XDPS21071 [INFINEON]

Switching Controller,;
XDPS21071
型号: XDPS21071
厂家: Infineon    Infineon
描述:

Switching Controller,

开关
文件: 总54页 (文件大小:2165K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XDPS21071  
Forced Frequency Resonant Flyback controller  
Based on FW: REV 1.0  
Product Highlights  
Integrated 600 V startup cell for fast startup and direct bus voltage sensing  
Multi-mode operation with forced frequency resonant mode (FFR)  
DCM operation guaranteed  
Adaptive current limitation for variable Vout  
Supports low no load input power to meet stringent regulatory standard  
One pin UART interface for configuration  
Features  
Description  
Multi-mode operation with BM, DCM  
Configurable ZVS enabled line voltage  
ZVS gate drive signal for forced resonant mode  
Built-in soft-start  
Built-in protection modes  
Brown-in and brownout detection via integrated HV  
startup cell  
The XDPS21071 is a digital PWM controller for high density  
adapter applications based on DCM flyback topology. A wide  
feature set is provided in a DSO-12 package and requires  
only a minimum of external components. An integrated  
ASSP digital engine provides advanced algorithms for multi-  
mode operation and protection features. A forced frequency  
resonant operation support optimized high density adapter  
Pb-free lead plating; RoHS compliant  
Halogen-free according to IEC61249-2-21  
system dimensioning. In addition  
a
one-time-  
programmable (OTP) unit is integrated to provide  
a
Applications  
selective set of configurable parameters, which can be  
matched to a dedicated system design.  
High density adapter/charger  
Product Validation  
Qualified for industrial applications according to the  
relevant tests of JEDEC47/20/22  
85 ... 264 VAC  
VCC  
ZCD  
GD1  
HV  
GPIO  
GD0  
XDPS21071  
CS  
MFIO  
GND  
Figure 1  
Typical application  
Package  
Marking  
XDPS21071  
FW Revision  
REV 1.0  
SP Ordering Code  
PG-DSO-12-20  
SP005355100  
Data Sheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
Revision 2.0  
2019-10-30  
 
 
 
 
 
 
Forced Frequency Resonant Flyback controller  
Table of contents  
Description  
Table of contents  
Based on FW: REV 1.0 ...................................................................................................................... 1  
Product Highlights.......................................................................................................................... 1  
Features  
1
Applications................................................................................................................................... 1  
Product Validation.......................................................................................................................... 1  
Description1  
Table of contents............................................................................................................................ 2  
1
2
3
Pin Configuration and Functionality ................................................................................ 4  
Representative Block Diagram ........................................................................................ 5  
Introduction.................................................................................................................. 6  
4
4.1  
Functional Description ................................................................................................... 7  
Power supply management....................................................................................................................7  
VCC capacitor charge-up and startup sequence...............................................................................7  
Brown-in monitoring..........................................................................................................................8  
Brown-out protection response ........................................................................................................9  
During burst mode operation ...........................................................................................................9  
Bang-bang mode during latched and auto-restart operation .......................................................10  
During latched operation............................................................................................................11  
During auto-restart operation ....................................................................................................11  
Control features.....................................................................................................................................12  
Reflected voltage sensing and Vcs offset calculation based on output voltage............................14  
Output voltage sensing via ZCD pin ...........................................................................................15  
Ringing suppression time ...........................................................................................................17  
Vcs offset calculation based on output voltage sensed at ZCD pin ..........................................17  
Vbulk voltage measurement via HV startup cell .............................................................................18  
Propagation delay compensation (PDC).........................................................................................18  
Soft-start...........................................................................................................................................20  
Leading edge blanking (LEB) at CS pin............................................................................................20  
Spike blanking at CS pin for 2nd level over-current detection (OCP2) ..........................................21  
Gate driver output GD0 and GD1 .....................................................................................................21  
Multi-mode operation......................................................................................................................22  
Frequency law setting for XDPS21071........................................................................................24  
Frequency jittering...........................................................................................................................25  
Burst mode operation......................................................................................................................26  
Burst mode entry ........................................................................................................................27  
Burst operation ...........................................................................................................................27  
Burst mode exit ................................................................................................................................28  
Forced frequency resonant (FFR) mode operation.........................................................................28  
UART function at GPIO pin...............................................................................................................30  
Protection features ...............................................................................................................................30  
Auto-Restart Mode (ARM).................................................................................................................31  
Latch Mode (LM)...............................................................................................................................31  
VCC Under-Voltage lockout (UVOFF) ...............................................................................................31  
Brown-In Protection (BIP)................................................................................................................31  
Brown-Out Protection (BOP) ...........................................................................................................32  
Over-Current Protection level 1 (OCP1) ..........................................................................................32  
4.1.1  
4.1.2  
4.1.3  
4.1.4  
4.1.5  
4.1.5.1  
4.1.5.2  
4.2  
4.2.1  
4.2.1.1  
4.2.1.2  
4.2.1.3  
4.2.2  
4.2.3  
4.2.4  
4.2.5  
4.2.6  
4.2.7  
4.2.8  
4.2.8.1  
4.2.9  
4.2.10  
4.2.10.1  
4.2.10.2  
4.2.11  
4.2.12  
4.2.13  
4.3  
4.3.1  
4.3.2  
4.3.3  
4.3.4  
4.3.5  
4.3.6  
Data Sheet  
2
Revision 2.0  
2019-10-30  
 
Forced Frequency Resonant Flyback controller  
Table of contents  
4.3.7  
4.3.8  
4.3.9  
4.3.10  
4.3.11  
4.3.12  
4.3.13  
Over-Current Protection level 2 (OCP2) ..........................................................................................32  
High input at CS pin (CShigh) ..........................................................................................................32  
MFIO pin high (MFIOH) .....................................................................................................................32  
Internal over-temperature detection (IntOTP) ...............................................................................32  
Primary side output Over-Voltage Protection (VoutOVP)...............................................................33  
Over load power protection.............................................................................................................33  
CS pin short protection....................................................................................................................33  
5
Configuration...............................................................................................................34  
Overview of configurable parameters using .dp Vision .......................................................................34  
Overview of configurable parameters and functions ..........................................................................34  
Configurable parameters and functions .........................................................................................34  
5.1  
5.2  
5.2.1  
6
Electrical Characteristics...............................................................................................36  
Definitions .............................................................................................................................................36  
Absolute Maximum Ratings ..................................................................................................................36  
Package Characteristics........................................................................................................................37  
Operating Range....................................................................................................................................38  
Characteristics.......................................................................................................................................39  
6.1  
6.2  
6.3  
6.4  
6.5  
7
7.1  
7.2  
Package Information.....................................................................................................48  
Outline dimensions ...............................................................................................................................48  
Footprint and packing...........................................................................................................................49  
8
Marking .......................................................................................................................50  
9
9.1  
Appendix .....................................................................................................................51  
Minimum required capacitive load at GD0 and GD1 pin......................................................................51  
10  
References...................................................................................................................52  
Revision history.............................................................................................................................53  
Data Sheet  
3
Revision 2.0  
2019-10-30  
Forced Frequency Resonant Flyback controller  
Pin Configuration and Functionality  
1
Pin Configuration and Functionality  
The pin configuration is shown in Figure 2 and the functions are described in Table 1.  
1
2
3
4
12  
11  
10  
9
ZCD  
MFIO  
GPIO  
CS  
GND  
VCC  
GD0  
GD1  
5
6
8
7
HV  
HV  
HV  
HV  
PG-DSO-12-20  
Figure 2  
Pin Configuration of XDPS21071  
Pin Definitions and Functions  
Table 1  
Symbol  
ZCD  
Pin  
Type  
Function  
1
I
Zero Crossing Detection  
ZCD pin is connected to an auxiliary winding for zero crossing detection and positive  
pin voltage measurement.  
2
I
Multi-Functional Input Output  
MFIO pin is connected to an optocoupler that provides an amplified error signal for  
the PWM mode operation.  
MFIO  
GPIO  
CS  
3
IO  
I
Digital General Purpose Input Output  
GPIO pin provides an UART interface until brown-in. It is switched to weak  
pull down mode and disabled UART function during normal operation.  
Current Sense  
4
CS pin is connected via a resistor in series to an external shunt resistor and  
the source of the power MOSFET.  
HV  
5, 6, 7, 8  
I
High Voltage Input  
HV pin is connected to the rectified bulk voltage. An internally connected 600  
V HV startup-cell is used for initial VCC charge. Furthermore brown-in and  
brownout detection is provided.  
GD1  
9
I
FFR Signal Gate Driver Output  
GD1 pin provides a gate driver pulse signal to initiate the forced frequency  
resonant mode operation.  
GD0  
VCC  
GND  
10  
11  
12  
O
I
Gate Driver Output  
Output for directly driving the main power MOSFET.  
Positive Voltage Supply  
IC power supply.  
O
Power and Signal Ground  
Data Sheet  
4
Revision 2.0  
2019-10-30  
 
 
Forced Frequency Resonant Flyback controller  
Representative Block Diagram  
2
Representative Block Diagram  
Figure 3 shows a simplified top level block diagram of the IC functionality.  
HV  
XDPS21071  
HV Startup-cell  
Bang-Bang Ctrl  
VVCCBBoff = 20.5 V  
Closed/Open  
Startup-Cell  
Driver  
VVCCBBonAR/LM = 9 V  
Vbulk Brown-out  
Protection  
IHVBO = 0.443 mA  
QM  
D1  
Vbulk  
Vbulk Brown-in  
measurement  
Protection  
Overtemperature  
Detection  
TJOTP = 130 °C  
IHVBI = 1.15 mA  
RM  
&
VCC Brown-in  
VCC  
Protection  
VVCCBI = 9.1 V  
Protection  
Modes  
HW Reset  
UVLO  
VVCCon = 20.5 V  
Auto Restart  
Mode  
Power  
Management  
VVCCoffx = 7.2 V / 9.6 V  
Vout OV  
Protection  
Latch  
Mode  
Vout reflected Voltage  
Measurement  
ZCD  
1 k ꢀ  
VZCDOVP = 2.75 V  
Soft-Start  
Open Loop Timer  
tMFIOH = 31.3 ms  
Frequency clamp  
Gate Driver  
FFR Mode  
With ZVS Pulse  
Generation  
PWM  
Logic  
Frequency Law  
fSW  
GD0  
C2  
VCSPK  
VMFIO  
VMFIOH = 2.41 V  
PDC  
VVDDP = 3.3 V  
VMFIO  
Gate Driver  
RMFIOPU  
GD1  
Burst Mode Function  
Vcs_offset  
MFIO  
C3  
VMFIOBMEX1  
BM Exit  
C5  
VMFIOBMWK  
on-phase  
off-phase  
BM 2-point  
Regulation  
BM Ctrl  
C6  
VMFIOBMPA  
C7  
BM Entry  
VMFIOBMEN  
Cycle by Cycle Peak Current Ctrl  
OCP1  
CS  
tCSLEB  
VCSPK  
10k ꢀ  
1 k ꢀ  
1 pF  
Auto Restart  
Input Detection  
2nd Level Overcurrent Detection  
OCP2  
tCSOCP2BL  
VCSOCP2 = 0.8 V  
VVDDP = 3.3 V  
IGPIOLPU  
UART  
Communication  
Parameter  
Configuration  
GPIO  
Figure 3  
Representative Block Diagram of XDPS21071  
Data Sheet  
5
Revision 2.0  
2019-10-30  
 
Forced Frequency Resonant Flyback controller  
Introduction  
3
Introduction  
The XDPS21071 is a digital AC/DC current-mode controller for high density adapter applications. The IC provides a  
configurable multi-mode operation controlled by the feedback signal from the secondary side control loop. The multi-mode  
operation supports different operation modes like forced frequency resonant control (see chapter 4.2.12) or burst mode,  
frequency reduction mode depending on line and load conditions. With supporting those modes high power density designs  
can be dressed in a very flexible manner.  
An embedded application specific digital core provides advanced algorithms for the multi-mode operation and a variety of  
protection features. Special analog and mixed-signal peripherals are integrated to support the requirements for low stand-  
by power.  
The IC supports highest design flexibility in the application by means of an advanced set of configurable parameters and  
state machines, which supports very dedicated system dimensioning. The configuration can be done via a single pin UART  
interface at GPIO pin that supports in-circuit configuration. Chapter 5 contains the parameter default configuration setting  
for XDPS21071 and the correlated specific firmware version. Furthermore, it provides a mapping table for the defined FW  
symbols and the correlated data sheet parameters. Each listed parameter is specified in the electrical characteristics  
Chapter 6.  
The following functional description in Chapter 4 is based on the default parameter setting in the configuration Chapter 5.  
Chapter 7.1 provides information about the package outline and dimensions.  
An appendix Chapter 9 provides additional information about specific electrical characteristics or test conditions.  
The reference Chapter 10 provides an overview about correlated documents.  
Data Sheet  
6
Revision 2.0  
2019-10-30  
Forced Frequency Resonant Flyback controller  
Functional Description  
4
Functional Description  
The functional description gives an overview about the integrated functions and features and their relationship. The  
mentioned parameters and equations are based on typical values at TA = 25 °C. The correlated minimal and maximal values  
are shown in the electrical characteristics in Chapter 6.  
The functional description is grouped in following sections:  
Power supply management (Chapter 4.1)  
Control features (Chapter 4.2)  
Protection features (Chapter 4.3)  
4.1  
Power supply management  
The power supply management ensures a reliable and robust IC operation. Depending on the operation mode of the control  
IC, the power supply management unit runs in different ways for VCC supply and for brown-in monitoring, which are  
described in the sequel:  
VCC capacitor charge-up and startup sequence (see Chapter 4.1.1)  
Brown-in monitoring (Chapter 4.1.2)  
Brown-out protection response (Chapter 4.1.3)  
During burst mode (QBM) operation (Chapter 4.1.4)  
Bang-bang mode during latch mode (LM) operation (Chapter 4.1.5.1 )  
Bang-bang mode during auto-restart mode (ARM) operation (Chapter 4.1.5.2)  
4.1.1  
VCC capacitor charge-up and startup sequence  
There are two main functions supported at HV pin by a resistor RHV connected to the bulk capacitor (see Figure 5). They are  
the VCC capacitor charge-up, and the bulk voltage monitoring (see Chapter 4.1.2).  
At beginning of a cold startup, the depletion startup cell is on. Once the AC line voltage is applied and charging the bulk  
capacitor, a current flows through the external resistor RHV into HV pin. Via the integrated diode D1, that current may charge  
up the external VCC capacitor (see Figure 5). Once VCC voltage exceeds the threshold VVCCon = 20.5 V, the startup cell is turned  
off, the control IC is enabled and the firmware boot sequence follows which takes about 1.2 ms. Both bulk voltage brown-in  
and VCC brown-in condition (see Chapter 4.3.4) are checked continuously. Once they both are above the brown-in level,  
respectively, the first GD0 pulse according to the soft-start control will be generated earliest after the 1.2 ms boot sequence  
time. The voltage VVCC drops until the supply via the auxiliary winding (VVCCSS) takes over the VCC supply (see Figure 4). For a  
proper system startup and operation, the supply voltage VVCC must be always above the VCC off-threshold VVCCoff=7.2 V (see  
Chapter 4.3.3).  
Data Sheet  
7
Revision 2.0  
2019-10-30  
 
