XC228X [INFINEON]

16/32-Bit Single-Chip Microcontroller with 32-Bit Performance; 16位/ 32位单芯片微控制器与32位性能
XC228X
型号: XC228X
厂家: Infineon    Infineon
描述:

16/32-Bit Single-Chip Microcontroller with 32-Bit Performance
16位/ 32位单芯片微控制器与32位性能

微控制器
文件: 总110页 (文件大小:2339K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet, V0.91, Feb. 2007  
XC228x  
16/32-Bit Single-Chip Microcontroller with  
32-Bit Performance  
Microcontrollers  
Edition 2007-02  
Published by  
Infineon Technologies AG  
81726 München, Germany  
© Infineon Technologies AG 2007.  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values  
stated herein and/or any information regarding the application of the device, Infineon Technologies hereby  
disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-  
infringement of intellectual property rights of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
Data Sheet, V0.91, Feb. 2007  
XC228x  
16/32-Bit Single-Chip Microcontroller with  
32-Bit Performance  
Microcontrollers  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
XC228x  
Revision History: V0.91, 2007-02  
Previous Version(s):  
V0.9, 2006-11, Preliminary  
Page  
82  
Subjects (major changes since last revision)  
Current value numbers added to diagram  
Wrong decimal point removed from formula  
81  
70  
Description for instruction PWRDN corrected  
Standby RAM added to list  
6
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
mcdocu.comments@infineon.com  
Data Sheet  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Table of Contents  
Table of Contents  
1
Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2
General Device Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2.1  
Pin Configuration and Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Memory Subsystem and Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
External Bus Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Central Processing Unit (CPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Interrupt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
On-Chip Debug Support (OCDS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Capture/Compare Unit (CAPCOM2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Capture/Compare Units CCU6x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
General Purpose Timer (GPT12E) Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Real Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
A/D Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Universal Serial Interface Channel Modules (USIC) . . . . . . . . . . . . . . . . . 60  
MultiCAN Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Parallel Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
3.8  
3.9  
3.10  
3.11  
3.12  
3.13  
3.14  
3.15  
3.16  
3.17  
4
4.1  
4.2  
4.2.1  
4.2.2  
4.2.3  
4.3  
Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
DC Parameters for Upper Voltage Area . . . . . . . . . . . . . . . . . . . . . . . . 77  
DC Parameters for Lower Voltage Area . . . . . . . . . . . . . . . . . . . . . . . . 79  
Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Analog/Digital Converter Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Definition of Internal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
On-chip Flash Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
External Clock Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Testing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
External Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
4.4  
4.4.1  
4.4.2  
4.4.3  
4.4.4  
4.4.5  
5
Package and Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Flash Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
5.1  
5.2  
5.3  
Data Sheet  
3
V0.91, 2007-02  
Draft Version  
Preliminary  
16/32-Bit Single-Chip Microcontroller with 32-Bit  
Performance  
XC228x  
XC2000 Family  
1
Summary of Features  
For a quick overview or reference, the XC228x’s properties are listed here in a  
condensed way.  
High Performance 16-bit CPU with 5-Stage Pipeline  
– 15 ns Instruction Cycle Time at 66 MHz CPU Clock (Single-Cycle Execution)  
– 1-Cycle 32-bit Addition and Subtraction with 40-bit Result  
– 1-Cycle Multiplication (16 × 16 bit)  
– 1-Cycle Multiply-and-Accumulate (MAC) Instructions  
– Background Division (32 / 16 bit) in 21 Cycles  
– Enhanced Boolean Bit Manipulation Facilities  
– Zero-Cycle Jump Execution  
– Additional Instructions to Support HLL and Operating Systems  
– Register-Based Design with Multiple Variable Register Banks  
– Fast Context Switching Support with Two Additional Local Register Banks  
– 16 Mbytes Total Linear Address Space for Code and Data  
– 1024 Bytes On-Chip Special Function Register Area (C166 Family Compatible)  
16-Priority-Level Interrupt System with up to 87 Sources, Selectable External Inputs  
for Interrupt Generation and Wake-Up, Sample-Rate down to 15 ns  
8-Channel Interrupt-Driven Single-Cycle Data Transfer Facilities via  
Peripheral Event Controller (PEC), 24-Bit Pointers Cover Total Address Space  
Clock Generation from Internal or External Clock Sources,  
via on-chip PLL or via Prescaler  
On-Chip Memory Modules  
– 1 Kbyte On-Chip Stand-By RAM (SBRAM)  
– 2 Kbytes On-Chip Dual-Port RAM (DPRAM)  
– 16 Kbytes On-Chip Data SRAM (DSRAM)  
– Upt to 64 Kbytes On-Chip Program/Data SRAM (PSRAM)  
– Up to 768 Kbytes On-Chip Program Memory (Flash Memory)  
On-Chip Peripheral Modules  
– Two Synchronizable A/D Converters with a total of 24 Channels, 10-bit Resolution,  
Conversion Time down to 1.2 µs, Optional Data Preprocessing (Data Reduction,  
Range Check)  
– 16-Channel General Purpose Capture/Compare Unit (CAPCOM2)  
– Up to four Capture/Compare Units for flexible PWM Signal Generation (CCU6x)  
– Multi-Functional General Purpose Timer Unit with 5 Timers  
– Six Serial Interface Channels to be used as UART, LIN, High-Speed Synchronous  
Channel (SPI/QSPI), IIC Bus Interface (10-bit addressing, 400 kbit/s), IIS Interface  
Data Sheet  
4
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Summary of Features  
– On-Chip MultiCAN Interface (Rev. 2.0B active) with 128 Message Objects  
(Full CAN/Basic CAN) on up to 5 CAN Nodes and Gateway Functionality  
– On-Chip Real Time Clock  
Up to 12 Mbytes External Address Space for Code and Data  
– Programmable External Bus Characteristics for Different Address Ranges  
– Multiplexed or Demultiplexed External Address/Data Buses  
– Selectable Address Bus Width  
– 16-Bit or 8-Bit Data Bus Width  
– Five Programmable Chip-Select Signals  
– Hold- and Hold-Acknowledge Bus Arbitration Support  
Single Power Supply from 3.0 V to 5.5 V  
Power Reduction Modes with Flexible Power Management  
Programmable Watchdog Timer and Oscillator Watchdog  
Up to 118 General Purpose I/O Lines  
On-Chip Bootstrap Loader  
Supported by a Large Range of Development Tools like C-Compilers, Macro-  
Assembler Packages, Emulators, Evaluation Boards, HLL-Debuggers, Simulators,  
Logic Analyzer Disassemblers, Programming Boards  
On-Chip Debug Support via JTAG Interface  
144-Pin Green LQFP Package, 0.5 mm (19.7 mil) pitch  
Ordering Information  
The ordering code for Infineon microcontrollers provides an exact reference to the  
required product. This ordering code identifies:  
the derivative itself, i.e. its function set, the temperature range, and the supply voltage  
the package and the type of delivery.  
For the available ordering codes for the XC228x please refer to your responsible sales  
representative or your local distributor.  
This document describes several derivatives of the XC228x group. Table 1 enumerates  
these derivatives and summarizes the differences. As this document refers to all of these  
derivatives, some descriptions may not apply to a specific product.  
For simplicity all versions are referred to by the term XC228x throughout this document.  
Data Sheet  
5
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Summary of Features  
Table 1  
XC228x Derivative Synopsis  
Derivative1)  
Temp.  
Range  
Program  
Memory  
PSRAM2) CCU6 ADC3) Interfaces  
Mod. Chan.  
SAK-XC2287-  
96F66L  
-40 °C to 768Kbytes 64 Kbytes 0, 1,  
125 °C Flash 2, 3  
-40 °C to 576Kbytes 32 Kbytes 0, 1,  
125 °C Flash 2, 3  
-40 °C to 448Kbytes 16 Kbytes 0, 1,  
125 °C Flash 2, 3  
-40 °C to 768Kbytes 64 Kbytes 0, 1  
125 °C Flash  
-40 °C to 576Kbytes 32 Kbytes 0, 1  
125 °C Flash  
-40 °C to 448Kbytes 16 Kbytes 0, 1  
125 °C Flash  
-40 °C to 768Kbytes 64 Kbytes 0, 1  
125 °C Flash  
-40 °C to 576Kbytes 32 Kbytes 0, 1  
125 °C Flash  
-40 °C to 448Kbytes 16 Kbytes 0, 1  
125 °C Flash  
16 + 8 5 CAN Nodes,  
6 Serial Chan.  
SAK-XC2287-  
72F66L  
16 + 8 5 CAN Nodes,  
6 Serial Chan.  
SAK-XC2287-  
56F66L  
16 + 8 5 CAN Nodes,  
6 Serial Chan.  
SAK-XC2286-  
96F66L  
16 + 8 3 CAN Nodes,  
6 Serial Chan.  
SAK-XC2286-  
72F66L  
16 + 8 3 CAN Nodes,  
6 Serial Chan.  
SAK-XC2286-  
56F66L  
16 + 8 3 CAN Nodes,  
6 Serial Chan.  
SAK-XC2285-  
96F66L  
12  
12  
12  
2 CAN Nodes,  
4 Serial Chan.  
SAK-XC2285-  
72F66L  
2 CAN Nodes,  
4 Serial Chan.  
SAK-XC2285-  
56F66L  
2 CAN Nodes,  
4 Serial Chan.  
1) This Data Sheet is valid for devices starting with and including design step AA.  
2) All derivatives additionally provide 1 Kbyte SBRAM, 2 Kbytes DPRAM, and 16 Kbytes DSRAM.  
3) Analog input channels are listed for each Analog/Digital Converter module separately.  
Data Sheet  
6
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
General Device Information  
2
General Device Information  
The XC228x derivatives are high-performance members of the Infineon XC2000 Family  
of full featured single-chip CMOS microcontrollers. These devices extend the  
functionality and performance of the C166 Family in terms of instructions (MAC unit),  
peripherals, and speed. They combine high CPU performance (up to 66 million  
instructions per second) with high peripheral functionality and enhanced IO-capabilities.  
Optimized peripherals can be adapted to the application’s requirements in a flexible way.  
These derivatives also provide clock generation via PLL and internal or external clock  
sources, and various on-chip memory modules such as program Flash, program RAM,  
and data RAM.  
VAREFVAGND TRef VDDI VDDP VSS  
(2) (1)  
(4) (9) (4)  
Port 0  
8 bit  
XTAL1  
XTAL2  
ESR0  
ESR1  
ESR2  
Port 1  
8 bit  
Port 2  
13 bit  
Port 11  
6 bit  
Port 3  
8 bit  
XC228x  
Port 10  
16 bit  
Port 4  
8 bit  
Port 9  
8 bit  
Port 6  
4 bit  
Port 15  
8 bit  
Port 7  
5 bit  
Port 5  
16 bit  
Port 8  
7 bit  
PORST TRST JTAG Debug  
4 bit 2 bit  
TESTM  
via Port Pins  
MC_XC2X_LOGSYMB3  
Figure 1  
Logic Symbol  
Data Sheet  
7
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
General Device Information  
2.1  
Pin Configuration and Definition  
The pins of the XC228x are described in detail in Table 2, including all their alternate  
functions. For explanations, please refer to the footnotes at the table’s end. Figure 2  
summarizes all pins in a condensed way, showing their location on the 4 sides of the  
package.  
VSS  
VDDPB  
VDDPB  
1
2
3
4
5
6
7
8
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
P3.7  
P0.7  
P10.7  
P3.6  
P10.6  
P0.6  
P3.5  
P10.5  
P3.4  
P10.4  
P3.3  
P0.5  
TESTM  
P7.2  
P8.4  
TRST  
P8.3  
P7.0  
P7.3  
P8.2  
P7.1  
P7.4  
P8.1  
9
10  
11  
12  
13  
98  
97  
96  
P8.0  
VDDIM  
14  
15  
95  
94  
P10.3  
P2.10  
P6.0  
P6.1  
P6.2  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
P3.2  
TRef  
VDDI1  
P0.4  
XC228x  
P6.3  
VDDPA  
P10.2  
P3.1  
P15.0  
P15.1  
P15.2  
P15.3  
P15.4  
P15.5  
P15.6  
P15.7  
VAREF1  
VAREF0  
VAGND  
P5.0  
P0.3  
P10.1  
P3.0  
P10.0  
P0.2  
P2.9  
P4.7  
P2.8  
P0.1  
P2.7  
P4.6  
P4.5  
P0.0  
VDDPB  
VSS  
P5.1  
P5.2  
P5.3  
VDDPB  
MC_XC2X_PIN144  
Figure 2  
Pin Configuration (top view)  
Data Sheet  
8
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
General Device Information  
Notes to Pin Definitions  
1. Ctrl.: The output signal for a port pin is selected via bitfield PC in the associated  
register Px_IOCRy. Output O0 is selected by setting the respective bitfield PC to  
1x00B, output O1 is selected by 1x01B, etc.  
Output signal OH is controlled by hardware.  
2. Type: Indicates the employed pad type (St=standard pad, Sp=special pad,  
DP=double pad, In=input pad, PS=power supply) and its power supply domain (A, B,  
M, 1).  
Table 2  
Pin Definitions and Functions  
Ctrl. Type Function  
Pin Symbol  
3
TESTM  
I
In/B Testmode Enable  
Enables factory test modes, must be held HIGH for  
normal operation (connect to VDDPB).  
4
P7.2  
O0 / I St/B Bit 2 of Port 7, General Purpose Input/Output  
EMUX0  
TxDC4  
O1  
O2  
I
St/B External Analog MUX Control Output 0  
St/B CAN Node 4 Transmit Data Output  
St/B CCU62 Position Input 0  
CCU62_  
CCPOS0A  
TDI_C  
P8.4  
I
St/B JTAG Test Data Input  
5
6
O0 / I St/B Bit 4 of Port 8, General Purpose Input/Output  
CCU60_  
COUT61  
O1  
St/B CCU60 Channel 1 Output  
TMS_D  
TRST  
I
I
St/B JTAG Test Mode Selection Input  
In/B Test-System Reset Input  
For normal system operation, pin TRST should be  
held low. A high level at this pin at the rising edge  
of PORST activates the XC228x’s debug system.  
In this case, pin TRST must be driven low once to  
reset the debug system.  
7
P8.3  
O0 / I St/B Bit 3 of Port 8, General Purpose Input/Output  
CCU60_  
COUT60  
O1  
St/B CCU60 Channel 0 Output  
TDI_D  
I
St/B JTAG Test Data Input  
Data Sheet  
9
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
General Device Information  
Table 2  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
8
P7.0  
O0 / I St/B Bit 0 of Port 7, General Purpose Input/Output  
T3OUT  
T6OUT  
TDO  
O1  
O2  
OH  
I
St/B GPT1 Timer T3 Toggle Latch Output  
St/B GPT2 Timer T6 Toggle Latch Output  
St/B JTAG Test Data Output  
RxDC4B  
P7.3  
St/B CAN Node 4 Receive Data Input  
9
O0 / I St/B Bit 3 of Port 7, General Purpose Input/Output  
EMUX1  
O1  
St/B External Analog MUX Control Output 1  
St/B USIC0 Channel 1 Shift Data Output  
St/B USIC0 Channel 0 Shift Data Output  
St/B CCU62 Position Input 1  
U0C1_DOUT O2  
U0C0_DOUT O3  
CCU62_  
I
CCPOS1A  
TMS_C  
U0C1_DX0F  
P8.2  
I
I
St/B JTAG Test Mode Selection Input  
St/B USIC0 Channel 1 Shift Data Input  
10  
11  
O0 / I St/B Bit 2 of Port 8, General Purpose Input/Output  
O1 / I St/B CCU60 Channel 2 Input/Output  
CCU60_  
CC62  
P7.1  
O0 / I St/B Bit 1 of Port 7, General Purpose Input/Output  
EXTCLK  
TxDC4  
O1  
O2  
I
St/B Programmable Clock Signal Output  
St/B CAN Node 4 Transmit Data Output  
St/B CCU62 Emergency Trap Input  
CCU62_  
CTRAPA  
BRKIN_C  
P7.4  
I
St/B OCDS Break Signal Input  
12  
O0 / I St/B Bit 4 of Port 7, General Purpose Input/Output  
EMUX2  
O1  
St/B External Analog MUX Control Output 2  
St/B USIC0 Channel 1 Shift Data Output  
St/B USIC0 Channel 1 Shift Clock Output  
St/B CCU62 Position Input 2  
U0C1_DOUT O2  
U0C1_SCLK O3  
CCU62_  
I
CCPOS2A  
TCK_C  
I
St/B JTAG Clock Input  
U0C0_DX0D I  
U0C1_DX1E  
St/B USIC0 Channel 0 Shift Data Input  
St/B USIC0 Channel 1 Shift Clock Input  
I
Data Sheet  
10  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
General Device Information  
Table 2  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
13  
14  
16  
P8.1  
O0 / I St/B Bit 1 of Port 8, General Purpose Input/Output  
O1 / I St/B CCU60 Channel 1 Input/Output  
CCU60_  
CC61  
P8.0  
O0 / I St/B Bit 0 of Port 8, General Purpose Input/Output  
O1 / I St/B CCU60 Channel 0 Input/Output  
CCU60_  
CC60  
P6.0  
O0 / I St/A Bit 0 of Port 6, General Purpose Input/Output  
EMUX0  
O1  
St/A External Analog MUX Control Output 0  
St/A USIC1 Channel 1 Shift Data Output  
St/A OCDS Break Signal Output  
U1C1_DOUT O2  
BRKOUT  
O3  
I
ADCx_  
St/A External Request Gate Input for ADC0/1  
REQGTyC  
U1C1_DX0E  
P6.1  
I
St/A USIC1 Channel 1 Shift Data Input  
17  
O0 / I St/A Bit 1 of Port 6, General Purpose Input/Output  
EMUX1  
T3OUT  
O1  
O2  
St/A External Analog MUX Control Output 1  
St/A GPT1 Timer T3 Toggle Latch Output  
St/A USIC1 Channel 1 Shift Data Output  
St/A External Request Trigger Input for ADC0/1  
U1C1_DOUT O3  
ADCx_  
I
REQTRyC  
18  
19  
P6.2  
O0 / I St/A Bit 2 of Port 6, General Purpose Input/Output  
EMUX2  
T6OUT  
O1  
O2  
St/A External Analog MUX Control Output 2  
St/A GPT2 Timer T6 Toggle Latch Output  
St/A USIC1 Channel 1 Shift Clock Output  
St/A USIC1 Channel 1 Shift Clock Input  
U1C1_SCLK O3  
U1C1_DX1C I  
P6.3  
O0 / I St/A Bit 3 of Port 6, General Purpose Input/Output  
T3OUT  
O2  
O3  
St/A GPT1 Timer T3 Toggle Latch Output  
U1C1_  
SELO0  
St/A USIC1 Channel 1 Select/Control 0 Output  
U1C1_DX2D I  
St/A USIC1 Channel 1 Shift Control Input  
ADCx_  
I
St/A External Request Trigger Input for ADC0/1  
REQTRyD  
Data Sheet  
11  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
General Device Information  
Table 2  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
21  
22  
23  
P15.0  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
-
-
-
I
I
I
I
I
I
I
In/A Bit 0 of Port 15, General Purpose Input  
In/A Analog Input Channel 0 for ADC1  
ADC1_CH0  
P15.1  
In/A Bit 1 of Port 15, General Purpose Input  
In/A Analog Input Channel 1 for ADC1  
In/A Bit 2 of Port 15, General Purpose Input  
In/A Analog Input Channel 2 for ADC1  
In/A GPT2 Timer T5 Count/Gate Input  
ADC1_CH1  
P15.2  
ADC1_CH2  
T5IN  
24  
25  
26  
P15.3  
In/A Bit 3 of Port 15, General Purpose Input  
In/A Analog Input Channel 3 for ADC1  
In/A GPT2 Timer T5 External Up/Down Control Input  
In/A Bit 4 of Port 15, General Purpose Input  
In/A Analog Input Channel 4 for ADC1  
In/A GPT2 Timer T6 Count/Gate Input  
ADC1_CH3  
T5EUD  
P15.4  
ADC1_CH4  
T6IN  
P15.5  
In/A Bit 5 of Port 15, General Purpose Input  
In/A Analog Input Channel 5 for ADC1  
In/A GPT2 Timer T6 External Up/Down Control Input  
In/A Bit 6 of Port 15, General Purpose Input  
In/A Analog Input Channel 6 for ADC1  
In/A Bit 7 of Port 15, General Purpose Input  
In/A Analog Input Channel 7 for ADC1  
PS/A Reference Voltage for A/D Converter ADC1  
PS/A Reference Voltage for A/D Converter ADC0  
PS/A Reference Ground for A/D Converters ADC0/1  
In/A Bit 0 of Port 5, General Purpose Input  
In/A Analog Input Channel 0 for ADC0  
In/A Bit 1 of Port 5, General Purpose Input  
In/A Analog Input Channel 1 for ADC0  
In/A Bit 2 of Port 5, General Purpose Input  
In/A Analog Input Channel 2 for ADC0  
In/A JTAG Test Data Input  
ADC1_CH5  
T6EUD  
P15.6  
27  
28  
ADC1_CH6  
P15.7  
ADC1_CH7  
VAREF1  
29  
30  
31  
32  
VAREF0  
VAGND  
P5.0  
ADC0_CH0  
P5.1  
33  
34  
ADC0_CH1  
P5.2  
ADC0_CH2  
TDI_A  
Data Sheet  
12  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
General Device Information  
Table 2  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
35  
P5.3  
I
I
I
I
I
I
In/A Bit 3 of Port 5, General Purpose Input  
In/A Analog Input Channel 3 for ADC0  
ADC0_CH3  
T3IN  
In/A GPT1 Timer T3 Count/Gate Input  
39  
P5.4  
In/A Bit 4 of Port 5, General Purpose Input  
In/A Analog Input Channel 4 for ADC0  
In/A External Run Control Input for T12 of CCU63  
ADC0_CH4  
CCU63_  
T12HRB  
T3EUD  
TMS_A  
P5.5  
I
I
I
I
I
In/A GPT1 Timer T3 External Up/Down Control Input  
In/A JTAG Test Mode Selection Input  
40  
In/A Bit 5 of Port 5, General Purpose Input  
In/A Analog Input Channel 5 for ADC0  
ADC0_CH5  
CCU60_  
T12HRB  
In/A External Run Control Input for T12 of CCU60  
41  
42  
43  
P5.6  
I
I
I
I
I
I
I
In/A Bit 6 of Port 5, General Purpose Input  
In/A Analog Input Channel 6 for ADC0  
In/A Bit 7 of Port 5, General Purpose Input  
In/A Analog Input Channel 7 for ADC0  
In/A Bit 8 of Port 5, General Purpose Input  
In/A Analog Input Channel 8 for ADC0  
ADC0_CH6  
P5.7  
ADC0_CH7  
P5.8  
ADC0_CH8  
CCU6x_  
T12HRC  
In/A External Run Control Input for T12 of  
CCU60/1/2/3  
CCU6x_  
T13HRC  
I
In/A External Run Control Input for T13 of  
CCU60/1/2/3  
44  
45  
46  
P5.9  
I
I
I
I
In/A Bit 9 of Port 5, General Purpose Input  
In/A Analog Input Channel 9 for ADC0  
In/A CAPCOM2 Timer T7 Count Input  
In/A Bit 10 of Port 5, General Purpose Input  
In/A Analog Input Channel 10 for ADC0  
In/A OCDS Break Signal Input  
ADC0_CH9  
CC2_T7IN  
P5.10  
ADC0_CH10 I  
BRKIN_A  
P5.11  
I
I
In/A Bit 11 of Port 5, General Purpose Input  
In/A Analog Input Channel 11 for ADC0  
ADC0_CH11 I  
Data Sheet  
13  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
General Device Information  
Table 2  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
47  
P5.12  
ADC0_CH12 I  
P5.13  
ADC0_CH13 I  
I
In/A Bit 12 of Port 5, General Purpose Input  
In/A Analog Input Channel 12 for ADC0  
48  
I
In/A Bit 13 of Port 5, General Purpose Input  
In/A Analog Input Channel 13 for ADC0  
EX0BINB  
P5.14  
I
I
In/A External Interrupt Trigger Input  
49  
50  
51  
In/A Bit 14 of Port 5, General Purpose Input  
In/A Analog Input Channel 14 for ADC0  
ADC0_CH14 I  
P5.15  
I
In/A Bit 15 of Port 5, General Purpose Input  
In/A Analog Input Channel 15 for ADC0  
ADC0_CH15 I  
P2.12  
O0 / I St/B Bit 12 of Port 2, General Purpose Input/Output  
U0C0_  
SELO4  
O1  
St/B USIC0 Channel 0 Select/Control 4 Output  
St/B USIC0 Channel 1 Select/Control 3 Output  
St/B External Bus Interface READY Input  
U0C1_  
SELO3  
O2  
I
READY  
P2.11  
52  
O0 / I St/B Bit 11 of Port 2, General Purpose Input/Output  
U0C0_  
SELO2  
O1  
O2  
OH  
St/B USIC0 Channel 0 Select/Control 2 Output  
U0C1_  
SELO2  
St/B USIC0 Channel 1 Select/Control 2 Output  
BHE/WRH  
St/B External Bus Interf. High-Byte Control Output  
Can operate either as Byte High Enable (BHE) or  
as Write strobe for High Byte (WRH).  
53  
55  
P11.5  
P2.0  
O0 / I St/B Bit 5 of Port 11, General Purpose Input/Output  
O0 / I St/B Bit 0 of Port 2, General Purpose Input/Output  
O2 / I St/B CCU63 Channel 0 Input/Output  
CCU63_  
CC60  
AD13  
OH / I St/B External Bus Interface Address/Data Line 13  
RxDC0C  
I
St/B CAN Node 0 Receive Data Input  
Data Sheet  
14  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
General Device Information  
Table 2  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
56  
P2.1  
O0 / I St/B Bit 1 of Port 2, General Purpose Input/Output  
O1 St/B CAN Node 0 Transmit Data Output  
TxDC0  
CCU63_  
CC61  
O2 / I St/B CCU63 Channel 1 Input/Output  
AD14  
OH / I St/B External Bus Interface Address/Data Line 14  
EX0AINA  
P11.4  
I
St/B External Interrupt Trigger Input  
57  
58  
O0 / I St/B Bit 4 of Port 11, General Purpose Input/Output  
O0 / I St/B Bit 2 of Port 2, General Purpose Input/Output  
P2.2  
TxDC1  
O1  
St/B CAN Node 1 Transmit Data Output  
CCU63_  
CC62  
O2 / I St/B CCU63 Channel 2 Input/Output  
AD15  
EX1AINA  
P11.3  
P4.0  
OH / I St/B External Bus Interface Address/Data Line 15  
I
