V23818-N15-L373 [INFINEON]

Transceiver, Through Hole Mount;
V23818-N15-L373
型号: V23818-N15-L373
厂家: Infineon    Infineon
描述:

Transceiver, Through Hole Mount

光纤
文件: 总11页 (文件大小:405K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
V23818-N15-Lx(*)  
Sm all Form Factor  
Single Mode 1300 nm 2.5 GBd Transceiver  
2x5/2x10 Pinning w ith LC™ Connector  
Prelim inary  
Dimensions in mm [inches]  
a) recommended bezel position  
show n design w ith collar and 2x10 pinning  
*) Ordering Inform ation  
In-  
Out- Signal Data  
Volt- Col- Pin- Part Num ber  
put  
put  
detect Outputs age lar ning  
if SD is  
Low  
V23818-N15-  
DC  
AC  
DC  
AC  
AC  
AC  
DC  
AC  
AC  
DC  
AC  
DC  
AC  
AC  
AC  
DC  
AC  
AC  
PECL Switched 3.3 V yes  
to Low  
2x10 -L17  
TTL  
yes  
yes  
yes  
yes  
no  
2x10 -L353  
2x10 -L417  
2x10 -L457  
2x10 -L354  
2x10 -L355  
PECL Noisy  
TTL  
TTL  
Switched  
to Low  
TTL  
PECL  
TTL  
yes  
yes  
yes  
2x5  
2x5  
-L37  
-L47  
PECL  
2x10 -L373  
LC™ is a tradem ark of Lucent  
Fiber Optics  
OCTOBER 2001  
FEATURES  
On the parts V23818-N15-L417/L457  
the data outputs are not switched by the Signal Detect. During  
absence of light the data outputs are noisy with PECL ampli-  
tude.  
Sm all Form Factor transceiver  
RJ -45 style LCu connector system  
Half the size of SC Duplex 1x9 transceiver  
Optim ized for SDH STM-16 / SONET OC-48  
Single power supply (+3.3 V)  
Extrem ely low power consum ption  
Loss of optical signal indicator  
Laser disable input  
PECL differential inputs and outputs  
Distance up to 2 km on Single Mode Fiber  
Class 1 FDA and IEC laser safety com pliant  
Multisource footprint  
On the parts V23818-N15-L354/L355  
the minimum guaranteed link budget is 2 dB higher.  
Functional Description of SFF Transceiver  
This transceiver is designed to transmit serial data via single  
mode fiber.  
Functional Diagram 2x10 Pin Row s  
BIASMON  
-
BIASMON+  
Automatic  
Shut-Down  
Sm all footprint for high channel density  
UL 94 V-0 certified  
Com pliant w ith FCC (Class B) and EN 55022  
Tx and Rx power m onitor  
Laser  
Coupling Unit  
TxDis  
3k  
3k  
e/o  
Laser  
TxDn  
TxD  
Laser  
Driver  
10  
o/e  
Power  
Control  
Absolute Maxim um Ratings  
Single  
Mode  
Fiber  
TxPMon  
Exceeding any one of these values may destroy the device  
immediately.  
Rx  
Coupling Unit  
Receiver  
RxDn  
o/e  
RxD  
SD  
Package Power Dissipation................................................ 1.5 W  
Supply Voltage (V V ) ...................................................... 4 V  
CC EE  
RxPMon  
Data Input Levels ........................................ V +0.5 to V 0.5  
CC  
EE  
Differential Data Input Voltage ............................................ 2.5 V  
Operating Case Temperature ....................................0°C to 70°C  
Storage Ambient Temperature..............................40°C to 85°C  
Soldering Conditions Temp/Time .............................250°C/ 5.5 s  
Functional Diagram 2x5 Pin Row s  
Automatic  
Shut-Down  
Laser  
Coupling Unit  
DESCRIPTION  
TxDis  
e/o  
Laser  
The Infineon 2.5 Gigabit single mode transceiver - part of  
Infineon Small Form Factor transceiver family - is based on the  
Physical Medium Depend (PMD) sublayer and baseband  
medium, type 2000 Base-LX  
TxDn  
TxD  
Laser  
Driver  
o/e  
Power  
Control  
Single  
Mode  
Fiber  
Rx  
The appropriate fiber optic cable is 9 µm single mode fiber with  
LC connector.  
Coupling Unit  
Receiver  
RxDn  
o/e  
RxD  
SD  
The Infineon OC-48 single mode transceiver is a single unit  