 
Forced Frequency Resonant Flyback controller  
Functional Description  
VVCC(t)  
Initial startup and normal operation  
VVCCon = 20.5 V  
VCC brown-in window  
VVCCSS  
VVCCBI = 9.1 V  
VVCCoffOP = 7.2 V  
VCC self supply takes over  
t
t
VHV(t)  
VVACpeak  
ca. 1.2ms internal boot sequence  
VAC brown-in condition fulfilled  
IVCC(t)  
Start of GD0 switching  
IVCCop  
IVCCop1 = 7.5 mA  
IVCCUVOFF = 30 µA  
t
TYPICAL STARTUP SEQUENCE  
Figure 4  
Typical startup sequence  
4.1.2  
Brown-in monitoring  
Once the IC is activated, brown-in monitoring is enabled for input brown-in protection (see Chapter 4.3.4) by measuring  
the current at HV pin through the internal shunt resistor RM (see Chapter 4.2.2). If the input brown-in is not detected before  
VCC falls below VVCCBI, the startup cell measurement unit remains enabled until VCC falls down to VVCCoff  
.
Data Sheet  
8
Revision 2.0  
2019-10-30  
 
Forced Frequency Resonant Flyback controller  
Functional Description  
VBULK  
VAC = 85 ... 264  
CBulk  
Vrms  
RHV = 100kW  
CVCC  
VCC  
HV  
HV Startup-  
cell  
Startup-Cell  
Driver  
Closed/Open  
D1  
Brown-in &  
Brown-out  
Protection  
QM  
&
I
I
HVBI = 1.15 mA  
HVBO = 0.442mA  
PWM  
Logic  
RM  
VCC Brown-in  
Protection  
Power Supply  
Management  
VVCCBI = 9.1 V  
UVLO  
VVCCon = 20.5 V  
HW Reset  
VVCCoffx = 7.2 V / 9.6 V  
Figure 5  
High voltage brown-in sensing and VCC startup at HV pin  
4.1.3  
Brown-out protection response  
In case of brown-out (see Chapter 4.3.5), the IC stops gate driver switching and stays active. At the same time, the VCC turn-  
off threshold is switched over from VVCCoff to the threshold VVCCoffBO = 9.6 V. The threshold VVCCoffBO is higher than the threshold  
VVCCoff, which supports an earlier system restart than using the threshold VVCCoff  
.
4.1.4  
During burst mode operation  
After the control IC enters quiet burst mode, the IC enters repeatedly a sleep mode, in which the IC current consumption is  
reduced to IVCCquBM2 = 460 µA. Waking up from and entering this sleep mode (pause) is controlled by the feedback voltage at  
MFIO pin VMFIO via the internal comparators C5 and C6 (see Figure 6 and Chapter 4.2.910).  
Data Sheet  
9
Revision 2.0  
2019-10-30  
 
Forced Frequency Resonant Flyback controller  
Functional Description  
MFIO  
C5  
burst-on  
VMFIOBMWK  
BM 2-point  
Regulation  
Power  
Management  
BM Ctrl  
burst-off  
C6  
VMFIOBMPA  
Figure 6  
Burst mode control  
For the system dimensioning, it should be ensured that the voltage VVCC should be always well above the  
threshold VVCCoff, including the burst-off phase. Figure 7 shows a typical burst mode operation signal for VCC and  
correlated current consumption.  
VVCC(t)  
burst-on phase  
VVCCSS  
VVCCoff = 7.2 V  
t
burst-off phase  
VMFIO(t)  
VMFIOBMWK = 1.6 V  
VMFIOBMPA  
t
VGD0(t)  
t
IVCC(t)  
IVCCop  
IVCCquBM2 = 460 µA  
t
Figure 7  
Burst operation  
4.1.5  
Bang-bang mode during latched and auto-restart operation  
The bang-bang mode supports an IC operation without external VCC supply during the latched and auto-restart operation.  
It directly controls the HV startup cell depending on the set bang-bang mode turn-on threshold VVCCBBon of the corresponding  
auto-restart and latch mode (see Figure 8). In latch mode, the HV startup cell switch-on threshold is set to VVCCBBon = 9 V (see  
Chapter 4.1.5.1 and Chapter 4.1.5.2). In auto-restart mode, there is also an additional stand-by timer active that switches on  
the HV startup cell in a fixed time period of 500ms scheme to keep the VCC all the time at a high level above the brown-in  
threshold VVCCBI = 9.1 V. Then a restart can take place without going through an additional VCC brown-in cycle. Due to the low  
current consumption during the auto-restart break time, the startup cell is always turned on by the 500 ms timer.  
Protection Modes  
HV  
HV Startup-cell  
Auto Restart  
Mode  
Bang-Bang Ctrl  
Closed/Open  
Startup-Cell  
Driver  
VVCCBBoff = 20.5 V  
Latch  
Mode  
VVCCBBonAR/LM = 9 V  
D1  
Power  
Management  
VCC  
Figure 8  
Bang-bang mode control of HV startup-cell  
Data Sheet  
10  
Revision 2.0  
2019-10-30  
 
 
 
Forced Frequency Resonant Flyback controller  
Functional Description  
4.1.5.1  
During latched operation  
If latch mode is entered (see Chapter 4.3.2), the IC stops gate switching and the VCC current consumption is reduced to  
IVCCquLM = 150 µA. The enabled bang-bang mode ensures that the IC is kept alive by keeping the voltage at VCC pin above the  
threshold VVCCoff = 7.2 V (see Figure 9). A reset of the latch mode takes place only after the VCC drops below the VVCCoff threshold.  
VVCC(t)  
Latch mode operation  
VVCCBBoff = 20.5 V  
VVCCSS  
VVCCBBonLM = 9 V  
VVCCoff = 7.2 V  
t
Reset of latch mode due to low VAC  
VHV(t)  
VVACpeak  
t
IVCC(t)  
IVCCop  
IVCCquLM = 150 µA  
IVCCUVOFF = 30 µA  
t
Figure 9  
Latch mode operation  
4.1.5.2  
During auto-restart operation  
Once auto-restart mode is entered (see Chapter 4.3.1), the IC stops GD0 switching, the VCC current consumption is reduced  
to IVCCquAR = 160 µA, and a stand-by timer with 500 ms (tBBoffAR) period is activated which turns on the HV startup cell  
periodically, to charge up the VCC capacitor. Once the voltage at VCC pin exceeds the switch-off threshold VVCCBBoff = 20.5 V,  
the startup cell is turned off (see Figure 10). This is bang-bang mode operation for the VCC management during the auto-  
restart break time. In this way, the VCC voltage is kept at a level well above the VCC brown-in threshold to ensure enough  
energy stored in the VCC capacitor for the coming restart of the system, that is initiated after the auto-restart break time  
tAR = 3 s. Then after an additional time t = ε, the gate driver switching is activated with a soft-start sequence. Here the  
additional time ε depends on the VCC capacitor charge-up time which is related to the VCC capacitance and the voltage at  
HV pin.  
Data Sheet  
11  
Revision 2.0  
2019-10-30  
 
 
 
Forced Frequency Resonant Flyback controller  
Functional Description  
VVCC(t)  
Auto-restart mode operation  
VVCCBBoff = 20.5 V  
VVCCSS  
VVCCBI = 9.1 V  
VVCCBBonAR = 9 V  
VVCCoff = 7.2 V  
t
t
tBBoffAR = 500 ms  
VHV(t)  
VVACpeak  
D
t = e  
IVCC(t)  
IVCCop  
IVCCop1 = 7.5 mA  
IVCCquAR = 160 µA  
t
t
VGD0(t)  
VGD0H = 10.5 V  
tAR = 3s  
Figure 10 Auto-restart mode operation  
4.2  
Control features  
The XDPS21071 provides peak current control assisted by the features listed in Table 2. A simplified block diagram  
representing the controller features is shown in Figure 11.  
Data Sheet  
12  
Revision 2.0  
2019-10-30  
Forced Frequency Resonant Flyback controller  
Functional Description  
tCSOCP2BL  
CS  
VCSOCP2  
CLEAR  
VCS  
GD0  
+
&
FF  
Cold Start,  
BM Wake-Up,  
Autorestart  
SET  
&
+
stop GD0  
VCSOCP1  
Soft-Start  
Control  
CLEAR  
VCSSS  
&
M
I
N
VVDDP  
FF  
Multi-Mode  
Control  
frequency law,  
burst mode control  
MFIO  
HV  
tCSLEB  
SET  
VMFIO  
IHV  
VBulk  
Measurment  
Propagation  
Delay  
Compensation  
tZCDRS  
Vcs_offset  
start GD0  
Start Request  
Generator  
Vout  
Measurement  
ZCD  
fSW  
FFR ZVS  
PWM  
GD1  
Generator  
ZCD  
MULTIMODE_OVERVIEW_DIGITAL  
Figure 11 Block Diagram of PWM Control  
Table 2 gives an overview about the controller features that are described in the mentioned chapters.  
Table 2  
Controller Features  
Reflected voltage sensing and zero crossing detection at auxiliary winding  
Vbulk voltage measurement via HV startup cell  
Propagation delay compensation (PDC)  
Soft-start  
Chapter 4.2.1  
Chapter 4.2.2  
Chapter 4.2.3  
Chapter 4.2.4  
Chapter 4.2.5  
Chapter 4.2.6  
Chapter 4.2.7  
Chapter 4.2.8  
Chapter 4.2.9  
Chapter 4.2.12  
Chapter 4.2.13  
Leading edge blanking (LEB) time at CS pin  
Spike blanking at CS pin for 2nd level over-current detection  
Gate driver output GD0 and GD1  
Multi-mode operation  
Burst mode (QBM) operation  
Forced frequency resonant (FFR) mode operation  
UART function at GPIO pin  
Data Sheet  
13  
Revision 2.0  
2019-10-30  
 
Forced Frequency Resonant Flyback controller  
Functional Description  
4.2.1  
Reflected voltage sensing and Vcs offset calculation based on  
output voltage  
The IC provides output voltage detection by means of measuring the reflected voltage at the auxiliary winding VAux at the  
primary side of the transformer via ZCD pin and an external resistive voltage divider. The voltage signal VAux contains the  
information of the flyback output voltage, VOut, at the secondary side.  
The ZCD pin related circuit is shown in Figure 12. Figure 13 shows a typical voltage waveform of the drain voltage VDrain and  
the related auxiliary winding voltage VAux. The sensed output voltage is used for over-voltage protection (see Chapter 4.3.11).  
Following topics are described in the sequel:  
Output voltage sensing via ZCD pin (Chapter 4.2.1.1)  
Vcs offset with sensed Vo at ZCD pin (Chapter 4.2.1.3)  
vPri  
vSec  
VOut  
VBulk  
vDrain  
RZCDH  
iZCD  
vZCD  
vAux  
ZCD  
GND  
RZCDL  
vZVS  
VOLTAGE_SENSING_OVERVIEW  
Figure 12 Functionality at ZCD pin  
Data Sheet  
14  
Revision 2.0  
2019-10-30  
 
Forced Frequency Resonant Flyback controller  
Functional Description  
vDrain(t)  
NPri / NSec × vSec  
VBulk  
0
t
Free-wheeling phase  
Oscillation phase  
vAux(t)  
NAux / NSec × vSec  
0
t
NAux / NPri × VBulk  
1 1 1 1  
4 4 4 4  
tOn  
tf  
tOsc  
tOff  
iMag(t)  
t
VOLTAGE_SENSING_SIGNALS  
Figure 13 Auxiliary voltage and magnetization current waveforms for standard discontinuous  
conduction mode operation  
4.2.1.1  
Output voltage sensing via ZCD pin  
Output voltage is sensed at a fixed point of time during the free-wheeling phase. The free-wheeling phase begins when the  
gate driver is switched off and ends when the secondary side demagnetization current becomes zero. During free-wheeling  
phase the VCC capacitor of the IC, the output stage and the additional ZVS capacitor at ZVS winding for introducing a forced  
resonant cycle (see Chapter 4.2.12) are supplied. As soon as VCC capacitor is charged, the auxiliary voltage is a function of  
secondary side voltage.  
푨푼푿  
푨푼푿  
=
∙ 푽푺풆풄  
( 1 )  
푺풆풄  
Figure 14 shows the schematic related to secondary side voltage sensing and the equivalent network.  
Data Sheet  
15  
Revision 2.0  
2019-10-30  
 