St/B External Interrupt Trigger Input  
59  
60  
O0 / I St/B Bit 3 of Port 11, General Purpose Input/Output  
O0 / I St/B Bit 0 of Port 4, General Purpose Input/Output  
O3 / I St/B CAPCOM2 CC8IO Capture Inp./ Compare Out.  
CC2_8  
CS0  
OH  
St/B External Bus Interface Chip Select 0 Output  
61  
P2.3  
O0 / I St/B Bit 3 of Port 2, General Purpose Input/Output  
U0C0_DOUT O1  
St/B USIC0 Channel 0 Shift Data Output  
St/B CCU63 Channel 3 Output  
CCU63_  
COUT63  
O2  
CC2_0  
O3 / I St/B CAPCOM2 CC0IO Capture Inp./ Compare Out.  
A16  
OH  
I
St/B External Bus Interface Address Line 16  
St/B USIC0 Channel 0 Shift Data Input  
St/B USIC0 Channel 1 Shift Data Input  
Note: Not available in step AA.  
U0C0_DX0E  
U0C1_DX0D I  
RxDC0A  
P11.2  
I
St/B CAN Node 0 Receive Data Input  
62  
O0 / I St/B Bit 2 of Port 11, General Purpose Input/Output  
CCU63_  
I
St/B CCU63 Position Input 2  
CCPOS2A  
Data Sheet  
15  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
General Device Information  
Table 2  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
63  
P4.1  
O0 / I St/B Bit 1 of Port 4, General Purpose Input/Output  
O2 St/B CAN Node 2 Transmit Data Output  
O3 / I St/B CAPCOM2 CC9IO Capture Inp./ Compare Out.  
OH St/B External Bus Interface Chip Select 1 Output  
O0 / I St/B Bit 4 of Port 2, General Purpose Input/Output  
TxDC2  
CC2_9  
CS1  
64  
P2.4  
U0C1_DOUT O1  
St/B USIC0 Channel 1 Shift Data Output  
Note: Not available in step AA.  
TxDC0  
CC2_1  
A17  
O2  
St/B CAN Node 0 Transmit Data Output  
O3 / I St/B CAPCOM2 CC1IO Capture Inp./ Compare Out.  
OH  
St/B External Bus Interface Address Line 17  
St/B USIC0 Channel 0 Shift Data Input  
St/B CAN Node 1 Receive Data Input  
U0C0_DX0F  
RxDC1A  
P11.1  
I
I
65  
66  
67  
O0 / I St/B Bit 1 of Port 11, General Purpose Input/Output  
St/B CCU63 Position Input 1  
CCU63_  
I
CCPOS1A  
P11.0  
O0 / I St/B Bit 0 of Port 11, General Purpose Input/Output  
St/B CCU63 Position Input 0  
CCU63_  
CCPOS0A  
I
P2.5  
O0 / I St/B Bit 5 of Port 2, General Purpose Input/Output  
U0C0_  
O1  
St/B USIC0 Channel 0 Shift Clock Output  
SCLKOUT  
TxDC0  
CC2_2  
A18  
O2  
St/B CAN Node 0 Transmit Data Output  
O3 / I St/B CAPCOM2 CC2IO Capture Inp./ Compare Out.  
OH  
I
St/B External Bus Interface Address Line 18  
St/B USIC0 Channel 0 Shift Clock Input  
U0C0_DX1D  
P4.2  
68  
O0 / I St/B Bit 2 of Port 4, General Purpose Input/Output  
O2 St/B CAN Node 2 Transmit Data Output  
O3 / I St/B CAPCOM2 CC10IO Capture Inp./ Compare Out.  
TxDC2  
CC2_10  
CS2  
OH  
I
St/B External Bus Interface Chip Select 2 Output  
St/B GPT1 Timer T2 Count/Gate Input  
T2IN  
Data Sheet  
16  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
General Device Information  
Table 2  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
69  
P2.6  
O0 / I St/B Bit 6 of Port 2, General Purpose Input/Output  
U0C0_  
SELO0  
O1  
St/B USIC0 Channel 0 Select/Control 0 Output  
U0C1_  
SELO1  
O2  
St/B USIC0 Channel 1 Select/Control 1 Output  
CC2_3  
A19  
O3 / I St/B CAPCOM2 CC3IO Capture Inp./ Compare Out.  
OH  
St/B External Bus Interface Address Line 19  
St/B USIC0 Channel 0 Shift Control Input  
St/B CAN Node 0 Receive Data Input  
U0C0_DX2D I  
RxDC0D  
P4.4  
I
70  
71  
O0 / I St/B Bit 4 of Port 4, General Purpose Input/Output  
O3 / I St/B CAPCOM2 CC12IO Capture Inp./ Compare Out.  
CC2_12  
CS4  
OH  
I
St/B External Bus Interface Chip Select 4 Output  
St/B RTC Count Clock Signal Input  
DRTC  
P4.3  
O0 / I St/B Bit 3 of Port 4, General Purpose Input/Output  
O3 / I St/B CAPCOM2 CC11IO Capture Inp./ Compare Out.  
CC2_11  
CS3  
OH  
St/B External Bus Interface Chip Select 3 Output  
St/B CAN Node 2 Receive Data Input  
RxDC2A  
T2EUD  
P0.0  
I
I
St/B GPT1 Timer T2 External Up/Down Control Input  
75  
O0 / I St/B Bit 0 of Port 0, General Purpose Input/Output  
St/B USIC1 Channel 0 Shift Data Output  
O3 / I St/B CCU61 Channel 0 Input/Output  
U1C0_DOUT O1  
CCU61_  
CC60  
A0  
OH  
I
St/B External Bus Interface Address Line 0  
St/B USIC1 Channel 0 Shift Data Input  
U1C0_DX0A  
P4.5  
76  
77  
O0 / I St/B Bit 5 of Port 4, General Purpose Input/Output  
O3 / I St/B CAPCOM2 CC13IO Capture Inp./Compare Out.  
O0 / I St/B Bit 6 of Port 4, General Purpose Input/Output  
O3 / I St/B CAPCOM2 CC14IO Capture Inp./ Compare Out.  
CC2_13  
P4.6  
CC2_14  
T4IN  
I
St/B GPT1 Timer T4 Count/Gate Input  
Data Sheet  
17  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
General Device Information  
Table 2  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
78  
P2.7  
O0 / I St/B Bit 7 of Port 2, General Purpose Input/Output  
U0C1_  
SELO0  
O1  
St/B USIC0 Channel 1 Select/Control 0 Output  
U0C0_  
SELO1  
O2  
St/B USIC0 Channel 0 Select/Control 1 Output  
CC2_4  
A20  
O3 / I St/B CAPCOM2 CC4IO Capture Inp./ Compare Out.  
OH  
St/B External Bus Interface Address Line 20  
St/B USIC0 Channel 1 Shift Control Input  
St/B CAN Node 1 Receive Data Input  
U0C1_DX2C I  
RxDC1C  
P0.1  
I
79  
O0 / I St/B Bit 1 of Port 0, General Purpose Input/Output  
U1C0_DOUT O1  
St/B USIC1 Channel 0 Shift Data Output  
St/B CAN Node 0 Transmit Data Output  
TxDC0  
O2  
CCU61_  
CC61  
O3 / I St/B CCU61 Channel 1 Input/Output  
A1  
OH  
St/B External Bus Interface Address Line 1  
St/B USIC1 Channel 0 Shift Data Input  
St/B USIC1 Channel 0 Shift Clock Input  
U1C0_DX0B  
U1C0_DX1A  
P2.8  
I
I
80  
O0 / I DP/B Bit 8 of Port 2, General Purpose Input/Output  
U0C1_  
O1  
DP/B USIC0 Channel 1 Shift Clock Output  
SCLKOUT  
EXTCLK  
O2  
DP/B Programmable Clock Signal Output  
1)  
CC2_5  
A21  
O3 / I DP/B CAPCOM2 CC5IO Capture Inp./ Compare Out.  
OH  
DP/B External Bus Interface Address Line 21  
DP/B USIC0 Channel 1 Shift Clock Input  
U0C1_DX1D I  
P4.7  
81  
O0 / I St/B Bit 7 of Port 4, General Purpose Input/Output  
O3 / I St/B CAPCOM2 CC15IO Capture Inp./ Compare Out.  
CC2_15  
T4EUD  
I
St/B GPT1 Timer T4 External Up/Down Control Input  
Data Sheet  
18  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
General Device Information  
Table 2  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
82  
P2.9  
O0 / I St/B Bit 9 of Port 2, General Purpose Input/Output  
U0C1_DOUT O1  
St/B USIC0 Channel 1 Shift Data Output  
St/B CAN Node 1 Transmit Data Output  
TxDC1  
CC2_6  
A22  
O2  
O3 / I St/B CAPCOM2 CC6IO Capture Inp./ Compare Out.  
OH  
St/B External Bus Interface Address Line 22  
St/B Clock Signal Input  
DIRIN  
TCK_A  
P0.2  
I
I
St/B JTAG Clock Input  
83  
O0 / I St/B Bit 2 of Port 0, General Purpose Input/Output  
U1C0_  
O1  
St/B USIC1 Channel 0 Shift Clock Output  
SCLKOUT  
TxDC0  
O2  
St/B CAN Node 0 Transmit Data Output  
CCU61_  
CC62  
O3 / I St/B CCU61 Channel 2 Input/Output  
A2  
OH  
I
St/B External Bus Interface Address Line 2  
St/B USIC1 Channel 0 Shift Clock Input  
U1C0_DX1B  
P10.0  
84  
O0 / I St/B Bit 0 of Port 10, General Purpose Input/Output  
St/B USIC0 Channel 1 Shift Data Output  
U0C1_DOUT O1  
CCU60_  
CC60  
O2 / I St/B CCU60 Channel 0 Input/Output  
AD0  
OH / I St/B External Bus Interface Address/Data Line 0  
U0C0_DX0A  
U0C1_DX0A  
P3.0  
I
I
St/B USIC0 Channel 0 Shift Data Input  
St/B USIC0 Channel 1 Shift Data Input  
85  
O0 / I St/B Bit 0 of Port 3, General Purpose Input/Output  
U2C0_DOUT O1  
St/B USIC2 Channel 0 Shift Data Output  
St/B External Bus Request Output  
St/B USIC2 Channel 0 Shift Data Input  
St/B CAN Node 3 Receive Data Input  
St/B USIC2 Channel 0 Shift Clock Input  
BREQ  
OH  
U2C0_DX0A  
RxDC3B  
I
I
I
U2C0_DX1A  
Data Sheet  
19  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
General Device Information  
Table 2  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
86  
P10.1  
O0 / I St/B Bit 1 of Port 10, General Purpose Input/Output  
St/B USIC0 Channel 0 Shift Data Output  
U0C0_DOUT O1  
CCU60_  
CC61  
O2 / I St/B CCU60 Channel 1 Input/Output  
AD1  
OH / I St/B External Bus Interface Address/Data Line 1  
U0C0_DX0B  
U0C0_DX1A  
P0.3  
I
I
St/B USIC0 Channel 0 Shift Data Input  
St/B USIC0 Channel 0 Shift Clock Input  
87  
O0 / I St/B Bit 3 of Port 0, General Purpose Input/Output  
U1C0_  
SELO0  
O1  
O2  
O3  
St/B USIC1 Channel 0 Select/Control 0 Output  
St/B USIC1 Channel 1 Select/Control 1 Output  
St/B CCU61 Channel 0 Output  
U1C1_  
SELO1  
CCU61_  
COUT60  
A3  
OH  
St/B External Bus Interface Address Line 3  
St/B USIC1 Channel 0 Shift Control Input  
St/B CAN Node 0 Receive Data Input  
U1C0_DX2A  
RxDC0B  
P3.1  
I
I
88  
89  
O0 / I St/B Bit 1 of Port 3, General Purpose Input/Output  
U2C0_DOUT O1  
St/B USIC2 Channel 0 Shift Data Output  
St/B CAN Node 3 Transmit Data Output  
TxDC3  
HLDA  
O2  
OH / I St/B External Bus Hold Acknowledge Output/Input  
Output in master mode, input in slave mode.  
U2C0_DX0B  
P10.2  
I
St/B USIC2 Channel 0 Shift Data Input  
O0 / I St/B Bit 2 of Port 10, General Purpose Input/Output  
O1 St/B USIC0 Channel 0 Shift Clock Output  
U0C0_  
SCLKOUT  
CCU60_  
CC62  
O2 / I St/B CCU60 Channel 2 Input/Output  
AD2  
OH / I St/B External Bus Interface Address/Data Line 2  
U0C0_DX1B  
I
St/B USIC0 Channel 0 Shift Clock Input  
Data Sheet  
20  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
General Device Information  
Table 2  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
90  
P0.4  
O0 / I St/B Bit 4 of Port 0, General Purpose Input/Output  
U1C1_  
SELO0  
O1  
O2  
O3  
St/B USIC1 Channel 1 Select/Control 0 Output  
St/B USIC1 Channel 0 Select/Control 1 Output  
St/B CCU61 Channel 1 Output  
U1C0_  
SELO1  
CCU61_  
COUT61  
A4  
OH  
St/B External Bus Interface Address Line 4  
St/B USIC1 Channel 1 Shift Control Input  
St/B CAN Node 1 Receive Data Input  
U1C1_DX2A  
RxDC1B  
TRef  
I
I
92  
93  
IO  
Sp/1 Control Pin for Core Voltage Generation  
Connect TRef to VDDPB to use the on-chip EVRs.  
Connect TRef to VDDI1 for external core voltage  
supply (on-chip EVRs off).  
P3.2  
O0 / I St/B Bit 2 of Port 3, General Purpose Input/Output  
U2C0_  
O1  
St/B USIC2 Channel 0 Shift Clock Output  
SCLKOUT  
TxDC3  
O2  
St/B CAN Node 3 Transmit Data Output  
St/B USIC2 Channel 0 Shift Clock Input  
St/B External Bus Master Hold Request Input  
U2C0_DX1B  
HOLD  
I
I
94  
P2.10  
O0 / I St/B Bit 10 of Port 2, General Purpose Input/Output  
U0C1_DOUT O1  
St/B USIC0 Channel 1 Shift Data Output  
U0C0_  
SELO3  
O2  
St/B USIC0 Channel 0 Select/Control 3 Output  
CC2_7  
A23  
O3 / I St/B CAPCOM2 CC7IO Capture Inp./ Compare Out.  
OH  
St/B External Bus Interface Address Line 23  
St/B USIC0 Channel 1 Shift Data Input  
St/B GPT2 Register CAPREL Capture Input  
U0C1_DX0E  
CAPIN  
I
I
Data Sheet  
21  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
General Device Information  
Table 2  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
95  
P10.3  
O0 / I St/B Bit 3 of Port 10, General Purpose Input/Output  
O2 St/B CCU60 Channel 0 Output  
CCU60_  
COUT60  
AD3  
OH / I St/B External Bus Interface Address/Data Line 3  
U0C0_DX2A  
U0C1_DX2A  
P0.5  
I
I
St/B USIC0 Channel 0 Shift Control Input  
St/B USIC0 Channel 1 Shift Control Input  
96  
O0 / I St/B Bit 5 of Port 0, General Purpose Input/Output  
U1C1_  
SCLKOUT  
O1  
O2  
O3  
St/B USIC1 Channel 1 Shift Clock Output  
St/B USIC1 Channel 0 Select/Control 2 Output  
St/B CCU61 Channel 2 Output  
U1C0_  
SELO2  
CCU61_  
COUT62  
A5  
OH  
I
St/B External Bus Interface Address Line 5  
St/B USIC1 Channel 1 Shift Clock Input  
U1C1_DX1A  
U1C0_DX1C I  
P3.3  
St/B USIC1 Channel 0 Shift Clock Input  
97  
O0 / I St/B Bit 3 of Port 3, General Purpose Input/Output  
U2C0_  
SELO0  
O1  
St/B USIC2 Channel 0 Select/Control 0 Output  
U2C1_  
SELO1  
O2  
St/B USIC2 Channel 1 Select/Control 1 Output  
U2C0_DX2A  
RxDC3A  
P10.4  
I
I
St/B USIC2 Channel 0 Shift Control Input  
St/B CAN Node 3 Receive Data Input  
98  
O0 / I St/B Bit 4 of Port 10, General Purpose Input/Output  
U0C0_  
SELO3  
O1  
St/B USIC0 Channel 0 Select/Control 3 Output  
CCU60_  
COUT61  
O2  
St/B CCU60 Channel 1 Output  
AD4  
OH / I St/B External Bus Interface Address/Data Line 4  
U0C0_DX2B  
U0C1_DX2B  
I
I
St/B USIC0 Channel 0 Shift Control Input  
St/B USIC0 Channel 1 Shift Control Input  
Data Sheet  
22  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
General Device Information  
Table 2  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
99  
P3.4  
O0 / I St/B Bit 4 of Port 3, General Purpose Input/Output  
U2C1_  
SELO0  
O1  
O2  
O3  
St/B USIC2 Channel 1 Select/Control 0 Output  
St/B USIC2 Channel 0 Select/Control 1 Output  
St/B USIC0 Channel 0 Select/Control 4 Output  
U2C0_  
SELO1  
U0C0_  
SELO4  
U2C1_DX2A  
RxDC4A  
I
I
St/B USIC2 Channel 1 Shift Control Input  
St/B CAN Node 4 Receive Data Input  
100 P10.5  
U0C1_  
O0 / I St/B Bit 5 of Port 10, General Purpose Input/Output  
O1  
St/B USIC0 Channel 1 Shift Clock Output  
SCLKOUT  
CCU60_  
COUT62  
O2  
St/B CCU60 Channel 2 Output  
AD5  
OH / I St/B External Bus Interface Address/Data Line 5  
St/B USIC0 Channel 1 Shift Clock Input  
O0 / I St/B Bit 5 of Port 3, General Purpose Input/Output  
U0C1_DX1B  
I
101 P3.5  
U2C1_  
SCLKOUT  
O1  
O2  
O3  
I
St/B USIC2 Channel 1 Shift Clock Output  
St/B USIC2 Channel 0 Select/Control 2 Output  
St/B USIC0 Channel 0 Select/Control 5 Output  
St/B USIC2 Channel 1 Shift Clock Input  
U2C0_  
SELO2  
U0C0_  
SELO5  
U2C1_DX1A  
Data Sheet  
23  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
General Device Information  
Table 2  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
102 P0.6  
Ctrl. Type Function  
O0 / I St/B Bit 6 of Port 0, General Purpose Input/Output  
U1C1_DOUT O1  
St/B USIC1 Channel 1 Shift Data Output  
St/B CAN Node 1 Transmit Data Output  
St/B CCU61 Channel 3 Output  
TxDC1  
O2  
O3  
CCU61_  
COUT63  
A6  
OH  
St/B External Bus Interface Address Line 6  
St/B USIC1 Channel 1 Shift Data Input  
St/B CCU61 Emergency Trap Input  
U1C1_DX0A  
I
I
CCU61_  
CTRAPA  
U1C1_DX1B  
I
St/B USIC1 Channel 1 Shift Clock Input  
103 P10.6  
O0 / I St/B Bit 6 of Port 10, General Purpose Input/Output  
U0C0_DOUT O1  
St/B USIC0 Channel 0 Shift Data Output  
St/B CAN Node 4 Transmit Data Output  
St/B USIC1 Channel 0 Select/Control 0 Output  
TxDC4  
O2  
O3  
U1C0_  
SELO0  
AD6  
OH / I St/B External Bus Interface Address/Data Line 6  
St/B USIC0 Channel 0 Shift Data Input  
U0C0_DX0C I  
U1C0_DX2D I  
St/B USIC1 Channel 0 Shift Control Input  
CCU60_  
CTRAPA  
I
St/B CCU60 Emergency Trap Input  
104 P3.6  
O0 / I St/B Bit 6 of Port 3, General Purpose Input/Output  
U2C1_DOUT O1  
St/B USIC2 Channel 1 Shift Data Output  
St/B CAN Node 4 Transmit Data Output  
St/B USIC0 Channel 0 Select/Control 6 Output  
TxDC4  
O2  
O3  
U0C0_  
SELO6  
U2C1_DX0A  
U2C1_DX1B  
I
I
St/B USIC2 Channel 1 Shift Data Input  
St/B USIC2 Channel 1 Shift Clock Input  
Data Sheet  
24  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
General Device Information  
Table 2  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
105 P10.7  
Ctrl. Type Function  
O0 / I St/B Bit 7 of Port 10, General Purpose Input/Output  
U0C1_DOUT O1  
St/B USIC0 Channel 1 Shift Data Output  
St/B CCU60 Channel 3 Output  
CCU60_  
COUT63  
O2  
AD7  
OH / I St/B External Bus Interface Address/Data Line 7  
U0C1_DX0B  
I
I
St/B USIC0 Channel 1 Shift Data Input  
St/B CCU60 Position Input 0  
CCU60_  
CCPOS0A  
RxDC4C  
I
St/B CAN Node 4 Receive Data Input  
106 P0.7  
O0 / I St/B Bit 7 of Port 0, General Purpose Input/Output  
U1C1_DOUT O1  
St/B USIC1 Channel 1 Shift Data Output  
U1C0_  
SELO3  
O2  
St/B USIC1 Channel 0 Select/Control 3 Output  
A7  
OH  
St/B External Bus Interface Address Line 7  
St/B USIC1 Channel 1 Shift Data Input  
St/B CCU61 Emergency Trap Input  
U1C1_DX0B  
I
I
CCU61_  
CTRAPB  
107 P3.7  
O0 / I St/B Bit 7 of Port 3, General Purpose Input/Output  
U2C1_DOUT O1  
St/B USIC2 Channel 1 Shift Data Output  
U2C0_  
SELO3  
O2  
O3  
I
St/B USIC2 Channel 0 Select/Control 3 Output  
U0C0_  
SELO7  
St/B USIC0 Channel 0 Select/Control 7 Output  
U2C1_DX0B  
St/B USIC2 Channel 1 Shift Data Input  
111 P1.0  
O0 / I St/B Bit 0 of Port 1, General Purpose Input/Output  
U1C0_  
O1  
St/B USIC1 Channel 0 Master Clock Output  
MCLKOUT  
U1C0_  
SELO4  
O2  
St/B USIC1 Channel 0 Select/Control 4 Output  
A8  
OH  
St/B External Bus Interface Address Line 8  
St/B External Interrupt Trigger Input  
St/B CCU62 Emergency Trap Input  
EX0BINA  
I
I
CCU62_  
CTRAPB  
Data Sheet  
25  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
General Device Information  
Table 2  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
112 P9.0  
Ctrl. Type Function  
O0 / I St/B Bit 0 of Port 9, General Purpose Input/Output  
O1 / I St/B CCU63 Channel 0 Input/Output  
CCU63_  
CC60  
113 P10.8  
O0 / I St/B Bit 8 of Port 10, General Purpose Input/Output  
U0C0_  
O1  
St/B USIC0 Channel 0 Master Clock Output  
MCLKOUT  
U0C1_  
SELO0  
O2  
St/B USIC0 Channel 1 Select/Control 0 Output  
AD8  
OH / I St/B External Bus Interface Address/Data Line 8  
CCU60_  
I
St/B CCU60 Position Input 1  
CCPOS1A  
U0C0_DX1C I  
BRKIN_B  
114 P9.1  
St/B USIC0 Channel 0 Shift Clock Input  
St/B OCDS Break Signal Input  
I
O0 / I St/B Bit 1 of Port 9, General Purpose Input/Output  
O1 / I St/B CCU63 Channel 1 Input/Output  
CCU63_  
CC61  
115 P10.9  
O0 / I St/B Bit 9 of Port 10, General Purpose Input/Output  
U0C0_  
SELO4  
O1  
St/B USIC0 Channel 0 Select/Control 4 Output  
U0C1_  
O2  
St/B USIC0 Channel 1 Master Clock Output  
MCLKOUT  
AD9  
OH / I St/B External Bus Interface Address/Data Line 9  
CCU60_  
I
St/B CCU60 Position Input 2  
CCPOS2A  
TCK_B  
I
St/B JTAG Clock Input  
Data Sheet  
26  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
General Device Information  
Table 2  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
116 P1.1  
Ctrl. Type Function  
O0 / I St/B Bit 1 of Port 1, General Purpose Input/Output  
CCU62_  
COUT62  
O1  
St/B CCU62 Channel 2 Output  
U1C0_  
SELO5  
O2  
St/B USIC1 Channel 0 Select/Control 5 Output  
U2C1_DOUT O3  
St/B USIC2 Channel 1 Shift Data Output  
St/B External Bus Interface Address Line 9  
St/B External Interrupt Trigger Input  
A9  
OH  
I
EX1BINA  
U2C1_DX0C I  
117 P10.10  
St/B USIC2 Channel 1 Shift Data Input  
O0 / I St/B Bit 10 of Port 10, General Purpose Input/Output  
U0C0_  
SELO0  
O1  
St/B USIC0 Channel 0 Select/Control 0 Output  
CCU60_  
COUT63  
O2  
St/B CCU60 Channel 3 Output  
AD10  
OH / I St/B External Bus Interface Address/Data Line 10  
St/B USIC0 Channel 0 Shift Control Input  
U0C0_DX2C I  
TDI_B  
I
St/B JTAG Test Data Input  
U0C1_DX1A  
I
St/B USIC0 Channel 1 Shift Clock Input  
118 P10.11  
O0 / I St/B Bit 11 of Port 10, General Purpose Input/Output  
U1C0_  
O1  
St/B USIC1 Channel 0 Shift Clock Output  
SCLKOUT  
BRKOUT  
O2  
St/B OCDS Break Signal Output  
AD11  
OH / I St/B External Bus Interface Address/Data Line 11  
St/B USIC1 Channel 0 Shift Clock Input  
U1C0_DX1D I  
RxDC2B  
TMS_B  
I
St/B CAN Node 2 Receive Data Input  
St/B JTAG Test Mode Selection Input  
I
119 P9.2  
O0 / I St/B Bit 2 of Port 9, General Purpose Input/Output  
O1 / I St/B CCU63 Channel 2 Input/Output  
CCU63_  
CC62  
Data Sheet  
27  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
General Device Information  
Table 2  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
120 P1.2  
Ctrl. Type Function  
O0 / I St/B Bit 2 of Port 1, General Purpose Input/Output  
O1 / I St/B CCU62 Channel 2 Input/Output  
CCU62_  
CC62  
U1C0_  
SELO6  
O2  
O3  
St/B USIC1 Channel 0 Select/Control 6 Output  
St/B USIC2 Channel 1 Shift Clock Output  
U2C1_  
SCLKOUT  
A10  
OH  
I
St/B External Bus Interface Address Line 10  
CCU61_  
T12HRB  
St/B External Run Control Input for T12 of CCU61  
EX2AINA  
I
St/B External Interrupt Trigger Input  
St/B USIC2 Channel 1 Shift Data Input  
U2C1_DX0D I  
U2C1_DX1C I  
121 P10.12  
U1C0_DOUT O1  
St/B USIC2 Channel 1 Shift Clock Input  
O0 / I St/B Bit 12 of Port 10, General Purpose Input/Output  
St/B USIC1 Channel 0 Shift Data Output  
St/B CAN Node 2 Transmit Data Output  
St/B JTAG Test Data Output  
TxDC2  
O2  
O3  
TDO  
AD12  
OH / I St/B External Bus Interface Address/Data Line 12  
St/B USIC1 Channel 0 Shift Data Input  
U1C0_DX0C I  
U1C0_DX1E  
122 P9.3  
I
St/B USIC1 Channel 0 Shift Clock Input  
O0 / I St/B Bit 3 of Port 9, General Purpose Input/Output  
CCU63_  
COUT60  
O1  
St/B CCU63 Channel 0 Output  
BRKOUT  
O2  
St/B OCDS Break Signal Output  
Data Sheet  
28  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
General Device Information  
Table 2  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
123 P10.13  
Ctrl. Type Function  
O0 / I St/B Bit 13 of Port 10, General Purpose Input/Output  
U1C0_DOUT O1  
St/B USIC1 Channel 0 Shift Data Output  
St/B CAN Node 3 Transmit Data Output  
St/B USIC1 Channel 0 Select/Control 3 Output  
TxDC3  
O2  
O3  
U1C0_  
SELO3  
WR/WRL  
OH  
St/B External Bus Interface Write Strobe Output  
Active for each external write access, when WR,  
active for ext. writes to the low byte, when WRL.  
U1C0_DX0D I  
124 P1.3  
CCU62_  
St/B USIC1 Channel 0 Shift Data Input  
O0 / I St/B Bit 3 of Port 1, General Purpose Input/Output  
O1  
O2  
O3  
St/B CCU62 Channel 3 Output  
COUT63  
U1C0_  
SELO7  
St/B USIC1 Channel 0 Select/Control 7 Output  
St/B USIC2 Channel 0 Select/Control 4 Output  
U2C0_  
SELO4  
A11  
OH  
I
St/B External Bus Interface Address Line 11  
CCU62_  
T12HRB  
St/B External Run Control Input for T12 of CCU62  
EX3AINA  
I
St/B External Interrupt Trigger Input  
125 P9.4  
O0 / I St/B Bit 4 of Port 9, General Purpose Input/Output  
CCU63_  
COUT61  
O1  
St/B CCU63 Channel 1 Output  
U2C0_DOUT O2  
126 P9.5  
CCU63_  
COUT62  
U2C0_DOUT O2  
St/B USIC2 Channel 0 Shift Data Output  
O0 / I St/B Bit 5 of Port 9, General Purpose Input/Output  
O1  
St/B CCU63 Channel 2 Output  
St/B USIC2 Channel 0 Shift Data Output  
St/B USIC2 Channel 0 Shift Data Input  
St/B CCU60 Position Input 2  
U2C0_DX0E  
I
I
CCU60_  
CCPOS2B  
Data Sheet  
29  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
General Device Information  
Table 2  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
128 P10.14  
Ctrl. Type Function  
O0 / I St/B Bit 14 of Port 10, General Purpose Input/Output  
U1C0_  
SELO1  
O1  
St/B USIC1 Channel 0 Select/Control 1 Output  
U0C1_DOUT O2  
RD OH  
U0C1_DX0C I  
RxDC3C  
129 P1.4  
St/B USIC0 Channel 1 Shift Data Output  
St/B External Bus Interface Read Strobe Output  
St/B USIC0 Channel 1 Shift Data Input  
St/B CAN Node 3 Receive Data Input  
I
O0 / I St/B Bit 4 of Port 1, General Purpose Input/Output  
CCU62_  
COUT61  
O1  
O2  
O3  
St/B CCU62 Channel 1 Output  
U1C1_  
SELO4  
St/B USIC1 Channel 1 Select/Control 4 Output  
St/B USIC2 Channel 0 Select/Control 5 Output  