comprised of a transmitter, a receiver, and an LC receptacle.  
This design frees the customer from many alignment and PC  
board layout concerns.  
2x10/2x5 Pin Rows  
This transceiver supports the LC connectorization concept,  
which competes with UTP/CAT 5 solutions. It is compatible  
with RJ-45 style backpanels for fiber-to-the-desktop applica-  
tions while providing the advantages of fiber optic technology.  
The transmission distance is up to 2 km.  
The receiver component converts the optical serial data into an  
electrical data (RD+ and RD). The Signal Detect output (SD)  
shows whether an optical signal is present.  
The transmitter part converts electrical PECL compatible serial  
data (TD+ and TD) into optical serial data.  
The module is designed for low cost LAN, WAN, and OC-48  
and STM-16 applications. It can be used as the network end  
device interface in mainframes, workstations, servers, and  
storage devices, and in a broad range of network devices such  
as bridges, routers, hubs, and local and wide area switches.  
The module has an integrated shutdown function that switches  
the laser off in the event of an internal failure.  
Reset is only possible if the power is turned off, and then on  
again. (V Tx switched below V ).  
CC  
TH  
2x10 Pin Rows  
This transceiver operates at 2.5 Gbit/s from a single power  
supply (+3.3 V). The full differential data inputs and outputs are  
PECL compatible.  
The transmitter contains a laser driver circuit that drives the  
modulation and bias current of the laser diode. The currents are  
controlled by a power control circuit to guarantee constant out-  
put power of the laser over temperature and aging. The power  
control uses the output of the monitor PIN diode (mechanically  
built into the laser coupling unit) as a controlling signal, to pre-  
vent the laser power from exceeding the operating limits.  
On the parts V23818-N15-L17/L353/L354/L355/L37/L47/L373  
the data output stages are switched to static levels during  
absence of light, as indicated by the Signal Detect function.  
Fiber Optics  
V23818-N15-Lx, SFF SM 1300nm 2.5GBd 2x5/2x10 Trx (LC™)  
2
TECHNICAL DATA  
Generation can simply be defined as the amount of jitter on the  
Tx optical output. The Sonet specifications for Jitter Generation  
are 0.01 UI rms, maximum and 0.1 UI p-p, maximum. Both are  
measured with a 12 KHz 20 MHz filter in line. A UI is a Unit  
Interval, which is equivalent to one bit slot. At OC-48, the bit  
slot is 400 ps, so the Jitter Generation specification translates  
to 4 ps rms, max. and 40 ps p-p, max.  
The electro-optical characteristics described in the following  
tables are valid only for use under the recommended operating  
conditions.  
Recom m ended Operating Conditions  
Param eter  
Sym bol Min.  
Typ. Max. Units  
Case Temperature  
Power Supply Voltage  
Supply Current  
Transm itter  
T
0
70  
3.3 3.45  
230  
°C  
V
Receiver Electro-Optical Characteristics  
C
V
V  
3.15  
CC EE  
Receiver  
Sym bol Min. Typ.  
Max. Units  
I
mA  
CC  
Sensitivity (Average  
Power)  
P
18  
dBm  
N
(1,9)  
Sensitivity (Average  
Power)  
19  
Data Input  
V
V  
1165  
250  
880 mV  
1600  
IH CC  
(1,10)  
High Voltage  
Saturation (Average  
Power)  
P
P
P
3  
AC-coupled differential  
Data Input  
V
IDiff  
SAT  
SDA  
SDD  
(1)  
Data Input  
Low Voltage  
V V  
1810  
1475  
Signal Detect  
18  
IL CC  
(2)  
Assert Level  
Data Input  
Rise/Fall time  
t
i
120  
ps  
Signal Detect  
Deassert Level  
30  
(3)  
Receiver  
Signal Detect  
Hysteresis  
P
P
-
3
dB  
ms  
SDA  
