XE161FU4F40VAAKXUMA1 [INFINEON]

RISC Microcontroller, CMOS,;
XE161FU4F40VAAKXUMA1
型号: XE161FU4F40VAAKXUMA1
厂家: Infineon    Infineon
描述:

RISC Microcontroller, CMOS,

微控制器
文件: 总106页 (文件大小:2720K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
16-Bit  
Architecture  
XE161FU  
16-Bit Single-Chip  
Real Time Signal Controller  
XE166 Family / Compact Line  
Data Sheet  
V1.2 2012-07  
Microcontrollers  
Edition 2012-07  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2012 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
16-Bit  
Architecture  
XE161FU  
16-Bit Single-Chip  
Real Time Signal Controller  
XE166 Family / Compact Line  
Data Sheet  
V1.2 2012-07  
Microcontrollers  
XE161FU  
XE166 Family / Compact Line  
XE161FU Data Sheet  
Revision History: V1.2 2012-07  
Previous Versions: V1.0 2010-12, V1.1 2011-09  
Page  
Subjects (major changes since last revision)  
48, 49  
The value of absolute sum of overload currents parameter in absolute  
maximum rating parameter and operating conditions tables are switched.  
70  
Table description on coding of bit field LEVxV is updated.  
Trademarks  
C166™, TriCore™ and DAVE™ are trademarks of Infineon Technologies AG.  
We Listen to Your Comments  
Is there any information in this document that you feel is wrong, unclear or missing?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
mcdocu.comments@infineon.com  
Data Sheet  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Data Sheet  
5
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Table of Contents  
Table of Contents  
1
1.1  
1.2  
Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Device Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Definition of Feature Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2
2.1  
2.2  
General Device Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin Configuration and Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Identification Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Memory Subsystem and Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Central Processing Unit (CPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Memory Protection Unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Memory Checker Module (MCHK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Interrupt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
On-Chip Debug Support (OCDS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Capture/Compare Unit (CC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Capture/Compare Units CCU6x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
General Purpose Timer (GPT12E) Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Real Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
A/D Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Universal Serial Interface Channel Modules (USIC) . . . . . . . . . . . . . . . . . 40  
System Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Window Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Parallel Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
3.8  
3.9  
3.10  
3.11  
3.12  
3.13  
3.14  
3.15  
3.16  
3.17  
3.18  
4
4.1  
4.1.1  
4.2  
4.2.1  
4.3  
4.3.1  
4.3.2  
4.3.3  
4.4  
4.5  
4.6  
Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Voltage Range definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
DC Parameters for Upper Voltage Area . . . . . . . . . . . . . . . . . . . . . . . . 54  
DC Parameters for Lower Voltage Area . . . . . . . . . . . . . . . . . . . . . . . . 56  
Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Analog/Digital Converter Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
System Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Flash Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Testing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
4.7  
4.7.1  
Data Sheet  
1
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Table of Contents  
4.7.2  
Definition of Internal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Phase Locked Loop (PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Wakeup Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Selecting and Changing the Operating Frequency . . . . . . . . . . . . . . 78  
External Clock Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Pad Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Synchronous Serial Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Debug Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
4.7.2.1  
4.7.2.2  
4.7.2.3  
4.7.3  
4.7.4  
4.7.5  
4.7.6  
5
Package and Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Quality Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
5.1  
5.2  
5.3  
Data Sheet  
2
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Summary of Features  
16-Bit Single-Chip  
Real Time Signal Controller  
XE161FU (XE166 Family)  
1
Summary of Features  
For a quick overview and easy reference, the features of the XE161FU are summarized  
here.  