U2C0_  
SELO5  
A12  
OH  
I
St/B External Bus Interface Address Line 12  
St/B USIC2 Channel 0 Shift Control Input  
U2C0_DX2B  
130 P10.15  
O0 / I St/B Bit 15 of Port 10, General Purpose Input/Output  
U1C0_  
SELO2  
O1  
St/B USIC1 Channel 0 Select/Control 2 Output  
U0C1_DOUT O2  
U1C0_DOUT O3  
St/B USIC0 Channel 1 Shift Data Output  
St/B USIC1 Channel 0 Shift Data Output  
ALE  
U0C1_DX1C I  
131 P1.5  
OH  
St/B External Bus Interf. Addr. Latch Enable Output  
St/B USIC0 Channel 1 Shift Clock Input  
O0 / I St/B Bit 5 of Port 1, General Purpose Input/Output  
CCU62_  
COUT60  
O1  
St/B CCU62 Channel 0 Output  
U1C1_  
SELO3  
O2  
St/B USIC1 Channel 1 Select/Control 3 Output  
BRKOUT  
A13  
O3  
St/B OCDS Break Signal Output  
OH  
St/B External Bus Interface Address Line 13  
St/B USIC2 Channel 0 Shift Data Input  
U2C0_DX0C I  
Data Sheet  
30  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
General Device Information  
Table 2  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
132 P9.6  
Ctrl. Type Function  
O0 / I St/B Bit 6 of Port 9, General Purpose Input/Output  
CCU63_  
COUT63  
O1  
St/B CCU63 Channel 3 Output  
St/B CCU63 Channel 2 Output  
St/B CCU63 Emergency Trap Input  
St/B CCU60 Position Input 1  
CCU63_  
COUT62  
O2  
CCU63 _  
CTRAPA  
I
I
CCU60_  
CCPOS1B  
133 P1.6  
O0 / I St/B Bit 6 of Port 1, General Purpose Input/Output  
O1 / I St/B CCU62 Channel 1 Input/Output  
CCU62_  
CC61  
U1C1_  
SELO2  
O2  
St/B USIC1 Channel 1 Select/Control 2 Output  
U2C0_DOUT O3  
A14 OH  
U2C0_DX0D I  
134 P9.7  
St/B USIC2 Channel 0 Shift Data Output  
St/B External Bus Interface Address Line 14  
St/B USIC2 Channel 0 Shift Data Input  
O0 / I St/B Bit 7 of Port 9, General Purpose Input/Output  
CCU63_  
CTRAPB  
I
St/B CCU63 Emergency Trap Input  
U2C0_DX1D I  
St/B USIC2 Channel 0 Shift Clock Input  
St/B CCU60 Position Input 0  
CCU60_  
I
CCPOS0B  
135 P1.7  
O0 / I St/B Bit 7 of Port 1, General Purpose Input/Output  
O1 / I St/B CCU62 Channel 0 Input/Output  
CCU62_  
CC60  
U1C1_  
MCLKOUT  
O2  
O3  
OH  
St/B USIC1 Channel 1 Master Clock Output  
St/B USIC2 Channel 0 Shift Clock Output  
U2C0_  
SCLKOUT  
A15  
St/B External Bus Interface Address Line 15  
St/B USIC2 Channel 0 Shift Clock Input  
Sp/1 Crystal Oscillator Amplifier Output  
U2C0_DX1C I  
136 XTAL2  
O
Data Sheet  
31  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
General Device Information  
Table 2  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
137 XTAL1  
Ctrl. Type Function  
I
Sp/1 Crystal Oscillator Amplifier Input  
To clock the device from an external source, drive  
XTAL1, while leaving XTAL2 unconnected.  
Voltages on XTAL1 must comply to the core  
supply voltage VDDI1  
.
138 PORST  
I
In/B Power On Reset Input  
A low level at this pin resets the XC228x  
completely. A spike filter suppresses input pulses  
<10 ns. Input pulses >100 ns safely pass the filter.  
The minimum duration for a safe recognition  
should be 120 ns.  
139 ESR1  
EX0AINB  
O0 / I St/B External Service Request 1  
St/B External Interrupt Trigger Input  
O0 / I St/B External Service Request 2  
St/B External Interrupt Trigger Input  
O0 / I St/B External Service Request 0  
Note: After power-up, ESR0 operates as open-  
I
140 ESR2  
EX1AINB  
I
141 ESR0  
drain bidirectional reset with a weak pull-up.  
142 P8.6  
O0 / I St/B Bit 6 of Port 8, General Purpose Input/Output  
CCU60_  
COUT63  
O1  
St/B CCU60 Channel 3 Output  
St/B CCU60 Emergency Trap Input  
St/B OCDS Break Signal Input  
CCU60_  
CTRAPB  
I
BRKIN_D  
I
143 P8.5  
O0 / I St/B Bit 5 of Port 8, General Purpose Input/Output  
CCU60_  
COUT62  
O1  
St/B CCU60 Channel 2 Output  
TCK_D  
I
St/B JTAG Clock Input  
15  
VDDIM  
-
PS/M Digital Core Supply Voltage for Domain M  
Decouple with a 680 nF ceramic capacitor.  
54, VDDI1  
91,  
127  
-
PS/1 Digital Core Supply Voltage for Domain 1  
Decouple each with a 220 nF ceramic capacitor.  
All VDDI1 pins must be connected to each other.  
Data Sheet  
32  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
General Device Information  
Table 2  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
20  
VDDPA  
-
PS/A Digital Pad Supply Voltage for Domain A  
Connect decoupling capacitors to adjacent  
V
DDP/VSS pin pairs as close as possible to the pins.  
Note: The A/D_Converters and ports P5, P6, and  
P15 are fed from supply voltage VDDPA  
.
2,  
VDDPB  
-
PS/B Digital Pad Supply Voltage for Domain B  
36,  
38,  
72,  
74,  
108,  
110,  
144  
Connect decoupling capacitors to adjacent  
V
DDP/VSS pin pairs as close as possible to the pins.  
Note: The on-chip voltage regulators and all ports  
except P5, P6, and P15 are fed from supply  
voltage VDDPB  
.
1,  
VSS  
-
PS/-- Digital Ground  
37,  
73,  
109  
All VSS pins must be connected to the ground-line  
or ground-plane.  
1) To generate the reference clock output for bus timing measurement, fSYS must be selected as source for  
EXTCLK and P2.8 must be selected as output pin. Also the high-speed clock pad must be enabled. This  
configuration is referred to as reference clock output signal CLKOUT.  
Data Sheet  
33  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Functional Description  
3
Functional Description  
The architecture of the XC228x combines advantages of RISC, CISC, and DSP  
processors with an advanced peripheral subsystem in a very well-balanced way. In  
addition, the on-chip memory blocks allow the design of compact systems-on-silicon with  
maximum performance (computing, control, communication).  
The on-chip memory blocks (program code-memory and SRAM, dual-port RAM, data  
SRAM) and the set of generic peripherals are connected to the CPU via separate buses.  
Another bus, the LXBus, connects additional on-chip resources as well as external  
resources (see Figure 3). This bus structure enhances the overall system performance  
by enabling the concurrent operation of several subsystems of the XC228x.  
The following block diagram gives an overview of the different on-chip components and  
of the advanced, high bandwidth internal bus structure of the XC228x.  
PSRAM  
16/32/64 Kbytes  
DPRAM  
2 Kbytes  
DSRAM  
16 Kbytes  
OCDS  
Debug Support  
Program Flash 0  
256 Kbytes  
EBC  
LXBus Control  
External Bus  
Control  
CPU  
Program Flash 1  
192/256 Kbytes  
C166SV2 - Core  
Program Flash 2  
0/64/256 Kbytes  
WDT  
RTC  
Oscillators/PLL, System Fct.  
Clock, Reset, Power Control,  
Stand-By RAM  
Interrupt & PEC  
Interrupt Bus  
CCU63 ...  
ADC1 ADC0 GPT  
CC2  
CCU60  
USIC2 USIC1 USIC0 Multi  
2 Ch., 2 Ch., 2 Ch., CAN  
64 x 64 x 64 x  
8-Bit/  
10-Bit 10-Bit  
8 Ch. 16 Ch.  
8-Bit/  
T2  
T7  
T8  
T12  
T13  
T12  
T13  
T3  
T4  
Buffer Buffer Buffer  
RS232, RS232, RS232,  
LIN,  
SPI,  
LIN,  
SPI,  
LIN,  
SPI,  
T5  
2/5ch.  
T6  
IIC, IIS IIC, IIS IIC, IIS  
P15  
Port 5  
16  
P11  
P10  
16  
P9  
P8 P7 P6 P4  
P3  
P2  
P1  
8
P0  
8
6
8
7
5
4
8
8
13  
8
MC_XC2X_BLOCKDIAGRAM  
Figure 3  
Block Diagram  
Data Sheet  
34  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Functional Description  
3.1  
Memory Subsystem and Organization  
The memory space of the XC228x is configured in a von Neumann architecture, which  
means that all internal and external resources, such as code memory, data memory,  
registers and I/O ports, are organized within the same linear address space.  
Table 3  
XC228x Memory Map  
Address Area  
Start Loc. End Loc. Area Size1)  
Notes  
IMB register space  
FF’FF00H FF’FFFFH 256 Bytes  
Reserved (Access trap) F0’0000H  
Reserved for EPSRAM E9’0000H  
FF’FEFFH <1 Mbyte  
EF’FFFFH 448 Kbytes  
E8’FFFFH 64 Kbytes  
E7’FFFFH 448 Kbytes  
E0’FFFFH 64 Kbytes  
Minus IMB reg.  
Mirrors EPSRAM  
Flash timing  
Mirrors PSRAM  
Maximum speed  
Emulated PSRAM  
Reserved for PSRAM  
Program SRAM  
E8’0000H  
E1’0000H  
E0’0000H  
Reserved for pr. mem. CC’0000H DF’FFFFH <1.25 Mbytes –  
Program Flash 2  
Program Flash 1  
Program Flash 0  
C8’0000H CB’FFFFH 256 Kbytes  
C4’0000H C7’FFFFH 256 Kbytes  
C0’0000H C3’FFFFH 256 Kbytes  
2)  
External memory area 40’0000H  
Available Ext. IO area3) 20’5800H  
BF’FFFFH 8 Mbytes  
3F’FFFFH < 2 Mbytes  
Minus USIC/CAN  
USIC registers  
20’4000H  
20’0000H  
20’57FFH  
6 Kbytes  
Accessed via EBC  
MultiCAN registers  
20’3FFFH 16 Kbytes  
1F’FFFFH < 2 Mbytes  
Accessed via EBC  
External memory area 01’0000H  
Minus segment 0  
SFR area  
00’FE00H 00’FFFFH 0.5 Kbyte  
Dual-Port RAM  
Reserved for DPRAM  
ESFR area  
00’F600H  
00’F200H  
00’F000H  
00’E000H  
00’A000H  
00’8000H  
00’FDFFH 2 Kbytes  
00’F5FFH 1 Kbyte  
00’F1FFH 0.5 Kbyte  
00’EFFFH 4 Kbytes  
00’DFFFH 16 Kbytes  
00’9FFFH 8 Kbytes  
00’7FFFH 32 Kbytes  
XSFR area  
Data SRAM  
Reserved for DSRAM  
External memory area 00’0000H  
1) The areas marked with “<” are slightly smaller than indicated, see column “Notes”.  
2) One 4-Kbyte sector reserved for internal use.  
3) Several pipeline optimizations are not active within the external IO area. This is necessary to control external  
peripherals properly.  
Data Sheet  
35  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Functional Description  
This common memory space includes 16 Mbytes and is arranged as 256 segments of  
64 Kbytes each, where each segment consists of four data pages of 16 Kbytes each.  
The entire memory space can be accessed byte wise or word wise. Portions of the  
on-chip DPRAM and the register spaces (ESFR/SFR) have additionally been made  
directly bit addressable.  
The internal data memory areas and the Special Function Register areas (SFR and  
ESFR) are mapped into segment 0, the system segment.  
The Program Management Unit (PMU) handles all code fetches and, therefore, controls  
accesses to the program memories, such as Flash memory and PSRAM.  
The Data Management Unit (DMU) handles all data transfers and, therefore, controls  
accesses to the DSRAM and the on-chip peripherals.  
Both units (PMU and DMU) are connected via the high-speed system bus to exchange  
data. This is required if operands are read from program memory, code or data is written  
to the PSRAM, code is fetched from external memory, or data is read from or written to  
external resources, including peripherals on the LXBus (such as USIC or MultiCAN). The  
system bus allows concurrent two-way communication for maximum transfer  
performance.  
Up to 64 Kbytes of on-chip Program SRAM (PSRAM) are provided to store user code  
or data. The PSRAM is accessed via the PMU and is therefore optimized for code  
fetches. A section of the PSRAM with programmable size can be write-protected.  
Note: The actual size of the PSRAM depends on the chosen derivative (see Table 1).  
16 Kbytes of on-chip Data SRAM (DSRAM) are provided as a storage for general user  
data. The DSRAM is accessed via a separate interface and is, therefore, optimized for  
data accesses.  
2 Kbytes of on-chip Dual-Port RAM (DPRAM) are provided as a storage for user  
defined variables, for the system stack, general purpose register banks. A register bank  
can consist of up to 16 word wide (R0 to R15) and/or byte wide (RL0, RH0, …, RL7, RH7)  
so-called General Purpose Registers (GPRs).  
The upper 256 bytes of the DPRAM are directly bit addressable. When used by a GPR,  
any location in the DPRAM is bit addressable.  
1 Kbyte of on-chip Stand-By SRAM (SBRAM) is provided as a storage for system-  
relevant user data that must be preserved while the major part of the device is powered  
down. The SBRAM is accessed via a specific interface and is powered via domain M.  
Data Sheet  
36  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Functional Description  
1024 bytes (2 × 512 bytes) of the address space are reserved for the Special Function  
Register areas (SFR space and ESFR space). SFRs are word wide registers which are  
used for controlling and monitoring functions of the different on-chip units. Unused SFR  
addresses are reserved for future members of the XC2000 Family. Therefore, they  
should either not be accessed, or written with zeros, to ensure upward compatibility.  
In order to meet the needs of designs where more memory is required than is provided  
on chip, up to 12 Mbytes (approximately, see Table 3) of external RAM and/or ROM can  
be connected to the microcontroller. The External Bus Interface also provides access to  
external peripherals.  
Up to 768 Kbytes of on-chip Flash memory store code, constant data, and control  
data. The on-chip Flash memory consists of up to 3 modules with a maximum capacity  
of 256 Kbytes each. Each module is organized in 4-Kbyte sectors. One 4-Kbyte sector  
of Flash module 0 is used internally to store operation control parameters and protection  
information.  
Note: The actual size of the Flash memory depends on the chosen derivative (see  
Table 1).  
Each sector can be separately write protected1), erased and programmed (in blocks of  
128 Bytes). The complete Flash area can be read-protected. A user-defined password  
sequence temporarily unlocks protected areas. The Flash modules combine 128-bit  
read accesses with protected and efficient writing algorithms for programming and  
erasing. Dynamic error correction provides extremely high read data security for all read  
accesses. Accesses to different Flash modules can be executed in parallel.  
For timing characteristics, please refer to Section 4.4.2, for further Flash parameters,  
please refer to Section 5.3.  
1) To save control bits, sectors are clustered for protection purposes, they remain separate for  
programming/erasing.  
Data Sheet  
37  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Functional Description  
3.2  
External Bus Controller  
All of the external memory accesses are performed by a particular on-chip External Bus  
Controller (EBC). The EBC also controls accesses to resources connected to the on-chip  
LXBus (MultiCAN and the USIC modules). The LXBus is an internal representation of  
the external bus and allows accessing integrated peripherals and modules in the same  
way as external components.  
The EBC can be programmed either to Single Chip Mode when no external memory is  
required, or to an external bus mode with the following possible selections1):  
Address Bus Width with a range of 0 … 24-bit  
Data Bus Width 8-bit or 16-bit  
Bus Operation Multiplexed or Demultiplexed  
The bus interface uses Port 10 and Port 2 for addresses and data. In the demultiplexed  
bus modes, the lower addresses are separately output on Port 0 and Port 1. The number  
of active segment address lines is selectable, restricting the external address space to  
8 Mbytes … 64 Kbytes. This is required when interface lines shall be assigned to Port 2.  
Up to 5 external CS signals (4 windows plus default) can be generated and output on  
Port 4 in order to save external glue logic. External modules can directly be connected  
to the common address/data bus and their individual select lines.  
A HOLD/HLDA protocol is available for bus arbitration and allows the sharing of external  
resources with other bus masters. The bus arbitration is enabled by software. After  
enabling, pins P3.0 … P3.2 (BREQ, HLDA, HOLD) are automatically controlled by the  
EBC. In Master Mode (default after reset) the HLDA pin is an output. In Slave Mode pin  
HLDA is switched to input. This allows the direct connection of the slave controller to  
another master controller without glue logic.  
Important timing characteristics of the external bus interface have been made  
programmable (via registers TCONCSx/FCONCSx) to allow the user the adaption of a  
wide range of different types of memories and external peripherals.  
Access to very slow memories or modules with varying access times is supported via a  
particular ‘Ready’ function. The active level of the control input signal is selectable.  
In addition, up to 4 independent address windows may be defined (via registers  
ADDRSELx) which control accesses to resources with different bus characteristics.  
These address windows are arranged hierarchically where window 4 overrides  
window 3, and window 2 overrides window 1. All accesses to locations not covered by  
these 4 address windows are controlled by TCONCS0/FCONCS0. The currently active  
window can generate a chip select signal.  
The external bus timing is related to the rising edge of the reference clock output  
CLKOUT. The external bus protocol is compatible with that of the standard C166 Family.  
1) Bus modes are switched dynamically if several address windows with different mode settings are used.  
Data Sheet  
38  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Functional Description  
3.3  
Central Processing Unit (CPU)  
The main core of the CPU consists of a 5-stage execution pipeline with a 2-stage  
instruction-fetch pipeline, a 16-bit arithmetic and logic unit (ALU), a 32-bit/40-bit multiply  
and accumulate unit (MAC), a register-file providing three register banks, and dedicated  
SFRs. The ALU features a multiply and divide unit, a bit-mask generator, and a barrel  
shifter.  
PSRAM  
Flash/ROM  
PMU  
CPU  
Prefetch  
CSP  
IP  
VECSEG  
TFR  
2-Stage  
Prefetch  
Pipeline  
Unit  
CPUCON1  
CPUCON2  
Branch  
Unit  
5-Stage  
Pipeline  
Injection/  
Exception  
Handler  
DPRAM  
Return  
Stack  
FIFO  
IFU  
DPP0  
IPIP  
IDX0  
IDX1  
QX0  
QX1  
QR0  
QR1  
SPSEG  
SP  
CP  
R15  
DPP1  
DPP2  
DPP3  
STKOV  
STKUN  
R15  
R14  
R14  
GPRs  
GPRs  
+/-  
+/-  
ADU  
s  
R1  
R0  
R1  
Division Unit  
Multiply Unit  
Bit-Mask-Gen.  
Barrel-Shifter  
R0  
Multiply  
Unit  
MRW  
R0  
R0  
MCW  
MSW  
MDC  
PSW  
RF  
+/-  
+/-  
MDH  
MDL  
ONES  
ALU  
DSRAM  
EBC  
Peripherals  
Buffer  
WB  
MAH  
MAL  
ZEROS  
MAC  
DMU  
mca04917_x.vsd  
Figure 4  
CPU Block Diagram  
Data Sheet  
39  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Functional Description  
Based on these hardware provisions, most of the XC228x’s instructions can be executed  
in just one machine cycle which requires 15 ns at 66 MHz CPU clock. For example, shift  
and rotate instructions are always processed during one machine cycle independent of  
the number of bits to be shifted. Also multiplication and most MAC instructions execute  
in one single cycle. All multiple-cycle instructions have been optimized so that they can  
be executed very fast as well: for example, a 32-/16-bit division is started within 4 cycles,  
while the remaining cycles are executed in the background. Another pipeline  
optimization, the branch target prediction, allows eliminating the execution time of  
branch instructions if the prediction was correct.  
The CPU has a register context consisting of up to three register banks with 16 word  
wide GPRs each at its disposal. One of these register banks is physically allocated within  
the on-chip DPRAM area. A Context Pointer (CP) register determines the base address  
of the active register bank to be accessed by the CPU at any time. The number of these  
register bank copies is only restricted by the available internal RAM space. For easy  
parameter passing, a register bank may overlap others.  
A system stack of up to 32 Kwords is provided as a storage for temporary data. The  
system stack can be allocated to any location within the address space (preferably in the  
on-chip RAM area), and it is accessed by the CPU via the stack pointer (SP) register.  
Two separate SFRs, STKOV and STKUN, are implicitly compared against the stack  
pointer value upon each stack access for the detection of a stack overflow or underflow.  
The high performance offered by the hardware implementation of the CPU can efficiently  
be utilized by a programmer via the highly efficient XC228x instruction set which includes  
the following instruction classes:  
Standard Arithmetic Instructions  
DSP-Oriented Arithmetic Instructions  
Logical Instructions  
Boolean Bit Manipulation Instructions  
Compare and Loop Control Instructions  
Shift and Rotate Instructions  
Prioritize Instruction  
Data Movement Instructions  
System Stack Instructions  
Jump and Call Instructions  
Return Instructions  
System Control Instructions  
Miscellaneous Instructions  
The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes  
and words. A variety of direct, indirect or immediate addressing modes are provided to  
specify the required operands.  
Data Sheet  
40  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Functional Description  
3.4  
Interrupt System  
With an interrupt response time of typically 8 CPU clocks (in case of internal program  
execution), the XC228x is capable of reacting very fast to the occurrence of non-  
deterministic events.  
The architecture of the XC228x supports several mechanisms for fast and flexible  
response to service requests that can be generated from various sources internal or  
external to the microcontroller. Any of these interrupt requests can be programmed to  
being serviced by the Interrupt Controller or by the Peripheral Event Controller (PEC).  
In contrast to a standard interrupt service where the current program execution is  
suspended and a branch to the interrupt vector table is performed, just one cycle is  
‘stolen’ from the current CPU activity to perform a PEC service. A PEC service implies a  
single byte or word data transfer between any two memory locations with an additional  
increment of either the PEC source, or the destination pointer, or both. An individual PEC  
transfer counter is implicitly decremented for each PEC service except when performing  
in the continuous transfer mode. When this counter reaches zero, a standard interrupt is  
performed to the corresponding source related vector location. PEC services are very  
well suited, for example, for supporting the transmission or reception of blocks of data.  
The XC228x has 8 PEC channels each of which offers such fast interrupt-driven data  
transfer capabilities.  
A separate control register which contains an interrupt request flag, an interrupt enable  
flag and an interrupt priority bit field exists for each of the possible interrupt nodes. Via  
its related register, each node can be programmed to one of sixteen interrupt priority  
levels. Once having been accepted by the CPU, an interrupt service can only be  
interrupted by a higher prioritized service request. For the standard interrupt processing,  
each of the possible interrupt nodes has a dedicated vector location.  
Fast external interrupt inputs are provided to service external interrupts with high  
precision requirements. These fast interrupt inputs feature programmable edge  
detection (rising edge, falling edge, or both edges).  
Software interrupts are supported by means of the ‘TRAP’ instruction in combination with  