SDD  
Input Center  
Wavelength  
λ
1260  
1580 nm  
RX  
Signal detect  
t
0.1  
ASS  
(2)  
Asserttime  
Note  
Signal detect  
Deasserttime  
t
0.35  
1. V23818-N15-L353/L457/L354/L355/L47/L373 is internally AC-cou-  
pled. External coupling capacitors required only for V23818-N15-L17/  
L417/L37.  
DAS  
(3)  
(4)  
Output Voltage  
V
V  
1110  
1800  
500  
650  
1300  
1000  
mV  
mV  
OH CC  
(4)  
Output Voltage  
V
V  
OL CC  
Transm itter Electro-Optical Characteristics  
Output Voltage  
V
V  
OH OL  
Transm itter  
Sym bol Min. Typ. Max. Units  
(4)  
Swing  
Output Power  
(Average)  
P
10  
3  
dBm  
O
Signal detect Out-  
put High Voltage  
PECL  
V
V
1200  
V
CC  
(2)  
SDH  
CC  
V
820  
EE  
(5,7)  
Output Power  
8  
3  
(3)  
(Average)  
Signal detect Out-  
put Low Voltage  
V
V
V
CC  
1620  
SDL  
CC  
Center Wavelength  
λ
σ
1266  
1360 nm  
V
1900  
C
EE  
(5,7)  
PECL  
Spectral Width (RMS)  
4
Signal detect Out-  
put High Voltage  
V
2.0  
V
SDH  
Extinction Ratio  
(Dynamic)  
ER  
8.2  
dB  
(5,8)  
TTL  
Eye Diagram  
ITU-T G.957 mask pattern  
ED  
Signal detect Out-  
put Low Voltage  
TTL  
V
0.5  
1.0  
SDL  
Reset Threshold for  
V
2.2  
2.99  
V
TH  
(1)  
(5,8)  
TxV  
CC  
(1)  
(6)  
Power on Delay  
30  
ms  
UI  
Rx-Monitor  
Rx-Mon  
0.5  
A/W  
t
DEL  
Jitter Generation  
0.06 0.08  
JGEp-p  
Notes  
1. Minimum average optical power at which the BER is less than 1 x 10  
E10. Measured with a 2231 NRZ PRBS as recommended by ANSI  
T1E1.2, SONET OC-48, and ITU-T G.957.  
0.006 0.008  
JGERMS  
Notes  
1. Laser power is shut down if power supply is below V and  
TH  
2. An increase in optical power above the specified level will cause the  
SIGNAL DETECT to switch from a Low state to a High state (High  
active output)  
switched on if power supply is above V after t  
TH  
.
RES  
2. Not for V23818-N15-L354/L355.  
3. Only for V23818-N15-L354/L355.  
3. A decrease in optical power below the specified level will cause the  
SIGNAL DETECT to switch from a High state to a Low state.  
J itter  
4. Load is 100 differential.  
The transceiver is specified to meet the Sonet Jitter perfor-  
mance as outlined in ITU-T G.958 and Bellcore GR-253.  
5. Internal Load is 510 to GND, no external load necessary. SIGNAL  
DETECT is a High active output. High level means signal is present,  
Low level means loss of signal.  
Jitter Generation is defined as the amount of jitter that is gener-  
ated by the transceiver. The Jitter Generation specifications are  
referenced to the optical OC-48 signals. If no or minimum jitter  
is applied to the electrical inputs of the transmitter, then Jitter  
6. Monitor current needs to be sunk to V  
.
CC  
7. for V23818-N15-L17/L417/L37/L373.  
8. for V23818-N15-L353/L457/L354/L355/L47.  
Fiber Optics  
V23818-N15-Lx, SFF SM 1300nm 2.5GBd 2x5/2x10 Trx (LC)  
3
9. Not for V23818-N15-L354/L355.  
10.Only for V23818-N15-L354/L355.  
EYE SAFETY  
This laser based single mode transceiver is a Class 1 product.  
It complies with IEC 60825-1 and FDA 21 CFR 1040.10 and  
1040.11.  
Regulatory Com pliance  
Feature  
Standard  
Com m ents  
The transceiver has been certified with FDA under accession  
number 9520890-29.  
ESD:  
EIA/JESD22-A114-A Class 1 (>1000 V)  
(MIL-STD 883D  
Method 3015.7)  
Electrostatic  
Discharge to the  
Electrical Pins  
To meet laser safety requirements the transceiver shall be oper-  
ated within the Absolute Maximum Ratings.  
Immunity:  
EN 61000-4-2  
IEC 61000-4-2  
Discharges ranging  
from ±2 kV to ±15 kV on  
the receptacle cause no  
damage to transceiver  
