XC2264 [INFINEON]

16/32-Bit Single-Chip Microcontroller with 32-Bit Performance; 16位/ 32位单芯片微控制器与32位性能
XC2264
型号: XC2264
厂家: Infineon    Infineon
描述:

16/32-Bit Single-Chip Microcontroller with 32-Bit Performance
16位/ 32位单芯片微控制器与32位性能

微控制器
文件: 总116页 (文件大小:1519K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet, V2.1, Aug. 2008  
XC226x  
16/32-Bit Single-Chip Microcontroller with  
32-Bit Performance  
Microcontrollers  
Edition 2008-08  
Published by  
Infineon Technologies AG  
81726 München, Germany  
© Infineon Technologies AG 2008.  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values  
stated herein and/or any information regarding the application of the device, Infineon Technologies hereby  
disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-  
infringement of intellectual property rights of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
Data Sheet, V2.1, Aug. 2008  
XC226x  
16/32-Bit Single-Chip Microcontroller with  
32-Bit Performance  
Microcontrollers  
XC2267 / XC2264  
XC2000 Family Derivatives  
XC226x  
Revision History: V2.1, 2008-08  
Previous Version(s):  
V2.0, 2008-03, Preliminary  
V0.1, 2007-02, Preliminary  
Page  
several  
7
Subjects (major changes since last revision)  
Maximum frequency changed to 80 MHz  
Specification of 8 ADC0 channels corrected  
Missing ADC0 channels added  
13f  
28  
Voltage domain for XTAL1/XTAL2 corrected to M  
Coupling factors corrected  
69  
74, 76  
75, 77  
83  
Improved leakage parameters  
Pin leakage formula corrected  
Improved ADC error values  
96f  
Improved definition of external clock parameters  
JTAG clock speed corrected  
109  
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
mcdocu.comments@infineon.com  
Data Sheet  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
1
Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2
General Device Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1  
Pin Configuration and Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Memory Subsystem and Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
External Bus Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Central Processing Unit (CPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Interrupt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
On-Chip Debug Support (OCDS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Capture/Compare Unit (CAPCOM2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Capture/Compare Units CCU6x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
General Purpose Timer (GPT12E) Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Real Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
A/D Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Universal Serial Interface Channel Modules (USIC) . . . . . . . . . . . . . . . . . 57  
MultiCAN Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Parallel Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
3.8  
3.9  
3.10  
3.11  
3.12  
3.13  
3.14  
3.15  
3.16  
3.17  
4
4.1  
4.2  
4.2.1  
4.2.2  
4.2.3  
4.3  
4.4  
4.5  
Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
DC Parameters for Upper Voltage Area . . . . . . . . . . . . . . . . . . . . . . . . 74  
DC Parameters for Lower Voltage Area . . . . . . . . . . . . . . . . . . . . . . . . 76  
Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Analog/Digital Converter Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
System Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Flash Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Testing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Definition of Internal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
External Clock Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
External Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Synchronous Serial Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
JTAG Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
4.6  
4.6.1  
4.6.2  
4.6.3  
4.6.4  
4.6.5  
4.6.6  
5
5.1  
5.2  
Package and Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Data Sheet  
3
V2.1, 2008-08  
16/32-Bit Single-Chip Microcontroller with 32-Bit  
Performance  
XC226x  
XC2000 Family  
1
Summary of Features  
For a quick overview and easy reference, the features of the XC226x are summarized  
here.  
High-performance CPU with five-stage pipeline  
– 12.5 ns instruction cycle at 80 MHz CPU clock (single-cycle execution)  
– One-cycle 32-bit addition and subtraction with 40-bit result  
– One-cycle multiplication (16 × 16 bit)  
– Background division (32 / 16 bit) in 21 cycles  
– One-cycle multiply-and-accumulate (MAC) instructions  
– Enhanced Boolean bit manipulation facilities  
– Zero-cycle jump execution  
– Additional instructions to support HLL and operating systems  
– Register-based design with multiple variable register banks  
– Fast context switching support with two additional local register banks  
– 16 Mbytes total linear address space for code and data  
– 1024 Bytes on-chip special function register area (C166 Family compatible)  
Interrupt system with 16 priority levels for up to 87 sources  
– Selectable external inputs for interrupt generation and wake-up  
– Fastest sample-rate 12.5 ns  
Eight-channel interrupt-driven single-cycle data transfer with  
Peripheral Event Controller (PEC), 24-bit pointers cover total address space  
Clock generation from internal or external clock sources,  
using on-chip PLL or prescaler  
On-chip memory modules  
– 1 Kbyte on-chip stand-by RAM (SBRAM)  
– 2 Kbytes on-chip dual-port RAM (DPRAM)  
– 16 Kbytes on-chip data SRAM (DSRAM)  
– Up to 64 Kbytes on-chip program/data SRAM (PSRAM)  
– Up to 768 Kbytes on-chip program memory (Flash memory)  
On-Chip Peripheral Modules  
– Two Synchronizable A/D Converters with up to 16 channels, 10-bit resolution,  
conversion time below 1 µs, optional data preprocessing (data reduction, range  
check)  
– 16-channel general purpose capture/compare unit (CAPCOM2)  
– Up to four capture/compare units for flexible PWM signal generation (CCU6x)  
– Multi-functional general purpose timer unit with 5 timers  
Data Sheet  
4
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Summary of Features  
– Up to 6 serial interface channels to be used as UART, LIN, high-speed  
synchronous channel (SPI/QSPI), IIC bus interface (10-bit addressing, 400 kbit/s),  
IIS interface  
– On-chip MultiCAN interface (Rev. 2.0B active) with up to 128 message objects  
(Full CAN/Basic CAN) on up to 5 CAN nodes and gateway functionality  
– On-chip real time clock  
Up to 12 Mbytes external address space for code and data  
– Programmable external bus characteristics for different address ranges  
– Multiplexed or demultiplexed external address/data buses  
– Selectable address bus width  
– 16-bit or 8-bit data bus width  
– Four programmable chip-select signals  
Single power supply from 3.0 V to 5.5 V  
Power reduction modes with flexible power management  
Programmable watchdog timer and oscillator watchdog  
Up to 75 general purpose I/O lines  
On-chip bootstrap loaders  
Supported by a full range of development tools including C compilers, macro-  
assembler packages, emulators, evaluation boards, HLL debuggers, simulators,  
logic analyzer disassemblers, programming boards  
On-chip debug support via JTAG interface  
100-pin Green LQFP package, 0.5 mm (19.7 mil) pitch  
Ordering Information  
The ordering code for an Infineon microcontroller provides an exact reference to a  
specific product. This ordering code identifies:  
the derivative itself, i.e. its function set, the temperature range, and the supply voltage  
the package and the type of delivery.  
For ordering codes for the XC226x please contact your sales representative or local  
distributor.  
This document describes several derivatives of the XC226x group. Table 1 lists these  
derivatives and summarizes the differences. As this document refers to all of these  
derivatives, some descriptions may not apply to a specific product.  
For simplicity the term XC226x is used for all derivatives throughout this document.  
Data Sheet  
5
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Summary of Features  
Table 1  
XC226x Derivative Synopsis  
Derivative1)  
Temp.  
Range  
Program  
Memory2)  
PSRAM3) CCU6 ADC4) Interfaces4)  
Mod. Chan.  
SAK-XC2267-  
96FxxL  
-40 °C to 768Kbytes 64 Kbytes 0, 1,  
125 °C Flash 2, 3  
-40 °C to 768Kbytes 64 Kbytes 0, 1,  
85 °C Flash 2, 3  
-40 °C to 576Kbytes 32 Kbytes 0, 1,  
125 °C Flash 2, 3  
-40 °C to 576Kbytes 32 Kbytes 0, 1,  
85 °C Flash 2, 3  
-40 °C to 448Kbytes 16 Kbytes 0, 1,  
125 °C Flash 2, 3  
-40 °C to 448Kbytes 16 Kbytes 0, 1,  
85 °C Flash 2, 3  
-40 °C to 768Kbytes 64 Kbytes 0, 1  
125 °C Flash  
-40 °C to 768Kbytes 64 Kbytes 0, 1  
85 °C Flash  
-40 °C to 576Kbytes 32 Kbytes 0, 1  
125 °C Flash  
-40 °C to 576Kbytes 32 Kbytes 0, 1  
85 °C Flash  
-40 °C to 448Kbytes 16 Kbytes 0, 1  
125 °C Flash  
-40 °C to 448Kbytes 16 Kbytes 0, 1  
85 °C Flash  
11 + 5 5 CAN Nodes,  
6 Serial Chan.  
SAF-XC2267-  
96FxxL  
11 + 5 5 CAN Nodes,  
6 Serial Chan.  
SAK-XC2267-  
72FxxL  
11 + 5 5 CAN Nodes,  
6 Serial Chan.  
SAF-XC2267-  
72FxxL  
11 + 5 5 CAN Nodes,  
6 Serial Chan.  
SAK-XC2267-  
56FxxL  
11 + 5 5 CAN Nodes,  
6 Serial Chan.  
SAF-XC2267-  
56FxxL  
11 + 5 5 CAN Nodes,  
6 Serial Chan.  
SAK-XC2264-  
96FxxL  
8
8
8
8
8
8
2 CAN Nodes,  
4 Serial Chan.  
SAF-XC2264-  
96FxxL  
2 CAN Nodes,  
4 Serial Chan.  
SAK-XC2264-  
72FxxL  
2 CAN Nodes,  
4 Serial Chan.  
SAF-XC2264-  
72FxxL  
2 CAN Nodes,  
4 Serial Chan.  
SAK-XC2264-  
56FxxL  
2 CAN Nodes,  
4 Serial Chan.  
SAF-XC2264-  
56FxxL  
2 CAN Nodes,  
4 Serial Chan.  
1) This Data Sheet is valid for devices starting with and including design step AC.  
2) Specific inormation about the on-chip Flash memory in Table 2.  
3) All derivatives additionally provide 1 Kbyte SBRAM, 2 Kbytes DPRAM, and 16 Kbytes DSRAM.  
4) Specific information about the available channels in Table 3.  
Analog input channels are listed for each Analog/Digital Converter module separately (ADC0 + ADC1).  
Data Sheet  
6
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Summary of Features  
The XC226x types are offered with several Flash memory sizes. Table 2 describes the  
location of the available memory areas for each Flash memory size.  
Table 2  
Flash Memory Allocation  
Total Flash Size  
Flash Area A1) Flash Area B  
Flash Area C  
768 Kbytes  
C0’0000H …  
C1’0000H …  
n.a.  
C0’EFFFH  
CB’FFFFH  
576 Kbytes  
448 Kbytes  
C0’0000H …  
C0’EFFFH  
C1’0000H …  
C8’FFFFH  
n.a.  
C0’0000H …  
C1’0000H …  
C8’0000H …  
C0’EFFFH  
C5’FFFFH  
C8’FFFFH  
1) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0’F000H to C0’FFFFH).  
The XC226x types are offered with different interface options. Table 3 lists the available  
channels for each option.  
Table 3  
Interface Channel Association  
Available Channels  
Total Number  
11 ADC0 channels  
8 ADC0 channels  
5 ADC1 channels  
5 CAN nodes  
CH0, CH2 CH5, CH8 CH11, CH13, CH15  
CH0, CH2, CH3, CH4, CH5, CH8, CH9, CH10  
CH0, CH2, CH4, CH5, CH6  
CAN0, CAN1, CAN2, CAN3, CAN4  
CAN0, CAN1  
2 CAN nodes  
6 serial channels  
4 serial channels  
U0C0, U0C1, U1C0, U1C1, U2C0, U2C1  
U0C0, U0C1, U1C0, U1C1  
Data Sheet  
7
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
General Device Information  
2
General Device Information  
The XC226x derivatives are high-performance members of the Infineon XC2000 Family  
of full-feature single-chip CMOS microcontrollers. These devices extend the functionality  
and performance of the C166 Family in terms of instructions (MAC unit), peripherals, and  
speed. They combine high CPU performance (up to 80 million instructions per second)  
with extended peripheral functionality and enhanced IO capabilities. Optimized  
peripherals can be adapted flexibly to meet the application requirements. These  
derivatives utilize clock generation via PLL and internal or external clock sources. On-  
chip memory modules include program Flash, program RAM, and data RAM.  
TRef  
VAREFVAGND  
VDDI VDDP VSS  
(1) (1)  
(4) (9) (4)  
Port 0  
8 bit  
XTAL1  
XTAL2  
ESR0  
ESR1  
Port 1  
8 bit  
Port 2  
13 bit  
Port 10  
16bit  
Port 4  
4 bit  
Port 6  
3 bit  
Port 15  
5 bit  
Port 7  
5 bit  
Port 5  
11bit  
PORST TRST JTAG Debug  
4 bit 2 bit  
via Port Pins  
TESTM  
MC_XX_LOGSYMB100  
Figure 1  
Logic Symbol  
Data Sheet  
8
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
General Device Information  
2.1  
Pin Configuration and Definition  
The pins of the XC226x are described in detail in Table 4, which includes all alternate  
functions. For further explanations please refer to the footnotes at the end of the table.  
Figure 2 summarizes all pins, showing their locations on the four sides of the package.  
VSS  
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VDDPB  
P0.7  
P10.7  
P10.6  
P0.6  
P10.5  
P10.4  
P0.5  
P10.3  
P2.10  
TRef  
VDDI1  
P0.4  
P10.2  
P0.3  
P10.1  
P10.0  
P0.2  
P2.9  
P2.8  
P0.1  
P2.7  
P0.0  
VDDPB  
VSS  
VDDPB  
TESTM  
P7.2  
TRST  
P7.0  
P7.3  
P7.1  
P7.4  
9
VDDIM  
P6.0  
P6.1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
P6.2  
LQFP-100  
VDDPA  
P15.0  
P15.2  
P15.4  
P15.5  
P15.6  
VAREF  
VAGND  
P5.0  
P5.2  
P5.3  
VDDPB  
MC_XX_PIN100  
Figure 2  
Pin Configuration (top view)  
Data Sheet  
9
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
General Device Information  
Notes to Pin Definitions  
1. Ctrl.: The output signal for a port pin is selected by bitfield PC in the associated  
register Px_IOCRy. Output O0 is selected by setting the respective bitfield PC to  
1x00B, output O1 is selected by 1x01B, etc.  
Output signal OH is controlled by hardware.  
2. Type: Indicates the pad type used (St=standard pad, Sp=special pad, DP=double  
pad, In=input pad, PS=power supply) and its power supply domain (A, B, M, 1).  
Table 4  
Pin Definitions and Functions  
Ctrl. Type Function  
Pin Symbol  
3
TESTM  
I
In/B Testmode Enable  
Enables factory test modes, must be held HIGH for  
normal operation (connect to VDDPB).  
An internal pullup device will hold this pin high  
when nothing is driving it.  
4
P7.2  
O0 / I St/B Bit 2 of Port 7, General Purpose Input/Output  
EMUX0  
TxDC4  
O1  
O2  
I
St/B External Analog MUX Control Output 0 (ADC1)  
St/B CAN Node 4 Transmit Data Output  
St/B CCU62 Position Input 0  
CCU62_  
CCPOS0A  
TDI_C  
TRST  
I
I
St/B JTAG Test Data Input  
5
In/B Test-System Reset Input  
For normal system operation, pin TRST should be  
held low. A high level at this pin at the rising edge  
of PORST activates the XC226x’s debug system.  
In this case, pin TRST must be driven low once to  
reset the debug system.  
An internal pulldown device will hold this pin low  
when nothing is driving it.  
6
P7.0  
O0 / I St/B Bit 0 of Port 7, General Purpose Input/Output  
T3OUT  
T6OUT  
TDO_A  
ESR2_1  
RxDC4B  
O1  
O2  
OH  
I
St/B GPT1 Timer T3 Toggle Latch Output  
St/B GPT2 Timer T6 Toggle Latch Output  
St/B JTAG Test Data Output  
St/B ESR2 Trigger Input 1  
I
St/B CAN Node 4 Receive Data Input  
Data Sheet  
10  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
General Device Information  
Table 4  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
7
P7.3  
O0 / I St/B Bit 3 of Port 7, General Purpose Input/Output  
EMUX1  
O1  
St/B External Analog MUX Control Output 1 (ADC1)  
St/B USIC0 Channel 1 Shift Data Output  
St/B USIC0 Channel 0 Shift Data Output  
St/B CCU62 Position Input 1  
U0C1_DOUT O2  
U0C0_DOUT O3  
CCU62_  
I
CCPOS1A  
TMS_C  
U0C1_DX0F  
P7.1  
I
I
St/B JTAG Test Mode Selection Input  
St/B USIC0 Channel 1 Shift Data Input  
8
9
O0 / I St/B Bit 1 of Port 7, General Purpose Input/Output  
EXTCLK  
TxDC4  
O1  
O2  
I
St/B Programmable Clock Signal Output  
St/B CAN Node 4 Transmit Data Output  
St/B CCU62 Emergency Trap Input  
CCU62_  
CTRAPA  
BRKIN_C  
P7.4  
I
St/B OCDS Break Signal Input  
O0 / I St/B Bit 4 of Port 7, General Purpose Input/Output  
EMUX2  
O1  
St/B External Analog MUX Control Output 2 (ADC1)  
St/B USIC0 Channel 1 Shift Data Output  
U0C1_DOUT O2  
U0C1_  
O3  
St/B USIC0 Channel 1 Shift Clock Output  
SCLKOUT  
CCU62_  
I
St/B CCU62 Position Input 2  
CCPOS2A  
TCK_C  
I
St/B JTAG Clock Input  
U0C0_DX0D I  
St/B USIC0 Channel 0 Shift Data Input  
St/B USIC0 Channel 1 Shift Clock Input  
U0C1_DX1E  
P6.0  
I
11  
O0 / I St/A Bit 0 of Port 6, General Purpose Input/Output  
EMUX0  
O1  
O3  
I
St/A External Analog MUX Control Output 0 (ADC0)  
St/A OCDS Break Signal Output  
BRKOUT  
ADCx_  
St/A External Request Gate Input for ADC0/1  
REQGTyC  
U1C1_DX0E  
I
St/A USIC1 Channel 1 Shift Data Input  
Data Sheet  
11  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
General Device Information  
Table 4  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
12  
P6.1  
O0 / I St/A Bit 1 of Port 6, General Purpose Input/Output  
EMUX1  
T3OUT  
O1  
O2  
St/A External Analog MUX Control Output 1 (ADC0)  
St/A GPT1 Timer T3 Toggle Latch Output  
St/A USIC1 Channel 1 Shift Data Output  
U1C1_DOUT O3  
ADCx_  
I
St/A External Request Trigger Input for ADC0/1  
REQTRyC  
13  
P6.2  
O0 / I St/A Bit 2 of Port 6, General Purpose Input/Output  
EMUX2  
T6OUT  
O1  
O2  
O3  
St/A External Analog MUX Control Output 2 (ADC0)  
St/A GPT2 Timer T6 Toggle Latch Output  
St/A USIC1 Channel 1 Shift Clock Output  
U1C1_  
SCLKOUT  
U1C1_DX1C I  
St/A USIC1 Channel 1 Shift Clock Input  
In/A Bit 0 of Port 15, General Purpose Input  
In/A Analog Input Channel 0 for ADC1  
In/A Bit 2 of Port 15, General Purpose Input  
In/A Analog Input Channel 2 for ADC1  
In/A GPT2 Timer T5 Count/Gate Input  
15  
16  
P15.0  
I
I
I
I
I
I
I
I
I
I
I
I
I
-
-
I
I
ADC1_CH0  
P15.2  
ADC1_CH2  
T5IN  
17  
18  
19  
P15.4  
In/A Bit 4 of Port 15, General Purpose Input  
In/A Analog Input Channel 4 for ADC1  
In/A GPT2 Timer T6 Count/Gate Input  
ADC1_CH4  
T6IN  
P15.5  
In/A Bit 5 of Port 15, General Purpose Input  
In/A Analog Input Channel 5 for ADC1  
In/A GPT2 Timer T6 External Up/Down Control Input  
In/A Bit 6 of Port 15, General Purpose Input  
In/A Analog Input Channel 6 for ADC1  
PS/A Reference Voltage for A/D Converters ADC0/1  
PS/A Reference Ground for A/D Converters ADC0/1  
In/A Bit 0 of Port 5, General Purpose Input  
In/A Analog Input Channel 0 for ADC0  
ADC1_CH5  
T6EUD  
P15.6  
ADC1_CH6  
VAREF  
20  
21  
22  
VAGND  
P5.0  
ADC0_CH0  
Data Sheet  
12  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
General Device Information  
Table 4  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
23  
24  
28  
P5.2  
I
I
I
I
I
I
I
I
I
In/A Bit 2 of Port 5, General Purpose Input  
In/A Analog Input Channel 2 for ADC0  
ADC0_CH2  
TDI_A  
In/A JTAG Test Data Input  
P5.3  
In/A Bit 3 of Port 5, General Purpose Input  
In/A Analog Input Channel 3 for ADC0  
In/A GPT1 Timer T3 Count/Gate Input  
In/A Bit 4 of Port 5, General Purpose Input  
In/A Analog Input Channel 4 for ADC0  
In/A External Run Control Input for T12 of CCU63  
ADC0_CH3  
T3IN  
P5.4  
ADC0_CH4  
CCU63_  
T12HRB  
T3EUD  
TMS_A  
P5.5  
I
I
I
I
I
In/A GPT1 Timer T3 External Up/Down Control Input  
In/A JTAG Test Mode Selection Input  
29  
30  
In/A Bit 5 of Port 5, General Purpose Input  
In/A Analog Input Channel 5 for ADC0  
ADC0_CH5  
CCU60_  
T12HRB  
In/A External Run Control Input for T12 of CCU60  
P5.8  
I
I
I
In/A Bit 8 of Port 5, General Purpose Input  
In/A Analog Input Channel 8 for ADC0  
ADC0_CH8  
CCU6x_  
T12HRC  
In/A External Run Control Input for T12 of CCU6x  
CCU6x_  
T13HRC  
I
In/A External Run Control Input for T13 of CCU6x  
31  
32  
33  
P5.9  
I
I
I
I
In/A Bit 9 of Port 5, General Purpose Input  
In/A Analog Input Channel 9 for ADC0  
In/A CAPCOM2 Timer T7 Count Input  
In/A Bit 10 of Port 5, General Purpose Input  
In/A Analog Input Channel 10 for ADC0  
In/A OCDS Break Signal Input  
ADC0_CH9  
CC2_T7IN  
P5.10  
ADC0_CH10 I  
BRKIN_A  
P5.11  
I
I
In/A Bit 11 of Port 5, General Purpose Input  
In/A Analog Input Channel 11 for ADC0  
ADC0_CH11 I  
Data Sheet  
13  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
General Device Information  
Table 4  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
34  
P5.13  
I
In/A Bit 13 of Port 5, General Purpose Input  
In/A Analog Input Channel 13 for ADC0  
ADC0_CH13 I  
EX0BINB  
P5.15  
I
I
In/A External Interrupt Trigger Input  
In/A Bit 15 of Port 5, General Purpose Input  
In/A Analog Input Channel 15 for ADC0  
35  
36  
ADC0_CH15 I  
P2.12  
O0 / I St/B Bit 12 of Port 2, General Purpose Input/Output  
U0C0_  
SELO4  
O1  
St/B USIC0 Channel 0 Select/Control 4 Output  
St/B USIC0 Channel 1 Select/Control 3 Output  
St/B External Bus Interface READY Input  
U0C1_  
SELO3  
O2  
I
READY  
P2.11  
37  
O0 / I St/B Bit 11 of Port 2, General Purpose Input/Output  
U0C0_  
SELO2  
O1  
O2  
OH  
St/B USIC0 Channel 0 Select/Control 2 Output  
U0C1_  
SELO2  
St/B USIC0 Channel 1 Select/Control 2 Output  
BHE/WRH  
St/B External Bus Interf. High-Byte Control Output  
Can operate either as Byte High Enable (BHE) or  
as Write strobe for High Byte (WRH).  
39  
40  
P2.0  
O0 / I St/B Bit 0 of Port 2, General Purpose Input/Output  
O2 / I St/B CCU63 Channel 0 Input/Output  
CCU63_  
CC60  
AD13  
OH / I St/B External Bus Interface Address/Data Line 13  
RxDC0C  
P2.1  
I
St/B CAN Node 0 Receive Data Input  
O0 / I St/B Bit 1 of Port 2, General Purpose Input/Output  
O1 St/B CAN Node 0 Transmit Data Output  
TxDC0  
CCU63_  
CC61  
O2 / I St/B CCU63 Channel 1 Input/Output  
AD14  
OH / I St/B External Bus Interface Address/Data Line 14  
ESR1_5  
EX0AINA  
I
I
St/B ESR1 Trigger Input 5  
St/B External Interrupt Trigger Input  
Data Sheet  
14  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
General Device Information  
Table 4  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
41  
P2.2  
O0 / I St/B Bit 2 of Port 2, General Purpose Input/Output  
O1 St/B CAN Node 1 Transmit Data Output  
TxDC1  
CCU63_  
CC62  
O2 / I St/B CCU63 Channel 2 Input/Output  
AD15  
OH / I St/B External Bus Interface Address/Data Line 15  
ESR2_5  
EX1AINA  
P4.0  
I
I
St/B ESR2 Trigger Input 5  
St/B External Interrupt Trigger Input  
42  
43  
O0 / I St/B Bit 0 of Port 4, General Purpose Input/Output  
O3 / I St/B CAPCOM2 CC24IO Capture Inp./ Compare Out.  
CC2_24  
CS0  
OH  
St/B External Bus Interface Chip Select 0 Output  
P2.3  
O0 / I St/B Bit 3 of Port 2, General Purpose Input/Output  
U0C0_DOUT O1  
St/B USIC0 Channel 0 Shift Data Output  
St/B CCU63 Channel 3 Output  
CCU63_  
COUT63  
O2  
CC2_16  
A16  
O3 / I St/B CAPCOM2 CC16IO Capture Inp./ Compare Out.  
OH  
St/B External Bus Interface Address Line 16  
St/B ESR2 Trigger Input 0  
ESR2_0  
U0C0_DX0E  
I
I
St/B USIC0 Channel 0 Shift Data Input  
St/B USIC0 Channel 1 Shift Data Input  
St/B CAN Node 0 Receive Data Input  
U0C1_DX0D I  
RxDC0A  
P4.1  
I
44  
O0 / I St/B Bit 1 of Port 4, General Purpose Input/Output  
O2 St/B CAN Node 2 Transmit Data Output  
O3 / I St/B CAPCOM2 CC25IO Capture Inp./ Compare Out.  
OH St/B External Bus Interface Chip Select 1 Output  
TxDC2  
CC2_25  
CS1  
Data Sheet  
15  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
General Device Information  
Table 4  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
45  
P2.4  
O0 / I St/B Bit 4 of Port 2, General Purpose Input/Output  
U0C1_DOUT O1  
St/B USIC0 Channel 1 Shift Data Output  