an individual trap (interrupt) number.  
Table 4 shows all of the possible XC228x interrupt sources and the corresponding  
hardware-related interrupt flags, vectors, vector locations and trap (interrupt) numbers.  
Note: Interrupt nodes which are not assigned to peripherals (unassigned nodes), may  
be used to generate software controlled interrupt requests by setting the  
respective interrupt request bit (xIR).  
Data Sheet  
41  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Table 4  
Functional Description  
XC228x Interrupt Nodes  
Source of Interrupt or PEC  
Service Request  
Control  
Register  
Vector  
Trap  
Number  
Location1)  
CAPCOM Register 16, or  
ERU Request 0  
CC2_CC16IC  
CC2_CC17IC  
CC2_CC18IC  
CC2_CC19IC  
CC2_CC20IC  
CC2_CC21IC  
CC2_CC22IC  
CC2_CC23IC  
CC2_CC24IC  
CC2_CC25IC  
CC2_CC26IC  
CC2_CC27IC  
CC2_CC28IC  
CC2_CC29IC  
xx’0040H  
xx’0044H  
xx’0048H  
xx’004CH  
xx’0050H  
xx’0054H  
xx’0058H  
xx’005CH  
xx’0060H  
xx’0064H  
xx’0068H  
xx’006CH  
xx’0070H  
xx’0074H  
10H / 16D  
11H / 17D  
12H / 18D  
13H / 19D  
14H / 20D  
15H / 21D  
16H / 22D  
17H / 23D  
18H / 24D  
19H / 25D  
1AH / 26D  
1BH / 27D  
1CH / 28D  
1DH / 29D  
CAPCOM Register 17, or  
ERU Request 1  
CAPCOM Register 18, or  
ERU Request 2  
CAPCOM Register 19, or  
ERU Request 3  
CAPCOM Register 20, or  
USIC0 Request 6  
CAPCOM Register 21, or  
USIC0 Request 7  
CAPCOM Register 22, or  
USIC1 Request 6  
CAPCOM Register 23, or  
USIC1 Request 7  
CAPCOM Register 24, or  
ERU Request 0  
CAPCOM Register 25, or  
ERU Request 1  
CAPCOM Register 26, or  
ERU Request 2  
CAPCOM Register 27, or  
ERU Request 3  
CAPCOM Register 28, or  
USIC2 Request 6  
CAPCOM Register 29, or  
USIC2 Request 7  
CAPCOM Register 30  
CAPCOM Register 31  
GPT1 Timer 2  
CC2_CC30IC  
CC2_CC31IC  
xx’0078H  
xx’007CH  
1EH / 30D  
1FH / 31D  
20H / 32D  
21H / 33D  
22H / 34D  
GPT12E_T2IC xx’0080H  
GPT12E_T3IC xx’0084H  
GPT12E_T4IC xx’0088H  
GPT1 Timer 3  
GPT1 Timer 4  
Data Sheet  
42  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Table 4  
Functional Description  
XC228x Interrupt Nodes (cont’d)  
Source of Interrupt or PEC  
Service Request  
Control  
Register  
Vector  
Trap  
Number  
Location1)  
GPT2 Timer 5  
GPT12E_T5IC xx’008CH  
GPT12E_T6IC xx’0090H  
GPT12E_CRIC xx’0094H  
23H / 35D  
24H / 36D  
25H / 37D  
26H / 38D  
27H / 39D  
28H / 40D  
29H / 41D  
2AH / 42D  
2BH / 43D  
2CH / 44D  
2DH / 45D  
2EH / 46D  
2FH / 47D  
30H / 48D  
31H / 49D  
32H / 50D  
33H / 51D  
34H / 52D  
35H / 53D  
36H / 54D  
37H / 55D  
38H / 56D  
39H / 57D  
3AH / 58D  
3BH / 59D  
3CH / 60D  
3DH / 61D  
3EH / 62D  
3FH / 63D  
40H / 64D  
GPT2 Timer 6  
GPT2 CAPREL Register  
CAPCOM Timer 7  
CC2_T7IC  
CC2_T8IC  
ADC_0IC  
xx’0098H  
xx’009CH  
xx’00A0H  
xx’00A4H  
xx’00A8H  
xx’00ACH  
xx’00B0H  
xx’00B4H  
xx’00B8H  
xx’00BCH  
xx’00C0H  
xx’00C4H  
xx’00C8H  
xx’00CCH  
xx’00D0H  
xx’00D4H  
xx’00D8H  
xx’00DCH  
xx’00E0H  
xx’00E4H  
xx’00E8H  
xx’00ECH  
xx’00F0H  
xx’00F4H  
xx’00F8H  
xx’00FCH  
xx’0100H  
CAPCOM Timer 8  
A/D Converter Request 0  
A/D Converter Request 1  
A/D Converter Request 2  
A/D Converter Request 3  
A/D Converter Request 4  
A/D Converter Request 5  
A/D Converter Request 6  
A/D Converter Request 7  
CCU60 Request 0  
CCU60 Request 1  
CCU60 Request 2  
CCU60 Request 3  
CCU61 Request 0  
CCU61 Request 1  
CCU61 Request 2  
CCU61 Request 3  
CCU62 Request 0  
CCU62 Request 1  
CCU62 Request 2  
CCU62 Request 3  
CCU63 Request 0  
CCU63 Request 1  
CCU63 Request 2  
CCU63 Request 3  
CAN Request 0  
ADC_1IC  
ADC_2IC  
ADC_3IC  
ADC_4IC  
ADC_5IC  
ADC_6IC  
ADC_7IC  
CCU60_0IC  
CCU60_1IC  
CCU60_2IC  
CCU60_3IC  
CCU61_0IC  
CCU61_1IC  
CCU61_2IC  
CCU61_3IC  
CCU62_0IC  
CCU62_1IC  
CCU62_2IC  
CCU62_3IC  
CCU63_0IC  
CCU63_1IC  
CCU63_2IC  
CCU63_3IC  
CAN_0IC  
Data Sheet  
43  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Table 4  
Functional Description  
XC228x Interrupt Nodes (cont’d)  
Source of Interrupt or PEC  
Service Request  
Control  
Register  
Vector  
Trap  
Number  
Location1)  
CAN Request 1  
CAN Request 2  
CAN Request 3  
CAN Request 4  
CAN Request 5  
CAN Request 6  
CAN Request 7  
CAN Request 8  
CAN Request 9  
CAN Request 10  
CAN Request 11  
CAN Request 12  
CAN Request 13  
CAN Request 14  
CAN Request 15  
USIC0 Request 0  
USIC0 Request 1  
USIC0 Request 2  
USIC0 Request 3  
USIC0 Request 4  
USIC0 Request 5  
USIC1 Request 0  
USIC1 Request 1  
USIC1 Request 2  
USIC1 Request 3  
USIC1 Request 4  
USIC1 Request 5  
USIC2 Request 0  
USIC2 Request 1  
USIC2 Request 2  
CAN_1IC  
CAN_2IC  
CAN_3IC  
CAN_4IC  
CAN_5IC  
CAN_6IC  
CAN_7IC  
CAN_8IC  
CAN_9IC  
CAN_10IC  
CAN_11IC  
CAN_12IC  
CAN_13IC  
CAN_14IC  
CAN_15IC  
U0C0_0IC  
U0C0_1IC  
U0C0_2IC  
U0C1_0IC  
U0C1_1IC  
U0C1_2IC  
U1C0_0IC  
U1C0_1IC  
U1C0_2IC  
U1C1_0IC  
U1C1_1IC  
U1C1_2IC  
U2C0_0IC  
U2C0_1IC  
U2C0_2IC  
xx’0104H  
xx’0108H  
xx’010CH  
xx’0110H  
xx’0114H  
xx’0118H  
xx’011CH  
xx’0120H  
xx’0124H  
xx’0128H  
xx’012CH  
xx’0130H  
xx’0134H  
xx’0138H  
xx’013CH  
xx’0140H  
xx’0144H  
xx’0148H  
xx’014CH  
xx’0150H  
xx’0154H  
xx’0158H  
xx’015CH  
xx’0160H  
xx’0164H  
xx’0168H  
xx’016CH  
xx’0170H  
xx’0174H  
xx’0178H  
41H / 65D  
42H / 66D  
43H / 67D  
44H / 68D  
45H / 69D  
46H / 70D  
47H / 71D  
48H / 72D  
49H / 73D  
4AH / 74D  
4BH / 75D  
4CH / 76D  
4DH / 77D  
4EH / 78D  
4FH / 79D  
50H / 80D  
51H / 81D  
52H / 82D  
53H / 83D  
54H / 84D  
55H / 85D  
56H / 86D  
57H / 87D  
58H / 88D  
59H / 89D  
5AH / 90D  
5BH / 91D  
5CH / 92D  
5DH / 93D  
5EH / 94D  
Data Sheet  
44  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Table 4  
Functional Description  
XC228x Interrupt Nodes (cont’d)  
Source of Interrupt or PEC  
Service Request  
Control  
Register  
Vector  
Trap  
Number  
Location1)  
USIC2 Request 3  
USIC2 Request 4  
USIC2 Request 5  
Unassigned node  
Unassigned node  
Unassigned node  
Unassigned node  
Unassigned node  
Unassigned node  
Unassigned node  
Unassigned node  
Unassigned node  
SCU Request 1  
U2C1_0IC  
xx’017CH  
xx’0180H  
xx’0184H  
xx’0188H  
xx’018CH  
xx’0190H  
xx’0194H  
xx’0198H  
xx’019CH  
xx’01A0H  
xx’01A4H  
xx’01A8H  
xx’01ACH  
xx’01B0H  
xx’01B4H  
xx’01B8H  
xx’01BCH  
5FH / 95D  
60H / 96D  
U2C1_1IC  
U2C1_2IC  
61H / 97D  
62H / 98D  
63H / 99D  
64H / 100D  
65H / 101D  
66H / 102D  
67H / 103D  
68H / 104D  
69H / 105D  
6AH / 106D  
6BH / 107D  
6CH / 108D  
6DH / 109D  
6EH / 110D  
6FH / 111D  
SCU_1IC  
SCU_0IC  
PFM_IC  
RTC_IC  
EOPIC  
SCU Request 0  
Program Flash Modules  
RTC  
End of PEC Subchannel  
1) Register VECSEG defines the segment where the vector table is located to.  
Bitfield VECSC in register CPUCON1 defines the distance between two adjacent vectors. This table  
represents the default setting, with a distance of 4 (two words) between two vectors.  
Data Sheet  
45  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Functional Description  
The XC228x also provides an excellent mechanism to identify and to process exceptions  
or error conditions that arise during run-time, so-called ‘Hardware Traps’. Hardware  
traps cause immediate non-maskable system reaction which is similar to a standard  
interrupt service (branching to a dedicated vector table location). The occurrence of a  
hardware trap is additionally signified by an individual bit in the trap flag register (TFR).  
Except when another higher prioritized trap service is in progress, a hardware trap will  
interrupt any actual program execution. In turn, hardware trap services can normally not  
be interrupted by standard or PEC interrupts.  
Table 5 shows all of the possible exceptions or error conditions that can arise during run-  
time:  
Table 5  
Hardware Trap Summary  
Exception Condition  
Trap  
Flag  
Trap  
Vector  
Vector  
Trap  
Trap  
Location1) Number Priority  
Reset Functions  
RESET  
xx’0000H  
00H  
III  
Class A Hardware Traps:  
System Request 0  
Stack Overflow  
Stack Underflow  
Software Break  
SR0  
STKOF  
STKUF  
SR0TRAP  
STOTRAP  
STUTRAP  
xx’0008H  
xx’0010H  
xx’0018H  
02H  
04H  
06H  
08H  
II  
II  
II  
II  
SOFTBRK SBRKTRAP xx’0020H  
Class B Hardware Traps:  
System Request 1  
Undefined Opcode  
Memory Access Error  
Protected Instruction  
Fault  
SR1  
BTRAP  
xx’0028H  
xx’0028H  
xx’0028H  
xx’0028H  
0AH  
0AH  
0AH  
0AH  
I
I
I
I
UNDOPC BTRAP  
ACER  
PRTFLT  
BTRAP  
BTRAP  
Illegal Word Operand  
Access  
ILLOPA  
BTRAP  
xx’0028H  
0AH  
I
Reserved  
[2CH - 3CH] [0BH -  
0FH]  
Software Traps:  
Any  
Any  
Current  
CPU  
Priority  
TRAP Instruction  
[xx’0000H - [00H -  
xx’01FCH] 7FH]  
in steps of  
4H  
1) Register VECSEG defines the segment where the vector table is located to.  
Bitfield VECSC in register CPUCON1 defines the distance between two adjacent vectors. This table  
represents the default setting, with a distance of 4 (two words) between two vectors.  
Data Sheet  
46  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Functional Description  
3.5  
On-Chip Debug Support (OCDS)  
The On-Chip Debug Support system provides a broad range of debug and emulation  
features built into the XC228x. The user software running on the XC228x can thus be  
debugged within the target system environment.  
The OCDS is controlled by an external debugging device via the debug interface,  
consisting of the IEEE-1149-conforming JTAG port and a break interface. The debugger  
controls the OCDS via a set of dedicated registers accessible via the JTAG interface.  
Additionally, the OCDS system can be controlled by the CPU, e.g. by a monitor program.  
An injection interface allows the execution of OCDS-generated instructions by the CPU.  
Multiple breakpoints can be triggered by on-chip hardware, by software, or by an  
external trigger input. Single stepping is supported as well as the injection of arbitrary  
instructions and read/write access to the complete internal address space. A breakpoint  
trigger can be answered with a CPU-halt, a monitor call, a data transfer, or/and the  
activation of an external signal.  
Tracing data can be obtained via the JTAG interface or via the external bus interface for  
increased performance.  
The debug interface uses a set of 6 interface signals (4 JTAG lines, 2 optional break  
lines) to communicate with external circuitry.  
Data Sheet  
47  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Functional Description  
3.6  
Capture/Compare Unit (CAPCOM2)  
The CAPCOM2 unit supports generation and control of timing sequences on up to  
16 channels with a maximum resolution of 1 system clock cycle (8 cycles in staggered  
mode). The CAPCOM2 unit is typically used to handle high speed I/O tasks such as  
pulse and waveform generation, pulse width modulation (PWM), Digital to Analog (D/A)  
conversion, software timing, or time recording relative to external events.  
Two 16-bit timers (T7/T8) with reload registers provide two independent time bases for  
the capture/compare register array.  
The input clock for the timers is programmable to several prescaled values of the internal  
system clock, or may be derived from an overflow/underflow of timer T6 in module GPT2.  
This provides a wide range of variation for the timer period and resolution and allows  
precise adjustments to the application specific requirements. In addition, an external  
count input for CAPCOM2 timer T7 allows event scheduling for the capture/compare  
registers relative to external events.  
The capture/compare register array contains 16 dual purpose capture/compare  
registers, each of which may be individually allocated to either CAPCOM2 timer T7 or T8  
and programmed for capture or compare function.  
All registers of the CAPCOM2 module have each one port pin associated with it which  
serves as an input pin for triggering the capture function, or as an output pin to indicate  
the occurrence of a compare event.  
Table 6  
Compare Modes (CAPCOM2)  
Compare Modes  
Function  
Mode 0  
Interrupt-only compare mode;  
Several compare interrupts per timer period are possible  
Mode 1  
Mode 2  
Mode 3  
Pin toggles on each compare match;  
Several compare events per timer period are possible  
Interrupt-only compare mode;  
Only one compare interrupt per timer period is generated  
Pin set ‘1’ on match; pin reset ‘0’ on compare timer overflow;  
Only one compare event per timer period is generated  
Double Register  
Mode  
Two registers operate on one pin;  
Pin toggles on each compare match;  
Several compare events per timer period are possible  
Single Event Mode  
Generates single edges or pulses;  
Can be used with any compare mode  
When a capture/compare register has been selected for capture mode, the current  
contents of the allocated timer will be latched (‘captured’) into the capture/compare  
Data Sheet  
48  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Functional Description  
register in response to an external event at the port pin which is associated with this  
register. In addition, a specific interrupt request for this capture/compare register is  
generated. Either a positive, a negative, or both a positive and a negative external signal  
transition at the pin can be selected as the triggering event.  
The contents of all registers which have been selected for one of the five compare modes  
are continuously compared with the contents of the allocated timers.  
When a match occurs between the timer value and the value in a capture/compare  
register, specific actions will be taken based on the selected compare mode.  
Data Sheet  
49  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Functional Description  
Reload Reg.  
T7REL  
fCC  
T7  
T7IN  
T6OUF  
Input  
Control  
Timer T7  
T7IRQ  
CCxIO  
CCxIO  
CCxIRQ  
CCxIRQ  
Mode  
Control  
(Capture  
or  
Sixteen  
16-bit  
Capture/  
Compare  
Registers  
Compare)  
CCxIO  
CCxIRQ  
T8IRQ  
T8  
Input  
fCC  
Timer T8  
T6OUF  
Control  
Reload Reg.  
T8REL  
CAPCOM2 provides channels x = 16 … 31.  
(see signals CCxIO and CCxIRQ)  
MCB05569_2  
Figure 5  
CAPCOM2 Unit Block Diagram  
Data Sheet  
50  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Functional Description  
3.7  
Capture/Compare Units CCU6x  
The XC228x features up to four CCU6 units (CCU60, CCU61, CCU62, CCU63).  
The CCU6 is a high-resolution capture and compare unit with application specific modes.  
It provides inputs to start the timers synchronously, an important feature in devices with  
several CCU6 modules.  
The module provides two independent timers (T12, T13), that can be used for PWM  
generation, especially for AC-motor control. Additionally, special control modes for block  
commutation and multi-phase machines are supported.  
Timer 12 Features  
Three capture/compare channels, each channel can be used either as capture or as  
compare channel.  
Generation of a three-phase PWM supported (six outputs, individual signals for high-  
side and low-side switches)  
16 bit resolution, maximum count frequency = peripheral clock  
Dead-time control for each channel to avoid short-circuits in the power stage  
Concurrent update of the required T12/13 registers  
Center-aligned and edge-aligned PWM can be generated  
Single-shot mode supported  
Many interrupt request sources  
Hysteresis-like control mode  
Automatic start on an HW event (T12HR, for synchronization purposes)  
Timer 13 Features  
One independent compare channel with one output  
16 bit resolution, maximum count frequency = peripheral clock  
Can be synchronized to T12  
Interrupt generation at period-match and compare-match  
Single-shot mode supported  
Automatic start on an HW event (T13HR, for synchronization purposes)  
Additional Features  
Block commutation for Brushless DC-drives implemented  
Position detection via Hall-sensor pattern  
Automatic rotational speed measurement for block commutation  
Integrated error handling  
Fast emergency stop without CPU load via external signal (CTRAP)  
Control modes for multi-channel AC-drives  
Output levels can be selected and adapted to the power stage  
Data Sheet  
51  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Functional Description  
CCU6 Module Kernel  
fSYS  
compare  
Channel 0  
T12 Channel 1  
Channel 2  
1
Dead-  
time  
Control  
Multi-  
channel  
Control  
Trap  
Control  
TxHR  
1
1
start  
Interrupts  
T13 Channel 3  
compare  
1
3
2
2
2
3
1
Input / Output Control  
mc_ccu6_blockdiagram.vsd  
Figure 6  
CCU6 Block Diagram  
Timer T12 can work in capture and/or compare mode for its three channels. The modes  
can also be combined. Timer T13 can work in compare mode only. The multi-channel  
control unit generates output patterns that can be modulated by timer T12 and/or timer  
T13. The modulation sources can be selected and combined for the signal modulation.  
Data Sheet  
52  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Functional Description  
3.8  
General Purpose Timer (GPT12E) Unit  
The GPT12E unit represents a very flexible multifunctional timer/counter structure which  
may be used for many different time related tasks such as event timing and counting,  
pulse width and duty cycle measurements, pulse generation, or pulse multiplication.  
The GPT12E unit incorporates five 16-bit timers which are organized in two separate  
modules, GPT1 and GPT2. Each timer in each module may operate independently in a  
number of different modes, or may be concatenated with another timer of the same  
module.  
Each of the three timers T2, T3, T4 of module GPT1 can be configured individually for  
one of four basic modes of operation, which are Timer, Gated Timer, Counter, and  
Incremental Interface Mode. In Timer Mode, the input clock for a timer is derived from  
the system clock, divided by a programmable prescaler, while Counter Mode allows a  
timer to be clocked in reference to external events.  
Pulse width or duty cycle measurement is supported in Gated Timer Mode, where the  
operation of a timer is controlled by the ‘gate’ level on an external input pin. For these  
purposes, each timer has one associated port pin (TxIN) which serves as gate or clock  
input. The maximum resolution of the timers in module GPT1 is 4 system clock cycles.  
The count direction (up/down) for each timer is programmable by software or may  
additionally be altered dynamically by an external signal on a port pin (TxEUD) to  
facilitate e.g. position tracking.  
In Incremental Interface Mode the GPT1 timers (T2, T3, T4) can be directly connected  
to the incremental position sensor signals A and B via their respective inputs TxIN and  
TxEUD. Direction and count signals are internally derived from these two input signals,  
so the contents of the respective timer Tx corresponds to the sensor position. The third  
position sensor signal TOP0 can be connected to an interrupt input.  
Timer T3 has an output toggle latch (T3OTL) which changes its state on each timer  
overflow/underflow. The state of this latch may be output on pin T3OUT e.g. for time out  
monitoring of external hardware components. It may also be used internally to clock  
timers T2 and T4 for measuring long time periods with high resolution.  
In addition to their basic operating modes, timers T2 and T4 may be configured as reload  
or capture registers for timer T3. When used as capture or reload registers, timers T2  
and T4 are stopped. The contents of timer T3 is captured into T2 or T4 in response to a  
signal at their associated input pins (TxIN). Timer T3 is reloaded with the contents of T2  
or T4 triggered either by an external signal or by a selectable state transition of its toggle  
latch T3OTL. When both T2 and T4 are configured to alternately reload T3 on opposite  
state transitions of T3OTL with the low and high times of a PWM signal, this signal can  
be constantly generated without software intervention.  
Data Sheet  
53  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Functional Description  
T3CON.BPS1  
2n:1  
Basic Clock  
fGPT  
Interrupt  
Request  
(T2IRQ)  
Aux. Timer T2  
U/D  
T2IN  
T2  
Mode  
Control  
Reload  
T2EUD  
Capture  
Interrupt  
Request  
(T3IRQ)  
T3  
Mode  
Control  
Core Timer T3  
T3OTL  
Toggle  
Latch  
T3IN  
T3OUT  
U/D  
T3EUD  
Capture  
Reload  
T4IN  
T4  
Mode  
Control  
Interrupt  
Request  
(T4IRQ)  
Aux. Timer T4  
T4EUD  
U/D  
MCA05563  
Figure 7  
Block Diagram of GPT1  
Data Sheet  
54  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Functional Description  
With its maximum resolution of 2 system clock cycles, the GPT2 module provides  
precise event control and time measurement. It includes two timers (T5, T6) and a  
capture/reload register (CAPREL). Both timers can be clocked with an input clock which  
is derived from the CPU clock via a programmable prescaler or with external signals. The  
count direction (up/down) for each timer is programmable by software or may  
additionally be altered dynamically by an external signal on a port pin (TxEUD).  
Concatenation of the timers is supported via the output toggle latch (T6OTL) of timer T6,  
which changes its state on each timer overflow/underflow.  
The state of this latch may be used to clock timer T5, and/or it may be output on pin  
T6OUT. The overflows/underflows of timer T6 can additionally be used to clock the  
CAPCOM2 timers, and to cause a reload from the CAPREL register.  
The CAPREL register may capture the contents of timer T5 based on an external signal  
transition on the corresponding port pin (CAPIN), and timer T5 may optionally be cleared  
after the capture procedure. This allows the XC228x to measure absolute time  
differences or to perform pulse multiplication without software overhead.  
The capture trigger (timer T5 to CAPREL) may also be generated upon transitions of  
GPT1 timer T3’s inputs T3IN and/or T3EUD. This is especially advantageous when T3  
operates in Incremental Interface Mode.  
Data Sheet  
55  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Functional Description  
T6CON.BPS2  
2n:1  
Basic Clock  
fGPT  
Interrupt  
Request  
(T5IRQ)  
GPT2 Timer T5  
T5  
Mode  
Control  
U/D  
T5IN  
Clear  
Capture  
CAPIN  
GPT2 CAPREL  
CAPREL  
Mode  
Control  
Interrupt  
Request  
(CRIRQ)  
Reload  
Clear  
T3IN/  
T3EUD  
Interrupt  
Request  
(T6IRQ)  
Toggle  
FF  
GPT2 Timer T6  
T6OTL  
T6OUT  
T6OUF  
T6  
Mode  
Control  
U/D  
T6IN  
MCA05564  
Figure 8  
Block Diagram of GPT2  
Data Sheet  
56  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Functional Description  
3.9  
Real Time Clock  
The Real Time Clock (RTC) module of the XC228x can be clocked with a selectable  
clock signal from internal sources (oscillators or PLL) or external sources (pins).  