(under recommended  
conditions).  
Caution  
Against Electro-  
static Discharge  
(ESD) to the  
Duplex LC  
All adjustm ents have been m ade at the factory prior to ship-  
m ent of the devices. No m aintenance or alteration to the  
device is required.  
Tam pering w ith or m odifying the perform ance of the device  
w ill result in voided product warranty.  
Receptacle  
Immunity:  
Against Radio Fre- IEC 61000-4-3  
quency Electro-  
EN 61000-4-3  
With a field strength of  
3 V/m rms, noise  
Note  
frequency ranges from  
10 MHz to 2 GHz. No  
effect on transceiver  
performance between  
the specification limits.  
Failure to adhere to the above restrictions could result in a modifica-  
tion that is considered an act of manufacturing, and will require,  
under law, recertification of the modified product with the U.S. Food  
and Drug Administration (ref. 21 CFR 1040.10 (i)).  
magnetic Field  
Laser Data  
Emission:  
Electromagnetic  
Interference (EMI) EN 55022 Class B  
CISPR 22  
FCC 47 CFR Part 15, Noise frequency range:  
Class B 30 MHz to 18 GHz  
Wavelength  
1300 nm  
Total output power (as defined by IEC: 7 mm  
aperture at 14 mm distance)  
less than  
2 mW  
Total output power (as defined by FDA: 7 mm  
aperture at 20 cm distance)  
less than  
180 µW  
Beam divergence  
Required Labels  
FDA  
tbd  
IEC  
Complies with 21 CFR  
1040.10 and 1040.11  
Class 1 Laser Product  
Laser Em ission  
Indication of  
laser aperture  
and beam  
Tx  
20 19 18 17 16 15 14 13 12 11  
1
2 3 4 5 6 7 8 9 10  
Rx  
Fiber Optics  
V23818-N15-Lx, SFF SM 1300nm 2.5GBd 2x5/2x10 Trx (LC)  
4
Pin Description  
Pin Nam e  
Level  
Pin#  
Description  
2x10 Transceiver  
RxPMon Rx Power Monitor Analog Current  
1
Do not connect if not used. See application note.  
RxV  
EE  
Rx Ground  
Power Supply 2, 3, 6 Negative power supply, normally ground  
NC  
RxV  
4, 5  
7
Pin not connected  
Rx +3.3 V  
Power Supply  
Positive power supply, +3.3 V  
CC  
SD  
Rx Signal Detect  
PECL/TTL Out-  
put active high  
8
A high level on this output shows that optical data is applied to the optical input.  
PECL Output active high for V23818-N15-L17/L417/L373  
TTL Output active high for V23818-N15-L353/L457/L354/L355  
RxDn  
RxD  
Rx Output Data  
PECL Output  
9
Inverted receiver output data  
Receiver output data  
10  
TxV  
CC  
Tx +3.3 V  
Tx Ground  
Power Supply 11  
Positive power supply, +3.3 V  
TxV  
EE  
Power Supply 12, 16 Negative power supply, normally ground  
TxDis  
Tx Disable/Enable TTL Input  
13  
A low signal switches the laser on.  
A high signal switches the laser off.  
TxD  
Tx Input Data  
PECL Input  
14  
15  
Transmitter input data  
TxDn  
Inverted transmitter input data  
Bias Mon Bias Monitor  
Analog Voltage  
Bias Mon –  
This output shows an analog voltage that is proportional to the laser bias current.  
Use this output to check proper laser operation and for end of life indications.  
3 kΩ  
17  
18  
Limit: Bias Current I  
<60 mA  
BIAS  
10 Ω  
3 kΩ  
8
ꢀꢁΩ  
,
= ----------  
Bias Mon +  
TxPMon Tx Power Monitor Analog Voltage  
This output is derived from the Tx monitor diode. See Application Note.  
PMon –  
PMon +  
19  
20  
Output Voltage Vmon=1.2 ±0.2 V, Source Resistance R =100 kΩ  
S
2x5 Transceiver  
RxV  
EE  
Rx Ground  
Power Supply  
Power Supply  
1
2
3
Negative power supply, normally ground  
Positive power supply, +3.3 V  
RxV  
CC  
Rx +3.3 V  
SD  
Rx Signal Detect  
PECL/TTL Out-  
put active high  
A high level on this output shows that optical data is applied to the optical input.  