Forced Frequency Resonant Flyback controller  
Functional Description  
NSec:NAux  
RZCDH  
iZCD=0  
vZCD>0  
vSec(t)  
vAux(t)  
ZCD  
GND  
RZCDL  
ZCD  
+
vZCDSEC(vSec  
)
GND  
VOLTAGE_SENSING_ZCDSH  
Figure 14 Secondary Side Voltage Sensing  
No current clamping applies during the free-wheeling time and the voltage at ZCD pin is given by  
푨푼푿  
풁푪푫푺푬푪(푽푺풆풄) = 푹풁푪푫∙  
(
)
( 2 )  
풁푪푫푯  
RZCD is the internal resistance of VZCDSEC (VSec)and is the equivalent parallel resistance of RZCDH and RZCDL. The related waveforms  
are presented in Figure 15. After the primary side gate driver is turned off, the auxiliary voltage goes from its negative level  
to positive. After a ringing phase, the positive level is given by the output voltage plus the secondary side diode voltage drop.  
During the free-wheeling phase the secondary side diode operates in the linear region until the demagnetization current  
becomes very small. This linear relationship can be described as a resistor RDSonSec, resulting in a falling slope according to  
RDSonSec·iLSec(t). The secondary side current iLSec(t) decreases with a slope given by the output voltage and the transformer  
secondary side inductance. Hence the resulting auxiliary winding voltage is more or less constant until the secondary side  
current becomes zero. The reflected voltage at auxiliary winding is sampled at the end of the ringing suppression time (see  
Chapter 4.2.1.2). The measured voltage VZCDSEC includes the output voltage level and a superimposed offset VZCDOFFSET that is  
depending on the secondary side chosen rectification approach and the associated component dimensioning.  
To ensure an accurate measurement of the reflected output voltage, the system dimensioning must provide a free-wheeling  
phase that only finishes after the ringing suppression time tZCDRS  
.
Furthermore following effects can influence the output voltage sensing if not properly considered in system dimensioning:  
VCC and ZVS capacitor charging  
Voltage drop on secondary side at the free-wheeling diode or the secondary side switch  
The VCC and ZVS capacitors need to be charged up before the ringing suppression time tZCDRS ends. The superimposed  
voltage offset VZCDOFFSET at sample time point due to secondary side rectification approach needs to be considered either by  
the dimensioning of the ZCD resistor divider or the internal overvoltage threshold setting VZCDOVP (see Chapter 4.3.11).  
Data Sheet  
16  
Revision 2.0  
2019-10-30  
Forced Frequency Resonant Flyback controller  
Functional Description  
tGD0offZC  
vGD0(t)  
tf  
tOsc/4  
tZCDRS  
t
vZCD(t)  
Voltage sampling  
DVZCDOFFSET  
VZCDSEC(VSec  
)
VZCDVO(VOut  
)
VZCDTHR  
t
VZCDclp  
Ringing  
suppression  
VOLTAGE_SENSING_SIGNALS_ZCDSH  
Figure 15 Output Voltage Sensing Signals  
4.2.1.2  
Ringing suppression time  
To prevent erroneous ZCD events due to primary side gate driver turn off ringing, a ringing suppression time tZCDRS = 1.9µs  
applies for the zero-crossing events. During this time no zero-crossing is considered.  
4.2.1.3  
Vcs offset calculation based on output voltage sensed at ZCD pin  
To limit the output current at different output voltage, a linear scaled Vcs offset is inserted to the peak current command.  
This offset will be minused from the current command mapping from the frequency law curve.  
It is an inverse of the output voltage based on positive ZCD winding voltage. Figure 16 shows when the Vzcd is at  
Vzcd_zero_point, the Vcs offset is zero. While Vzcd voltage is at minimum level, the Vcs offset is maximum. The Vcs offset level  
depends on the slew rate of Kvcs_offset and the starting point of Vzcd. The equation is as below:  
푽풄풔풐풇풇풔풆풕 = 푲풗풄풔풐풇풇풔풆풕 ∗ (푽풛풄풅 − 푽풛풄풅_풛풆풓풐_풑풐풊풏풕)/ퟔퟓퟓퟑퟔ  
( 3 )  
All the number in above equation is decimal digital value.  
At ZCD pin, the sensed voltage will minus 1.2V offset first, then feed into an ADC channel to get the sense the voltage. Also  
due to the ADC input voltage range is 1.2-2.8V, so any ZCD voltage out of this range is ignored by the IC and ADC converter  
value will be saturated at its min(0) and max value(255).  
Below is the example on how to set the value,  
Vzcd_zero_point is the voltage level without compensation, here we choose Vzcd=1.41V, the digital value of Vzcd_zero_point_dig=(1.41-  
1.2)*1.5/2.4*255=148, Kvcsoffset=28000, for Vzcd=1.2V, the digital value of it will be  
Vzcd_dig=(1.2-1.2)*1.5/2.4*256=0, so Vcsoffset_dig=28000*(0-79)/65536=34, its analog value will be 34/255*0.6=80mV.  
If system parameters like transformer turns ratio, ZCD pin voltage divider is known, then the corresponding output voltage  
can be calculated. E.g. Naux=2, Nsec=2, RzcdH is 39kohm, RzcdL is 5.6kohm.  
풔풆풄  
= 푽풛풄풅  
∗ (푹풛풄풅푳 + 푹풛풄풅푯)/푹풛풄풅푳  
( 4 )  
풂풖풙  
Data Sheet  
17  
Revision 2.0  
2019-10-30  
 
Forced Frequency Resonant Flyback controller  
Functional Description  
So for Vzcd=1.41V, Vo will be 1.41*2/2*(39+5.6)/5.6=11.23V assuming transformer coupling is 1.  
For Vzcd=1.2V, Vo will be 1.2*2/2*(39+5.6)/5.6=9.56V.  
This means that when output voltage is above 11.23V, there is no Vcs offset compensation, below 9.56V the compensation  
is clamped at 80mV as calculated above.  
Vzcd  
Vzcd_zero_point  
Kvcs_offset  
Vzcd_LowV  
Vcs offset  
Vcs_offset  
VCSOFFSET  
Figure 16 Vcs_offset calculation  
4.2.2  
Vbulk voltage measurement via HV startup cell  
The VBulk voltage is measured via the HV pin that is connected at the bulk capacitor node. The current IHV is sampled in the IC  
and processed for the following functions:  
Brown-in protection ( Chapter 4.3.4)  
Brown-out protection (Chapter 4.3.5),  
Propagation delay compensation (Chapter 4.2.3),  
In all these functions, the current IHV represents the bulk voltage.  
4.2.3  
Propagation delay compensation (PDC)  
Due to the gate driver turn-off propagation delay tPD, the level VCSOCP1 set by the OCP1 comparator will not directly control  
the inductor peak current, ILPk  
.
Without propagation delay, the peak current would be given by ILPk = RCS-1·VCSOCP1. However, due to the propagation delay,  
the OCP1 level is exceeded by  
푪푺 ∙ 푰푳풑풌 = 푽푪푺푶푪푷ퟏ + 푽푪푺푷푫(푽푩풖풍풌  
)
( 5 )  
where the propagation delay overshoot VCSPD(VBulk) is  
푪푺  
푪푺푷푫(푽푩풖풍풌) =  
∙ 풕푷푫 ∙ 푽푩풖풍풌  
( 6 )  
푷풓풊  
In Figure 17 related example waveforms are presented.  
Data Sheet  
18  
Revision 2.0  
2019-10-30  
 
Forced Frequency Resonant Flyback controller  
Functional Description  
vGD0(t)  
vGD0(t)  
t
t
t
t
vDrain(t)  
vDrain(t)  
VBulkHL  
VBulkLL  
vCS(t)  
vCS(t)  
tPD  
tPD  
tCS  
RCSILpk  
(t)  
RCSILpk(t)  
tCS  
dvCS/dt  
dvCS/dt  
t
t
MULTIMODE_PDC  
Figure 17 Propagation Delay and Propagation Delay Compensation  
On the left side, the bulk voltage is low, the slope of inductor current and of the CS voltage are low, too. When the CS voltage  
reaches the OCP1 level, the gate driver turns off and the inductor current reaches its peak after the turn off propagation  
delay tPD. The turn off propagation delay tPD includes the delay tCS of the filter capacitor connected to CS pin and the resistor  
connected between shunt resistor and CS pin (see Typical Application Figure). The overshoot of the inductor current due to  
propagation delay is small due to the small slope  
풅푽  
∙푽  
푪푺  
푪푺 푩풖풍풌  
=
( 7 )  
풅풕  
The right side of Figure 17 shows the same operating waveforms for a higher bulk voltage. In this case, the OCP1 comparator  
limit needs to be less than on the left side to reach the same inductor peak current. Although the propagation delay remains  
the same, the slope as well as the overshoot due to propagation delay is larger.  
The XDPS21071 controller is defined to measure the HV current IHV representing the bulk voltage VBulk. The OCP1 comparator  
limit is adjusted depending on the measured bulk voltage so that the real peak current due to the propagation delay is  
compensated. For this HV pin needs to be connected to VBulk  
.
Consequently, any CS peak parameter VCSx is specified in the electrical characteristics (Chapter 6.5) for a low-line use case  
(VCSxLL) and for a high-line use case (VCSxHL).  
Low-Line Use Case (LL)  
IHVLL = 70 µA as for VBulk = 72 V, RHV = 100 kΩ  
(dvCS /dt)LL = 96 mV/µs as for VBulk = 72 V, LPri = 220 µH, RCS = 0.294 Ω  
High-Line Use Case (HL)  
IHVHL = 370 µA as for VBulk = 372 V, RHV = 100 kΩ  
(dvCS /dt)HL = 497 mV/µs as for VBulk = 372 V, LPri = 220 µH, RCS = 0.294 Ω  
These use cases set the corners of the propagation delay compensation which operates in a linear manner so that the typical  
OCP1 threshold for any IHV is given by  
(
)
ꢀ푽  
ꢀ푽  
푪푺풙 푯푽  
푪푺풙푳푳  
푪푺풙푯푳 푪푺풙푳푳  
=
( 8 )  
ꢀ푰  
ꢀ푰  
푯푽 푯푽푳푳  
푯푽푯푳 푯푽푳푳  
Data Sheet  
19  
Revision 2.0  
2019-10-30  
 
Forced Frequency Resonant Flyback controller  
Functional Description  
4.2.4  
Soft-start  
The IC control provides a soft-start during initial startup and auto-restart cycles. The soft-start slew rate is defined by the  
step VCSS = 2.5 mV taking place every time step of tBase1 = 52.14 µs. Furthermore, the peak current start level is determined  
by the parameter VCSSS  
.
The soft-start phase is latest finished after VCS has ramped up to the maximum level of VCSmax (see Figure 18).  
The total soft-start time tSSmax is therefore based on the following equation:  
ꢀ푽  
푪푺풎풂풙  
푪푺푺푺  
푺푺풎풂풙 = 풕푩풂풔풆ퟏ  
( 9 )  
∆푽  
푪푺푺  
The associated ramped up peak current limitation is determined by internal digital numbers, which are not depending on  
the propagation delay during peak current limitation process.  
VCS(t)  
tSSmax  
VCSmax  
tBase1  
DVCSS  
VCSSS  
t
Figure 18 Soft-start timing  
The internal soft-start phase is finished once the voltage level at MFIO pin is getting lower than 2.42 V. Then the setting for  
CS limitation is determined by the feedback signal at MFIO pin via the frequency law (see Chapter 4.2.8.1).  
4.2.5  
Leading edge blanking (LEB) at CS pin  
A digital leading edge blanking filter with tCSLEB = 269 ns (see Chapter 5) is integrated in the OCP1 peak current control path  
to prevent the current limitation process from distortions, caused by the leading edge spike at the switch-on of the power  
MOSFET (see Figure 19). The LEB applies only for the OCP1 comparator (see Figure 3) that is used for cycle-by-cycle peak  
current limitation. The LEB needs also to ensure a monotonous peak current control without being impacted by ringing  
taking place directly after the leading edge spike.  
VGD0(t)  
t
VCS(t)  
tCSLEB  
VCSOCP1  
t
Figure 19 Leading edge blanking  
Data Sheet  
20  
Revision 2.0  
2019-10-30  
 
 
 
