XC866L2FRA5VBELXUMA1 [INFINEON]

Microcontroller, CMOS;
XC866L2FRA5VBELXUMA1
型号: XC866L2FRA5VBELXUMA1
厂家: Infineon    Infineon
描述:

Microcontroller, CMOS

时钟 微控制器 外围集成电路
文件: 总113页 (文件大小:1555K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8-Bit  
SAL-XC866  
8-Bit Single-Chip Microcontroller  
Data Sheet  
V1.1 2012-12  
Microcontrollers  
Edition 2012-12  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2012 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
8-Bit  
SAL-XC866  
8-Bit Single-Chip Microcontroller  
Data Sheet  
V1.1 2012-12  
Microcontrollers  
SAL-XC866  
SAL-XC866 Data Sheet  
Revision History:  
2012-12  
V1.1  
Previous Version: V1.0 2011-02  
Page  
-
Subjects (major changes since last revision)  
Removed the “preliminary” wording from the data sheet.  
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
mcdocu.comments@infineon.com  
Data Sheet  
V1.1, 2012-12  
SAL-XC866  
Page  
Table of Contents  
1
Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
2
General Device Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.1  
2.2  
2.3  
2.4  
3
3.1  
3.2  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Processor Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Memory Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Memory Protection Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Special Function Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Address Extension by Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Address Extension by Paging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Bit Protection Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
SAL-XC866 Register Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Flash Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Flash Bank Sectorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Flash Programming Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Interrupt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Interrupt Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Interrupt Source and Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Interrupt Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Parallel Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Power Supply System with Embedded Voltage Regulator . . . . . . . . . . . . 53  
Reset Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Module Reset Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Booting Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Clock Generation Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Recommended External Oscillator Circuits . . . . . . . . . . . . . . . . . . . . . . 59  
Clock Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Power Saving Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Universal Asynchronous Receiver/Transmitter . . . . . . . . . . . . . . . . . . . . . 67  
Baud-Rate Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Baud Rate Generation using Timer 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Normal Divider Mode (8-bit Auto-reload Timer) . . . . . . . . . . . . . . . . . . . . 71  
LIN Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
LIN Header Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
High-Speed Synchronous Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Timer 0 and Timer 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Timer 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
3.2.1  
3.2.2  
3.2.2.1  
3.2.2.2  
3.2.3  
3.2.4  
3.3  
3.3.1  
3.3.2  
3.4  
3.4.1  
3.4.2  
3.4.3  
3.5  
3.6  
3.7  
3.7.1  
3.7.2  
3.8  
3.8.1  
3.8.2  
3.9  
3.10  
3.11  
3.11.1  
3.11.2  
3.12  
3.13  
3.13.1  
3.14  
3.15  
3.16  
Data Sheet  
1
V1.1, 2012-12  
SAL-XC866  
3.17  
3.18  
Capture/Compare Unit 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Analog-to-Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
ADC Clocking Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
ADC Conversion Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
On-Chip Debug Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
JTAG ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Identification Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
3.18.1  
3.18.2  
3.19  
3.19.1  
3.20  
4
4.1  
Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Absolute Maximum Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Input/Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Supply Threshold Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
ADC Conversion Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Power Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Testing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Output Rise/Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Power-on Reset and PLL Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
On-Chip Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
JTAG Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
SSC Master Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
4.1.1  
4.1.2  
4.1.3  
4.2  
4.2.1  
4.2.2  
4.2.3  
4.2.3.1  
4.2.4  
4.3  
4.3.1  
4.3.2  
4.3.3  
4.3.4  
4.3.5  
4.3.6  
5
Package and Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Package Parameters (PG-TSSOP-38) . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Quality Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
5.1  
5.2  
5.3  
Data Sheet  
2
V1.1, 2012-12  
8-Bit Single-Chip Microcontroller  
XC800 Family  
SAL-XC866  
1
Summary of Features  
• High-performance XC800 Core  
– compatible with standard 8051 processor  
– two clocks per machine cycle architecture (for memory access without wait state)  
– two data pointers  
• On-chip memory  
– 8 Kbytes of Boot ROM  
– 256 bytes of RAM  
– 512 bytes of XRAM  
– 4/8/16 Kbytes of Flash  
(includes memory protection strategy)  
• I/O port supply at 3.3 V/5.0 V and core logic supply at 2.5 V (generated by embedded  
voltage regulator)  
(further features are on next page)  
4K/ 8K/16K Bytes Flash On-Chip Debug Support  
UART  
SSC  
Port 0  
Port 1  
Port 2  
Port 3  
6-bit Digital I/O  
Boot ROM  
8K Bytes  
Capture/Compare Unit  
16-bit  
5-bit Digital I/O  
XC800 Core  
XRAM  
512 Bytes  
Compare Unit  
16-bit  
8-bit Digital/Analog Input  
8-bit Digital I/O  
ADC  
Watchdog  
10-bit  
RAM  
256 Bytes  
Timer 0  
16-bit  
Timer 1  
16-bit  
Timer 2  
16-bit  
Timer  
8-channel  
Figure 1  
SAL-XC866 Functional Units  
Data Sheet  
3
V1.1, 2012-12  
SAL-XC866  
Summary of Features  
Features (continued):  
• Reset generation  
– Power-On reset  
– Hardware reset  
– Brownout reset for core logic supply  
– Watchdog timer reset  
– Power-Down Wake-up reset  
• On-chip OSC and PLL for clock generation  
– PLL loss-of-lock detection  
• Power saving modes  
– slow-down mode  
– idle mode  
– power-down mode with wake-up capability via RXD or EXINT0  
– clock gating control to each peripheral  
• Programmable 16-bit Watchdog Timer (WDT)  
• Four ports  
– 19 pins as digital I/O  
– 8 pins as digital/analog input  
• 8-channel, 10-bit ADC  
• Three 16-bit timers  
– Timer 0 and Timer 1 (T0 and T1)  
– Timer 2  
• Capture/compare unit for PWM signal generation (CCU6)  
• Full-duplex serial interface (UART)  
• Synchronous serial channel (SSC)  
• On-chip debug support  
– 1 Kbyte of monitor ROM (part of the 8-Kbyte Boot ROM)  
– 64 bytes of monitor RAM  
• PG-TSSOP-38 pin package  
• Temperature range TA:  
– SAL (-40 to 150 °C)  
Data Sheet  
4
V1.1, 2012-12  
SAL-XC866  
Summary of Features  
SAL-XC866 Variant Devices  
The SAL-XC866 product family features devices with different configurations and  
program memory sizes, offering cost-effective solution for different application  
requirements.  
The list of SAL-XC866 devices and their differences are summarized in Table 1.  
Table 1  
Device Summary  
Device Name  
Device  
Type  
Power  
Supply (V) Size  
(Kbytes)  
12  
P-Flash  
D-Flash  
Size  
(Kbytes)  
LIN BSL  
Support  
Flash1)  
SAL-XC866L-4FRA  
SAL-XC866L-2FRA  
SAL-XC866L-4FRA  
SAL-XC866L-2FRA  
5.0  
5.0  
3.3  
3.3  
4
4
4
4
Yes  
Yes  
Yes  
Yes  
4
12  
4
1)  
The flash memory (P-Flash and D-Flash) can be used for code or data.  
Ordering Information  
The ordering code for Infineon Technologies microcontrollers provides an exact  
reference to the required product. This ordering code identifies:  
• The derivative itself, i.e. its function set, the temperature range, and the supply voltage  
• the package and the type of delivery  
For the available ordering codes for the SAL-XC866, please refer to your responsible  
sales representative or your local distributor.  
As this document refers to all the derivatives, some descriptions may not apply to a  
specific product. For simplicity all versions are referred to by the term SAL-XC866  
throughout this document.  
Data Sheet  
5
V1.1, 2012-12  
SAL-XC866  
General Device Information  
2
General Device Information  
2.1  
Block Diagram  
SAL-XC866  
Internal Bus  
8-Kbyte  
Boot ROM1)  
P0.0 - P0.5  
XC800 Core  
256-byte RAM  
+
64-byte monitor  
RAM  
T0 & T1  
UART  
P1.0 - P1.1  
P1.5-P1.7  
TMS  
MBC  
RESET  
VDDP  
VSSP  
VDDC  
VSSC  
CCU6  
SSC  
512-byte XRAM  
P2.0 - P2.7  
4/8/16-Kbyte Flash  
Clock Generator  
Timer 2  
WDT  
VAREF  
VAGND  
ADC  
XTAL1  
XTAL2  
10 MHz  
On-chip OSC  
P3.0 - P3.7  
OCDS  
PLL  
1) Includes 1-Kbyte monitor ROM  
Figure 2  
SAL-XC866 Block Diagram  
Data Sheet  
6
V1.1, 2012-12  
SAL-XC866  
General Device Information  
2.2  
Logic Symbol  
VDDP  
VSSP  
VAREF  
VAGND  
Port 0 6-Bit  
Port 1 5-Bit  
Port 2 8-Bit  
Port 3 8-Bit  
RESET  
MBC  
XC866  
TMS  
XTAL1  
XTAL2  
VDDC  
VSSC  
Figure 3  
SAL-XC866 Logic Symbol  
Data Sheet  
7
V1.1, 2012-12  
SAL-XC866  
General Device Information  
2.3  
Pin Configuration  
MBC  
1
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
RESET  
P0.3/SCLK_1/COUT63_1  
2
P3.5/COUT62_0  
P3.4/CC62_0  
P0.4/MTSR_1/CC62_1  
3
P0.5/MRST_1/EXINT0_0/COUT62_1  
4
P3.3/COUT61_0  
P3.2/CCPOS2_2/CC61_0  
P3.1/CCPOS0_2/CC61_2/COUT60_0  
P3.0/CCPOS1_2/CC60_0  
P3.7/EXINT4/COUT63_0  
P3.6/CTRAP_0  
XTAL2  
5
XTAL1  
6
VSSC  
VDDC  
7
8
P1.6/CCPOS1_1/T12HR_0/EXINT6  
P1.7/CCPOS2_1/T13HR_0  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
P1.5/CCPOS0_1/EXINT5/EXF2_0/RXDO_0  
P1.1/EXINT3/TDO_1/TXD_0  
P1.0/RXD_0/T2EX  
P2.7/AN7  
XC866  
TMS  
P0.0/TCK_0/T12HR_1/CC61_1/CLKOUT/RXDO_1  
P0.2/CTRAP_2/TDO_0/TXD_1  
P0.1/TDI_0/T13HR_1/RXD_1/EXF2_1/COUT61_1  
P2.0/CCPOS0_0/EXINT1/T12HR_2/TCK_1/CC61_3/AN0  
P2.1/CCPOS1_0/EXINT2/T13HR_2/TDI_1/CC62_3/AN1  
P2.2/CCPOS2_0/CTRAP_1/CC60_3/AN2  
VDDP  
VAREF  
VAGND  
P2.6/AN6  
P2.5/AN5  
P2.4/AN4  
VSSP  
P2.3/AN3  
Figure 4  
SAL-XC866 Pin Configuration, PG-TSSOP-38 Package (top view)  
Data Sheet  
8
V1.1, 2012-12  
SAL-XC866  
General Device Information  
2.4  
Pin Definitions and Functions  
Pin Definitions and Functions  
Table 2  
Symbol Pin  
Number  
Type Reset Function  
State  
P0  
I/O  
Port 0  
Port 0 is a 6-bit bidirectional general purpose I/O  
port. It can be used as alternate functions for the  
JTAG, CCU6, UART, and the SSC.  
P0.0  
12  
14  
13  
Hi-Z  
Hi-Z  
PU  
TCK_0  
T12HR_1  
JTAG Clock Input  
CCU6 Timer 12 Hardware Run  
Input  
Input/Output of Capture/Compare  
channel 1  
Clock Output  
CC61_1  
CLKOUT  
RXDO_1  
UART Transmit Data Output  
P0.1  
P0.2  
TDI_0  
T13HR_1  
JTAG Serial Data Input  
CCU6 Timer 13 Hardware Run  
Input  
RXD_1  
UART Receive Data Input  
COUT61_1 Output of Capture/Compare  
channel 1  
EXF2_1  
Timer 2 External Flag Output  
CTRAP_2  
TDO_0  
TXD_1  
CCU6 Trap Input  
JTAG Serial Data Output  
UART Transmit Data Output/  
Clock Output  
P0.3  
P0.4  
2
3
Hi-Z  
Hi-Z  
SCK_1  
SSC Clock Input/Output  
COUT63_1 Output of Capture/Compare  
channel 3  
MTSR_1  
SSC Master Transmit Output/  
Slave Receive Input  
CC62_1  
Input/Output of Capture/Compare  
channel 2  
P0.5  
4
Hi-Z  
MRST_1  
SSC Master Receive Input/  
Slave Transmit Output  
EXINT0_0 External Interrupt Input 0  
COUT62_1 Output of Capture/Compare  
channel 2  
Data Sheet  
9
V1.1, 2012-12  
SAL-XC866  
General Device Information  
Table 2  
Pin Definitions and Functions (cont’d)  
Symbol Pin  
Type Reset Function  
Number  
State  
P1  
I/O  
Port 1  
Port 1 is a 5-bit bidirectional general purpose I/O  
port. It can be used as alternate functions for the  
JTAG, CCU6, UART, and the SSC.  
P1.0  
P1.1  
27  
28  
PU  
PU  
RXD_0  
T2EX  
UART Receive Data Input  
Timer 2 External Trigger Input  
EXINT3  
TDO_1  
TXD_0  
External Interrupt Input 3  
JTAG Serial Data Output  
UART Transmit Data Output/  
Clock Output  
P1.5  
P1.6  
P1.7  
29  
9
PU  
PU  
PU  
CCPOS0_1 CCU6 Hall Input 0  
EXINT5  
EXF2_0  
RXDO_0  
External Interrupt Input 5  
TImer 2 External Flag Output  
UART Transmit Data Output  
CCPOS1_1 CCU6 Hall Input 1  
T12HR_0  
CCU6 Timer 12 Hardware Run  
Input  
EXINT6  
External Interrupt Input 6  
10  
CCPOS2_1 CCU6 Hall Input 2  
T13HR_0 CCU6 Timer 13 Hardware Run  
Input  
P1.5 and P1.6 can be used as a software chip  
select output for the SSC.  
Data Sheet  
10  
V1.1, 2012-12  
SAL-XC866  
General Device Information  
Table 2  
Pin Definitions and Functions (cont’d)  
Symbol Pin  
Type Reset Function  
Number  
State  
P2  
I
Port 2  
Port 2 is an 8-bit general purpose input-only port. It  
can be used as alternate functions for the digital  
inputs of the JTAG and CCU6. It is also used as the  
analog inputs for the ADC.  
P2.0  
P2.1  
P2.2  
15  
16  
17  
Hi-Z  
CCPOS0_0 CCU6 Hall Input 0  
EXINT1  
T12HR_2  
External Interrupt Input 1  
CCU6 Timer 12 Hardware Run  
Input  
TCK_1  
CC61_3  
AN0  
JTAG Clock Input  
Input of Capture/Compare channel 1  
Analog Input 0  
Hi-Z  
Hi-Z  
CCPOS1_0 CCU6 Hall Input 1  
EXINT2  
External Interrupt Input 2  
T13HR_2  
CCU6 Timer 13 Hardware Run  
Input  
TDI_1  
CC62_3  
AN1  
JTAG Serial Data Input  
Input of Capture/Compare channel 2  
Analog Input 1  
CCPOS2_0 CCU6 Hall Input 2  
CTRAP_1  
CC60_3  
AN2  
CCU6 Trap Input  
Input of Capture/Compare channel 0  
Analog Input 2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
20  
21  
22  
23  
26  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
AN3  
AN4  
AN5  
AN6  
AN7  
Analog Input 3  
Analog Input 4  
Analog Input 5  
Analog Input 6  
Analog Input 7  
Data Sheet  
11  
V1.1, 2012-12  
SAL-XC866  
General Device Information  
Table 2  
Pin Definitions and Functions (cont’d)  
Symbol Pin  
Type Reset Function  
Number  
State  
P3  
I
Port 3  
Port 3 is a bidirectional general purpose I/O port. It  
can be used as alternate functions for the CCU6.  
P3.0  
P3.1  
32  
33  
Hi-Z  
Hi-Z  
CCPOS1_2 CCU6 Hall Input 1  
CC60_0  
Input/Output of Capture/Compare  
channel 0  
CCPOS0_2 CCU6 Hall Input 0  
CC61_2 Input/Output of Capture/Compare  
channel 1  
COUT60_0 Output of Capture/Compare  
channel 0  
P3.2  
34  
Hi-Z  
CCPOS2_2 CCU6 Hall Input 2  
CC61_0  
Input/Output of Capture/Compare  
channel 1  
P3.3  
P3.4  
P3.5  
35  
36  
37  
Hi-Z  
Hi-Z  
Hi-Z  
COUT61_0 Output of Capture/Compare  
channel 1  
CC62_0  
Input/Output of Capture/Compare  
channel 2  
COUT62_0 Output of Capture/Compare  
channel 2  
P3.6  
P3.7  
30  
31  
PD  
CTRAP_0  
EXINT4  
CCU6 Trap Input  
Hi-Z  
External Interrupt Input 4  
COUT63_0 Output of Capture/Compare  
channel 3  
Data Sheet  
12  
V1.1, 2012-12  
SAL-XC866  
General Device Information  
Table 2  
Pin Definitions and Functions (cont’d)  
Symbol Pin  
Type Reset Function  
Number  
State  
VDDP  
18  
I/O Port Supply (3.3 V/5.0 V)  
Also used by EVR and analog modules.  
VSSP  
VDDC  
VSSC  
VAREF  
19  
8
I
I/O Port Ground  
Core Supply Monitor (2.5 V)  
Core Supply Ground  
7
25  
ADC Reference Voltage  
ADC Reference Ground  
VAGND 24  
XTAL1  
XTAL2  
TMS  
6
Hi-Z  
External Oscillator Input  
(NC if not needed)  
5
O
Hi-Z  
External Oscillator Output  
(NC if not needed)  
11  
I
I
I
PD  
PU  
PU  
Test Mode Select  
RESET 38  
MBC1)  
Reset Input  
1
Monitor & BootStrap Loader Control  
1)  
An external pull-up device in the range of 4.7 kΩ to 100 kΩ is required to enter user mode. Alternatively MBC  
can be tied to high if alternate functions (for debugging) of the pin are not utilized.  
Data Sheet  
13  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
3
Functional Description  
3.1  
Processor Architecture  
The SAL-XC866 is based on a high-performance 8-bit Central Processing Unit (CPU)  
that is compatible with the standard 8051 processor. While the standard 8051 processor  
is designed around a 12-clock machine cycle, the SAL-XC866 CPU uses a 2-clock  
machine cycle. This allows fast access to ROM or RAM memories without wait state.  
Access to the Flash memory, however, requires an additional wait state (one machine  
cycle). The instruction set consists of 45% one-byte, 41% two-byte and 14% three-byte  
instructions.  
The SAL-XC866 CPU provides a range of debugging features, including basic stop/start,  
single-step execution, breakpoint support and read/write access to the data memory,  
program memory and SFRs. Figure 5 shows the CPU functional blocks.  
Internal Data  
Memory  
Core SFRs  
Register Interface  
External Data  
Memory  
External SFRs  
16-bit Registers &  
Memory Interface  
ALU  
Program Memory  
Opcode &  
Immediate  
Registers  
Multiplier / Divider  
Opcode Decoder  
Timer 0 / Timer 1  
fCCLK  
Memory Wait  
Reset  
State Machine &  
Power Saving  
UART  
Legacy External Interrupts (IEN0, IEN1)  
External Interrupts  
Interrupt  
Controller  
Non-Maskable Interrupt  
Figure 5  
CPU Block Diagram  
Data Sheet  
14  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
3.2  
Memory Organization  
The SAL-XC866 CPU operates in the following five address spaces:  
• 8 Kbytes of Boot ROM program memory  
• 256 bytes of internal RAM data memory  
• 512 bytes of XRAM memory  
• a 128-byte Special Function Register area  
• 4/8/16 Kbytes of Flash program memory  
Data Sheet  
15  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
Figure 6 illustrates the memory address spaces of the SAL-XC866-4FR devices.  
FFFFH  
FFFFH  
F200H  
F000H  
F200H  
F000H  
XRAM  
512 bytes  
XRAM  
512 bytes  
E000H  
Boot ROM  
8 Kbytes  
C000H  
B000H  
A000H  
D-Flash Bank  
4 Kbytes 1)  
Indirect  
Address  
Direct  
Address  
3000H  
2000H  
1000H  
0000H  
P-Flash Bank 2  
4 Kbytes2)  
FFH  
Special Function  
Registers  
Internal RAM  
80H  
P-Flash Bank 1  
4 Kbytes2)  
7FH  
00H  
P-Flash Bank 0  
4 Kbytes 1)  
Internal RAM  
0000H  
Program Space  
External Data Space  
Internal Data Space  