High-performance CPU with five-stage pipeline and MPU  
– 15.2 ns instruction cycle @ 66 MHz CPU clock (single-cycle execution)  
– One-cycle 32-bit addition and subtraction with 40-bit result  
– One-cycle multiplication (16 × 16 bit)  
– Background division (32 / 16 bit) in 21 cycles  
– One-cycle multiply-and-accumulate (MAC) instructions  
– Enhanced Boolean bit manipulation facilities  
– Zero-cycle jump execution  
– Additional instructions to support HLL and operating systems  
– Register-based design with multiple variable register banks  
– Fast context switching support with two additional local register banks  
– 16 Mbytes total linear address space for code and data  
– 1,024 Bytes on-chip special function register area (C166 Family compatible)  
– Integrated Memory Protection Unit (MPU)  
Interrupt system with 16 priority levels providing 46 interrupt nodes  
– Selectable external inputs for interrupt generation and wake-up  
– Fastest sample-rate 15.2 ns  
Eight-channel interrupt-driven single-cycle data transfer with  
Peripheral Event Controller (PEC), 24-bit pointers cover total address space  
Clock generation from internal or external clock sources,  
using on-chip PLL or prescaler  
Hardware CRC-Checker with Programmable Polynomial to Supervise On-Chip  
Memory Areas  
On-chip memory modules  
– 2 Kbytes on-chip dual-port RAM (DPRAM)  
– 2 Kbytes on-chip data SRAM (DSRAM)  
– 4 Kbytes on-chip program/data SRAM (PSRAM)  
– Up to 64 Kbytes on-chip program memory (Flash memory)  
– Memory content protection through Error Correction Code (ECC) for Flash  
memory and through parity for RAMs  
Data Sheet  
3
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Summary of Features  
On-Chip Peripheral Modules  
– Synchronizable 12-bit A/D Converter with up to 10 channels,  
conversion time below 1 μs, optional data preprocessing (data reduction, range  
check), broken wire detection  
– 16-channel general purpose capture/compare unit (CC2)  
– Capture/compare unit for flexible PWM signal generation (CCU60)  
– Multi-functional general purpose timer unit with 5 timers  
– Up to 2 serial interface channels to be used as UART, LIN, high-speed  
synchronous channel (SPI/QSPI), IIC bus interface (10-bit addressing, 400 kbit/s),  
IIS interface  
– On-chip system timer and on-chip real time clock  
Single power supply from 3.0 V to 5.5 V  
Power reduction and wake-up modes with flexible power management  
Programmable window watchdog timer and oscillator watchdog  
Up to 33 general purpose I/O lines  
On-chip bootstrap loaders  
Supported by a full range of development tools including C compilers, macro-  
assembler packages, emulators, evaluation boards, HLL debuggers, simulators,  
logic analyzer disassemblers, programming boards  
On-chip debug support via Device Access Port (DAP), Single-Pin DAP (SPD) or  
JTAG interface  
48-pin Green VQFN package, 0.5 mm (10.7 mil) pitch  
Ordering Information  
The ordering code for an Infineon microcontroller provides an exact reference to a  
specific product. This ordering code identifies:  
the function set of the corresponding product type  
the temperature range1):  
– SAF-…: -40°C to 85°C  
– SAK-…: -40°C to 125°C  
the package and the type of delivery.  
For ordering codes for the XE161FU please contact your sales representative or local  
distributor.  
1) Not all derivatives are offered in all temperature ranges.  
Data Sheet  
4
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Summary of Features  
1.1  
Device Types  
The following XE161FU device types are available and can be ordered through  
Infineon’s direct and/or distribution channels.  
Table 1  
Derivative1)  
Synopsis of XE161FU Device Types  
Flash PSRAM  
Capt./Comp. ADC4) Interfaces4)  
Memory2) DSRAM3) Modules  
Chan.  
XE161FU-4FxV  
32 Kbytes 4 Kbytes  
2 Kbytes  
CC2  
CCU60  
10  
2 Serial Chan.  
XE161FU-8FxV  
64 Kbytes 4 Kbytes  
2 Kbytes  
CC2  
CCU60  
10  
2 Serial Chan.  
1) x is a placeholder for available speed grade in MHz. Can be 40 or 66.  
2) Specific information about the on-chip Flash memory in Table 3.  
3) All derivatives additionally provide 2 Kbytes DPRAM.  
4) Specific information about the available channels in Table 5.  
Data Sheet  
5
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Summary of Features  
1.2  
Definition of Feature Variants  
The XE161FU types are offered with several Flash memory sizes. Table 3 and Table 4  
describe the location of the available Flash memory.  
Table 3  
Continuous Flash Memory Ranges  
Total Flash Size  
1st Range1)  
2nd Range  
3rd Range  
64 Kbytes  
C0’0000H …  
C1’0000H …  
n.a.  
C0’EFFFH  
C1’0FFFH  
32 Kbytes  
C0’0000H …  
n.a.  
n.a.  
C0’7FFFH  
1) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0’F000H to C0’FFFFH).  
Table 4  
Flash Memory Module Allocation (in Kbytes)  
Total Flash Size  
Flash 01)  
Flash 1  
n.a.  
64  
32  
64  
32  
n.a.  
1) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0’F000H to C0’FFFFH).  
The XE161FU types are offered with different interface options. Table 5 lists the  
available channels for each option.  