Forced Frequency Resonant Flyback controller  
Functional Description  
4.2.6  
Spike blanking at CS pin for 2nd level over-current detection  
(OCP2)  
A further comparator OCP2 is implemented at CS pin (see Figure 3) to detect dangerous current levels (see Chapter 5), which  
could occur if one or more transformer windings are shorted or if the secondary side diode is shorted. To avoid an accidental  
trigger by exceeding this 2nd level over-current protection threshold VCSOCP2 = 0.8 V, a spike blanking time tCSOCP2BL = 616.2 ns  
(see Chapter 5) is implemented in the output path of the OCP2 comparator.  
4.2.7  
Gate driver output GD0 and GD1  
The gate driver GD0 and GD1 are of the same type. The GD0 is used for controlling the main MOSFET connected to the primary  
main inductance of the flyback transformer. The GD1 is used for controlling the FFR mode (see Chapter 4.2.8) by driving the  
dedicated MOSFET that is connected to the ZVS winding at the flyback transformer.  
The gate driver output stages consist of a regulated current source connected to VCC pin and a MOSFET switch connected  
to GND (see Figure 20 and Figure 21). The peak source current at GDx is set to IGDxHPKSRC = -118 mA. The MOSFET switch  
provides a discharge path for the main power MOSFET with a sink capability of RGDxLSNK 6.5 .  
The controlled source current determines together with the gate-source capacitance CGS and the gate-drain capacitance CGD  
of the external power MOSFET the rising slope during turn-on phase (see Figure 22). The gate driver state control ensures  
that the charged gate driver output voltage is clamped at the level VGDxH = 10.5 V.  
The external gate resistor RGDx is therefore only meant for adjusting the peak sink current and the corresponding gate voltage  
falling slope during the turn-off phase. Here the turn-on behavior is mainly dominated by the controlled limited current  
source IGDxHPKSRC as the size of the external gate resistor is mainly limiting the higher peak sink current at GDx pin. When  
dimensioning the serial gate resistor RGDx, also a minimum load capacitance needs to be considered after RGDx (see Chapter  
9.1), which needs to be provided by the corresponding gate-source capacitance CGS of the external power MOSFET. This  
ensures a smooth and stable settling of the voltage level VGDxH at the end of the turn-on phase.  
Primary main  
inductance  
VCC  
VCC  
Power  
MOSFET  
VD  
Source current  
control  
IGD0HPKSRC  
Q1  
CGD  
CGS  
CS  
Gate driver  
state control  
RGD0  
Flyback  
ctrl  
GD0  
GND  
VGD0H  
RGD0LSNK  
RCS  
Figure 20 GD0 output stage structure  
Data Sheet  
21  
Revision 2.0  
2019-10-30  
 
 
Forced Frequency Resonant Flyback controller  
Functional Description  
ZVS-winding  
VCC  
VCC  
Power  
MOSFET  
VD  
Source current  
control  
IGD1HPKSRC  
Q2  
CGD  
Gate driver  
state control  
RGD1  
FFR mode  
pulse control  
GD1  
CGS  
VGD1H  
RGD1LSNK  
GND  
Figure 21 GD1 output stage structure  
VGDx(t)  
turn-on phase  
VGDxH = 10.5 V  
dVGDx/dt is determined  
by IGDxHPKSRC and CGS  
The turn-off phase is determined by  
RGDx, RGDxLSNK, CGS, CGD and VD  
Miller plateau is determined by  
IGDxHPKSRC, CGD and VD  
t
tGDxon  
Figure 22 Gate drive output  
4.2.8  
Multi-mode operation  
The multi-mode operation consists of two different operation modes that are controlled by the feedback voltage signal at  
MFIO pin (see Table 3).  
Table 3  
Overview multi-modes  
Symbol  
BM  
Operation Mode  
Description  
Chapter 4.2.9  
Chapter 4.2.12  
Burst mode  
FFR  
Forced frequency resonant mode during BM and DCMx operation  
The configurable multi-mode operation depends on the inductance design, switching frequency, load condition and the  
bulk voltage VBulk. It is characterized by the frequency scheme and peak current correlation shown in Figure 23. The peak  
current limit VCSPK (y-axis) and the frequency limits are set according to the input signal at MFIO pin. The peak current limits  
for VCSPK are shown for the low and high-line use case (see Chapter 4.2.3), which consider the propagation delay  
compensation (PDC). The border for entering the burst mode (BM) is determined by the setpoint D. The actual peak current  
and the actual switching frequency areas follow:  
Data Sheet  
22  
Revision 2.0  
2019-10-30  
 
 
Forced Frequency Resonant Flyback controller  
Functional Description  
in DCM1, DCM2 and DCM3 operation, the peak current and the switching frequency are directly given by the curve A-B-  
C-D.  
in DCM1 the peak current changes with the voltage VMFIO and the switching frequency is fixed.  
in DCM2 the peak current is fixed, and the switching frequency changes with VMFIO  
.
in DCM3 the peak current changes with the voltage VMFIO and the switching frequency is fixed until CRM operation is  
taking place. The start of CRM cycles is depending on VBulk. The frequency in DCM3 is configurable. The highest  
frequency is 139.4 kHz.  
the multi-mode controller selects the operating mode (BM, DCM1, DCM2, DCM3 with FFRZVS or CRM)  
CRM switching cycles occur in DCM3 when the Vbulk voltage exceeds a lower Vbulk voltage level and the remaining off-time  
is not sufficient to fully demagnetize the flyback transformer. In this mode no zero crossing is detected before the end of the  
switching period determined, however IC gate is only allowed when zero crossing is detected. In such condition, IC will wait  
the demagnetization finshes until the first zero crossing comes, once zero crossing is detected, IC will allow gate on. The fix  
frequency operation will be bypassed here and frequency will be reduced and IC will switch at valley.  
The following Figure 23 shows an example of using all possible multi-mode operation phases that are determined by the  
corresponding setpoints A, B, C and D. The specific frequency law setting for XDPS21071 based on the FW: REV 1.0 is shown  
in Chapter 4.2.8.1. Setpoints A and B can change from lowest switching frequency (burst frequency) e.g. 30 kHz to maximum  
switching frequency 139.4 kHz. Setpoint B and C are also configurable, i.e VmfioC, VmfioB, VcsC are also configurable, so the  
middle to light load efficiency can be optimized for different combination of frequency and peak current.  
There is a special condition to limit the maximum frequency, when the bulk voltage is higher than Vbulk_high=200V and ZCD pin  
voltage is lower than Vzcd_low=1.30V, the frequency will be clamped to fclamp which is a configurable based on different system  
design, the default value is 105 kHz. When the bulk voltage is less than 200V and zcd pin voltage is higher than 1.47V, the  
fclamp will be removed. By lower the frequency and work in DCM, switching loss can be reduced at high line and thus  
increase efficiency.  
Data Sheet  
23  
Revision 2.0  
2019-10-30  
Forced Frequency Resonant Flyback controller  
Functional Description  
fSW(VMFIO  
)
B
A
fSWmax  
Freq clamp at  
special condition  
fsw_clamp  
Start of CRM  
operation  
depending on  
VBulk  
D
C
fSWmin  
ABM  
DCM1  
DCM2  
DCM3  
CRM  
VMFIO  
VMFIOBMEN  
VCSPK(VMFIO  
VMFIOC  
VMFIOB  
VMFIOmax  
)
A
VCSmax  
C
B
VCSC  
D
VCSmin  
VMFIO  
MULTIMODE_FREQLAW  
Figure 23 Configurable frequency law and peak current schemes depending on signal at MFIO pin  
4.2.8.1  
Frequency law setting for XDPS21071  
The frequency law setting for XDPS21071 based on the is defined by the set point A, B, C and D as shown in Table 4.  
Table 4  
Setpoint  
A
Corner points for frequency limitation curve and peak current setting for XDPS21071  
Corner point for maximum current at fixed frequency  
V
MFIOmax = 2.42 V  
f
SWmax = 139.4 kHz  
V
V
CSmaxLL = 594 mV  
CSmaxHL =392 mV  
Data Sheet  
24  
Revision 2.0  
2019-10-30  
 
 
Forced Frequency Resonant Flyback controller  
Functional Description  
B
C
D
Corner point for border between DCM3 and DCM2 for frequency reduction  
V
MFIOB = 1.82 V  
f
SWB = 140 kHz  
V
V
CSBLL = 443 mV  
CSBHL = 366 mV  
Corner point for border between DCM2 and DCM1 for fixed frequency and peak current reduction  
V
MFIOC = 1.01 V  
f
SWC = 24.9 kHz  
V
V
CSCLL = 443 mV  
CSCHL = 366 mV  
Corner point at minimum frequency setting  
V
MFIOD = 0.408 V  
f
SWmin = 24.9 kHz  
V
V
CSminLL = 92mV  
CSminHL =15 mV  
4.2.9  
Frequency jittering  
In order to improve the EMI performance, the XDPS21071 enables frequency jittering at heavy load where the  
switching frequency is the maximum (fSWmax). The frequency jittering can improve the EMI signature.  
Both the frequency amplitude and frequency period will jitter over time as shown in Figure 24 and Figure 25. The  
default jittering magnitude is ± 3.125% of the maximum switching frequency fSWmax and the jittering period is  
3.2ms.  
fSW  
No. of sampled points = 256  
No. of sampled  
points = 2N  
Jitter magnitude  
= +/- (fSW * X%)  
fSWmax  
fSWmin  
VMFIOC  
VMFIOB  
VMFIO  
Figure 24 Frequency jitter range  
Data Sheet  
25  
Revision 2.0  
2019-10-30  
 
Forced Frequency Resonant Flyback controller  
Functional Description  
fSW + Ajitter_Max  
Ajitter_Max / 8 points  
fSW  
fSW - AjitterMax  
t
100µs  
Jitter Period = 32 points * 100µs = 3200µs  
Figure 25 Jittering magnitude and period  
Table 5 Frequency jitter parameters  
Parameter Name  
A_Jitter_percent_val  
Physical value  
3.125%  
Digital value  
5
3
A_Jitter_period_val  
3.2ms  
4.2.10  
Burst mode operation  
The burst mode (BM) is entered at light load to optimize efficiency and correlated total power consumption. The BM consists  
of three main phases:  
Burst mode entry (see 4.2.10.1)  
Burst operation (see 4.2.10.2)  
Burst mode exit (see 4.2.11)  
The burst mode control is described in the following chapters based on the block diagram in Figure 27 and the signal  
overview in 4.2.10.1.  
VVDDP = 3.3 V  
RMFIOPU  
MFIO  
C3  
BM Exit  
VMFIOBMEX1  
C5  
Power  
Management  
VMFIOBMWK  
burst-on  
BM 2-point  
Regulation  
BM Ctrl  
burst-off  
C6  
C7  
VMFIOBMPA  
Frequency  
Law  
BM Entry  
VMFIOBMEN  
Figure 26 Block diagram burst mode control  
Data Sheet  
26  
Revision 2.0  
2019-10-30  
 
 
Forced Frequency Resonant Flyback controller  
Functional Description  
IOUT(t)  
t
t
VOUT(t)  
VOUTnom  
Wake-up when wake-  
up threshold met  
tMFIOBMWK  
exit burst mode  
VMFIO(t)  
VMFIOBMEX  
wake-up  
VMFIOBMWK  
VMFIOBMPA  
entering pause  
VMFIOBMEN  
t
entering burst mode  
burst-on phase  
VCS(t)  
burst-off (pause) phase  
VCSmin,  
VCSBSP4,  
VCSBMEX  
t
Figure 27 Burst mode signals  
4.2.10.1  
Burst mode entry  
Figure 27 is showing a typical signal scheme for entering quiet burst mode. The frequency law limits the minimum possible  
power transfer defined at the setpoint D (see Chapter 4.2.8.1). With decreasing load, the voltage at MFIO pin sinks. Once the  
voltage at MFIO pin falls below the burst mode entry threshold VMFIOBMEN, BM is then entered, the IC initiates a burst-off phase,  
where the IC current consumption is reduced to IVCCquBM2. Afterwards, the voltage at MFIO pin controls the output voltage  
control via the two-point regulator (see Chapter 4.2.10.2).  
As the MFIO voltage determines the frequency and current command value, i.e the power. The efficiency at different output  
voltage is also different. A look up table (LUT) based burst mode entry is implemented to cover very small burst enter/leave  
hysteresis. Based on the sensed ZCD voltage signal which is output voltage related, a different VMFIO is used to determine the  
entering energy for burst mode operation. The small the output voltage, the bigger the entering energy, i.e larger Vmfio  
4.2.10.2  
Burst operation  
The two-point regulator, that is activated during burst mode operation, is implemented with the comparators C5 and C6  
(see Figure 26) with the two thresholds VMFIOBMWK and VMFIOBMPA to determine the burst-on and burst-off phase depending on  
the feedback signal at the MFIO pin. During this phase, the error signal is now used for the two-point regulator scheme,  
whereas it correlates with the inverse output voltage AC ripple signal shape (see Figure 27). The wake-up threshold VMFIOBMWK  
determines the output voltage bottom peak ripple point and the pause threshold VMFIOBMPA determines the output voltage  
upper peak ripple point. Once the voltage at the MFIO pin exceeds the threshold VMFIOBMWK, IC will be waked-up, it takes  
tMFIOBMWK = 26.6 µs till the first gate pulse of the burst sequence starts. The switching cycles during burst-on phase are  
predefined and not depending on the voltage at the MFIO pin. All burst sequence pulses have the same switching frequency  
fSWBSPx, but progressive changed voltage VCSBSPx as shown in Table 17. All following pulses have then the same peak value for  
VCS as the fourth pulse VCSBSP4. The peak value of the Vcs determines, together with the set frequency fSWBSP4, the deliverable  
limited maximum power during the quiet burst operation. If the output load is exceeding the deliverable limited power for  
the burst operation, the voltage at MFIO pin will increase. After it exceeds the burst mode exit threshold VMFIOBMEX, the control  
IC may exit burst mode (see Chapter 4.2.11).  
Data Sheet  
27  
Revision 2.0  
2019-10-30  
 