St/B CAN Node 0 Transmit Data Output  
TxDC0  
CC2_17  
A17  
O2  
O3 / I St/B CAPCOM2 CC17IO Capture Inp./ Compare Out.  
OH  
St/B External Bus Interface Address Line 17  
St/B ESR1 Trigger Input 0  
ESR1_0  
U0C0_DX0F  
RxDC1A  
P2.5  
I
I
I
St/B USIC0 Channel 0 Shift Data Input  
St/B CAN Node 1 Receive Data Input  
46  
O0 / I St/B Bit 5 of Port 2, General Purpose Input/Output  
U0C0_  
O1  
St/B USIC0 Channel 0 Shift Clock Output  
SCLKOUT  
TxDC0  
CC2_18  
A18  
O2  
St/B CAN Node 0 Transmit Data Output  
O3 / I St/B CAPCOM2 CC18IO Capture Inp./ Compare Out.  
OH  
I
St/B External Bus Interface Address Line 18  
St/B USIC0 Channel 0 Shift Clock Input  
U0C0_DX1D  
P4.2  
47  
48  
O0 / I St/B Bit 2 of Port 4, General Purpose Input/Output  
O2 St/B CAN Node 2 Transmit Data Output  
O3 / I St/B CAPCOM2 CC26IO Capture Inp./ Compare Out.  
TxDC2  
CC2_26  
CS2  
OH  
I
St/B External Bus Interface Chip Select 2 Output  
St/B GPT1 Timer T2 Count/Gate Input  
T2IN  
P2.6  
O0 / I St/B Bit 6 of Port 2, General Purpose Input/Output  
U0C0_  
SELO0  
O1  
St/B USIC0 Channel 0 Select/Control 0 Output  
U0C1_  
SELO1  
O2  
St/B USIC0 Channel 1 Select/Control 1 Output  
CC2_19  
A19  
O3 / I St/B CAPCOM2 CC19IO Capture Inp./ Compare Out.  
OH  
St/B External Bus Interface Address Line 19  
St/B USIC0 Channel 0 Shift Control Input  
St/B CAN Node 0 Receive Data Input  
U0C0_DX2D I  
RxDC0D  
I
Data Sheet  
16  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
General Device Information  
Table 4  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
49  
P4.3  
O0 / I St/B Bit 3 of Port 4, General Purpose Input/Output  
O3 / I St/B CAPCOM2 CC27IO Capture Inp./ Compare Out.  
CC2_27  
CS3  
OH  
St/B External Bus Interface Chip Select 3 Output  
St/B CAN Node 2 Receive Data Input  
RxDC2A  
T2EUD  
P0.0  
I
I
St/B GPT1 Timer T2 External Up/Down Control Input  
53  
O0 / I St/B Bit 0 of Port 0, General Purpose Input/Output  
St/B USIC1 Channel 0 Shift Data Output  
O3 / I St/B CCU61 Channel 0 Input/Output  
U1C0_DOUT O1  
CCU61_  
CC60  
A0  
OH  
I
St/B External Bus Interface Address Line 0  
St/B USIC1 Channel 0 Shift Data Input  
U1C0_DX0A  
P2.7  
54  
O0 / I St/B Bit 7 of Port 2, General Purpose Input/Output  
U0C1_  
SELO0  
O1  
St/B USIC0 Channel 1 Select/Control 0 Output  
U0C0_  
SELO1  
O2  
St/B USIC0 Channel 0 Select/Control 1 Output  
CC2_20  
A20  
O3 / I St/B CAPCOM2 CC20IO Capture Inp./ Compare Out.  
OH  
St/B External Bus Interface Address Line 20  
St/B USIC0 Channel 1 Shift Control Input  
St/B CAN Node 1 Receive Data Input  
U0C1_DX2C I  
RxDC1C  
P0.1  
I
55  
O0 / I St/B Bit 1 of Port 0, General Purpose Input/Output  
U1C0_DOUT O1  
St/B USIC1 Channel 0 Shift Data Output  
St/B CAN Node 0 Transmit Data Output  
TxDC0  
O2  
CCU61_  
CC61  
O3 / I St/B CCU61 Channel 1 Input/Output  
A1  
OH  
St/B External Bus Interface Address Line 1  
St/B USIC1 Channel 0 Shift Data Input  
St/B USIC1 Channel 0 Shift Clock Input  
U1C0_DX0B  
U1C0_DX1A  
I
I
Data Sheet  
17  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
General Device Information  
Table 4  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
56  
P2.8  
O0 / I DP/B Bit 8 of Port 2, General Purpose Input/Output  
U0C1_  
O1  
DP/B USIC0 Channel 1 Shift Clock Output  
SCLKOUT  
EXTCLK  
O2  
DP/B Programmable Clock Signal Output  
1)  
CC2_21  
A21  
O3 / I DP/B CAPCOM2 CC21IO Capture Inp./ Compare Out.  
OH  
DP/B External Bus Interface Address Line 21  
DP/B USIC0 Channel 1 Shift Clock Input  
U0C1_DX1D I  
P2.9  
57  
O0 / I St/B Bit 9 of Port 2, General Purpose Input/Output  
U0C1_DOUT O1  
St/B USIC0 Channel 1 Shift Data Output  
St/B CAN Node 1 Transmit Data Output  
TxDC1  
CC2_22  
A22  
O2  
O3 / I St/B CAPCOM2 CC22IO Capture Inp./ Compare Out.  
OH  
St/B External Bus Interface Address Line 22  
St/B Clock Signal Input  
CLKIN1  
TCK_A  
P0.2  
I
I
St/B JTAG Clock Input  
58  
O0 / I St/B Bit 2 of Port 0, General Purpose Input/Output  
U1C0_  
O1  
St/B USIC1 Channel 0 Shift Clock Output  
SCLKOUT  
TxDC0  
O2  
St/B CAN Node 0 Transmit Data Output  
CCU61_  
CC62  
O3 / I St/B CCU61 Channel 2 Input/Output  
A2  
OH  
I
St/B External Bus Interface Address Line 2  
St/B USIC1 Channel 0 Shift Clock Input  
U1C0_DX1B  
P10.0  
59  
O0 / I St/B Bit 0 of Port 10, General Purpose Input/Output  
St/B USIC0 Channel 1 Shift Data Output  
U0C1_DOUT O1  
CCU60_  
CC60  
O2 / I St/B CCU60 Channel 0 Input/Output  
AD0  
OH / I St/B External Bus Interface Address/Data Line 0  
ESR1_2  
I
I
I
St/B ESR1 Trigger Input 2  
U0C0_DX0A  
U0C1_DX0A  
St/B USIC0 Channel 0 Shift Data Input  
St/B USIC0 Channel 1 Shift Data Input  
Data Sheet  
18  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
General Device Information  
Table 4  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
60  
P10.1  
O0 / I St/B Bit 1 of Port 10, General Purpose Input/Output  
St/B USIC0 Channel 0 Shift Data Output  
U0C0_DOUT O1  
CCU60_  
CC61  
O2 / I St/B CCU60 Channel 1 Input/Output  
AD1  
OH / I St/B External Bus Interface Address/Data Line 1  
U0C0_DX0B  
U0C0_DX1A  
P0.3  
I
I
St/B USIC0 Channel 0 Shift Data Input  
St/B USIC0 Channel 0 Shift Clock Input  
61  
O0 / I St/B Bit 3 of Port 0, General Purpose Input/Output  
U1C0_  
SELO0  
O1  
O2  
O3  
St/B USIC1 Channel 0 Select/Control 0 Output  
St/B USIC1 Channel 1 Select/Control 1 Output  
St/B CCU61 Channel 0 Output  
U1C1_  
SELO1  
CCU61_  
COUT60  
A3  
OH  
St/B External Bus Interface Address Line 3  
St/B USIC1 Channel 0 Shift Control Input  
St/B CAN Node 0 Receive Data Input  
U1C0_DX2A  
RxDC0B  
P10.2  
I
I
62  
O0 / I St/B Bit 2 of Port 10, General Purpose Input/Output  
O1 St/B USIC0 Channel 0 Shift Clock Output  
U0C0_  
SCLKOUT  
CCU60_  
CC62  
O2 / I St/B CCU60 Channel 2 Input/Output  
AD2  
OH / I St/B External Bus Interface Address/Data Line 2  
U0C0_DX1B  
I
St/B USIC0 Channel 0 Shift Clock Input  
Data Sheet  
19  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
General Device Information  
Table 4  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
63  
P0.4  
O0 / I St/B Bit 4 of Port 0, General Purpose Input/Output  
U1C1_  
SELO0  
O1  
O2  
O3  
St/B USIC1 Channel 1 Select/Control 0 Output  
St/B USIC1 Channel 0 Select/Control 1 Output  
St/B CCU61 Channel 1 Output  
U1C0_  
SELO1  
CCU61_  
COUT61  
A4  
OH  
St/B External Bus Interface Address Line 4  
St/B USIC1 Channel 1 Shift Control Input  
St/B CAN Node 1 Receive Data Input  
U1C1_DX2A  
RxDC1B  
TRef  
I
I
65  
66  
IO  
Sp/1 Control Pin for Core Voltage Generation  
2)  
P2.10  
O0 / I St/B Bit 10 of Port 2, General Purpose Input/Output  
U0C1_DOUT O1  
St/B USIC0 Channel 1 Shift Data Output  
U0C0_  
SELO3  
O2  
St/B USIC0 Channel 0 Select/Control 3 Output  
CC2_23  
A23  
O3 / I St/B CAPCOM2 CC23IO Capture Inp./ Compare Out.  
OH  
St/B External Bus Interface Address Line 23  
St/B USIC0 Channel 1 Shift Data Input  
St/B GPT2 Register CAPREL Capture Input  
U0C1_DX0E  
CAPIN  
I
I
67  
P10.3  
O0 / I St/B Bit 3 of Port 10, General Purpose Input/Output  
O2 St/B CCU60 Channel 0 Output  
CCU60_  
COUT60  
AD3  
OH / I St/B External Bus Interface Address/Data Line 3  
U0C0_DX2A  
U0C1_DX2A  
I
I
St/B USIC0 Channel 0 Shift Control Input  
St/B USIC0 Channel 1 Shift Control Input  
Data Sheet  
20  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
General Device Information  
Table 4  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
68  
P0.5  
O0 / I St/B Bit 5 of Port 0, General Purpose Input/Output  
U1C1_  
SCLKOUT  
O1  
O2  
O3  
St/B USIC1 Channel 1 Shift Clock Output  
St/B USIC1 Channel 0 Select/Control 2 Output  
St/B CCU61 Channel 2 Output  
U1C0_  
SELO2  
CCU61_  
COUT62  
A5  
OH  
I
St/B External Bus Interface Address Line 5  
St/B USIC1 Channel 1 Shift Clock Input  
U1C1_DX1A  
U1C0_DX1C I  
P10.4  
St/B USIC1 Channel 0 Shift Clock Input  
69  
O0 / I St/B Bit 4 of Port 10, General Purpose Input/Output  
U0C0_  
SELO3  
O1  
St/B USIC0 Channel 0 Select/Control 3 Output  
CCU60_  
COUT61  
O2  
St/B CCU60 Channel 1 Output  
AD4  
OH / I St/B External Bus Interface Address/Data Line 4  
U0C0_DX2B  
U0C1_DX2B  
P10.5  
I
I
St/B USIC0 Channel 0 Shift Control Input  
St/B USIC0 Channel 1 Shift Control Input  
70  
O0 / I St/B Bit 5 of Port 10, General Purpose Input/Output  
U0C1_  
O1  
St/B USIC0 Channel 1 Shift Clock Output  
SCLKOUT  
CCU60_  
COUT62  
O2  
St/B CCU60 Channel 2 Output  
AD5  
OH / I St/B External Bus Interface Address/Data Line 5  
U0C1_DX1B  
I
St/B USIC0 Channel 1 Shift Clock Input  
Data Sheet  
21  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
General Device Information  
Table 4  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
71  
72  
73  
P0.6  
O0 / I St/B Bit 6 of Port 0, General Purpose Input/Output  
U1C1_DOUT O1  
St/B USIC1 Channel 1 Shift Data Output  
St/B CAN Node 1 Transmit Data Output  
St/B CCU61 Channel 3 Output  
TxDC1  
O2  
O3  
CCU61_  
COUT63  
A6  
OH  
St/B External Bus Interface Address Line 6  
St/B USIC1 Channel 1 Shift Data Input  
St/B CCU61 Emergency Trap Input  
U1C1_DX0A  
I
I
CCU61_  
CTRAPA  
U1C1_DX1B  
P10.6  
I
St/B USIC1 Channel 1 Shift Clock Input  
O0 / I St/B Bit 6 of Port 10, General Purpose Input/Output  
U0C0_DOUT O1  
St/B USIC0 Channel 0 Shift Data Output  
St/B CAN Node 4 Transmit Data Output  
St/B USIC1 Channel 0 Select/Control 0 Output  
TxDC4  
O2  
O3  
U1C0_  
SELO0  
AD6  
OH / I St/B External Bus Interface Address/Data Line 6  
St/B USIC0 Channel 0 Shift Data Input  
U0C0_DX0C I  
U1C0_DX2D I  
St/B USIC1 Channel 0 Shift Control Input  
CCU60_  
CTRAPA  
I
St/B CCU60 Emergency Trap Input  
P10.7  
O0 / I St/B Bit 7 of Port 10, General Purpose Input/Output  
U0C1_DOUT O1  
St/B USIC0 Channel 1 Shift Data Output  
St/B CCU60 Channel 3 Output  
CCU60_  
COUT63  
O2  
AD7  
OH / I St/B External Bus Interface Address/Data Line 7  
U0C1_DX0B  
I
I
St/B USIC0 Channel 1 Shift Data Input  
St/B CCU60 Position Input 0  
CCU60_  
CCPOS0A  
RxDC4C  
I
St/B CAN Node 4 Receive Data Input  
Data Sheet  
22  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
General Device Information  
Table 4  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
74  
P0.7  
O0 / I St/B Bit 7 of Port 0, General Purpose Input/Output  
U1C1_DOUT O1  
St/B USIC1 Channel 1 Shift Data Output  
U1C0_  
SELO3  
O2  
St/B USIC1 Channel 0 Select/Control 3 Output  
A7  
OH  
St/B External Bus Interface Address Line 7  
St/B USIC1 Channel 1 Shift Data Input  
St/B CCU61 Emergency Trap Input  
U1C1_DX0B  
I
I
CCU61_  
CTRAPB  
78  
P1.0  
O0 / I St/B Bit 0 of Port 1, General Purpose Input/Output  
U1C0_  
O1  
St/B USIC1 Channel 0 Master Clock Output  
MCLKOUT  
U1C0_  
SELO4  
O2  
St/B USIC1 Channel 0 Select/Control 4 Output  
A8  
OH  
St/B External Bus Interface Address Line 8  
St/B ESR1 Trigger Input 3  
ESR1_3  
EX0BINA  
I
I
I
St/B External Interrupt Trigger Input  
St/B CCU62 Emergency Trap Input  
CCU62_  
CTRAPB  
79  
P10.8  
O0 / I St/B Bit 8 of Port 10, General Purpose Input/Output  
U0C0_  
O1  
St/B USIC0 Channel 0 Master Clock Output  
MCLKOUT  
U0C1_  
SELO0  
O2  
St/B USIC0 Channel 1 Select/Control 0 Output  
AD8  
OH / I St/B External Bus Interface Address/Data Line 8  
CCU60_  
I
St/B CCU60 Position Input 1  
CCPOS1A  
U0C0_DX1C I  
BRKIN_B  
St/B USIC0 Channel 0 Shift Clock Input  
St/B OCDS Break Signal Input  
I
Data Sheet  
23  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
General Device Information  
Table 4  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
80  
P10.9  
O0 / I St/B Bit 9 of Port 10, General Purpose Input/Output  
U0C0_  
SELO4  
O1  
St/B USIC0 Channel 0 Select/Control 4 Output  
U0C1_  
O2  
St/B USIC0 Channel 1 Master Clock Output  
MCLKOUT  
AD9  
OH / I St/B External Bus Interface Address/Data Line 9  
CCU60_  
I
St/B CCU60 Position Input 2  
CCPOS2A  
TCK_B  
P1.1  
I
St/B JTAG Clock Input  
81  
O0 / I St/B Bit 1 of Port 1, General Purpose Input/Output  
CCU62_  
COUT62  
O1  
St/B CCU62 Channel 2 Output  
U1C0_  
SELO5  
O2  
St/B USIC1 Channel 0 Select/Control 5 Output  
U2C1_DOUT O3  
St/B USIC2 Channel 1 Shift Data Output  
St/B External Bus Interface Address Line 9  
St/B ESR2 Trigger Input 3  
A9  
OH  
ESR2_3  
EX1BINA  
I
I
St/B External Interrupt Trigger Input  
U2C1_DX0C I  
St/B USIC2 Channel 1 Shift Data Input  
O0 / I St/B Bit 10 of Port 10, General Purpose Input/Output  
82  
P10.10  
U0C0_  
SELO0  
O1  
St/B USIC0 Channel 0 Select/Control 0 Output  
CCU60_  
COUT63  
O2  
St/B CCU60 Channel 3 Output  
AD10  
OH / I St/B External Bus Interface Address/Data Line 10  
St/B USIC0 Channel 0 Shift Control Input  
U0C0_DX2C I  
TDI_B  
I
St/B JTAG Test Data Input  
U0C1_DX1A  
I
St/B USIC0 Channel 1 Shift Clock Input  
Data Sheet  
24  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
General Device Information  
Table 4  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
83  
P10.11  
O0 / I St/B Bit 11 of Port 10, General Purpose Input/Output  
U1C0_  
O1  
St/B USIC1 Channel 0 Shift Clock Output  
SCLKOUT  
BRKOUT  
O2  
St/B OCDS Break Signal Output  
AD11  
OH / I St/B External Bus Interface Address/Data Line 11  
St/B USIC1 Channel 0 Shift Clock Input  
U1C0_DX1D I  
RxDC2B  
TMS_B  
P1.2  
I
St/B CAN Node 2 Receive Data Input  
St/B JTAG Test Mode Selection Input  
I
84  
O0 / I St/B Bit 2 of Port 1, General Purpose Input/Output  
O1 / I St/B CCU62 Channel 2 Input/Output  
CCU62_  
CC62  
U1C0_  
SELO6  
O2  
O3  
St/B USIC1 Channel 0 Select/Control 6 Output  
St/B USIC2 Channel 1 Shift Clock Output  
U2C1_  
SCLKOUT  
A10  
OH  
St/B External Bus Interface Address Line 10  
St/B ESR1 Trigger Input 4  
ESR1_4  
I
I
CCU61_  
T12HRB  
St/B External Run Control Input for T12 of CCU61  
EX2AINA  
I
St/B External Interrupt Trigger Input  
St/B USIC2 Channel 1 Shift Data Input  
U2C1_DX0D I  
U2C1_DX1C I  
P10.12  
St/B USIC2 Channel 1 Shift Clock Input  
85  
O0 / I St/B Bit 12 of Port 10, General Purpose Input/Output  
U1C0_DOUT O1  
St/B USIC1 Channel 0 Shift Data Output  
St/B CAN Node 2 Transmit Data Output  
St/B JTAG Test Data Output  
TxDC2  
O2  
O3  
TDO_B  
AD12  
OH / I St/B External Bus Interface Address/Data Line 12  
St/B USIC1 Channel 0 Shift Data Input  
U1C0_DX0C I  
U1C0_DX1E  
I
St/B USIC1 Channel 0 Shift Clock Input  
Data Sheet  
25  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
General Device Information  
Table 4  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
86  
P10.13  
O0 / I St/B Bit 13 of Port 10, General Purpose Input/Output  
U1C0_DOUT O1  
St/B USIC1 Channel 0 Shift Data Output  
St/B CAN Node 3 Transmit Data Output  
St/B USIC1 Channel 0 Select/Control 3 Output  
TxDC3  
O2  
O3  
U1C0_  
SELO3  
WR/WRL  
OH  
St/B External Bus Interface Write Strobe Output  
Active for each external write access, when WR,  
active for ext. writes to the low byte, when WRL.  
U1C0_DX0D I  
P1.3  
St/B USIC1 Channel 0 Shift Data Input  
87  
O0 / I St/B Bit 3 of Port 1, General Purpose Input/Output  
CCU62_  
COUT63  
O1  
St/B CCU62 Channel 3 Output  
U1C0_  
SELO7  
O2  
O3  
St/B USIC1 Channel 0 Select/Control 7 Output  
St/B USIC2 Channel 0 Select/Control 4 Output  
U2C0_  
SELO4  
A11  
OH  
St/B External Bus Interface Address Line 11  
St/B ESR2 Trigger Input 4  
ESR2_4  
I
I
CCU62_  
T12HRB  
St/B External Run Control Input for T12 of CCU62  
EX3AINA  
P10.14  
I
St/B External Interrupt Trigger Input  
89  
O0 / I St/B Bit 14 of Port 10, General Purpose Input/Output  
U1C0_  
SELO1  
O1  
St/B USIC1 Channel 0 Select/Control 1 Output  
U0C1_DOUT O2  
St/B USIC0 Channel 1 Shift Data Output  
St/B External Bus Interface Read Strobe Output  
St/B ESR2 Trigger Input 2  
RD  
OH  
I
ESR2_2  
U0C1_DX0C I  
RxDC3C  
St/B USIC0 Channel 1 Shift Data Input  
St/B CAN Node 3 Receive Data Input  
I
Data Sheet  
26  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
General Device Information  
Table 4  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
90  
P1.4  
O0 / I St/B Bit 4 of Port 1, General Purpose Input/Output  
CCU62_  
COUT61  
O1  
O2  
O3  
St/B CCU62 Channel 1 Output  
U1C1_  
SELO4  
St/B USIC1 Channel 1 Select/Control 4 Output  
St/B USIC2 Channel 0 Select/Control 5 Output  
U2C0_  
SELO5  
A12  
OH  
I
St/B External Bus Interface Address Line 12  
St/B USIC2 Channel 0 Shift Control Input  
U2C0_DX2B  
P10.15  
91  
O0 / I St/B Bit 15 of Port 10, General Purpose Input/Output  
U1C0_  
SELO2  
O1  
St/B USIC1 Channel 0 Select/Control 2 Output  
U0C1_DOUT O2  
U1C0_DOUT O3  
St/B USIC0 Channel 1 Shift Data Output  
St/B USIC1 Channel 0 Shift Data Output  
ALE  
OH  
St/B External Bus Interf. Addr. Latch Enable Output  
St/B USIC0 Channel 1 Shift Clock Input  
U0C1_DX1C I  
P1.5  
92  
O0 / I St/B Bit 5 of Port 1, General Purpose Input/Output  
CCU62_  
COUT60  
O1  
St/B CCU62 Channel 0 Output  
U1C1_  
SELO3  
O2  
St/B USIC1 Channel 1 Select/Control 3 Output  
BRKOUT  
A13  
O3  
St/B OCDS Break Signal Output  
OH  
St/B External Bus Interface Address Line 13  
St/B USIC2 Channel 0 Shift Data Input  
U2C0_DX0C I  
P1.6  
93  
O0 / I St/B Bit 6 of Port 1, General Purpose Input/Output  
O1 / I St/B CCU62 Channel 1 Input/Output  
CCU62_  
CC61  
U1C1_  
SELO2  
O2  
St/B USIC1 Channel 1 Select/Control 2 Output  
U2C0_DOUT O3  
St/B USIC2 Channel 0 Shift Data Output  
St/B External Bus Interface Address Line 14  
St/B USIC2 Channel 0 Shift Data Input  
A14  
OH  
U2C0_DX0D I  
Data Sheet  
27  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
General Device Information  
Table 4  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
94  
P1.7  
O0 / I St/B Bit 7 of Port 1, General Purpose Input/Output  
O1 / I St/B CCU62 Channel 0 Input/Output  
CCU62_  
CC60  
U1C1_  
MCLKOUT  
O2  
O3  
OH  
St/B USIC1 Channel 1 Master Clock Output  
St/B USIC2 Channel 0 Shift Clock Output  
U2C0_  
SCLKOUT  
A15  
St/B External Bus Interface Address Line 15  
St/B USIC2 Channel 0 Shift Clock Input  
Sp/M Crystal Oscillator Amplifier Output  
U2C0_DX1C I  
95  
96  
XTAL2  
XTAL1  
O
I
Sp/M Crystal Oscillator Amplifier Input  
To clock the device from an external source, drive  
XTAL1, while leaving XTAL2 unconnected.  
Voltages on XTAL1 must comply to the core  
supply voltage VDDIM  
.
97  
PORST  
I
In/B Power On Reset Input  
A low level at this pin resets the XC226x  
completely. A spike filter suppresses input pulses  
<10 ns. Input pulses >100 ns safely pass the filter.  
The minimum duration for a safe recognition  
should be 120 ns.  
An internal pullup device will hold this pin high  
when nothing is driving it.  
98  
ESR1  
O0 / I St/B External Service Request 1  
U1C0_DX0F  
I
St/B USIC1 Channel 0 Shift Data Input  
St/B USIC1 Channel 0 Shift Control Input  
St/B USIC1 Channel 1 Shift Data Input  
St/B USIC1 Channel 1 Shift Control Input  
St/B USIC2 Channel 1 Shift Control Input  
St/B External Interrupt Trigger Input  
U1C0_DX2C I  
U1C1_DX0C I  
U1C1_DX2B  
U2C1_DX2C I  
EX0AINB  
I
I
Data Sheet  
28  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
General Device Information  
Table 4  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
99  
ESR0  
O0 / I St/B External Service Request 0  
Note: After power-up, ESR0 operates as open-  
drain bidirectional reset with a weak pull-up.  
St/B USIC1 Channel 0 Shift Data Input  
U1C0_DX0E  
U1C0_DX2B  
VDDIM  
I
I
-
St/B USIC1 Channel 0 Shift Control Input  
10  
PS/M Digital Core Supply Voltage for Domain M  
Decouple with a ceramic capacitor, see Table 12  
for details.  
38, VDDI1  
64,  
88  
-
-
PS/1 Digital Core Supply Voltage for Domain 1  
Decouple with a ceramic capacitor, see Table 12  
for details.  
All VDDI1 pins must be connected to each other.  
14  
VDDPA  
PS/A Digital Pad Supply Voltage for Domain A  
Connect decoupling capacitors to adjacent  
V
DDP/VSS pin pairs as close as possible to the pins.  
Note: The A/D_Converters and ports P5, P6, and  
P15 are fed from supply voltage VDDPA  
.
2,  
VDDPB  
-
PS/B Digital Pad Supply Voltage for Domain B  
25,  
27,  
50,  
52,  
75,  
77,  
100  
Connect decoupling capacitors to adjacent  
V
DDP/VSS pin pairs as close as possible to the pins.  
Note: The on-chip voltage regulators and all ports  
except P5, P6, and P15 are fed from supply  
voltage VDDPB  
.
1,  
VSS  
-
PS/-- Digital Ground  
26,  
51,  
76  
All VSS pins must be connected to the ground-line  
or ground-plane.  
Note: Also the exposed pad is connected to VSS.  
The respective board area must be  
connected to ground (if soldered) or left free.  
1) To generate the reference clock output for bus timing measurement, fSYS must be selected as source for  
EXTCLK and P2.8 must be selected as output pin. Also the high-speed clock pad must be enabled. This  
configuration is referred to as reference clock output signal CLKOUT.  
Data Sheet  
29  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
General Device Information  
2) Pin TRef was used to control the core voltage generation in step AA. For that step, pin TRef must be connected  
to VDDPB  
.
This connection is no more required from step AB on. For the current step, pin TRef is logically not connected.  
Future derivatives will feature an additional general purpose IO pin at this position.  
Data Sheet  
30  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
3
Functional Description  
The architecture of the XC226x combines advantages of RISC, CISC, and DSP  
processors with an advanced peripheral subsystem in a well-balanced design. On-chip  
memory blocks allow the design of compact systems-on-silicon with maximum  
performance suited for computing, control, and communication.  
The on-chip memory blocks (program code memory and SRAM, dual-port RAM, data  
SRAM) and the generic peripherals are connected to the CPU by separate high-speed  
buses. Another bus, the LXBus, connects additional on-chip resources and external  
resources (see Figure 3). This bus structure enhances overall system performance by  
enabling the concurrent operation of several subsystems of the XC226x.  
The block diagram gives an overview of the on-chip components and the advanced  
internal bus structure of the XC226x.  
PSRAM  
16/32/64 Kbytes  
DPRAM  
2 Kbytes  
DSRAM  
16 Kbytes  
OCDS  
Debug Support  
Program Flash 0  
256 Kbytes  
EBC  
LXBus Control  
External Bus  
Control  
CPU  
Program Flash 1  
192/256 Kbytes  
C166SV2 - Core  
Program Flash 2  
0/64/256 Kbytes  
WDT  
RTC  
System Functions  
Clock, Reset, Power Control,  
Stand-By RAM  
Interrupt & PEC  
Interrupt Bus  
CCU63 ...  
ADC1 ADC0 GPT  
CC2  
CCU60  
USIC2 USIC1 USIC0 Multi  
2 Ch., 2 Ch., 2 Ch., CAN  
64 x 64 x 64 x  
8-Bit/  
10-Bit 10-Bit  
8 Ch. 16 Ch.  
8-Bit/  
T2  
T7  
T8  
T12  
T13  
T12  
T13  
T3  
T4  
Buffer Buffer Buffer  
RS232, RS232, RS232,  
LIN,  
SPI,  
LIN,  
SPI,  
LIN,  
SPI,  
T5  
5 ch.  
T6  
IIC, IIS IIC, IIS IIC, IIS  
P15  
Port 5  
11  
P10  
16  
P7 P6 P4  
P2  
P1  
8
P0  
5
5
3
4
13  
8
MC_XC226X_BLOCKDIAGRAM  
Figure 3  
Block Diagram  
Data Sheet  
31  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
3.1  
Memory Subsystem and Organization  
The memory space of the XC226x is configured in the von Neumann architecture. In this  
architecture all internal and external resources, including code memory, data memory,  
registers and I/O ports, are organized in the same linear address space.  
Table 5  
XC226x Memory Map  
Address Area  
Start Loc. End Loc. Area Size1)  
Notes  
IMB register space  