PECL Output active high for V23818-N15-L37  
TTL Output active high for V23818-N15-L47  
RxDn  
RxD  
Rx Output Data  
PECL Output  
4
5
6
7
8
Inverted receiver output data  
Receiver output data  
TxV  
CC  
Tx +3.3 V  
Tx Ground  
Power Supply  
Power Supply  
Positive power supply, +3.3 V  
Negative power supply, normally ground  
TxV  
EE  
TxDis  
Tx Disable/Enable TTL Input  
A low signal switches the laser on.  
A high signal switches the laser off.  
TxD  
Tx Input Data  
PECL Input  
9
Transmitter input data  
TxDn  
10  
Inverted transmitter input data  
2x10/2x5 Transceiver  
MS  
HL  
Mounting Studs  
N/A  
N/A  
MS1/2 Mounting Studs are provided for transceiver mechanical attachment to the  
circuit board. They also provide an optional connection of the transceiver to the  
equipment chassis ground.  
Housing Leads  
HL1/2/ The transceiver Housing Leads are provided for additional signal grounding. The  
3/4  
holes in the circuit board must be included and be tied to signal ground.  
(See Application Notes).  
Pin Inform ations  
20 Pin Module  
10 Pin Module  
HL3  
HL2  
HL3  
MS2  
MS2  
Tx  
Tx  
HL4  
HL4  
20 19 18 17 16 15 14 13 12 11  
20-PIN MODULE - TOP VIEW  
9 10  
10 9  
8
7
6
5
10-PIN MODULE - TOP VIEW  
1
2
3
4
5
6
7
8
1 2 3 4  
HL1  
HL1  
MS1  
MS1  
Rx  
Rx  
HL2  
Fiber Optics  
V23818-N15-Lx, SFF SM 1300nm 2.5GBd 2x5/2x10 Trx (LC)  
5
APPLICATION NOTES  
EMI-Recom m endation  
7UDQVFHLYHUꢀ3LWFK  
Dimensions in (mm) inches  
To avoid electromagnetic radiation exceeding the required limits  
please read the following recommendations:  
*)  
(13.97)  
.550  
Whenever high speed Gigabit switching components are  
located on the PCB (also multiplexers, clock recoveries ...) any  
opening of the machine may generate radiation even at differ-  
ent locations. Thus every mechanical opening or aperture  
should be as small as possible.  
On the board itself every data connection should be an imped-  
ance matched line (e.g. strip line, coplanar strip line). Data,  
Datanot should be routed symmetrically, vias should be  
avoided. A symmetrically matching resistor of 100 should be  
placed at the end of each matched line. An alternative termina-  
tion can be provided with a 50 resistor at each (D, Dn). In DC  
coupled systems an artificial 50 resistance can be achieved  
as follows: For 3.3 V: 125 to V and 82 to V , for 5 V:  
*) min. pitch between SFF transceiver according to MSA.  
Tx Power Monitor  
This is the voltage drop across a resistor in the monitor path of  
the laser diode. As the output power is regulated to a constant  
value, TxPMon also has to stay on constant level. Deviation indi-  
cates faulty behavior.  
CC  
EE  
82 to V and 125 to V at Data and Datanot. Please con-  
CC  
EE  
sider whether there is an internal termination inside an IC or a  
transceiver.  
Rx Monitor  
It is recommended that chassis GND and signal GND should  
remain separate if there are openings or apertures of the hous-  
ing nearby. Sometimes signal GND is the most harmful source  
of radiation. Connecting chassis GND and signal GND at the  
plate/ bezel/ backside wall e.g. by means of a fiber optic trans-  
ceiver may result in a huge amount of radiation. Even a capaci-  
tive coupling between signal GND and chassis may be harmful  
if it is too close to an opening or an aperture.  
This output monitors the optical power into the receiver. The Rx  
monitor has a very linear characteristic. There are slight differ-  
ences depending on the load. The optical input power was  
changed in the range of 11 dBm ... 30 dBm.  