Table 5  
Interface Channel Association  
Total Number  
Available Channels / Message Objects  
10 ADC0 channels  
CH0, CH2, CH3, CH4, CH8, CH9, CH16, CH17, CH19,  
CH20  
2 serial channels  
U0C0, U0C1  
Data Sheet  
6
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
General Device Information  
2
General Device Information  
The XE161FU series (16-Bit Single-Chip  
Real Time Signal Controller) is a part of the Infineon XE166 Family of full-feature single-  
chip CMOS microcontrollers. These devices extend the functionality and performance of  
the C166 Family in terms of instructions (MAC unit), peripherals, and speed. They  
combine high CPU performance (up to 66 million instructions per second) with extended  
peripheral functionality and enhanced IO capabilities. Optimized peripherals can be  
adapted flexibly to meet the application requirements. These derivatives utilize clock  
generation via PLL and internal or external clock sources. On-chip memory modules  
include program Flash, program RAM, and data RAM.  
VAREF VAGND  
VDDIMVDDPB VSS  
(1) (1)  
(2) (3) (3)  
XTAL1  
XTAL2  
Port 2  
12 bit  
Port 10  
12 bit  
Port 5  
6 bit  
Port 6  
3 bit  
PORST TRST SPD/DAP/ Debug  
JTAG  
1 / 2 / 4 bit  
2 bit  
TESTM  
via Port Pins  
MC_XY_LOGSYMB48  
Figure 1  
XE161FU Logic Symbol  
Data Sheet  
7
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
General Device Information  
2.1  
Pin Configuration and Definition  
The pins of the XE161FU are described in detail in Table 6, which includes all alternate  
functions. For further explanations please refer to the footnotes at the end of the table.  
The following figure summarizes all pins, showing their locations on the four sides of the  
package.  
TESTM  
TRST  
P6.3  
P6.1  
P6.0  
P10.5  
P10.4  
P10.3  
P10.2  
P10.1  
P10.0  
P2.13  
P2.10  
P2.9  
P2. 8  
P2. 7  
P2. 6  
1
2
3
4
5
6
7
8
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
VSS  
VDDPB  
VQFN48  
VAREF  
VAGND  
P5.0  
P5.2  
P5.3  
9
10  
11  
12  
MC_XY_PIN48  
Figure 2  
XE161FU Pin Configuration (top view)  
Data Sheet  
8
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
General Device Information  
Key to Pin Definitions  
Ctrl.: The output signal for a port pin is selected by bit field PC in the associated  
register Px_IOCRy. Output O0 is selected by setting the respective bit field PC to  
1x00B, output O1 is selected by 1x01B, etc.  
Output signal OH is controlled by hardware.  
Type: Indicates the pad type and its power supply domain (B, M).  
– St: Standard pad  
– Sp: Special pad e.g. XTALx  
– DA: Digital IO and analog input  
– In: Input only pad  
– PS: Power supply pad  
Table 6  
Pin Definitions and Functions  
Ctrl. Type Function  
Pin Symbol  
1
TESTM  
I
In/B Testmode Enable  
Enables factory test modes, must be held HIGH for  
normal operation (connect to VDDPB).  
An internal pullup device will hold this pin high  
when nothing is driving it.  
2
TRST  
I
In/B Test-System Reset Input  
For normal system operation, pin TRST should be  
held low. A high level at this pin at the rising edge  
of PORST activates the XE161FU’s debug  
system. In this case, pin TRST must be driven low  
once to reset the debug system.  
An internal pulldown device will hold this pin low  
when nothing is driving it.  