FF’FF00H FF’FFFFH 256 Bytes  
Reserved (Access trap) F0’0000H  
Reserved for EPSRAM E9’0000H  
FF’FEFFH <1 Mbyte  
EF’FFFFH 448 Kbytes  
E8’FFFFH 64 Kbytes  
E7’FFFFH 448 Kbytes  
E0’FFFFH 64 Kbytes  
Minus IMB registers  
Mirrors EPSRAM  
Flash timing  
Mirrors PSRAM  
Maximum speed  
Emulated PSRAM  
Reserved for PSRAM  
Program SRAM  
E8’0000H  
E1’0000H  
E0’0000H  
Reserved for pr. mem. CC’0000H DF’FFFFH <1.25 Mbytes –  
Program Flash 2  
Program Flash 1  
Program Flash 0  
C8’0000H CB’FFFFH 256 Kbytes  
C4’0000H C7’FFFFH 256 Kbytes  
C0’0000H C3’FFFFH 256 Kbytes  
2)  
External memory area 40’0000H  
Available Ext. IO area3) 20’5800H  
BF’FFFFH 8 Mbytes  
3F’FFFFH < 2 Mbytes  
Minus USIC/CAN  
USIC registers  
20’4000H  
20’0000H  
20’57FFH  
6 Kbytes  
Accessed via EBC  
MultiCAN registers  
20’3FFFH 16 Kbytes  
1F’FFFFH < 2 Mbytes  
Accessed via EBC  
External memory area 01’0000H  
Minus segment 0  
SFR area  
00’FE00H 00’FFFFH 0.5 Kbyte  
Dual-Port RAM  
Reserved for DPRAM  
ESFR area  
00’F600H  
00’F200H  
00’F000H  
00’E000H  
00’A000H  
00’8000H  
00’FDFFH 2 Kbytes  
00’F5FFH 1 Kbyte  
00’F1FFH 0.5 Kbyte  
00’EFFFH 4 Kbytes  
00’DFFFH 16 Kbytes  
00’9FFFH 8 Kbytes  
00’7FFFH 32 Kbytes  
XSFR area  
Data SRAM  
Reserved for DSRAM  
External memory area 00’0000H  
1) The areas marked with “<” are slightly smaller than indicated. See column “Notes”.  
2) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0’F000H to C0’FFFFH).  
3) Several pipeline optimizations are not active within the external IO area. This is necessary to control external  
peripherals properly.  
Data Sheet  
32  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
This common memory space consists of 16 Mbytes organized as 256 segments of  
64 Kbytes; each segment contains four data pages of 16 Kbytes. The entire memory  
space can be accessed bytewise or wordwise. Portions of the on-chip DPRAM and the  
register spaces (ESFR/SFR) additionally are directly bit addressable.  
The internal data memory areas and the Special Function Register areas (SFR and  
ESFR) are mapped into segment 0, the system segment.  
The Program Management Unit (PMU) handles all code fetches and, therefore, controls  
access to the program memories such as Flash memory and PSRAM.  
The Data Management Unit (DMU) handles all data transfers and, therefore, controls  
access to the DSRAM and the on-chip peripherals.  
Both units (PMU and DMU) are connected to the high-speed system bus so that they can  
exchange data. This is required if operands are read from program memory, code or  
data is written to the PSRAM, code is fetched from external memory, or data is read from  
or written to external resources. These include peripherals on the LXBus such as USIC  
or MultiCAN. The system bus allows concurrent two-way communication for maximum  
transfer performance.  
Up to 64 Kbytes of on-chip Program SRAM (PSRAM) are provided to store user code  
or data. The PSRAM is accessed via the PMU and is optimized for code fetches. A  
section of the PSRAM with programmable size can be write-protected.  
Note: The actual size of the PSRAM depends on the chosen derivative (see Table 1).  
16 Kbytes of on-chip Data SRAM (DSRAM) are used for storage of general user data.  
The DSRAM is accessed via a separate interface and is optimized for data access.  
2 Kbytes of on-chip Dual-Port RAM (DPRAM) provide storage for user-defined  
variables, for the system stack, and for general purpose register banks. A register bank  
can consist of up to 16 word-wide (R0 to R15) and/or byte-wide (RL0, RH0, …, RL7,  
RH7) General Purpose Registers (GPRs).  
The upper 256 bytes of the DPRAM are directly bit addressable. When used by a GPR,  
any location in the DPRAM is bit addressable.  
1 Kbyte of on-chip Stand-By SRAM (SBRAM) provides storage for system-relevant  
user data that must be preserved while the major part of the device is powered down.  
The SBRAM is accessed via a specific interface and is powered in domain M.  
Data Sheet  
33  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
1024 bytes (2 × 512 bytes) of the address space are reserved for the Special Function  
Register areas (SFR space and ESFR space). SFRs are word-wide registers which are  
used to control and monitor functions of the different on-chip units. Unused SFR  
addresses are reserved for future members of the XC2000 Family. In order to to ensure  
upward compatibility they should either not be accessed or written with zeros.  
In order to meet the requirements of designs where more memory is required than is  
available on chip, up to 12 Mbytes (approximately, see Table 5) of external RAM and/or  
ROM can be connected to the microcontroller. The External Bus Interface also provides  
access to external peripherals.  
Up to 768 Kbytes of on-chip Flash memory store code, constant data, and control  
data. The on-chip Flash memory consists of up to three modules with a maximum  
capacity of 256 Kbytes each. Each module is organized in 4-Kbyte sectors.  
The uppermost 4-Kbyte sector of segment 0 (located in Flash module 0) is used  
internally to store operation control parameters and protection information.  
Note: The actual size of the Flash memory depends on the chosen derivative (see  
Table 1).  
Each sector can be separately write protected1), erased and programmed (in blocks of  
128 Bytes). The complete Flash area can be read-protected. A user-defined password  
sequence temporarily unlocks protected areas. The Flash modules combine 128-bit  
read access with protected and efficient writing algorithms for programming and erasing.  
Dynamic error correction provides extremely high read data security for all read access  
operations. Access to different Flash modules can be executed in parallel.  
For Flash parameters, please see Section 4.5.  
1) To save control bits, sectors are clustered for protection purposes, they remain separate for  
programming/erasing.  
Data Sheet  
34  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
3.2  
External Bus Controller  
All external memory access operations are performed by a special on-chip External Bus  
Controller (EBC). The EBC also controls access to resources connected to the on-chip  
LXBus (MultiCAN and the USIC modules). The LXBus is an internal representation of  
the external bus that allows access to integrated peripherals and modules in the same  
way as to external components.  
The EBC can be programmed either to Single Chip Mode, when no external memory is  
required, or to an external bus mode with the following selections1):  
Address Bus Width with a range of 0 … 24-bit  
Data Bus Width 8-bit or 16-bit  
Bus Operation Multiplexed or Demultiplexed  
The bus interface uses Port 10 and Port 2 for addresses and data. In the demultiplexed  
bus modes, the lower addresses are output separately on Port 0 and Port 1. The number  
of active segment address lines is selectable, restricting the external address space to  
8 Mbytes … 64 Kbytes. This is required when interface lines shall be assigned to Port 2.  
Up to four external CS signals (three windows plus default) can be generated and output  
on Port 4 in order to save external glue logic. External modules can be directly  
connected to the common address/data bus and their individual select lines.  
Important timing characteristics of the external bus interface are programmable (with  
registers TCONCSx/FCONCSx) to allow the user to adapt it to a wide range of different  
types of memories and external peripherals.  
Access to very slow memories or modules with varying access times is supported by a  
special ‘Ready’ function. The active level of the control input signal is selectable.  
In addition, up to four independent address windows may be defined (using registers  
ADDRSELx) to control access to resources with different bus characteristics. These  
address windows are arranged hierarchically where window 4 overrides window 3, and  
window 2 overrides window 1. All accesses to locations not covered by these four  
address windows are controlled by TCONCS0/FCONCS0. The currently active window  
can generate a chip select signal.  
The external bus timing is based on the rising edge of the reference clock output  
CLKOUT. The external bus protocol is compatible with that of the standard C166 Family.  
1) Bus modes are switched dynamically if several address windows with different mode settings are used.  
Data Sheet  
35  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
3.3  
Central Processing Unit (CPU)  
The core of the CPU consists of a 5-stage execution pipeline with a 2-stage instruction-  
fetch pipeline, a 16-bit arithmetic and logic unit (ALU), a 32-bit/40-bit multiply and  
accumulate unit (MAC), a register-file providing three register banks, and dedicated  
SFRs. The ALU features a multiply-and-divide unit, a bit-mask generator, and a barrel  
shifter.  
PSRAM  
Flash/ROM  
PMU  
CPU  
Prefetch  
CSP  
IP  
VECSEG  
TFR  
2-Stage  
Prefetch  
Pipeline  
Unit  
CPUCON1  
CPUCON2  
Branch  
Unit  
5-Stage  
Pipeline  
Injection/  
Exception  
Handler  
DPRAM  
Return  
Stack  
FIFO  
IFU  
DPP0  
IPIP  
IDX0  
IDX1  
QX0  
QX1  
QR0  
QR1  
SPSEG  
SP  
CP  
R15  
DPP1  
DPP2  
DPP3  
STKOV  
STKUN  
R15  
R14  
R14  
GPRs  
GPRs  
+/-  
+/-  
ADU  
s  
R1  
R0  
R1  
Division Unit  
Multiply Unit  
Bit-Mask-Gen.  
Barrel-Shifter  
R0  
Multiply  
Unit  
MRW  
R0  
R0  
MCW  
MSW  
MDC  
PSW  
RF  
+/-  
+/-  
MDH  
MDL  
ONES  
ALU  
DSRAM  
EBC  
Peripherals  
Buffer  
WB  
MAH  
MAL  
ZEROS  
MAC  
DMU  
mca04917_x.vsd  
Figure 4  
CPU Block Diagram  
Data Sheet  
36  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
With this hardware most XC226x instructions can be executed in a single machine cycle  
of 12.5 ns with an 80-MHz CPU clock. For example, shift and rotate instructions are  
always processed during one machine cycle, no matter how many bits are shifted. Also,  
multiplication and most MAC instructions execute in one cycle. All multiple-cycle  
instructions have been optimized so that they can be executed very fast; for example, a  
32-/16-bit division is started within 4 cycles while the remaining cycles are executed in  
the background. Another pipeline optimization, the branch target prediction, eliminates  
the execution time of branch instructions if the prediction was correct.  
The CPU has a register context consisting of up to three register banks with 16 word-  
wide GPRs each at its disposal. One of these register banks is physically allocated within  
the on-chip DPRAM area. A Context Pointer (CP) register determines the base address  
of the active register bank accessed by the CPU at any time. The number of these  
register bank copies is only restricted by the available internal RAM space. For easy  
parameter passing, a register bank may overlap others.  
A system stack of up to 32 Kwords is provided for storage of temporary data. The system  
stack can be allocated to any location within the address space (preferably in the on-chip  
RAM area); it is accessed by the CPU with the stack pointer (SP) register. Two separate  
SFRs, STKOV and STKUN, are implicitly compared with the stack pointer value during  
each stack access to detect stack overflow or underflow.  
The high performance of the CPU hardware implementation can be best utilized by the  
programmer with the highly efficient XC226x instruction set. This includes the following  
instruction classes:  
Standard Arithmetic Instructions  
DSP-Oriented Arithmetic Instructions  
Logical Instructions  
Boolean Bit Manipulation Instructions  
Compare and Loop Control Instructions  
Shift and Rotate Instructions  
Prioritize Instruction  
Data Movement Instructions  
System Stack Instructions  
Jump and Call Instructions  
Return Instructions  
System Control Instructions  
Miscellaneous Instructions  
The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes  
and words. A variety of direct, indirect or immediate addressing modes are provided to  
specify the required operands.  
Data Sheet  
37  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
3.4  
Interrupt System  
With a minimum interrupt response time of 7/111) CPU clocks (in the case of internal  
program execution), the XC226x can react quickly to the occurrence of non-deterministic  
events.  
The architecture of the XC226x supports several mechanisms for fast and flexible  
response to service requests; these can be generated from various sources internal or  
external to the microcontroller. Any of these interrupt requests can be programmed to be  
serviced by the Interrupt Controller or by the Peripheral Event Controller (PEC).  
Where in a standard interrupt service the current program execution is suspended and  
a branch to the interrupt vector table is performed, just one cycle is ‘stolen’ from the  
current CPU activity to perform a PEC service. A PEC service implies a single byte or  
word data transfer between any two memory locations with an additional increment of  
either the PEC source pointer, the destination pointer, or both. An individual PEC  
transfer counter is implicitly decremented for each PEC service except when performing  
in the continuous transfer mode. When this counter reaches zero, a standard interrupt is  
performed to the corresponding source-related vector location. PEC services are  
particularly well suited to supporting the transmission or reception of blocks of data. The  
XC226x has eight PEC channels, each whith fast interrupt-driven data transfer  
capabilities.  
Each of the possible interrupt nodes has a separate control register containing an  
interrupt request flag, an interrupt enable flag and an interrupt priority bitfield. Each node  
can be programmed by its related register to one of sixteen interrupt priority levels. Once  
accepted by the CPU, an interrupt service can only be interrupted by a higher-priority  
service request. For standard interrupt processing, each possible interrupt node has a  
dedicated vector location.  
Fast external interrupt inputs can service external interrupts with high-precision  
requirements. These fast interrupt inputs feature programmable edge detection (rising  
edge, falling edge, or both edges).  
Software interrupts are supported by the ‘TRAP’ instruction in combination with an  
individual trap (interrupt) number.  
Table 6 shows all of the possible XC226x interrupt sources and the corresponding  
hardware-related interrupt flags, vectors, vector locations and trap (interrupt) numbers.  
Note: Interrupt nodes which are not assigned to peripherals (unassigned nodes) may be  
used to generate software-controlled interrupt requests by setting the respective  
interrupt request bit (xIR).  
1) Depending if the jump cache is used or not.  
Data Sheet  
38  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
Table 6  
XC226x Interrupt Nodes  
Source of Interrupt or PEC  
Service Request  
Control  
Register  
Vector  
Trap  
Number  
Location1)  
CAPCOM Register 16, or  
ERU Request 0  
CC2_CC16IC  
CC2_CC17IC  
CC2_CC18IC  
CC2_CC19IC  
CC2_CC20IC  
CC2_CC21IC  
CC2_CC22IC  
CC2_CC23IC  
CC2_CC24IC  
CC2_CC25IC  
CC2_CC26IC  
CC2_CC27IC  
CC2_CC28IC  
CC2_CC29IC  
xx’0040H  
xx’0044H  
xx’0048H  
xx’004CH  
xx’0050H  
xx’0054H  
xx’0058H  
xx’005CH  
xx’0060H  
xx’0064H  
xx’0068H  
xx’006CH  
xx’0070H  
xx’0074H  
10H / 16D  
11H / 17D  
12H / 18D  
13H / 19D  
14H / 20D  
15H / 21D  
16H / 22D  
17H / 23D  
18H / 24D  
19H / 25D  
1AH / 26D  
1BH / 27D  
1CH / 28D  
1DH / 29D  
CAPCOM Register 17, or  
ERU Request 1  
CAPCOM Register 18, or  
ERU Request 2  
CAPCOM Register 19, or  
ERU Request 3  
CAPCOM Register 20, or  
USIC0 Request 6  
CAPCOM Register 21, or  
USIC0 Request 7  
CAPCOM Register 22, or  
USIC1 Request 6  
CAPCOM Register 23, or  
USIC1 Request 7  
CAPCOM Register 24, or  
ERU Request 0  
CAPCOM Register 25, or  
ERU Request 1  
CAPCOM Register 26, or  
ERU Request 2  
CAPCOM Register 27, or  
ERU Request 3  
CAPCOM Register 28, or  
USIC2 Request 6  
CAPCOM Register 29, or  
USIC2 Request 7  
CAPCOM Register 30  
CAPCOM Register 31  
GPT1 Timer 2  
CC2_CC30IC  
CC2_CC31IC  
xx’0078H  
xx’007CH  
1EH / 30D  
1FH / 31D  
20H / 32D  
21H / 33D  
22H / 34D  
GPT12E_T2IC xx’0080H  
GPT12E_T3IC xx’0084H  
GPT12E_T4IC xx’0088H  
GPT1 Timer 3  
GPT1 Timer 4  
Data Sheet  
39  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
Table 6  
XC226x Interrupt Nodes (cont’d)  
Source of Interrupt or PEC  
Service Request  
Control  
Register  
Vector  
Trap  
Number  
Location1)  
GPT2 Timer 5  
GPT12E_T5IC xx’008CH  
GPT12E_T6IC xx’0090H  
GPT12E_CRIC xx’0094H  
23H / 35D  
24H / 36D  
25H / 37D  
26H / 38D  
27H / 39D  
28H / 40D  
29H / 41D  
2AH / 42D  
2BH / 43D  
2CH / 44D  
2DH / 45D  
2EH / 46D  
2FH / 47D  
30H / 48D  
31H / 49D  
32H / 50D  
33H / 51D  
34H / 52D  
35H / 53D  
36H / 54D  
37H / 55D  
38H / 56D  
39H / 57D  
3AH / 58D  
3BH / 59D  
3CH / 60D  
3DH / 61D  
3EH / 62D  
3FH / 63D  
40H / 64D  
GPT2 Timer 6  
GPT2 CAPREL Register  
CAPCOM Timer 7  
CC2_T7IC  
CC2_T8IC  
ADC_0IC  
xx’0098H  
xx’009CH  
xx’00A0H  
xx’00A4H  
xx’00A8H  
xx’00ACH  
xx’00B0H  
xx’00B4H  
xx’00B8H  
xx’00BCH  
xx’00C0H  
xx’00C4H  
xx’00C8H  
xx’00CCH  
xx’00D0H  
xx’00D4H  
xx’00D8H  
xx’00DCH  
xx’00E0H  
xx’00E4H  
xx’00E8H  
xx’00ECH  
xx’00F0H  
xx’00F4H  
xx’00F8H  
xx’00FCH  
xx’0100H  
CAPCOM Timer 8  
A/D Converter Request 0  
A/D Converter Request 1  
A/D Converter Request 2  
A/D Converter Request 3  
A/D Converter Request 4  
A/D Converter Request 5  
A/D Converter Request 6  
A/D Converter Request 7  
CCU60 Request 0  
CCU60 Request 1  
CCU60 Request 2  
CCU60 Request 3  
CCU61 Request 0  
CCU61 Request 1  
CCU61 Request 2  
CCU61 Request 3  
CCU62 Request 0  
CCU62 Request 1  
CCU62 Request 2  
CCU62 Request 3  
CCU63 Request 0  
CCU63 Request 1  
CCU63 Request 2  
CCU63 Request 3  
CAN Request 0  
ADC_1IC  
ADC_2IC  
ADC_3IC  
ADC_4IC  
ADC_5IC  
ADC_6IC  
ADC_7IC  
CCU60_0IC  
CCU60_1IC  
CCU60_2IC  
CCU60_3IC  
CCU61_0IC  
CCU61_1IC  
CCU61_2IC  
CCU61_3IC  
CCU62_0IC  
CCU62_1IC  
CCU62_2IC  
CCU62_3IC  
CCU63_0IC  
CCU63_1IC  
CCU63_2IC  
CCU63_3IC  
CAN_0IC  
Data Sheet  
40  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
Table 6  
XC226x Interrupt Nodes (cont’d)  
Source of Interrupt or PEC  
Service Request  
Control  
Register  
Vector  
Trap  
Number  
Location1)  
CAN Request 1  
CAN_1IC  
CAN_2IC  
CAN_3IC  
CAN_4IC  
CAN_5IC  
CAN_6IC  
CAN_7IC  
CAN_8IC  
CAN_9IC  
CAN_10IC  
CAN_11IC  
CAN_12IC  
CAN_13IC  
CAN_14IC  
CAN_15IC  
U0C0_0IC  
U0C0_1IC  
U0C0_2IC  
U0C1_0IC  
U0C1_1IC  
U0C1_2IC  
U1C0_0IC  
U1C0_1IC  
U1C0_2IC  
U1C1_0IC  
U1C1_1IC  
U1C1_2IC  
U2C0_0IC  
U2C0_1IC  
U2C0_2IC  
xx’0104H  
xx’0108H  
xx’010CH  
xx’0110H  
xx’0114H  
xx’0118H  
xx’011CH  
xx’0120H  
xx’0124H  
xx’0128H  
xx’012CH  
xx’0130H  
xx’0134H  
xx’0138H  
xx’013CH  
xx’0140H  
xx’0144H  
xx’0148H  
xx’014CH  
xx’0150H  
xx’0154H  
xx’0158H  
xx’015CH  
xx’0160H  
xx’0164H  
xx’0168H  
xx’016CH  
xx’0170H  
xx’0174H  
xx’0178H  
41H / 65D  
42H / 66D  
43H / 67D  
44H / 68D  
45H / 69D  
46H / 70D  
47H / 71D  
48H / 72D  
49H / 73D  
4AH / 74D  
4BH / 75D  
4CH / 76D  
4DH / 77D  
4EH / 78D  
4FH / 79D  
50H / 80D  
51H / 81D  
52H / 82D  
53H / 83D  
54H / 84D  
55H / 85D  
56H / 86D  
57H / 87D  
58H / 88D  
59H / 89D  
5AH / 90D  
5BH / 91D  
5CH / 92D  
5DH / 93D  
5EH / 94D  
CAN Request 2  
CAN Request 3  
CAN Request 4  
CAN Request 5  
CAN Request 6  
CAN Request 7  
CAN Request 8  
CAN Request 9  
CAN Request 10  
CAN Request 11  
CAN Request 12  
CAN Request 13  
CAN Request 14  
CAN Request 15  
USIC0 Cannel 0, Request 0  
USIC0 Cannel 0, Request 1  
USIC0 Cannel 0, Request 2  
USIC0 Cannel 1, Request 0  
USIC0 Cannel 1, Request 1  
USIC0 Cannel 1, Request 2  
USIC1 Cannel 0, Request 0  
USIC1 Cannel 0, Request 1  
USIC1 Cannel 0, Request 2  
USIC1 Cannel 1, Request 0  
USIC1 Cannel 1, Request 1  
USIC1 Cannel 1, Request 2  
USIC2 Cannel 0, Request 0  
USIC2 Cannel 0, Request 1  
USIC2 Cannel 0, Request 2  
Data Sheet  
41  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
Table 6  
XC226x Interrupt Nodes (cont’d)  
Source of Interrupt or PEC  
Service Request  
Control  
Register  
Vector  
Trap  
Number  
Location1)  
USIC2 Cannel 1, Request 0  
USIC2 Cannel 1, Request 1  
USIC2 Cannel 1, Request 2  
Unassigned node  
Unassigned node  
Unassigned node  
Unassigned node  
Unassigned node  
Unassigned node  
Unassigned node  
Unassigned node  
Unassigned node  
SCU Request 1  
U2C1_0IC  
xx’017CH  
xx’0180H  
xx’0184H  
xx’0188H  
xx’018CH  
xx’0190H  
xx’0194H  
xx’0198H  
xx’019CH  
xx’01A0H  
xx’01A4H  
xx’01A8H  
xx’01ACH  
xx’01B0H  
xx’01B4H  
xx’01B8H  
xx’01BCH  
5FH / 95D  
60H / 96D  
U2C1_1IC  
U2C1_2IC  
61H / 97D  
62H / 98D  
63H / 99D  
64H / 100D  
65H / 101D  
66H / 102D  
67H / 103D  
68H / 104D  
69H / 105D  
6AH / 106D  
6BH / 107D  
6CH / 108D  
6DH / 109D  
6EH / 110D  
6FH / 111D  
SCU_1IC  
SCU_0IC  
PFM_IC  
RTC_IC  
EOPIC  
SCU Request 0  
Program Flash Modules  
RTC  
End of PEC Subchannel  
1) Register VECSEG defines the segment where the vector table is located.  
Bitfield VECSC in register CPUCON1 defines the distance between two adjacent vectors. This table  
represents the default setting with a distance of 4 (two words) between two vectors.  
Data Sheet  
42  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
The XC226x includes an excellent mechanism to identify and process exceptions or  
error conditions that arise during run-time, the so-called ‘Hardware Traps’. A hardware  
trap causes an immediate non-maskable system reaction similar to a standard interrupt  
service (branching to a dedicated vector table location). The occurrence of a hardware  
trap is also indicated by a single bit in the trap flag register (TFR). Unless another higher-  
priority trap service is in progress, a hardware trap will interrupt any ongoing program  
execution. In turn, hardware trap services can normally not be interrupted by standard  
or PEC interrupts.  
Table 7 shows all possible exceptions or error conditions that can arise during runtime:  
Table 7  
Trap Summary  
Exception Condition  
Trap  
Flag  
Trap  
Vector  
Vector  
Trap  
Trap  
Location1) Number Priority  
Reset Functions  
RESET  
xx’0000H  
00H  
III  
Class A Hardware Traps:  
System Request 0  
Stack Overflow  
Stack Underflow  
Software Break  
SR0  
STKOF  
STKUF  
SR0TRAP  
STOTRAP  
STUTRAP  
xx’0008H  
xx’0010H  
xx’0018H  
02H  
04H  
06H  
08H  
II  
II  
II  
II  
SOFTBRK SBRKTRAP xx’0020H  
Class B Hardware Traps:  
System Request 1  
Undefined Opcode  
Memory Access Error  
Protected Instruction  
Fault  
SR1  
BTRAP  
xx’0028H  
xx’0028H  
xx’0028H  
xx’0028H  
0AH  
0AH  
0AH  
0AH  
I
I
I
I
UNDOPC BTRAP  
ACER  
PRTFLT  
BTRAP  
BTRAP  
Illegal Word Operand  
Access  
ILLOPA  
BTRAP  
xx’0028H  
0AH  
I
Reserved  
[2CH - 3CH] [0BH -  
0FH]  
Software Traps:  
Any  
Any  
Current  
CPU  
Priority  
TRAP Instruction  
[xx’0000H - [00H -  
xx’01FCH] 7FH]  
in steps of  
4H  
1) Register VECSEG defines the segment where the vector table is located to.  
Bitfield VECSC in register CPUCON1 defines the distance between two adjacent vectors. This table  
represents the default setting, with a distance of 4 (two words) between two vectors.  
Data Sheet  
43  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
3.5  