Measurem ent Setup (sim plified)  
&XUUHQWꢀ0HDVXUHPHQW  
If a separation of signal GND and chassis GND is not possible,  
it is strongly recommended to provide a proper contact  
between signal GND and chassis GND at almost every location.  
This concept is suitable to avoid hotspots. Hotspots are places  
of highest radiation which could be generated if only a few con-  
nections between signal and chassis GND are available. Com-  
pensation currents would concentrate at these connections,  
causing radiation.  
VCC  
5 Ω  
shunt  
VCC  
A
V23818-N15-L17  
0...2 kΩ  
,WꢀLVꢀUHFRPPHQGHGꢀWRꢀFRQQHFWꢀWKHꢀ+RXVLQJꢀ/HDGVꢀWRꢀVLJQDOꢀ  
JURXQGꢁꢀ$Q\ZD\ꢀLWꢀLVꢀDOVRꢀSRVVLEOHꢀWRꢀFRQQHFWꢀWKHPꢀWRꢀFKDVVLVꢀ  
*1'ꢁꢀ7KLVꢀPD\ꢀSURYLGHꢀDꢀEHWWHUꢀ(0,ꢀSHUIRUPDQFHꢀLQꢀVRPHꢀSDUꢂ  
WLFXODUꢀFDVHVꢁ  
Rx-Mon  
Please consider that the PCB may behave like a waveguide.  
With an ε of 4, the wavelength of the harmonics inside the  
r
PCB will be half of that in free space. In this case even small  
PCBs may have unexpected resonances.  
Fiber Optics  
V23818-N15-Lx, SFF SM 1300nm 2.5GBd 2x5/2x10 Trx (LC)  
6
The follow ing diagram s show the m easurem ents plus a trendline added to each m easurem ent.  
5HVXOW  
80  
C
A
A
B
C
D
0 Ω  
2 kΩ  
Linear Fit (0 )  
Linear Fit (2 k)  
70  
60  
50  
40  
30  
20  
10  
0
D
B
2 µA difference at -11 dBm  
between 0 and 2 kΩ  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
P in [µW]  
/RJDULWKPLFꢀFKDUWꢁꢀW\SLFDOꢀFXUYH  
80.00  
70.00  
60.00  
50.00  
40.00  
30.00  
20.00  
10.00  
0.00  
35.00  
30.00  
25.00  
20.00  
15.00  
10.00  
5.00  
0.00  
P / dBm  
Fiber Optics  
V23818-N15-Lx, SFF SM 1300nm 2.5GBd 2x5/2x10 Trx (LC)  
7
Single Mode 2.5 GBd 2x10 Transceiver DC/DC  
VCC  
18  
3.3 V  
20  
19 17  
VCC SerDes  
12,16  
14  
TxVEE  
TD+  
VCC  
C6  
C7  
+
SerDat Out  
ECL/  
R9  
R8  
Laser  
Driver  
PECL  
Driver  
TD15  
SerDat Out −  
TxDis  
13  
Tx Disable  
L1  
TxVCC 11  
VCC  
3.3 V  
SFF Transceiver  
C1  
V23818-N15-L17/L417  
Serializer/  
Deserializer  
L2  
RxVCC  
7
C3  
C2  
Signal  
Detect  
SD  
8
1
SD  
RxPMon  
Limiting  
Pre-  
RD−  
9
C4  
RD−  
SerDat In −  
Amplifier  
Amp  
Receiver  
PLL etc.  
RD+ 10  
2,3,6  
C5  
RD+  
SerDat In +  
RxVEE  
L1/2  
= 1 ... 4.7 µH  
R2/3  
R4/5  
R6/7  
R8/9  
= 150 Ω  
C1/2/3 = 4.7 ... 10 µF  
= biasing for outputs depending on Serializer  
C4/5/6/7 = 100 nF  
= 127 Ω  
= 82 Ω  
R1  
= 100 (if no biasing necessary for  
Deserializer and not termination inside)  
Fiber Optics  
V23818-N15-Lx, SFF SM 1300nm 2.5GBd 2x5/2x10 Trx (LC)  
8
Single Mode 2.5 GBd 2x10 Transceiver AC/AC  
VCCSerDes  
3.3 V  
20  
18  
19 17  
TxVEE  
TD+  
VCC  
14  
SerDat Out +  
ECL/  
PECL  
Driver  
Laser  
Driver  
100 Ω  
TD15  
SerDat Out −  
TxDis  
13  
Tx Disable  
C1  
L1  
L2  
TxVCC 11  
VCC  
3.3 V  
SFF Transceiver  
V23818-N15-L353/L354/L355/L373/L457  
Serializer/  
Deserializer  
RxVCC  
7
C3  
C2  
Signal  
Detect  
SD  
8
1
SD  
RxPMon  
Limiting  
Pre-  
RD−  
9
SerDat In −  
Amplifier  
Amp  
Receiver  
PLL etc.  
RD+ 10  
2,3,6  
SerDat In +  
RxVEE  
L1/2  
= 1 ... 4.7 µH  
R7/8  
= Biasing (depends on SerDes chip)  
C1/2/3 = 4.7 ... 10 µF  
Place R1/2/3/4/7/8 close to SerDes chip  
Place R5/6 close to Infineon transceiver  
R1/2  
R3/4  
= Depends on SerDes chip used  
= Depends on SerDes chip used  
Values of R1/2/3/4 may vary as long as proper 50 termination  
ing is required for good EMI performance. Use short tracks  
from the inductor L1/L2 to the module V Rx/V Tx.  
to V or 100 differential is provided. The power supply filter-  
EE  
CC  
CC  
Fiber Optics  