The RTC basically consists of a chain of divider blocks:  
Selectable 32:1 and 8:1 dividers (on - off)  
The reloadable 16-bit timer T14  
The 32-bit RTC timer block (accessible via registers RTCH and RTCL), made of:  
– a reloadable 10-bit timer  
– a reloadable 6-bit timer  
– a reloadable 6-bit timer  
– a reloadable 10-bit timer  
All timers count up. Each timer can generate an interrupt request. All requests are  
combined to a common node request.  
fRTC  
MUX  
:
32  
RUN  
RTCINT  
MUX  
Interrupt Sub Node  
: 8  
CNT  
INT0  
CNT  
INT1  
CNT  
INT2  
CNT  
INT3  
PRE  
REFCLK  
REL-Register  
T14REL  
10 Bits  
6 Bits  
6 Bits  
10 Bits  
fCNT  
T14  
10 Bits  
6 Bits  
6 Bits  
10 Bits  
T14-Register  
CNT-Register  
MCB05568B  
Figure 9  
RTC Block Diagram  
Note: The registers associated with the RTC are only affected by a power reset.  
Data Sheet  
57  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Functional Description  
The RTC module can be used for different purposes:  
System clock to determine the current time and date  
Cyclic time based interrupt, to provide a system time tick independent of CPU  
frequency and other resources  
48-bit timer for long term measurements  
Alarm interrupt upon a defined time  
Data Sheet  
58  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Functional Description  
3.10  
A/D Converters  
For analog signal measurement, up to two 10-bit A/D converters (ADC0, ADC1) with 16  
(or 8) multiplexed input channels including a sample and hold circuit have been  
integrated on-chip. They use the method of successive approximation. The sample time  
(for loading the capacitors) and the conversion time are programmable and can thus be  
adjusted to the external circuitry. The A/D converters can also operate in 8-bit conversion  
mode, where the conversion time is further reduced.  
Several independent conversion result registers, selectable interrupt requests, and  
highly flexible conversion sequences provide a high degree of programmability to fulfill  
the requirements of the respective application. Both modules can be synchronized to  
allow parallel sampling of two input channels.  
For applications that require more analog input channels, external analog multiplexers  
can be controlled automatically.  
For applications that require less analog input channels, the remaining channel inputs  
can be used as digital input port pins.  
The A/D converters of the XC228x support two types of request sources which can be  
triggered by several internal and external events.  
Parallel requests are activated at the same time and then executed in a predefined  
sequence.  
Queued requests are executed in a user-defined sequence.  
In addition, the conversion of a specific channel can be inserted into a running sequence  
without disturbing this sequence. All requests are arbitrated according to the priority level  
that has been assigned to them.  
Data reduction features, such as limit checking or result accumulation, reduce the  
number of required CPU accesses and so allow the precise evaluation of analog inputs  
(high conversion rate) even at low CPU speed.  
The Peripheral Event Controller (PEC) may be used to control the A/D converters or to  
automatically store conversion results into a table in memory for later evaluation, without  
requiring the overhead of entering and exiting interrupt routines for each data transfer.  
Therefore, each A/D converter contains 8 result registers which can be concatenated to  
build a result FIFO. Wait-for-read mode can be enabled for each result register to  
prevent loss of conversion data.  
In order to decouple analog inputs from digital noise and to avoid input trigger noise  
those pins used for analog input can be disconnected from the digital input stages under  
software control. This can be selected for each pin separately via registers P5_DIDIS  
and P15_DIDIS (Port x Digital Input Disable).  
The Auto-Power-Down feature of the A/D converters minimizes the power consumption  
when no conversion is in progress.  
Data Sheet  
59  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Functional Description  
3.11  
Universal Serial Interface Channel Modules (USIC)  
The XC228x features three USIC modules (USIC0, USIC1, USIC2), each providing two  
serial communication channels.  
The Universal Serial Interface Channel (USIC) module is based on a generic data shift  
and data storage structure which is identical for all supported serial communication  
protocols. Each channel supports complete full-duplex operation with a basic data buffer  
structure (one transmit buffer and two receive buffer stages). In addition, the data  
handling software can use FIFOs.  
The protocol part (generation of shift clock/data/control signals) is independent from the  
general part and is handled by protocol-specific preprocessors (PPPs).  
The USIC’s input/output lines are connected to pins by a pin routing unit, so the inputs  
and outputs of each USIC channel can be assigned to different interface pins providing  
great flexibility to the application software. All assignments can be done during runtime.  
Bus  
Buffer & Shift Structure Protocol Preprocessors  
Pins  
Control 0  
PPP_A  
PPP_B  
PPP_C  
PPP_D  
DBU  
0
DSU  
0
Control 1  
PPP_A  
PPP_B  
PPP_C  
PPP_D  
DBU  
1
DSU  
1
fsys  
Fractional  
Dividers  
Baud rate  
Generators  
USIC_basic.vsd  
Figure 10  
General Structure of a USIC Module  
The regular structure of the USIC module brings the following advantages:  
Higher flexibility through configuration with same look-and-feel for data management  
Reduced complexity for low-level drivers serving different protocols  
Wide range of protocols, but improved performances (baud rate, buffer handling)  
Data Sheet  
60  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Functional Description  
Target Protocols  
Each USIC channel can receive and transmit data frames with a selectable data word  
width from 1 to 16 bits in each of the following protocols:  
UART (asynchronous serial channel)  
– maximum baud rate: fSYS / 4  
– data frame length programmable from 1 to 63 bits  
– MSB or LSB first  
LIN Support (Local Interconnect Network)  
– maximum baud rate: fSYS / 16  
– checksum generation under software control  
– baud rate detection possible by built-in capture event of baud rate generator  
SSC/SPI/QSPI (synchronous serial channel with or without data buffer)  
– maximum baud rate in slave mode: fSYS  
– maximum baud rate in master mode: fSYS / 2  
– number of data bits programmable from 1 to 63, more with explicit stop condition  
– MSB or LSB first  
– optional control of slave select signals  
IIC (Inter-IC Bus)  
– supports baud rates of 100 kbit/s and 400 kbit/s  
IIS (Inter-IC Sound Bus)  
– maximum baud rate: fSYS / 2 for transmitter, fSYS for receiver  
Note: Depending on the selected functions (such as digital filters, input synchronization  
stages, sample point adjustment, etc.), the maximum reachable baud rate can be  
limited. Please also take care about additional delays, such as internal or external  
propagation delays and driver delays (e.g. for collision detection in UART mode,  
for IIC, etc.).  
Data Sheet  
61  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Functional Description  
3.12  
MultiCAN Module  
The MultiCAN module contains up to five independently operating CAN nodes with Full-  
CAN functionality which are able to exchange Data and Remote Frames via a gateway  
function. Transmission and reception of CAN frames is handled in accordance with CAN  
specification V2.0 B (active). Each CAN node can receive and transmit standard frames  
with 11-bit identifiers as well as extended frames with 29-bit identifiers.  
All CAN nodes share a common set of 128 message objects. Each message object can  
be individually allocated to one of the CAN nodes. Besides serving as a storage  
container for incoming and outgoing frames, message objects can be combined to build  
gateways between the CAN nodes or to setup a FIFO buffer.  
The message objects are organized in double-chained linked lists, where each CAN  
node has its own list of message objects. A CAN node stores frames only into message  
objects that are allocated to its own message object list, and it transmits only messages  
belonging to this message object list. A powerful, command-driven list controller  
performs all message object list operations.  
MultiCAN Module Kernel  
TXDC4  
CAN  
Node 4  
RXDC4  
Clock  
Control  
fCAN  
.
.
.
.
.
.
.
.
.
Message  
Object  
Buffer  
Linked  
List  
Control  
Address  
Decoder  
Port  
Control  
TXDC1  
RXDC1  
CAN  
Node 1  
128  
Objects  
TXDC0  
RXDC0  
CAN  
Node 0  
Interrupt  
Control  
CAN Control  
mc_mcan_block5.vsd  
Figure 11  
Block Diagram of MultiCAN Module  
Data Sheet  
62  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Functional Description  
MultiCAN Features  
CAN functionality conforms to CAN specification V2.0 B active for each CAN node  
(compliant to ISO 11898)  
Up to five independent CAN nodes  
128 independent message objects (shared by the CAN nodes)  
Dedicated control registers for each CAN node  
Data transfer rate up to 1 Mbit/s, individually programmable for each node  
Flexible and powerful message transfer control and error handling capabilities  
Full-CAN functionality for message objects:  
– Can be assigned to one of the CAN nodes  
– Configurable as transmit or receive objects, or as message buffer FIFO  
– Handle 11-bit or 29-bit identifiers with programmable acceptance mask for filtering  
– Remote Monitoring Mode, and frame counter for monitoring  
Automatic Gateway Mode support  
16 individually programmable interrupt nodes  
Analyzer mode for CAN bus monitoring  
Data Sheet  
63  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Functional Description  
3.13  
Watchdog Timer  
The Watchdog Timer represents one of the fail-safe mechanisms which have been  
implemented to prevent the controller from malfunctioning for longer periods of time.  
The Watchdog Timer is always enabled after a reset of the chip, and can be disabled  
and enabled at any time by executing instructions DISWDT and ENWDT. Thus, the  
chip’s start-up procedure is always monitored. The software has to be designed to  
service the Watchdog Timer before it overflows. If, due to hardware or software related  
failures, the software fails to do so, the Watchdog Timer overflows and generates a  
prewarning interrupt and then a reset request.  
The Watchdog Timer is a 16-bit timer, clocked with the system clock divided by 16,384  
or 256. The Watchdog Timer register is set to a prespecified reload value (stored in  
WDTREL) in order to allow further variation of the monitored time interval. Each time it  
is serviced by the application software, the Watchdog Timer is reloaded and the  
prescaler is cleared.  
Thus, time intervals between 3.9 µs and 16.3 s can be monitored (@ 66 MHz).  
The default Watchdog Timer interval after power-up is 6.5 ms (@ 10 MHz).  
Data Sheet  
64  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Functional Description  
3.14  
Clock Generation  
The Clock Generation Unit can generate the system clock signal fSYS for the XC228x with  
high flexibility from several external or internal clock sources.  
External clock signals on pad- or core-voltage level  
External crystal controlled by on-chip oscillator  
On-chip oscillator (IOSC) for operation without crystal  
Wake-up oscillator (ultra-low power) to further reduce power consumption  
The programmable on-chip PLL with multiple prescalers generates a clock signal for  
maximum system performance from standard crystals or from the on-chip oscillator. See  
also Section 4.4.1.  
The Oscillator Watchdog (OWD) generates an interrupt if the crystal oscillator frequency  
falls below a certain limit or stops completely. In this case, the system can be supplied  
with an emergency clock to enable operation even after an external clock failure.  
All available clock signals can also be output on one of two selectable pins.  
Data Sheet  
65  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Functional Description  
3.15  
Parallel Ports  
The XC228x provides up to 118 I/O lines which are organized into 11 input/output ports  
and 2 input ports. All port lines are bit-addressable, and all input/output lines can be  
individually (bit-wise) configured via port control registers. This configuration selects the  
direction (input/output), push/pull or open-drain operation, activation of pull devices, and  
edge characteristics (shape) and driver characteristics (output current) of the port  
drivers. The I/O ports are true bidirectional ports which are switched to high impedance  
state when configured as inputs. During the internal reset, all port pins are configured as  
inputs without pull devices active.  
All port lines have programmable alternate input or output functions associated with  
them. These alternate functions can be assigned to various port pins to support the  
optimal utilization for a given application. For this reason, certain functions appear  
several times in Table 7.  
All port lines that are not used for these alternate functions may be used as general  
purpose I/O lines.  
Table 7  
Summary of the XC228x’s Parallel Ports  
Port  
Width  
Alternate Functions  
Port 0  
8
Address lines,  
Serial interface lines of USIC1, CAN0, and CAN1,  
Input/Output lines for CCU61  
Port 1  
Port 2  
8
Address lines,  
Serial interface lines of USIC1 and USIC2,  
Input/Output lines for CCU62,  
OCDS control, interrupts  
13  
Address and/or data lines, bus control,  
Serial interface lines of USIC0, CAN0, and CAN1,  
Input/Output lines for CCU60, CCU63, and CAPCOM2,  
Timer control signals,  
JTAG, interrupts, system clock output  
Port 3  
Port 4  
8
8
Bus arbitration signals,  
Serial interface lines of USIC0, USIC2, CAN3, and CAN4  
Chip select signals,  
Serial interface lines of CAN2,  
Input/Output lines for CAPCOM2,  
Timer control signals  
Data Sheet  
66  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Table 7  
Functional Description  
Summary of the XC228x’s Parallel Ports (cont’d)  
Port  
Width  
Alternate Functions  
Port 5  
16  
Analog input channels to ADC0,  
Input/Output lines for CCU6x,  
Timer control signals,  
JTAG, OCDS control, interrupts  
Port 6  
Port 7  
4
ADC control lines,  
Serial interface lines of USIC1,  
Timer control signals,  
OCDS control  
5
ADC control lines,  
Serial interface lines of USIC0 and CAN4,  
Input/Output lines for CCU62,  
Timer control signals,  
JTAG, OCDS control,system clock output  
Port 8  
Port 9  
7
8
Input/Output lines for CCU60,  
JTAG, OCDS control  
Serial interface lines of USIC2,  
Input/Output lines for CCU60 and CCU63,  
OCDS control  
Port 10  
16  
Address and/or data lines, bus control,  
Serial interface lines of USIC0, USIC1, CAN2, CAN3, and CAN4,  
Input/Output lines for CCU60,  
JTAG, OCDS control  
Port 11  
Port 15  
6
8
Input/Output lines for CCU63  
Analog input channels to ADC1,  
Timer control signals  
Data Sheet  
67  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Functional Description  
3.16  
Power Management  
The XC228x provides several means to control the power it consumes either at a given  
time or averaged over a certain timespan. Three mechanisms can be used (partly in  
parallel):  
Supply Voltage Management allows the temporary reduction of the supply voltage  
of major parts of the logic, or even the complete disconnection. This drastically  
reduces the power consumed because of leakage current, in particular at high  
temperature.  
Several power reduction modes provide the optimal balance of power reduction and  
wake-up time.  
Clock Generation Management controls the frequency of internal and external  
clock signals. While the clock signals for currently inactive parts of logic are disabled  
automatically, the user can reduce the XC228x’s system clock frequency which  
drastically reduces the consumed power.  
External circuitry can be controlled via the programmable frequency output EXTCLK.  
Peripheral Management permits temporary disabling of peripheral modules. Each  
peripheral can separately be disabled/enabled. Also the CPU can be switched off  
while the peripherals can continue to operate.  
Wake-up from power reduction modes can be triggered either externally by signals  
generated by the external system, or internally by the on-chip wake-up timer, which  
supports intermittent operation of the XC228x by generating cyclic wake-up signals. This  
offers full performance to quickly react on action requests while the intermittent sleep  
phases greatly reduce the average power consumption of the system.  
Note: When selecting the supply voltage and the clock source and generation method,  
the required parameters must be carefully written to the respective bitfields, to  
avoid unintended intermediate states. Recommended sequences are provided  
which ensure the intended operation of power supply system and clock system.  
Data Sheet  
68  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Functional Description  
3.17  
Instruction Set Summary  
Table 8 lists the instructions of the XC228x in a condensed way.  
The various addressing modes that can be used with a specific instruction, the operation  
of the instructions, parameters for conditional execution of instructions, and the opcodes  
for each instruction can be found in the “Instruction Set Manual”.  
This document also provides a detailed description of each instruction.  
Table 8  
Instruction Set Summary  
Description  
Mnemonic  
ADD(B)  
Bytes  
2 / 4  
2 / 4  
2 / 4  
2 / 4  
2
Add word (byte) operands  
ADDC(B)  
SUB(B)  
Add word (byte) operands with Carry  
Subtract word (byte) operands  
Subtract word (byte) operands with Carry  
SUBC(B)  
MUL(U)  
(Un)Signed multiply direct GPR by direct GPR  
(16- × 16-bit)  
DIV(U)  
(Un)Signed divide register MDL by direct GPR (16-/16-bit) 2  
(Un)Signed long divide reg. MD by direct GPR (32-/16-bit) 2  
DIVL(U)  
CPL(B)  
Complement direct word (byte) GPR  
Negate direct word (byte) GPR  
Bitwise AND, (word/byte operands)  
Bitwise OR, (word/byte operands)  
Bitwise exclusive OR, (word/byte operands)  
Clear/Set direct bit  
2
NEG(B)  
AND(B)  
OR(B)  
2
2 / 4  
2 / 4  
2 / 4  
2
XOR(B)  
BCLR/BSET  
BMOV(N)  
Move (negated) direct bit to direct bit  
4
BAND/BOR/BXOR AND/OR/XOR direct bit with direct bit  
4
BCMP  
Compare direct bit to direct bit  
4
BFLDH/BFLDL  
Bitwise modify masked high/low byte of bit-addressable  
direct word memory with immediate data  
4
CMP(B)  
CMPD1/2  
CMPI1/2  
PRIOR  
Compare word (byte) operands  
2 / 4  
Compare word data to GPR and decrement GPR by 1/2 2 / 4  
Compare word data to GPR and increment GPR by 1/2  
2 / 4  
2
Determine number of shift cycles to normalize direct  
word GPR and store result in direct word GPR  
SHL/SHR  
Data Sheet  
Shift left/right direct word GPR  
2
69  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Functional Description  
Table 8  
Mnemonic  
ROL/ROR  
ASHR  
Instruction Set Summary (cont’d)  
Description  
Bytes  
Rotate left/right direct word GPR  
2
Arithmetic (sign bit) shift right direct word GPR  
Move word (byte) data  
2
MOV(B)  
MOVBS/Z  
JMPA/I/R  
JMPS  
2 / 4  
Move byte operand to word op. with sign/zero extension 2 / 4  
Jump absolute/indirect/relative if condition is met  
Jump absolute to a code segment  
4
4
4
4
JB(C)  
Jump relative if direct bit is set (and clear bit)  
Jump relative if direct bit is not set (and set bit)  
JNB(S)  
CALLA/I/R  
CALLS  
Call absolute/indirect/relative subroutine if condition is met 4  
Call absolute subroutine in any code segment  
4
4
PCALL  
Push direct word register onto system stack and call  
absolute subroutine  
TRAP  
Call interrupt service routine via immediate trap number  
Push/pop direct word register onto/from system stack  
2
2
4
PUSH/POP  
SCXT  
Push direct word register onto system stack and update  
register with word operand  
RET(P)  
Return from intra-segment subroutine  
2
(and pop direct word register from system stack)  
RETS  
Return from inter-segment subroutine  
Return from interrupt service subroutine  
Software Break  
2
RETI  
2
SBRK  
SRST  
2
Software Reset  
4
IDLE  
Enter Idle Mode  
4
PWRDN  
SRVWDT  
Unused instruction1)  
4
Service Watchdog Timer  
4
DISWDT/ENWDT Disable/Enable Watchdog Timer  
4
EINIT  
End-of-Initialization Register Lock  
4
ATOMIC  
EXTR  
Begin ATOMIC sequence  
2
Begin EXTended Register sequence  
Begin EXTended Page (and Register) sequence  
Begin EXTended Segment (and Register) sequence  
2
EXTP(R)  
EXTS(R)  
2 / 4  
2 / 4  
Data Sheet  
70  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Functional Description  
Table 8  
Mnemonic  
NOP  
Instruction Set Summary (cont’d)  
Description  
Bytes  
Null operation  
2
4
4
4
4
CoMUL/CoMAC  
CoADD/CoSUB  
Co(A)SHR  
Multiply (and accumulate)  
Add/Subtract  
(Arithmetic) Shift right  
Shift left  
CoSHL  
CoLOAD/STORE  
CoCMP  
Load accumulator/Store MAC register  
Compare  
4
4
4
4
4
4
CoMAX/MIN  
CoABS/CoRND  
CoMOV  
Maximum/Minimum  
Absolute value/Round accumulator  
Data move  
CoNEG/NOP  
Negate accumulator/Null operation  
1) The Enter Power Down Mode instruction is not used in the XC228x, due to the enhanced power control  
scheme. PWRDN will be correctly decoded, but will trigger no action.  
Data Sheet  
71  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Electrical Parameters  
4
Electrical Parameters  
The operating range for the XC228x is defined by its electrical parameters. For proper  
operation the indicated limitations must be respected when designing a system.  
Attention: The parameters and values listed in the following sections of this  
Preliminary Data Sheet are preliminary and will be adjusted and  
amended after the complete device characterization has been  
completed.  
4.1  
General Parameters  
These parameters are valid for all subsequent descriptions, unless otherwise noted.  
Table 9  
Absolute Maximum Rating Parameters  
Symbol Values  
Parameter  
Unit Note /  
Test Condition  
Min.  
-65  
Typ.  
Max.  
150  
Storage temperature  
Junction temperature  
TST  
TJ  
°C  
°C  
V
-40  
150  
under bias  
Voltage on VDDI pins with VDDIM  
respect to ground (VSS)  
Voltage on VDDP pins with VDDPA  
,
-0.5  
1.65  
VDDI1  
,
-0.5  
-0.5  
-10  
6.0  
V
respect to ground (VSS)  
VDDPB  
Voltage on any pin with  
VIN  
VDDP  
+ 0.5  
V
VIN < VDDPmax  
respect to ground (VSS)  
Input current on any pin  
during overload condition  
10  
mA  
mA  
Absolute sum of all input  
currents during overload  
condition  
|100|  
Note: Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in  
the operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
During absolute maximum rating overload conditions (VIN > VDDP or VIN < VSS) the  
voltage on VDDP pins with respect to ground (VSS) must not exceed the values  
defined by the absolute maximum ratings.  
Data Sheet  
72  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Electrical Parameters  
Operating Conditions  
The following operating conditions must not be exceeded to ensure correct operation of  
the XC228x. All parameters specified in the following sections refer to these operating  
conditions, unless otherwise noticed.  
Table 10  
Operating Condition Parameters  
Symbol Values  
Parameter  
Unit Note /  
Test Condition  
Min.  
Typ.  
Max.  
Digital core supply voltage VDDI  
1.4  
1.6  
V
(if supplied externally)  
Core Supply Voltage  
Difference  
VDDI -10  
+10  
5.5  
mV VDDIM - VDDI1  
1)  
2)  
Digital supply voltage for VDDPA  
,
4.5  
V
IO pads and voltage  
VDDPB  
regulators,  
upper voltage range  
2)  
Digital supply voltage for VDDPA  
,
3.0  
4.5  
V
IO pads and voltage  
VDDPB  
regulators,  
lower voltage range  
3)  
Supply Voltage Difference VDD  
-0.5  
0
0
V
V
VDDP - VDDI  
Digital ground voltage  
VSS  
Reference  
voltage  
Overload current  
IOV  
-5  
-2  
5
5
mA Per IO pin4)5)  
mA Per analog input  
pin4)5)  
Overload positive current KOVA  
coupling factor for analog  
inputs6)  
1.0 ×  
I
I
I
I
OV > 0  
OV < 0  
OV > 0  
OV < 0  
10-4  
Overload negative current KOVA  
coupling factor for analog  
inputs6)  
1.5 ×  
10-3  
Overload positive current KOVD  
coupling factor for digital  
I/O pins6)  
5.0 ×  
10-3  
Overload negative current KOVD  
coupling factor for digital  
I/O pins6)  
1.0 ×  
10-2  
Data Sheet  
73  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Electrical Parameters  
Table 10  
Operating Condition Parameters (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
5)  
Absolute sum of overload Σ|IOV|  
currents  
50  
mA  
pF  
nF  
°C  
External Pin Load  
Capacitance  
CL  
20  
680  
Pin drivers in  
default mode7)  
Voltage Regulator Buffer CEVR  
Capacitance  
For each core  
domain8)  
Ambient temperature  
TA  
See Table 1  
1) In case both core power domains are clocked, the difference between the power supply voltages must be less  
than 10mV. This condition imposes additional constraints when using external power supplies. In order to  
supply both core power domains, two independent external voltage regulators may not be used. The simplest  
possibility is to supply both power domains directly via a single external power supply.  
2) Performance of pad drivers, A/D Converter, and Flash module depends on VDDP  
.
3) This limitation must be fulfilled under all operating conditions including power-ramp-up, power-ramp-down,  
and power-save modes, if VDDI is supplied externally.  
4) Overload conditions occur if the standard operating conditions are exceeded, i.e. the voltage on any pin  
exceeds the specified range: VOV > VIHmax (IOV > 0) or VOV < VILmin (IOV < 0). The absolute sum of input  
overload currents on all pins may not exceed 50 mA. The supply voltages must remain within the specified  
limits. Proper operation under overload conditions depends on the application.  
Overload conditions must not occur on pin XTAL1 (powered by VDDI).  
5) Not subject to production test - verified by design/characterization.  
6) An overload current (IOV) through a pin injects a certain error current (IINJ) into the adjacent pins. This error  
current adds to the respective pin’s leakage current (IOZ). The amount of error current depends on the overload  
current and is defined by the overload coupling factor KOV. The polarity of the injected error current is inverse  
compared to the polarity of the overload current that produces it.  
The total current through a pin is |ITOT| = |IOZ| + (|IOV| × KOV). The additional error current may distort the input  
voltage on analog inputs.  
7) The timing is valid for pin drivers operating in default current mode (selected after reset). Reducing the output  
current may lead to increased delays or reduced driving capability (CL).  
8) To ensure the stability of the voltage regulators each core voltage domain must be buffered with a ceramic  
capacitor. For domain M a 680 nF capacitor is recommended, for domain 1 three 220 nF capacitors are  
recommended. All buffer capacitors must be connected als close to the VDDI pins as possible to keep the  
resistance of the board tracks below 2 .  
Data Sheet  
74  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Electrical Parameters  
Parameter Interpretation  
The parameters listed in the following partly represent the characteristics of the XC228x  
and partly its demands on the system. To aid in interpreting the parameters right, when  
evaluating them for a design, they are marked in column “Symbol”:  
CC (Controller Characteristics):  
The logic of the XC228x will provide signals with the respective characteristics.  
SR (System Requirement):  
The external system must provide signals with the respective characteristics to the  
XC228x.  
Data Sheet  
75  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Electrical Parameters  
4.2  
DC Parameters  
These parameters are static or average values, which may be exceeded during  
switching transitions (e.g. output current).  
The XC228x can operate within a wide supply voltage range from 3.0 V to 5.5 V.  
However, during operation this supply voltage must not vary within the complete  
operating voltage range, but must remain within a certain band of 10% of the chosen  
nominal supply voltage.  
For this reason and because the electrical behaviour partly depends on the supply  
voltage, the parameters are specified twice for the upper and the lower voltage area.  
During operation, the supply voltages may only change with a maximum speed of  
dV/dt < 1 V/ms.  
The leakage currents strongly depend on the operating temperature and the actual  
voltage level at the respective pin. The maximum values given in the following tables  
apply under worst case conditions, i.e. maximum temperature and an input level equal  
to the supply voltage.  
The actual value for the leakage current can be determined by evaluating the respective  
leakage derating formula (see tables) using values from the actual application.  
The pads of the XC228x are designed to operate in various driver modes. The DC  
parameter specifications refer to the current limits given in Table 11.  
Table 11  
Current Limits for Port Output Drivers  
Port Output Driver  
Mode  
Maximum Output Current  
Nominal Output Current  
(IOLnom, -IOHnom  
VDDP 4.5 V VDDP < 4.5 V VDDP 4.5 V VDDP < 4.5 V  
1)  
(IOLmax, -IOHmax  
)
)
Strong driver  
Medium driver  
Weak driver  
10 mA  
4.0 mA  
0.5 mA  
10 mA  
2.5 mA  
0.5 mA  
2.5 mA  
1.0 mA  
0.1 mA  
2.5 mA  
1.0 mA  
0.1 mA  
1) An output current above |IOXnom| may be drawn from up to three pins at the same time.  
For any group of 16 neighboring output pins the total output current in each direction (ΣIOL and Σ-IOH) must  
remain below 50 mA.  
Data Sheet  
76  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Electrical Parameters  
4.2.1  
DC Parameters for Upper Voltage Area  
These parameters apply to the upper IO voltage area of 4.5 V VDDP 5.5 V.  
Table 12  
DC Characteristics for 4.5 V VDDP 5.5 V  
(Operating Conditions apply)1)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
VIL SR -0.3  
Max.  
Input low voltage  
(all except XTAL1)  
0.3 ×  
VDDP  
V
V
V
V
V
Input low voltage for  
XTAL1  
V
ILC SR -1.7 +  
0.3 ×  
VDDI  
VDDI  
Input high voltage  
(all except XTAL1)  
VIH SR 0.7 ×  
VDDP  
+ 0.3  
VDDP  
2)  
Input high voltage for  
XTAL1  
Input Hysteresis3)  
V
IHC SR 0.7 ×  
1.7  
VDDI  
HYS CC 0.11  
× VDDP  
V
DD in [V],  
Series  
resistance = 0 Ω  
4)  
Output low voltage  
Output low voltage  
Output high voltage6)  
VOL CC –  
VOL CC –  
1.0  
0.4  
V
V
V
IOL IOLmax  
4) 5)  
IOL IOLnom  
4)  
V
OH CC VDDP  
IOH IOHmax  
- 1.0  
4) 5)  
Output high voltage6)  
V
OH CC VDDP  
V
IOH IOHnom  
- 0.4  
Input leakage current  
(Port 5, Port 15)7)  
I
I
OZ1 CC –  
OZ2 CC –  
±200  
±2  
nA 0 V < VIN < VDDP  
Input leakage current  
(all other)7)8)  
±5  
µA TJ 110°C,  
0.45 V < VIN  
< VDDP  
Input leakage current  
(all other)7)8)  
I
OZ2 CC –  
±10  
±30  
µA TJ 150°C,  
0.45 V < VIN  
< VDDP  
Level inactive hold current ILHI  
Level active hold current ILHA  
-30  
µA VOUT VIHmin  
µA VOUT VILmax  
-220  
Data Sheet  
77  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Table 12  
Electrical Parameters  
DC Characteristics for 4.5 V VDDP 5.5 V (cont’d)  
(Operating Conditions apply)1)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
Typ.  
Max.  
±20  
10  
XTAL1 input current  
Pin capacitance9)  
IIL CC  
µA 0 V < VIN < VDDI  
CIO CC  
pF  
(digital inputs/outputs)  
1) Keeping signal levels within the limits specified in this table, ensures operation without overload conditions.  
For signal levels outside these specifications, also refer to the specification of the overload current IOV  
.
2) Overload conditions must not occur on pin XTAL1.  
3) Not subject to production test - verified by design/characterization. Hysteresis is implemented to avoid meta  
stable states and switching due to internal ground bounce. It cannot suppress switching due to external system  
noise under all conditions.  
4) The maximum deliverable output current of a port driver depends on the selected output driver mode, see  
Table 11, Current Limits for Port Output Drivers. The limit for pin groups must be respected.  
5) As a rule, with decreasing output current the output levels approach the respective supply level (VOLVSS,  
VOHVDDP). However, only the levels for nominal output currents are verified.  
6) This specification is not valid for outputs which are switched to open drain mode. In this case the respective  
output will float and the voltage results from the external circuitry.  
7) An additional error current (IINJ) will flow if an overload current flows through an adjacent pin. Please refer to  
the definition of the overload coupling factor KOV  
.
8) The given values are worst-case values. In the production test, this leakage current value is only tested at  
125°C, other values are ensured via correlation. For derating, please refer to the following descriptions:  
Leakage derating depending on temperature (TJ = junction temperature [°C]):  
I
OZ = 0.009 × e(0.054×TJ) [µA]. For example, at a temperature of 130°C the resulting leakage current is 10.07 µA.  
Leakage derating depending on voltage level (DV = VDDP - VPIN [V]):  
I
OZ = IOZtempmax - (1.6 × DV) [µA]  
The shown voltage derating formula is an approximation which applies for maximum temperature.  
Pin P2.8 is connected to two pads (additionally the high-speed clock pad), so it sees twice the normal leakage.  
9) Not subject to production test - verified by design/characterization.  
Pin P2.8 is connected to two pads (additionally the high-speed clock pad), so it sees twice the normal  
capacitance.  
Data Sheet  
78  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Electrical Parameters  
4.2.2  
DC Parameters for Lower Voltage Area  
These parameters apply to the lower IO voltage area of 3.0 V VDDP 4.5 V.  
Table 13  
DC Characteristics for 3.0 V VDDP 4.5 V  
(Operating Conditions apply)1)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
VIL SR -0.3  
Max.  
Input low voltage  
(all except XTAL1)  
0.3 ×  
VDDP  
V
V
V
V
V
Input low voltage for  
XTAL1  
V
ILC SR -1.7 +  
0.3 ×  
VDDI  
VDDI  
Input high voltage  
(all except XTAL1)  
VIH SR 0.7 ×  
VDDP  
+ 0.3  
VDDP  
2)  
Input high voltage for  
XTAL1  
Input Hysteresis3)  
V
IHC SR 0.7 ×  
1.7  
VDDI  
HYS CC 0.11  
× VDDP  
V
DD in [V],  
Series  
resistance = 0 Ω  
4)  
Output low voltage  
Output low voltage  
Output high voltage6)  
VOL CC –  
VOL CC –  
1.0  
0.4  
V
V
V
IOL IOLmax  
4) 5)  
IOL IOLnom  
4)  
V
OH CC VDDP  
IOH IOHmax  
- 1.0  
4) 5)  
Output high voltage6)  
V
OH CC VDDP  
V
IOH IOHnom  
- 0.4  
Input leakage current  
(Port 5, Port 15)7)  
I
I
OZ1 CC –  
OZ2 CC –  
±100  
±1  
nA 0 V < VIN < VDDP  
Input leakage current  
(all other)7)8)  
±2.5  
µA TJ 110°C,  
0.45 V < VIN  
< VDDP  
Input leakage current  
(all other)7)8)  
I
OZ2 CC –  
±5  
±15  
µA TJ 150°C,  
0.45 V < VIN  
< VDDP  
Level inactive hold current ILHI  
Level active hold current ILHA  
-10  
µA VOUT VIHmin  
µA VOUT VILmax  
-150  
Data Sheet  
79  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Table 13  
Electrical Parameters  
DC Characteristics for 3.0 V VDDP 4.5 V (cont’d)  
(Operating Conditions apply)1)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
Typ.  
Max.  
±20  
10  
XTAL1 input current  
Pin capacitance9)  
IIL CC  
µA 0 V < VIN < VDDI  
CIO CC  
pF  
(digital inputs/outputs)  
1) Keeping signal levels within the limits specified in this table, ensures operation without overload conditions.  
For signal levels outside these specifications, also refer to the specification of the overload current IOV  
.
2) Overload conditions must not occur on pin XTAL1.  
3) Not subject to production test - verified by design/characterization. Hysteresis is implemented to avoid meta  
stable states and switching due to internal ground bounce. It cannot suppress switching due to external system  
noise under all conditions.  
4) The maximum deliverable output current of a port driver depends on the selected output driver mode, see  
Table 11, Current Limits for Port Output Drivers. The limit for pin groups must be respected.  
5) As a rule, with decreasing output current the output levels approach the respective supply level (VOLVSS,  
VOHVDDP). However, only the levels for nominal output currents are verified.  
6) This specification is not valid for outputs which are switched to open drain mode. In this case the respective  
output will float and the voltage results from the external circuitry.  
7) An additional error current (IINJ) will flow if an overload current flows through an adjacent pin. Please refer to  
the definition of the overload coupling factor KOV  
.
The leakage current value is not tested in the lower voltage range, but only in the upper voltage range. This  
parameter is ensured via correlation.  
8) The given values are worst-case values. In the production test, this leakage current value is only tested at  
125°C, other values are ensured via correlation. For derating, please refer to the following descriptions:  
Leakage derating depending on temperature (TJ = junction temperature [°C]):  
I
OZ = 0.005 × e(0.054×TJ) [µA]. For example, at a temperature of 130°C the resulting leakage current is 5.6 µA.  
Leakage derating depending on voltage level (DV = VDDP - VPIN [V]):  
I
OZ = IOZtempmax - (1.3 × DV) [µA]  
The shown voltage derating formula is an approximation which applies for maximum temperature.  
Pin P2.8 is connected to two pads (additionally the high-speed clock pad), so it sees twice the normal leakage.  
9) Not subject to production test - verified by design/characterization.  
Pin P2.8 is connected to two pads (additionally the high-speed clock pad), so it sees twice the normal  
capacitance.  
Data Sheet  
80  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Electrical Parameters  
4.2.3  
Power Consumption  
The amount of power that is consumed by the XC228x depends on several factors, such  
as supply voltage, operating frequency, amount of active circuitry, and operating  
temperature. Part of this depends on the device’s activity (switching current), part of this  
is independent (leakage current). Therefore, the leakage current must be added to all  
other (frequency-dependent) parameters.  
For additional information, please refer to Section 5.2, Thermal Considerations.  
Table 14  
Power Consumption XC228x (Operating Conditions apply)  
Parameter  
Sym-  
bol  
Values  
Min. Typ.  
Unit Note /  
Test Condition  
Max.  
2)  
Supply current caused by IDDL  
leakage1)  
(DMP_1 powered)  
600,000 tbd  
mA VDDP = VDDPmax  
α =  
× e-α  
5000 / (273 + TJ),  
TJ in [°C]  
2)  
Supply current caused by IDDL  
leakage1)  
(DMP_1 switched off)  
500,000 tbd  
µA  
VDDP = VDDPmax  
× e-α  
α =  
3000 / (273 + TJ),  
TJ in [°C]  
Power supply current  
(active) withallperipherals  
active and EVVRs on  
IDDP  
10 +  
tbd  
mA Active Mode3)  
SYSin [MHz]  
0.6×fSYS  
f
1) The supply current caused by leakage mainly depends on the junction temperature (see Figure 12) and the  
supply voltage. The temperature difference between the junction temperature TJ and the ambient temperature  
TA must be taken into account. As this fraction of the supply current does not depend on the device’s activity,  
it must be added to each other power consumption parameter.  
2) All inputs (including pins configured as inputs) at 0 V to 0.1 V or at VDDP - 0.1 V to VDDP, all outputs (including  
pins configured as outputs) disconnected. This parameter is tested at 25 °C and is valid for TJ 25 °C.  
3) The pad supply voltage pins (VDDP) provide the input current for the on-chip EVVRs and the current consumed  
by the pin output drivers. A small amount of current is consumed because the drivers’ input stages are  
switched.  
Data Sheet  
81  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Electrical Parameters  
I
DDL [mA]  
6
4
2
DMP_1 ON  
DMP_1 off  
TJ [°C]  
-50  
0
50  
100  
150  
MC_XC2X_IDDL  
Figure 12  
Leakage Supply Current as a Function of Temperature  
Data Sheet  
82  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Electrical Parameters  
IDDtyp  
I
DD [mA]  
100  
80  
60  
50  
40  
30  
20  
10  
f
SYS [MHz]  
20  
40  
60  
80  
MC_XC2X_IDD  
Figure 13  
Supply Current in Active Mode as a Function of Frequency  
Data Sheet  
83  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Electrical Parameters  
4.3  
Analog/Digital Converter Parameters  
These parameters describe how the optimum ADC performance can be reached.  
Table 15  
A/D Converter Characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
Max.  
Unit Test  
Condition  
Min.  
1)  
Analog reference supply  
VAREF SR VAGND  
VDDPA  
+ 0.05  
V
V
+ 1.0  
Analog reference ground VAGND SR VSS  
- 0.05  
SR VAGND  
0.5  
VAREF  
- 1.0  
2)  
3)  
Analog input voltage range VAIN  
Basic clock frequency  
VAREF  
V
fADCI  
16.5  
MHz  
Conversion time for 10-bit tC10  
CC (17 + STC) × tADCI  
result4)  
Conversion time for 8-bit tC8  
CC (15 + STC) × tADCI  
result4)  
1)  
5)  
Total unadjusted error  
TUE  
CC –  
±2  
LSB  
pF  
Total capacitance  
of an analog input  
CAINT CC –  
15  
5)  
5)  
5)  
5)  
5)  
Switched capacitance  
of an analog input  
CAINS CC –  
7
pF  
kΩ  
pF  
pF  
kΩ  
Resistance of  
the analog input path  
RAIN  
CC –  
1.5  
20  
20  
2
Total capacitance  
of the reference input  
CAREFT CC –  
CAREFS CC –  
RAREF CC –  
Switched capacitance  
of the reference input  
Resistance of  
the reference input path  
1) TUE is tested at VAREFx = VDDPA, VAGND = 0 V. It is verified by design for all other voltages within the defined  
voltage range.  
The specified TUE is valid only, if the absolute sum of input overload currents on Port 5 or Port 15 pins (see  
I
OV specification) does not exceed 10 mA, and if VAREF and VAGND remain stable during the respective period  
of time.  
2) VAIN may exceed VAGND or VAREFx up to the absolute maximum ratings. However, the conversion result in these  
cases will be X000H or X3FFH, respectively.  
3) The limit values for fADCI must not be exceeded when selecting the peripheral frequency and the prescaler  
setting.  
Data Sheet  
84  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Electrical Parameters  
4) This parameter includes the sample time (also the additional sample time specified by STC), the time for  
determining the digital result and the time to load the result register with the conversion result.  
Values for the basic clock tADCI depend on programming and can be taken from Table 16.  
5) Not subject to production test - verified by design/characterization.  
The given parameter values cover the complete operating range. Under relaxed operating conditions  
(temperature, supply voltage) reduced values can be used for calculations. At room temperature and nominal  
supply voltage the following typical values can be used:  
CAINTtyp = 12 pF, CAINStyp = 5 pF, RAINtyp = 1.0 k, CAREFTtyp = 15 pF, CAREFStyp = 10 pF, RAREFtyp = 1.0 k.  
A/D Converter  
RSource  
RAIN, On  
VAIN  
-
CExt  
CAINT CAINS  
CAINS  
MCS05570  
Figure 14  
Equivalent Circuitry for Analog Inputs  
Data Sheet  
85  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Electrical Parameters  
Sample time and conversion time of the XC228x’s A/D Converters are programmable.  
The above timing can be calculated using Table 16.  
The limit values for fADCI must not be exceeded when selecting the prescaler value.  
Table 16  
A/D Converter Computation Table  
GLOBCTR.5-0  
(DIVA)  
A/D Converter  
Basic Clock fADCI  
INPCRx.7-0  
(STC)  
Sample Time  
tS  
000000B  
000001B  
000010B  
:
fSYS  
00H  
01H  
02H  
:
tADCI × 2  
f
f
f
f
f
SYS / 2  
tADCI × 3  
SYS / 3  
tADCI × 4  
SYS / (DIVA+1)  
SYS / 63  
tADCI × (STC+2)  
tADCI × 256  
tADCI × 257  
111110B  
111111B  
FEH  
FFH  
SYS / 64  
Converter Timing Example:  
Assumptions:  
Basic clock  
fSYS = 66 MHz (i.e. tSYS = 15.2 ns), DIVA = 03H, STC = 00H  
fADCI = fSYS / 4 = 16.5 MHz, i.e. tADCI = 60.6 ns  
Sample time  
tS  
= tADCI × 2 = 121 ns  
Conversion 10-bit:  
tC10 = 17 × tADCI = 17 × 60.6 ns = 1.03 µs  
Conversion 8-bit:  
tC8  
= 15 × tADCI = 15 × 60.6 ns = 0.91 µs  
Converter Timing Example:  
Assumptions:  
Basic clock  
fSYS = 40 MHz (i.e. tSYS = 25 ns), DIVA = 02H, STC = 03H  
fADCI = fSYS / 3 = 13.3 MHz, i.e. tADCI = 75 ns  
tS = tADCI × 5 = 375 ns  
Sample time  
Conversion 10-bit:  
tC10 = 20 × tADCI = 20 × 75 ns = 1.5 µs  
Conversion 8-bit:  
tC8  
= 18 × tADCI = 18 × 75 ns = 1.35 µs  
Data Sheet  
86  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Electrical Parameters  
4.4  
AC Parameters  
These parameters describe the dynamic behavior of the XC228x.  
4.4.1  
Definition of Internal Timing  
The internal operation of the XC228x is controlled by the internal system clock fSYS  
.
Because the system clock signal fSYS can be generated from several internal and  
external sources via different mechanisms, the duration of system clock periods (TCSs)  
and their variation (and also the derived external timing) depend on the used mechanism  
to generate fSYS. This influence must be regarded when calculating the timings for the  
XC228x.  
Phase Locked Loop Operation (1:N)  
fIN  
fSYS  
TCS  
Direct Clock Drive (1:1)  
fIN  
fSYS  