1) For SAA -XC866-1FR device, physically one 4KByte D-Flash bank is mapped to both address range 0000H - 0FFFH and A000H -  
AFFFH, and the shaded banks are not available.  
2) For SAA -XC866-2FR device, the shaded banks are not available.  
Figure 6  
Memory Map of SAL-XC866 Flash Devices  
Data Sheet  
16  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
3.2.1  
Memory Protection Strategy  
The SAL-XC866 memory protection strategy includes:  
• Read-out protection: The Flash Memory can be enabled for read-out protection and  
ROM memory is always protected.  
• Program and erase protection: The Flash memory in all devices can be enabled for  
program and erase protection.  
Flash memory protection is available in two modes:  
• Mode 0: Only the P-Flash is protected; the D-Flash is unprotected  
• Mode 1: Both the P-Flash and D-Flash are protected  
The selection of each protection mode and the restrictions imposed are summarized in  
Table 3.  
Table 3  
Flash Protection Modes  
Mode  
0
1
Activation  
Selection  
Program a valid password via BSL mode 6  
MSB of password = 0 MSB of password = 1  
P-Flashcontents Read instructions in the  
can be read by P-Flash  
Read instructions in the  
P-Flash or D-Flash  
P-Flash program Not possible  
Not possible  
and erase  
D-Flashcontents Read instructions in any program  
Read instructions in the  
P-Flash or D-Flash  
can be read by  
D-Flash program Possible  
D-Flash erase Possible, on the condition that bit  
memory  
Not possible  
Not possible  
DFLASHEN in register MISC_CON  
is set to 1 prior to each erase  
operation  
BSL mode 6, which is used for enabling Flash protection, can also be used for disabling  
Flash protection. Here, the programmed password must be provided by the user. A  
password match triggers an automatic erase of the read-protected Flash contents, see  
Table 4, and the programmed password is erased. The Flash protection is then disabled  
upon the next reset.  
For XC866-2FR and XC866-4FR devices:  
The selection of protection type is summarized in Table 4.  
Data Sheet  
17  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
Table 4  
Flash Protection Type for XC866-2FR and XC866-4FR devices  
PASSWORD  
Type of Protection  
Flash Banks to Erase when  
Unprotected  
1XXXXXXXB  
0XXXXXXXB  
Flash Protection Mode 1  
Flash Protection Mode 0  
All Banks  
P-Flash Bank  
Although no protection scheme can be considered infallible, the SAL-XC866 memory  
protection strategy provides a very high level of protection for a general purpose  
microcontroller.  
Data Sheet  
18  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
3.2.2  
Special Function Register  
The Special Function Registers (SFRs) occupy direct internal data memory space in the  
range 80H to FFH. All registers, except the program counter, reside in the SFR area. The  
SFRs include pointers and registers that provide an interface between the CPU and the  
on-chip peripherals. As the 128-SFR range is less than the total number of registers  
required, address extension mechanisms are required to increase the number of  
addressable SFRs. The address extension mechanisms include:  
• Mapping  
• Paging  
3.2.2.1 Address Extension by Mapping  
Address extension is performed at the system level by mapping. The SFR area is  
extended into two portions: the standard (non-mapped) SFR area and the mapped SFR  
area. Each portion supports the same address range 80H to FFH, bringing the number  
of addressable SFRs to 256. The extended address range is not directly controlled by  
the CPU instruction itself, but is derived from bit RMAP in the system control register  
SYSCON0 at address 8FH. To access SFRs in the mapped area, bit RMAP in SFR  
SYSCON0 must be set. Alternatively, the SFRs in the standard area can be accessed  
by clearing bit RMAP. The SFR area can be selected as shown in Figure 7.  
SYSCON0  
System Control Register 0  
Reset Value: 00H  
7
6
5
4
3
2
1
0
0
1
0
RMAP  
r
rw  
r
rw  
Field  
Bits  
Type Description  
RMAP  
0
rw  
Special Function Register Map Control  
0
The access to the standard SFR area is  
enabled.  
1
The access to the mapped SFR area is  
enabled.  
1
0
2
rw  
r
Reserved  
Returns the last value if read; should be written  
with 1.  
1,[7:3]  
Reserved  
Returns 0 if read; should be written with 0.  
Data Sheet  
19  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
Note: The RMAP bit must be cleared/set by ANL or ORL instructions. The rest bits of  
SYSCON0 should not be modified.  
As long as bit RMAP is set, the mapped SFR area can be accessed. This bit is not  
cleared automatically by hardware. Thus, before standard/mapped registers are  
accessed, bit RMAP must be cleared/set, respectively, by software.  
Standard Area (RMAP = 0)  
FFH  
Module 1 SFRs  
SYSCON0.RMAP  
Module 2 SFRs  
rw  
Module n SFRs  
80H  
FFH  
SFR Data  
(to/from CPU)  
Mapped Area (RMAP = 1)  
Module (n+1) SFRs  
Module (n+2) SFRs  
Module m SFRs  
80H  
Direct  
Internal Data  
Memory Address  
Figure 7  
Address Extension by Mapping  
Data Sheet  
20  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
3.2.2.2 Address Extension by Paging  
Address extension is further performed at the module level by paging. With the address  
extension by mapping, the SAL-XC866 has a 256-SFR address range. However, this is  
still less than the total number of SFRs needed by the on-chip peripherals. To meet this  
requirement, some peripherals have a built-in local address extension mechanism for  
increasing the number of addressable SFRs. The extended address range is not directly  
controlled by the CPU instruction itself, but is derived from bit field PAGE in the module  
page register MOD_PAGE. Hence, the bit field PAGE must be programmed before  
accessing the SFR of the target module. Each module may contain a different number  
of pages and a different number of SFRs per page, depending on the specific  
requirement. Besides setting the correct RMAP bit value to select the SFR area, the user  
must also ensure that a valid PAGE is selected to target the desired SFR. A page inside  
the extended address range can be selected as shown in Figure 8.  
SFR Address  
(from CPU)  
PAGE 0  
MOD_PAGE.PAGE  
rw  
SFR0  
SFR1  
SFRx  
PAGE 1  
SFR0  
SFR Data  
(to/from CPU)  
SFR1  
SFRy  
PAGE q  
SFR0  
SFR1  
SFRz  
Module  
Figure 8  
Address Extension by Paging  
Data Sheet  
21  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
In order to access a register located in a page different from the actual one, the current  
page must be left. This is done by reprogramming the bit field PAGE in the page register.  
Only then can the desired access be performed.  
If an interrupt routine is initiated between the page register access and the module  
register access, and the interrupt needs to access a register located in another page, the  
current page setting can be saved, the new one programmed and finally, the old page  
setting restored. This is possible with the storage fields MOD_STx (x = 0 - 3) for the save  
and restore action of the current page setting. By indicating which storage bit field should  
be used in parallel with the new page value, a single write operation can:  
• Save the contents of PAGE in MOD_STx before overwriting with the new value  
(this is done in the beginning of the interrupt routine to save the current page setting  
and program the new page number); or  
• Overwrite the contents of PAGE with the contents of MOD_STx, ignoring the value  
written to the bit positions of PAGE  
(this is done at the end of the interrupt routine to restore the previous page setting  
before the interrupt occurred)  
MOD_ST3  
MOD_ST2  
MOD_ST1  
MOD_ST0  
STNR  
PAGE  
value update  
from CPU  
Figure 9  
Storage Elements for Paging  
With this mechanism, a certain number of interrupt routines (or other routines) can  
perform page changes without reading and storing the previously used page information.  
The use of only write operations makes the system simpler and faster. Consequently,  
this mechanism significantly improves the performance of short interrupt routines.  
The SAL-XC866 supports local address extension for:  
• Parallel Ports  
• Analog-to-Digital Converter (ADC)  
• Capture/Compare Unit 6 (CCU6)  
• System Control Registers  
Data Sheet  
22  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
The page register has the following definition:  
MOD_PAGE  
Page Register for module MOD  
Reset Value: 00H  
7
6
5
4
3
2
1
0
OP  
STNR  
0
PAGE  
w
w
r
rw  
Field  
Bits Type Description  
[2:0] rw Page Bits  
PAGE  
When written, the value indicates the new page.  
When read, the value indicates the currently active  
page.  
STNR  
[5:4]  
w
Storage Number  
This number indicates which storage bit field is the  
target of the operation defined by bit field OP.  
If OP = 10 ,  
B
the contents of PAGE are saved in MOD_STx before  
being overwritten with the new value.  
If OP = 11 ,  
B
the contents of PAGE are overwritten by the  
contents of MOD_STx. The value written to the bit  
positions of PAGE is ignored.  
00  
01  
10  
11  
MOD_ST0 is selected.  
MOD_ST1 is selected.  
MOD_ST2 is selected.  
MOD_ST3 is selected.  
Data Sheet  
23  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
Field  
OP  
Bits Type Description  
[7:6] w Operation  
0X Manual page mode. The value of STNR is  
ignored and PAGE is directly written.  
10  
New page programming with automatic page  
saving. The value written to the bit positions of  
PAGE is stored. In parallel, the previous  
contents of PAGE are saved in the storage bit  
field MOD_STx indicated by STNR.  
11  
Automatic restore page action. The value  
written to the bit positions PAGE is ignored  
and instead, PAGE is overwritten by the  
contents of the storage bit field MOD_STx  
indicated by STNR.  
0
3
r
Reserved  
Returns 0 if read; should be written with 0.  
Data Sheet  
24  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
3.2.3  
The bit protection scheme prevents direct software writing of selected bits (i.e., protected  
bits) using the PASSWD register. When the bit field MODE is 11 , writing 10011 to the  
Bit Protection Scheme  
B
B
bit field PASS opens access to writing of all protected bits, and writing 10101 to the bit  
B
field PASS closes access to writing of all protected bits. Note that access is opened for  
maximum 32 CCLKs if the “close access” password is not written. If “open access”  
password is written again before the end of 32 CCLK cycles, there will be a recount of  
32 CCLK cycles. The protected bits include NDIV, WDTEN, PD, and SD.  
PASSWD  
Password Register  
Reset Value: 07H  
7
6
5
4
3
2
1
0
PROTECT  
_S  
PASS  
MODE  
wh  
rh  
rw  
Field  
Bits Type Description  
[1:0] rw Bit Protection Scheme Control bits  
MODE  
00  
11  
Scheme Disabled  
Scheme Enabled (default)  
Others: Scheme Enabled  
These two bits cannot be written directly. To change  
the value between 11 and 00 , the bit field PASS  
B
B
must be written with 11000 ; only then, will the  
B
MODE[1:0] be registered.  
PROTECT_S  
PASS  
2
rh  
Bit Protection Signal Status bit  
This bit shows the status of the protection.  
0
1
Software is able to write to all protected bits.  
Software is unable to write to any protected  
bits.  
[7:3] wh  
Password bits  
The Bit Protection Scheme only recognizes three  
patterns.  
11000 Enables writing of the bit field MODE.  
B
10011 Opens access to writing of all protected bits.  
B
10101 Closes access to writing of all protected bits.  
B
Data Sheet  
25  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
3.2.4  
SAL-XC866 Register Overview  
The SFRs of the SAL-XC866 are organized into groups according to their functional  
units. The contents (bits) of the SFRs are summarized in Table 5 to Table 13, with the  
addresses of the bitaddressable SFRs appearing in bold typeface.  
The CPU SFRs can be accessed in both the standard and mapped memory areas  
(RMAP = 0 or 1).  
Table 5  
CPU Register Overview  
Addr Register Name  
Bit  
7
6
5
4
3
2
1
0
RMAP = 0 or 1  
81  
82  
83  
87  
88  
89  
SP  
Reset: 07  
Reset: 00  
Reset: 00  
Bit Field  
Type  
SP  
rw  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
Stack Pointer Register  
DPL  
Bit Field  
Type  
DPL7 DPL6 DPL5 DPL4 DPL3 DPL2 DPL1 DPL0  
rw rw rw rw rw rw rw rw  
DPH7 DPH6 DPH5 DPH4 DPH3 DPH2 DPH1 DPH0  
Data Pointer Register Low  
DPH  
Bit Field  
Type  
Data Pointer Register High  
rw  
SMOD  
rw  
rw  
rw  
0
rw  
rw  
GF1  
rw  
rw  
GF0  
rw  
IT1  
rw  
0
rw  
0
rw  
IDLE  
rw  
PCON  
Power Control Register  
Reset: 00  
Bit Field  
Type  
r
r
TCON  
Timer Control Register  
Reset: 00  
Reset: 00  
Reset: 00  
Reset: 00  
Reset: 00  
Reset: 00  
Reset: 00  
Bit Field  
Type  
TF1  
TR1  
rw  
0
TF0  
rwh  
TR0  
rw  
IE1  
IE0  
rwh  
IT0  
rw  
rwh  
rwh  
TMOD  
Timer Mode Register  
Bit Field  
Type  
GATE1  
rw  
T1M  
rw  
GATE0  
rw  
T0M  
rw  
r
r
8A  
8B  
TL0  
Bit Field  
Type  
VAL  
H
H
Timer 0 Register Low  
rwh  
VAL  
rwh  
VAL  
rwh  
VAL  
rwh  
TL1  
Bit Field  
Type  
Timer 1 Register Low  
8C  
8D  
TH0  
Bit Field  
Type  
H
Timer 0 Register High  
TH1  
Bit Field  
Type  
H
Timer 1 Register High  
98  
SCON  
Bit Field  
Type  
SM0  
rw  
SM1  
rw  
SM2  
rw  
REN  
rw  
TB8  
rw  
RB8  
rwh  
TI  
RI  
H
Serial Channel Control Register  
rwh  
rwh  
99  
SBUF  
Reset: 00  
Bit Field  
Type  
VAL  
rwh  
TRAP_  
H
Serial Data Buffer Register  
A2  
EO  
Reset: 00  
Bit Field  
0
0
DPSEL  
0
H
Extended Operation Register  
EN  
Type  
r
0
r
rw  
r
rw  
EX0  
rw  
A8  
B8  
IEN0  
Reset: 00  
Bit Field  
Type  
EA  
rw  
ET2  
rw  
ES  
rw  
ET1  
rw  
EX1  
rw  
ET0  
rw  
H
H
H
H
H
Interrupt Enable Register 0  
IP  
Reset: 00  
Bit Field  
Type  
0
PT2  
rw  
PS  
rw  
PT1  
rw  
PX1  
rw  
PT0  
rw  
PX0  
rw  
Interrupt Priority Register  
r
0
r
B9  
D0  
IPH  
Reset: 00  
Bit Field  
Type  
PT2H PSH PT1H PX1H PT0H PX0H  
H
H
H
H
Interrupt Priority Register High  
rw  
F0  
rw  
RS1  
rw  
rw  
RS0  
rw  
rw  
OV  
rwh  
rw  
F1  
rw  
P
PSW  
Reset: 00  
Bit Field  
Type  
CY  
rw  
AC  
H
H
H
Program Status Word Register  
rwh  
rwh  
rwh  
rh  
E0  
E8  
ACC  
Reset: 00  
Bit Field  
Type  
ACC7 ACC6 ACC5 ACC4 ACC3 ACC2 ACC1 ACC0  
rw rw rw rw rw rw rw rw  
ECCIP ECCIP ECCIP ECCIP EXM EX2 ESSC EADC  
Accumulator Register  
IEN1  
Reset: 00  
Bit Field  
Interrupt Enable Register 1  
3
2
1
0
Type  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
Data Sheet  
26  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
Table 5  
CPU Register Overview (cont’d)  
Addr Register Name  
Bit  
Bit Field  
7
B7  
rw  
6
B6  
rw  
5
B5  
rw  
4
B4  
rw  
3
B3  
2
B2  
rw  
1
B1  
rw  
0
B0  
rw  
F0  
B
Reset: 00  
H
H
H
B Register  
Type  
rw  
F8  
IP1  
Reset: 00  
Bit Field  
PCCIP PCCIP PCCIP PCCIP PXM  
PX2 PSSC PADC  
H
Interrupt Priority Register 1  
3
2
1
0
Type  
rw  
rw  
rw  
rw  
rw  
rw rw rw  
F9  
IPH1  
Reset: 00  
Bit Field  
PCCIP PCCIP PCCIP PCCIP PXMH PX2H PSSCH PADC  
H
H
Interrupt Priority Register 1 High  
3H  
2H  
1H  
0H  
H
Type  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
The system control SFRs can be accessed in the standard memory area (RMAP = 0).  
Table 6 System Control Register Overview  
Addr Register Name  
Bit  
7
6
5
4
3
2
1
0
RMAP = 0 or 1  
8F  
SYSCON0  
System Control Register 0  
Reset: 00  
Bit Field  
Type  
0
r
RMAP  
rw  
H
H
H
RMAP = 0  
BF  
SCU_PAGE  
Reset: 00  
Bit Field  
Type  
OP  
w
STNR  
w
0
r
PAGE  
rwh  
H
Page Register for System Control  
RMAP = 0, Page 0  
B3  
B4  
B5  
B7  
MODPISEL  
Peripheral Input Select Register  
Reset: 00  
Bit Field  
0
r
JTAG JTAG  
TDIS TCKS  
0
r
EXINT URRIS  
0IS  
H
H
H
H
H
H
H
Type  
rw  
rw  
rw  
rw  
IRCON0  
Interrupt Request Register 0  
Reset: 00  
Bit Field  
0
r
EXINT EXINT EXINT EXINT EXINT EXINT EXINT  
6
rwh  
0
5
4
3
2
1
0
Type  
rwh  
rwh  
rwh  
rwh  
RIR  
rwh  
TIR  
rwh  
EIR  
IRCON1  
Interrupt Request Register 1  
Reset: 00  
Bit Field  
ADCS ADCS  
RC1  
RC0  
Type  
r
rwh  
rwh  
rwh  
rwh  
rwh  
EXICON0  
External Interrupt Control Register 0  
Reset: 00  
Bit Field  
Type  
EXINT3  
EXINT2  
EXINT1  
EXINT0  
H
H
H
rw  
0
rw  
EXINT6  
rw  
rw  
EXINT5  
rw  
rw  
EXINT4  
rw  
BA  
BB  
EXICON1  
External Interrupt Control Register 1  
Reset: 00  
Bit Field  
Type  
H
H
r
NMICON  
NMI Control Register  
Reset: 00  
Reset: 00  
Reset: 00  
Bit Field  
0
NMI  
ECC VDDP VDD OCDS FLASH PLL  
rw rw rw rw rw rw  
NMI  
NMI  
NMI  
NMI  
NMI  
NMI  
WDT  
Type  
r
rw  
BC  
NMISR  
NMI Status Register  
Bit Field  
0
FNMI FNMI FNMI FNMI FNMI FNMI FNMI  
ECC VDDP VDD OCDS FLASH PLL  
H
H
WDT  
rwh  
R
Type  
r
rwh  
rwh  
rwh  
BREN  
rw  
rwh  
rwh  
BRPRE  
rw  
rwh  
BD  
BCON  
Bit Field  
Type  
BGSEL  
rw  
0
r
H
H
H
H
H
H
Baud Rate Control Register  
rw  
BE  
BG  
Reset: 00  
Bit Field  
Type  
BR_VALUE  
rw  
Baud Rate Timer/Reload Register  
E9  
FDCON  
Reset: 00  
Bit Field  
BGS SYNEN ERRSY EOFSY BRK NDOV FDM FDEN  
Fractional Divider Control Register  
N
N
Type  
rw  
rw  
rwh  
rwh  
rwh  
rwh  
rw  
rw  
EA  
EB  
FDSTEP  
Fractional Divider Reload Register  
Reset: 00  
Bit Field  
Type  
STEP  
H
H
H
H
rw  
RESULT  
rh  
FDRES Reset: 00  
Fractional Divider Result Register  
Bit Field  
Type  
RMAP = 0, Page 1  
Data Sheet  
27  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
Table 6  
System Control Register Overview (cont’d)  
Addr Register Name  
Bit  
Bit Field  
7
6
5
4
3
2
1
VERID  
r
0
B3  
ID  
Reset: 01  
PRODID  
H
H
H
Identity Register  
Type  
r
B4  
PMCON0  
Reset: 00  
Bit Field  
0
r
WDT WKRS WK  
RST  
SD  
rw  
PD  
WS  
H
Power Mode Control Register 0  
SEL  
Type  
rwh  
rwh  
rw  
rwh  
rw  
B5  
B6  
B7  
PMCON1  
Power Mode Control Register 1  
Reset: 00  
Bit Field  
0
r
T2_DIS CCU  
_DIS  
SSC  
_DIS  
ADC  
_DIS  
H
H
H
H
H
H
H
H
Type  
rw  
rw  
rw  
rw  
OSC_CON  
OSC Control Register  
Reset: 08  
Bit Field  
0
r
OSC  
PD  
XPD  
OSC  
SS  
ORD OSCR  
RES  
Type  
rw  
rw  
rw  
rwh  
rh  
PLL_CON  
PLL Control Register  
Reset: 20  
Reset: 00  
Reset: 07  
Reset: 00  
Bit Field  
NDIV  
rw  
VCO  
BYP  
OSC RESLD LOCK  
DISC  
Type  
rw  
rw  
rwh  
rh  
BA  
BB  
CMCON  
Clock Control Register  
Bit Field  
VCO  
SEL  
0
r
CLKREL  
H
H
Type  
rw  
rw  
PROTE  
CT_S  
PASSWD  
Password Register  
Bit Field  
PASS  
MODE  
rw  
Type  
w
rh  
BC  
BD  
FEAL  
Bit Field  
Type  
ECCERRADDR[7:0]  
rh  
H
H
H
H
H
H
Flash Error Address Register Low  
FEAH Reset: 00  
Bit Field  
