIC  
RAM  
RISC  
ROM  
RSA  
SPI Master-out slave-in  
Memory protection unit  
Micro trace buffer  
Frequency Locked Loop  
Floating point unit  
Multiplier  
FPU  
GHS  
GPIO  
HSM  
I/O  
Multiplexer  
Green Hills tool chain with Multi IDE  
General purpose input/output  
Hardware security module  
Input/output  
Nested vectored interrupt controller  
Random access memory  
Reduced-instruction-set computing  
Read only memory  
I2C  
Inter-Integrated Circuit,  
Rivest-Shamir-Adleman Public Key  
Encryption Algorithm  
a communications protocol  
ILO  
Internal low-speed oscillator  
Internal main oscillator  
RTC  
SAR  
Real-time clock  
IMO  
Successive approximation register  
Datasheet  
164  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Acronyms  
Table 31-1  
Acronyms used in the document (continued)  
Acronym  
IOSS  
Description  
Input/output sub-system  
Inter-processor communication  
Infrared interface  
Acronym  
Description  
Serial communication block  
I2C serial clock  
SCB  
IPC  
SCL  
IrDA  
SDA  
I2C serial data  
SECDED Single error correction, double error  
detection  
TCPWM  
Timer/Counter Pulse-width modulator  
SHA  
Secure hash algorithm  
TTL  
Transistor-transistor logic  
SHE  
Secure hardware extension  
Shared memory protection unit  
TRNG  
UART  
True random number generator  
SMPU  
Universal Asynchronous Transmitter  
Receiver  
SPI  
Serial peripheral interface,  
a communications protocol  
WCO  
Watch crystal oscillator  
SRAM  
SWD  
SWJ  
Static random access memory  
Serial wire debug  
WDT  
Watchdog timer reset  
External reset I/O pin  
XRES_L  
Serial wire JTAG  
Datasheet  
165  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Errata  
32  
Errata  
This section describes the errata for the CYT2CL product family. Details include errata trigger conditions, scope of impact, available  
workaround, and silicon revision applicability. Contact your local Infineon Sales Representative if you have questions.  
Part Numbers Affected  
Part Number  
All CYT2CL parts  
CYT2CL Qualification Status  
Production samples  
CYT2CL Errata Summary  
The following table defines the errata applicability to available CYT2CL family devices.  
Items  
Errata ID  
CYT2CL  
Silicon Rev.  
Fix Status  
[1.] CAN FD RX FIFO top pointer feature does not function  
No silicon fix planned. Use  
workaround.  
96  
as expected  
[2] CAN FD debug message handling state machine not get  
No silicon fix planned. Use  
workaround.  
97  
98  
reset to Idle state when CANFD_CH_CCCR.INIT is set  
[3] TPIU peripheral ID mismatch  
No silicon fix planned.  
[4] CAN FD controller message order inversion when trans-  
mitting from dedicated Tx Buffers configured with same  
Message ID  
No silicon fix planned. Use  
workaround.  
147  
167  
175  
[5] CAN FD incomplete description of Dedicated Tx Buffers  
and Tx Queue related to transmission from multiple  
buffers configured with the same Message ID  
No silicon fix planned. TRM  
was updated.  
[6] Misleading status is returned for Flash and eFuse  
system calls if there are pending NC ECC faults in SRAM  
controller #0  
No silicon fix planned. TRM  
was updated.  
CYT2CL7BAAQ0AZSGS  
CYT2CLHBAAQ0AZSGS  
CYT2CL8BAAQ0AZSGS  
No silicon fix planned. TRM  
was updated.  
[7] WDT reset causes loss of SRAM retention  
176  
185  
A
[8] Crypto ECC errors may be set after boot with appli-  
No silicon fix planned. TRM  
was updated.  
cation authentication  
Will be fixed to update the  
Flash  
settings,  
via  
Manufacturing  
Test  
Program Update for Code  
Flash setting; this fix is  
transferred to TRAVEO™  
[9]Incomplete erase of Code Flash cells could happen Erase  
Suspend / Erase Resume is used along with Erase Sector  
operation in Non-Blocking mode  
198  
199  
T2G  
devices  
during  
Infineon Factory Test Flow.  
Fixed devices will be  
identified by Device Date  
Code, which is marked on  
every  
TRAVEO™  
T2G  
device.  
[10]Limitation for keeping the port state from peripheral  
IP after wakeup from DeepSleep  
No silicon fix planned. TRM  
will be updated.  
Datasheet  
166  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
1. CAN FD RX FIFO top pointer feature does not function as expected  
Problem Definition  
RX FIFO top pointer function calculates the address for received messages in Message RAM by hardware.  
This address should be re-start back from the start address after reading all messages of RX FIFO n size (n:  
0 or 1). However, the address does not re-start back from the start address when RX FIFO n size is set to 1  
(CANFD_CH_RXFnC.FnS = 0x01). This results in CPU/DMA to read messages from the wrong address in  
Message RAM.  
Parameters Affected  
Trigger Condition(s)  
Scope of Impact  
N/A  
RX FIFO top pointer function is used when RX FIFO n size set to 1 element (CANFD_CH_RXFnC.FnS = 0x01).  
Received message cannot be correctly read by using RX FIFO top pointer function, when RX FIFO n size set  
to 1 element.  
Workaround  
Any of the following.  
1) Set RX FIFO n size to 2 or more when using RX FIFO top pointer function.  
2) Do not use RX FIFO top pointer function when RX FIFO n size set to 1 element. Instead of RX FIFO top  
pointer, read received messages from the Message RAM directly.  