V23818-N15-Lx, SFF SM 1300nm 2.5GBd 2x5/2x10 Trx (LC)  
9
Single Mode 2.5 GBd 2x5 Transceiver DC/DC  
VCC  
3.3 V  
VCC SerDes  
7
TxVEE  
TD+  
VCC  
9
C6  
C7  
+
SerDat Out  
ECL/  
PECL  
Driver  
R9  
R8  
Laser  
Driver  
TD10  
SerDat Out −  
TxDis  
TxVCC  
8
6
Tx Disable  
L1  
VCC  
3.3 V  
SFF Transceiver  
V23818-N15-L37  
C1  
C2  
Serializer/  
Deserializer  
L2  
RxVCC  
2
C3  
Signal  
Detect  
SD  
3
4
SD  
Limiting  
Amplifier  
RD−  
C4  
RD−  
Pre-  
SerDat In −  
Amp  
Receiver  
PLL etc.  
RD+  
5
1
C5  
RD+  
SerDat In +  
RxVEE  
L1/2  
= 1 ... 4.7 µH  
R2/3  
R4/5  
R6/7  
R8/9  
= 150 Ω  
C1/2/3 = 4.7 ... 10 µF  
= biasing for outputs depending on Serializer  
C4/5/6/7 = 100 nF  
= 127 Ω  
= 82 Ω  
R1  
= 100 (if no biasing necessary for  
Deserializer and not termination inside)  
Fiber Optics  
V23818-N15-Lx, SFF SM 1300nm 2.5GBd 2x5/2x10 Trx (LC)  
10  
Single Mode 2.5 GBd 2x5 Transceiver AC/AC  
VCC SerDes  
7
TxVEE  
TD+  
VCC  
9
+
SerDat Out  
ECL/  
PECL  
Driver  
Laser  
100 Ω  
Driver  
TD10  
SerDat Out −  
TxDis  
TxVCC  
8
6
Tx Disable  
C1  
L1  
L2  
VCC  
3.3 V  
SFF Transceiver  
V23818-N15-L47  
Serializer/  
Deserializer  
RxVCC  
2
C3  
C2  
Signal  
Detect  
SD  
3
4
SD  
Limiting  
Amplifier  
RD−  
RD−  
Pre-  
Amp  
SerDat In −  
Receiver  
PLL etc.  
RD+  
5
1
RD+  
SerDat In +  
RxVEE  
L1/2  
= 1 ... 4.7 µH  
R3/4  
R7/8  
= Depends on SerDes chip used  
C1/2/3 = 4.7 ... 10 µF  
R1/2 = Depends on SerDes chip used  
= Biasing (depends on SerDes chip)  
Place R1/2/3/4/7/8 close to SerDes chip  
Values of R1/2/3/4 may vary as long as proper 50 termination  
ing is required for good EMI performance. Use short tracks  
from the inductor L1/L2 to the module V Rx/V Tx.  
to V or 100 differential is provided. The power supply filter-  
EE  
CC  
CC  
Published by Infineon Technologies AG  
Warnings  
Due to technical requirements components may contain dangerous substances.  
For information on the types in question please contact your Infineon Technologies  
offices.  
© Infineon Technologies AG 2001  
All Rights Reserved  
Infineon Technologies Components may only be used in life-support devices or  
systems with the express written approval of Infineon Technologies, if a failure of  
such components can reasonably be expected to cause the failure of that  
life-support device or system, or to affect the safety or effectiveness of that device  
or system. Life support devices or systems are intended to be implanted in the  
human body, or to support and/or maintain and sustain and/or protect human life.  
If they fail, it is reasonable to assume that the health of the user or other persons  
may be endangered.  
Attention please!  
The information herein is given to describe certain components and shall not be  
considered as warranted characteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties  
of non-infringement, regarding circuits, descriptions and charts stated herein.  
Infineon Technologies is an approved CECC manufacturer.  
Inform ation  
For further information on technology, delivery terms and conditions and prices  
please contact the Infineon Technologies offices or our Infineon Technologies  
Representatives worldwide - see our webpage at  
w w w.infineon.com /fiberoptics  
Infineon Technologies AG Fiber Optics Wernerwerkdamm 16 Berlin D-13623, Germany  
Infineon Technologies, Inc. Fiber Optics 1730 North First Street San Jose, CA 95112, USA  
Infineon Technologies K.K. Fiber Optics Takanawa Park Tower 20-14, Higashi-Gotanda, 3-chome, Shinagawa-ku Tokyo 141, Japan  