Type  
ECCERRADDR[15:8]  
rh  
Flash Error Address Register High  
COCON Reset: 00  
BE  
Bit Field  
0
r
TLEN COUT  
COREL  
rw  
Clock Output Control Register  
S
rw  
0
Type  
rw  
E9  
MISC_CON  
Reset: 00  
Bit Field  
DFLAS  
H
H
Miscellaneous Control Register  
HEN  
Type  
r
rwh  
RMAP = 0, Page 3  
B3 XADDRH  
Reset: F0  
Bit Field  
Type  
ADDRH  
rw  
H
H
On-Chip XRAM Address Higher Order  
The WDT SFRs can be accessed in the mapped memory area (RMAP = 1).  
Table 7 WDT Register Overview  
Addr Register Name  
Bit  
7
6
5
4
3
2
1
0
RMAP = 1  
BB  
WDTCON  
Watchdog Timer Control Register  
Reset: 00  
Bit Field  
0
r
WINB WDT  
0
WDT  
EN  
WDT  
RS  
WDT  
IN  
H
H
EN  
PR  
Type  
rw  
rh  
r
rw  
rwh  
rw  
BC  
BD  
WDTREL  
Watchdog Timer Reload Register  
Reset: 00  
Bit Field  
Type  
WDTREL  
rw  
H
H
H
WDTWINB  
Reset: 00  
Bit Field  
WDTWINB  
H
Watchdog Window-Boundary Count  
Register  
Type  
rw  
WDT[7:0]  
rh  
BE  
WDTL  
Reset: 00  
Bit Field  
Type  
H
H
H
Watchdog Timer Register Low  
BF  
WDTH  
Reset: 00  
Bit Field  
Type  
WDT[15:8]  
rh  
H
Watchdog Timer Register High  
Data Sheet  
28  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
The Port SFRs can be accessed in the standard memory area (RMAP = 0).  
Table 8 Port Register Overview  
Addr Register Name  
Bit  
7
6
5
4
3
2
1
0
RMAP = 0  
B2  
PORT_PAGE  
Page Register for PORT  
Reset: 00  
Bit Field  
Type  
OP  
w
STNR  
w
0
r
PAGE  
rwh  
H
H
RMAP = 0, Page 0  
80  
86  
90  
91  
P0_DATA  
P0 Data Register  
Reset: 00  
Reset: 00  
Reset: 00  
Reset: 00  
Reset: 00  
Reset: 00  
Reset: 00  
Reset: 00  
Bit Field  
Type  
0
r
P5  
rwh  
P5  
rw  
P4  
rwh  
P4  
rw  
P3  
rwh  
P3  
rw  
0
P2  
rwh  
P2  
rw  
P1  
rwh  
P1  
rw  
P0  
rwh  
P0  
rw  
H
H
H
H
H
H
H
H
H
H
H
H
P0_DIR  
P0 Direction Register  
Bit Field  
Type  
0
r
P1_DATA  
P1 Data Register  
Bit Field  
Type  
P7  
rwh  
P7  
rw  
P6  
rwh  
P6  
rw  
P5  
rwh  
P5  
rw  
P1  
rwh  
P1  
rw  
P0  
rwh  
P0  
rw  
r
P1_DIR  
P1 Direction Register  
Bit Field  
Type  
0
r
A0  
P2_DATA  
P2 Data Register  
Bit Field  
Type  
P7  
rwh  
P7  
rw  
P6  
rwh  
P6  
rw  
P5  
rwh  
P5  
rw  
P4  
rwh  
P4  
rw  
P3  
rwh  
P3  
rw  
P3  
rwh  
P3  
rw  
P2  
rwh  
P2  
rw  
P1  
rwh  
P1  
rw  
P0  
rwh  
P0  
rw  
H
H
A1  
B0  
P2_DIR  
P2 Direction Register  
Bit Field  
Type  
P3_DATA  
P3 Data Register  
Bit Field  
Type  
P7  
rwh  
P7  
rw  
P6  
rwh  
P6  
rw  
P5  
rwh  
P5  
rw  
P4  
rwh  
P4  
rw  
P2  
rwh  
P2  
rw  
P1  
rwh  
P1  
rw  
P0  
rwh  
P0  
rw  
H
B1  
P3_DIR  
P3 Direction Register  
Bit Field  
Type  
H
RMAP = 0, Page 1  
80  
86  
90  
91  
P0_PUDSEL  
P0 Pull-Up/Pull-Down Select Register  
Reset: FF  
Bit Field  
Type  
0
r
P5  
rw  
P5  
rw  
P5  
rw  
P5  
rw  
P5  
rw  
P5  
rw  
P5  
rw  
P5  
rw  
P4  
rw  
P4  
rw  
P3  
rw  
P3  
rw  
0
P2  
rw  
P2  
rw  
P1  
rw  
P1  
rw  
P1  
rw  
P1  
rw  
P1  
rw  
P1  
rw  
P1  
rw  
P1  
rw  
P0  
rw  
P0  
rw  
P0  
rw  
P0  
rw  
P0  
rw  
P0  
rw  
P0  
rw  
P0  
rw  
H
H
H
H
H
P0_PUDEN Reset: C4  
P0 Pull-Up/Pull-Down Enable Register  
Bit Field  
Type  
0
r
H
P1_PUDSEL Reset: FF  
P1 Pull-Up/Pull-Down Select Register  
Bit Field  
Type  
P7  
rw  
P7  
rw  
P7  
rw  
P7  
rw  
P7  
rw  
P7  
rw  
P6  
rw  
P6  
rw  
P6  
rw  
P6  
rw  
P6  
rw  
P6  
rw  
H
r
P1_PUDEN Reset: FF  
P1 Pull-Up/Pull-Down Enable Register  
Bit Field  
Type  
0
H
r
A0  
P2_PUDSEL Reset: FF  
P2 Pull-Up/Pull-Down Select Register  
Bit Field  
Type  
P4  
rw  
P4  
rw  
P4  
rw  
P4  
rw  
P3  
rw  
P3  
rw  
P3  
rw  
P3  
rw  
P2  
rw  
P2  
rw  
P2  
rw  
P2  
rw  
H
H
A1  
P2_PUDEN Reset: 00  
P2 Pull-Up/Pull-Down Enable Register  
Bit Field  
Type  
H
H
B0  
P3_PUDSEL Reset: BF  
P3 Pull-Up/Pull-Down Select Register  
Bit Field  
Type  
H
H
B1  
P3_PUDEN Reset: 40  
P3 Pull-Up/Pull-Down Enable Register  
Bit Field  
Type  
H
H
RMAP = 0, Page 2  
80  
86  
90  
91  
P0_ALTSEL0  
P0 Alternate Select 0 Register  
Reset: 00  
Bit Field  
Type  
0
r
P5  
rw  
P5  
rw  
P5  
rw  
P5  
rw  
P5  
rw  
P4  
rw  
P4  
rw  
P3  
rw  
P3  
rw  
0
P2  
rw  
P2  
rw  
P1  
rw  
P1  
rw  
P1  
rw  
P1  
rw  
P1  
rw  
P0  
rw  
P0  
rw  
P0  
rw  
P0  
rw  
P0  
rw  
H
H
H
H
H
H
H
H
H
P0_ALTSEL1  
P0 Alternate Select 1 Register  
Reset: 00  
Bit Field  
Type  
0
r
P1_ALTSEL0  
P1 Alternate Select 0 Register  
Reset: 00  
Bit Field  
Type  
P7  
rw  
P7  
rw  
P7  
rw  
P6  
rw  
P6  
rw  
P6  
rw  
r
P1_ALTSEL1  
P1 Alternate Select 1 Register  
Reset: 00  
Bit Field  
Type  
0
r
B0  
P3_ALTSEL0  
P3 Alternate Select 0 Register  
Reset: 00  
Bit Field  
Type  
P4  
rw  
P3  
rw  
P2  
rw  
H
Data Sheet  
29  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
Table 8  
Port Register Overview (cont’d)  
Addr Register Name  
Bit  
Bit Field  
7
P7  
rw  
6
P6  
rw  
5
P5  
rw  
4
P4  
rw  
3
P3  
2
P2  
rw  
1
P1  
rw  
0
P0  
rw  
B1  
P3_ALTSEL1  
Reset: 00  
H
H
P3 Alternate Select 1 Register  
Type  
rw  
RMAP = 0, Page 3  
80  
P0_OD  
Reset: 00  
Bit Field  
Type  
0
r
P5  
rw  
P5  
rw  
P5  
rw  
P4  
rw  
P3  
rw  
0
P2  
rw  
P1  
rw  
P1  
rw  
P1  
rw  
P0  
rw  
P0  
rw  
P0  
rw  
H
H
H
H
P0 Open Drain Control Register  
90  
P1_OD  
Reset: 00  
Bit Field  
Type  
P7  
rw  
P7  
rw  
P6  
rw  
P6  
rw  
H
P1 Open Drain Control Register  
r
B0  
P3_OD  
Reset: 00  
Bit Field  
Type  
P4  
rw  
P3  
rw  
P2  
rw  
H
P3 Open Drain Control Register  
The ADC SFRs can be accessed in the standard memory area (RMAP = 0).  
Table 9 ADC Register Overview  
Addr Register Name  
Bit  
7
6
5
4
3
2
1
0
RMAP = 0  
D1  
ADC_PAGE  
Page Register for ADC  
Reset: 00  
Bit Field  
Type  
OP  
w
STNR  
w
0
r
PAGE  
rwh  
H
H
RMAP = 0, Page 0  
CA  
ADC_GLOBCTR  
Global Control Register  
Reset: 30  
Reset: 00  
Bit Field  
Type  
ANON DW  
rw rw  
CTC  
rw  
0
r
H
H
H
CB  
ADC_GLOBSTR  
Global Status Register  
Bit Field  
0
CHNR  
0
r
SAM BUSY  
PLE  
H
Type  
r
rh  
rh  
rh  
CC  
CD  
ADC_PRAR  
Priority and Arbitration Register  
Reset: 00  
Bit Field  
Type  
ASEN1 ASEN0  
rw rw  
0
r
ARBM CSM1 PRIO1 CSM0 PRIO0  
rw rw rw rw rw  
BOUND0  
H
H
H
H
H
H
H
H
ADC_LCBR  
Limit Check Boundary Register  
Reset: B7  
Bit Field  
Type  
BOUND1  
rw  
rw  
CE  
CF  
ADC_INPCR0  
Input Class Register 0  
Reset: 00  
Bit Field  
Type  
STC  
rw  
ADC_ETRCR  
External Trigger Control Register  
Reset: 00  
Bit Field  
SYNEN SYNEN  
ETRSEL1  
ETRSEL0  
rw  
1
0
Type  
rw  
rw  
rw  
RMAP = 0, Page 1  
CA  
CB  
ADC_CHCTR0  
Channel Control Register 0  
Reset: 00  
Bit Field  
Type  
0
r
LCC  
rw  
0
r
RESRSEL  
rw  
H
H
H
H
H
H
H
H
H
H
ADC_CHCTR1  
Channel Control Register 1  
Reset: 00  
Bit Field  
Type  
0
r
LCC  
rw  
0
r
RESRSEL  
rw  
CC  
CD  
ADC_CHCTR2  
Channel Control Register 2  
Reset: 00  
Bit Field  
Type  
0
r
LCC  
rw  
0
r
RESRSEL  
rw  
H
H
H
H
H
H
ADC_CHCTR3  
Channel Control Register 3  
Reset: 00  
Bit Field  
Type  
0
r
LCC  
rw  
0
r
RESRSEL  
rw  
CE  
CF  
ADC_CHCTR4  
Channel Control Register 4  
Reset: 00  
Bit Field  
Type  
0
r
LCC  
rw  
0
r
RESRSEL  
rw  
ADC_CHCTR5  
Channel Control Register 5  
Reset: 00  
Bit Field  
Type  
0
r
LCC  
rw  
0
r
RESRSEL  
rw  
D2  
D3  
ADC_CHCTR6  
Channel Control Register 6  
Reset: 00  
Bit Field  
Type  
0
r
LCC  
rw  
0
r
RESRSEL  
rw  
ADC_CHCTR7  
Channel Control Register 7  
Reset: 00  
Bit Field  
Type  
0
r
LCC  
rw  
0
r
RESRSEL  
rw  
RMAP = 0, Page 2  
Data Sheet  
30  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
Table 9  
ADC Register Overview (cont’d)  
Addr Register Name  
Bit  
Bit Field  
7
6
5
0
r
4
VF  
rh  
3
DRC  
rh  
2
1
CHNR  
rh  
0
CA  
ADC_RESR0L  
Reset: 00  
Reset: 00  
Reset: 00  
Reset: 00  
Reset: 00  
Reset: 00  
Reset: 00  
Reset: 00  
RESULT[1:0]  
H
H
H
H
H
H
H
H
H
Result Register 0 Low  
Type  
rh  
CB  
ADC_RESR0H  
Bit Field  
Type  
RESULT[9:2]  
rh  
H
Result Register 0 High  
CC  
CD  
ADC_RESR1L  
Result Register 1 Low  
Bit Field  
Type  
RESULT[1:0]  
rh  
0
r
VF  
rh  
DRC  
rh  
CHNR  
rh  
H
H
H
H
H
H
ADC_RESR1H  
Result Register 1 High  
Bit Field  
Type  
RESULT[9:2]  
rh  
CE  
CF  
ADC_RESR2L  
Result Register 2 Low  
Bit Field  
Type  
RESULT[1:0]  
rh  
0
r
VF  
rh  
DRC  
rh  
CHNR  
rh  
ADC_RESR2H  
Result Register 2 High  
Bit Field  
Type  
RESULT[9:2]  
rh  
D2  
D3  
ADC_RESR3L  
Result Register 3 Low  
Bit Field  
Type  
RESULT[1:0]  
rh  
0
r
VF  
rh  
DRC  
rh  
CHNR  
rh  
ADC_RESR3H  
Bit Field  
Type  
RESULT[9:2]  
rh  
Result Register 3 High  
RMAP = 0, Page 3  
CA  
ADC_RESRA0L  
Result Register 0, View A Low  
Reset: 00  
Bit Field  
Type  
RESULT[2:0]  
VF  
rh  
DRC  
rh  
CHNR  
rh  
H
H
H
H
H
H
H
H
H
rh  
CB  
ADC_RESRA0H  
Result Register 0, View A High  
Reset: 00  
Bit Field  
Type  
RESULT[10:3]  
rh  
H
CC  
CD  
ADC_RESRA1L  
Result Register 1, View A Low  
Reset: 00  
Bit Field  
Type  
RESULT[2:0]  
rh  
VF  
rh  
DRC  
rh  
CHNR  
rh  
H
H
H
H
H
H
ADC_RESRA1H  
Result Register 1, View A High  
Reset: 00  
Bit Field  
Type  
RESULT[10:3]  
rh  
CE  
CF  
ADC_RESRA2L  
Result Register 2, View A Low  
Reset: 00  
Bit Field  
Type  
RESULT[2:0]  
rh  
VF  
rh  
DRC  
rh  
CHNR  
rh  
ADC_RESRA2H  
Result Register 2, View A High  
Reset: 00  
Bit Field  
Type  
RESULT[10:3]  
rh  
D2  
D3  
ADC_RESRA3L  
Result Register 3, View A Low  
Reset: 00  
Bit Field  
Type  
RESULT[2:0]  
rh  
VF  
rh  
DRC  
rh  
CHNR  
rh  
ADC_RESRA3H  
Result Register 3, View A High  
Reset: 00  
Bit Field  
Type  
RESULT[10:3]  
rh  
RMAP = 0, Page 4  
CA  
ADC_RCR0  
Result Control Register 0  
Reset: 00  
Reset: 00  
Reset: 00  
Reset: 00  
Reset: 00  
Bit Field  
VFCTR WFR  
0
IEN  
0
DRCT  
R
H
H
H
H
H
H
Type  
rw  
rw  
r
rw  
r
rw  
CB  
ADC_RCR1  
Result Control Register 1  
Bit Field  
VFCTR WFR  
0
IEN  
0
DRCT  
R
H
Type  
rw  
rw  
r
rw  
r
rw  
CC  
CD  
ADC_RCR2  
Result Control Register 2  
Bit Field  
VFCTR WFR  
0
IEN  
0
DRCT  
R
H
H
H
Type  
rw  
rw  
r
rw  
r
rw  
ADC_RCR3  
Result Control Register 3  
Bit Field  
VFCTR WFR  
0
IEN  
0
DRCT  
R
Type  
rw  
rw  
r
rw  
r
rw  
CE  
ADC_VFCR  
Valid Flag Clear Register  
Bit Field  
Type  
0
r
VFC3 VFC2 VFC1 VFC0  
w
w
w
w
RMAP = 0, Page 5  
Data Sheet  
31  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
Table 9  
ADC Register Overview (cont’d)  
Addr Register Name  
Bit  
7
6
5
4
3
2
1
0
CA  
ADC_CHINFR  
Channel Interrupt Flag Register  
Reset: 00  
Bit Field  
CHINF CHINF CHINF CHINF CHINF CHINF CHINF CHINF  
H
H
H
H
H
H
H
H
H
7
6
5
4
3
2
1
0
Type  
rh  
rh  
rh  
rh  
rh  
rh  
rh  
rh  
CB  
ADC_CHINCR  
Channel Interrupt Clear Register  
Reset: 00  
Bit Field  
CHINC CHINC CHINC CHINC CHINC CHINC CHINC CHINC  
H
7
6
5
4
3
2
1
0
Type  
w
w
w
w
w
w
w
w
CC  
CD  
ADC_CHINSR  
Channel Interrupt Set Register  
Reset: 00  
Bit Field  
CHINS CHINS CHINS CHINS CHINS CHINS CHINS CHINS  
H
H
H
H
H
H
7
6
5
4
3
2
1
0
Type  
w
w
w
w
w
w
w
w
ADC_CHINPR  
Channel Interrupt Node Pointer  
Register  
Reset: 00  
Bit Field  
CHINP CHINP CHINP CHINP CHINP CHINP CHINP CHINP  
7
6
5
4
3
2
1
0
Type  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
CE  
ADC_EVINFR  
Event Interrupt Flag Register  
Reset: 00  
Bit Field  
EVINF EVINF EVINF EVINF  
0
EVINF EVINF  
7
6
5
4
1
0
Type  
rh  
rh  
rh  
rh  
r
rh  
rh  
CF  
ADC_EVINCR  
Event Interrupt Clear Flag Register  
Reset: 00  
Bit Field  
EVINC EVINC EVINC EVINC  
0
EVINC EVINC  
7
6
5
4
1
0
Type  
w
w
w
w
r
w
w
D2  
D3  
ADC_EVINSR  
Event Interrupt Set Flag Register  
Reset: 00  
Bit Field  
EVINS EVINS EVINS EVINS  
0
EVINS EVINS  
7
6
5
4
1
0
Type  
w
w
w
w
r
w
w
ADC_EVINPR  
Reset: 00  
Bit Field  
EVINP EVINP EVINP EVINP  
0
EVINP EVINP  
Event Interrupt Node Pointer Register  
7
6
5
4
1
0
Type  
rw  
rw  
rw  
rw  
r
rw  
rw  
RMAP = 0, Page 6  
CA  
ADC_CRCR1  
Conversion Request Control Register 1  
Reset: 00  
Bit Field  
CH7  
rwh  
CH6  
rwh  
CH5  
rwh  
CH4  
rwh  
0
H
H
Type  
r
CB  
ADC_CRPR1  
Conversion Request Pending  
Register 1  
Reset: 00  
Bit Field  
CHP7 CHP6 CHP5 CHP4  
0
H
H
H
Type  
rwh  
Rsv  
rwh  
rwh  
rwh  
r
CC  
CD  
ADC_CRMR1  
Conversion Request Mode Register 1  
Reset: 00  
Bit Field  
LDEV CLR SCAN ENSI ENTR  
PND  
ENGT  
H
Type  
r
w
w
rw  
rw  
rw  
rw  
ENGT  
rw  
ADC_QMR0  
Queue Mode Register 0  
Reset: 00  
Reset: 20  
Reset: 00  
Reset: 00  
Reset: 00  
Bit Field  
Type  
CEV TREV FLUSH CLRV TRMD ENTR  
H
H
H
H
H
H
H
H
H
H
w
Rsv  
r
w
0
r
w
w
rw  
rw  
CE  
CF  
ADC_QSR0  
Queue Status Register 0  
Bit Field  
Type  
EMPTY EV  
0
r
rh  
RF  
rh  
rh  
V
ADC_Q0R0  
Queue 0 Register 0  
Bit Field  
Type  
EXTR ENSI  
rh rh  
EXTR ENSI  
rh rh  
EXTR ENSI  
0
r
REQCHNR  
rh  
V
rh  
REQCHNR  
rh  
D2  
D2  
ADC_QBUR0  
Queue Backup Register 0  
Bit Field  
Type  
RF  
rh  
0
r
rh  
ADC_QINR0  
Queue Input Register 0  
Bit Field  
Type  
RF  
w
0
r
REQCHNR  
w
w
w
The Timer 2 SFRs can be accessed in the standard memory area (RMAP = 0).  
Table 10 Timer 2 Register Overview  
Addr Register Name  
Bit  
7
6
5
4
3
2
1
0
C0  
T2_T2CON  
Timer 2 Control Register  
Reset: 00  
Bit Field  
TF2  
EXF2  
0
r
EXEN2 TR2  
0
CP/  
RL2  
H
H
Type  
rwh  
rwh  
rw rwh  
r
rw  
Data Sheet  
32  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
Table 10  
Timer 2 Register Overview (cont’d)  
C1  
T2_T2MOD  
Timer 2 Mode Register  
Reset: 00  
Bit Field  
T2  
REGS RHEN SEL  
rw rw rw  
T2  
EDGE PREN  
T2PRE  
rw  
DCEN  
rw  
H
H
Type  
rw  
RC2[7:0]  
C2  
C3  
C4  
C5  
T2_RC2L  
Timer 2 Reload/Capture Register Low  
Reset: 00  
Bit Field  
Type  
H
H
H
H
H
rwh  
RC2[15:8]  
rwh  
T2_RC2H Reset: 00  
Timer 2 Reload/Capture Register High  
Bit Field  
Type  
H
T2_T2L  
Timer 2 Register Low  
Reset: 00  
Bit Field  
Type  
THL2[7:0]  
rwh  
H
T2_T2H  
Timer 2 Register High  
Reset: 00  
Bit Field  
Type  
THL2[15:8]  
rwh  
H
The CCU6 SFRs can be accessed in the standard memory area (RMAP = 0).  
Table 11 CCU6 Register Overview  
Addr Register Name  
Bit  
7
6
5
4
3
2
1
0
RMAP = 0  
A3  
CCU6_PAGE  
Page Register for CCU6  
Reset: 00  
Bit Field  
Type  
OP  
w
STNR  
w
0
r
PAGE  
rwh  
H
H
RMAP = 0, Page 0  
9A  
CCU6_CC63SRL  
Reset: 00  
Bit Field  
CC63SL  
H
H
Capture/Compare Shadow Register for  
Channel CC63 Low  
Type  
rw  
9B  
CCU6_CC63SRH  
Reset: 00  
Bit Field  
CC63SH  
H
H
Capture/Compare Shadow Register for  
Channel CC63 High  
Type  
rw  
9C  
9D  
CCU6_TCTR4L  
Timer Control Register 4 Low  
Reset: 00  
Bit Field  
T12  
STD  
T12  
STR  
0
r
DTRES T12 T12RS T12RR  
RES  
H
H
H
H
H
H
H
Type  
w
w
w
w
w
w
CCU6_TCTR4H  
Timer Control Register 4 High  
Reset: 00  
Bit Field  
T13  
STD  
T13  
STR  
0
r
T13 T13RS T13RR  
RES  
Type  
w
w
0
w
w
w
9E  
CCU6_MCMOUTSL  
Multi-Channel Mode Output Shadow  
Register Low  
Reset: 00  
Bit Field  
STRM  
CM  
MCMPS  
Type  
w
STRHP  
w
r
0
r
rw  
9F  
CCU6_MCMOUTSH  
Multi-Channel Mode Output Shadow  
Register High  
Reset: 00  
Bit Field  
Type  
CURHS  
rw  
EXPHS  
rw  
H
A4  
A5  
A6  
A7  
CCU6_ISRL  
Capture/Compare Interrupt Status  
Reset Register Low  
Reset: 00  
Bit Field  
RT12P RT12O RCC62 RCC62 RCC61 RCC61 RCC60 RCC60  
H
H
H
H
H
H
H
M
M
F
R
F
w
0
R
F
R
Type  
w
w
w
w
w
w
w
CCU6_ISRH  
Capture/Compare Interrupt Status  
Reset Register High  
Reset: 00  
Bit Field  
RSTR RIDLE RWHE RCHE  
RTRPF RT13 RT13  
PM  
CM  
Type  
w
0
w
w
w
0
r
w
w
w
CCU6_CMPMODIFL  
Compare State Modification Register  
Low  
Reset: 00  
Bit Field  
MCC63  
S
MCC62 MCC61 MCC60  
S
S
S
Type  
r
w
r
w
w
w
CCU6_CMPMODIFH  
Compare State Modification Register  
High  
Reset: 00  
Bit Field  
0
MCC63  
R
0
MCC62 MCC61 MCC60  
H
R
R
R
Type  
r
w
r
w
w
w
FA  
CCU6_CC60SRL  
Reset: 00  
Bit Field  
CC60SL  
H
H
Capture/Compare Shadow Register for  
Channel CC60 Low  
Type  
rwh  
Data Sheet  
33  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
Table 11  
CCU6 Register Overview (cont’d)  
Addr Register Name  
Bit  
7
6
5
4
3
2
1
0
FB  
CCU6_CC60SRH  
Reset: 00  
Bit Field  
CC60SH  
H
H
Capture/Compare Shadow Register for  
Channel CC60 High  
Type  
rwh  
FC  
FD  
CCU6_CC61SRL  
Capture/Compare Shadow Register for  
Channel CC61 Low  
Reset: 00  
Bit Field  
CC61SL  
H
H
H
H
H
Type  
rwh  
CCU6_CC61SRH  
Capture/Compare Shadow Register for  
Channel CC61 High  
Reset: 00  
Bit Field  
CC61SH  
H
Type  
rwh  
FE  
CCU6_CC62SRL  
Capture/Compare Shadow Register for  
Channel CC62 Low  
Reset: 00  
Bit Field  
CC62SL  
H
Type  
rwh  
FF  
CCU6_CC62SRH  
Reset: 00  
Bit Field  
CC62SH  
H
Capture/Compare Shadow Register for  
Channel CC62 High  
Type  
rwh  
RMAP = 0, Page 1  
9A  
CCU6_CC63RL  
Reset: 00  
Bit Field  
CC63VL  
H
H
Capture/Compare Register for Channel  
CC63 Low  
Type  
rh  
9B  
CCU6_CC63RH  
Reset: 00  
Bit Field  
CC63VH  
H
H
Capture/Compare Register for Channel  
CC63 High  
Type  
rh  
T12PVL  
rwh  
9C  
9D  
CCU6_T12PRL  
Timer T12 Period Register Low  
Reset: 00  
Bit Field  
Type  
H
H
H
H
H
H
H
H
H
CCU6_T12PRH  
Timer T12 Period Register High  
Reset: 00  
Bit Field  
Type  
T12PVH  
rwh  
9E  
9F  
CCU6_T13PRL  
Timer T13 Period Register Low  
Reset: 00  
Bit Field  
Type  
T13PVL  
rwh  
CCU6_T13PRH  
Timer T13 Period Register High  
Reset: 00  
Bit Field  
Type  
T13PVH  
rwh  
A4  
A5  
CCU6_T12DTCL  
Reset: 00  
Bit Field  
Type  
DTM  
H
H
Dead-Time Control Register for Timer  
T12 Low  
rw  
CCU6_T12DTCH  
Dead-Time Control Register for Timer  
T12 High  
Reset: 00  
Bit Field  
0
r
DTR2 DTR1 DTR0  
rh rh rh  
0
r
DTE2 DTE1 DTE0  
H
Type  
rw  
rw  
rw  
A6  
A7  
CCU6_TCTR0L  
Timer Control Register 0 Low  
Reset: 00  
Bit Field  
CTM CDIR STE12 T12R  
T12  
PRE  
T12CLK  
H
H
H
H
H
Type  
rw  
rh  
rh  
rh  
rw  
rw  
CCU6_TCTR0H  
Timer Control Register 0 High  
Reset: 00  
Bit Field  
0
r
STE13 T13R  
T13  
PRE  
T13CLK  
Type  
rh  
rh  
rw  
rw  
FA  
FB  
CCU6_CC60RL  
Capture/Compare Register for Channel  
CC60 Low  
Reset: 00  
Bit Field  
CC60VL  
H
H
Type  
rh  
CCU6_CC60RH  
Reset: 00  
Bit Field  
CC60VH  
H
Capture/Compare Register for Channel  
CC60 High  
Type  
rh  
FC  
CCU6_CC61RL  
Reset: 00  
Bit Field  
CC61VL  
H
H
Capture/Compare Register for Channel  
CC61 Low  
Type  
rh  
Data Sheet  
34  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
Table 11  
CCU6 Register Overview (cont’d)  
Addr Register Name  
Bit  
7
6
5
4
3
2
1
0
FD  
CCU6_CC61RH  
Capture/Compare Register for Channel  
CC61 High  
Reset: 00  
Bit Field  
CC61VH  
H
H
H
H
Type  
rh  
FE  
CCU6_CC62RL  
Capture/Compare Register for Channel  
CC62 Low  
Reset: 00  
Bit Field  
CC62VL  
H
Type  
rh  
FF  
CCU6_CC62RH  
Reset: 00  
Bit Field  
CC62VH  
H