 
Forced Frequency Resonant Flyback controller  
Functional Description  
4.2.11  
Burst mode exit  
At load jumps above the burst mode exit power level, a fast burst mode exit is supported to limit the drop in output voltage.  
A sudden load demand causes a rising slope at MFIO pin. Once the voltage VMFIO exceeds the threshold VMFIOBMEX, the IC exits  
the burst mode immediately.  
Once burst mode is exit, the two-point regulation is terminated and the next pulse is determined by the fixed peak current  
setting VCSBMEX. The further consecutive pulses are determined by the frequency law (see Chapter 4.2.8) with the voltage VMFIO  
controlling the switching cycles.  
4.2.12  
Forced frequency resonant (FFR) mode operation  
XDPS21071 provides a special forced frequency resonant (FFR) mode to reduce significantly switching losses during  
operation in discontinuous conduction mode (DCM). Furthermore conducted EMI in the high frequency spectrum > 10MHz  
and especially radiated EMI can be greatly reduced, which supports the usage of high speed optimized super junction  
MOSFETs. The idea is to turn on the main power MOSFET only at a controlled lowest drain voltage level in a self-generated  
oscillation period after demagnetization phase of the flyback transformer has been finished. This self-generated oscillation  
period is derived from an additional gate driver pulse that introduces to the flyback transformer at a self-determined time a  
defined negative magnetization. The level of negative magnetization current can be configured (see Chapter 5)  
Compared to the so called quasi-resonant (QR) operation, which is focusing on turning on the main power MOSFET only in  
the valleys after transformer demagnetization, the FFR provides full control on the switching frequency and the drain  
voltage swing down level for turning on the MOSFET. Higher frequency design approaches can now be exploited for low line  
without compromising on efficiency and EMI for the high line operation. When reducing the load, frequency foldback to  
lowest frequency levels can be supported with avoiding any hard switching cycle (see Chapter 4.2.8.1).  
Figure 28 shows the required signals in the application for FFR mode operation. The second gate driver GD1 drives Q1 for  
initiating the self-controlled zero voltage switching (ZVS) cycle. The HV pin provides the VBulk voltage measurement to adapt  
the timings for the ZVS pulse.  
vPri  
vSec  
VOut  
VBulk  
vDrain  
Q0  
RZCDH  
vAux  
ZCD  
GND  
RZCDL  
vZVS  
Q1  
GD1  
GD0  
HV  
FFR MODE  
Figure 28 Required signals for forced frequency resonant (FFR) mode operation  
Data Sheet  
28  
Revision 2.0  
2019-10-30  
 
Forced Frequency Resonant Flyback controller  
Functional Description  
The ZCD pin provides the zero crossing detection to enable main gate generation. The ZVS gate can be enabled based on  
configurable line voltage with 20Vdc hysteresis.  
Figure 29 shows the FFR mode signal wave forms and associated timings. The FFR mode is caused by introducing a ZVS pulse  
via the gate driver GD1 during the time frame t1-t2 and subsequent dead-time tZVSdead from t2-t3 until gate driver GD0 turns  
on the main power MOSFET. The dead-time tZVSdead should be dimensioned in such a manner that the turn-on of GD0 takes  
place at the minimum drain voltage oscillation magnitude, which correlates to a transformer magnetization close to zero.  
The forced frequency operation of GD0 is achieved by directly controlling the switching period tSWperiod of GD0. GD1 is  
prematurely turned on after the delay time tZVSdelay, when a zero crossing has been detected.  
vDrain(t)  
NPri / NSec × vSec  
VBulk  
t
Forced frequency resonant mode  
vZVS(t)  
NZVS / NSec × vSec  
0
t
NZVS / NPri × VBulk  
iMag(t)  
tf  
tZVSdelay  
0
t
t
vGD0(t)  
tSWperiod  
tGD0Off  
vGD1(t)  
tZVSdead  
tGD1on  
tGD1Off  
t
t1 t2 t3  
t4  
t5  
t1 t2 t3  
t4  
FFR_MODE_SIGNALS  
Figure 29 Signal overview for forced frequency resonant mode operation  
The length of the ZVS pulse and the charged voltage of the ZVS capacitor determine the amount of introduced negative  
transformer magnetization. A higher level of introduced negative magnetization leads to a lower drain voltage swing down,  
which could further optimize the switching losses and high frequency EMI behavior of the main power MOSFET. However,  
as this comes along with the expense of increased power losses associated with the additional ZVS pulse generation, a trade  
off needs to be found to maximize the potential increase in efficiency and reduction in EMI. Depending on the chosen main  
power MOSFET different drain voltage levels might be adapted for turning on the main power MOSFET. This is mainly  
depending on the output capacitor characteristic of the power MOSFET, which is highly nonlinear increasing, when going  
for low drain voltages. The amount of necessary negative magnetization current increases with the size of the output  
capacitor of the power MOSFET and parastics coupling capacitor of transformer. Therefore the dimensioning for the ZVS  
pulse generation is significantly depending on the system dimensioning. The default parameter set is optimized for a 45 W  
USB PD adapter.  
Data Sheet  
29  
Revision 2.0  
2019-10-30  
 
Forced Frequency Resonant Flyback controller  
Functional Description  
The required ZVS pulse length tGD1on is depending on VBulk. The GD1 on-time tGD1on needs to increase with increasing VBulk to  
ensure the same low drain voltage level for turning on the main power MOSFET for the whole VAC input range. Whereas the  
ZVS dead-time is fixed at tZVSdead = 220 ns (see Chapter 5.2 ).  
The default configured relationship between tGD1on and VBulk and determined by following implemented equation:  
푮푫ퟏ풐풏 = ꢁ푩푼푳푲_푽푶푳푻푨푮푬(푽) ∙ 푲  
풏풔ꢂ ∗ ퟏퟓ. ퟏퟓ풏풔 + ퟑퟏ. ퟔ 풏풔  
( 10 )  
풛풗풔풐풏풇풂풄풕풐풓  
ퟔퟓퟓퟑퟔ  
The parameter BULK_VOLTAGE(V) is calculated based on the measured current at HV pin IHV via the external resistor RHV  
=
102k. Figure 30 shows the default configured relationship between the controlled ZVS pulse length tGD1on and VBulk based on  
default Kzvsonfactor=3200.  
ZVS ontime Vs Bulk voltage  
350  
300  
250  
200  
150  
100  
50  
0
70  
120  
170  
220  
270  
320  
370  
Vbulk(V)  
Figure 30 VBulk depended adaptive ZVS pulse length tGD1on  
4.2.13  
UART function at GPIO pin  
GPIO pin provides a digital IO interface for UART communication. Configuration of defined parameters and HW setups are  
supported (see Chapter 5.2). The UART function at GPIO pin is normally enabled till the VCC brown-in is reached (see Chapter  
4.1.2). After VCC brown-in, the UART function is disabled.  
On the other hand, the UART function can be kept enabled during normal operation by sending a corresponding soft  
command before VCC brown-in. Then configuration “on the fly” is supported and change of parameters during normal  
operation is possible.  
4.3  
Protection features  
Table 6 shows the protection features and their corresponding reaction on malfunction. Two protection modes (auto-restart  
mode and latch mode) as well as a HW reset (IC reset by VCC under-voltage lockout) are implemented.  
Note: All protection features w/o UVOFF only apply during normal operation. During sleep phase (in burst or protection  
mode), neither pin measurement of pin voltage nor temperature sensor is active.  
Table 6  
Protection Features  
Protection Feature  
Symbol  
Reaction  
Description  
VCC Under-Voltage lockout  
UVOFF  
Deactivate IC  
Chapter 4.3.3  
Data Sheet  
30  
Revision 2.0  
2019-10-30  
 
 
Forced Frequency Resonant Flyback controller  
Functional Description  
Brown-In Protection (when Brown-in conditions not met)  
Brown-Out Protection  
BIP  
Block switching Chapter 4.3.4  
BOP  
Stop switching  
CbC limit  
Chapter 4.3.5  
Chapter 4.3.6  
Chapter 4.3.7  
Chapter 4.3.8  
Chapter 4.3.9  
Chapter 4.3.10  
Over-Current Protection level 1  
Over-current protection level 2  
High input at CS pin (> 200 µs)  
MFIO pin High  
OCP1  
OCP2  
CShigh  
MFIOH  
IntOTP  
Auto-restart  
Auto-restart  
Auto-restart  
Auto-restart  
Internal Over-Temperature Protection  
Auto-restart /  
Latch mode  
Primary side output Over-Voltage Protection  
VoutOVP  
Chapter 4.3.11  
Over load protection  
OLP  
CSP  
Auto-restart  
Auto-restart  
Chapter 4.3.12  
Chapter 4.3.13  
CS pin short protection  
4.3.1  
Auto-Restart Mode (ARM)  
Once the auto-restart mode is entered, the IC stops the gate driver switching at GD0 pin and enters stand-by mode with  
reduced current consumption of IVCCquAR = 160 µA. After the auto-restart off-time tAR = 3 s, the control IC resumes its operation  
with soft-start after the VCC capacitor is charged up and the VCC voltage reaches its turn-on threshold. During the auto-  
restart off-phase, the HV startup-cell is operating in the bang-bang mode (see Chapter 4.1.5.2) to keep the VCC voltage at a  
high level to have enough energy stored in the VCC capacitor for the system startup.  
4.3.2  
Latch Mode (LM)  
When latch mode is entered, the gate driver switching at GD0 pin is stopped and the control IC enters stand-by mode where  
the current consumption is reduced to IVCCquLM = 150 µA. During the latch mode the HV startup-cell is operating in the bang-  
bang mode to keep the IC alive and staying in latch mode. Here the voltage VVCC is varying in a wider range compared to the  
bang-bang mode operation in auto-restart mode (see Chapter 4.1.5.1).  
4.3.3  
VCC Under-Voltage lockout (UVOFF)  
The implemented VCC under-voltage lockout (UVLO) ensures a defined activation and deactivation of the IC operation  
depending on the supply voltage VVCC. The UVLO contains a hysteresis with the voltage thresholds VVCCon = 20.5 V for  
activating the IC. For deactivating the IC, two thresholds are defined. They are:  
V
V
VCCoff = 7.2 V during normal operation / during auto-restart break time  
VCCoffBO = 9.6 V after brown-out detected  
The higher VVCCoffBO threshold leads to earlier deactivation of the IC and earlier charge-up of the VCC capacitor and supports  
a new system startup earlier.  
Both VCC on- and off-thresholds contain a spike blanking tVCCon and tVCCoff  
.
4.3.4  
Brown-In Protection (BIP)  
At initial power-up or auto-restart, the brown-in condition at the HV pin and at the VCC pin must be fulfilled for starting the  
soft-start procedure. The controller measures the current at HV pin through the internal shunt resistor RM (see Figure 3). The  
input brown-in is fulfilled if the current IHV exceeds the threshold IHVBI = 1.15 mA. The VCC brown-in is fulfilled if the voltage  
V
VCC is above the threshold VVCCBI = 15 V. No blanking time applies for brown-in detection. If one of the brown-in conditions is  
not fulfilled, the IC stays active, but without gate switching. The voltage at VCC pin drops then. Once it falls below the  
Data Sheet  
31  
Revision 2.0  
2019-10-30  
 
 
 
Forced Frequency Resonant Flyback controller  
Functional Description  
threshold VVCCoff = 7.2 V, the control IC is deactivated, and the startup cell is turned on automatically to charge up the VCC  
capacitor.  
4.3.5  
Brown-Out Protection (BOP)  
The brown-out protection for bulk voltage prevents the IC from operating with a too low line voltage, which could lead to  
high RMS current stress in the application. Brown-out detection is also performed via the HV pin as for brown-in detection.  
Here an under-voltage detection of the bulk voltage VBulk is provided to support brown-out protection. The measured current  
IHV is compared with the bulk under-voltage detection threshold IHVBO = 0.443 mA. The brown-out protection applies if bulk  
under-voltage is detected for certain blanking time. This blanking time is set to tHVBO = 1.09 ms during normal operation and  
to tHVBOSS = 5.27 ms during soft-start phase. Once brown-out protection is entered, the IC stops switching, but it is still active  
and the VCC turn-off threshold is increased to VVCCoffBO = 9.6V. Once VCC falls below VVCCoffBO, the HV startup cell turns on to  
charge up the VCC capacitor (see Chapter 4.1.3).  
4.3.6  
Over-Current Protection level 1 (OCP1)  
The over-current protection level 1 (OCP1) is performed by means of the cycle-by-cycle peak current control via the  
comparator OCP1 (see Figure 3). A leading edge blanking (see Chapter 4.2.5) prevents the IC from false switching-off the  
power MOSFET due to the leading edge spike. The maximum peak setting for VCS is compensated by the propagation delay  
compensation (see Chapter 4.2.3), to provide an input voltage level independent current limitation. The highest peak setting  
for VCS of VCSmaxLL(max) = 594 mV occurs at low-line and defines the maximal saturation current of the flyback transformer.  
4.3.7  
Over-Current Protection level 2 (OCP2)  
The over-current protection level 2 (OCP2) protects the flyback converter under critical fault conditions such as shorted  
transformer windings or shorted secondary side rectifier diode. In this case, the repeating cycle-by-cycle over-current  
protection level OCP1 cannot properly limit the inductor current due to the very steep slope of the current ramp and the  
propagation delay in the peak current control. With the over-current protection OCP2, once the threshold VCSOCP2 = 0.8 V is  
exceeded for longer than tCSOCP2BL = 616.2 ns during normal operation or tCSOCP2BL = 1.001 µs during startup operation, auto-  
restart mode (see Chapter 4.3.1) is entered. In this way, over-heating of the flyback converter is avoided.  
4.3.8  
High input at CS pin (CShigh)  
The CS pin can also be used in a combined manner for a high input signal like external over-temperature which is having a  
temperature detection circuit together with a reference voltage, to trigger auto-restart mode (see Chapter 4.3.1).The auto-  
restart mode is triggered by pushing up the CS pin for 10ms. The trigger threshold for CShigh is 0.5V ~ 0.8V. In case of  
transformer short winding, VCS voltage goes quickly above VCSOCP2; IC will stop the gate and goes to auto-restart mode after  
OCP2 blanking time tCSOCP2BL  
.
4.3.9  
MFIO pin high (MFIOH)  
There are several phenomena that causes MFIO pin high; feedback loop open, overload, etc. The feedback open-loop  
protection is implemented by means of a digital comparator C2 (see Figure 3). When the voltage at MFIO pin exceeds the  
threshold VMFIOH = 2.41 V, a timer is triggered. Auto-restart mode (see Chapter 4.3.1) is entered if the timer exceeds the period  
of tMFIOH = 31.3 ms. This is mainly for open loop and startup protection, during startup, since the output voltage hasn’t reach  
the setpoint, MFIO pin voltage is always high.  
4.3.10  
Internal over-temperature detection (IntOTP)  
An internal over-temperature protection is implemented in this control IC. Once the internal temperature exceeds the  
threshold of TJOTP = 130 °C for longer than the blanking time tJOTP = 10.5 ms, internal over-temperature is detected and the  
Data Sheet  
32  
Revision 2.0  
2019-10-30  
 