Fix Status  
No silicon fix planned. Use workaround.  
2. CAN FD debug message handling state machine not get reset to Idle state when CANFD_CH_CCCR.INIT is set  
Problem Definition  
If either CANFD_CH_CCCR.INIT bit is set by the Host or when the M_TTCAN module enters Bus-off state, the  
debug message handling state machine stays in its current state instead of being reset to Idle state. Config-  
uring the bit CANFD_CH_CCCR.CCE does not change CANFD_CH_RXF1S.DMS.  
Parameters Affected  
Trigger Condition(s)  
Scope of Impact  
N/A  
Either CANFD_CH_CCCR.INIT bit is set by the Host or when the M_TTCAN module enters Bus-off state.  
The errata is limited to the use case when the Debug on CAN functionality is active. Normal operation of  
CAN module is not affected, in which case the debug message handling state machine always remains in  
Idle state. In the described use case, the debug message handling state machine is stopped and remains in  
the current state signaled by the bit CANFD_CH_RXF1S.DMS. In case CANFD_CH_RXF1S.DMS is set to 0b11,  
DMA request remains active.  
Bosch classifies this as non-critical error with low severity, there is no fix for the IP. Bosch recommends the  
workaround listed also here.  
Workaround  
Fix Status  
In case the debug message handling state machine has stopped while CANFD_CH_RXF1S.DMS is 0b01 or  
0b10, it can be reset to Idle state by hardware reset or by reception of debug messages after  
CANFD_CH_CCCR.INIT is reset to zero.  
No silicon fix planned. Use workaround.  
3. TPIU peripheral ID mismatch  
Problem Definition  
Parameters Affected  
Trigger Condition(s)  
Scope of Impact  
Workaround  
TPIU peripheral ID indicates that it is M3-TPIU instead of M4-TPIU.  
N/A  
When debugger reads PID registers for component identification.  
The debuggers read the TPIU as M3-TPIU and no other impact other than this.  
No specific workaround required. Debuggers can use trace features.  
No silicon fix planned.  
Fix Status  
Datasheet  
167  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
4. CAN FD controller message order inversion when transmitting from dedicated Tx Buffers configured with same Message ID  
Problem Definition  
Configuration:  
Several Tx Buffers are configured with same Message ID. Transmission of these Tx Buffers is requested  
sequentially with a delay between the individual Tx requests.  
Expected behavior:  
When multiple Tx Buffers that are configured with the same Message ID have pending Tx requests, they  
shall be transmitted in ascending order of their Tx Buffer numbers. The Tx Buffer with lowest buffer number  
and pending Tx request is transmitted first.  
Observed behavior:  
It may happen, depending on the delay between the individual Tx requests, that in the case where multiple  
Tx Buffers are configured with the same Message ID the Tx Buffers are not transmitted in order of the Tx  
Buffer number (lowest number first).  
Parameters Affected  
Trigger Condition(s)  
Scope of Impact  
N/A  
When multiple Tx Buffers that are configured with the same Message ID have pending Tx requests.  
In the case described it may happen, that Tx Buffers configured with the same Message ID and pending Tx  
request are not transmitted with lowest Tx Buffer number first (message order inversion).  
Workaround  
Any of the following:  
1) First write the group of Tx message with the same Message ID to the Message RAM and then afterwards  
request transmission of all these messages concurrently by a single write access to CANFDx_CHy_TXBAR.  
Before requesting a group of Tx messages with this Message ID ensure that no message with this Message  
ID has a pending Tx request.  
2) Use the Tx FIFO instead of dedicated Tx Buffers for the transmission of several messages with the same  
Message ID in a specific order.  
Applications not able to use workaround #1 or #2 can implement a counter within the data section of their  
messages sent with same ID in order to allow the recipients to determine the correct sending sequence.  
Fix Status  
No silicon fix planned. Use workaround.  
Datasheet  
168  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
5. CAN FD incomplete description of Dedicated Tx Buffers and Tx Queue related to transmission from multiple buffers configured  
with the same Message ID  
Problem Definition  
The following is the updated description in Section 3.5.2 Dedicated Tx Buffers and 3.5.4 Tx Queue of the  
Architecture TRM related to transmission from multiple buffers configured with the same Message ID.  
3.5.2 Dedicated Tx Buffers  
- Wording TRM:  
If multiple Tx Buffers are configured with the same Message ID, the Tx Buffer with the lowest buffer number  
is transmitted first.  
- Enhancement:  
These Tx buffers shall be requested in ascending order with lowest buffer number first. Alternatively all Tx  
buffers configured with the same Message ID can be requested simultaneously by a single write access to  
CANFDx_CHy_TXBAR.  
3.5.4 Tx Queue  
- Wording TRM:  
If multiple queue buffers are configured with the same Message ID, the queue buffer with the lowest buffer  
number is transmitted first.  
- Replacement:  
In case that multiple Tx Queue buffers are configured with the same Message ID, the transmission order  