Capture/Compare Register for Channel  
CC62 High  
Type  
rh  
RMAP = 0, Page 2  
9A  
CCU6_T12MSELL  
T12 Capture/Compare Mode Select  
Register Low  
Reset: 00  
Bit Field  
MSEL61  
MSEL60  
H
H
H
H
H
H
H
H
Type  
rw  
HSYNC  
rw  
9B  
CCU6_T12MSELH  
T12 Capture/Compare Mode Select  
Register High  
Reset: 00  
Bit Field  
DBYP  
rw  
MSEL62  
H
Type  
rw  
rw  
9C  
9D  
CCU6_IENL  
Capture/Compare Interrupt Enable  
Register Low  
Reset: 00  
Bit Field  
ENT12 ENT12 ENCC ENCC ENCC ENCC ENCC ENCC  
H
H
H
H
PM  
OM  
62F  
62R  
61F  
rw  
0
61R  
60F  
60R  
Type  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
CCU6_IENH  
Capture/Compare Interrupt Enable  
Register High  
Reset: 00  
Bit Field  
ENSTR EN  
IDLE  
EN  
WHE  
EN  
CHE  
EN  
ENT13 ENT13  
TRPF  
PM  
CM  
Type  
rw  
rw  
rw  
rw  
r
rw  
rw  
rw  
9E  
CCU6_INPL  
Capture/Compare Interrupt Node  
Pointer Register Low  
Reset: 40  
Bit Field  
INPCHE  
INPCC62  
INPCC61  
INPCC60  
Type  
rw  
0
rw  
rw  
rw  
9F  
CCU6_INPH  
Capture/Compare Interrupt Node  
Pointer Register High  
Reset: 39  
Bit Field  
INPT13  
INPT12  
INPERR  
Type  
r
rw  
rw  
rw  
A4  
A5  
CCU6_ISSL  
Capture/Compare Interrupt Status Set  
Register Low  
Reset: 00  
Bit Field  
ST12P ST12O SCC62 SCC62 SCC61 SCC61 SCC60 SCC60  
H
H
M
M
F
R
F
R
F
R
Type  
w
w
w
w
w
w
w
w
CCU6_ISSH  
Reset: 00  
Bit Field  
SSTR SIDLE SWHE SCHE SWHC STRPF ST13 ST13  
H
Capture/Compare Interrupt Status Set  
Register High  
PM  
CM  
Type  
w
w
0
r
w
w
w
w
w
w
A6  
A7  
CCU6_PSLR  
Reset: 00  
Bit Field  
Type  
PSL63  
rwh  
PSL  
rwh  
H
H
H
Passive State Level Register  
CCU6_MCMCTR Reset: 00  
Multi-Channel Mode Control Register  
Bit Field  
Type  
0
r
SWSYN  
rw  
0
r
SWSEL  
rw  
H
FA  
FB  
CCU6_TCTR2L  
Timer Control Register 2 Low  
Reset: 00  
Bit Field  
0
r
T13TED  
T13TEC  
T13  
SSC  
T12  
SSC  
H
H
H
Type  
rw  
0
rw  
rw  
rw  
CCU6_TCTR2H  
Timer Control Register 2 High  
Reset: 00  
Bit Field  
Type  
T13RSEL  
rw  
T12RSEL  
rw  
H
H
r
FC  
FD  
CCU6_MODCTRL  
Modulation Control Register Low  
Reset: 00  
Bit Field  
MC  
MEN  
0
T12MODEN  
H
H
H
Type  
rw  
r
rw  
CCU6_MODCTRH  
Modulation Control Register High  
Reset: 00  
Bit Field  
ECT13  
O
0
T13MODEN  
H
H
Type  
rw  
r
rw  
FE  
CCU6_TRPCTRL  
Trap Control Register Low  
Reset: 00  
Bit Field  
Type  
0
r
TRPM2 TRPM1 TRPM0  
rw rw rw  
Data Sheet  
35  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
Table 11  
CCU6 Register Overview (cont’d)  
Addr Register Name  
Bit  
7
6
5
4
3
2
1
0
FF  
CCU6_TRPCTRH  
Reset: 00  
Bit Field  
TRPPE TRPEN  
TRPEN  
H
H
Trap Control Register High  
N
13  
Type  
rw  
rw  
rw  
RMAP = 0, Page 3  
9A  
CCU6_MCMOUTL  
Multi-Channel Mode Output Register  
Low  
Reset: 00  
Bit Field  
0
r
R
MCMP  
rh  
H
H
Type  
rh  
9B  
CCU6_MCMOUTH  
Multi-Channel Mode Output Register  
High  
Reset: 00  
Bit Field  
0
r
CURH  
rh  
EXPH  
rh  
H
H
Type  
9C  
9D  
CCU6_ISL  
Capture/Compare Interrupt Status  
Register Low  
Reset: 00  
Bit Field  
T12PM T12OM ICC62F ICC62 ICC61F ICC61 ICC60F ICC60  
H
H
H
R
R
R
Type  
rh  
rh  
rh  
rh  
rh  
rh  
rh  
rh  
CCU6_ISH  
Reset: 00  
Bit Field  
STR  
IDLE  
WHE  
CHE TRPS TRPF T13PM T13CM  
H
Capture/Compare Interrupt Status  
Register High  
Type  
rh  
rh  
rh  
rh  
rh  
rh  
rh  
rh  
9E  
CCU6_PISEL0L  
Port Input Select Register 0 Low  
Reset: 00  
Bit Field  
Type  
ISTRP  
ISCC62  
ISCC61  
ISCC60  
H
H
H
rw  
rw  
rw  
rw  
9F  
CCU6_PISEL0H  
Reset: 00  
Bit Field  
IST12HR  
ISPOS2  
ISPOS1  
ISPOS0  
H
Port Input Select Register 0 High  
Type  
rw  
rw  
0
rw  
rw  
IST13HR  
rw  
A4  
CCU6_PISEL2  
Port Input Select Register 2  
Reset: 00  
Bit Field  
Type  
H
H
H
H
H
H
H
r
FA  
FB  
CCU6_T12L  
Timer T12 Counter Register Low  
Reset: 00  
Bit Field  
Type  
T12CVL  
rwh  
H
H
CCU6_T12H  
Timer T12 Counter Register High  
Reset: 00  
Bit Field  
Type  
T12CVH  
rwh  
FC  
FD  
CCU6_T13L  
Timer T13 Counter Register Low  
Reset: 00  
Bit Field  
Type  
T13CVL  
rwh  
H
H
H
CCU6_T13H  
Timer T13 Counter Register High  
Reset: 00  
Bit Field  
Type  
T13CVH  
rwh  
FE  
CCU6_CMPSTATL  
Reset: 00  
Bit Field  
0
r
CC63 CCPO CCPO CCPO CC62 CC61 CC60  
Compare State Register Low  
ST  
S2  
S1  
S0  
ST  
ST  
ST  
Type  
rh  
rh  
rh  
rh  
rh  
rh  
rh  
FF  
CCU6_CMPSTATH  
Reset: 00  
Bit Field  
T13IM COUT COUT CC62 COUT CC61 COUT CC60  
H
H
Compare State Register High  
63PS 62PS  
PS  
61PS  
PS  
60PS  
PS  
Type  
rwh  
rwh rwh  
rwh  
rwh  
rwh  
rwh  
rwh  
The SSC SFRs can be accessed in the standard memory area (RMAP = 0).  
Table 12 SSC Register Overview  
Addr Register Name  
Bit  
7
6
5
4
3
2
1
0
RMAP = 0  
A9  
SSC_PISEL  
Port Input Select Register  
Reset: 00  
Reset: 00  
Bit Field  
Type  
0
r
CIS  
rw  
SIS  
rw  
MIS  
rw  
H
H
H
AA  
SSC_CONL  
Control Register Low  
Programming Mode  
Bit Field  
Type  
LB  
rw  
PO  
rw  
PH  
rw  
HB  
rw  
BM  
H
rw  
Operating Mode  
Bit Field  
Type  
0
r
BC  
rh  
Data Sheet  
36  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
Table 12  
SSC Register Overview  
AB  
SSC_CONH  
Reset: 00  
Bit Field  
EN  
MS  
0
AREN BEN  
PEN  
REN  
TEN  
H
H
Control Register High  
Programming Mode  
Type  
rw  
EN  
rw  
rw  
MS  
rw  
r
0
r
rw  
BSY  
rh  
rw  
BE  
rwh  
rw  
PE  
rwh  
rw  
RE  
rwh  
rw  
TE  
Operating Mode  
Bit Field  
Type  
rwh  
AC  
AD  
SSC_TBL  
Transmitter Buffer Register Low  
Reset: 00  
Bit Field  
Type  
TB_VALUE  
H
H
H
H
H
H
H
rw  
SSC_RBL  
Receiver Buffer Register Low  
Reset: 00  
Bit Field  
Type  
RB_VALUE  
rh  
AE  
AF  
SSC_BRL  
Baudrate Timer Reload Register Low  
Reset: 00  
Bit Field  
Type  
BR_VALUE[7:0]  
rw  
BR_VALUE[15:8]  
rw  
SSC_BRH Reset: 00  
Baudrate Timer Reload Register High  
Bit Field  
Type  
H
The OCDS SFRs can be accessed in the mapped memory area (RMAP = 1).  
Table 13 OCDS Register Overview  
Addr Register Name  
Bit  
7
6
5
4
3
2
1
0
RMAP = 1  
E9  
MMCR2  
Monitor Mode Control Register 2  
Reset: 0U  
Bit Field  
EXBC_ EXBC MBCO MBCO MMEP MMEP MMOD JENA  
H
H
H
H
H
H
H
H
H
H
H
P
N_P  
N
_P  
E
Type  
w
rw  
w
rwh  
w
rwh  
rh  
rh  
F1  
F2  
F3  
F4  
F5  
MMCR  
Reset: 00  
Bit Field  
MEXIT MEXIT MSTEP MSTEP MRAM MRAM TRF  
RRF  
Monitor Mode Control Register  
_P  
_P  
S_P  
S
Type  
w
rwh  
w
rw  
w
rwh  
rh  
rh  
MMSR  
Reset: 00  
Bit Field  
MBCA MBCIN EXBF SWBF HWB3 HWB2 HWB1 HWB0  
Monitor Mode Status Register  
M
F
F
F
F
Type  
rw  
rh  
rwh  
rwh  
rwh  
rwh  
rwh  
rwh  
MMBPCR  
BreakPoints Control Register  
Reset: 00  
Bit Field  
SWBC  
HWB3C  
HWB2C  
HWB1  
C
HWB0C  
Type  
rw  
rw  
rw  
rw  
rw  
MMICR  
Reset: 00  
Bit Field  
DVECT DRETR  
0
r
MMUIE MMUIE RRIE_ RRIE  
Monitor Mode Interrupt Control Register  
_P  
P
Type  
rwh  
rwh  
w
rw  
w
rw  
MMDR  
Reset: 00  
Bit Field  
MMRR  
H
Monitor Mode Data Register  
Receive  
Type  
rh  
MMTR  
w
Transmit  
Bit Field  
Type  
F6  
F7  
HWBPSR  
Hardware Breakpoints Select Register  
Reset: 00  
Bit Field  
0
r
BPSEL  
_P  
BPSEL  
rw  
H
H
H
Type  
w
HWBPDR  
Hardware Breakpoints Data Register  
Reset: 00  
Bit Field  
Type  
HWBPxx  
rw  
H
Data Sheet  
37  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
3.3  
Flash Memory  
The Flash memory provides an embedded user-programmable non-volatile memory,  
allowing fast and reliable storage of user code and data. It is operated from a single 2.5 V  
supply from the Embedded Voltage Regulator (EVR) and does not require additional  
programming or erasing voltage. The sectorization of the Flash memory allows each  
sector to be erased independently.  
Features  
In-System Programming (ISP) via UART  
In-Application Programming (IAP)  
Error Correction Code (ECC) for dynamic correction of single-bit errors  
Background program and erase operations for CPU load minimization  
Support for aborting erase operation  
1)  
Minimum program width of 32-byte for D-Flash and 32-byte for P-Flash  
1-sector minimum erase width  
1-byte read access  
Flash is delivered in erased state (read all zeros)  
Operating supply voltage: 2.5 V ± 7.5 %  
2)  
Read access time: 3 × tCCLK = 120 ns  
3)  
Program time: 209440 / fSYS = 2.8 ms  
3)  
Erase time: 8175360 / fSYS = 109 ms  
1)  
P-Flash: 32-byte wordline can only be programmed once, i.e., one gate disturb allowed.  
D-Flash: 32-byte wordline can be programmed twice, i.e., two gate disturbs allowed.  
2)  
3)  
fsys = 75 MHz ± 7.5% (fCCLK = 25 MHz ± 7.5 %) is the maximum frequency range for Flash read access.  
fsys = 75 MHz ± 7.5% is the only frequency range for Flash programming and erasing. fsysmin is used for  
obtaining the worst case timing.  
Data Sheet  
38  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
Table 14 shows the Flash data retention and endurance targets.  
Table 14  
Flash Data Retention and Endurance  
Retention  
Endurance1)  
Size  
TA= 125 to  
Remarks  
TA=- 40 to  
125 °C  
150 °C  
Program Flash  
2)  
20 years  
1,000 cycles  
1,000 cycles  
up to 16 Kbytes  
for 16-Kbyte  
Variant  
2)  
20 years  
up to 8 Kbytes  
for 8-Kbyte  
Variant  
Data Flash  
20 years  
5 years  
3)  
1,000 cycles  
10,000 cycles  
70,000 cycles  
4 Kbytes  
1 Kbyte  
1 Kbytes  
256 bytes  
128 bytes  
32 bytes  
3)  
3)  
2 years  
512 bytes  
128 bytes  
3)  
2 years  
100,000 cycles  
1)  
One cycle refers to the programming of all wordlines in a sector and erasing of sector. The Flash endurance  
data specified in Table 14 is valid only if the following conditions are fulfilled:  
- the maximum number of erase cycles per Flash sector must not exceed 100,000 cycles.  
- the maximum number of erase cycles per Flash bank must not exceed 300,000 cycles.  
- the maximum number of program cycles per Flash bank must not exceed 2,500,000 cycles.  
2)  
3)  
If no Flash is used for data, the Program Flash size can be up to the maximum Flash size available in the  
device variant. Having more Data Flash will mean less Flash is available for Program Flash.  
For T =125 to 150°C, refers to programming of second 8 bytes (bytes 8 to 15) per WL  
A
Data Sheet  
39  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
3.3.1  
Flash Bank Sectorization  
The SAL-XC866 product family offers four Flash devices with either 8 Kbytes or  
16 Kbytes of embedded Flash memory. These Flash memory sizes are made up of two  
or four 4-Kbyte Flash banks, respectively. Each Flash device consists of Program Flash  
(P-Flash) bank(s) and a single Data Flash (D-Flash) bank with different sectorization  
shown in Figure 10. Both types can be used for code and data storage. The label “Data”  
neither implies that the D-Flash is mapped to the data memory region, nor that it can only  
be used for data storage. It is used to distinguish the different Flash bank sectorizations.  
Sector 2: 128-byte  
Sector 1: 128-byte  
Sector 9: 128-byte  
Sector 8: 128-byte  
Sector 7: 128-byte  
Sector 6: 128-byte  
Sector 5: 256-byte  
Sector 4: 256-byte  
Sector 3: 512-byte  
Sector 2: 512-byte  
Sector 0: 3.75-Kbyte  
Sector 1: 1-Kbyte  
Sector 0: 1-Kbyte  
P-Flash  
D-Flash  
Figure 10  
Flash Bank Sectorization  
The internal structure of each Flash bank represents a sector architecture for flexible  
erase capability. The minimum erase width is always a complete sector, and sectors can  
be erased separately or in parallel. Contrary to standard EPROMs, erased Flash  
memory cells contain 0s.  
The D-Flash bank is divided into more physical sectors for extended erasing and  
reprogramming capability; even numbers for each sector size are provided to allow  
greater flexibility and the ability to adapt to a wide range of application requirements.  
Data Sheet  
40  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
3.3.2  
Flash Programming Width  
For the P-Flash banks, a programmed wordline (WL) must be erased before it can be  
reprogrammed as the Flash cells can only withstand one gate disturb. This means that  
the entire sector containing the WL must be erased since it is impossible to erase a  
single WL.  
For the D-Flash bank, the same WL can be programmed twice before erasing is required  
as the Flash cells are able to withstand two gate disturbs. Hence, it is possible to  
program the same WL, for example, with 16 bytes of data in two times (see Figure 11).  
32 bytes (1 WL)  
0000 ….. 0000 H  
16 bytes  
16 bytes  
Program 1  
Program 2  
0000 ….. 0000 H  
1111 ….. 1111 H  
1111 ….. 1111 H  
0000 ….. 0000 H  
1111 ….. 1111H  
0000 ….. 0000 H  
1111 ….. 0000 H  
1111 ….. 0000 H  
0000 ….. 0000H  
Note: A Flash memory cell can be programmed  
from 0 to 1, but not from 1 to 0.  
Flash memory cells  
32-byte write buffers  
Figure 11  
D-Flash Programming  
Note: When programming a D-Flash WL the second time, the previously programmed  
Flash memory cells (whether 0s or 1s) should be reprogrammed with 0s to retain  
its original contents and to prevent “over-programming”.  
Data Sheet  
41  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
3.4  
Interrupt System  
The XC800 Core supports one non-maskable interrupt (NMI) and 14 maskable interrupt  
requests. In addition to the standard interrupt functions supported by the core, e.g.,  
configurable interrupt priority and interrupt masking, the XC866 interrupt system  
provides extended interrupt support capabilities such as the mapping of each interrupt  
vector to several interrupt sources to increase the number of interrupt sources  
supported, and additional status registers for detecting and determining the interrupt  
source.  
3.4.1  
Interrupt Source  
Figure 12 to Figure 16 give a general overview of the interrupt sources and illustrates  
the request and control flags.  
WDT Overflow  
FNMIWDT  
NMIISR.0  
NMIWDT  
NMICON.0  
PLL Loss of Lock  
FNMIPLL  
NMIISR.1  
NMIPLL  
NMICON.1  
Flash Operation  
Complete  
FNMIFLASH  
NMIISR.2  
NMIFLASH  
>=1  
Non  
Maskable  
Interrupt  
0073  
FNMIVDD  
NMIISR.4  
H
VDD Pre-Warning  
VDDP Pre-Warning  
Flash ECC Error  
NMIVDD  
NMICON.4  
FNMIVDDP  
NMIISR.5  
NMIVDDP  
NMICON.5  
FNMIECC  
NMIISR.6  
NMIECC  
NMICON.6  
Figure 12  
Non-Maskable Interrupt Request Sources  
Data Sheet  
42  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
Highest  
Timer 0  
Overflow  
TF0  
Lowest  
Priority Level  
TCON.5  
000B  
ET0  
H
IP.1/  
IPH.1  
IEN0.1  
Timer 1  
Overflow  
TF1  
P
o
l
TCON.7  
001B  
ET1  
H
IP.3/  
IPH.3  
IEN0.3  
l
i
n
g
UART  
Receive  
RI  
SCON.0  
>=1  
UART  
Transmit  
S
e
q
u
e
n
c
0023  
TI  
ES  
H
IP.4/  
IPH.4  
IEN0.4  
SCON.1  
EXINT0  
IE0  
TCON.1  
EINT0  
e
IRCON0.0  
0003  
EX0  
H
IT0  
IP.0/  
IPH.0  
IEN0.0  
TCON.0  
EXINT0  
EXICON0.0/1  
EXINT1  
IE1  
EINT1  
IRCON0.1  
TCON.3  
0013  
EA  
EX1  
H
IT1  
IP.2/  
IEN0.2  
IPH.2  
TCON.2  
EXINT1  
EXICON0.2/3  
IEN0.7  
Bit-addressable  
Request flag is cleared by hardware  
Figure 13  
Interrupt Request Sources (Part 1)  
Data Sheet  
43  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
Timer 2  
Overflow  
Highest  
TF2  
T2_T2CON.7  
Lowest  
Priority Level  
T2EX  
EXF2  
002B  
ET2  
H
T2_T2CON.6  
EXEN2  
IP.5/  
IPH.5  
IEN0.5  
T2_T2CON.3  
EDGES  
EL  
T2MOD.5  
>=1  
Normal Divider  
Overflow  
NDOV  
FDCON.2  
End of  
Synch Byte  
EOFSYN  
>=1  
FDCON.4  
ERRSYN  
FDCON.5  
Synch Byte  
Error  
FDCON.6  
SYNEN  
P
o
l
FDCON.6  
l
i
n
g
EXINT2  
EINT2  
IRCON0.2  
0043  
EX2  
H
IP1.2/  
IPH1.2  
IEN1.2  
EXINT2  
EXICON0.4/5  
S
e
q
u
e
n
c
EXINT3  
EINT3  
IRCON0.3  
EXINT3  
e
EXICON0.6/7  
EXINT4  
EINT4  
IRCON0.4  
004B  
EXM  
H
IP1.3/  
IPH1.3  
EXINT4  
IEN1.3  
>=1  
EXICON1.0/1  
EXINT5  
EINT5  
IRCON0.5  
EXINT5  
EXICON1.2/3  
EA  
IEN0.7  
EXINT6  
EINT6  
IRCON0.6  
Bit-addressable  
Request flag is cleared by hardware  
EXINT6  
EXICON1.4/5  
Bit-addressable  
Request flag is cleared by hardware  
Figure 14  
Interrupt Request Sources (Part 2)  
Data Sheet  
44  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
Highest  
ADC Service  
Request 0  
ADCSRC0  
IRCON1.3  
>=1  
Lowest  
ADC Service  
Request 1  
Priority Level  
0033  
EADC  
H
ADCSRC1  
IRCON1.4  
IP1.0/  
IPH1.0  
IEN1.0  
SSC Error  
SSC Transmit  
SSC Receive  
EIR  
IRCON1.0  
TIR  
>=1  
P
o
l
l
i
003B  
IRCON1.1  
ESSC  
H
IP1.1/  
IPH1.1  
IEN1.1  
RIR  
IRCON1.2  
n
g
CCU6 Node 0  
CCU6SR0  
IRCON3.0  
0053  
005B  
0063  
H
H
S
e
q
u
e
n
c
ECCIP0  
IEN1.4  
IP1.4/  
IPH1.4  
CCU6 Node 1  
CCU6SR1  
IRCON3.4  
ECCIP1  
IEN1.5  
e
IP1.5/  
IPH1.5  
CCU6 Node 2  
CCU6SR2  
IRCON4.0  
H
ECCIP2  
IEN1.6  
IP1.6/  
IPH1.6  
CCU6SR3  
IRCON4.4  
CCU6 Node 3  
006B  
H
ECCIP3  
IEN1.7  
IP1.7/  
IPH1.7  
EA  
IEN0.7  
Bit-addressable  
Request flag is cleared by hardware  
Figure 15  
Interrupt Request Sources (Part 3)  
Data Sheet  
45  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
ICC60R  
ISL.0  
ENCC60R  
IENL.0  
CC60  
CC61  
>=1  
>=1  
ICC60F  
ISL.1  
ENCC60F  
IENL.1  
INPL.1  
INPL.3  
INPL.0  
INPL.2  
ICC61R  
ISL.2  
ENCC61R  
IENL.2  
ICC61F  
ISL.3  
ENCC61F  
IENL.3  
ICC62R  
ISL.4  
ENCC62R  
IENL.4  
CC62  
>=1  
ICC62F  
ISL.5  
ENCC62F  
IENL.5  
INPL.5  
INPL.4  
T12  
One match  
T12OM  
ISL.6  
ENT12OM  
IENL.6  
>=1  
>=1  
T12  
Period match  
T12PM  
ISL.7  
ENT12PM  
IENL.7  
INPH.3 INPH.2  
T13  
T13CM  
ISH.0  
Compare match  
ENT13CM  
IENH.0  
T13  
Period match  
T13PM  
ISH.1  
ENT13PM  
IENH.1  
INPH.5 INPH.4  
TRPF  
ISH.2  
CTRAP  
ENTRPF  
IENH.2  
>=1  
>=1  
Wrong Hall  
Event  
WHE  
ISH.5  
ENWHE  
IENH.5  
INPH.1 INPH.0  
Correct Hall  
Event  
CHE  
ENCHE  
IENH.4  
ISH.4  
Multi-Channel  
Shadow  
Transfer  
STR  
ENSTR  
IENH.7  
ISH.7  
INPL.7  
INPL.6  
CCU6 Interrupt node 0  
CCU6 Interrupt node 1  
CCU6 Interrupt node 2  
CCU6 Interrupt node 3  
Figure 16  
Interrupt Request Sources (Part 4)  
Data Sheet  
46  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
3.4.2  
Interrupt Source and Vector  
Each interrupt source has an associated interrupt vector address. This vector is  
accessed to service the corresponding interrupt source request. The interrupt service of  
each interrupt source can be individually enabled or disabled via an enable bit. The  
assignment of the SAL-XC866 interrupt sources to the interrupt vector addresses and  
the corresponding interrupt source enable bits are summarized in Table 15.  
Table 15  
Interrupt Vector Addresses  
Interrupt  
Source  
Vector  
Address  
Assignment for SAL-  
XC866  
Enable Bit  
SFR  
NMI  
0073  
Watchdog Timer NMI  
PLL NMI  
NMIWDT  
NMIPLL  
NMIFLASH  
NMIVDD  
NMIVDDP  
NMIECC  
EX0  
NMICON  
H
Flash NMI  