Forced Frequency Resonant Flyback controller  
Functional Description  
control IC enters auto-restart mode (see Chapter 4.3.1). The normal operation will be resumed if the internal temperature is  
dropped by 20 °C from TJOTP  
.
4.3.11  
Primary side output Over-Voltage Protection (VoutOVP)  
The IC provides primary side output over-voltage detection via the ZCD pin. Here the reflected output voltage from the  
flyback transformer is sampled at ZCD pin during the demagnetization phase (see Chapter 4.2.1.1). In each switching cycle,  
the XDPS21071 compares the measured output voltage VZCDVO with the output over-voltage threshold VZCDOVP = 2.75V.  
That comparison can refer to  
the demagnetization phase of the same switching cycle or  
the demagnetization phase of an earlier switching cycle.  
A blanking filter is implemented to avoid erroneous output over-voltage detection. This filter consists of a symmetrical  
counter. Each comparison where VZCDVO < VZCDOVP, will decrement the counter (but not below zero) while each comparison  
where VZCDVO VZCDOVP will increment the counter. If the counter is increased to NZCDOVP+1, auto-restart mode (see Chapter 4.3.1)  
is entered. This protection mode is a configurable parameter. It can be changed to latch mode (see Chapter 4.3.2) by .dp  
Vision.  
4.3.12  
Over load power protection  
The IC provides protection against over load by means of the integrated maximum peak current limitation combined with  
an over-load timer (OLPT). Once OLP is detected, the control IC enters auto-restart mode (see Chapter 4.3.1).  
XDPS21071 uses current mode control, so the OCP1 Look-Up-Table (LUT) values are designed by considering the propagation  
delay at different line voltages and operation modes. Once the OCP1 LUT value is hit, the OLP timer will start to count up. The  
counter will reduce the count if OCP1 LUT value is not hit in the cause of OCP1 protection. Finally the IC will enter AR if  
protection timer reaches the pre-definite time.  
This protection can distinguish with open loop protection by setting different OLP timer. E.g during power up, Vmfio is always  
high before voltage rise up, so with different timer, it can separately control the open loop protection and over load  
protection.  
Table 7  
Power protection parameters  
Protection  
Parameter Name  
Protection level  
Digital value  
Blanking time  
0.594 V @ 80 VDC  
0.392 V @ 376 VDC  
255 @ 80 VDC  
202 @ 376 VDC  
OLP  
LOLP  
31.3ms  
4.3.13  
CS pin short protection  
During fisrt power up, IC will check three pulses continuously, if the pulses length are longer than 1.5 µs , IC will  
go to auto restart mode.  
Data Sheet  
33  
Revision 2.0  
2019-10-30  
Forced Frequency Resonant Flyback controller  
Configuration  
5
Configuration  
This chapter contains an overview about the parameters and functions that can be configured via the UART interface at GPIO  
pin. Furthermore the configuration procedure is described. Mapping overviews show the correlation between the data sheet  
parameters and the correlated firmware symbols. Furthermore the equations are listed to provide the specific correlation  
between the configured FW parameter and the system parameter.  
The chapter “configuration” is grouped in following sections:  
Overview of configuration parameters using .dp Vision (Chapter 5.1)  
Overview of configurable parameters and functions (Chapter 5.2)  
The following shown default parameter settings correlate to the firmware version REV 1.4 .  
5.1  
Overview of configurable parameters using .dp Vision  
The Infineon graphic user interface (GUI) .dp Vision connects to XDPS21071 via the isolated USB interface board called .dp  
Interface Gen2. The .dp interface Gen2 provides power via VCC to XDPS21071 and connects via UART interface at pin  
GPIO/UART. The common UART interface enables communication with the IC even without the interactive GUI tool. This  
allows easy configuration during mass production.  
For project development, a graphic user interface called .dp Vision guides the designer through the configuration of  
parameters. More detailed information on .dp Vision can be found in the .dp Vision User Manual prepared by Infineon.  
5.2  
Overview of configurable parameters and functions  
There are 2 types of parameters; configurable and fixed. The configurable parameters are allowed to change. On the other  
hands, the fixed parameters are not recommended to change. The list of parameters shown is default value and has been  
verified in the 45W HD adapter demonstrator. The parameters are typical values. Please refer to the corresponding electrical  
characteristics in Chapter 6.5 for the min/max tolerances.  
5.2.1  
Configurable parameters and functions  
The following table shows the default value of the configurable parameters. If necessary, the parameters can be changed.  
Table 8  
List of configurable Parameters  
Feature  
Parameter  
Default  
Description  
Chapter/Table  
Propagation  
delay  
PDC_FACTOR  
13000d  
Propagation Delay Compensation factor  
compensation for  
peak current  
control  
Chapter 4.2.3,  
PDC_OFFSET  
0d  
Propagation Delay Compensation offset  
Blanking filter at CS pin to avoid erroneous turn-  
off of GD0 due to leading edge spike at GD0 turn- Chapter 4.2.5  
on  
Leading edge  
blanking (LEB)  
269 ns  
tCSLEB  
Dead-time between end of ZVS pulse at GD1 and  
start of GD0  
ZVS dead-time  
220 ns  
3200  
tZVSdead  
Chapter 4.2.11  
ZVS pulse length  
factor  
ZVS pulse length factor  
kZVSonfactor  
Gate driver  
capability  
31mA  
130 °C  
Sourcing current of Gate driver 0  
Chapter 4.2.7  
Chapter 4.3.10  
I_GD0_drive  
TJOTP  
Internal Over-temperature detection level  
34  
Protections  
Data Sheet  
Revision 2.0  
2019-10-30  
 
 
Forced Frequency Resonant Flyback controller  
Configuration  
600ns  
Blanking time for OCP2 of Vcs signal  
Blanking time for overload protection  
To enable or disable over load protection  
tocp2  
30ms  
tpeakpower  
En_OLP  
Enabled  
Protection mode for OVP, configurable for AR or  
Latch  
Autorestart  
Response_OVP  
Chapter 4.1.5  
Chapter 4.2.10  
0.128V  
Burst mode current limit  
Burst mode frequency  
Vcs_bst  
50.0 kHz  
Freq_bst  
Burst mode  
parameters  
Pause threshold at MFIO pin during on-phase in  
burst mode operation  
1.35V  
V_bst_pause  
2.00V  
5ms  
Burst mode exit voltage at MFIO pin  
V_bst_exit  
minimum time to re-entry the burst mode  
T_reentry_bst  
Chapter 4.2.8  
140kHz  
Frequency settings for point A  
Fsw_A  
1.00V  
1.80V  
0.45V  
105kHz  
28000  
MFIO pin corner point C voltage  
Vmfio_C  
Vmifo_B  
Vcs_BC  
Frequency law  
settings  
MFIO pin corner point B voltage  
Current sense limit between point B and C  
Frequency clamp when Vin>200 V, Vzcd<1.28 V  
Gradient for compensation curve  
fclamp  
K_Vcs_offset  
Vcs_offset_Vzcdzeropoi  
nt  
Adaptive Vcs  
offset  
ZCD voltage level( digital value) without Vcs  
offset  
79  
Chapter 4.2.1.3  
Enabled  
To enable or disable Vcs_offset compensation  
En_Vcs_offset  
Data Sheet  
35  
Revision 2.0  
2019-10-30  
Forced Frequency Resonant Flyback controller  
Electrical Characteristics  
6
Electrical Characteristics  
All signals are measured with respect to ground GND pin. The voltage levels are valid if other ratings are not violated.  
Attention: Limits are subject to change according to test engineering results  
6.1  
Definitions  
Figure 31 illustrates the definition for the voltage and current parameters used in this data sheet.  
+I  
+IPIN  
PIN  
+
+VPIN  
DUT  
+V  
_
GND  
DEFINITIONS_V_I_DS  
Figure 31 Voltage and Current Definitions  
Values indicated under “absolute maximum ratings” must not be exceeded.  
Values indicated under “operating conditions” can be exceeded if a corresponding explicit “absolute maximum rating” is  
given for this parameter, but the related function of the device is not ensured.  
6.2  
Absolute Maximum Ratings  
Stresses above the values listed below may cause permanent damage to the device. Exposure to absolute maximum rating  
conditions for given periods may affect device reliability. Maximum ratings are absolute ratings; exceeding anyone of these  
values may cause irreversible damage to the device.  
Table 9  
Absolute Maximum Ratings  
Symbol  
Parameter  
Limit Values  
Unit Remarks  
min  
-0.5  
-0.5  
max  
3)  
Voltage at VCC pin  
26  
V
VVCC  
VGD0  
Voltage at GD0 pin  
V
V
VCC+0.3  
Internally clamped to VGD0H  
1), absolute average over  
1 ms  
Average current at GD0 pin  
20  
mA  
|IGD0 AVG  
|
RMS Current at GD0 pin  
Voltage at GD1 pin  
100  
mA  
V
2), RMS over 20 µs  
IGD0RMS  
VGD1  
-0.5  
Internally clamped to  
VGD1H  
V
VCC+0.3  
3)  
Voltage at HV pin  
Current at HV pin  
Voltage at ZCD pin  
-0.5  
600  
10  
V
VHV  
mA  
V
IHV  
3)  
-0.5  
3.6  
2.0  
VZCD  
-VZCD_TR  
Maximum negative transient  
input voltage for ZCD  
V
4) <500ns  
3)  
Voltage at CS pin  
Data Sheet  
-0.5  
3.6  
V
VCS  
36  
Revision 2.0  
2019-10-30  
 
Forced Frequency Resonant Flyback controller  
Electrical Characteristics  
4)<500ns  
4)<500ns  
Maximum negative transient  
input voltage for CS  
3
6
V
-VCS_TR  
-ICLN_TR  
Maximum transient input  
clamping current for ZCD  
and CS  
mA  
Maximum permanent input  
clamping current for ZCD  
3.5  
2.5  
mA  
mA  
-ICLN_DC_ZCD  
Maximum permanent input  
clamping current for CS  
-Icln_DC_CS  
3)  
3)  
Voltage at MFIO pin  
-0.5  
-0.5  
-40  
-55  
3.6  
V
VMFIO  
VGPIO  
TJ  
Voltage at GPIO pin  
3.6  
V
Junction temperature  
Storage temperature  
Maximum power dissipation  
125  
150  
0.46  
°C  
°C  
W
TS  
PTOT  
TA = 60 °C  
TJ = 125 °C  
RthJA = 141 K/W  
Soldering temperature  
ESD capability  
260  
2
°C  
kV  
V
5), wave soldering  
TSold  
VHBM  
VCDM  
ILU  
6), human body model  
500  
150  
7), charged device model  
8)  
Latch-up capability  
1) Relevant w.r.t. electromigration.  
mA  
2) Relevant w.r.t. thermal heating at small duty cycles.  
3) Permanently applied as DC value.  
4) Negative range must fulfill clamping current limits  
5) According to JESD22-A111A  
6) According to ANSI/ESDA/JEDEC JS-001-2012  
7) According to JESD22-C101F  
8) According to JESD78D, 85 °C (Class II) temperature  
6.3  
Package Characteristics  
Table 10  
Thermal Characteristics  
Symbol Limit Values  
Parameter  
Unit  
Remarks  
min  
max  
1), JEDEC 1s0p  
1), JEDEC 2s2p  
Thermal resistance from junction to  
ambient  
141  
K/W  
K/W  
RthJA1  
RthJA2  
81  
Creepage distance between HV vs.  
GND-related pins  
3.3  
mm  
DCR  
1) IC footprint and PCB trace with 35 µm Cu, TA = 85 °C, 180 mW power dissipation  
Data Sheet  
37  
Revision 2.0  
2019-10-30  
Forced Frequency Resonant Flyback controller  
Electrical Characteristics  
6.4  
Operating Range  
Table 11 shows the operating range, in which the electrical characteristics shown in Chapter 6.5 are valid.  
Table 11  
Operating Range  
Parameter  
Symbol Limit Values  
Unit  
Remarks  
min  
max  
Junction Temperature  
Voltage at VCC pin  
Voltage at HV pin  
-25  
°C  
V
TJ  
125  
VVCCon  
600  
5
4)  
VVCC  
VHV  
IHV  
VVCCoff  
-0.3  
V
Current into HV pin  
Voltage at ZCD pin  
mA  
V
Limited by external RHV  
-0.3  
3.3  
An applied voltage lower  
than 0V needs to respect  
the negative maximum  
clamping current IZCD  
VZCD  
Current into ZCD pin  
Voltage at CS pin  
-1.5  
-0.3  
-10  
mA  
V
IZCD  
3.3  
0.1  
3.3  
3.3  
VCS  
Current into CS pin  
Voltage at MFIO pin  
Voltage at GPIO pin  
Voltage at GD0 pin  
mA  
V
ICS  
-0.3  
-0.3  
-0.3  
VMFIO  
VGPIO  
VGD0  
V
V
V
V
VCC+0.3  
VCC+0.3  
Internally clamped at VGD0H  
Internally clamped at VGD1H  
Voltage at GD1 pin  
-0.3  
1.5  
V
VGD1  
1), 2), RGDxload = 10 Ω in  
series to CGDxload  
Minimum required capacitive load at  
GDx pin  
nF  
CGDxload  
Low state output reverse current at  
GDx pin  
100  
mA  
-IGDxLREV  
3), applies if VGDx < 0 V  
and driver at low state  
1) Not tested in production test.  
2) See figure in Chapter 8.1  
3) Assured by design.  
4) In practical application design, the applied Vcc voltage nees to be less than 19V ( min. value of VVCCon  
)
Data Sheet  
38  
Revision 2.0  
2019-10-30  
 