相关型号:

V23818-N15-L457

Small Form Factor Single Mode 1300 nm Multirate up to 2.5 Gbit/s Transceiver 2x5/2x10 Pinning with LC™ Connector
INFINEON

V23818-N15-L46

Small Form Factor Single Mode 1300 nm Multirate up to 2.5 Gbit/s Transceiver 2x5/2x10 Pinning with LC™ Connector
INFINEON

V23818-N15-L46WH

Transceiver, Through Hole Mount
INFINEON

V23818-N15-L47

Small Form Factor Single Mode 1300 nm Multirate up to 2.5 Gbit/s Transceiver 2x5/2x10 Pinning with LC™ Connector
INFINEON

V23818-N15-L616

Small Form Factor Single Mode 1300 nm Multirate up to 2.5 Gbit/s Transceiver 2x10 Pinning with LC⑩ Connector, with Collar
INFINEON

V23818-N15-L653

Small Form Factor Single Mode 1300 nm Multirate up to 2.5 Gbit/s Transceiver 2x10 Pinning with LC⑩ Connector, with Collar
INFINEON

V23818-N15-L656

Small Form Factor Single Mode 1300 nm Multirate up to 2.5 Gbit/s Transceiver 2x10 Pinning with LC⑩ Connector, with Collar
INFINEON

V23818-N305-L57

Transceiver, Through Hole Mount
INFINEON

V23818-S5-B1

SFP - Small Form-factor Pluggable Cage EMI / Dust Plug
INFINEON

V23818-S5-B2

SFP - Small Form-factor Pluggable Cage Dust Plug
INFINEON

V23818K305V10

FIBER OPTIC TRANSCEIVER
ETC

V23826-C18-C363

Single Mode 155 MBd ATM/SDH/SONET 1x9 Transceiver
INFINEON