3
4
P6.3  
O0 / I St/B Bit 3 of Port 6, General Purpose Input/Output  
T3OUT  
O2  
I
St/B GPT12E Timer T3 Toggle Latch Output  
St/B External Request Trigger Input for ADC0/1  
ADC0_REQT  
RyF  
P6.1  
O0 / I DA/B Bit 1 of Port 6, General Purpose Input/Output  
ADC0_CH17  
EMUX1  
T3OUT  
I
DA/B Analog Input Channel 17 for ADC0  
O1  
O2  
I
DA/B External Analog MUX Control Output 1 (ADC0)  
DA/B GPT12E Timer T3 Toggle Latch Output  
DA/B External Request Trigger Input for ADC0  
ADC0_REQT  
RyE  
ESR1_6  
I
DA/B ESR1 Trigger Input 6  
Data Sheet  
9
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
General Device Information  
Table 6  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
5
P6.0  
O0 / I DA/B Bit 0 of Port 6, General Purpose Input/Output  
ADC0_CH16  
EMUX0  
I
DA/B Analog Input Channel 16 for ADC0  
DA/B External Analog MUX Control Output 0 (ADC0)  
DA/B OCDS Break Signal Output  
O1  
O3  
BRKOUT  
ADC0_REQG I  
TyG  
DA/B External Request Gate Input for ADC0  
10  
11  
P5.0  
I
I
I
I
I
I
I
I
I
I
I
In/B Bit 0 of Port 5, General Purpose Input  
In/B Analog Input Channel 0 for ADC0  
In/B Bit 2 of Port 5, General Purpose Input  
In/B Analog Input Channel 2 for ADC0  
In/B JTAG Test Data Input  
ADC0_CH0  
P5.2  
ADC0_CH2  
TDI_A  
12  
13  
P5.3  
In/B Bit 3 of Port 5, General Purpose Input  
In/B Analog Input Channel 3 for ADC0  
In/B GPT12E Timer T3 Count/Gate Input  
In/B Bit 4 of Port 5, General Purpose Input  
In/B Analog Input Channel 4 for ADC0  
ADC0_CH3  
T3INA  
P5.4  
ADC0_CH4  
T3EUDA  
In/B GPT12E Timer T3 External Up/Down Control  
Input  
TMS_A  
P5.8  
I
I
I
I
In/B JTAG Test Mode Selection Input  
14  
In/B Bit 8 of Port 5, General Purpose Input  
In/B Analog Input Channel 8 for ADC0  
In/B External Run Control Input for T12 of CCU60  
ADC0_CH8  
CCU60_T12  
HRC  
CCU60_T13  
HRC  
I
In/B External Run Control Input for T13 of CCU60  
15  
16  
P5.9  
I
I
I
In/B Bit 9 of Port 5, General Purpose Input  
In/B Analog Input Channel 9 for ADC0  
In/B CAPCOM2 Timer T7 Count Input  
ADC0_CH9  
CC2_T7IN  
P2.0  
O0 / I DA/B Bit 0 of Port 2, General Purpose Input/Output  
ADC0_CH19  
T5INB  
I
I
DA/B Analog Input Channel 19 for ADC0  
DA/B GPT12E Timer T5 Count/Gate Input  
Data Sheet  
10  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
General Device Information  
Table 6  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
17  
P2.1  
O0 / I DA/B Bit 1 of Port 2, General Purpose Input/Output  
ADC0_CH20  
T5EUDB  
I
I
DA/B Analog Input Channel 20 for ADC0  
DA/B GPT12E Timer T5 External Up/Down Control  
Input  
ESR1_5  
ERU_0A0  
P2.2  
I
I
DA/B ESR1 Trigger Input 5  
DA/B External Request Unit Channel 0 Input A0  
21  
22  
O0 / I St/B Bit 2 of Port 2, General Purpose Input/Output  
ESR2_5  
ERU_1A0  
P2.3  
I
I
St/B ESR2 Trigger Input 5  
St/B External Request Unit Channel 1 Input A0  
O0 / I St/B Bit 3 of Port 2, General Purpose Input/Output  
St/B USIC0 Channel 0 Shift Data Output  
O3 / I St/B CAPCOM2 CC16IO Capture Inp./ Compare Out.  
U0C0_DOUT O1  
CC2_CC16  
ESR2_0  
I
I
I
St/B ESR2 Trigger Input 0  
U0C0_DX0E  
U0C1_DX0D  
P2.4  
St/B USIC0 Channel 0 Shift Data Input  
St/B USIC0 Channel 1 Shift Data Input  
23  
24  
O0 / I St/B Bit 4 of Port 2, General Purpose Input/Output  
St/B USIC0 Channel 1 Shift Data Output  
O3 / I St/B CAPCOM2 CC17IO Capture Inp./ Compare Out.  
U0C1_DOUT O1  
CC2_CC17  
ESR1_0  
I
I
St/B ESR1 Trigger Input 0  
U0C0_DX0F  
P2.5  
St/B USIC0 Channel 0 Shift Data Input  
O0 / I St/B Bit 5 of Port 2, General Purpose Input/Output  
U0C0_SCLK O1  
OUT  
St/B USIC0 Channel 0 Shift Clock Output  
CC2_CC18  
U0C0_DX1D  
ESR1_10  
O3 / I St/B CAPCOM2 CC18IO Capture Inp./ Compare Out.  
I
I
St/B USIC0 Channel 0 Shift Clock Input  
St/B ESR1 Trigger Input 10  
Data Sheet  
11  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
General Device Information  
Table 6  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
25  
P2.6  
O0 / I St/B Bit 6 of Port 2, General Purpose Input/Output  
U0C0_SELO O1  
0
St/B USIC0 Channel 0 Select/Control 0 Output  
U0C1_SELO O2  
1
St/B USIC0 Channel 1 Select/Control 1 Output  
CC2_CC19  
CLKIN1  
O3 / I St/B CAPCOM2 CC19IO Capture Inp./ Compare Out.  