On-Chip Debug Support (OCDS)  
The On-Chip Debug Support system built into the XC226x provides a broad range of  
debug and emulation features. User software running on the XC226x can be debugged  
within the target system environment.  
The OCDS is controlled by an external debugging device via the debug interface. This  
consists of the JTAG port conforming to IEEE-1149. The debug interface can be  
completed with an optional break interface.  
The debugger controls the OCDS with a set of dedicated registers accessible via the  
debug interface (JTAG). In addition the OCDS system can be controlled by the CPU, e.g.  
by a monitor program. An injection interface allows the execution of OCDS-generated  
instructions by the CPU.  
Multiple breakpoints can be triggered by on-chip hardware, by software, or by an  
external trigger input. Single stepping is supported, as is the injection of arbitrary  
instructions and read/write access to the complete internal address space. A breakpoint  
trigger can be answered with a CPU halt, a monitor call, a data transfer, or/and the  
activation of an external signal.  
Tracing data can be obtained via the debug interface, or via the external bus interface  
for increased performance.  
The JTAG interface uses four interface signals, to communicate with external circuitry.  
The debug interface can be amended with two optional break lines.  
Data Sheet  
44  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
3.6  
Capture/Compare Unit (CAPCOM2)  
The CAPCOM2 unit supports generation and control of timing sequences on up to  
16 channels with a maximum resolution of one system clock cycle (eight cycles in  
staggered mode). The CAPCOM2 unit is typically used to handle high-speed I/O tasks  
such as pulse and waveform generation, pulse width modulation (PWM), digital to  
analog (D/A) conversion, software timing, or time recording with respect to external  
events.  
Two 16-bit timers (T7/T8) with reload registers provide two independent time bases for  
the capture/compare register array.  
The input clock for the timers is programmable to a number of prescaled values of the  
internal system clock. It may also be derived from an overflow/underflow of timer T6 in  
module GPT2. This provides a wide range for the timer period and resolution while  
allowing precise adjustments for application-specific requirements. An external count  
input for CAPCOM2 timer T7 allows event scheduling for the capture/compare registers  
with respect to external events.  
The capture/compare register array contains 16 dual purpose capture/compare  
registers. Each may be individually allocated to either CAPCOM2 timer T7 or T8 and  
programmed for a capture or compare function.  
12 registers of the CAPCOM2 module have one port pin associated with it. This serves  
as an input pin to trigger the capture function or as an output pin to indicate the  
occurrence of a compare event.  
Table 8  
Compare Modes (CAPCOM2)  
Compare Modes  
Function  
Mode 0  
Interrupt-only compare mode;  
Several compare interrupts per timer period are possible  
Mode 1  
Mode 2  
Mode 3  
Pin toggles on each compare match;  
Several compare events per timer period are possible  
Interrupt-only compare mode;  
Only one compare interrupt per timer period is generated  
Pin set ‘1’ on match; pin reset ‘0’ on compare timer overflow;  
Only one compare event per timer period is generated  
Double Register  
Mode  
Two registers operate on one pin;  
Pin toggles on each compare match;  
Several compare events per timer period are possible  
Single Event Mode  
Generates single edges or pulses;  
Can be used with any compare mode  
Data Sheet  
45  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
When a capture/compare register has been selected for capture mode, the current  
contents of the allocated timer will be latched (‘captured’) into the capture/compare  
register in response to an external event at the port pin associated with this register. In  
addition, a specific interrupt request for this capture/compare register is generated.  
Either a positive, a negative, or both a positive and a negative external signal transition  
at the pin can be selected as the triggering event.  
The contents of all registers selected for one of the five compare modes are continuously  
compared with the contents of the allocated timers.  
When a match occurs between the timer value and the value in a capture/compare  
register, specific actions will be taken based on the compare mode selected.  
Data Sheet  
46  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
Reload Reg.  
T7REL  
fCC  
T7  
T7IN  
T6OUF  
Input  
Control  
Timer T7  
T7IRQ  
CC16IO  
CC17IO  
CC16IRQ  
CC17IRQ  
Mode  
Control  
(Capture  
or  
Sixteen  
16-bit  
Capture/  
Compare  
Registers  
Compare)  
CC31IO  
CC31IRQ  
T8IRQ  
T8  
Input  
fCC  
Timer T8  
T6OUF  
Control  
Reload Reg.  
T8REL  
MC_CAPCOM2_BLOCKDIAG  
Figure 5  
CAPCOM2 Unit Block Diagram  
Data Sheet  
47  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
3.7  
Capture/Compare Units CCU6x  
The XC226x features up to four CCU6 units (CCU60, CCU61, CCU62, CCU63).  
The CCU6 is a high-resolution capture and compare unit with application-specific  
modes. It provides inputs to start the timers synchronously, an important feature in  
devices with several CCU6 modules.  
The module provides two independent timers (T12, T13), that can be used for PWM  
generation, especially for AC motor control. Additionally, special control modes for block  
commutation and multi-phase machines are supported.  
Timer 12 Features  
Three capture/compare channels, where each channel can be used either as a  
capture or as a compare channel.  
Supports generation of a three-phase PWM (six outputs, individual signals for high-  
side and low-side switches)  
16-bit resolution, maximum count frequency = peripheral clock  
Dead-time control for each channel to avoid short circuits in the power stage  
Concurrent update of the required T12/13 registers  
Center-aligned and edge-aligned PWM can be generated  
Single-shot mode supported  
Many interrupt request sources  
Hysteresis-like control mode  
Automatic start on a HW event (T12HR, for synchronization purposes)  
Timer 13 Features  
One independent compare channel with one output  
16-bit resolution, maximum count frequency = peripheral clock  
Can be synchronized to T12  
Interrupt generation at period match and compare match  
Single-shot mode supported  
Automatic start on a HW event (T13HR, for synchronization purposes)  
Additional Features  
Block commutation for brushless DC drives implemented  
Position detection via Hall sensor pattern  
Automatic rotational speed measurement for block commutation  
Integrated error handling  
Fast emergency stop without CPU load via external signal (CTRAP)  
Control modes for multi-channel AC drives  
Output levels can be selected and adapted to the power stage  
Data Sheet  
48  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
CCU6 Module Kernel  
fSYS  
compare  
Channel 0  
T12 Channel 1  
Channel 2  
1
Dead-  
time  
Control  
Multi-  
channel  
Control  
Trap  
Control  
TxHR  
1
1
start  
Interrupts  
T13 Channel 3  
compare  
1
3
2
2
2
3
1
Input / Output Control  
mc_ccu6_blockdiagram.vsd  
Figure 6  
CCU6 Block Diagram  
Timer T12 can work in capture and/or compare mode for its three channels. The modes  
can also be combined. Timer T13 can work in compare mode only. The multi-channel  
control unit generates output patterns that can be modulated by timer T12 and/or timer  
T13. The modulation sources can be selected and combined for signal modulation.  
Data Sheet  
49  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
3.8  
General Purpose Timer (GPT12E) Unit  
The GPT12E unit is a very flexible multifunctional timer/counter structure which can be  
used for many different timing tasks such as event timing and counting, pulse width and  
duty cycle measurements, pulse generation, or pulse multiplication.  
The GPT12E unit incorporates five 16-bit timers organized in two separate modules,  
GPT1 and GPT2. Each timer in each module may either operate independently in a  
number of different modes or be concatenated with another timer of the same module.  
Each of the three timers T2, T3, T4 of module GPT1 can be configured individually for  
one of four basic modes of operation: Timer, Gated Timer, Counter, and Incremental  
Interface Mode. In Timer Mode, the input clock for a timer is derived from the system  
clock and divided by a programmable prescaler. Counter Mode allows timer clocking in  
reference to external events.  
Pulse width or duty cycle measurement is supported in Gated Timer Mode, where the  
operation of a timer is controlled by the ‘gate’ level on an external input pin. For these  
purposes each timer has one associated port pin (TxIN1)) which serves as a gate or clock  
input. The maximum resolution of the timers in module GPT1 is 4 system clock cycles.  
The counting direction (up/down) for each timer can be programmed by software or  
altered dynamically by an external signal on a port pin (TxEUD1)), e.g. to facilitate  
position tracking.  
In Incremental Interface Mode the GPT1 timers1) can be directly connected to the  
incremental position sensor signals A and B through their respective inputs TxIN and  
TxEUD. Direction and counting signals are internally derived from these two input  
signals, so that the contents of the respective timer Tx corresponds to the sensor  
position. The third position sensor signal TOP0 can be connected to an interrupt input.  
Timer T3 has an output toggle latch (T3OTL) which changes its state on each timer  
overflow/underflow. The state of this latch may be output on pin T3OUT e.g. for time out  
monitoring of external hardware components. It may also be used internally to clock  
timers T2 and T4 for measuring long time periods with high resolution.  
In addition to the basic operating modes, T2 may be configured as reload or capture  
register for timer T3. A timer used as capture or reload register is stopped. The contents  
of timer T3 is captured into T2 in response to a signal at the associated input pin (TxIN).  
Timer T3 is reloaded with the contents of T2, triggered either by an external signal or a  
selectable state transition of its toggle latch T3OTL.  
1) Exception: Timer T4 is not connected to pins.  
Data Sheet  
50  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
T3CON.BPS1  
2n:1  
Basic Clock  
fGPT  
Interrupt  
Request  
(T2IRQ)  
Aux. Timer T2  
U/D  
T2IN  
T2  
Mode  
Control  
Reload  
Capture  
T2EUD  
Interrupt  
Request  
(T3IRQ)  
T3  
Core Timer T3  
T3OTL  
Toggle  
Latch  
T3IN  
Mode  
Control  
T3OUT  
U/D  
T3EUD  
Capture  
Reload  
T4IN  
T4  
Mode  
Control  
Interrupt  
Request  
(T4IRQ)  
Aux. Timer T4  
T4EUD  
U/D  
MC_GPT_BLOCK1  
Figure 7  
Block Diagram of GPT1  
Data Sheet  
51  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
With its maximum resolution of 2 system clock cycles, the GPT2 module provides  
precise event control and time measurement. It includes two timers (T5, T6) and a  
capture/reload register (CAPREL). Both timers can be clocked with an input clock which  
is derived from the CPU clock via a programmable prescaler or with external signals. The  
counting direction (up/down) for each timer can be programmed by software or altered  
dynamically with an external signal on a port pin (TxEUD1)). Concatenation of the timers  
is supported with the output toggle latch (T6OTL) of timer T6, which changes its state on  
each timer overflow/underflow.  
The state of this latch may be used to clock timer T5, and/or it may be output on pin  
T6OUT. The overflows/underflows of timer T6 can also be used to clock the CAPCOM2  
timers and to initiate a reload from the CAPREL register.  
The CAPREL register can capture the contents of timer T5 based on an external signal  
transition on the corresponding port pin (CAPIN); timer T5 may optionally be cleared  
after the capture procedure. This allows the XC226x to measure absolute time  
differences or to perform pulse multiplication without software overhead.  
The capture trigger (timer T5 to CAPREL) can also be generated upon transitions of  
GPT1 timer T3 inputs T3IN and/or T3EUD. This is especially advantageous when T3  
operates in Incremental Interface Mode.  
1) Exception: T5EUD is not connected to a pin.  
Data Sheet  
52  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
T6CON.BPS2  
2n:1  
Basic Clock  
fGPT  
Interrupt  
Request  
(T5IRQ)  
GPT2 Timer T5  
T5IN  
T5  
Mode  
Control  
U/D  
T5EUD  
Clear  
Capture  
CAPIN  
GPT2 CAPREL  
CAPREL  
Mode  
Control  
Interrupt  
Request  
(CRIRQ)  
Reload  
Clear  
T3IN/  
T3EUD  
Interrupt  
Request  
(T6IRQ)  
Toggle  
FF  
GPT2 Timer T6  
U/D  
T6OTL  
T6OUT  
T6OUF  
T6  
Mode  
Control  
T6IN  
T6EUD  
MC_GPT_BLOCK2  
Figure 8  
Block Diagram of GPT2  
Data Sheet  
53  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
3.9  
Real Time Clock  
The Real Time Clock (RTC) module of the XC226x can be clocked with a clock signal  
selected from internal sources or external sources (pins).  
The RTC basically consists of a chain of divider blocks:  
Selectable 32:1 and 8:1 dividers (on - off)  
The reloadable 16-bit timer T14  
The 32-bit RTC timer block (accessible via registers RTCH and RTCL) consisting of:  
– a reloadable 10-bit timer  
– a reloadable 6-bit timer  
– a reloadable 6-bit timer  
– a reloadable 10-bit timer  
All timers count up. Each timer can generate an interrupt request. All requests are  
combined to a common node request.  
fRTC  
MUX  
:
32  
RUN  
RTCINT  
MUX  
Interrupt Sub Node  
: 8  
CNT  
INT0  
CNT  
INT1  
CNT  
INT2  
CNT  
INT3  
PRE  
REFCLK  
REL-Register  
T14REL  
10 Bits  
6 Bits  
6 Bits  
10 Bits  
fCNT  
T14  
10 Bits  
6 Bits  
6 Bits  
10 Bits  
T14-Register  
CNT-Register  
MCB05568B  
Figure 9  
RTC Block Diagram  
Note: The registers associated with the RTC are only affected by a power reset.  
Data Sheet  
54  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
The RTC module can be used for different purposes:  
System clock to determine the current time and date  
Cyclic time-based interrupt, to provide a system time tick independent of CPU  
frequency and other resources  
48-bit timer for long-term measurements  
Alarm interrupt at a defined time  
Data Sheet  
55  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
3.10  
A/D Converters  
For analog signal measurement, up to two 10-bit A/D converters (ADC0, ADC1) with  
11 + 5 multiplexed input channels and a sample and hold circuit have been integrated  
on-chip. They use the successive approximation method. The sample time (to charge  
the capacitors) and the conversion time are programmable so that they can be adjusted  
to the external circuit. The A/D converters can also operate in 8-bit conversion mode,  
further reducing the conversion time.  
Several independent conversion result registers, selectable interrupt requests, and  
highly flexible conversion sequences provide a high degree of programmability to meet  
the application requirements. Both modules can be synchronized to allow parallel  
sampling of two input channels.  
For applications that require more analog input channels, external analog multiplexers  
can be controlled automatically.  
For applications that require fewer analog input channels, the remaining channel inputs  
can be used as digital input port pins.  
The A/D converters of the XC226x support two types of request sources which can be  
triggered by several internal and external events.  
Parallel requests are activated at the same time and then executed in a predefined  
sequence.  
Queued requests are executed in a user-defined sequence.  
In addition, the conversion of a specific channel can be inserted into a running sequence  
without disturbing that sequence. All requests are arbitrated according to the priority  
level assigned to them.  
Data reduction features, such as limit checking or result accumulation, reduce the  
number of required CPU access operations allowing the precise evaluation of  
analoginputs (high conversion rate) even at a low CPU speed.  
The Peripheral Event Controller (PEC) can be used to control the A/D converters or to  
automatically store conversion results to a table in memory for later evaluation, without  
requiring the overhead of entering and exiting interrupt routines for each data transfer.  
Each A/D converter contains eight result registers which can be concatenated to build a  
result FIFO. Wait-for-read mode can be enabled for each result register to prevent the  
loss of conversion data.  
In order to decouple analog inputs from digital noise and to avoid input trigger noise,  
those pins used for analog input can be disconnected from the digital input stages under  
software control. This can be selected for each pin separately with registers P5_DIDIS  
and P15_DIDIS (Port x Digital Input Disable).  
The Auto-Power-Down feature of the A/D converters minimizes the power consumption  
when no conversion is in progress.  
Data Sheet  
56  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
3.11  
Universal Serial Interface Channel Modules (USIC)  
The XC226x includes three USIC modules (USIC0, USIC1, USIC2), each providing two  
serial communication channels.  
The Universal Serial Interface Channel (USIC) module is based on a generic data shift  
and data storage structure which is identical for all supported serial communication  
protocols. Each channel supports complete full-duplex operation with a basic data buffer  
structure (one transmit buffer and two receive buffer stages). In addition, the data  
handling software can use FIFOs.  
The protocol part (generation of shift clock/data/control signals) is independent of the  
general part and is handled by protocol-specific preprocessors (PPPs).  
The USIC’s input/output lines are connected to pins by a pin routing unit. The inputs and  
outputs of each USIC channel can be assigned to different interface pins, providing great  
flexibility to the application software. All assignments can be made during runtime.  
Bus  
Buffer & Shift Structure Protocol Preprocessors  
Pins  
Control 0  
PPP_A  
PPP_B  
PPP_C  
PPP_D  
DBU  
0
DSU  
0
Control 1  
PPP_A  
PPP_B  
PPP_C  
PPP_D  
DBU  
1
DSU  
1
fsys  
Fractional  
Dividers  
Baud rate  
Generators  
USIC_basic.vsd  
Figure 10  
General Structure of a USIC Module  
The regular structure of the USIC module brings the following advantages:  
Higher flexibility through configuration with same look-and-feel for data management  
Reduced complexity for low-level drivers serving different protocols  
Wide range of protocols with improved performances (baud rate, buffer handling)  
Data Sheet  
57  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
Target Protocols  
Each USIC channel can receive and transmit data frames with a selectable data word  
width from 1 to 16 bits in each of the following protocols:  
UART (asynchronous serial channel)  
– maximum baud rate: fSYS / 4  
– data frame length programmable from 1 to 63 bits  
– MSB or LSB first  
LIN Support (Local Interconnect Network)  
– maximum baud rate: fSYS / 16  
– checksum generation under software control  
– baud rate detection possible by built-in capture event of baud rate generator  
SSC/SPI/QSPI (synchronous serial channel with or without data buffer)  
– maximum baud rate in slave mode: fSYS  
– maximum baud rate in master mode: fSYS / 2, limited by loop delay  
– number of data bits programmable from 1 to 63, more with explicit stop condition  
– MSB or LSB first  
– optional control of slave select signals  
IIC (Inter-IC Bus)  
– supports baud rates of 100 kbit/s and 400 kbit/s  
IIS (Inter-IC Sound Bus)  
– maximum baud rate: fSYS / 2 for transmitter, fSYS for receiver  
Note: Depending on the selected functions (such as digital filters, input synchronization  
stages, sample point adjustment, etc.), the maximum achievable baud rate can be  
limited. Please note that there may be additional delays, such as internal or  
external propagation delays and driver delays (e.g. for collision detection in UART  
mode, for IIC, etc.).  
Data Sheet  
58  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
3.12  
MultiCAN Module  
The MultiCAN module contains up to five independently operating CAN nodes with Full-  
CAN functionality which are able to exchange Data and Remote Frames using a  
gateway function. Transmission and reception of CAN frames is handled in accordance  
with CAN specification V2.0 B (active). Each CAN node can receive and transmit  
standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers.  
All CAN nodes share a common set of up to 128 message objects. Each message object  
can be individually allocated to one of the CAN nodes. Besides serving as a storage  
container for incoming and outgoing frames, message objects can be combined to build  
gateways between the CAN nodes or to set up a FIFO buffer.  
The message objects are organized in double-chained linked lists, where each CAN  
node has its own list of message objects. A CAN node stores frames only into message  
objects that are allocated to its own message object list and it transmits only messages  
belonging to this message object list. A powerful, command-driven list controller  
performs all message object list operations.  
MultiCAN Module Kernel  
TXDC4  
CAN  
Node 4  
RXDC4  
Clock  
Control  
fCAN  
.
.
.
.
.
.
.
.
.
Message  
Object  
Buffer  
Linked  
List  
Control  
Address  
Decoder  
Port  
Control  
TXDC1  
RXDC1  
CAN  
Node 1  
128  
Objects  
TXDC0  
RXDC0  
CAN  
Node 0  
Interrupt  
Control  
CAN Control  
mc_multican_block5.vsd  
Figure 11  
Block Diagram of MultiCAN Module  
Data Sheet  
59  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
MultiCAN Features  
CAN functionality conforming to CAN specification V2.0 B active for each CAN node  
(compliant to ISO 11898)  
Up to five independent CAN nodes  
Up to 128 independent message objects (shared by the CAN nodes)  
Dedicated control registers for each CAN node  
Data transfer rate up to 1 Mbit/s, individually programmable for each node  
Flexible and powerful message transfer control and error handling capabilities  
Full-CAN functionality for message objects:  
– Can be assigned to one of the CAN nodes  
– Configurable as transmit or receive objects, or as message buffer FIFO  
– Handle 11-bit or 29-bit identifiers with programmable acceptance mask for filtering  
– Remote Monitoring Mode, and frame counter for monitoring  
Automatic Gateway Mode support  
16 individually programmable interrupt nodes  
Analyzer mode for CAN bus monitoring  
Data Sheet  
60  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
3.13  
Watchdog Timer  
The Watchdog Timer is one of the fail-safe mechanisms which have been implemented  
to prevent the controller from malfunctioning for longer periods of time.  
The Watchdog Timer is always enabled after an application reset of the chip. It can be  
disabled and enabled at any time by executing the instructions DISWDT and ENWDT  
respectively. The software has to service the Watchdog Timer before it overflows. If this  
is not the case because of a hardware or software failure, the Watchdog Timer  
overflows, generating a prewarning interrupt and then a reset request.  