VDDC Prewarning NMI  
VDDP Prewarning NMI  
Flash ECC NMI  
External Interrupt 0  
Timer 0  
XINTR0  
XINTR1  
XINTR2  
XINTR3  
XINTR4  
XINTR5  
0003  
IEN0  
H
000B  
ET0  
H
H
0013  
External Interrupt 1  
Timer 1  
EX1  
001B  
ET1  
H
H
0023  
UART  
ES  
002B  
T2  
ET2  
H
Fractional Divider  
(Normal Divider Overflow)  
LIN  
Data Sheet  
47  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
Table 15  
Interrupt Vector Addresses (cont’d)  
XINTR6  
XINTR7  
XINTR8  
XINTR9  
0033  
ADC  
EADC  
IEN1  
H
003B  
SSC  
ESSC  
EX2  
H
H
0043  
External Interrupt 2  
External Interrupt 3  
External Interrupt 4  
External Interrupt 5  
External Interrupt 6  
CCU6 INP0  
004B  
EXM  
H
XINTR10  
XINTR11  
XINTR12  
XINTR13  
0053  
ECCIP0  
ECCIP1  
ECCIP2  
ECCIP3  
H
005B  
CCU6 INP1  
H
0063  
CCU6 INP2  
H
006B  
CCU6 INP3  
H
Data Sheet  
48  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
3.4.3  
Interrupt Priority  
Each interrupt source, except for NMI, can be individually programmed to one of the four  
possible priority levels. The NMI has the highest priority and supersedes all other  
interrupts. Two pairs of interrupt priority registers (IP and IPH, IP1 and IPH1) are  
available to program the priority level of each non-NMI interrupt vector.  
A low-priority interrupt can be interrupted by a high-priority interrupt, but not by another  
interrupt of the same or lower priority. Further, an interrupt of the highest priority cannot  
be interrupted by any other interrupt source.  
If two or more requests of different priority levels are received simultaneously, the  
request of the highest priority is serviced first. If requests of the same priority are  
received simultaneously, then an internal polling sequence determines which request is  
serviced first. Thus, within each priority level, there is a second priority structure  
determined by the polling sequence shown in Table 16.  
Table 16  
Source  
Priority Structure within Interrupt Level  
Level  
Non-Maskable Interrupt (NMI)  
External Interrupt 0  
Timer 0 Interrupt  
(highest)  
1
2
3
4
5
External Interrupt 1  
Timer 1 Interrupt  
UART Interrupt  
Timer 2,Fractional Divider, LIN Interrupts 6  
ADC Interrupt  
7
SSC Interrupt  
8
External Interrupt 2  
9
External Interrupt [6:3]  
CCU6 Interrupt Node Pointer 0  
CCU6 Interrupt Node Pointer 1  
CCU6 Interrupt Node Pointer 2  
CCU6 Interrupt Node Pointer 3  
10  
11  
12  
13  
14  
Data Sheet  
49  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
3.5  
Parallel Ports  
The SAL-XC866 has 27 port pins organized into four parallel ports, Port 0 (P0) to Port 3  
(P3). Each pin has a pair of internal pull-up and pull-down devices that can be individually  
enabled or disabled. Ports P0, P1 and P3 are bidirectional and can be used as general  
purpose input/output (GPIO) or to perform alternate input/output functions for the on-chip  
peripherals. When configured as an output, the open drain mode can be selected. Port  
P2 is an input-only port, providing general purpose input functions, alternate input  
functions for the on-chip peripherals, and also analog inputs for the Analog-to-Digital  
Converter (ADC).  
Bidirectional Port Features:  
• Configurable pin direction  
• Configurable pull-up/pull-down devices  
• Configurable open drain mode  
• Transfer of data through digital inputs and outputs (general purpose I/O)  
• Alternate input/output for on-chip peripherals  
Input Port Features:  
• Configurable input driver  
• Configurable pull-up/pull-down devices  
• Receive of data through digital input (general purpose input)  
• Alternate input for on-chip peripherals  
• Analog input for ADC module  
Data Sheet  
50  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
Px_PUDSEL  
Pull-up/Pull-down  
Select Register  
Internal Bus  
Px_PUDEN  
Pull-up/Pull-down  
Enable Register  
Px_OD  
Open Drain  
Control Register  
Px_DIR  
Direction Register  
Px_ALTSEL0  
Alternate Select  
Register 0  
VDDP  
Px_ALTSEL1  
Alternate Select  
Register 1  
Pull  
Up  
Device  
enable  
AltDataOut 3  
enable  
11  
Output  
Driver  
AltDataOut 2  
AltDataOut1  
10  
01  
00  
Pin  
enable  
Out  
In  
Input  
Driver  
Px_Data  
Data Register  
Schmitt Trigger  
AltDataIn  
Pull  
Down  
Device  
enable  
Pad  
Figure 17  
General Structure of Bidirectional Port  
Data Sheet  
51  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
Internal Bus  
Px_PUDSEL  
Pull-up/Pull-down  
Select Register  
Px_PUDEN  
Pull-up/Pull-down  
Enable Register  
Px_DIR  
Direction Register  
VDDP  
Pull  
Up  
enable  
Device  
enable  
Input  
In  
Driver  
Px_DATA  
Data Register  
Pin  
Schmitt Trigger  
AltDataIn  
AnalogIn  
Pull  
Down  
enable  
Device  
Pad  
Figure 18  
General Structure of Input Port  
Data Sheet  
52  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
3.6  
Power Supply System with Embedded Voltage Regulator  
The SAL-XC866 microcontroller requires two different levels of power supply:  
• 3.3 V or 5.0 V for the Embedded Voltage Regulator (EVR) and Ports  
• 2.5 V for the core, memory, on-chip oscillator, and peripherals  
Figure 19 shows the SAL-XC866 power supply system. A power supply of 3.3 V or  
5.0 V must be provided from the external power supply pin. The 2.5 V power supply for  
the logic is generated by the EVR. The EVR helps to reduce the power consumption of  
the whole chip and the complexity of the application board design.  
The EVR consists of a main voltage regulator and a low power voltage regulator. In  
active mode, both voltage regulators are enabled. In power-down mode, the main  
voltage regulator is switched off, while the low power voltage regulator continues to  
function and provide power supply to the system with low power consumption.  
CPU &  
Memory  
On-chip Peripheral  
OSC logic  
ADC  
FLASH  
PLL  
VDDC(2.5V)  
XTAL1&  
XTAL2  
GPIO  
Ports  
EVR  
(P0-P3)  
VDDP  
VSSP  
Figure 19  
SAL-XC866 Power Supply System  
EVR Features:  
• Input voltage (V  
): 3.3 V/5.0 V  
DDP  
• Output voltage (V  
): 2.5 V ± 7.5%  
DDC  
• Low power voltage regulator provided in power-down mode  
V  
V  
and V  
brownout detection  
prewarning detection  
DDC  
DDC  
DDP  
Data Sheet  
53  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
3.7  
Reset Control  
The SAL-XC866 has five types of reset: power-on reset, hardware reset, watchdog timer  
reset, power-down wake-up reset, and brownout reset.  
When the SAL-XC866 is first powered up, the status of certain pins (see Table 18) must  
be defined to ensure proper start operation of the device. At the end of a reset sequence,  
the sampled values are latched to select the desired boot option, which cannot be  
modified until the next power-on reset or hardware reset. This guarantees stable  
conditions during the normal operation of the device.  
In order to power up the system properly, the external reset pin RESET must be asserted  
until V  
reaches 0.9*V  
. The delay of external reset can be realized by an external  
DDC  
DDC  
capacitor at RESET pin. This capacitor value must be selected so that V  
reaches  
RESET  
0.4 V, but not before V  
reaches 0.9* V  
DDC  
DDC.  
A typical application example is shown in Figure 20. V  
capacitor value is 300 nF.  
DDP  
V
capacitor value is 220 nF. The capacitor connected to RESET pin is 100 nF.  
DDC  
Typically, the time taken for V  
to reach 0.9*V  
is less than 50 μs once V  
DDC  
DDC DDP  
reaches 2.3V. Hence, based on the condition that 10% to 90% V  
(slew rate) is less  
DDP  
than 500 μs, the RESET pin should be held low for 500 μs typically. See Figure 21.  
3.3/5V  
220nF  
e.g. 300nF  
VDDC  
VSSC  
VSSP VDDP  
RESET  
typ.  
100nF  
EVR  
30k  
XC866  
Figure 20  
Reset Circuitry  
Data Sheet  
54  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
Voltage  
5V  
VDDP  
VDDC  
2.5V  
2.3V  
0.9*VDDC  
Time  
Voltage  
5V  
RESET with  
capacitor  
< 0.4V  
0V  
Time  
typ. < 50 us  
Figure 21  
VDDP, VDDC and VRESET during Power-on Reset  
The second type of reset in SAL-XC866 is the hardware reset. This reset function can  
be used during normal operation or when the chip is in power-down mode. A reset input  
pin RESET is provided for the hardware reset. To ensure the recognition of the hardware  
reset, pin RESET must be held low for at least 100 ns.  
The Watchdog Timer (WDT) module is also capable of resetting the device if it detects  
a malfunction in the system.  
Another type of reset that needs to be detected is a reset while the device is in  
power-down mode (wake-up reset). While the contents of the static RAM are undefined  
after a power-on reset, they are well defined after a wake-up reset from power-down  
mode.  
Data Sheet  
55  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
3.7.1  
Module Reset Behavior  
Table 17 shows how the functions of the SAL-XC866 are affected by the various reset  
types. A “ ” means that this function is reset to its default state.  
Table 17  
Effect of Reset on Device Functions  
Module/  
Function  
Wake-Up  
Reset  
Watchdog Hardware  
Reset Reset  
Power-On  
Reset  
Brownout  
Reset  
CPU Core  
Peripherals  
On-Chip  
Not affected, Not affected, Not affected, Affected, un- Affected, un-  
Static RAM  
reliable  
reliable  
reliable  
reliable  
reliable  
Oscillator,  
PLL  
Not affected  
Port Pins  
EVR  
The voltage Not affected  
regulator is  
switched on  
FLASH  
NMI  
Disabled  
Booting Scheme  
Disabled  
3.7.2  
When the SAL-XC866 is reset, it must identify the type of configuration with which to start  
the different modes once the reset sequence is complete. Thus, boot configuration  
information that is required for activation of special modes and conditions needs to be  
applied by the external world through input pins. After power-on reset or hardware reset,  
the pins MBC, TMS and P0.0 collectively select the different boot options. Table 18  
shows the available boot options in the SAL-XC866.  
Table 18  
SAL-XC866 Boot Selection  
MBC TMS P0.0 Type of Mode  
PC Start Value  
1
0
0
0
0
1
x
x
0
User Mode; on-chip OSC/PLL non-bypassed 0000  
H
H
H
BSL Mode; on-chip OSC/PLL non-bypassed 0000  
1)  
OCDS Mode ; on-chip OSC/PLL non-  
bypassed  
0000  
0000  
2)  
1
1
0
Standalone User (JTAG) Mode ; on-chip  
H
OSC/PLL non-bypassed (normal)  
1)  
The OCDS mode is not accessible if Flash is protected.  
Normal user mode with standard JTAG (TCK,TDI,TDO) pins for hot-attach purpose.  
2)  
Data Sheet  
56  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
3.8  
Clock Generation Unit  
The Clock Generation Unit (CGU) allows great flexibility in the clock generation for the  
SAL-XC866. The power consumption is indirectly proportional to the frequency, whereas  
the performance of the microcontroller is directly proportional to the frequency. During  
user program execution, the frequency can be programmed for an optimal ratio between  
performance and power consumption. Therefore the power consumption can be  
adapted to the actual application state.  
Features:  
• Phase-Locked Loop (PLL) for multiplying clock source by different factors  
• PLL Base Mode  
• Prescaler Mode  
• PLL Mode  
• Power-down mode support  
The CGU consists of an oscillator circuit and a PLL.In the SAL-XC866, the oscillator can  
be from either of these two sources: the on-chip oscillator (10 MHz) or the external  
oscillator (4 MHz to 12 MHz). The term “oscillator” is used to refer to both on-chip  
oscillator and external oscillator, unless otherwise stated. After the reset, the on-chip  
oscillator will be used by default.The external oscillator can be selected via software. In  
addition, the PLL provides a fail-safe logic to perform oscillator run and loss-of-lock  
detection. This allows emergency routines to be executed for system recovery or to  
perform system shut down.  
osc fail  
detect  
OSCR  
lock  
detect  
LOCK  
1
0
fsys  
OSC  
P:1  
PLL  
core  
fvco  
K:1  
fp  
fn  
fosc  
N:1  
OSCDISC  
NDIV  
VCOBYP  
Figure 22  
CGU Block Diagram  
Data Sheet  
57  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
The clock system provides three ways to generate the system clock:  
PLL Base Mode  
The system clock is derived from the VCO base (free running) frequency clock divided  
by the K factor.  
1
K
---  
fSYS = fVCObase  
×
Prescaler Mode (VCO Bypass Operation)  
In VCO bypass operation, the system clock is derived from the oscillator clock, divided  
by the P and K factors.  
1
-------------  
fSYS = fOSC  
×
P × K  
PLL Mode  
The system clock is derived from the oscillator clock, multiplied by the N factor, and  
divided by the P and K factors. Both VCO bypass and PLL bypass must be inactive for  
this PLL mode. The PLL mode is used during normal system operation.  
N
P × K  
-------------  
fSYS = fOSC  
×
Table 19 shows the settings of bits OSCDISC and VCOBYP for different clock mode  
selection.  
Table 19  
Clock Mode Selection  
OSCDISC  
VCOBYP  
Clock Working Modes  
PLL Mode  
0
0
1
1
0
1
0
1
Prescaler Mode  
PLL Base Mode  
PLL Base Mode  
Note: When oscillator clock is disconnected from PLL, the clock mode is PLL Base mode  
regardless of the setting of VCOBYP bit.  
System Frequency Selection  
For the SAL-XC866, the values of P and K are fixed to “1” and “2”, respectively. In order  
to obtain the required system frequency, f , the value of N can be selected by bit NDIV  
sys  
for different oscillator inputs. Table 20 provides examples on how f = 75 MHz can be  
sys  
obtained for the different oscillator sources.  
Data Sheet  
58  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
Table 20  
Oscillator  
On-chip  
System frequency (fsys = 75 MHz)  
fosc  
N
P
1
1
1
K
2
2
2
fsys  
10 MHz  
10 MHz  
5 MHz  
15  
15  
30  
75 MHz  
75 MHz  
75 MHz  
External  
Table 21 shows the VCO range for the SAL-XC866.  
Table 21  
fVCOmin  
150  
VCO Range  
fVCOmax  
200  
fVCOFREEmin  
fVCOFREEmax  
Unit  
MHz  
MHz  
20  
10  
80  
80  
100  
150  
3.8.1  
Recommended External Oscillator Circuits  
The oscillator circuit, a Pierce oscillator, is designed to work with both, an external crystal  
oscillator or an external stable clock source. It basically consists of an inverting amplifier  
and a feedback element with XTAL1 as input, and XTAL2 as output.  
When using a crystal, a proper external oscillator circuitry must be connected to both  
pins, XTAL1 and XTAL2. The crystal frequency can be within the range of 4 MHz  
to 12 MHz. Additionally, it is necessary to have two load capacitances CX1 and CX2, and  
depending on the crystal type, a series resistor RX2, to limit the current. A test resistor  
RQ may be temporarily inserted to measure the oscillation allowance (negative  
resistance) of the oscillator circuitry. RQ values are typically specified by the crystal  
vendor. The CX1 and CX2 values shown in Figure 23 can be used as starting points for  
the negative resistance evaluation and for non-productive systems. The exact values  
and related operating range are dependent on the crystal frequency and have to be  
determined and optimized together with the crystal vendor using the negative resistance  
method. Oscillation measurement with the final target system is strongly recommended  
to verify the input amplitude at XTAL1 and to determine the actual oscillation allowance  
(margin negative resistance) for the oscillator-crystal system.  
When using an external clock signal, the signal must be connected to XTAL1. XTAL2 is  
left open (unconnected).  
The oscillator can also be used in combination with a ceramic resonator. The final  
circuitry must also be verified by the resonator vendor.  
Figure 23 shows the recommended external oscillator circuitries for both operating  
modes, external crystal mode and external input clock mode.  
Data Sheet  
59  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
fOSC  
fOSC  
External Clock  
Signal  
XTAL1  
XTAL1  
4 - 12  
MHz  
XC866  
Oscillator  
XC866  
Oscillator  
RQ  
R
X2  
XTAL2  
XTAL2  
CX1  
CX2  
Fundamental  
Mode Crystal  
VSS  
V
SS  
1)  
1)  
RX2  
Crystal Frequency CX1, CX2  
4 MHz  
33 pF  
18 pF  
0
0
8 MHz  
10 MHz  
15 pF  
12 pF  
0
0
12 MHz  
Clock_EXOSC  
1) Note thatthese are evaluation startvalues!  
Figure 23  
External Oscillator Circuitries  
Note: For crystal operation, it is strongly recommended to measure the negative  
resistance in the final target system (layout) to determine the optimum parameters  
for the oscillator operation. Please refer to the minimum and maximum values of  
the negative resistance specified by the crystal supplier.  
Data Sheet  
60  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
3.8.2  
Clock Management  
The CGU generates all clock signals required within the microcontroller from a single  
clock, f . During normal system operation, the typical frequencies of the different  
sys  
modules are as follow:  
• CPU clock: CCLK, SCLK = 25 MHz  
• CCU6 clock: FCLK = 25 MHz  
• Other peripherals: PCLK = 25 MHz  
• Flash Interface clock: CCLK3 = 75 MHz and CCLK = 25 MHz  
In addition, different clock frequency can output to pin CLKOUT(P0.0). The clock output  
frequency can further be divided by 2 using toggle latch (bit TLEN is set to 1), the  
resulting output frequency has 50% duty cycle. Figure 24 shows the clock distribution of  
the SAL-XC866.  
CLKREL  
FCLK  
CCU6  
PCLK  
fosc  
fsys  
Peripherals  
CORE  
PLL  
OSC  
/3  
SCLK  
CCLK  
N,P,K  
FLASH  
Interface  
CCLK3  
COREL  
COUTS  
TLEN  
Toggle  
Latch  
CLKOUT  
Figure 24  
Clock Generation from fsys  
Data Sheet  
61  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
For power saving purposes, the clocks may be disabled or slowed down according to  
Table 22.  
Table 22  
System frequency (fsys = 75 MHz)  
Power Saving Mode Action  
Idle  
Clock to the CPU is disabled.  
Slow-down  
Clocks to the CPU and all the peripherals, including CCU6, are  
divided by a common programmable factor defined by bit field  
CMCON.CLKREL.  
Power-down  
Oscillator and PLL are switched off.  
Data Sheet  
62  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
3.9  
Power Saving Modes  
The power saving modes of the SAL-XC866 provide flexible power consumption through  
a combination of techniques, including:  
• Stopping the CPU clock  
• Stopping the clocks of individual system components  
• Reducing clock speed of some peripheral components  
• Power-down of the entire system with fast restart capability  
After a reset, the active mode (normal operating mode) is selected by default (see  