TCS  
Prescaler Operation (N:1)  
fIN  
fSYS  
TCS  
MC_XC2X_CLOCKGEN  
Figure 15  
Generation Mechanisms for the System Clock  
Note: The example for PLL operation shown in Figure 15 refers to a PLL factor of 1:4,  
the example for prescaler operation refers to a divider factor of 2:1.  
Data Sheet  
87  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Electrical Parameters  
The specification of the external timing (AC Characteristics) depends on the period of the  
system clock (TCS).  
Direct Drive  
When direct drive operation is configured (SYSCON0.CLKSEL = 11B), the system clock  
is derived directly from the input clock signal DIRIN:  
f
SYS = fIN.  
The frequency of fSYS directly follows the frequency of fIN. In this case, the high and low  
time of fSYS is defined by the duty cycle of the input clock fIN.  
A similar configuration can be achieved by selecting the XTAL11) input.  
Prescaler Operation  
When prescaler operation is configured (SYSCON0.CLKSEL = 10B, PLLCON0.VCOBY  
= 1B), the system clock is derived either from the crystal oscillator (input clock signal  
XTAL1) or from the internal oscillator through the output-prescaler:  
f
SYS = fOSC / (K1DIV + 1).  
If the divider factor is selected as 1, the frequency of fSYS directly follows the frequency  
of fOSC. In this case, the high and low time of fSYS is defined by the duty cycle of the input  
clock fOSC (external or internal).  
The lowest system clock frequency can be achieved in this mode by selecting the  
maximum value for divider factor K1:  
f
SYS = fOSC / 1024.  
Phase Locked Loop (PLL)  
When PLL operation is configured (SYSCON0.CLKSEL = 10B, PLLCON0.VCOBY = 0B),  
the on-chip phase locked loop provides the system clock. The PLL multiplies the  
selected input frequency by the factor F (fSYS = fIN × F), which results from the input  
divider (P), the multiplication factor (N), and the output divider (K2): (F = N+1 / (P+1 ×  
K2+1)).  
The input clock can be derived either from an external source via XTAL1 or from the on-  
chip oscillator.  
The PLL circuit synchronizes the system clock to the input clock. This synchronization is  
done smoothly, i.e. the system clock frequency does not change abruptly.  
Due to this adaptation to the input clock the frequency of fSYS is constantly adjusted so it  
is locked to fIN. The slight variation causes a jitter of fSYS which also affects the duration  
of individual TCSs.  
1) Voltages on XTAL1 must comply to the core supply voltage VDDI1  
.
Data Sheet  
88  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Electrical Parameters  
The timing listed in the AC Characteristics refers to TCSs. Therefore, the timing must be  
calculated using the minimum TCS possible under the respective circumstances.  
The actual minimum value for TCS depends on the jitter of the PLL. As the PLL is  
constantly adjusting its output frequency so it corresponds to the applied input frequency  
(crystal or oscillator), the accumulated jitter is limited, which means that the relative  
deviation for periods of more than one TCS is lower than for one single TCS.  
This is especially important for bus cycles using waitstates and e.g. for the operation of  
timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train  
generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter  
is, therefore, negligible.  
The value of the accumulated PLL jitter depends on the number of consecutive VCO  
output cycles within the respective timeframe. The VCO output clock is divided by the  
output prescaler (K2+1) to generate the system clock signal fSYS. Therefore, the number  
of VCO cycles can be represented as (K2+1) × T, where T is the number of consecutive  
f
SYS cycles (TCS).  
Different frequency bands can be selected for the VCO, so the operation of the PLL can  
be adjusted to a wide range of input and output frequencies:  
Table 17  
PLLCON0.VCOSEL VCO Frequency Range  
VCO Bands for PLL Operation1)  
Base Frequency Range  
10 … 40 MHz  
00  
01  
1X  
40 … 120 MHz  
90 … 160 MHz  
Reserved  
20 … 80 MHz  
1) Not subject to production test - verified by design/characterization.  
Wakeup Oscillator  
When wakeup oscillator operation is configured (SYSCON0.CLKSEL = 00B), the system  
clock is derived from the low-frequency wakeup oscillator:  
f
SYS = fWU.  
In this mode, a basic functionality can be maintained without requiring an external clock  
source and while minimizing the power consumption.  
Data Sheet  
89  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Electrical Parameters  
Selecting and Changing the Operating Frequency  
When selecting a clock source and the clock generation method, the required  
parameters must be carefully written to the respective bitfields, to avoid unintended  
intermediate states.  
Many applications change the frequency of the system clock (fSYS) during the operation,  
to optimize performance and power consumption of the system. Changing the operating  
frequency also changes the consumed switching current, which influences the power  
supply. Therefore, while the core voltage is generated by the on-chip EVRs, the  
operating frequency may only be changed by factors of 5 maximum, or in steps of  
20 MHz maximum, whatever condition is tighter.  
To avoid the indicated problems, recommended sequences are provided which ensure  
the intended operation of the clock system interacting with the power system.  
4.4.2  
On-chip Flash Operation  
Accesses to the XC228x’s Flash modules are controlled by the IMB.  
Built-in prefetching mechanisms optimize the performance for sequential accesses.  
Table 18  
Flash Characteristics (Operating Conditions apply)  
Symbol Limit Values  
Parameter  
Unit  
Min.  
CC –  
CC –  
Typ.  
31)  
41)  
Max.  
tbd  
Programming time per 128-byte page tPR  
Erase time per sector/page  
ms  
ms  
tER  
tbd  
1) Programming and erase times depend on the internal Flash clock source. The control state machine needs a  
few system clock cycles, which only becomes relevant for extremely low system frequencies.  
Data Sheet  
90  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Electrical Parameters  
4.4.3  
External Clock Drive  
These parameters define the external clock supply for the XC228x. The clock signal can  
be supplied either to pin P2.9 or to pin XTAL1.  
Table 19  
External Clock Drive Characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
Unit  
Min.  
25  
6
Max.  
2501)  
Oscillator period  
High time2)  
Low time2)  
Rise time2)  
Fall time2)  
tOSC  
t1  
SR  
SR  
SR  
SR  
SR  
ns  
ns  
ns  
ns  
ns  
8
8
t2  
6
t3  
t4  
1) The maximum limit is only relevant for PLL operation to ensure the minimum input frequency for the PLL.  
2) The clock input signal must reach the defined levels VILC and VIHC (for XTAL1) or VIL and VIH for P2.9.  
t3  
t4  
t1  
VIHC  
VILC  
0.5 VDDI  
t2  
tOSC  
MCT05572  
Figure 16  
External Clock Drive XTAL1  
Note: If the on-chip oscillator is used together with a crystal or a ceramic resonator, the  
oscillator frequency is limited to a range of 4 MHz to 16 MHz.  
It is strongly recommended to measure the oscillation allowance (negative  
resistance) in the final target system (layout) to determine the optimum  
parameters for the oscillator operation. Please refer to the limits specified by the  
crystal supplier.  
When driven by an external clock signal it will accept the specified input frequency  
range. Operation at input frequencies below 4 MHz is possible but is verified by  
design only (not subject to production test).  
Data Sheet  
91  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Electrical Parameters  
4.4.4  
Testing Waveforms  
These references are used for characterization and production testing (except for pin  
XTAL1).  
Output delay  
Hold time  
Output delay  
Hold time  
0.8 VDDP  
0.7 VDDP  
Input Signal  
(driven by tester)  
0.3 VDDP  
0.2 VDDP  
Output Signal  
(measured)  
Output timings refer to the rising edge of CLKOUT.  
Input timings are calculated from the time, when the input signal reaches  
VIH or VIL, respectively.  
MCD05556C  
Figure 17  
Input Output Waveforms  
V
Load + 0.1 V  
V
V
OH - 0.1 V  
OL + 0.1 V  
Timing  
Reference  
Points  
V
Load - 0.1 V  
For timing purposes a port pin is no longer floating when a 100 mV  
change from load voltage occurs, but begins to float when a 100 mV  
change from the loaded VOH /VOL level occurs (IOH / IOL = 20 mA).  
MCA05565  
Figure 18  
Float Waveforms  
Data Sheet  
92  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Electrical Parameters  
4.4.5  
External Bus Timing  
The following parameters define the behavior of the XC228x’s bus interface.  
Table 20  
CLKOUT Reference Signal  
Symbol  
Parameter  
Limits  
Max.  
Unit  
Min.  
CLKOUT cycle time  
CLKOUT high time  
CLKOUT low time  
CLKOUT rise time  
CLKOUT fall time  
tc5  
tc6  
tc7  
tc8  
tc9  
CC  
40/25/151)  
ns  
ns  
ns  
ns  
ns  
CC  
CC  
CC  
CC  
3
3
3
3
1) The CLKOUT cycle time is influenced by the PLL jitter (given values apply to fCPU = 25/40/66 MHz).  
For longer periods the relative deviation decreases (see PLL deviation formula).  
tC9  
tC8  
tC5  
tC6  
tC7  
CLKOUT  
MCT05571  
Figure 19  
CLKOUT Signal Timing  
Note: The term CLKOUT refers to the reference clock output signal which is generated  
by selecting fSYS as source signal for the clock output signal EXTCLK on pin P2.8  
and by enabling the high-speed clock driver on this pin.  
Data Sheet  
93  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Electrical Parameters  
Variable Memory Cycles  
External bus cycles of the XC228x are executed in five subsequent cycle phases (AB,  
C, D, E, F). The duration of each cycle phase is programmable (via the TCONCSx  
registers) to adapt the external bus cycles to the respective external module (memory,  
peripheral, etc.).  
The duration of the access phase can optionally be controlled by the external module via  
the READY handshake input.  
This table provides a summary of the phases and the respective choices for their  
duration.  
Table 21  
Programmable Bus Cycle Phases (see timing diagrams)  
Parameter Valid Values Unit  
Bus Cycle Phase  
Address setup phase, the standard duration of this tpAB  
phase (1 … 2 TCS) can be extended by 0 … 3 TCS  
if the address window is changed  
1 … 2 (5)  
TCS  
Command delay phase  
tpC  
tpD  
tpE  
tpF  
0 … 3  
0 … 1  
1 … 32  
0 … 3  
TCS  
TCS  
TCS  
TCS  
Write Data setup/MUX Tristate phase  
Access phase  
Address/Write Data hold phase  
Note: The bandwidth of a parameter (minimum and maximum value) covers the whole  
operating range (temperature, voltage) as well as process variations. Within a  
given device, however, this bandwidth is smaller than the specified range. This is  
also due to interdependencies between certain parameters. Some of these  
interdependencies are described in additional notes (see standard timing).  
Timing values are listed in Table 22 and Table 23. The shaded parameters have been  
verified by characterization. They are not subject to production test.  
Data Sheet  
94  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Table 22  
Electrical Parameters  
External Bus Cycle Timing for 4.5 V VDDP 5.5 V  
(Operating Conditions apply)  
Parameter  
Symbol  
Limits  
Unit Note  
Min. Typ. Max.  
Output valid delay for:  
RD, WR(L/H)  
tc10 CC –  
13  
13  
14  
14  
13  
14  
14  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output valid delay for:  
BHE, ALE  
tc11 CC –  
tc12 CC –  
tc13 CC –  
tc14 CC –  
tc15 CC –  
tc16 CC –  
Output valid delay for:  
A23 … A16, A15 … A0 (on P0/P1)  
Output valid delay for:  
A15 … A0 (on P2/P10)  
Output valid delay for:  
CS  
Output valid delay for:  
D15 … D0 (write data, MUX-mode)  
Output valid delay for:  
D15 … D0 (write data, DEMUX-  
mode)  
Output hold time for:  
RD, WR(L/H)  
tc20 CC 0  
tc21 CC 0  
tc23 CC 0  
tc24 CC 0  
tc25 CC 0  
tc30 SR 18  
tc31 SR -4  
8
8
8
8
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output hold time for:  
BHE, ALE  
Output hold time for:  
A23 … A16, A15 … A0 (on P2/P10)  
Output hold time for:  
CS  
Output hold time for:  
D15 … D0 (write data)  
Input setup time for:  
READY, D15 … D0 (read data)  
Input hold time for:  
READY, D15 … D0 (read data)1)  
1) Read data are latched with the same (internal) clock edge that triggers the address change and the rising edge  
of RD. Therefore address changes before the end of RD have no impact on (demultiplexed) read cycles. Read  
data can be removed after the rising edge of RD.  
Data Sheet  
95  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Table 23  
Electrical Parameters  
External Bus Cycle Timing for 3.0 V VDDP 4.5 V  
(Operating Conditions apply)  
Parameter  
Symbol  
Limits  
Unit Note  
Min. Typ. Max.  
Output valid delay for:  
RD, WR(L/H)  
tc10 CC –  
20  
20  
22  
22  
20  
21  
21  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output valid delay for:  
BHE, ALE  
tc11 CC –  
tc12 CC –  
tc13 CC –  
tc14 CC –  
tc15 CC –  
tc16 CC –  
Output valid delay for:  
A23 … A16, A15 … A0 (on P0/P1)  
Output valid delay for:  
A15 … A0 (on P2/P10)  
Output valid delay for:  
CS  
Output valid delay for:  
D15 … D0 (write data, MUX-mode)  
Output valid delay for:  
D15 … D0 (write data, DEMUX-  
mode)  
Output hold time for:  
RD, WR(L/H)  
tc20 CC 0  
tc21 CC 0  
tc23 CC 0  
tc24 CC 0  
tc25 CC 0  
tc30 SR 29  
tc31 SR -6  
10  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output hold time for:  
BHE, ALE  
Output hold time for:  
A23 … A16, A15 … A0 (on P2/P10)  
Output hold time for:  
CS  
Output hold time for:  
D15 … D0 (write data)  
Input setup time for:  
READY, D15 … D0 (read data)  
Input hold time for:  
READY, D15 … D0 (read data)1)  
1) Read data are latched with the same (internal) clock edge that triggers the address change and the rising edge  
of RD. Therefore address changes before the end of RD have no impact on (demultiplexed) read cycles. Read  
data can be removed after the rising edge of RD.  
Data Sheet  
96  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Electrical Parameters  
tpAB  
tpC  
tpD  
tpE  
tpF  
CLKOUT  
ALE  
tc21  
tc11  
tc11/tc14  
A23-A16,  
BHE, CSx  
High Address  
tc20  
tc10  
RD  
WR(L/H)  
tc31  
tc13  
tc23  
tc30  
AD15-AD0  
(read)  
Low Address  
Data In  
tc13  
tc15  
tc25  
AD15-AD0  
(write)  
Low Address  
Data Out  
MCT05557  
Figure 20  
Multiplexed Bus Cycle  
Data Sheet  
97  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Electrical Parameters  
tpAB  
tpC  
tpD  
tpE  
tpF  
CLKOUT  
ALE  
tc21  
tc11  
tc11/tc14  
A23-A0,  
BHE, CSx  
Address  
tc20  
tc10  
RD  
WR(L/H)  
tc31  
tc30  
D15-D0  
(read)  
Data In  
tc16  
tc25  
D15-D0  
(write)  
Data Out  
MCT05558  
Figure 21  
Demultiplexed Bus Cycle  
Data Sheet  
98  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Electrical Parameters  
Bus Cycle Control via READY Input  
The duration of an external bus cycle can be controlled by the external circuitry via the  
READY input signal. The polarity of this input signal can be selected.  
Synchronous READY permits the shortest possible bus cycle but requires the input  
signal to be synchronous to the reference signal CLKOUT.  
Asynchronous READY puts no timing constraints on the input signal but incurs one  
waitstate minimum due to the additional synchronization stage. The minimum duration  
of an asynchronous READY signal to be safely synchronized must be one CLKOUT  
period plus the input setup time.  
An active READY signal can be deactivated in response to the trailing (rising) edge of  
the corresponding command (RD or WR).  
If the next following bus cycle is READY-controlled, an active READY signal must be  
disabled before the first valid sample point for the next bus cycle. This sample point  
depends on the programmed phases of the next following cycle.  
Data Sheet  
99  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Electrical Parameters  
tpD  
tpE  
tpRDY  
tpF  
CLKOUT  
RD, WR  
tc10  
tc20  
tc31  
tc30  
D15-D0  
(read)  
Data In  
tc25  
D15-D0  
(write)  
Data Out  
tc31  
tc30  
tc31  
tc30  
READY  
Synchronous  
Not Rdy  
READY  
tc31  
tc31  
tc30  
tc30  
READY  
Asynchron.  
Not Rdy  
READY  
MCT05559  
Figure 22  
READY Timing  
Note: If the READY input is sampled inactive at the indicated sampling point (“Not Rdy”)  
a READY-controlled waitstate is inserted (tpRDY),  
sampling the READY input active at the indicated sampling point (“Ready”)  
terminates the currently running bus cycle.  
Note the different sampling points for synchronous and asynchronous READY.  
This example uses one mandatory waitstate (see tpE) before the READY input is  
evaluated.  
Data Sheet  
100  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Electrical Parameters  
External Bus Arbitration  
If the arbitration signals are enabled the XC228x makes its external resources available  
in response to an arbitration request.  
Table 24  
Bus Arbitration Timing for 4.5 V VDDP 5.5 V  
(Operating Conditions apply)  
Parameter  
Sym  
bol  
Limits  
Unit Note  
Min. Typ. Max.  
Input setup time for:  
HOLD input  
tc40  
tc41  
tc42  
18  
ns  
ns  
ns  
Output delay rising edge for:  
HLDA, BREQ  
0
13  
14  
Output delay falling edge for:  
HLDA  
1
Table 25  
Bus Arbitration Timing for 3.0 V VDDP 4.5 V  
(Operating Conditions apply)  
Parameter  
Sym  
bol  
Limits  
Min. Typ. Max.  
Unit Note  
Input setup time for:  
HOLD input  
tc40  
tc41  
tc42  
28  
ns  
ns  
ns  
Output delay rising edge for:  
HLDA, BREQ  
0
19  
21  
Output delay falling edge for:  
HLDA  
1
Note: The shaded parameters have been verified by characterization.  
They are not subject to production test.  
Data Sheet  
101  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Electrical Parameters  
CLKOUT  
HOLD  
tc40  
tc42  
HLDA  
BREQ  
2)  
tc10/tc14  
CSx, RD,  
WR(L/H)  
3)  
Addr, Data,  
BHE  
1)  
MCT05560  
Figure 23  
Notes  
External Bus Arbitration, Releasing the Bus  
1. The XC228x will complete the currently running bus cycle before granting bus  
access.  
2. This is the first possibility for BREQ to get active.  
3. The control outputs will be resistive high (pull-up) after being driven inactive (ALE will  
be low).  
Data Sheet  
102  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Electrical Parameters  
3)  
CLKOUT  
HOLD  
tc40  
tc41  
HLDA  
tc41  
BREQ  
1)  
tc10/tc14  
CSx, RD,  
WR(L/H)  
2)  
tc11/tc12  
/tc13/tc15  
/tc16  
Addr, Data,  
BHE  
MCT05561  
Figure 24  
Notes  
External Bus Arbitration, Regaining the Bus  
1. This is the last chance for BREQ to trigger the indicated regain-sequence.  
Even if BREQ is activated earlier, the regain-sequence is initiated by HOLD going  
high. Please note that HOLD may also be deactivated without the XC228x requesting  
the bus.  
2. The control outputs will be resistive high (pull-up) before being driven inactive (ALE  
will be low).  
3. The next XC228x driven bus cycle may start here.  
Data Sheet  
103  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Package and Reliability  
5
Package and Reliability  
In addition to the electrical parameters, the following information ensures proper  
integration of the XC228x into the target system.  
5.1  
Packaging  
These parameters describe the housing rather than the silicon.  
Table 26  
Package Parameters (PG-LQFP-144)  
Symbol Limit Values  
Min. Max.  
Exposed Pad Dimension Ex × Ey – 6.5 × 6.5 mm  
Parameter  
Unit  
Notes  
Power Dissipation  
PDISS  
RΘJA  
1.0  
45  
36  
22  
W
Thermal resistance  
Junction-Ambient  
K/W  
K/W  
K/W  
No thermal via1)  
4-layer, no pad2)  
4-layer, pad3)  
1) Device mounted on a 2-layer or 4-layer board without thermal vias.  
2) Device mounted on a 4-layer board with thermal vias, exposed pad not soldered.  
3) Device mounted on a 4-layer board with thermal vias, exposed pad soldered to the board.  
Data Sheet  
104  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Package and Reliability  
Package Outlines  
H
0.5  
0.15  
0.6  
0.08  
C
17.5  
2)  
0.05  
0.22  
M
0.08 A-B D C 144x  
22  
20  
Bottom View  
Ex  
0.2 A-B  
144x  
D
1)  
0.2 A-B  
4x  
D H  
D
A
B
Exposed Pad  
144  
144  
1
1
Index Marking  
1) Does not include plastic or metal protrusion of 0.25 max. per side  
2) Does not include dambar protrusion of 0.08 max. per side  
GPP01178  
Figure 25  
PG-LQFP-144 (Plastic Green Thin Quad Flat Package)  
You can find all of our packages, sorts of packing and others in our Infineon Internet  
Page “Packages”: http://www.infineon.com/packages  
Dimensions in mm.  
Data Sheet  
105  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Package and Reliability  
5.2  
Thermal Considerations  
When operating the XC228x in a system, the total heat generated on the chip must be  
dissipated to the ambient environment to prevent overheating and resulting thermal  
damages.  
The maximum heat that can be dissipated depends on the package and its integration  
into the target board. The “Thermal resistance RΘJA” is a measure for these parameters.  
The power dissipation must be limited so the average junction temperature does not  
exceed 150 °C.  
The difference between junction temperature and ambient temperature is determined by  
T = (PINT + PIOSTAT + PIODYN) × RΘJA  
The internal power consumption is defined as  
P
INT = VDDP × IDDP (see Table 14).  
The static external power consumption caused by the output drivers is defined as  
IOSTAT = Σ((VDDP-VOH) × IOH) + Σ(VOL × IOL)  
P
The dynamic external power consumption caused by the output drivers (PIODYN) depends  
on the capacitive load connected to the respective pins and the switching frequencies.  
If the total power dissipation determined for a given system configuration exceeds the  
defined limit countermeasures must be taken to ensure proper system operation:  
Reduce VDDP, if possible in the system  
Reduce the system frequency  
Reduce the number of output pins  
Reduce the load on active output drivers  
Data Sheet  
106  
V0.91, 2007-02  
Draft Version  
XC2287 / XC2286 / XC2285  
XC2000 Family Derivatives  
Preliminary  
Package and Reliability  
5.3  
Flash Memory Parameters  
The data retention time of the XC228x’s Flash memory (i.e. the time after which stored  
data can still be retrieved) depends on the number of times the Flash memory has been  
erased and programmed.  
Table 27  
Flash Parameters (XC228x, 768 Kbytes)  
Parameter  
Symbol  
Limit Values  
Unit  
Notes  
Min.  
Max.  
Data retention time  
tRET  
20  
years 103 erase/program  
cycles  
Flash Erase Endurance NER  
15 × 103  
cycles Dataretentiontime  
5 years  
Data Sheet  
107  
V0.91, 2007-02  
Draft Version  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