The Watchdog Timer is a 16-bit timer clocked with the system clock divided by 16,384  
or 256. The Watchdog Timer register is set to a prespecified reload value (stored in  
WDTREL) in order to allow further variation of the monitored time interval. Each time it  
is serviced by the application software, the Watchdog Timer is reloaded and the  
prescaler is cleared.  
Time intervals between 3.2 µs and 13.4 s can be monitored (@ 80 MHz).  
The default Watchdog Timer interval after power-up is 6.5 ms (@ 10 MHz).  
3.14  
Clock Generation  
The Clock Generation Unit can generate the system clock signal fSYS for the XC226x  
from a number of external or internal clock sources:  
External clock signals with pad or core voltage levels  
External crystal using the on-chip oscillator  
On-chip clock source for operation without crystal  
Wake-up clock (ultra-low-power) to further reduce power consumption  
The programmable on-chip PLL with multiple prescalers generates a clock signal for  
maximum system performance from standard crystals or from the on-chip clock source.  
See also Section 4.6.2.  
The Oscillator Watchdog (OWD) generates an interrupt if the crystal oscillator frequency  
falls below a certain limit or stops completely. In this case, the system can be supplied  
with an emergency clock to enable operation even after an external clock failure.  
All available clock signals can be output on one of two selectable pins.  
Data Sheet  
61  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
3.15  
Parallel Ports  
The XC226x provides up to 75 I/O lines which are organized into 7 input/output ports and  
2 input ports. All port lines are bit-addressable, and all input/output lines can be  
individually (bit-wise) configured via port control registers. This configuration selects the  
direction (input/output), push/pull or open-drain operation, activation of pull devices, and  
edge characteristics (shape) and driver characteristics (output current) of the port  
drivers. The I/O ports are true bidirectional ports which are switched to high impedance  
state when configured as inputs. During the internal reset, all port pins are configured as  
inputs without pull devices active.  
All port lines have alternate input or output functions associated with them. These  
alternate functions can be programmed to be assigned to various port pins to support the  
best utilization for a given application. For this reason, certain functions appear several  
times in Table 9.  
All port lines that are not used for alternate functions may be used as general purpose  
I/O lines.  
Table 9  
Summary of the XC226x’s Parallel Ports  
Port  
Width  
Alternate Functions  
Port 0  
8
Address lines,  
Serial interface lines of USIC1, CAN0, and CAN1,  
Input/Output lines for CCU61  
Port 1  
Port 2  
8
Address lines,  
Serial interface lines of USIC1 and USIC2,  
Input/Output lines for CCU62,  
OCDS control, interrupts  
13  
Address and/or data lines, bus control,  
Serial interface lines of USIC0, CAN0, and CAN1,  
Input/Output lines for CCU60, CCU63, and CAPCOM2,  
Timer control signals,  
JTAG, interrupts, system clock output  
Port 4  
Port 5  
8
Chip select signals,  
Serial interface lines of CAN2,  
Input/Output lines for CAPCOM2,  
Timer control signals  
16  
Analog input channels to ADC0,  
Input/Output lines for CCU6x,  
Timer control signals,  
JTAG, OCDS control, interrupts  
Data Sheet  
62  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
Table 9  
Summary of the XC226x’s Parallel Ports (cont’d)  
Port  
Width  
Alternate Functions  
Port 6  
4
ADC control lines,  
Serial interface lines of USIC1,  
Timer control signals,  
OCDS control  
Port 7  
5
ADC control lines,  
Serial interface lines of USIC0 and CAN4,  
Input/Output lines for CCU62,  
Timer control signals,  
JTAG, OCDS control,system clock output  
Port 10  
Port 15  
16  
8
Address and/or data lines, bus control,  
Serial interface lines of USIC0, USIC1, CAN2, CAN3, and CAN4,  
Input/Output lines for CCU60,  
JTAG, OCDS control  
Analog input channels to ADC1,  
Timer control signals  
Data Sheet  
63  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
3.16  
Power Management  
The XC226x provides the means to control the power it consumes either at a given time  
or averaged over a certain duration.  
Three mechanisms can be used (and partly in parallel):  
Supply Voltage Management permits the temporary reduction of the supply voltage  
of major parts of the logic or even its complete disconnection. This drastically reduces  
the power consumed because it eliminates leakage current, particularly at high  
temperature.  
Several power reduction modes provide the best balance of power reduction and  
wake-up time.  
Clock Generation Management controls the frequency of internal and external  
clock signals. Clock signals for currently inactive parts of logic are disabled  
automatically. The user can drastically reduce the consumed power by reducing the  
XC226x system clock frequency.  
External circuits can be controlled using the programmable frequency output  
EXTCLK.  
Peripheral Management permits temporary disabling of peripheral modules. Each  
peripheral can be disabled and enabled separately. The CPU can be switched off  
while the peripherals can continue to operate.  
Wake-up from power reduction modes can be triggered either externally with signals  
generated by the external system, or internally by the on-chip wake-up timer. This  
supports intermittent operation of the XC226x by generating cyclic wake-up signals. Full  
performance is available to quickly react to action requests while the intermittent sleep  
phases greatly reduce the average system power consumption.  
Note: When selecting the supply voltage and the clock source and generation method,  
the required parameters must be carefully written to the respective bitfields, to  
avoid unintended intermediate states. Recommended sequences are provided  
which ensure the intended operation of power supply system and clock system.  
Please refer to the Programmer’s Guide.  
Data Sheet  
64  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
3.17  
Instruction Set Summary  
Table 10 lists the instructions of the XC226x.  
The addressing modes that can be used with a specific instruction, the function of the  
instructions, parameters for conditional execution of instructions, and the opcodes for  
each instruction can be found in the “Instruction Set Manual”.  
This document also provides a detailed description of each instruction.  
Table 10  
Mnemonic  
ADD(B)  
Instruction Set Summary  
Description  
Bytes  
2 / 4  
2 / 4  
2 / 4  
2 / 4  
2
Add word (byte) operands  
ADDC(B)  
SUB(B)  
Add word (byte) operands with Carry  
Subtract word (byte) operands  
Subtract word (byte) operands with Carry  
SUBC(B)  
MUL(U)  
(Un)Signed multiply direct GPR by direct GPR  
(16- × 16-bit)  
DIV(U)  
(Un)Signed divide register MDL by direct GPR (16-/16-bit) 2  
(Un)Signed long divide reg. MD by direct GPR (32-/16-bit) 2  
DIVL(U)  
CPL(B)  
Complement direct word (byte) GPR  
Negate direct word (byte) GPR  
Bitwise AND, (word/byte operands)  
Bitwise OR, (word/byte operands)  
Bitwise exclusive OR, (word/byte operands)  
Clear/Set direct bit  
2
NEG(B)  
AND(B)  
OR(B)  
2
2 / 4  
2 / 4  
2 / 4  
2
XOR(B)  
BCLR/BSET  
BMOV(N)  
Move (negated) direct bit to direct bit  
4
BAND/BOR/BXOR AND/OR/XOR direct bit with direct bit  
4
BCMP  
Compare direct bit to direct bit  
4
BFLDH/BFLDL  
Bitwise modify masked high/low byte of bit-addressable  
direct word memory with immediate data  
4
CMP(B)  
CMPD1/2  
CMPI1/2  
PRIOR  
Compare word (byte) operands  
2 / 4  
Compare word data to GPR and decrement GPR by 1/2 2 / 4  
Compare word data to GPR and increment GPR by 1/2  
2 / 4  
2
Determine number of shift cycles to normalize direct  
word GPR and store result in direct word GPR  
SHL/SHR  
Data Sheet  
Shift left/right direct word GPR  
2
65  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
Table 10  
Mnemonic  
ROL/ROR  
ASHR  
Instruction Set Summary (cont’d)  
Description  
Bytes  
Rotate left/right direct word GPR  
2
Arithmetic (sign bit) shift right direct word GPR  
Move word (byte) data  
2
MOV(B)  
MOVBS/Z  
JMPA/I/R  
JMPS  
2 / 4  
Move byte operand to word op. with sign/zero extension 2 / 4  
Jump absolute/indirect/relative if condition is met  
Jump absolute to a code segment  
4
4
4
4
JB(C)  
Jump relative if direct bit is set (and clear bit)  
Jump relative if direct bit is not set (and set bit)  
JNB(S)  
CALLA/I/R  
CALLS  
Call absolute/indirect/relative subroutine if condition is met 4  
Call absolute subroutine in any code segment  
4
4
PCALL  
Push direct word register onto system stack and call  
absolute subroutine  
TRAP  
Call interrupt service routine via immediate trap number  
Push/pop direct word register onto/from system stack  
2
2
4
PUSH/POP  
SCXT  
Push direct word register onto system stack and update  
register with word operand  
RET(P)  
Return from intra-segment subroutine  
2
(and pop direct word register from system stack)  
RETS  
Return from inter-segment subroutine  
Return from interrupt service subroutine  
Software Break  
2
RETI  
2
SBRK  
SRST  
2
Software Reset  
4
IDLE  
Enter Idle Mode  
4
PWRDN  
SRVWDT  
Unused instruction1)  
4
Service Watchdog Timer  
4
DISWDT/ENWDT Disable/Enable Watchdog Timer  
4
EINIT  
End-of-Initialization Register Lock  
4
ATOMIC  
EXTR  
Begin ATOMIC sequence  
2
Begin EXTended Register sequence  
Begin EXTended Page (and Register) sequence  
Begin EXTended Segment (and Register) sequence  
2
EXTP(R)  
EXTS(R)  
2 / 4  
2 / 4  
Data Sheet  
66  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Functional Description  
Table 10  
Mnemonic  
NOP  
Instruction Set Summary (cont’d)  
Description  
Bytes  
Null operation  
2
4
4
4
4
CoMUL/CoMAC  
CoADD/CoSUB  
Co(A)SHR  
Multiply (and accumulate)  
Add/Subtract  
(Arithmetic) Shift right  
Shift left  
CoSHL  
CoLOAD/STORE  
CoCMP  
Load accumulator/Store MAC register  
Compare  
4
4
4
4
4
4
CoMAX/MIN  
CoABS/CoRND  
CoMOV  
Maximum/Minimum  
Absolute value/Round accumulator  
Data move  
CoNEG/NOP  
Negate accumulator/Null operation  
1) The Enter Power Down Mode instruction is not used in the XC226x, due to the enhanced power control  
scheme. PWRDN will be correctly decoded, but will trigger no action.  
Data Sheet  
67  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
4
Electrical Parameters  
The operating range for the XC226x is defined by its electrical parameters. For proper  
operation the specified limits must be respected during system design.  
Note: Typical parameter values refer to room temperature and nominal supply voltage,  
minimum/maximum  
parameter  
values  
also  
include  
conditions  
of  
minimum/maximum temperature and minimum/maximum supply voltage.  
Additional details are described where applicable.  
4.1  
General Parameters  
These parameters are valid for all subsequent descriptions, unless otherwise noted.  
Table 11  
Absolute Maximum Rating Parameters  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
-65  
Typ.  
Max.  
150  
Storage temperature  
Junction temperature  
TST  
TJ  
°C  
°C  
V
-40  
150  
under bias  
Voltage on VDDI pins with VDDIM  
respect to ground (VSS)  
Voltage on VDDP pins with VDDPA  
,
-0.5  
1.65  
VDDI1  
,
-0.5  
-0.5  
-10  
6.0  
V
respect to ground (VSS)  
VDDPB  
Voltage on any pin with  
respect to ground (VSS)  
VIN  
VDDP  
+ 0.5  
V
VIN < VDDPmax  
Input current on any pin  
during overload condition  
10  
mA  
mA  
Absolute sum of all input  
currents during overload  
condition  
|100|  
Output current on any pin IOH, IOL  
|30|  
mA  
Note: Stresses above the values listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only. Functional operation  
of the device at these or any other conditions above those indicated in the  
operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for an extended time may affect device reliability.  
During absolute maximum rating overload conditions (VIN > VDDP or VIN < VSS) the  
voltage on VDDP pins with respect to ground (VSS) must not exceed the values  
defined by the absolute maximum ratings.  
Data Sheet  
68  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
Operating Conditions  
The following operating conditions must not be exceeded to ensure correct operation of  
the XC226x. All parameters specified in the following sections refer to these operating  
conditions, unless otherwise noticed.  
Table 12  
Operating Condition Parameters  
Symbol Values  
Parameter  
Unit Note /  
Test Condition  
Min.  
Typ.  
Max.  
1.6  
Digital core supply voltage VDDI  
1.4  
V
Core Supply Voltage  
Difference  
VDDI -10  
+10  
mV  
V
DDIM - VDDI1  
1)  
2)  
Digital supply voltage for VDDPA  
,
4.5  
3.0  
0
5.5  
4.5  
0
V
V
V
IO pads and voltage  
VDDPB  
regulators,  
upper voltage range  
2)  
Digital supply voltage for VDDPA  
,
IO pads and voltage  
VDDPB  
regulators,  
lower voltage range  
Digital ground voltage  
VSS  
IOV  
Reference  
voltage  
mA Per IO pin3)4)  
Overload current  
-5  
-2  
5
5
mA Per analog input  
pin3)4)  
Overload positive current KOVA  
coupling factor for analog  
inputs5)  
1.0 × 1.0 ×  
10-6 10-4  
I
I
I
I
OV > 0  
OV < 0  
OV > 0  
OV < 0  
Overload negative current KOVA  
coupling factor for analog  
inputs5)  
2.5 × 1.5 ×  
10-4 10-3  
Overload positive current KOVD  
coupling factor for digital  
I/O pins5)  
1.0 × 5.0 ×  
10-4 10-3  
Overload negative current KOVD  
coupling factor for digital  
I/O pins5)  
1.0 × 3.0 ×  
10-2  
10-2  
4)  
Absolute sum of overload Σ|IOV|  
50  
mA  
currents  
Data Sheet  
69  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
Table 12  
Operating Condition Parameters (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
20  
Unit Note /  
Test Condition  
Min.  
Max.  
External Pin Load  
Capacitance  
CL  
pF  
µF  
µF  
Pin drivers in  
default mode6)  
7)  
Voltage Regulator Buffer CEVRM  
Capacitance for DMP_M  
1.0  
4.7  
2.2  
Voltage Regulator Buffer CEVR1  
Capacitance for DMP_1  
0.47  
One for each  
supply pin7)  
8)  
Operating frequency  
Ambient temperature  
fSYS  
TA  
80  
MHz  
°C  
See Table 1  
1) If both core power domains are clocked, the difference between the power supply voltages must be less than  
10 mV. This condition imposes additional constraints when using external power supplies.  
Do not combine internal and external supply of different core power domains.  
Do not supply the core power domains with two independent external voltage regulators. The simplest method  
is to supply both power domains directly via a single external power supply.  
2) Performance of pad drivers, A/D Converter, and Flash module depends on VDDP  
.
If the external supply voltage VDDP becomes lower than the specified operating range, a power reset must be  
generated. Otherwise, the core supply voltage VDDI may rise above its specified operating range due to  
parasitic effects.  
This power reset can be generated by the on-chip SWD. If the SWD is disabled the power reset must be  
generated by activating the PORST input.  
3) Overload conditions occur if the standard operating conditions are exceeded, i.e. the voltage on any pin  
exceeds the specified range: VOV > VIHmax (IOV > 0) or VOV < VILmin (IOV < 0). The absolute sum of input  
overload currents on all pins may not exceed 50 mA. The supply voltages must remain within the specified  
limits. Proper operation under overload conditions depends on the application.  
Overload conditions must not occur on pin XTAL1 (powered by VDDI).  
4) Not subject to production test - verified by design/characterization.  
5) An overload current (IOV) through a pin injects an error current (IINJ) into the adjacent pins. This error current  
adds to that pin’s leakage current (IOZ). The value of the error current depends on the overload current and is  
defined by the overload coupling factor KOV. The polarity of the injected error current is reversed from the  
polarity of the overload current that produces it.  
The total current through a pin is |ITOT| = |IOZ| + (|IOV| × KOV). The additional error current may distort the input  
voltage on analog inputs.  
6) The timing is valid for pin drivers operating in default current mode (selected after reset). Reducing the output  
current may lead to increased delays or reduced driving capability (CL).  
7) To ensure the stability of the voltage regulators the EVRs must be buffered with ceramic capacitors. Separate  
buffer capacitors with the recomended values shall be connected as close as possible to each VDDI pin to keep  
the resistance of the board tracks below 2 . Connect all VDDI1 pins together.  
The minimum capacitance value is required for proper operation under all conditions (e.g. temperature).  
Higher values slightly increase the startup time.  
8) The operating frequency range may be reduced for specific types of the XC226x. This is indicated in the  
device designation (FxxL). 80-MHz devices are marked F80L.  
Data Sheet  
70  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
Parameter Interpretation  
The parameters listed in the following include both the characteristics of the XC226x and  
its demands on the system. To aid in correctly interpreting the parameters when  
evaluating them for a design, they are marked accordingly in the column “Symbol”:  
CC (Controller Characteristics):  
The logic of the XC226x provides signals with the specified characteristics.  
SR (System Requirement):  
The external system must provide signals with the specified characteristics to the  
XC226x.  
Data Sheet  
71  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
4.2  
DC Parameters  
These parameters are static or average values that may be exceeded during switching  
transitions (e.g. output current).  
The XC226x can operate within a wide supply voltage range from 3.0 V to 5.5 V.  
However, during operation this supply voltage must remain within 10 percent of the  
selected nominal supply voltage. It cannot vary across the full operating voltage range.  
Because of the supply voltage restriction and because electrical behavior depends on  
the supply voltage, the parameters are specified separately for the upper and the lower  
voltage range.  
During operation, the supply voltages may only change with a maximum speed of  
dV/dt < 1 V/ms.  
Leakage current is strongly dependent on the operating temperature and the voltage  
level at the respective pin. The maximum values in the following tables apply under worst  
case conditions, i.e. maximum temperature and an input level equal to the supply  
voltage.  
The value for the leakage current in an application can be determined by using the  
respective leakage derating formula (see tables) with values from that application.  
The pads of the XC226x are designed to operate in various driver modes. The DC  
parameter specifications refer to the current limits in Table 13.  
Table 13  
Current Limits for Port Output Drivers  
Port Output Driver  
Mode  
Maximum Output Current  
Nominal Output Current  
(IOLnom, -IOHnom  
VDDP 4.5 V VDDP < 4.5 V VDDP 4.5 V VDDP < 4.5 V  
1)  
(IOLmax, -IOHmax  
)
)
Strong driver  
Medium driver  
Weak driver  
10 mA  
4.0 mA  
0.5 mA  
10 mA  
2.5 mA  
0.5 mA  
2.5 mA  
1.0 mA  
0.1 mA  
2.5 mA  
1.0 mA  
0.1 mA  
1) An output current above |IOXnom| may be drawn from up to three pins at the same time.  
For any group of 16 neighboring output pins, the total output current in each direction (ΣIOL and Σ-IOH) must  
remain below 50 mA.  
Data Sheet  
72  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
Pullup/Pulldown Device Behavior  
Most pins of the XC226x feature pullup or pulldown devices. For some special pins these  
are fixed; for the port pins they can be selected by the application.  
The specified current values indicate how to load the respective pin depending on the  
intended signal level. Figure 12 shows the current paths.  
The shaded resistors shown in the figure may be required to compensate system pull  
currents that do not match the given limit values.  
VDDP  
Pullup  
Pulldown  
VSS  
MC_XC2X_PULL  
Figure 12  
Pullup/Pulldown Current Definition  
Data Sheet  
73  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
4.2.1  
DC Parameters for Upper Voltage Area  
These parameters apply to the upper IO voltage range, 4.5 V VDDP 5.5 V.  
Table 14  
DC Characteristics for Upper Voltage Range  
(Operating Conditions apply)1)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
Input low voltage  
(all except XTAL1)  
VIL SR -0.3  
0.3 ×  
VDDP  
V
V
V
Input high voltage  
(all except XTAL1)  
Input Hysteresis2)  
VIH SR 0.7 ×  
VDDP  
+ 0.3  
VDDP  
HYS CC 0.11  
V
DDP in [V],  
× VDDP  
Series  
resistance = 0 Ω  
3)  
Output low voltage  
Output low voltage  
Output high voltage5)  
VOL CC –  
VOL CC –  
1.0  
0.4  
V
V
V
IOL IOLmax  
3)4)  
IOL IOLnom  
3)  
V
OH CC VDDP  
IOH IOHmax  
- 1.0  
3)4)  
Output high voltage5)  
V
OH CC VDDP  
V
IOH IOHnom  
- 0.4  
Input leakage current  
(Port 5, Port 15)6)  
I
I
OZ1 CC –  
OZ2 CC –  
±10  
±0.2  
±200  
±5  
nA 0 V < VIN < VDDP  
Input leakage current  
(all other)6)7)  
µA TJ 110°C,  
0.45 V < VIN  
< VDDP  
Input leakage current  
(all other)6)7)  
I
OZ2 CC –  
±0.2  
±15  
µA TJ 150°C,  
0.45 V < VIN  
< VDDP  
Pull level keep current  
Pull level force current  
IPLK  
±30  
µA VPIN VIH (up)8)  
VPIN VIL (dn)  
µA VPIN VIL (up)8)  
VPIN VIH (dn)  
IPLF  
±250  
Pin capacitance9)  
CIO CC  
10  
pF  
(digital inputs/outputs)  
1) Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For  
signal levels outside these specifications, also refer to the specification of the overload current IOV  
.
Data Sheet  
74  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
2) Not subject to production test - verified by design/characterization. Hysteresis is implemented to avoid  
metastable states and switching due to internal ground bounce. It cannot suppress switching due to external  
system noise under all conditions.  
3) The maximum deliverable output current of a port driver depends on the selected output driver mode, see  
Table 13, Current Limits for Port Output Drivers. The limit for pin groups must be respected.  
4) As a rule, with decreasing output current the output levels approach the respective supply level (VOLVSS,  
VOHVDDP). However, only the levels for nominal output currents are verified.  
5) This specification is not valid for outputs which are switched to open drain mode. In this case the respective  
output will float and the voltage is determined by the external circuit.  
6) An additional error current (IINJ) will flow if an overload current flows through an adjacent pin. Please refer to  
the definition of the overload coupling factor KOV  
.
7) The given values are worst-case values. In production test, this leakage current is only tested at 125°C; other  
values are ensured by correlation. For derating, please refer to the following descriptions:  
Leakage derating depending on temperature (TJ = junction temperature [°C]):  
IOZ = 0.05 × e(1.5 + 0.028×TJ) [µA]. For example, at a temperature of 130°C the resulting leakage current is  
8.54 µA.  
Leakage derating depending on voltage level (DV = VDDP - VPIN [V]):  
I
OZ = IOZtempmax - (1.6 × DV) [µA]  