I
I
I
St/B Clock Signal Input 1  
U0C0_DX2D  
ESR2_6  
P2.7  
St/B USIC0 Channel 0 Shift Control Input  
St/B ESR2 Trigger Input 6  
26  
O0 / I St/B Bit 7 of Port 2, General Purpose Input/Output  
U0C1_SELO O1  
0
St/B USIC0 Channel 1 Select/Control 0 Output  
U0C0_SELO O2  
1
St/B USIC0 Channel 0 Select/Control 1 Output  
CC2_CC20  
U0C1_DX2C  
ESR2_7  
O3 / I St/B CAPCOM2 CC20IO Capture Inp./ Compare Out.  
I
I
St/B USIC0 Channel 1 Shift Control Input  
St/B ESR2 Trigger Input 7  
27  
28  
P2.8  
O0 / I St/B Bit 8 of Port 2, General Purpose Input/Output  
U0C1_SCLK O1  
OUT  
St/B USIC0 Channel 1 Shift Clock Output  
EXTCLK  
CC2_CC21  
U0C1_DX1D  
P2.9  
O2  
St/B Programmable Clock Signal Output  
O3 / I St/B CAPCOM2 CC21IO Capture Inp./ Compare Out.  
St/B USIC0 Channel 1 Shift Clock Input  
O0 / I St/B Bit 9 of Port 2, General Purpose Input/Output  
St/B USIC0 Channel 1 Shift Data Output  
O3 / I St/B CAPCOM2 CC22IO Capture Inp./ Compare Out.  
I
U0C1_DOUT O1  
CC2_CC22  
C1  
I
I
St/B Configuration Pin 1  
TCK_A  
St/B DAP0/JTAG Clock Input  
Data Sheet  
12  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
General Device Information  
Table 6  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
29  
P2.10  
O0 / I St/B Bit 10 of Port 2, General Purpose Input/Output  
U0C1_DOUT O1  
St/B USIC0 Channel 1 Shift Data Output  
U0C0_SELO O2  
3
St/B USIC0 Channel 0 Select/Control 3 Output  
CC2_CC23  
U0C1_DX0E  
CAPINA  
O3 / I St/B CAPCOM2 CC23IO Capture Inp./ Compare Out.  
I
I
St/B USIC0 Channel 1 Shift Data Input  
St/B GPT12E Register CAPREL Capture Input  
30, P2.13  
31 P10.0  
O0 / I St/B Bit 13 of Port 2, General Purpose Input/Output  
O0 / I St/B Bit 0 of Port 10, General Purpose Input/Output  
U0C1_DOUT O1  
St/B USIC0 Channel 1 Shift Data Output  
St/B CCU60 Channel 0 Output  
CCU60_CC6 O2  
0
CCU60_CC6  
0INA  
I
St/B CCU60 Channel 0 Input  
ESR1_2  
I
I
I
St/B ESR1 Trigger Input 2  
U0C0_DX0A  
U0C1_DX0A  
P10.1  
St/B USIC0 Channel 0 Shift Data Input  
St/B USIC0 Channel 1 Shift Data Input  
32  
O0 / I St/B Bit 1 of Port 10, General Purpose Input/Output  
U0C0_DOUT O1  
St/B USIC0 Channel 0 Shift Data Output  
St/B CCU60 Channel 1 Output  
CCU60_CC6 O2  
1
CCU60_CC6  
1INA  
I
St/B CCU60 Channel 1 Input  
U0C0_DX0B  
U0C0_DX1A  
I
I
St/B USIC0 Channel 0 Shift Data Input  
St/B USIC0 Channel 0 Shift Clock Input  
Data Sheet  
13  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
General Device Information  
Table 6  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
33  
P10.2  
O0 / I St/B Bit 2 of Port 10, General Purpose Input/Output  
U0C0_SCLK O1  
OUT  
St/B USIC0 Channel 0 Shift Clock Output  
CCU60_CC6 O2  
2
St/B CCU60 Channel 2 Output  
CCU60_CC6  
2INA  
I
St/B CCU60 Channel 2 Input  
U0C0_DX1B  
P10.3  
I
St/B USIC0 Channel 0 Shift Clock Input  
34  
35  
O0 / I St/B Bit 3 of Port 10, General Purpose Input/Output  
CCU60_COU O2  
T60  
St/B CCU60 Channel 0 Output  
U0C0_DX2A  
U0C1_DX2A  
P10.4  
I
I
St/B USIC0 Channel 0 Shift Control Input  
St/B USIC0 Channel 1 Shift Control Input  