XC228X_08

16/32-Bit Single-Chip Microcontroller with 32-Bit Performance
INFINEON

XC2298H

16/32-Bit Single-Chip Microcontroller with 32-Bit Performance
INFINEON

XC2298H-136FxL

16/32-Bit Single-Chip Microcontroller with 32-Bit Performance
INFINEON

XC2298H-200FxL

16/32-Bit Single-Chip Microcontroller with 32-Bit Performance
INFINEON

XC2298H200F100LABKXUMA1

RISC Microcontroller, 32-Bit, FLASH, 100MHz, CMOS, PQFP176, 0.50 MM PITCH, GREEN, PLASTIC, LQFP-176
INFINEON

XC2298H_11

16/32-Bit Single-Chip Microcontroller with 32-Bit Performance
INFINEON

XC2299H

16/32-Bit Single-Chip Microcontroller with 32-Bit Performance
INFINEON

XC2299H-136FxL

16/32-Bit Single-Chip Microcontroller with 32-Bit Performance
INFINEON

XC2299H-200FxL

16/32-Bit Single-Chip Microcontroller with 32-Bit Performance
INFINEON

XC2299H200F100LABKXUMA1

RISC Microcontroller, 32-Bit, FLASH, 100MHz, CMOS, PQFP176, 0.50 MM PITCH, GREEN, PLASTIC, LQFP-176
INFINEON

XC22B

4 Digit Preset Counter
SELEC

XC22B-4-110

4 Digit Preset Counter
SELEC