This voltage derating formula is an approximation which applies for maximum temperature.  
Because pin P2.8 is connected to two pads (standard pad and high-speed clock pad), it has twice the normal  
leakage.  
8) Keep current: Limit the current through this pin to the indicated value so that the enabled pull device can keep  
the default pin level: VPIN VIH for a pullup; VPIN VIL for a pulldown.  
Force current: Drive the indicated minimum current through this pin to change the default pin level driven by  
the enabled pull device: VPIN VIL for a pullup; VPIN VIH for a pulldown.  
These values apply to the fixed pull-devices in dedicated pins and to the user-selectable pull-devices in  
general purpose IO pins.  
9) Not subject to production test - verified by design/characterization.  
Because pin P2.8 is connected to two pads (standard pad and high-speed clock pad), it has twice the normal  
capacitance.  
Data Sheet  
75  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
4.2.2  
DC Parameters for Lower Voltage Area  
These parameters apply to the lower IO voltage range, 3.0 V VDDP 4.5 V.  
Table 15  
DC Characteristics for Lower Voltage Range  
(Operating Conditions apply)1)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
Input low voltage  
(all except XTAL1)  
VIL SR -0.3  
0.3 ×  
VDDP  
V
V
V
Input high voltage  
(all except XTAL1)  
Input Hysteresis2)  
VIH SR 0.7 ×  
VDDP  
+ 0.3  
VDDP  
HYS CC 0.07  
V
DDP in [V],  
× VDDP  
Series  
resistance = 0 Ω  
3)  
Output low voltage  
Output low voltage  
Output high voltage5)  
VOL CC –  
VOL CC –  
1.0  
0.4  
V
V
V
IOL IOLmax  
3)4)  
IOL IOLnom  
3)  
V
OH CC VDDP  
IOH IOHmax  
- 1.0  
3)4)  
Output high voltage5)  
V
OH CC VDDP  
V
IOH IOHnom  
- 0.4  
Input leakage current  
(Port 5, Port 15)6)  
I
I
OZ1 CC –  
OZ2 CC –  
±10  
±0.2  
±200  
±2.5  
nA 0 V < VIN < VDDP  
Input leakage current  
(all other)6)7)  
µA TJ 110°C,  
0.45 V < VIN  
< VDDP  
Input leakage current  
(all other)6)7)  
I
OZ2 CC –  
±0.2  
±8  
µA TJ 150°C,  
0.45 V < VIN  
< VDDP  
Pull level keep current  
Pull level force current  
IPLK  
±10  
µA VPIN VIH (up)8)  
VPIN VIL (dn)  
µA VPIN VIL (up)8)  
VPIN VIH (dn)  
IPLF  
±150  
Pin capacitance9)  
CIO CC  
10  
pF  
(digital inputs/outputs)  
1) Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For  
signal levels outside these specifications, also refer to the specification of the overload current IOV  
.
Data Sheet  
76  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
2) Not subject to production test - verified by design/characterization. Hysteresis is implemented to avoid  
metastable states and switching due to internal ground bounce. It cannot suppress switching due to external  
system noise under all conditions.  
3) The maximum deliverable output current of a port driver depends on the selected output driver mode, see  
Table 13, Current Limits for Port Output Drivers. The limit for pin groups must be respected.  
4) As a rule, with decreasing output current the output levels approach the respective supply level (VOLVSS,  
VOHVDDP). However, only the levels for nominal output currents are verified.  
5) This specification is not valid for outputs which are switched to open drain mode. In this case the respective  
output will float and the voltage is determined by the external circuit.  
6) An additional error current (IINJ) will flow if an overload current flows through an adjacent pin. Please refer to  
the definition of the overload coupling factor KOV  
.
The leakage current value is not tested in the lower voltage range but only in the upper voltage range. This  
parameter is ensured by correlation.  
7) The given values are worst-case values. In production test, this leakage current is only tested at 125°C; other  
values are ensured by correlation. For derating, please refer to the following descriptions:  
Leakage derating depending on temperature (TJ = junction temperature [°C]):  
IOZ = 0.03 × e(1.35 + 0.028×TJ) [µA]. For example, at a temperature of 130°C the resulting leakage current is  
4.41 µA.  
Leakage derating depending on voltage level (DV = VDDP - VPIN [V]):  
I
OZ = IOZtempmax - (1.3 × DV) [µA]  
This voltage derating formula is an approximation which applies for maximum temperature.  
Because pin P2.8 is connected to two pads (standard pad and high-speed clock pad), it has twice the normal  
leakage.  
8) Keep current: Limit the current through this pin to the indicated value so that the enabled pull device can keep  
the default pin level: VPIN VIH for a pullup; VPIN VIL for a pulldown.  
Force current: Drive the indicated minimum current through this pin to change the default pin level driven by  
the enabled pull device: VPIN VIL for a pullup; VPIN VIH for a pulldown.  
These values apply to the fixed pull-devices in dedicated pins and to the user-selectable pull-devices in  
general purpose IO pins.  
9) Not subject to production test - verified by design/characterization.  
Because pin P2.8 is connected to two pads (standard pad and high-speed clock pad), it has twice the normal  
capacitance.  
Data Sheet  
77  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
4.2.3  
Power Consumption  
The power consumed by the XC226x depends on several factors such as supply  
voltage, operating frequency, active circuits, and operating temperature. The power  
consumption specified here consists of two components:  
The switching current IS depends on the device activity  
The leakage current ILK depends on the device temperature  
To determine the actual power consumption, always both components, switching current  
IS (Table 16) and leakage current ILK (Table 17) must be added:  
I
DDP = IS + ILK.  
Note: The power consumption values are not subject to production test. They are  
verified by design/characterization.  
To determine the total power consumption for dimensioning the external power  
supply, also the pad driver currents must be considered.  
The given power consumption parameters and their values refer to specific operating  
conditions:  
Active mode:  
Regular operation, i.e. peripherals are active, code execution out of Flash.  
Stopover mode:  
Crystal oscillator and PLL stopped, Flash switched off, clock in domain DMP_1  
stopped.  
Standby mode:  
Voltage domain DMP_1 switched off completely, power supply control switched off.  
Note: The maximum values cover the complete specified operating range of all  
manufactured devices.  
The typical values refer to average devices under typical conditions, such as  
nominal supply voltage, room temperature, application-oriented activity.  
After a power reset, the decoupling capacitors for VDDI are charged with the  
maximum possible current, see parameter ICC in Table 20.  
For additional information, please refer to Section 5.2, Thermal Considerations.  
Data Sheet  
78  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
Table 16  
Switching Power Consumption XC226x  
(Operating Conditions apply)  
Parameter  
Sym-  
bol  
Values  
Min. Typ.  
Unit Note /  
Test Condition  
Max.  
10 +  
0.6×fSYS 1.0×fSYS  
Power supply current  
(active) withallperipherals  
active and EVVRs on  
ISACT  
10 +  
mA Active mode1)2)  
SYS in [MHz]  
f
Power supply current  
in stopover mode,  
EVVRs on  
ISSO  
1.0  
2.0  
mA Stopover Mode2)  
Power supply current  
in standby mode  
ISSB  
ISSB  
150  
70  
250  
150  
µA Standby mode,  
upper voltage area  
Power supply current  
in standby mode  
µA Standby mode,  
lower voltage area  
1) The pad supply voltage pins (VDDPB) provide the input current for the on-chip EVVRs and the current consumed  
by the pin output drivers. A small current is consumed because the drivers’ input stages are switched.  
2) The pad supply voltage has only a minor influence on this parameter.  
Data Sheet  
79  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
IS [mA]  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
ISACTmax  
ISACTtyp  
f
SYS [MHz]  
20  
40  
60  
80  
MC_XC2XM_IS  
Figure 13  
Supply Current in Active Mode as a Function of Frequency  
Data Sheet  
80  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
Table 17  
Leakage Power Consumption XC226x  
(Operating Conditions apply)  
Parameter  
Sym-  
bol  
Values  
Min. Typ.  
Unit Note /  
Test Condition1)  
Max.  
Leakage supply current2)  
(DMP_1 powered)  
ILK1  
0.03  
0.5  
2.1  
4.4  
20  
0.05  
1.3  
mA TJ = 25°C  
mA TJ = 85°C  
mA TJ = 125°C  
mA TJ = 150°C  
µA TJ = 25°C  
µA TJ = 85°C  
µA TJ = 125°C  
Formula3): 600,000 × e-α;  
α = 5000 / (273 + B×TJ);  
Typ.: B = 1.0, Max.: B = 1.3  
6.2  
13.7  
35  
Leakage supply current2)  
(DMP_1 off)  
ILK0  
115  
270  
420  
330  
880  
Formula3): 500,000 × e-α;  
α = 3000 / (273 + B×TJ);  
Typ.: B = 1.0, Max.: B = 1.6  
1,450 µA TJ = 150°C  
1) All inputs (including pins configured as inputs) are set at 0 V to 0.1 V or at VDDP - 0.1 V to VDDP and all outputs  
(including pins configured as outputs) are disconnected.  
2) The supply current caused by leakage depends mainly on the junction temperature (see Figure 14) and the  
supply voltage. The temperature difference between the junction temperature TJ and the ambient temperature  
TA must be taken into account. As this fraction of the supply current does not depend on device activity, it must  
be added to other power consumption values.  
3) This formula is valid for temperatures above 0°C. For temperatures below 0°C a value of below 10 µA can be  
assumed.  
Data Sheet  
81  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
ILK [m A ]  
1 4  
1 2  
1 0  
8
IL K 1m a x  
6
IL K 1typ  
4
2
IL K 0m a x  
IL K 0typ  
T J [°C ]  
-5 0  
0
5 0  
1 0 0  
1 5 0  
M C _ X C 2 X _ ILK 1 5 0  
Figure 14  
Leakage Supply Current as a Function of Temperature  
Data Sheet  
82  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
4.3  
Analog/Digital Converter Parameters  
These parameters describe the conditions for optimum ADC performance.  
Table 18  
A/D Converter Characteristics  
(Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
Unit Test  
Condition  
Min.  
Max.  
1)  
Analog reference supply VAREF SR VAGND  
VDDPA  
+ 0.05  
V
V
V
+ 1.0  
Analog reference ground VAGND SR VSS  
VAREF  
- 1.0  
- 0.05  
2)  
Analog input voltage  
range  
VAIN  
fADCI  
SR VAGND  
VAREF  
3)  
Analog clock frequency  
0.5  
20  
MHz  
Conversion time for 10-bit tC10  
CC (13 + STC) × tADCI  
+ 2 × tSYS  
result4)  
Conversion time for 8-bit tC8  
CC (11 + STC) × tADCI  
+ 2 × tSYS  
result4)  
Wakeup time from analog tWAF  
powerdown, fast mode  
CC –  
CC –  
CC –  
1
µs  
µs  
Wakeup time from analog tWAS  
powerdown, slow mode  
10  
Total unadjusted error5)  
TUE  
±2  
LSB VAREF = 5.0 V1)  
DNL error  
EADNL CC –  
EAINL CC –  
EAGAIN CC –  
EAOFF CC –  
CAINT CC –  
±1  
LSB  
LSB  
LSB  
LSB  
INL error  
±1.2  
±0.8  
±0.8  
10  
Gain error  
Offset error  
6)7)  
Total capacitance  
of an analog input  
pF  
6)7)  
Switched capacitance  
of an analog input  
CAINS CC –  
4
pF  
6)7)  
Resistance of  
the analog input path  
RAIN  
CC –  
1.5  
15  
kΩ  
6)7)  
Total capacitance  
CAREFT CC –  
pF  
of the reference input  
Data Sheet  
83  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
Table 18  
A/D Converter Characteristics (cont’d)  
(Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
Max.  
Unit Test  
Condition  
Min.  
CAREFS CC –  
6)7)  
Switched capacitance  
of the reference input  
7
pF  
6)7)  
Resistance of  
RAREF CC –  
2
kΩ  
the reference input path  
1) TUE is tested at VAREFx = VDDPA, VAGND = 0 V. It is verified by design for all other voltages within the defined  
voltage range.  
The specified TUE is valid only if the absolute sum of input overload currents on Port 5 or Port 15 pins (see  
I
OV specification) does not exceed 10 mA, and if VAREF and VAGND remain stable during the measurement time.  
2) VAIN may exceed VAGND or VAREFx up to the absolute maximum ratings. However, the conversion result in these  
cases will be X000H or X3FFH, respectively.  
3) The limit values for fADCI must not be exceeded when selecting the peripheral frequency and the prescaler  
setting.  
4) This parameter includes the sample time (also the additional sample time specified by STC), the time to  
determine the digital result and the time to load the result register with the conversion result.  
Values for the basic clock tADCI depend on programming and are found in Table 19.  
5) The total unadjusted error TUE is the maximum deviation from the ideal ADC transfer curve, not the sum of  
individual errors.  
All error specifications are based on measurement methods standardized by IEEE 1241.2000.  
6) Not subject to production test - verified by design/characterization.  
7) These parameter values cover the complete operating range. Under relaxed operating conditions  
(temperature, supply voltage) typical values can be used for calculation. At room temperature and nominal  
supply voltage the following typical values can be used:  
CAINTtyp = 12 pF, CAINStyp = 5 pF, RAINtyp = 1.0 k, CAREFTtyp = 15 pF, CAREFStyp = 10 pF, RAREFtyp = 1.0 k.  
A/D Converter  
RSource  
RAIN, On  
VAIN  
-
CExt  
CAINT CAINS  
CAINS  
MCS05570  
Figure 15  
Equivalent Circuitry for Analog Inputs  
Data Sheet  
84  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
Sample time and conversion time of the XC226x’s A/D converters are programmable.  
The timing above can be calculated using Table 19.  
The limit values for fADCI must not be exceeded when selecting the prescaler value.  
Table 19  
A/D Converter Computation Table  
GLOBCTR.5-0  
(DIVA)  
A/D Converter  
Analog Clock fADCI  
INPCRx.7-0  
(STC)  
Sample Time  
tS  
000000B  
000001B  
000010B  
:
fSYS  
00H  
01H  
02H  
:
tADCI × 2  
f
f
f
f
f
SYS / 2  
tADCI × 3  
SYS / 3  
tADCI × 4  
SYS / (DIVA+1)  
SYS / 63  
tADCI × (STC+2)  
tADCI × 256  
tADCI × 257  
111110B  
111111B  
FEH  
FFH  
SYS / 64  
Converter Timing Example A:  
Assumptions:  
Analog clock  
Sample time  
fSYS = 80 MHz (i.e. tSYS = 12.5 ns), DIVA = 03H, STC = 00H  
fADCI = fSYS / 4 = 20 MHz, i.e. tADCI = 50 ns  
tS  
= tADCI × 2 = 100 ns  
Conversion 10-bit:  
tC10 = 13 × tADCI + 2 × tSYS = 13 × 50 ns + 2 × 12.5 ns = 0.675 µs  
Conversion 8-bit:  
tC8  
= 11 × tADCI + 2 × tSYS = 11 × 50 ns + 2 × 12.5 ns = 0.575 µs  
Converter Timing Example B:  
Assumptions:  
Analog clock  
Sample time  
fSYS = 40 MHz (i.e. tSYS = 25 ns), DIVA = 02H, STC = 03H  
fADCI = fSYS / 3 = 13.3 MHz, i.e. tADCI = 75 ns  
= tADCI × 5 = 375 ns  
tS  
Conversion 10-bit:  
tC10 = 16 × tADCI + 2 × tSYS = 16 × 75 ns + 2 × 25 ns = 1.25 µs  
Conversion 8-bit:  
tC8  
= 14 × tADCI + 2 × tSYS = 14 × 75 ns + 2 × 25 ns = 1.10 µs  
Data Sheet  
85  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
4.4  
System Parameters  
The following parameters specify several aspects which are important when integrating  
the XC226x into an application system.  
Note: These parameters are not subject to production test but verified by design and/or  
characterization.  
Table 20  
Various System Parameters  
Parameter  
Symbol  
Min.  
Values  
Typ.  
Unit Note /  
Test Condition  
Max.  
Supply watchdog (SWD) VSWD  
VLV -  
0.150  
VLV  
VLV +  
0.100  
V
V
V
VLV = selected  
voltage in upper  
voltage area  
supervision level  
CC  
(see Table 21)  
VLV -  
0.125  
VLV  
VLV  
VLV +  
0.050  
VLV = selected  
voltage in lower  
voltage area  
Core voltage (PVC)  
supervision level  
(see Table 22)  
V
PVC CC VLV -  
VLV +  
0.030  
VLV = selected  
voltage  
0.070  
Current control limit  
I
CC CC 13  
90  
30  
mA Power domain  
DMP_M  
150  
600  
5.2  
320  
3.5  
mA Power domain  
DMP_1  
Wakeup clock source  
frequency  
f
f
t
t
WU CC 400  
INT CC 4.8  
SSO CC 200  
SSB CC 2.5  
500  
5.0  
260  
2.8  
kHz FREQSEL  
= 00B  
Internal clock source  
frequency  
MHz  
Startup time from  
stopover mode  
µs  
User instruction  
from PSRAM  
Startup time from  
standby mode  
ms  
User instruction  
from Flash  
Data Sheet  
86  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
Table 21  
Code  
0000B  
0001B  
0010B  
0011B  
0100B  
0101B  
0110B  
0111B  
1000B  
1001B  
1010B  
1011B  
1100B  
1101B  
1110B  
1111B  
Coding of Bitfields LEVxV in Register SWDCON0  
Default Voltage Level  
Notes1)  
2.9 V  
3.0 V  
3.1 V  
3.2 V  
3.3 V  
3.4 V  
3.6 V  
4.0 V  
4.2 V  
4.5 V  
4.6 V  
4.7 V  
4.8 V  
4.9 V  
5.0 V  
5.5 V  
LEV1V: reset request  
LEV2V: no request  
1) The indicated default levels are selected automatically after a power reset.  
Table 22  
Code  
000B  
Coding of Bitfields LEVxV in Registers PVCyCONz  
Default Voltage Level  
Notes1)  
0.9 V  
1.0 V  
1.1 V  
1.2 V  
1.3 V  
1.4 V  
1.5 V  
1.6 V  
001B  
010B  
011B  
100B  
LEV1V: reset request  
101B  
LEV2V: interrupt request  
110B  
111B  
1) The indicated default levels are selected automatically after a power reset.  
Data Sheet  
87  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
4.5  
Flash Memory Parameters  
The XC226x is delivered with all Flash sectors erased and with no protection installed.  
The data retention time of the XC226x’s Flash memory (i.e. the time after which stored  
data can still be retrieved) depends on the number of times the Flash memory has been  
erased and programmed.  
Note: These parameters are not subject to production test but verified by design and/or  
characterization.  
Table 23  
Flash Characteristics  
(Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
Unit  
Note / Test  
Condition  
Min.  
Typ.  
Max.  
Programming time per  
128-byte page  
tPR  
31)  
3.5  
ms  
ms  
ms  
ms  
Erase time per  
sector/page  
tER  
41)  
5
Data retention time  
tRET  
20  
years 1,000 erase /  
program  
cycles  
Flash erase endurance for NER  
15,000 –  
cycles Data retention  
time 5 years  
user sectors2)  
Flash erase endurance for NSEC  
security pages  
10  
64  
cycles Data retention  
time 20 years  
3)  
Drain disturb limit  
NDD  
cycles  
1) Programming and erase times depend on the internal Flash clock source. The control state machine needs a  
few system clock cycles. This requirement is only relevant for extremely low system frequencies.  
In the XC226x erased areas must be programmed completely (with actual code/data or dummy values) before  
that area is read.  
2) A maximum of 64 Flash sectors can be cycled 15,000 times. For all other sectors the limit is 1,000 cycles.  
3) This parameter limits the number of subsequent programming operations within a physical sector. The drain  
disturb limit is applicable if wordline erase is used repeatedly. For normal sector erase/program cycles this  
limit will not be violated.  
Access to the XC226x Flash modules is controlled by the IMB. Built-in prefetch  
mechanisms optimize the performance for sequential access.  
Flash access waitstates only affect non-sequential access. Due to prefetch  
mechanisms, the performance for sequential access (depending on the software  
structure) is only partially influenced by waitstates.  
Data Sheet  
88  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
Table 24  
Flash Access Waitstates  
Required Waitstates  
System Frequency Range  
4 WS (WSFLASH = 100B)  
3 WS (WSFLASH = 011B)  
2 WS (WSFLASH = 010B)  
1 WS (WSFLASH = 001B)  
0 WS (WSFLASH = 000B)  
fSYS fSYSmax  
fSYS 17 MHz  
fSYS 13 MHz  
fSYS 8 MHz  
Forbidden! Must not be selected!  
Note: The maximum achievable system frequency is limited by the properties of the  
respective derivative.  
Data Sheet  
89  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
4.6  
AC Parameters  
These parameters describe the dynamic behavior of the XC226x.  
4.6.1  
Testing Waveforms  
These values are used for characterization and production testing (except pin XTAL1).  
Output delay  
Hold time  
Output delay  
Hold time  
0.8 VDDP  
0.7 VDDP  
Input Signal  
(driven by tester)  
0.3 VDDP  
0.2 VDDP  
Output Signal  
(measured)  
Output timings refer to the rising edge of CLKOUT.  
Input timings are calculated from the time, when the input signal reaches  
VIH or VIL, respectively.  
MCD05556C  
Figure 16  
Input Output Waveforms  
V
Load + 0.1 V  
V
V
OH - 0.1 V  
OL + 0.1 V  
Timing  
Reference  
Points  
V
Load - 0.1 V  
For timing purposes a port pin is no longer floating when a 100 mV  
change from load voltage occurs, but begins to float when a 100 mV  
change from the loaded VOH /VOL level occurs (IOH / IOL = 20 mA).  
MCA05565  
Figure 17  
Floating Waveforms  
Data Sheet  
90  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
4.6.2  
Definition of Internal Timing  
The internal operation of the XC226x is controlled by the internal system clock fSYS  
.
Because the system clock signal fSYS can be generated from a number of internal and  
external sources using different mechanisms, the duration of the system clock periods  
(TCSs) and their variation (as well as the derived external timing) depend on the  
mechanism used to generate fSYS. This must be considered when calculating the timing  
for the XC226x.  
Phase Locked Loop Operation (1:N)  
fIN  
fSYS  
TCS  
Direct Clock Drive (1:1)  
fIN  
fSYS  
TCS  
Prescaler Operation (N:1)  
fIN  
fSYS  
TCS  
MC_XC2X_CLOCKGEN  
Figure 18  
Generation Mechanisms for the System Clock  
Note: The example of PLL operation shown in Figure 18 uses a PLL factor of 1:4; the  
example of prescaler operation uses a divider factor of 2:1.  
The specification of the external timing (AC Characteristics) depends on the period of the  
system clock (TCS).  
Data Sheet  
91  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
Direct Drive  
When direct drive operation is selected (SYSCON0.CLKSEL = 11B), the system clock is  
derived directly from the input clock signal CLKIN1:  
f
SYS = fIN.  
The frequency of fSYS is the same as the frequency of fIN. In this case the high and low  
times of fSYS are determined by the duty cycle of the input clock fIN.  
Selecting Bypass Operation from the XTAL11) input and using a divider factor of 1 results  
in a similar configuration.  
Prescaler Operation  
When prescaler operation is selected (SYSCON0.CLKSEL = 10B, PLLCON0.VCOBY =  
1B), the system clock is derived either from the crystal oscillator (input clock signal  
XTAL1) or from the internal clock source through the output prescaler K1 (= K1DIV+1):  
f
SYS = fOSC / K1.  
If a divider factor of 1 is selected, the frequency of fSYS equals the frequency of fOSC. In  
this case the high and low times of fSYS are determined by the duty cycle of the input  
clock fOSC (external or internal).  
The lowest system clock frequency results from selecting the maximum value for the  
divider factor K1:  
f
SYS = fOSC / 1024.  
Phase Locked Loop (PLL)  
When PLL operation is selected (SYSCON0.CLKSEL = 10B, PLLCON0.VCOBY = 0B),  
the on-chip phase locked loop is enabled and provides the system clock. The PLL  
multiplies the input frequency by the factor F (fSYS = fIN × F).  
F is calculated from the input divider P (= PDIV+1), the multiplication factor N (=  
NDIV+1), and the output divider K2 (= K2DIV+1):  
(F = N / (P × K2)).  
The input clock can be derived either from an external source at XTAL1 or from the on-  
chip clock source.  
The PLL circuit synchronizes the system clock to the input clock. This synchronization is  
performed smoothly so that the system clock frequency does not change abruptly.  
Adjustment to the input clock continuously changes the frequency of fSYS so that it is  