Forced Frequency Resonant Flyback controller  
Electrical Characteristics  
6.5  
Characteristics  
The electrical characteristics involve the spread of values given within the specified supply voltage and junction  
temperature range TJ from -25 °C to 125 °C. Typical values represent the median values related to TJ = 25°C. All voltages refer  
to GND and the assumed supply voltage is VVCC = 14 V, if not otherwise mentioned.  
The following characteristics are specified  
Power Supply at VCC pin (Table 12)  
HV pin (Table 13)  
ZCD pin(Table 14)  
MFIO pin (Table 15)  
GPIO pin (Table 16)  
CS pin (Table 17)  
GDx pin (Table 18)  
IC Control Features (Table 19)  
IC Protection Features (Table 20)  
Table 12  
Electrical Characteristics of the Power Supply at VCC pin  
Parameter  
Symbol  
Values  
Unit  
Note/Test Condition  
Min.  
Typ.  
30  
Max.  
50  
VCC UVOFF current  
µA  
IVCCUVOFF  
IVCCop1  
VVCC < VVCCon(min) - 0.3 V  
1), normal operation  
with gate driver GDx  
output low, GPIO pin  
open, IMFIO-=280 µA  
VCC operating current  
7.5  
8.7  
mA  
11  
8.4  
8.2  
8.0  
mA  
mA  
mA  
mA  
IVCCop2  
IVCCop3  
IVCCop4  
IVCCop5  
1), as for IVCCop1, but  
TJ = 110 °C  
1), as for IVCCop1, but  
TJ = 100 °C  
1), as for IVCCop1, but  
TJ = 85 °C  
1), Cload = 2 nF,  
f
SWGDx = 83 kHz,  
IMFIO=-280µA,TJ=25˚C  
VCC average quiescent  
current in latched mode  
0.080  
0.150  
0.160  
0.300  
0.310  
mA  
mA  
IVCCquLM  
IVCCquAR  
V
VCC=8 V, latch mode,  
MFIO, GPIO open  
VCC average quiescent  
current during sleep  
phase in auto-restart  
mode  
V
VCC=7 V, sleep phase  
in auto-restart mode,  
MFIO, GPIO open  
VCC quiescent current  
during sleep phase in  
quiet burst mode  
0.18  
0.46  
1.2  
1.5  
mA  
mA  
Burst mode entered,  
MFIO, GPIO pin open  
IVCCquBM1  
IVCCquBM2  
1), 2), burst mode  
entered, IMFIO=-280  
µA,  
GPIO pin open  
Data Sheet  
39  
Revision 2.0  
2019-10-30  
 
Forced Frequency Resonant Flyback controller  
Electrical Characteristics  
1.2  
1.0  
0.8  
mA  
mA  
mA  
IVCCquBM3  
IVCCquBM4  
IVCCquBM5  
1), as for IVCCquBM2  
TJ=110˚C  
,
,
,
1), as for IVCCquBM2  
TJ=100˚C  
1), as for IVCCquBM2  
TJ=85˚C  
VCC turn-on threshold  
VCC turn-off threshold  
19  
20.5  
7.2  
21.5  
7.56  
V
V
VVCCon  
VVCCoff  
dVVCC/dt =0.2 V/ms  
6.84  
During normal  
operation, IC latched  
and auto-restart  
break time  
9.12  
9.6  
10.08  
V
V
After brown-out  
detected  
VVCCoffBO  
VVCChysOP  
1)  
VCC turn-on/off  
hysteresis during normal  
operation  
13.3  
VCC turn-off blanking  
time  
550  
ns  
1), 1 V overdrive  
tVCCoff  
1)  
VCC turn-on delay  
2
µs  
V
tVCCon  
VCC threshold for turning  
on HV startup cell in  
protection mode  
8.5  
9
9.5  
1), bang-bang mode  
during auto-restart  
and latch mode  
VVCCBBon  
Blanking time for turning  
on HV startup cell in  
auto-restart and latch  
mode  
0.6  
19  
2.2  
21.5  
2.4  
9.7  
µs  
V
1), 1 V overdrive,  
bang-bang mode  
tVCCBBon  
VVCCBBoff  
tVCCBBoff  
VVCCBI  
VCC threshold for turning  
off HV startup cell in  
auto-restart and latch  
mode  
20.5  
Blanking time for turning  
off HV startup cell in  
auto-restart and latch  
mode  
0.7  
µs  
1), 1 V overdrive,  
bang-bang mode  
1) 3)  
VCC brown-in threshold  
1) Not tested in production test.  
2) Current value is based on the sum of external sink current IMFIO and IC quiescent current IVCCquBM1  
3) See configuration Chapter5  
8.4  
9.1  
V
,
.
Table 13  
Electrical Characteristics of HV pin  
Parameter  
Symbol  
Min.  
Values  
Typ.  
Unit Note/Test Condition  
Max.  
Data Sheet  
40  
Revision 2.0  
2019-10-30  
Forced Frequency Resonant Flyback controller  
Electrical Characteristics  
1),2), no blanking  
with blanking tHVBO  
1), 2), 3)  
Brown-in threshold  
Brown-out threshold  
1.10  
0.420  
0.99  
1.156  
0.443  
1.09  
1.21  
0.465  
1.21  
mA  
mA  
ms  
IHVBI  
IHVBO  
tHVBO  
Brown-out blanking time  
during normal load  
1) 2)  
Brown-out blanking time  
during soft-start  
4.95  
2.4  
5.27  
5
5.59  
10  
ms  
mA  
,
tHVBOSS  
IHVchargeVCC  
IHVLK  
4), VVCC=1 V,  
VHV=30 V  
HV peak VCC charge  
current capability  
Leakage current at HV pin  
10  
µA  
V
VHV=600 V,  
HV startup cell  
disabled  
1)  
Bulk voltage threshold for  
special frequency clamp  
1) Not tested in production test.  
Vbulk_high  
200  
2) See configuration Chapter 5.  
3) Min. and max. values are based on master clock period tMCLK limits (see Table 20).  
4) Max. peak charge current will be limited in the application by an external resistor connected to HV pin.  
Table 14  
Electrical Characteristics of ZCD pin  
Parameter  
Symbol  
Min.  
Values  
Unit Note/Test Condition  
Typ.  
Max.  
Input leakage current, no pull  
device  
-10  
10  
µA  
µA  
IZCDLK  
V
ZCD=0 V/3 V  
1), TJ=85˚C  
-1  
1
V
ZCD=0 V/3 V  
ZCD voltage threshold  
20  
35  
55  
mV  
ns  
VZCDTHR  
tZCDPW  
ZCD voltage threshold  
debouncing time  
150  
1), shorter pulses are  
ignored  
1)  
ZCD zero crossing  
comparator propagation  
delay  
20  
40  
60  
ns  
tZCDP  
1) 2)  
ZCD ringing suppression  
time  
1.80  
150  
1.91  
180  
2.03  
220  
µs  
,
tZCDRS  
ZCD clamping of neg.  
voltages  
mV  
µs  
-VZCDclp  
tGD0offZCMin  
1)  
Minimum time from GD0  
turn off to first zero-  
crossing to ensure settling  
of ZCD sampling  
3.33  
1), 2) tGD0offZCtGD0offZCMin  
ZCD output over-voltage  
threshold in HV mode  
2.72  
2.75  
41  
2.79  
V
VZCDOVP  
Data Sheet  
Revision 2.0  
2019-10-30  
Forced Frequency Resonant Flyback controller  
Electrical Characteristics  
1), 2) tGD0offZC  
tGD0offZCMin  
ZCD debouncing counter  
threshold for output over-  
voltage detection  
2
NZCDOVP  
1)  
ZCD threshold voltage for  
special clamp of switching  
frequency  
1.272  
-
1.296  
0.177  
1.320  
-
V
V
Vzcd_low  
1)  
ZCD threshold voltage  
hysteresis  
1)  
Not tested in production test.  
2) See configuration Chapter 5.  
Table 15  
Electrical Characteristics of MFIO pin  
Parameter  
Symbol  
Min.  
Values  
Unit Note/Test Condition  
Typ.  
Max.  
10  
Input leakage current without  
pull device activated  
-10  
-1  
µA  
µA  
IMFIOLK  
V
MFIO=0 V/3 V  
1), TJ=85˚C  
1
V
MFIO=0 V/3 V  
Open circuit output  
voltage  
3.0  
3.3  
3.6  
V
V
V
Normal mode  
VMFIOOC  
3.0  
3.2  
3.4  
1), 2), sleep mode  
1) 3)  
Open-loop detection  
threshold  
2.35  
2.41  
2.47  
,
VMFIOH  
1) 3)  
Maximum control range  
2.42  
V
V
,
VMFIOmax  
VMFIOB  
1) 3)  
Setpoint B of the  
frequency law  
1.773  
1.821  
1.869  
,
1) 3)  
Setpoint C of the  
frequency law  
0.965  
0.372  
1.01  
1.046  
0.443  
V
V
,
VMFIOC  
1) 3)  
Setpoint D of the  
frequency law  
0.408  
,
VMFIOD  
1)  
Burst mode entry  
threshold  
0.570  
0.419  
0.607  
0.455  
0.644  
0.491  
V
V
,
3) Vzcd<1.723V  
VMFIOBMEN1  
VMFIOBMEN2  
1) 3)  
,
1.723V=<Vzcd<2.152V  
1)  
0.372  
8.8  
0.408  
11  
0.443  
13.2  
1.73  
V
,
3) Vzcd>=2.152V  
VMFIOBMEN3  
RMFIOPU  
3)  
Internal pull-up resistor  
kΩ  
V
1), 3)  
Burst wake-up threshold  
during burst-off phase  
1.47  
1.60  
VMFIOBMWK  
Minimum input pulse  
width for burst wake-up  
Data Sheet  
300  
ns  
1), shorter pulses will  
be suppressed  
tMFIOBMWKPW  
42  
Revision 2.0  
2019-10-30  
Forced Frequency Resonant Flyback controller  
Electrical Characteristics  
1)  
Time between burst  
wake-up and the first  
burst sequence pulse  
26.6  
32  
µs  
V
,
tMFIOBMWK  
VMFIOBMPA  
VMFIOBMEX  
dVMFIO/dt = 100 mV/µs  
1) 3)  
Burst-off entering  
threshold during burst-  
on phase  
1.322  
1.970  
1.366  
2.020  
1.410  
2.070  
,
1) 3)  
BM exit threshold  
V
,
Not tested in production test.  
During burst mode, auto restart and latch mode operation.  
See configuration Chapter 5.  
Table 16  
Electrical Characteristics of GPIO pin  
Symbol  
Parameter  
Values  
Typ.  
Unit  
Note/Test Condition  
Min.  
Max.  
Input leakage current without  
pull device activated  
-10  
-1  
10  
1
µA  
µA  
IGPIOLK  
V
GPIO=0 V/3 V  
1), TJ=85˚C  
GPIO=0 V/3 V  
V
Open circuit output  
voltage  
3.0  
3.3  
3.6  
V
VGPIOOC  
1
Input capacitance  
10  
1.0  
pF  
V
CGPIOIN  
VGPIOIL  
VGPIOIH  
-IGPIOLPU  
Threshold for logic “0”  
Threshold for logic “1”  
2.0  
30  
V
2) at VGPIOIL(max)  
Low input pull-up  
current  
90  
µA  
Output sink current  
2
mA  
mA  
ns  
IGPIOSNKOL  
-IGPIOSRCOH  
tGPIORISE  
Output source current  
Output rise time (0 1)  
2
50  
20 pF load, push/pull  
output  
Output fall time (1 0)  
50  
ns  
20 pF load, push/pull  
output  
tGPIOFALL  
1) Not tested in production test.  
2) Currents flowing out of the device (DUT) are marked with a negative sign in the ‘Symbol’ column  
Table 17  
Electrical Characteristics of CS pin  
Parameter  
Symbol  
Min.  
Values  
Unit Note/Test Condition  
Typ.  
Max.  
Input leakage current without  
pull device activated  
-10  
10  
µA  
µA  
ICSLK  
VCS=0 V/3 V  
1), TJ=85˚C  
VCS=0 V/3 V  
-1  
1
Data Sheet  
43  
Revision 2.0  
2019-10-30  
Forced Frequency Resonant Flyback controller  
Electrical Characteristics  
CS OCP2 threshold  
0.76  
125  
0.80  
155  
0.84  
190  
V
VCSOCP2  
CS OCP2 propagation delay  
until GD0 turn-off at  
ns  
1) dVCS/dt=100 V/µs  
tCSGD0OCP2  
IGD0>2mA  
CS OCP2 blanking time for  
auto-restart  
498.8  
810  
616.2  
1001  
733.6  
1192  
ns  
ns  
Normal operation  
During startup  
1), 2), 3)  
tCSOCP2BL  
CS OCP1 comparator  
minimum pulse width  
35  
ns  
1), shorter pulses will  
be suppressed  
tCSOCP1PW  
CS OCP1 propagation delay  
until GD0 turn-off at  
180  
120  
100  
260  
185  
130  
2.371  
345  
250  
165  
ns  
1), low line use case  
1), high line use case  
1), dVCS/dt=100 V/µs  
tCSOCP1PDLL  
tCSOCP1PDHL  
tCSOCP1PD  
ns  
IGD0 > 2 mA  
ns  
CS OCP1 threshold steps  
mV  
mV  
VCSOCP1  
1)  
CS OCP1 threshold  
accuracy  
-25  
25  
VCSOCP1THR  
Leading edge blanking time  
255  
269  
284  
ns  
1), 2), 3)  
tCSLEB  
CS OCP1 maximum CS limit  
560  
325  
-50  
-60  
594  
392  
631  
456  
50  
mV  
mV  
mV  
mV  
1), 2), low line use case  
1), 2), high line use case  
1),low line use case  
1), high line use case  
VCSmaxLL  
VCSmaxHL  
Tolerance for CS OCP1  
maximum CS FASTOPP  
limit  
VCSFASTOPPLL  
VCSFASTOPPHL  
60  
CS limit at setpoint B  
408  
299  
408  
443  
366  
443  
479  
430  
479  
mV  
mV  
mV  
1), 2),low line use case  
1), 2),high line use case  
1), 2),low line use case  
VCSBLL  
VCSBHL  
VCSCLL  
CS limit at setpoint C  
299  
57  
0
366  
92  
430  
128  
79  
mV  
mV  
mV  
1), 2),high line use case  
1), 2),low line use case  
1), 2),high line use case  
VCSCHL  
Minimum CS limit at burst  
mode entry  
VCSminLL  
VCSminHL  
15  
Burst sequence:  
1st pulse CS limit  
120  
43  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
1), 2),low line use case  
1), 2),high line use case  
1), 2),low line use case  
1), 2),high line use case  
1), 2),low line use case  
1), 2),high line use case  
VCSBSP1LL  
VCSBSP1HL  
VCSBSP2LL  
VCSBSP2HL  
VCSBSP3LL  
VCSBSP3HL  
VCSBSP4LL  
Burst sequence:  
2nd pulse CS limit  
120  
43  
Burst sequence:  
3rd pulse CS limit  
120  
43  
Maximum CS limit during  
burst mode operation  
120  
1), 2), low line use case  
4th and consecutive  
Data Sheet  
44  
Revision 2.0  
2019-10-30  
Forced Frequency Resonant Flyback controller  
Electrical Characteristics  
pulses after start of  
burst sequence  
43  
mV  
1), 2), high line use case  
4th and consecutive  
pulses after start of  
burst sequence  
VCSBSP4HL  
CS limit for 1st pulse  
directly after BM exit  
92  
15  
mV  
mV  
mV  
mV  
mV  
1), 2),low line use case  
1), 2),high line use case  
1), 2),low line use case  
1), 2),high line use case  
VCSBMEXLL  
VCSBMEXHL  
VCSSSLL  
Initial soft-start CS limit  
limitation without PDC  
45  
70  
110  
155  
VCSSSHL  
VCSS  
1), 2),step every t  
Soft-start step for cycle by  
cycle limitation  
1) Not tested in production test.  
2.5  
VCSS  
2) See configuration Chapter 5.  
3) Min. and max. values are based on master clock period tMCLK limits (see Table 19).  
Table 18  
Electrical Characteristics of GDx pin  
Parameter  
Symbol  
Min.  
Values  
Unit Note/Test Condition  
Typ.  
Max.  
Low state sink peak current  
Low state resistance  
500  
mA  
IGDxLPKSNK  
1), VGDx=4 V,  
C
Load=2 nF  
6.5  
RGDxLSNK  
Ω
High state peak source  
current of GD1  
100  
118  
136  
mA  
-IGD1HPKSRC  
2), 3), CLoad=2 nF  
2), 3), CLoad=2 nF  
3), IGDx=-1 mA  
High state peak source  
current of GD0  
30  
35  
41  
mA  
-IGD0HPKSRC  
High state output voltage  
9.97  
10.5  
11.03  
V
V
VGDxH  
High state rail-to-rail output  
voltage  
VGDxHRR  
V
VCC-0.5  
VVCC  
V
VCC<VGDxH  
APD low voltage  
1.6  
V
VGDxAPD  
IGDx=5 mA  
(active pull down while  
device is not powered or  
gate driver is not enabled)  
Permanent pull-down  
resistor inside gate driver  
450  
600  
750  
kΩ  
RGDxPPD  
1)  
Not tested in production test.  
2)  
Currents flowing out of the device (DUT) are marked with a negative sign in the ‘Symbol’ column.  
3)  
See configuration Chapter 5.  
Table 19  
Electrical Characteristics of IC Control  
Symbol  
Parameter  
Values  
Unit Note/Test Condition  
Data Sheet  
45  
Revision 2.0  
2019-10-30  
Forced Frequency Resonant Flyback controller  
Electrical Characteristics  
Min.  
2.397  
49.50  
99.0  
Typ.  
2.428  
52.1  
Max.  
2.459  
54.78  
109.56  
VREF internal voltage reference  
Time base 1  
V
VREF  
1)  
1)  
µs  
µs  
ns  
µs  
ms  
ms  
tBase1  
tBase2  
tMCLK  
tSTBCLK  
tSSmax  
tBootIC  
Time base 2  
104.28  
2)  
3)  
1)  
Master clock period  
Stand-by clock period  
Maximum soft-start time  
15.0  
9.09  
6.64  
15.8  
10.0  
7.0  
16.6  
11.11  
7.36  
1),4), VVCC>VVCCon  
Boot sequence time when  
activating IC  
1.2  
1)  
Maximum frequency  
operation  
132.6  
23.6  
139.4  
24.9  
146.9  
26.3  
kHz  
kHz  
fSWmax  
fSWmin  
1)  
1)  
1)  
1)  
1)  
1)  
Switching frequency  
setting at minimum power  
operation point  
Burst sequence:  
1st pulse switching  
frequency  
50.2  
50.2  
50.2  
50.2  
139.4  
kHz  
kHz  
kHz  
kHz  
kHz  
fSWBSP1  
fSWBSP2  
fSWBSP3  
fSWBSP4  
fSWBMEXHV  
Burst sequence:  
2nd pulse switching  
frequency  
Burst sequence:  
3rd pulse switching  
frequency  
Burst sequence:  
4th and consecutive pulse  
switching frequency  
Switching frequency 1st  
pulse directly after BM exit  
1) Not tested in production test.  
132.6  
146.9  
2) The master clock period is the base for all time measurements without stand-by. Relative tolerances of all performed time  
measurements are same as with tMCLK  
.
3) The stand-by clock is the base for all time related characteristics during stand-by operation.  
4) Phase for loading the OTP content to the internal RAM  
Table 20  
Electrical Characteristics of IC Protection Features  
Parameter  
Symbol  
Values  
Unit Note/Test Condition  
Min.  
Typ.  
Max.  
1) 2)  
Auto-restart bang-bang mode  
off-time  
455  
500  
556  
ms  
,
tBBoffAR  
1) 2)  
Auto-restart time  
2.73  
29.7  
3
s
,
tAR  
1) 3)  
Blanking time of open-loop  
timer  
31.3  
33  
ms  
,
tMFIOH  
V
MFIO>VMFIOOLP  
Data Sheet  
46  
Revision 2.0  
2019-10-30  
Forced Frequency Resonant Flyback controller  
Electrical Characteristics  
1),4)  
Over-temperature detection  
122  
130  
-
°C  
TJOTP  
tJOTP  
1) 3)  
Over-temperature blanking  
time  
9.90  
10.50  
11.10  
ms  
,
1)  
Over-temperature  
Hysteresis  
-
20  
-
°C  
TJHYS_OTP  
1) Not tested in production test.  
2) Min. and max. values are based on stand-by clock period tSTBCLK limits (see Table 20).  
3) Min. and max. values are based on master clock period tMCLK (see Table 20).  
4)  
The recommended temp is below 125 ˚C , above this temperature, IC function cannot be guaranteed, Customer should  
guarantee the design will never exceed the 125 ˚C of IC die temperature.  
Data Sheet  
47  
Revision 2.0  
2019-10-30  
Forced Frequency Resonant Flyback controller  
Package Information  
7
Package Information  
The package information contains the outline dimensions (see Chapter 7.1); footprint and packing overviews (see Chapter  
7.2).  
Notes  
1. You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”:  
http://www.infineon.com/products.  
2. Dimensions in mm.  
7.1  
Outline dimensions  
Figure 32 PG-DSO-12-20 Package Outline  
Data Sheet  
48  
Revision 2.0  
2019-10-30  
 