depends on numbers of the buffers where the messages were stored for transmission. As these buffer  
numbers depend on the then current states of the PUT Index, a prediction of the transmission order is not  
possible.  
- Wording TRM:  
An Add Request cyclically increments the Put Index to the next free Tx Buffer.  
- Replacement:  
The PUT Index always points to that free buffer of the Tx Queue with the lowest number.  
Parameters Affected  
Trigger Condition(s)  
Scope of Impact  
N/A  
Using multiple dedicated Tx Buffers or Tx Queue Buffers configured with the same Message ID.  
In the case the dedicated Tx Buffers with the same Message ID are not requested in ascending order or at  
the same time or in case of multiple Tx Queue Buffers with the same Message ID, it cannot be guaranteed,  
that these messages are transmitted in ascending order with lowest buffer number first.  
Workaround  
Fix Status  
In case a defined order of transmission is required the Tx FIFO shall be used for transmission of messages  
with the same Message ID. Alternatively dedicated Tx Buffers with the same Message ID shall be requested  
in ascending order with lowest buffer number first or by a single write access to CANFDx_CHy_TXBAR.  
Alternatively a single Tx Buffer can be used to transmit those messages one after the other.  
No silicon fix planned. Use workaround. TRM will be updated accordingly.  
Datasheet  
169  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
6. Misleading status is returned for Flash and eFuse system calls if there are pending NC ECC faults in SRAM controller #0  
Problem Definition  
Flash and eFuse system calls will return misleading status of 0xf0000005 (“Page is write protected”) even  
for non-protected row or 0xf0000002 (“Invalid eFuse address”) for valid eFuse address in case of pending  
NC ECC faults in SRAM controller #0.  
Parameters Affected  
Trigger Condition(s)  
Scope of Impact  
Return status of Flash and eFuse system calls  
NC ECC fault(s) pending in SRAM controller #0 and SWPUs are populated in the design.  
Flash and eFuse system calls will not work until the NC ECC fault(s) pending in SRAM controller #0 is properly  
handled.  
Workaround  
Fix Status  
If the NC ECC fault(s) are not due to HW malfunction (i.e., if the faults are due to usage of non-initialized  
SRAM or improper SRAM initialization), then clearing of these pending faults will resolve the issue.  
No silicon fix planned. TRM will be updated.  
7. WDT reset causes loss of SRAM retention  
Problem Definition  
Architecture TRM Table 19-1 shows WDT reset can retain SRAM if there is an orderly shutdown of the SRAM  
only during a warning interrupt. However, this is wrong. WDT reset causes loss of SRAM retention.  
Parameters Affected  
Trigger Condition(s)  
Scope of Impact  
Workaround  
N/A  
WDT reset  
WDT reset causes loss of SRAM retention.  
None  
Fix Status  
No silicon fix planned. TRM will be updated.  
8. Crypto ECC errors may be set after boot with application authentication  
Problem Definition  
Due to the improper initialization of the Crypto memory buffer, Crypto ECC errors may be set after boot  
with application authentication.  
Parameters Affected  
Trigger Condition(s)  
Scope of Impact  
Workaround  
N/A  
Boot device with application authentication.  
Crypto ECC errors may be set after boot with application authentication.  
Clear or ignore Crypto ECC errors which generated during boot with application authentication.  
No silicon fix planned. TRM will be updated.  
Fix Status  
9. Incomplete erase of Code Flash cells could happen Erase Suspend / Erase Resume is used along with Erase Sector operation  
in Non-Blocking mode  
Problem Definition  
Code Flash memory can be erased in “Non-Blocking” mode; a Non-Blocking mode supported option allows  
users to suspend an ongoing erase sector operation. When an ongoing erase operation is interrupted using  
“Erase Suspend” and “Erase Resume”, Flash cells may not have been erased completely, even after the  
erase operation complete is indicated by FLASHC_STATUS register. Only Code Flash is impacted by this  
issue, Work Flash and Supervisory Flash (SFlash) are not impacted.  
Parameters Affected  
Trigger Condition(s)  
N/A  
Using EraseSector System Call in Non-Blocking mode for CM0+ to erase Code Flash and the ongoing erase  
operation is interrupted using EraseSuspend and EraseResume System calls.  
Datasheet  
170  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Scope of Impact  
Workaround  
When Code Flash sectors are erased in Non-Blocking mode and the ongoing erase operation is interrupted  
by Erase Suspend / Erase Resume, it cannot be guaranteed that the Code Flash cells are fully erased. Any  
read on the Code Flash area after the erase is complete or read on the programmed data after ProgramRow  
is complete can trigger ECC errors.  
Use any of the following:  
1) Use Non-Blocking mode for EraseSector, but do not interrupt the erase operation using Erase Suspend  
/ Erase Resume.  
2) If a Code Flash sector erase operation is interrupted using Erase Suspend / Erase Resume, then erase the  
same sector again without Erase Suspend / Erase Resume before reading the sector or programming the  
sector.  
Fix Status  