locked to fIN. The slight variation causes a jitter of fSYS which in turn affects the duration  
of individual TCSs.  
1) Voltages on XTAL1 must comply to the core supply voltage VDDI1  
.
Data Sheet  
92  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
The timing in the AC Characteristics refers to TCSs. Timing must be calculated using the  
minimum TCS possible under the given circumstances.  
The actual minimum value for TCS depends on the jitter of the PLL. Because the PLL is  
constantly adjusting its output frequency to correspond to the input frequency (from  
crystal or oscillator), the accumulated jitter is limited. This means that the relative  
deviation for periods of more than one TCS is lower than for a single TCS (see formulas  
and Figure 19).  
This is especially important for bus cycles using waitstates and for the operation of  
timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train  
generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter  
is negligible.  
The value of the accumulated PLL jitter depends on the number of consecutive VCO  
output cycles within the respective timeframe. The VCO output clock is divided by the  
output prescaler K2 to generate the system clock signal fSYS. The number of VCO cycles  
is K2 × T, where T is the number of consecutive fSYS cycles (TCS).  
The maximum accumulated jitter (long-term jitter) DTmax is defined by:  
DTmax [ns] = ±(220 / (K2 × fSYS) + 4.3)  
This maximum value is applicable, if either the number of clock cycles T > (fSYS / 1.2) or  
the prescaler value K2 > 17.  
In all other cases for a timeframe of T × TCS the accumulated jitter DT is determined by:  
DT [ns] = DTmax × [(1 - 0.058 × K2) × (T - 1) / (0.83 × fSYS - 1) + 0.058 × K2]  
f
SYS in [MHz] in all formulas.  
Example, for a period of 3 TCSs @ 33 MHz and K2 = 4:  
Dmax = ±(220 / (4 × 33) + 4.3) = 5.97 ns (Not applicable directly in this case!)  
D3 = 5.97 × [(1 - 0.058 × 4) × (3 - 1) / (0.83 × 33 - 1) + 0.058 × 4]  
= 5.97 × [0.768 × 2 / 26.39 + 0.232]  
= 1.7 ns  
Example, for a period of 3 TCSs @ 33 MHz and K2 = 2:  
Dmax = ±(220 / (2 × 33) + 4.3) = 7.63 ns (Not applicable directly in this case!)  
D3 = 7.63 × [(1 - 0.058 × 2) × (3 - 1) / (0.83 × 33 - 1) + 0.058 × 2]  
= 7.63 × [0.884 × 2 / 26.39 + 0.116]  
= 1.4 ns  
Data Sheet  
93  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
Acc. jitter DT  
ns  
±9  
fSYS = 33 MHz fSYS = 66 MHz  
fVCO = 66 MHz  
fVCO = 132MHz  
±8  
±7  
±6  
±5  
±4  
±3  
±2  
±1  
Cycles  
100  
T
0
1
20  
40  
60  
80  
MC_XC 2X_JITTER  
Figure 19  
Approximated Accumulated PLL Jitter  
Note: The specified PLL jitter values are valid if the capacitive load per pin does not  
exceed CL = 20 pF (see Table 12).  
The maximum peak-to-peak noise on the pad supply voltage (measured between  
VDDPB pin 100/144 and VSS pin 1) is limited to a peak-to-peak voltage of VPP  
=
50 mV. This can be achieved by appropriate blocking of the supply voltage as  
close as possible to the supply pins and using PCB supply and ground planes.  
Different frequency bands can be selected for the VCO so that the operation of the PLL  
can be adjusted to a wide range of input and output frequencies:  
Table 25  
PLLCON0.VCOSEL VCO Frequency Range  
VCO Bands for PLL Operation1)  
Base Frequency Range  
10 … 40 MHz  
00  
01  
1X  
50 … 110 MHz  
100 … 160 MHz  
Reserved  
20 … 80 MHz  
1) Not subject to production test - verified by design/characterization.  
Data Sheet  
94  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
Wakeup Clock  
When wakeup operation is selected (SYSCON0.CLKSEL = 00B), the system clock is  
derived from the low-frequency wakeup clock source:  
f
SYS = fWU.  
In this mode, a basic functionality can be maintained without requiring an external clock  
source and while minimizing the power consumption.  
Selecting and Changing the Operating Frequency  
When selecting a clock source and the clock generation method, the required  
parameters must be carefully written to the respective bitfields, to avoid unintended  
intermediate states.  
Many applications change the frequency of the system clock (fSYS) during operation in  
order to optimize system performance and power consumption. Changing the operating  
frequency also changes the switching currents, which influences the power supply.  
To ensure proper operation of the on-chip EVRs while they generate the core voltage,  
the operating frequency shall only be changed in certain steps. This prevents overshoots  
and undershoots of the supply voltage.  
To avoid the indicated problems, recommended sequences are provided which ensure  
the intended operation of the clock system interacting with the power system.  
Please refer to the Programmer’s Guide.  
Data Sheet  
95  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
4.6.3  
External Clock Input Parameters  
These parameters specify the external clock generation for the XC226x. The clock can  
be generated in two ways:  
By connecting a crystal or ceramic resonator to pins XTAL1/XTAL2.  
By supplying an external clock signal. This clock signal can be supplied either to  
pin XTAL1 (core voltage domain) or to pin CLKIN1 (IO voltage domain).  
If connected to CLKIN1, the input signal must reach the defined input levels VIL and VIH.  
In connected to XTAL1, a minimum amplitude VAX1 (peak-to-peak voltage) is sufficient  
for the operation of the on-chip oscillator.  
Note: The given clock timing parameters (t1 t4) are only valid for an external clock  
input signal.  
Table 26  
External Clock Input Characteristics  
(Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
Unit Note / Test  
Condition  
Min.  
Input voltage range limits VIX1 SR -1.7 +  
Typ.  
Max.  
1)  
1.7  
V
for signal on XTAL1  
VDDI  
Input voltage (amplitude)  
on XTAL1  
V
AX1 SR 0.3 ×  
V
Peak-to-peak  
voltage2)  
VDDI  
XTAL1 input current  
Oscillator frequency  
IIL CC  
±20  
40  
µA  
0 V < VIN < VDDI  
f
OSC CC 4  
MHz Clock signal  
4
16  
MHz Crystal or  
Resonator  
High time  
Low time  
Rise time  
Fall time  
t1 SR  
t2 SR  
t3 SR  
t4 SR  
6
6
8
8
8
8
ns  
ns  
ns  
ns  
1) Overload conditions must not occur on pin XTAL1.  
2) The amplitude voltage VAX1 refers to the offset voltage VOFF. This offset voltage must be stable during the  
operation and the resulting voltage peaks must remain within the limits defined by VIX1.  
Data Sheet  
96  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
t3  
t1  
VOFF  
VAX1  
t2  
t4  
tOSC = 1/fOSC  
MC_EXTCLOCK  
Figure 20  
External Clock Drive XTAL1  
Note: For crystal/resonator operation, it is strongly recommended to measure the  
oscillation allowance (negative resistance) in the final target system (layout) to  
determine the optimum parameters for oscillator operation.  
Please refer to the limits specified by the crystal/resonator supplier.  
Data Sheet  
97  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
4.6.4  
External Bus Timing  
The following parameters specify the behavior of the XC226x bus interface.  
Table 27  
CLKOUT Reference Signal  
Symbol  
Parameter  
Limits  
Max.  
Unit Note / Test  
Condition  
Min.  
CLKOUT cycle time  
CLKOUT high time  
CLKOUT low time  
CLKOUT rise time  
CLKOUT fall time  
t5  
t6  
t7  
t8  
t9  
CC  
40/25/12.51)  
ns  
ns  
ns  
ns  
ns  
CC 3  
CC 3  
CC –  
CC –  
3
3
1) The CLKOUT cycle time is influenced by the PLL jitter (given values apply to fSYS = 25/40/80 MHz).  
For longer periods the relative deviation decreases (see PLL deviation formula).  
t9  
t8  
t5  
t6  
t7  
CLKOUT  
MC_X_EBCCLKOUT  
Figure 21  
CLKOUT Signal Timing  
Note: The term CLKOUT refers to the reference clock output signal which is generated  
by selecting fSYS as the source signal for the clock output signal EXTCLK on pin  
P2.8 and by enabling the high-speed clock driver on this pin.  
Data Sheet  
98  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
Variable Memory Cycles  
External bus cycles of the XC226x are executed in five consecutive cycle phases (AB,  
C, D, E, F). The duration of each cycle phase is programmable (via the TCONCSx  
registers) to adapt the external bus cycles to the respective external module (memory,  
peripheral, etc.).  
The duration of the access phase can optionally be controlled by the external module  
using the READY handshake input.  
This table provides a summary of the phases and the ranges for their length.  
Table 28  
Programmable Bus Cycle Phases (see timing diagrams)  
Parameter Valid Values Unit  
Bus Cycle Phase  
Address setup phase, the standard duration of this tpAB  
phase (1 … 2 TCS) can be extended by 0 … 3 TCS  
if the address window is changed  
1 … 2 (5)  
TCS  
Command delay phase  
tpC  
tpD  
tpE  
tpF  
0 … 3  
0 … 1  
1 … 32  
0 … 3  
TCS  
TCS  
TCS  
TCS  
Write Data setup/MUX Tristate phase  
Access phase  
Address/Write Data hold phase  
Note: The bandwidth of a parameter (from minimum to maximum value) covers the  
whole operating range (temperature, voltage) as well as process variations. Within  
a given device, however, this bandwidth is smaller than the specified range. This  
is also due to interdependencies between certain parameters. Some of these  
interdependencies are described in additional notes (see standard timing).  
Data Sheet  
99  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
Table 29  
External Bus Cycle Timing for Upper Voltage Range  
(Operating Conditions apply)  
Parameter  
Symbol  
Limits  
Typ.  
Unit Note  
Min.  
Max.  
Output valid delay for:  
RD, WR(L/H)  
t10 CC  
t11 CC  
t12 CC  
t13 CC  
t14 CC  
t15 CC  
t16 CC  
13  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output valid delay for:  
BHE, ALE  
13  
14  
14  
13  
14  
14  
Output valid delay for:  
A23 … A16, A15 … A0 (on P0/P1)  
Output valid delay for:  
A15 … A0 (on P2/P10)  
Output valid delay for:  
CS  
Output valid delay for:  
D15 … D0 (write data, MUX-mode)  
Output valid delay for:  
D15 … D0 (write data, DEMUX-  
mode)  
Output hold time for:  
RD, WR(L/H)  
t20 CC  
t21 CC  
t23 CC  
t24 CC  
t25 CC  
t30 SR  
t31 SR  
0
8
8
8
8
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output hold time for:  
BHE, ALE  
0
Output hold time for:  
A23 … A16, A15 … A0 (on P2/P10)  
0
Output hold time for:  
CS  
0
Output hold time for:  
D15 … D0 (write data)  
0
Input setup time for:  
READY, D15 … D0 (read data)  
18  
-4  
Input hold time for:  
READY, D15 … D0 (read data)1)  
1) Read data are latched with the same internal clock edge that triggers the address change and the rising edge  
of RD. Address changes before the end of RD have no impact on (demultiplexed) read cycles. Read data can  
change after the rising edge of RD.  
Data Sheet  
100  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
Table 30  
External Bus Cycle Timing for Lower Voltage Range  
(Operating Conditions apply)  
Parameter  
Symbol  
Limits  
Typ.  
Unit Note  
Min.  
Max.  
Output valid delay for:  
RD, WR(L/H)  
t10 CC  
t11 CC  
t12 CC  
t13 CC  
t14 CC  
t15 CC  
t16 CC  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output valid delay for:  
BHE, ALE  
20  
22  
22  
20  
21  
21  
Output valid delay for:  
A23 … A16, A15 … A0 (on P0/P1)  
Output valid delay for:  
A15 … A0 (on P2/P10)  
Output valid delay for:  
CS  
Output valid delay for:  
D15 … D0 (write data, MUX-mode)  
Output valid delay for:  
D15 … D0 (write data, DEMUX-  
mode)  
Output hold time for:  
RD, WR(L/H)  
t20 CC  
t21 CC  
t23 CC  
t24 CC  
t25 CC  
t30 SR  
t31 SR  
0
10  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output hold time for:  
BHE, ALE  
0
Output hold time for:  
A23 … A16, A15 … A0 (on P2/P10)  
0
Output hold time for:  
CS  
0
Output hold time for:  
D15 … D0 (write data)  
0
Input setup time for:  
READY, D15 … D0 (read data)  
29  
-6  
Input hold time for:  
READY, D15 … D0 (read data)1)  
1) Read data are latched with the same internal clock edge that triggers the address change and the rising edge  
of RD. Address changes before the end of RD have no impact on (demultiplexed) read cycles. Read data can  
change after the rising edge of RD.  
Data Sheet  
101  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
tpAB  
tpC  
tpD  
tpE  
tpF  
CLKOUT  
ALE  
t21  
t11  
t11/t14  
t24  
A23-A16,  
BHE, CSx  
High Address  
t20  
t10  
RD  
WR(L/H)  
t31  
t13  
t23  
t30  
AD15-AD0  
(read)  
Low Address  
Low Address  
Data In  
t13  
t15  
t25  
AD15-AD0  
(write)  
Data Out  
MC_X_EBCMUX  
Figure 22  
Multiplexed Bus Cycle  
Data Sheet  
102  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
tpAB  
tpC  
tpD  
tpE  
tpF  
CLKOUT  
ALE  
t21  
t11  
t11/t14  
t24  
A23-A0,  
BHE, CSx  
Address  
t20  
t10  
RD  
WR(L/H)  
t31  
t30  
D15-D0  
(read)  
Data In  
t16  
t25  
D15-D0  
(write)  
Data Out  
MC_X_EBCDEMUX  
Figure 23  
Demultiplexed Bus Cycle  
Data Sheet  
103  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
Bus Cycle Control with the READY Input  
The duration of an external bus cycle can be controlled by the external circuit using the  
READY input signal. The polarity of this input signal can be selected.  
Synchronous READY permits the shortest possible bus cycle but requires the input  
signal to be synchronous to the reference signal CLKOUT.  
An asynchronous READY signal puts no timing constraints on the input signal but incurs  
a minimum of one waitstate due to the additional synchronization stage. The minimum  
duration of an asynchronous READY signal for safe synchronization is one CLKOUT  
period plus the input setup time.  
An active READY signal can be deactivated in response to the trailing (rising) edge of  
the corresponding command (RD or WR).  
If the next bus cycle is controlled by READY, an active READY signal must be disabled  
before the first valid sample point in the next bus cycle. This sample point depends on  
the programmed phases of the next cycle.  
Data Sheet  
104  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
tpD  
tpE  
tpRDY  
tpF  
CLKOUT  
RD, WR  
t10  
t20  
t31  
t30  
D15-D0  
(read)  
Data In  
t25  
D15-D0  
(write)  
Data Out  
t31  
t30  
t31  
t30  
READY  
Synchronous  
Not Rdy  
READY  
t31  
t30  
t31  
t30  
READY  
Asynchron.  
Not Rdy  
READY  
MC_X_EBCREADY  
Figure 24  
READY Timing  
Note: If the READY input is sampled inactive at the indicated sampling point (“Not Rdy”)  
a READY-controlled waitstate is inserted (tpRDY),  
sampling the READY input active at the indicated sampling point (“Ready”)  
terminates the currently running bus cycle.  
Note the different sampling points for synchronous and asynchronous READY.  
This example uses one mandatory waitstate (see tpE) before the READY input  
value is used.  
Data Sheet  
105  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
4.6.5  
Synchronous Serial Interface Timing  
The following parameters are applicable for a USIC channel operated in SSC mode.  
Note: These parameters are not subject to production test but verified by design and/or  
characterization.  
Table 31  
SSC Master/Slave Mode Timing for Upper Voltage Range  
(Operating Conditions apply), CL = 50 pF  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Co  
Min.  
Max.  
ndition  
Master Mode Timing  
1)  
3)  
2)  
Slave select output SELO active t1 CC  
to first SCLKOUT transmit edge  
0
ns  
Slaveselect output SELO inactive t2 CC  
0.5 ×  
ns  
after last SCLKOUT receive edge  
tBIT  
Transmit data output valid time  
t3 CC  
-6  
13  
ns  
ns  
Receive data input setup time to t4 SR  
31  
SCLKOUT receive edge  
Data input DX0 hold time from  
SCLKOUT receive edge  
t5 SR  
-7  
ns  
Slave Mode Timing  
4)  
Select input DX2 setup to first  
clock input DX1 transmit edge  
t10 SR  
t11 SR  
t12 SR  
t13 SR  
t14 CC  
7
5
7
5
8
ns  
4)  
Select input DX2 hold after last  
clock input DX1 receive edge  
ns  
4)  
Data input DX0 setup time to  
clock input DX1 receive edge  
ns  
4)  
Data input DX0 hold time from  
clock input DX1 receive edge  
ns  
4)  
Data output DOUT valid time  
29  
ns  
1) The maximum value further depends on the settings for the slave select output leading delay.  
2) tSYS = 1/fSYS (= 12.5 ns @ 80 MHz)  
3) The maximum value depends on the settings for the slave select output trailing delay and for the shift clock  
output delay.  
4) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and  
receive data input (bits DXnCR.DSEN = 0).  
Data Sheet  
106  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
Table 32  
SSC Master/Slave Mode Timing for Lower Voltage Range  
(Operating Conditions apply), CL = 50 pF  
Parameter  
Symbol Values  
Unit Note /  
Test Co  
Min.  
Typ.  
Max.  
ndition  
Master Mode Timing  
1)  
3)  
2)  
Slave select output SELO active t1 CC  
to first SCLKOUT transmit edge  
0
ns  
2)  
Slaveselect output SELO inactive t2 CC  
0.5 ×  
ns  
after last SCLKOUT receive edge  
tBIT  
Transmit data output valid time  
t3 CC  
-13  
48  
16  
ns  
ns  
Receive data input setup time to t4 SR  
SCLKOUT receive edge  
Data input DX0 hold time from  
SCLKOUT receive edge  
t5 SR  
-11  
ns  
Slave Mode Timing  
4)  
Select input DX2 setup to first  
clock input DX1 transmit edge  
t10 SR  
t11 SR  
t12 SR  
t13 SR  
t14 CC  
12  
8
ns  
4)  
Select input DX2 hold after last  
clock input DX1 receive edge  
ns  
4)  
Data input DX0 setup time to  
clock input DX1 receive edge  
12  
8
ns  
4)  
Data input DX0 hold time from  
clock input DX1 receive edge  
ns  
4)  
Data output DOUT valid time  
11  
44  
ns  
1) The maximum value further depends on the settings for the slave select output leading delay.  
2) tSYS = 1/fSYS (= 12.5 ns @ 80 MHz)  
3) The maximum value depends on the settings for the slave select output trailing delay and for the shift clock  
output delay.  
4) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and  
receive data input (bits DXnCR.DSEN = 0).  
Data Sheet  
107  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
Master Mode Timing  
t1  
t2  
Select Output  
SELOx  
Inactive  
Inactive  
Active  
Clock Output  
SCLKOUT  
Receive  
Edge  
Last Receive  
Transmit  
Edge  
First Transmit  
Edge  
Edge  
t3  
t3  
Data Output  
DOUT  
t4  
t4  
t5  
t5  
Data Input  
DX0  
Data  
valid  
Data  
valid  
Slave Mode Timing  
t10  
t11  
Select Input  
DX2  
Inactive  
Active  
Inactive  
Clock Input  
DX1  
Receive  
Edge  
Last Receive  
Edge  
First Transmit  
Edge  
Transmit  
Edge  
t12  
t12  
t13  
t13  
Data Input  
DX0  
Data  
valid  
Data  
valid  
t14  
t14  
Data Output  
DOUT  
Transmit Edge: with this clock edge, transmit data is shifted to transmit data output.  
Receive Edge: with this clock edge, receive data at receive data input is latched.  
Drawn for BRGH.SCLKCFG = 00B. Also valid for for SCLKCFG = 01B with inverted SCLKOUT signal.  
USIC_SSC_TMGX.VSD  
Figure 25  
USIC - SSC Master/Slave Mode Timing  
Note: This timing diagram shows a standard configuration where the slave select signal  
is low-active and the serial clock signal is not shifted and not inverted.  
Data Sheet  
108  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
4.6.6  
JTAG Interface Timing  
The following parameters are applicable for communication through the JTAG debug  
interface. The JTAG module is fully compliant with IEEE1149.1-2000.  
Note: These parameters are not subject to production test but verified by design and/or  
characterization.  
Table 33  
JTAG Interface Timing Parameters  
(Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
60  
16  
16  
Typ.  
50  
Max.  
TCK clock period  
TCK high time  
t1 SR  
t2 SR  
t3 SR  
t4 SR  
t5 SR  
t6 SR  
8
8
ns  
ns  
ns  
ns  
ns  
ns  
TCK low time  
TCK clock rise time  
TCK clock fall time  
TDI/TMS setup  
6
to TCK rising edge  
TDI/TMS hold  
t7 SR  
6
ns  
after TCK rising edge  
TDO valid  
t8 CC  
t8 CC  
30  
ns  
ns  
ns  
CL = 50 pF  
CL = 20 pF  
CL = 50 pF  
after TCK falling edge1)  
10  
TDO high imped. to valid t9 CC  
30  
from TCK falling edge1)2)  
TDO valid to high imped. t10 CC  
30  
ns  
CL = 50 pF  
from TCK falling edge1)  
1) The falling edge on TCK is used to generate the TDO timing.  
2) The setup time for TDO is given implicitly by the TCK cycle time.  
Data Sheet  
109  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Electrical Parameters  
t1  
0.9 VDDP  
0.5 VDDP  
0.1 VDDP  
t5  
t4  
t2  
t3  
MC_JTAG_TCK  
Figure 26  
Test Clock Timing (TCK)  
TCK  
t6  
t7  
TMS  
t6  
t7  
TDI  
t9  
t8  
t10  
TDO  
MC_JTAG  
Figure 27  
JTAG Timing  
Data Sheet  
110  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Package and Reliability  
5
Package and Reliability  
In addition to the electrical parameters, the following specifcations ensure proper  
integration of the XC226x into the target system.  
5.1  
Packaging  
These parameters specify the packaging rather than the silicon.  
Table 34  
Package Parameters (PG-LQFP-100-3)  
Parameter  
Symbol  
Limit Values  
Max.  
Unit Notes  
Min.  
Exposed Pad Dimension Ex × Ey –  
6.2 × 6.2  
mm –  
Power Dissipation  
PDISS  
RΘJA  
1.0  
49  
37  
22  
W
Thermal resistance  
Junction-Ambient  
K/W No thermal via1)  
K/W 4-layer, no pad2)  
K/W 4-layer, pad3)  
1) Device mounted on a 2-layer JEDEC board (according to JESD 51-3) or a 4-layer board without thermal vias;  
exposed pad not soldered.  
2) Device mounted on a 4-layer JEDEC board (according to JESD 51-7) with thermal vias; exposed pad not  
soldered.  
3) Device mounted on a 4-layer JEDEC board (according to JESD 51-7) with thermal vias; exposed pad soldered  
to the board.  
Data Sheet  
111  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Package and Reliability  
Package Outlines  
Figure 28  
PG-LQFP-100-3 (Plastic Green Thin Quad Flat Package)  
All dimensions in mm.  
You can find complete information about Infineon packages, packing and marking in our  
Infineon Internet Page “Packages”: http://www.infineon.com/packages  
Data Sheet  
112  
V2.1, 2008-08  
XC2267 / XC2264  
XC2000 Family Derivatives  
Package and Reliability  
5.2  
Thermal Considerations  
When operating the XC226x in a system, the total heat generated in the chip must be  
dissipated to the ambient environment to prevent overheating and the resulting thermal  
damage.  
The maximum heat that can be dissipated depends on the package and its integration  
into the target board. The “Thermal resistance RΘJA” quantifies these parameters. The  
power dissipation must be limited so that the average junction temperature does not  
exceed 150 °C.  
The difference between junction temperature and ambient temperature is determined by  
T = (PINT + PIOSTAT + PIODYN) × RΘJA  
The internal power consumption is defined as  
P
INT = VDDP × IDDP (see Section 4.2.3).  
The static external power consumption caused by the output drivers is defined as  
IOSTAT = Σ((VDDP-VOH) × IOH) + Σ(VOL × IOL)  
P
The dynamic external power consumption caused by the output drivers (PIODYN) depends  
on the capacitive load connected to the respective pins and their switching frequencies.  
If the total power dissipation for a given system configuration exceeds the defined limit,  
countermeasures must be taken to ensure proper system operation:  
Reduce VDDP, if possible in the system  
Reduce the system frequency  
Reduce the number of output pins  
Reduce the load on active output drivers  
Data Sheet  
113  
V2.1, 2008-08  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