O0 / I St/B Bit 4 of Port 10, General Purpose Input/Output  
U0C0_SELO O1  
3
St/B USIC0 Channel 0 Select/Control 3 Output  
CCU60_COU O2  
T61  
St/B CCU60 Channel 1 Output  
U0C0_DX2B  
U0C1_DX2B  
ESR1_9  
I
I
I
St/B USIC0 Channel 0 Shift Control Input  
St/B USIC0 Channel 1 Shift Control Input  
St/B ESR1 Trigger Input 9  
36  
37  
P10.5  
O0 / I St/B Bit 5 of Port 10, General Purpose Input/Output  
U0C1_SCLK O1  
OUT  
St/B USIC0 Channel 1 Shift Clock Output  
CCU60_COU O2  
T62  
St/B CCU60 Channel 2 Output  
U0C1_DX1B  
P10.6  
I
St/B USIC0 Channel 1 Shift Clock Input  
O0 / I St/B Bit 6 of Port 10, General Purpose Input/Output  
U0C0_DOUT O1  
St/B USIC0 Channel 0 Shift Data Output  
St/B USIC0 Channel 0 Shift Data Input  
St/B CCU60 Emergency Trap Input  
U0C0_DX0C  
I
I
CCU60_CTR  
APA  
Data Sheet  
14  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
General Device Information  
Table 6  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
38  
P10.7  
O0 / I St/B Bit 7 of Port 10, General Purpose Input/Output  
U0C1_DOUT O1  
St/B USIC0 Channel 1 Shift Data Output  
St/B CCU60 Channel 3 Output  
CCU60_COU O2  
T63  
U0C1_DX0B  
I
I
St/B USIC0 Channel 1 Shift Data Input  
St/B CCU60 Position Input 0  
CCU60_CCP  
OS0A  
T4INB  
P10.8  
I
St/B GPT12E Timer T4 Count/Gate Input  
39  
O0 / I St/B Bit 8 of Port 10, General Purpose Input/Output  
U0C0_MCLK O1  
OUT  
St/B USIC0 Channel 0 Master Clock Output  
St/B USIC0 Channel 1 Select/Control 0 Output  
St/B CCU60 Position Input 1  
U0C1_SELO O2  
0
CCU60_CCP  
OS1A  
I
U0C0_DX1C  
BRKIN_B  
T3EUDB  
I
I
I
St/B USIC0 Channel 0 Shift Clock Input  
St/B OCDS Break Signal Input  
St/B GPT12E Timer T3 External Up/Down Control  
Input  
ESR2_11  
P10.9  
I
St/B ESR2 Trigger Input 11  
40  
O0 / I St/B Bit 9 of Port 10, General Purpose Input/Output  
U0C0_SELO O1  
4
St/B USIC0 Channel 0 Select/Control 4 Output  
St/B USIC0 Channel 1 Master Clock Output  
St/B CCU60 Position Input 2  
U0C1_MCLK O2  
OUT  
CCU60_CCP  
OS2A  
I
TCK_B  
T3INB  
I
I
St/B DAP0/JTAG Clock Input  
St/B GPT12E Timer T3 Count/Gate Input  
Data Sheet  
15  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
General Device Information  
Table 6  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
44  
P10.10  
O0 / I St/B Bit 10 of Port 10, General Purpose Input/Output  
U0C0_SELO O1  
0
St/B USIC0 Channel 0 Select/Control 0 Output  
CCU60_COU O2  
T63  
St/B CCU60 Channel 3 Output  
U0C0_DX2C  
TDI_B  
I
I
I
St/B USIC0 Channel 0 Shift Control Input  
St/B JTAG Test Data Input  
U0C1_DX1A  
P10.12  
St/B USIC0 Channel 1 Shift Clock Input  
45  
O0 / I St/B Bit 12 of Port 10, General Purpose Input/Output  
U0C0_DOUT O2  
St/B USIC0 Channel 0 Shift Data Output  
St/B DAP1/JTAG Test Data Output  
TDO_A  
SPD_0  
C0  
OH  
I/OH St/B SPD Input/Output  
I
St/B Configuration Pin 0  
U0C0_DX0D  
XTAL2  
XTAL1  
I
St/B USIC0 Channel 0 Shift Data Input  
Sp/M Crystal Oscillator Amplifier Output  
46  
47  
O
I
Sp/M Crystal Oscillator Amplifier Input  
To clock the device from an external source, drive  
XTAL1, while leaving XTAL2 unconnected.  