Will be fixed to update the Flash settings, via Manufacturing Test Program Update for Code Flash setting;  
this fix is transferred to TRAVEO™ T2G devices during Infineon Factory Test Flow. Fixed devices will be  
identified by Device Date Code, which is marked on every TRAVEO™ T2G device.  
10.Limitation for keeping the port state from peripheral IP after wakeup from DeepSleep  
Problem Definition  
The port state is not retained when the port selects peripheral IP (except for LIN or CAN FD) and MCU wakes  
up from DeepSleep.  
Parameters Affected  
Trigger Condition(s)  
Scope of Impact  
Workaround  
N/A  
The port selects peripherals (except for LIN or CAN-FD) and MCU wakes up from DeepSleep.  
Unexpected port output change might affect user system.  
If the port selects peripherals (except for LIN or CAN FD), and the port output value needs to be maintained  
after wakeup from DeepSleep, set HSIOM_PRTx_PORT_SEL.IOy_SEL = 0 (GPIO) before DeepSleep and set  
the required output value in GPIO configuration registers. After wakeup, change HSIOM_PRTx-  
_PORT_SEL.IOy_SEL back to the peripheral module as needed.  
Fix Status  
No silicon fix planned. TRM will be updated to add above workaround.  
Datasheet  
171  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Revision history  
Revision history  
Document  
Date of release  
version  
Description of changes  
**  
2021-03-11  
2021-05-13  
New datasheet  
*A  
Correction in the package dimensions for 144-LQFP (0.4 mm)  
Updated Features list.  
Corrected Power modes description.  
Updated Table 3-3.  
Added Trigger MUX diagrams and subsequent tables in Trigger multiplexer.  
Added Peripheral Protection Unit Fixed Structure Pairs Table in Peripheral  
protection unit fixed structure pairs.  
Updated Electrical specifications.  
Updated SCB/SPI Diagrams.  
Added “AC Specifications.  
Added Table 27-20.  
Updated Table 29-1 and Figure 29-3  
Added Table 30-4.  
*B  
2021-09-17  
Renamed Traveo™ II to TRAVEO™ T2G.  
Updated Features list.  
Added Peripheral instance list.  
Updated Pin assignment diagrams.  
Updated Package pin list and alternate functions.  
Updated Alternate function pin assignments.  
Updated Pin function description.  
Updated Electrical specifications.  
Updated Packaging.  
Updated Package outline – 176-LQFP, Package outline – 144-LQFP (0.5 mm),  
and Package outline – 144-LQFP (0.4 mm)  
Updated CAN interface details, LIN interface details  
*C  
2022-07-15  
Migrated to IFX template.  
Updated Features.  
Updated CPU subsystem, System resources, Peripherals, I/Os.  
Updated CYT2CL address map.  
Updated Alternate function pin assignments.  
Updated Interrupts and wake-up assignments.  
Updated Faults.  
Updated Electrical specifications.  
Updated Ordering information.  
Updated Errata.  
*D  
*E  
*F  
2022-09-15  
2022-10-07  
2022-10-20  
Changed datasheet status to Final.  
Updated Electrical specifications.  
Added note 84.  
Updated Errata.  
Updated Ordering information.  
Datasheet  
172  
002-32508 Rev. *F  
2022-10-20  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4F single  
Revision history change log  
Revision history change log  
Rev. *F Section updates  
Reason for  
change  
Section  
Change description  
Current spec (Rev. *E)  
New spec (Rev. *F)  
Note 2 on page 1  
Not needed and  
This feature is not available in “eSHE  
(None)  
Not needed  
Enhancement  
Not needed  
removed, referred under only” parts. For more information, see  
“Crypto engine”  
Ordering information.  
Table 28-2/28-3  
Packages meaning  
updated  
Hardware option meaning: Security on Hardware option meaning: Security on  
(HSM), RSA - 2K (HSM), RSA - 3K  
Note 72 on page 156  
Not needed and  
This part is available as an engineering (None)  
removed, referred under sample.  
“Table 28-1”  
Datasheet  
173  
002-32508 Rev. *F  
2022-10-20  
Please read the Important Notice and Warnings at the end of this document  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
For further information on the product, technology,  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”).  
Edition 2022-10-20  
Published by  
delivery terms and conditions and prices please  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
Infineon Technologies AG  
81726 Munich, Germany  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement of  
intellectual property rights of any third party.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2022 Infineon Technologies AG.  
All Rights Reserved.  
Except as otherwise explicitly approved by Infineon  
In addition, any information given in this document  
is subject to customer’s compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and standards  
concerning customer’s products and any use of the  
product of Infineon Technologies in customer’s  
applications.  
Technologies in  
authorized  
a written document signed by  
Do you have a question about this  
document?  
Go to www.infineon.com/support  
representatives  
of  
Infineon  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of the  
product or any consequences of the use thereof can  
reasonably be expected to result in personal injury.  
Document reference  
002-32508 Rev. *F  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  