XC2264-XXF66L

16/32-Bit Single-Chip Microcontroller with 32-Bit Performance Volume 1 (of 2): Peripheral Units
INFINEON

XC2264M

16/32-Bit Single-Chip Microcontroller with 32-Bit Performance XC2000 Family Derivatives / Base Line
INFINEON

XC2264M-104FxxL

16/32-Bit Single-Chip Microcontroller with 32-Bit Performance
INFINEON

XC2264M-56FxxL

16/32-Bit Single-Chip Microcontroller with 32-Bit Performance
INFINEON

XC2264M-72FxxL

16/32-Bit Single-Chip Microcontroller with 32-Bit Performance
INFINEON

XC2264N

16/32-Bit Single-Chip Microcontroller with 32-Bit Performance
INFINEON

XC2264N-16FxL

16/32-Bit Single-Chip Microcontroller with 32-Bit Performance
INFINEON

XC2264N-24FxL

16/32-Bit Single-Chip Microcontroller with 32-Bit Performance
INFINEON

XC2264N-40FxL

16/32-Bit Single-Chip Microcontroller with 32-Bit Performance
INFINEON

XC2265M

16/32-Bit Single-Chip Microcontroller with 32-Bit Performance XC2000 Family Derivatives / Base Line
INFINEON

XC2265M-104FxxL

16/32-Bit Single-Chip Microcontroller with 32-Bit Performance
INFINEON

XC2265M-56FxxL

16/32-Bit Single-Chip Microcontroller with 32-Bit Performance
INFINEON