Figure 25) and the system runs in the main system clock frequency. From active mode,  
different power saving modes can be selected by software. They are:  
• Idle mode  
• Slow-down mode  
• Power-down mode  
ACTIVE  
any interrupt  
& SD=0  
EXINT0/RXD pin  
& SD=0  
set PD  
bit  
set IDLE  
bit  
set SD  
bit  
clear SD  
bit  
POWER-DOWN  
IDLE  
set IDLE  
bit  
set PD  
bit  
any interrupt  
& SD=1  
EXINT0/RXD pin  
& SD=1  
SLOW-DOWN  
Figure 25  
Transition between Power Saving Modes  
Data Sheet  
63  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
3.10  
Watchdog Timer  
The Watchdog Timer (WDT) provides a highly reliable and secure way to detect and  
recover from software or hardware failures. The WDT is reset at a regular interval that is  
predefined by the user. The CPU must service the WDT within this interval to prevent the  
WDT from causing an SAL-XC866 system reset. Hence, routine service of the WDT  
confirms that the system is functioning properly. This ensures that an accidental  
malfunction of the SAL-XC866 will be aborted in a user-specified time period. In debug  
mode, the WDT is suspended and stops counting. Therefore, there is no need to refresh  
the WDT during debugging.  
Features:  
• 16-bit Watchdog Timer  
• Programmable reload value for upper 8 bits of timer  
• Programmable window boundary  
• Selectable input frequency of f  
/2 or f  
/128  
PCLK  
PCLK  
• Time-out detection with NMI generation and reset prewarning activation (after which  
a system reset will be performed)  
The WDT is a 16-bit timer incremented by a count rate of f  
/2 or f  
/128. This  
PCLK  
PCLK  
16-bit timer is realized as two concatenated 8-bit timers. The upper 8 bits of the WDT  
can be preset to a user-programmable value via a watchdog service access in order to  
modify the watchdog expire time period. The lower 8 bits are reset on each service  
access. Figure 26 shows the block diagram of the WDT unit.  
WDT  
Control  
WDTREL  
Clear  
WDT Low Byte  
1:2  
MUX  
WDT High Byte  
fPCLK  
1:128  
Overflow/Time-out Control &  
Window-boundary control  
WDTTO  
WDTRST  
WDTIN  
ENWDT  
Logic  
ENWDT_P  
WDTWINB  
Figure 26  
WDT Block Diagram  
Data Sheet  
64  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
If the WDT is not serviced before the timer overflow, a system malfunction is assumed.  
As a result, the WDT NMI is triggered (assert WDTTO) and the reset prewarning is  
entered. The prewarning period lasts for 30 count, after which the system is reset  
H
(assert WDTRST).  
The WDT has a “programmable window boundary” which disallows any refresh during  
the WDT’s count-up. A refresh during this window boundary constitutes an invalid  
access to the WDT, causing the reset prewarning to be entered but without triggering the  
WDT NMI. The system will still be reset after the prewarning period is over. The window  
boundary is from 0000 to the value obtained from the concatenation of WDTWINB and  
H
00 .  
H
8
After being serviced, the WDT continues counting up from the value (<WDTREL> * 2 ).  
The time period for an overflow of the WDT is programmable in two ways:  
• the input frequency to the WDT can be selected to be either f  
/2 or f  
/128  
PCLK  
PCLK  
• the reload value WDTREL for the high byte of WDT can be programmed in register  
WDTREL  
The period, P  
, between servicing the WDT and the next overflow can be determined  
WDT  
by the following formula:  
2
(1 + WDTIN × 6) × (216 – WDTREL × 28)  
PWDT = -----------------------------------------------------------------------------------------------------  
fPCLK  
If the Window-Boundary Refresh feature of the WDT is enabled, the period P  
WDT  
between servicing the WDT and the next overflow is shortened if WDTWINB is greater  
than WDTREL, see Figure 27. This period can be calculated using the same formula by  
replacing WDTREL with WDTWINB. For this feature to be useful, WDTWINB should not  
be smaller than WDTREL.  
Count  
FFFFH  
WDTWINB  
WDTREL  
time  
No refresh  
Refresh allowed  
allowed  
Figure 27  
WDT Timing Diagram  
Data Sheet  
65  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
Table 23 lists the possible watchdog time range that can be achieved for different  
module clock frequencies. Some numbers are rounded to 3 significant digits.  
Table 23  
Watchdog Time Ranges  
Reload value  
in WDTREL  
Prescaler for fPCLK  
2 (WDTIN = 0)  
25 MHz  
128 (WDTIN = 1)  
25 MHz  
FF  
20.5 μs  
1.31 ms  
H
7F  
2.64 ms  
169 ms  
H
H
00  
5.24 ms  
336 ms  
Data Sheet  
66  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
3.11  
Universal Asynchronous Receiver/Transmitter  
The Universal Asynchronous Receiver/Transmitter (UART) provides a full-duplex  
asynchronous receiver/transmitter, i.e., it can transmit and receive simultaneously. It is  
also receive-buffered, i.e., it can commence reception of a second byte before a  
previously received byte has been read from the receive register. However, if the first  
byte still has not been read by the time reception of the second byte is complete, one of  
the bytes will be lost.  
Features:  
• Full-duplex asynchronous modes  
– 8-bit or 9-bit data frames, LSB first  
– fixed or variable baud rate  
• Receive buffered  
• Multiprocessor communication  
• Interrupt generation on the completion of a data transmission or reception  
The UART can operate in four asynchronous modes as shown in Table 24. Data is  
transmitted on TXD and received on RXD.  
Table 24  
UART Modes  
Operating Mode  
Baud Rate  
f /2  
PCLK  
Mode 0: 8-bit shift register  
Mode 1: 8-bit shift UART  
Mode 2: 9-bit shift UART  
Mode 3: 9-bit shift UART  
Variable  
/32 or f  
f
/64  
PCLK  
PCLK  
Variable  
There are several ways to generate the baud rate clock for the serial port, depending on  
the mode in which it is operating. In mode 0, the baud rate for the transfer is fixed at  
f
/2. In mode 2, the baud rate is generated internally based on the UART input clock  
PCLK  
and can be configured to either f  
/32 or f  
/64. The variable baud rate is set by  
PCLK  
PCLK  
either the underflow rate on the dedicated baud-rate generator, or by the overflow rate  
on Timer 1.  
Data Sheet  
67  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
3.11.1  
Baud-Rate Generator  
The baud-rate generator is based on a programmable 8-bit reload value, and includes  
divider stages (i.e., prescaler and fractional divider) for generating a wide range of baud  
rates based on its input clock f  
, see Figure 28.  
PCLK  
Fractional Divider  
8-Bit Reload Value  
FDSTEP  
1
FDEN&FDM  
FDM  
1
0
Adder  
fDIV  
00  
01  
0
1
fBR  
8-Bit Baud Rate Timer  
0
11  
10  
fMOD  
FDRES  
(overflow)  
FDEN  
R
fDIV  
fPCLK  
Prescaler  
clk  
11  
10  
NDOV  
01  
00  
‘0’  
Figure 28  
Baud-rate Generator Circuitry  
The baud rate timer is a count-down timer and is clocked by either the output of the  
fractional divider (f ) if the fractional divider is enabled (FDCON.FDEN = 1), or the  
MOD  
output of the prescaler (f ) if the fractional divider is disabled (FDEN = 0). For baud rate  
DIV  
generation, the fractional divider must be configured to fractional divider mode  
(FDCON.FDM = 0). This allows the baud rate control run bit BCON.R to be used to start  
or stop the baud rate timer. At each timer underflow, the timer is reloaded with the 8-bit  
reload value in register BG and one clock pulse is generated for the serial channel.  
Enabling the fractional divider in normal divider mode (FDEN = 1 and FDM = 1) stops the  
baud rate timer and nullifies the effect of bit BCON.R. See Section 3.12.  
The baud rate (f ) value is dependent on the following parameters:  
BR  
• Input clock f  
• Prescaling factor (2  
PCLK  
BRPRE  
) defined by bit field BRPRE in register BCON  
• Fractional divider (STEP/256) defined by register FDSTEP  
(to be considered only if fractional divider is enabled and operating in fractional divider  
mode)  
Data Sheet  
68  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
• 8-bit reload value (BR_VALUE) for the baud rate timer defined by register BG  
The following formulas calculate the final baud rate without and with the fractional divider  
respectively:  
fPCLK  
where 2BRPRE × (BR_VALUE + 1) > 1  
-----------------------------------------------------------------------------------  
baud rate =  
16 × 2BRPRE × (BR_VALUE + 1)  
fPCLK  
STEP  
256  
----------------------------------------------------------------------------------- --------------  
baud rate =  
×
16 × 2BRPRE × (BR_VALUE + 1)  
The maximum baud rate that can be generated is limited to fPCLK/32. Hence, for a module  
clock of 25 MHz, the maximum achievable baud rate is 0.78 MBaud.  
Standard LIN protocol can support a maximum baud rate of 20kHz, the baud rate  
accuracy is not critical and the fractional divider can be disabled. Only the prescaler is  
used for auto baud rate calculation. For LIN fast mode, which supports the baud rate of  
20kHz to 115.2kHz, the higher baud rates require the use of the fractional divider for  
greater accuracy.  
Table 25 lists the various commonly used baud rates with their corresponding parameter  
settings and deviation errors. The fractional divider is disabled and a module clock of  
25 MHz is used.  
Table 25  
Typical Baud rates for UART with Fractional Divider disabled  
Baud rate  
Prescaling Factor Reload Value  
(2BRPRE  
(BR_VALUE + 1)  
1 (BRPRE=000 ) 81 (51 )  
Deviation Error  
)
19.2 kBaud  
9600 Baud  
4800 Baud  
2400 Baud  
-0.47 %  
-0.47 %  
-0.47 %  
-0.47 %  
B
H
1 (BRPRE=000 )  
162 (A2 )  
H
B
2 (BRPRE=001 )  
162 (A2 )  
H
B
4 (BRPRE=010 )  
162 (A2 )  
H
B
The fractional divider allows baud rates of higher accuracy (lower deviation error) to be  
generated. Table 26 lists the resulting deviation errors from generating a baud rate of  
115.2 kHz, using different module clock frequencies. The fractional divider is enabled  
(fractional divider mode) and the corresponding parameter settings are shown.  
Data Sheet  
69  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
Table 26  
fPCLK  
Deviation Error for UART with Fractional Divider enabled  
Prescaling Factor Reload Value  
STEP  
Deviation  
Error  
(2BRPRE  
)
(BR_VALUE + 1)  
25 MHz  
1
1
1
10 (A )  
189 (BD )  
+0.14 %  
-0.22 %  
-0.22 %  
H
H
12.5 MHz  
6.25 MHz  
6 (6 )  
226 (E2 )  
H
H
3 (3 )  
226 (E2 )  
H
H
Data Sheet  
70  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
3.11.2  
Baud Rate Generation using Timer 1  
In UART modes 1 and 3, Timer 1 can be used for generating the variable baud rates. In  
theory, this timer could be used in any of its modes. But in practice, it should be set into  
auto-reload mode (Timer 1 mode 2), with its high byte set to the appropriate value for the  
required baud rate. The baud rate is determined by the Timer 1 overflow rate and the  
value of SMOD as follows:  
[3.1]  
2
SMOD × fPCLK  
Mode 1, 3 baud rate= ----------------------------------------------------  
32 × 2 × (256 – TH1)  
3.12  
Normal Divider Mode (8-bit Auto-reload Timer)  
Setting bit FDM in register FDCON to 1 configures the fractional divider to normal divider  
mode, while at the same time disables baud rate generation (see Figure 28). Once the  
fractional divider is enabled (FDEN = 1), it functions as an 8-bit auto-reload timer (with  
no relation to baud rate generation) and counts up from the reload value with each input  
clock pulse. Bit field RESULT in register FDRES represents the timer value, while bit  
field STEP in register FDSTEP defines the reload value. At each timer overflow, an  
overflow flag (FDCON.NDOV) will be set and an interrupt request generated. This gives  
an output clock fMOD that is 1/n of the input clock fDIV, where n is defined by 256 - STEP.  
The output frequency in normal divider mode is derived as follows:  
[3.2]  
1
-----------------------------  
fMOD = fDIV  
×
256 – STEP  
Data Sheet  
71  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
3.13  
LIN Protocol  
The UART can be used to support the Local Interconnect Network (LIN) protocol for both  
master and slave operations. The LIN baud rate detection feature provides the capability  
to detect the baud rate within LIN protocol using Timer 2. This allows the UART to be  
synchronized to the LIN baud rate for data transmission and reception.  
LIN is a holistic communication concept for local interconnected networks in vehicles.  
The communication is based on the SCI (UART) data format, a single-master/multiple-  
slave concept, a clock synchronization for nodes without stabilized time base. An  
attractive feature of LIN is self-synchronization of the slave nodes without a crystal or  
ceramic resonator, which significantly reduces the cost of hardware platform. Hence, the  
baud rate must be calculated and returned with every message frame.  
The structure of a LIN frame is shown in Figure 29. The frame consists of the:  
• header, which comprises a Break (13-bit time low), Synch Byte (55 ), and ID field  
H
• response time  
• data bytes (according to UART protocol)  
• checksum  
Frame slot  
Frame  
Inter-  
frame  
space  
Response  
space  
Header  
Response  
Checksum  
Data 2 Data N  
Protected  
identifier  
Data 1  
Synch  
Figure 29  
3.13.1  
Structure of LIN Frame  
LIN Header Transmission  
LIN header transmission is only applicable in master mode. In the LIN communication,  
a master task decides when and which frame is to be transferred on the bus. It also  
identifies a slave task to provide the data transported by each frame. The information  
needed for the handshaking between the master and slave tasks is provided by the  
master task through the header portion of the frame.  
The header consists of a break and synch pattern followed by an identifier. Among these  
three fields, only the break pattern cannot be transmitted as a normal 8-bit UART data.  
Data Sheet  
72  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
The break must contain a dominant value of 13 bits or more to ensure proper  
synchronization of slave nodes.  
In the LIN communication, a slave task is required to be synchronized at the beginning  
of the protected identifier field of frame. For this purpose, every frame starts with a  
sequence consisting of a break field followed by a synch byte field. This sequence is  
unique and provides enough information for any slave task to detect the beginning of a  
new frame and be synchronized at the start of the identifier field.  
Upon entering LIN communication, a connection is established and the transfer speed  
(baud rate) of the serial communication partner (host) is automatically synchronized in  
the following steps:  
STEP 1: Initialize interface for reception and timer for baud rate measurement  
STEP 2: Wait for an incoming LIN frame from host  
STEP 3: Synchronize the baud rate to the host  
STEP 4: Enter for Master Request Frame or for Slave Response Frame  
Note: Re-synchronization and setup of baud rate are always done for every Master  
Request Header or Slave Response Header LIN frame.  
Data Sheet  
73  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
3.14  
High-Speed Synchronous Serial Interface  
The High-Speed Synchronous Serial Interface (SSC) supports full-duplex and  
half-duplex synchronous communication. The serial clock signal can be generated by  
the SSC internally (master mode), using its own 16-bit baud-rate generator, or can be  
received from an external master (slave mode). Data width, shift direction, clock polarity  
and phase are programmable. This allows communication with SPI-compatible devices  
or devices using other synchronous serial interfaces.  
Features:  
• Master and slave mode operation  
– Full-duplex or half-duplex operation  
• Transmit and receive buffered  
• Flexible data format  
– Programmable number of data bits: 2 to 8 bits  
– Programmable shift direction: LSB or MSB shift first  
– Programmable clock polarity: idle low or high state for the shift clock  
– Programmable clock/data phase: data shift with leading or trailing edge of the shift  
clock  
• Variable baud rate  
• Compatible with Serial Peripheral Interface (SPI)  
• Interrupt generation  
– On a transmitter empty condition  
– On a receiver full condition  
– On an error condition (receive, phase, baud rate, transmit error)  
Data Sheet  
74  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
Data is transmitted or received on lines TXD and RXD, which are normally connected to  
the pins MTSR (Master Transmit/Slave Receive) and MRST (Master Receive/Slave  
Transmit). The clock signal is output via line MS_CLK (Master Serial Shift Clock) or input  
via line SS_CLK (Slave Serial Shift Clock). Both lines are normally connected to the pin  
SCLK. Transmission and reception of data are double-buffered.  
Figure 30 shows the block diagram of the SSC.  
PCLK  
SS_CLK  
MS_CLK  
Baud-rate  
Generator  
Clock  
Control  
Shift  
Clock  
RIR  
TIR  
EIR  
Receive Int. Request  
Transmit Int. Request  
Error Int. Request  
SSC Control Block  
Register CON  
Status  
Control  
TXD(Master)  
RXD(Slave)  
Pin  
16-Bit Shift  
Register  
Control  
TXD(Slave)  
RXD(Master)  
Transmit Buffer  
Register TB  
Receive Buffer  
Register RB  
Internal Bus  
Figure 30  
SSC Block Diagram  
Data Sheet  
75  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
3.15  
Timer 0 and Timer 1  
Timers 0 and 1 are count-up timers which are incremented every machine cycle, or in  
terms of the input clock, every 2 PCLK cycles. They are fully compatible and can be  
configured in four different operating modes for use in a variety of applications, see  
Table 27. In modes 0, 1 and 2, the two timers operate independently, but in mode 3, their  
functions are specialized.  
Table 27  
Mode  
0
Timer 0 and Timer 1 Modes  
Operation  
13-bit timer  
The timer is essentially an 8-bit counter with a divide-by-32 prescaler.  
This mode is included solely for compatibility with Intel 8048 devices.  
1
2
3
16-bit timer  
The timer registers, TLx and THx, are concatenated to form a 16-bit  
counter.  
8-bit timer with auto-reload  
The timer register TLx is reloaded with a user-defined 8-bit value in THx  
upon overflow.  
Timer 0 operates as two 8-bit timers  
The timer registers, TL0 and TH0, operate as two separate 8-bit counters.  
Timer 1 is halted and retains its count even if enabled.  
Data Sheet  
76  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
3.16  