Voltages on XTAL1 must comply to the core  
supply voltage VDDIM  
.
ESR2_9  
PORST  
I
I
St/B ESR2 Trigger Input 9  
48  
In/B Power On Reset Input  
A low level at this pin resets the XE161FU  
completely. A spike filter suppresses input pulses  
<10 ns. Input pulses >100 ns safely pass the filter.  
The minimum duration for a safe recognition  
should be 120 ns.  
An internal pullup device will hold this pin high  
when nothing is driving it.  
8
9
VAREF  
VAGND  
-
-
PS/B Reference Voltage for A/D Converters ADC0  
PS/B Reference Ground for A/D Converters ADC0  
Data Sheet  
16  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
General Device Information  
Table 6  
Pin Definitions and Functions (cont’d)  
Ctrl. Type Function  
Pin Symbol  
18, VDDIM  
-
PS/M Digital Core Supply Voltage for Domain M  
43  
Decouple with a ceramic capacitor, see Data  
Sheet for details.  
All VDDIM pins must be connected to each other.  
7,  
20,  
41  
VDDPB  
-
-
PS/B Digital Pad Supply Voltage for Domain B  
Connect decoupling capacitors to adjacent  
V
DDP/VSS pin pairs as close as possible to the pins.  
PS/-- Digital Ground  
All VSS pins must be connected to the ground-line  
or ground-plane.  
6,  
19,  
42  
VSS  
Data Sheet  
17  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
General Device Information  
2.2  
Identification Registers  
The identification registers describe the current version of the XE161FU and of its  
modules.  
Table 7  
XE161FU Identification Registers  
Short Name  
SCU_IDMANUF  
SCU_IDCHIP  
SCU_IDMEM  
SCU_IDPROG  
JTAG_ID  
Value  
1820H  
5001H  
3010H  
1313H  
Address  
Notes  
00’F07EH  
00’F07CH  
00’F07AH  
00’F078H  
001D’7083H ---  
Data Sheet  
18  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Functional Description  
3
Functional Description  
The architecture of the XE161FU combines advantages of RISC, CISC, and DSP  
processors with an advanced peripheral subsystem in a well-balanced design. On-chip  
memory blocks allow the design of compact systems-on-silicon with maximum  
performance suited for computing, control, and communication.  
The on-chip memory blocks (program code memory and SRAM, dual-port RAM, data  
SRAM) and the generic peripherals are connected to the CPU by separate high-speed  
buses. Another bus, the LXBus, connects additional on-chip resources and external  
resources (see Figure 3). This bus structure enhances overall system performance by  
enabling the concurrent operation of several subsystems of the XE161FU.  
The block diagram gives an overview of the on-chip components and the advanced  
internal bus structure of the XE161FU.  
OCDS  
Debug Support  
DPRAM  
DSRAM  
PSRAM  
LXBUS  
Controller  
CPU  
Flash Memory  
MAC Unit  
MCHK  
WWD  
RTC  
System Functions  
Clock, Reset, Power  
Control  
MPU  
Interrupt& PEC  
Interrupt Bus  
CC2  
ADC0  
GPT  
CCU60  
USIC0  
Module  
Module  
Module  
Module  
8-/10-/  
12-Bit  
5
16  
Chan.  
3+1  
Chan.  
2
Timers  
Chan.  
Analog and Digital General Purpose IO (GPIO) Ports  
MC_U- SERIES_BLOCKDIAGRAM  
Figure 3  
Block Diagram  
Data Sheet  
19  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Functional Description  
3.1  
Memory Subsystem and Organization  
The memory space of the XE161FU is configured in the von Neumann architecture. In  
this architecture all internal and external resources, including code memory, data  
memory, registers and I/O ports, are organized in the same linear address space.  
Table 8  
XE161FU Memory Map 1)  
Address Area  
Start Loc. End Loc. Area Size2)  
FF’FF00H FF’FFFFH 256 bytes  
F0’0000H FF’FEFFH < 1 Mbyte  
Notes  
IMB register space  
Reserved  
Minus IMB  
registers.  
Reserved for EPSRAM E8’1000H EF’FFFFH 508 Kbytes  
Mirrors EPSRAM  
Emulated PSRAM  
Reserved for PSRAM  
PSRAM  
E8’0000H E8’0FFFH up to 4 Kbytes With Flash timing.  
E0’1000H E7’FFFFH 508 Kbytes Mirrors PSRAM  
E0’0000H E0’0FFFH up to 4 Kbytes Program SRAM.  