Forced Frequency Resonant Flyback controller  
Package Information  
7.2  
Footprint and packing  
Figure 33 Overview footprint  
Figure 34 Overview packing  
Data Sheet  
49  
Revision 2.0  
2019-10-30  
Forced Frequency Resonant Flyback controller  
Marking  
8
Marking  
Figure 35 Marking of XDPS21071  
Data Sheet  
50  
Revision 2.0  
2019-10-30  
Forced Frequency Resonant Flyback controller  
Appendix  
9
Appendix  
This appendix contains additional information on electrical characteristics and specific test conditions.  
9.1  
Minimum required capacitive load at GD0 and GD1 pin  
The output stage of GD0 and GD1 consist of a controlled current source (see 4.2.7). This current source charges up an external  
capacitive load until the voltage level VGDxH = 10.5 V is reached. The internal control loop for this source current requires a  
minimum load capacitance at GDx pin to avoid a turn-on ringing on the signal VGDx  
.
The minimum required capacitive load is depending on the dimensioned serial gate resistor at GDx pin, which is meant for  
limiting the low state sink current.  
Furthermore, the required load is depending on the configured source current. The shown dependency in Figure 36 is based  
on the typical source current of IGDxHPKSRC=118mA. Lower configured values for the source current requires also smaller  
capactive loads.  
Figure 36 Minimum required capacitive load at GDx pin in correlation with serial gate resistor  
Data Sheet  
51  
Revision 2.0  
2019-10-30  
 
Forced Frequency Resonant Flyback controller  
References  
10  
References  
The following list shows the reference documents that are used as base for this data sheet.  
[1] Development firmware version: REV 1.0  
Data Sheet  
52  
Revision 2.0  
2019-10-30  
Forced Frequency Resonant Flyback controller  
Revision history  
Revision history  
Major changes since the last revision  
Page or Reference  
Description of change  
16/Aug/2019  
Draft 0.9 release  
Data Sheet  
53  
Revision 2.0  
2019-10-30  
Trademarks of Infineon Technologies AG  
AURIX™, C166™, CanPAK™, CIPOS™, CoolGaN™, CoolMOS™, CoolSET™, CoolSiC™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, DrBlade™, EasyPIM™,  
EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, Infineon™, ISOFACE™, IsoPACK™,  
i-Wafer™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OPTIGA™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™,  
PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, ReverSave™, SatRIC™, SIEGET™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, SPOC™, TEMPFET™,  
thinQ!™, TRENCHSTOP™, TriCore™.  
Trademarks updated August 2015  
Other Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on the product, technology,  
Edition 2019-10-30  
event be regarded as a guarantee of conditions or delivery terms and conditions and prices please  
Published by  
characteristics (“Beschaffenheitsgarantie”) .  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
Infineon Technologies AG  
81726 München, Germany  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement of  
intellectual property rights of any third party.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2019 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about this  
document?  
In addition, any information given in this document  
is subject to customer’s compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and standards  
concerning customer’s products and any use of the  
product of Infineon Technologies in customer’s  
applications.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized  
representatives  
of  
Infineon  
Email: erratum@infineon.com  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of the  
product or any consequences of the use thereof can  
reasonably be expected to result in personal injury.  
Document reference  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  

相关型号:

XDPS21081

英飞凌 XDPS21081 是一款反激式控制器IC,其初级侧引入 ZVS (零电压开关),通过简化电路和经济型开关来实现更高的工作效率。与传统的谷值开关方案相比,通过驱动外部低压开关产生负电流使主高压开关 MOSFET 放电,从而进一步降低开关损耗。 为了以同步整流实现更高效率,XDPS21081 多模式数字强制准谐振 (FQR) 反激控制器 IC 通过谷值检测来确保 DCM (非连续导通模式)工作模式,从而实现更安全可靠的运行。
INFINEON

XDPS2201

XDP™ 数字电源 XDPS2201是一种多模式、数字可配置的混合反激控制器,它结合了传统简化的反激拓扑结构和谐振变换器的性能。通过使用两个高压MOSFET,例如CoolMOSTM,混合反激XDPS2201控制器能够在不对称半桥反激拓扑中驱动高压侧和低压侧MOSFET。通过调节正负磁化电流的方法,可以在初级实现零电压开关和次级实现零电流开关,提高了效率。此外,变压器漏感能量被回收,更进一步提高效率。
INFINEON

XDR1

REIBAHLE HEXIBIT3 BIS 7MM
ETC

XDRA821UXXGALM

Dual Arm Cortex-A72, quad Cortex-R5F, 4-port Ethernet switch, and a PCIe controller | ALM | 433 | -40 to 125
TI

XDS510

Comprehensive DSP Tool Solutions
SPECTRUM

XDS510PP

Comprehensive DSP Tool Solutions
SPECTRUM

XDS560R

XDS560R USB JTAG Emulator with 14-pin JTAG Header
SPECTRUM

XDT3F112X

Power Transformer,
COOPER

XDT3F75X

Power Transformer,
COOPER

XDUG14C2

14.22mm (0.56) DUAL DIGIT MUMERIC DISPLAY
ETC

XDUR13A

DISPLAY 13.2MM RED 1DIGIT CA
SUNLED

XDUR13C

DISPLAY 13.2MM RED 1DIGIT CC
SUNLED