Timer 2  
Timer 2 is a 16-bit general purpose timer (THL2) that has two modes of operation, a  
16-bit auto-reload mode and a 16-bit one channel capture mode. If the prescalar is  
disabled, Timer 2 counts with an input clock of PCLK/12. Timer 2 continues counting as  
long as it is enabled.  
Table 28  
Mode  
Timer 2 Modes  
Description  
Auto-reload Up/Down Count Disabled  
• Count up only  
• Start counting from 16-bit reload value, overflow at FFFF  
H
• Reload event configurable for trigger by overflow condition only, or by  
negative/positive edge at input pin T2EX as well  
• Programmble reload value in register RC2  
• Interrupt is generated with reload event  
Up/Down Count Enabled  
• Count up or down, direction determined by level at input pin T2EX  
• No interrupt is generated  
• Count up  
– Start counting from 16-bit reload value, overflow at FFFF  
– Reload event triggered by overflow condition  
– Programmble reload value in register RC2  
• Count down  
H
– Start counting from FFFF , underflow at value defined in register  
H
RC2  
– Reload event triggered by underflow condition  
– Reload value fixed at FFFF  
H
Channel  
capture  
• Count up only  
• Start counting from 0000 , overflow at FFFF  
H
H
• Reload event triggered by overflow condition  
• Reload value fixed at 0000  
H
• Capture event triggered by falling/rising edge at pin T2EX  
• Captured timer value stored in register RC2  
• Interrupt is generated with reload or capture event  
Data Sheet  
77  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
3.17  
Capture/Compare Unit 6  
The Capture/Compare Unit 6 (CCU6) provides two independent timers (T12, T13), which  
can be used for Pulse Width Modulation (PWM) generation, especially for AC-motor  
control. The CCU6 also supports special control modes for block commutation and  
multi-phase machines.  
The timer T12 can function in capture and/or compare mode for its three channels. The  
timer T13 can work in compare mode only.  
The multi-channel control unit generates output patterns, which can be modulated by  
T12 and/or T13. The modulation sources can be selected and combined for the signal  
modulation.  
Timer T12 Features:  
• Three capture/compare channels, each channel can be used either as a capture or as  
a compare channel  
• Supports generation of a three-phase PWM (six outputs, individual signals for  
highside and lowside switches)  
• 16-bit resolution, maximum count frequency = peripheral clock frequency  
• Dead-time control for each channel to avoid short-circuits in the power stage  
• Concurrent update of the required T12/13 registers  
• Generation of center-aligned and edge-aligned PWM  
• Supports single-shot mode  
• Supports many interrupt request sources  
• Hysteresis-like control mode  
Timer T13 Features:  
• One independent compare channel with one output  
• 16-bit resolution, maximum count frequency = peripheral clock frequency  
• Can be synchronized to T12  
• Interrupt generation at period-match and compare-match  
• Supports single-shot mode  
Additional Features:  
• Implements block commutation for Brushless DC-drives  
• Position detection via Hall-sensor pattern  
• Automatic rotational speed measurement for block commutation  
• Integrated error handling  
• Fast emergency stop without CPU load via external signal (CTRAP)  
• Control modes for multi-channel AC-drives  
• Output levels can be selected and adapted to the power stage  
Data Sheet  
78  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
The block diagram of the CCU6 module is shown in Figure 31.  
module kernel  
compare  
channel 0  
channel 1  
channel 2  
address  
decoder  
1
1
1
dead-  
time  
control  
multi-  
trap  
T12  
channel  
control  
control  
clock  
control  
start  
T13  
channel 3  
compare  
1
interrupt  
control  
3
2
2
2
3
1
input / output control  
port control  
CCU6_block_diagram  
Figure 31  
CCU6 Block Diagram  
Data Sheet  
79  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
3.18  
Analog-to-Digital Converter  
The SAL-XC866 includes a high-performance 10-bit Analog-to-Digital Converter (ADC)  
with eight multiplexed analog input channels. The ADC uses a successive approximation  
technique to convert the analog voltage levels from up to eight different sources. The  
analog input channels of the ADC are available at Port 2.  
Features:  
• Successive approximation  
• 8-bit or 10-bit resolution  
• Eight analog channels  
• Four independent result registers  
• Result data protection for slow CPU access  
(wait-for-read mode)  
• Single conversion mode  
• Autoscan functionality  
• Limit checking for conversion results  
• Data reduction filter  
(accumulation of up to 2 conversion results)  
• Two independent conversion request sources with programmable priority  
• Selectable conversion request trigger  
• Flexible interrupt generation with configurable service nodes  
• Programmable sample time  
• Programmable clock divider  
• Cancel/restart feature for running conversions  
• Integrated sample and hold circuitry  
• Compensation of offset errors  
• Low power modes  
Data Sheet  
80  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
3.18.1  
ADC Clocking Scheme  
A common module clock f  
generates the various clock signals used by the analog  
ADC  
and digital parts of the ADC module:  
• f  
• f  
is input clock for the analog part.  
is internal clock for the analog part (defines the time base for conversion length  
ADCA  
ADCI  
and the sample time). This clock is generated internally in the analog part, based on  
the input clock f to generate a correct duty cycle for the analog components.  
ADCA  
• f  
is input clock for the digital part.  
ADCD  
The internal clock for the analog part f  
is limited to a maximum frequency of 10 MHz.  
ADCI  
Therefore, the ADC clock prescaler must be programmed to a value that ensures f  
ADCI  
does not exceed 10 MHz. The prescaler ratio is selected by bit field CTC in register  
GLOBCTR. A prescaling ratio of 32 can be selected when the maximum performance of  
the ADC is not required.  
fADC = fPCLK  
fADCD  
arbiter  
registers  
interrupts  
digital part  
fADCA  
CTC  
MUX  
÷32  
÷ 4  
÷3  
fADCI  
analog  
components  
÷ 2  
clock prescaler  
analog part  
1
fADCI  
Condition: fADCI 10 MHz, where t ADCI =  
Figure 32  
ADC Clocking Scheme  
Data Sheet  
81  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
For module clock f  
= 25 MHz, the analog clock f  
frequency can be selected as  
ADC  
ADCI  
shown in Table 29.  
Table 29  
fADCI Frequency Selection  
Module Clock fADC  
25 MHz  
CTC  
Prescaling Ratio Analog Clock fADCI  
00  
01  
10  
÷ 2  
÷ 3  
12.5 MHz (N.A)  
8.3 MHz  
B
B
B
÷ 4  
6.3 MHz  
11 (default)  
÷ 32  
781.3 kHz  
B
As f  
cannot exceed 10 MHz, bit field CTC should not be set to 00 when f  
is  
ADC  
ADCI  
B
25 MHz. During slow-down mode where f  
may be reduced to 12.5 MHz, 6.25 MHz  
ADC  
etc., CTC can be set to 00 as long as the divided analog clock f  
does not exceed  
B
ADCI  
10 MHz. However, it is important to note that the conversion error could increase due to  
loss of charges on the capacitors, if f becomes too low during slow-down mode.  
ADC  
3.18.2  
The analog-to-digital conversion procedure consists of the following phases:  
• Synchronization phase (t  
ADC Conversion Sequence  
)
SYN  
• Sample phase (t )  
S
• Conversion phase  
• Write result phase (t  
)
WR  
conversion start  
trigger  
Source  
interrupt  
Channel  
interrupt  
Result  
interrupt  
Sample Phase  
Conversion Phase  
fADCI  
BUSY Bit  
SAMPLE Bit  
tSYN  
tS  
Write Result Phase  
tWR  
tCONV  
Figure 33  
ADC Conversion Timing  
Data Sheet  
82  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
3.19  
On-Chip Debug Support  
The On-Chip Debug Support (OCDS) provides the basic functionality required for the  
software development and debugging of XC800-based systems.  
The OCDS design is based on these principles:  
• use the built-in debug functionality of the XC800 Core  
• add a minimum of hardware overhead  
• provide support for most of the operations by a Monitor Program  
• use standard interfaces to communicate with the Host (a Debugger)  
Features:  
• Set breakpoints on instruction address and within a specified address range  
• Set breakpoints on internal RAM address  
• Support unlimited software breakpoints in Flash/RAM code region  
• Process external breaks  
• Step through the program code  
The OCDS functional blocks are shown in Figure 34. The Monitor Mode Control (MMC)  
block at the center of OCDS system brings together control signals and supports the  
overall functionality. The MMC communicates with the XC800 Core, primarily via the  
Debug Interface, and also receives reset and clock signals. After processing memory  
address and control signals from the core, the MMC provides proper access to the  
dedicated extra-memories: a Monitor ROM (holding the code) and a Monitor RAM (for  
1)  
work-data and Monitor-stack). The OCDS system is accessed through the JTAG ,  
which is an interface dedicated exclusively for testing and debugging activities and is not  
normally used in an application. The dedicated MBC pin is used for external  
configuration and debugging control.  
Note: All the debug functionality described here can normally be used only after SAL-  
XC866 has been started in OCDS mode.  
1)  
The pins of the JTAG port can be assigned to either Port 0 (primary) or Ports 1 and 2 (secondary).  
User must set the JTAG pins (TCK and TDI) as input during connection with the OCDS system.  
Data Sheet  
83  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
Memory  
Control  
Unit  
JTAG Module  
TMS  
Primary  
Debug  
Interface  
TCK  
TDI  
TDO  
TCK  
TDI  
TDO  
User  
Boot/  
JTAG  
Program Monitor  
Memory  
ROM  
Control  
Reset  
Monitor Mode Control  
Monitor &  
Bootstrap loader  
Control line  
MBC  
User  
Internal  
RAM  
Monitor  
RAM  
WDT  
Suspend  
System  
Control  
Unit  
Reset  
Clock  
Reset Clock Debug PROG PROG Memory  
Interface & IRAM Data Control  
Addresses  
- parts of  
OCDS  
XC800  
OCDS_XC800-Block_Diagram-UM-v0.2  
Figure 34  
3.19.1  
OCDS Block Diagram  
JTAG ID Register  
This is a read-only register located inside the JTAG module, and is used to recognize the  
device(s) connected to the JTAG interface. Its content is shifted out when  
INSTRUCTION register contains the IDCODE command (opcode 04 ), and the same is  
H
also true immediately after reset.  
The JTAG ID register contents for the SAL-XC866 devices are given in Table 30.  
Table 30  
Device Type  
Flash  
JTAG ID Summary  
Device Name  
JTAG ID  
SAL-XC866L-4FRA  
SAL-XC866L-2FRA  
1010 0083  
1010 2083  
H
H
Data Sheet  
84  
V1.1, 2012-12  
SAL-XC866  
Functional Description  
3.20  
Identification Register  
The SAL-XC866 identity register is located at Page 1 of address B3 .  
H
ID  
Identity Register  
Reset Value: 0000 0010B  
7
6
5
4
3
2
1
0
PRODID  
VERID  
r
r
Field  
Bits Type Description  
VERID  
[2:0]  
r
Version ID  
010  
B
PRODID  
[7:3]  
r
Product ID  
00000  
B
Data Sheet  
85  
V1.1, 2012-12  
SAL-XC866  
Electrical Parameters  
4
Electrical Parameters  
Chapter 4 provides the characteristics of the electrical parameters which are  
implementation-specific for the SAL-XC866.  
4.1  
General Parameters  
The general parameters are described here to aid the users in interpreting the parame-  
ters mainly in Section 4.2 and Section 4.3.  
4.1.1  
Parameter Interpretation  
The parameters listed in this section represent partly the characteristics of the SAL-  
XC866 and partly its requirements on the system. To aid interpreting the parameters  
easily when evaluating them for a design, they are indicated by the abbreviations in the  
“Symbol” column:  
CC  
These parameters indicate Controller Characteristics, which are distinctive features of  
the SAL-XC866 and must be regarded for a system design.  
SR  
These parameters indicate System Requirements, which must be provided by the  
microcontroller system in which the SAL-XC866 is designed in.  
Data Sheet  
86  
V1.1, 2012-12  
SAL-XC866  
Electrical Parameters  
4.1.2  
Absolute Maximum Rating  
Maximum ratings are the extreme limits to which the SAL-XC866 can be subjected to  
without permanent damage.  
Table 31  
Absolute Maximum Rating Parameters  
Parameter  
Symbol  
Limit Values  
Unit Notes  
min.  
-40  
max.  
150  
150  
160  
6
Ambient temperature  
Storage temperature  
Junction temperature  
TA  
°C  
°C  
°C  
V
under bias  
1)  
TST  
TJ  
-65  
1)  
-40  
under bias  
1)  
Voltage on power supply pin with VDDP  
respect to VSS  
-0.5  
Voltage on any pin with respect VIN  
to VSS  
-0.5  
VDDP  
0.5 or  
+
V
Whichever  
is lower  
1)  
max. 6  
1)  
1)  
Input current on any pin during  
overload condition  
IIN  
-10  
10  
mA  
mA  
Absolute sum of all input currents Σ|IIN|  
50  
during overload condition  
1)  
Not subjected to production test, verified by design/characterization.  
Note: Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in  
the operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
During absolute maximum rating overload conditions (VIN > VDDP or VIN < VSS  
)
the voltage on VDDP pin with respect to ground (VSS) must not exceed the values  
defined by the absolute maximum ratings.  
Data Sheet  
87  
V1.1, 2012-12  
SAL-XC866  
Electrical Parameters  
4.1.3  
Operating Conditions  
The following operating conditions must not be exceeded in order to ensure correct  
operation of the SAL-XC866. All parameters mentioned in the following table refer to  
these operating conditions, unless otherwise noted.  
Table 32  
Operating Condition Parameters  
Symbol Limit Values  
Parameter  
Unit Notes/  
Conditions  
min.  
4.5  
max.  
5.5  
Digital power supply voltage VDDP  
Digital power supply voltage VDDP  
V
5V Device  
3.0  
3.6  
V
3.3V Device  
Digital ground voltage  
VSS  
VDDC  
fSYS  
TA  
0
V
Digital core supply voltage  
2.3  
69  
2.7  
81  
V
1)  
System Clock Frequency  
MHz  
°C  
Ambient temperature  
-40  
150  
SAL-XC866...  
1)  
f
is the PLL output clock. During normal operating mode, CPU clock is f  
/ 3. Please refer to Figure 24  
SYS  
SYS  
for detailed description.  
Data Sheet  
88  
V1.1, 2012-12  
SAL-XC866  
Electrical Parameters  
4.2  
DC Parameters  
4.2.1  
Input/Output Characteristics  
Table 33  
Input/Output Characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Limit Values Unit Test Conditions  
min.  
max.  
VDDP = 5V Range  
Output low voltage  
VOL CC  
1.0  
0.4  
V
V
V
IOL = 15 mA  
IOL = 5 mA  
Output high voltage  
VOH CC VDDP - –  
IOH = -15 mA  
1.0  
VDDP - –  
0.4  
V
V
IOH = -5 mA  
Input low voltage on  
port pins  
VILP SR  
0.3 ×  
CMOS Mode  
VDDP  
(all except P0.0 & P0.1)  
Input low voltage on  
P0.0 & P0.1  
VILP0 SR -0.2  
0.3 ×  
VDDP  
V
V
V
V
CMOS Mode  
CMOS Mode  
CMOS Mode  
CMOS Mode  
Input low voltage on  
RESET pin  
VILR SR  
VILT SR  
0.3 ×  
VDDP  
Input low voltage on  
TMS pin  
0.3 ×  
VDDP  
Input high voltage on  
port pins  
VIHP SR 0.7 ×  
VDDP  
(all except P0.0 & P0.1)  
Input high voltage on  
P0.0 & P0.1  
VIHP0 SR 0.7 × VDDP  
V
V
V
V
V
CMOS Mode  
CMOS Mode  
CMOS Mode  
CMOS Mode  
VDDP  
Input high voltage on  
RESET pin  
VIHR SR 0.7 ×  
VDDP  
Input high voltage on  
TMS pin  
VIHT SR 0.75 ×  
VDDP  
1)  
Input Hysteresis on  
HYS CC 0.08 ×  
Port Pins  
VDDP  
1)  
Input Hysteresis on  
HYSXCC 0.07 ×  
XTAL1  
VDDC  
Data Sheet  
89  
V1.1, 2012-12  
SAL-XC866  
Electrical Parameters  
Table 33  
Input/Output Characteristics (Operating Conditions apply)  
Symbol Limit Values Unit Test Conditions  
Parameter  
min.  
max.  
Input low voltage at  
XTAL1  
VILX SR VSS  
-
0.3 ×  
VDDC  
V
V
0.5  
Input high voltage at  
XTAL1  
VIHX SR 0.7 × VDDC  
VDDC + 0.5  
Pull-up current  
IPU SR  
-10  
µA VIH,min  
-150  
µA VIL,max  
Pull-down current  
Input leakage current  
IPD SR  
10  
µA VIL,max  
150  
µA VIH,min  
2)  
IOZ1 CC -2  
2
µA 0 < VIN < VDDP  
,
T
150°C  
A
Input current at XTAL1 IILX CC -10  
10  
5
µA  
3)  
3)  
4)  
Overload currenton any IOV SR -5  
pin  
mA  
Absolute sum of  
overload currents  
Σ|IOV  
|
25  
0.3  
15  
mA  
V
SR  
Voltage on any pin  
VPO SR –  
during VDDP power off  
Maximum current per  
pin(excludingVDDP and  
IM  
SR  
SR  
mA  
VSS  
)
Maximum current for all Σ|IM|  
pins (excluding VDDP  
60  
mA  
and VSS  
)
3)  
3)  
Maximum current into  
VDDP  
IMVDDP  
80  
80  
mA  
mA  
SR  
Maximum current out of IMVSS  
VSS  
SR  
Data Sheet  
90  
V1.1, 2012-12  
SAL-XC866  
Electrical Parameters  
Table 33  
Input/Output Characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Limit Values Unit Test Conditions  
min.  
max.  
VDDP = 3.3V Range  
Output low voltage  
VOL CC  
1.0  
0.4  
V
V
V
IOL = 8 mA  
IOL = 2.5 mA  
IOH = -8 mA  
Output high voltage  
VOH CC VDDP - –  
1.0  
VDDP - –  
0.4  
V
V
IOH = -2.5 mA  
Input low voltage on  
port pins  
VILP SR  
0.3 ×  
CMOS Mode  
VDDP  
(all except P0.0 & P0.1)  
Input low voltage on  
P0.0 & P0.1  
VILP0 SR -0.2  
0.3 ×  
VDDP  
V
V
V
V
CMOS Mode  
CMOS Mode  
CMOS Mode  
CMOS Mode  
Input low voltage on  
RESET pin  
VILR SR  
VILT SR  
0.3 ×  
VDDP  
Input low voltage on  
TMS pin  
0.3 ×  
VDDP  
Input high voltage on  
port pins  
VIHP SR 0.7 ×  
VDDP  
(all except P0.0 & P0.1)  
Input high voltage on  
P0.0 & P0.1  
VIHP0 SR 0.7 × VDDP  
V
V
V
V
V
V
V
CMOS Mode  
CMOS Mode  
CMOS Mode  
CMOS Mode  
VDDP  
Input high voltage on  
RESET pin  
VIHR SR 0.7 ×  
VDDP  
Input high voltage on  
TMS pin  
VIHT SR 0.75 ×  
VDDP  
1)  
Input Hysteresis on  
HYS CC 0.03 ×  
Port Pins  
VDDP  
1)  
Input Hysteresis on  
HYSXCC 0.07 ×  
XTAL1  
VDDC  
Input low voltage at  
XTAL1  
VILX SR VSS  
-
0.3 ×  
0.5  
VDDC  
Input high voltage at  
XTAL1  
VIHX SR 0.7 × VDDC  
VDDC + 0.5  
Data Sheet  
91  
V1.1, 2012-12  
SAL-XC866  
Electrical Parameters  
Table 33  
Input/Output Characteristics (Operating Conditions apply)  
Parameter  
Symbol  
IPU SR  
IPD SR  
Limit Values Unit Test Conditions  
min.  
max.  
Pull-up current  
-5  
µA VIH,min  
-50  
µA VIL,max  
Pull-down current  
Input leakage current  
5
µA VIL,max  
50  
µA VIH,min  
2)  
IOZ1 CC -2  
2
µA 0 < VIN < VDDP,  
T
150°C  
A
Input current at XTAL1 IILX CC - 10  
10  
5
µA  
3)  
3)  
4)  
Overload currenton any IOV SR -5  
pin  
mA  
Absolute sum of  
overload currents  
Σ|IOV  
|
25  
0.3  
15  
mA  
V
SR  
Voltage on any pin  
VPO SR –  
during VDDP power off  