相关型号:

TRAY0010

CONDUCTIVE TRAY
ETC

TRB-226-K004T

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 4V, 10% +Tol, 10% -Tol, 22uF, Through Hole Mount, RADIAL LEADED
RCD

TRB-475-J016T

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 16V, 5% +Tol, 5% -Tol, 4.7uF, Through Hole Mount, RADIAL LEADED
RCD

TRB-685-J016B

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 16V, 5% +Tol, 5% -Tol, 6.8uF, Through Hole Mount, RADIAL LEADED
RCD

TRB-685-J016T

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 16V, 5% +Tol, 5% -Tol, 6.8uF, Through Hole Mount, RADIAL LEADED
RCD

TRB-685-K010A

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 10V, 10% +Tol, 10% -Tol, 6.8uF, Through Hole Mount, RADIAL LEADED
RCD

TRB-685-M010A

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 10V, 20% +Tol, 20% -Tol, 6.8uF, Through Hole Mount, RADIAL LEADED
RCD

TRB-685-M010B

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 10V, 20% +Tol, 20% -Tol, 6.8uF, Through Hole Mount, RADIAL LEADED
RCD

TRB0210.10UH10%R

General Fixed Inductor, 1 ELEMENT, 0.1 uH, AMORPHOUS MAGNETIC-CORE, GENERAL PURPOSE INDUCTOR, AXIAL LEADED
VISHAY

TRB0210.12UH10%B

General Fixed Inductor, 1 ELEMENT, 0.12 uH, AMORPHOUS MAGNETIC-CORE, GENERAL PURPOSE INDUCTOR, AXIAL LEADED
VISHAY

TRB0210.12UH2%R

General Fixed Inductor, 1 ELEMENT, 0.12 uH, GENERAL PURPOSE INDUCTOR, AXIAL LEADED
VISHAY

TRB0210.12UH5%B

General Fixed Inductor, 1 ELEMENT, 0.12 uH, GENERAL PURPOSE INDUCTOR, AXIAL LEADED
VISHAY