Maximum current per  
pin(excludingVDDP and  
IM  
SR  
SR  
mA  
VSS  
)
Maximum current for all Σ|IM|  
pins (excluding VDDP  
60  
mA  
and VSS  
)
Maximum current into  
VDDP  
IMVDDP  
80  
80  
mA  
mA  
SR  
Maximum current out of IMVSS  
VSS  
SR  
1)  
Not subjected to production test, verified by design/characterization. Hysteresis is implemented to avoid meta  
stable states and switching due to internal ground bounce. It cannot be guaranteed that it suppresses switching  
due to external system noise.  
2)  
An additional error current (I ) will flow if an overload current flows through an adjacent pin. TMS pin and  
INJ  
RESET pin have internal pull devices and are not included in the input leakage current characteristic.  
3)  
4)  
Not subjected to production test, verified by design/characterization.  
Not subjected to production test, verified by design/characterization. However, for applications with strict low  
power-down current requirements, it is mandatory that no active voltage source is supplied at any GPIO pin  
when VDDP is powered off.  
Data Sheet  
92  
V1.1, 2012-12  
SAL-XC866  
Electrical Parameters  
4.2.2  
Supply Threshold Characteristics  
5.0V  
VDDPPW  
VDDP  
2.5V  
VDDCPW  
VDDCBO  
VDDCRDR  
VDDCBOPD  
VDDC  
VDDCPOR  
Figure 35  
Supply Threshold Parameters  
Table 34  
Supply Threshold Parameters (Operating Conditions apply)  
Symbol Limit Values  
Parameters  
Unit  
min.  
CC 2.2  
typ.  
2.3  
2.1  
max.  
1)  
V
V
prewarning voltage  
V
V
2.4  
2.2  
V
V
DDC  
DDCPW  
brownout voltage in  
CC 2.0  
DDC  
DDCBO  
1)  
active mode  
RAM data retention voltage  
V
V
CC 0.9  
CC 1.3  
1.0  
1.5  
1.1  
1.7  
V
V
DDCRDR  
V
brownout voltage in  
DDC  
DDCBOPD  
2)  
power-down mode  
3)  
2)4)  
V
prewarning voltage  
V
V
CC 3.3  
CC 1.3  
4.0  
1.5  
4.65  
1.7  
V
V
DDP  
DDPPW  
Power-on reset voltage  
DDCPOR  
1)  
Detection is disabled in power-down mode.  
2)  
3)  
Detection is enabled in both active and power-down mode.  
Detection is enabled for external power supply of 5.0V  
Detection must be disabled for external power supply of 3.3V.  
4)  
The reset of EVR is extended by 300 µs typically after the VDDC reaches the power-on reset voltage.  
Data Sheet  
93  
V1.1, 2012-12  
SAL-XC866  
Electrical Parameters  
4.2.3  
ADC Characteristics  
The values in the table below are given for an analog power supply between 4.5 V to  
5.5 V. The ADC can be used with an analog power supply down to 3 V. But in this case,  
the analog parameters may show a reduced performance. All ground pins (V ) must be  
SS  
externally connected to one single star point in the system. The voltage difference  
between the ground pins must not exceed 200mV.  
Table 35  
Parameter  
ADC Characteristics (Operating Conditions apply; VDDP = 5V Range)  
Symbol  
Limit Values  
typ . max.  
Unit  
Test Conditions/  
Remarks  
min.  
1)  
Analog reference  
voltage  
V
V
V
V
V
V
V
DDP  
+ 0.05  
V
V
V
AREF  
AGND  
DDP  
SR + 1  
1)  
Analog reference  
ground  
V
V
AREF  
- 1  
AGND  
SS  
SS  
SR - 0.05  
Analog input  
voltage range  
SR  
V
V
AREF  
AIN  
AGND  
1)  
ADC clocks  
f
f
20  
40  
10  
MHz module clock  
ADC  
MHz internal analog  
ADCI  
1)  
clock  
See Figure 32  
1)  
Sample time  
t
t
CC (2 + INPCR0.STC) ×  
µs  
S
t
ADCI  
1)  
Conversion time  
CC See Section 4.2.3.1  
µs  
C
2)  
Total unadjusted  
error  
TUE CC –  
1
1
2
LSB  
LSB  
LSB  
8-bit conversion.  
2)  
10-bit conversion.  
1)  
Differential  
Nonlinearity  
|EA  
|EA  
|EA  
|EA  
K
|
10-bit conversion  
10-bit conversion  
10-bit conversion  
10-bit conversion  
DNL  
CC  
1)  
1)  
1)  
Integral  
Nonlinearity  
|
1
1
1
LSB  
LSB  
LSB  
INL  
CC  
Offset  
Gain  
|
OFF  
CC  
|
GAIN  
CC  
1)3)  
Overload current  
coupling factor for  
analog inputs  
CC –  
1.0 x  
10  
IOV > 0  
OVA  
-4  
1)3)  
1.5 x  
10  
IOV < 0  
-3  
Data Sheet  
94  
V1.1, 2012-12  
SAL-XC866  
Electrical Parameters  
Table 35  
Parameter  
ADC Characteristics (Operating Conditions apply; VDDP = 5V Range)  
Symbol  
Limit Values  
Unit  
Test Conditions/  
Remarks  
min.  
typ .  
max.  
1)3)  
Overload current  
coupling factor for  
digital I/O pins  
K
CC –  
5.0 x  
10  
IOV > 0  
OVD  
-3  
1)3)  
1.0 x  
IOV < 0  
-2  
10  
1)4)  
1)5)  
Switched  
C
C
R
10  
20  
pF  
AREFSW  
capacitance at the  
reference voltage  
input  
CC  
Switched  
5
7
pF  
AINSW  
capacitance at the  
analog voltage  
inputs  
CC  
1)  
1)  
Input resistance of  
the reference input  
CC –  
1
1
2
kΩ  
kΩ  
AREF  
Input resistance of  
theselectedanalog  
channel  
R
CC –  
1.5  
AIN  
1)  
Not subject to production test, verified by design/characterization.  
2)  
3)  
TUE is tested at V  
= 5.0 V, V  
= 0 V , V  
= 5.0 V.  
DDP  
AREF  
AGND  
An overload current (IOV) through a pin injects a certain error current (IINJ) into the adjacent pins. This error  
current adds to the respective pin’s leakage current (IOZ). The amount of error current depends on the  
overload current and is defined by the overload coupling factor KOV. The polarity of the injected error current  
is inverse compared to the polarity of the overload current that produces it. The total current through a pin is  
|ITOT| = |IOZ1| + (|IOV| × KOV). The additional error current may distort the input voltage on analog inputs.  
4)  
5)  
This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage  
at once. Instead of this, smaller capacitances are successively switched to the reference voltage.  
The sampling capacity of the conversion C-Network is pre-charged to V  
/2 before connecting the input to  
AREF  
the C-Network. Because of the parasitic elements, the voltage measured at ANx is lower than V  
/2.  
AREF  
Data Sheet  
95  
V1.1, 2012-12  
SAL-XC866  
Electrical Parameters  
Analog Input Circuitry  
REXT  
RAIN, On  
ANx  
VAIN  
CEXT  
CAINSW  
VAGNDx  
Reference Voltage Input Circuitry  
RAREF, On  
VAREFx  
VAREF  
CAREFSW  
VAGNDx  
Figure 36  
ADC Input Circuits  
4.2.3.1 ADC Conversion Timing  
Conversion time, t = t × ( 1 + r × (3 + n + STC) ) , where  
C
ADC  
r = CTC + 2 for CTC = 00 , 01 or 10 ,  
B
B
B
r = 32 for CTC = 11 ,  
B
CTC = Conversion Time Control (GLOBCTR.CTC),  
STC = Sample Time Control (INPCR0.STC),  
n = 8 or 10 (for 8-bit and 10-bit conversion respectively),  
t
= 1 / f  
ADC  
ADC  
Data Sheet  
96  
V1.1, 2012-12  
SAL-XC866  
Electrical Parameters  
4.2.4  
Power Supply Current  
Power Supply Current Parameters (Operating Conditions apply)  
Table 36  
Parameter  
Symbol  
Limit Values Unit Test Condition  
typ.1) max.2)  
3)  
Active Mode  
Idle Mode  
IDDP  
IDDP  
IDDP  
22.6  
17.2  
7.2  
25.1  
19.7  
9.3  
mA  
mA  
mA  
4)  
5)  
Active Mode with slow-down  
enabled  
6)  
Idle Mode with slow-down  
enabled  
IDDP  
7.1  
8
mA  
1)  
The typical IDDP values are periodically measured at TA = + 25 °C and VDDP = 5.0 V.  
2)  
3)  
The maximum IDDP values are measured under worst case conditions (TA = + 150 °C and VDDP = 5.5 V).  
I
(active mode) is measured with: CPU clock and input clock to all peripherals running at 25 MHz(set by  
DDP  
on-chip oscillator of 10 MHz and NDIV in PLL_CON to 0001 ), RESET = VDDP  
.
B
4)  
5)  
6)  
I
(idle mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals  
DDP  
enabled and running at 25 MHz, RESET = VDDP  
.
I
(active mode with slow-down mode) is measured with: CPU clock and input clock to all peripherals  
DDP  
running at 781 KHz by setting CLKREL in CMCON to 0101 , RESET = VDDP  
.
B
I
(idle mode with slow-down mode) is measured with: CPU clock disabled, watchdog timer disabled, input  
DDP  
clock to all peripherals enabled and running at 781 MHz by setting CLKREL in CMCON to 0101 ,  
B
RESET = VDDP  
.
Data Sheet  
97  
V1.1, 2012-12  
SAL-XC866  
Electrical Parameters  
Table 37  
Power Down Current (Operating Conditions apply)  
Parameter  
Symbol  
Limit Values Unit Test Condition  
typ.1) max.2)  
3)  
4)  
Power-Down Mode  
IPDP  
1
-
10  
30  
µA T = + 25 °C.  
A
4)5)  
µA T = + 85 °C.  
A
1)  
The typical IPDP values are measured at VDDP = 5.0 V.  
2)  
3)  
4)  
The maximum IPDP values are measured at VDDP = 5.5 V.  
I
(power-down mode) has a maximum value of 500 µA at TA = + 150 °C.  
PDP  
I
(power-down mode) is measured with: RESET = VDDP, VAGND= VSS, RXD/INT0 = VDDP; rest of the ports  
PDP  
are programmed to be input with either internal pull devices enabled or driven externally to ensure no floating  
inputs.  
5)  
Not subject to production test, verified by design/characterization.  
Data Sheet  
98  
V1.1, 2012-12  
SAL-XC866  
Electrical Parameters  
4.3  
AC Parameters  
4.3.1  
Testing Waveforms  
The testing waveforms for rise/fall time, output delay and output high impedance are  
shown in Figure 37, Figure 38 and Figure 39.  
VDDP  
90%  
90%  
10%  
10%  
VSS  
tF  
tR  
Figure 37  
Rise/Fall Time Parameters  
VDDP  
VDDE / 2  
VDDE / 2  
Test Points  
VSS  
Figure 38  
Testing Waveform, Output Delay  
VLoad + 0.1 V  
VLoad - 0.1 V  
VOH - 0.1 V  
VOL - 0.1 V  
Timing  
Reference  
Points  
Figure 39  
Testing Waveform, Output High Impedance  
Data Sheet  
99  
V1.1, 2012-12  
SAL-XC866  
Electrical Parameters  
4.3.2  
Output Rise/Fall Times  
Table 38  
Output Rise/Fall Times Parameters (Operating Conditions apply)  
Parameter  
Symbol  
Limit  
Unit Test Conditions  
Values  
min. max.  
V
DDP = 5V Range  
1) 2)  
3)  
Rise/fall times  
t , t  
10  
ns  
ns  
20 pF.  
20 pF.  
R
F
F
VDDP = 3.3V Range  
1) 2)  
4)  
Rise/fall times  
t , t  
R
10  
1)  
Rise/Fall time measurements are taken with 10% - 90% of the pad supply.  
2)  
3)  
4)  
Not all parameters are 100% tested, but are verified by design/characterization and test correlation.  
Additional rise/fall time valid for C = 20pF - 100pF @ 0.125 ns/pF.  
L
Additional rise/fall time valid for C = 20pF - 100pF @ 0.225 ns/pF.  
L
V
DDP  
90%  
90%  
10%  
10%  
V
SS  
tF  
tR  
Figure 40  
Rise/Fall Times Parameters  
Data Sheet  
100  
V1.1, 2012-12  
SAL-XC866  
Electrical Parameters  
4.3.3  
Power-on Reset and PLL Timing  
Power-On Reset and PLL Timing (Operating Conditions apply)  
Table 39  
Parameter  
Symbol  
Limit Values  
Unit Test Conditions  
min. typ. max.  
1)  
Pad operating voltage VPAD CC 2.3  
V
1)  
On-Chip Oscillator  
start-up time  
tOSCST  
CC  
500  
ns  
1)  
Flash initialization time tFINIT CC  
160  
500  
µs  
RESET hold time  
tRST SR  
µs  
VDDP rise time  
(10% – 90%) ≤  
500µs  
1)2)  
1)  
PLL lock-in in time  
tLOCK CC  
200  
0.7  
µs  
ns  
1)  
PLL accumulated jitter  
D
P
1)  
Not all parameters are 100% tested, but are verified by design/characterization and test correlation.  
2)  
RESET signal has to be active (low) until VDDC has reached 90% of its maximum value (typ. 2.5V).  
VDDP  
VDDC  
VPAD  
tOSCST  
OSC  
PLL  
PLL unlock  
tLOCK  
PLL lock  
Flash State  
Reset  
Initialization  
tFINIT  
Ready to Read  
tRST  
RESET  
Pads  
3)  
1)Pad state undefined 2)ENPS control 3)As Programmed  
2)  
1)  
III) until Flash go IV) CPU reset is released; Boot  
to Ready-to-Read ROM software begin execution  
I)until EVR is stable II)until PLL is locked  
Figure 41  
Power-on Reset Timing  
Data Sheet  
101  
V1.1, 2012-12  
SAL-XC866  
Electrical Parameters  
4.3.4  
On-Chip Oscillator Characteristics  
On-chip Oscillator Characteristics (Operating Conditions apply)  
Table 40  
Parameter  
Symbol  
Limit Values  
Unit Test Conditions  
min. typ. max.  
Nominal frequency  
fNOM CC 9.75 10  
10.25 MHz under nominal  
1)  
conditions  
Long term frequency ΔfLT CC 0  
deviation  
6.0  
5.0  
0
%
%
%
%
with respect to fNOM, over  
lifetime and temperature  
(125°C to 150°C), for one  
device after trimming  
-5.0  
with respect to fNOM, over  
lifetime and temperature  
(10°C to 125°C), for one  
device after trimming  
-6.0  
with respect to fNOM, over  
lifetime and temperature  
(40°C to -10°C), for one  
device after trimming  
Short term frequency ΔfST CC -1.0  
deviation  
1.0  
within one LIN message  
(<10 ms .... 100 ms)  
1)  
Nominal condition: V  
= 2.5 V, T = + 25°C.  
A
DDC  
Data Sheet  
102  
V1.1, 2012-12  
SAL-XC866  
Electrical Parameters  
4.3.5  
JTAG Timing  
Table 41  
TCK Clock Timing (Operating Conditions apply; CL = 50 pF)  
Symbol Limits  
min max  
Parameter  
Unit  
1)  
TCK clock period  
tTCK SR 50  
t1 SR 20  
t2 SR 20  
4
4
ns  
ns  
ns  
ns  
ns  
1)  
TCK high time  
1)  
TCK low time  
1)  
TCK clock rise time  
t3 SR  
t4 SR  
1)  
TCK clock fall time  
1)  
Not all parameters are 100% tested, but are verified by design/characterization and test correlation.  
0.9 V DDP  
0.1 V DDP  
0.5 V DDP  
TCK  
t1  
t2  
t4  
t3  
tTCK  
Figure 42  
TCK Clock Timing  
Data Sheet  
103  
V1.1, 2012-12  
SAL-XC866  
Electrical Parameters  
Table 42  
JTAG Timing (Operating Conditions apply; CL = 50 pF)  
Symbol Limits  
min max  
Parameter  
Unit  
1)  
TMS setup to TCK  
t1 SR 8.0  
t2 SR 5.0  
t1 SR 11.0  
t2 SR 6.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1)  
1)  
TMS hold to TCK  
TDI setup to TCK  
1)  
TDI hold to TCK  
1)  
TDO valid output from TCK  
t3 CC  
t4 CC  
t5 CC  
23  
26  
18  
1)  
1)  
TDO high impedance to valid output from TCK  
TDO valid output to high impedance from TCK  
1)  
Not all parameters are 100% tested, but are verified by design/characterization and test correlation.  
TCK  
t2  
t1  
TMS  
t2  
t1  
TDI  
t4  
t3  
t5  
TDO  
Figure 43  
JTAG Timing  
Data Sheet  
104  
V1.1, 2012-12  
SAL-XC866  
Electrical Parameters  
4.3.6  
SSC Master Mode Timing  
SSC Master Mode Timing (Operating Conditions apply; CL = 50 pF)  
Table 43  
Parameter  
Symbol  
Limit Values  
max.  
Unit  
min.  
CC 2*T  
1)  
2)  
SCLK clock period  
t0  
t1  
t2  
t3  
ns  
ns  
ns  
ns  
SSC  
1)  
MTSR delay from SCLK  
CC  
SR 22  
SR  
0
8
1)  
MRST setup to SCLK  
1)  
MRST hold from SCLK  
0
1)  
Not all parameters are 100% tested, but are verified by design/characterization and test correlation.  
2)  
T
= T  
= 1/f  
. When f  
= 25 MHz, t = 80 ns. T  
is the CPU clock period.  
SSCmin  
CPU  
CPU  
CPU  
CPU  
0
t0  
SCLK1)  
t1  
t1  
1)  
MTSR  
t2  
t3  
Data  
valid  
MRST1)  
t1  
1) This timing is based on the following setup: CON.PH = CON.PO = 0.  
SSC_Tmg1  
Figure 44  
SSC Master Mode Timing  
Data Sheet  
105  
V1.1, 2012-12  
SAL-XC866  
Package and Reliability  
5
Package and Reliability  
5.1  
Package Parameters (PG-TSSOP-38)  
Table 44 provides the thermal characteristics of the package.  
Table 44  
Thermal Characteristics of the Package  
Symbol Limit Values  
Parameter  
Unit Notes  
Min.  
Max.  
Thermal resistance junction RTJC CC  
case  
15.7  
K/W  
K/W  
1)2)  
Thermal resistance junction RTJL CC  
39.2  
1)2)  
lead  
1)  
The thermal resistances between the case and the ambient (R  
), the lead and the ambient (R ) are to be  
TLA  
TCA  
combined with the thermal resistances between the junction and the case (R ), the junction and the lead  
TJC  
(R ) given above, in order to calculate the total thermal resistance between the junction and the ambient  
TJL  
(R ). The thermal resistances between the case and the ambient (R  
), the lead and the ambient (R  
)
TJA  
TCA  
TLA  
depend on the external system (PCB, case) characteristics, and are under user responsibility.  
The junction temperature can be calculated using the following equation: T =T + R × P , where the R  
TJA  
J
A
TJA  
D
is the total thermal resistance between the junction and the ambient. This total junction ambient resistance  
can be obtained from the upper four partial thermal resistances, by  
R
TJA  
a) simply adding only the two thermal resistances (junction lead and lead ambient), or  
b) by taking all four resistances into account, depending on the precision needed.  
2)  
Not all parameters are 100% tested, but are verified by design/characterization and test correlation.  
Data Sheet  
106  
V1.1, 2012-12  
SAL-XC866  
Package and Reliability  
5.2  
Package Outline  
Figure 45  
PG-TSSOP-38-4 Package Outline  
Data Sheet  
107  
V1.1, 2012-12  
SAL-XC866  
Package and Reliability  
5.3  
Quality Declaration  
Table 45 shows the characteristics of the quality parameters in the SAL-XC866.  
Table 45  
Quality Parameters  
Symbol  
Parameter  
Limit Values  
Unit  
Notes  
Min. Typ. Max.  
Operation Lifetime when tOP  
500  
hours T = 150°C  
A
the device is used at the  
1000  
2000  
hours T = 140°C  
A
1)2)  
four stated T  
A
hours T = 125°C  
A
10000 hours T = 85°C  
A
1500  
hours T = -40°C  
A
Operation Lifetime when tOP2  
18000 hours T = 108°C  
A
the device is used at the  
130000 hours T = 27°C  
A
1)2)  
two stated T  
A
Weighted Average  
Temperature  
TWA  
107  
°C  
V
for 15000 hours  
2)3)  
ESD susceptibility  
according to Human Body  
VHBM  
2000  
Conforming to  
EIA/JESD22-  
A114-B  
Model (HBM) for all pins  
2)  
(except V  
)
DDC  
ESD susceptibility  
according to Human Body  
Model (HBM) for V  
VHBMC  
600  
750  
V
V
Conforming to  
EIA/JESD22-  
A114-B  
2)  
DDC  
ESD susceptibility  
VCDM  
Conforming to  
according to Charged  
Device Model (CDM)  
pins  
JESD22-C101-C  
2)  
1)  
This lifetime refers only to the time when the device is powered-on.  
2)  
3)  
Not all parameters are 100% tested, but are verified by design/characterization and test correlation.  
This parameter is derived based on the Arrhenius model.  
Data Sheet  
108  
V1.1, 2012-12  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

XC866L4FRABEKXUMA1

Microcontroller, 8-Bit, FLASH, 80MHz, CMOS, PDSO38, GREEN, PLASTIC, TSSOP-38

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
INFINEON

XC866L4FRIBEKXUMA1

Microcontroller, 8-Bit, FLASH, 80MHz, CMOS, PDSO38, GREEN, PLASTIC, TSSOP-38

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
INFINEON

XC866_05

8-Bit Single Chip Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
INFINEON

XC866_07

8-Bit Single-Chip Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
INFINEON

XC87413FVA5VACKXUMA1

Microcontroller, CMOS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
INFINEON

XC87416FVA5VACKXUMA1

Microcontroller, CMOS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
INFINEON

XC874CLM16FVA5VACKXUMA1

Microcontroller, CMOS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
INFINEON

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
INFINEON

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
INFINEON

XC874LM13FVA5VACKXUMA1

Microcontroller, CMOS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
INFINEON