C1’1000H DF’FFFFH 1980 Kbytes  
C0’0000H C1’0FFFH 68 Kbytes3)  
40’0000H BF’FFFFH 8 Mbytes  
Reserved for Flash  
Flash 0  
External memory area  
External IO area4)  
Reserved  
21’0000H 3F’FFFFH 1984 Kbytes  
20’B400H 20’FFFFH 19 Kbytes  
USIC0 alternate regs.  
20’B000H 20’B3FFH 1 Kbytes  
Accessed via  
LXBus controller  
Reserved  
20’4800H 20’AFFFH 26 Kbytes  
20’4000H 20’47FFH 2 Kbytes  
USIC0 registers  
Accessed via  
LXBus controller  
Reserved  
20’0000H 20’3FFFH 16 Kbytes  
01’0000H 1F’FFFFH 1984 Kbytes  
00’FE00H 00’FFFFH 0.5 Kbytes  
00’F600H 00’FDFFH 2 Kbytes  
External memory area  
SFR area  
Dual-port RAM  
(DPRAM)  
Reserved for DPRAM  
ESFR area  
00’F200H 00’F5FFH 1 Kbytes  
00’F000H 00’F1FFH 0.5 Kbytes  
00’E000H 00’EFFFH 4 Kbytes  
00’D800H 00’DFFFH 2 Kbytes  
XSFR area  
Data SRAM (DSRAM)  
Data Sheet  
20  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Functional Description  
Table 8  
XE161FU Memory Map (cont’d)1) (cont’d)  
Address Area  
Start Loc. End Loc. Area Size2)  
00’8000H 00’D7FFH 22 Kbytes  
00’0000H 00’7FFFH 32 Kbytes  
Notes  
Reserved for DSRAM  
External memory area  
1) Accesses to the shaded areas are reserved. In devices with external bus interface these accesses generate  
external bus accesses.  
2) The areas marked with “<” are slightly smaller than indicated, see column “Notes”.  
3) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0’F000H to C0’FFFFH).  
4) Several pipeline optimizations are not active within the external IO area.  
This common memory space consists of 16 Mbytes organized as 256 segments of  
64 Kbytes; each segment contains four data pages of 16 Kbytes. The entire memory  
space can be accessed bytewise or wordwise. Portions of the on-chip DPRAM and the  
register spaces (ESFR/SFR) additionally are directly bit addressable.  
The internal data memory areas and the Special Function Register areas (SFR and  
ESFR) are mapped into segment 0, the system segment.  
The Program Management Unit (PMU) handles all code fetches and, therefore, controls  
access to the program memories such as Flash memory and PSRAM.  
The Data Management Unit (DMU) handles all data transfers and, therefore, controls  
access to the DSRAM and the on-chip peripherals.  
Both units (PMU and DMU) are connected to the high-speed system bus so that they can  
exchange data. This is required if operands are read from program memory, code or  
data is written to the PSRAM, code is fetched from external memory, or data is read from  
or written to external resources. These include peripherals on the LXBus such as USIC  
or MultiCAN. The system bus allows concurrent two-way communication for maximum  
transfer performance.  
4 Kbytes of on-chip Program SRAM (PSRAM) are provided to store user code or data.  
The PSRAM is accessed via the PMU and is optimized for code fetches. A section of the  
PSRAM with programmable size can be write-protected.  
Data Sheet  
21  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Functional Description  
2 Kbytes of on-chip Data SRAM (DSRAM) are used for storage of general user data.  
The DSRAM is accessed via a separate interface and is optimized for data access.  
2 Kbytes of on-chip Dual-Port RAM (DPRAM) provide storage for user-defined  
variables, for the system stack, and for general purpose register banks. A register bank  
can consist of up to 16 word-wide (R0 to R15) and/or byte-wide (RL0, RH0, …, RL7,  
RH7) General Purpose Registers (GPRs).  
The upper 256 bytes of the DPRAM are directly bit addressable. When used by a GPR,  
any location in the DPRAM is bit addressable.  
1024 bytes (2 × 512 bytes) of the address space are reserved for the Special Function  
Register areas (SFR space and ESFR space). SFRs are word-wide registers which are  
used to control and monitor functions of the different on-chip units. Unused SFR  
addresses are reserved for future members of the XE166 Family. In order to ensure  
upward compatibility they should either not be accessed or written with zeros.  
The on-chip Flash memory stores code, constant data, and control data. The on-chip  
Flash memory consist of 1 module of 64 Kbytes. Each module is organized in 4-Kbyte  
sectors.  
The uppermost 4-Kbyte sector of segment 0 (located in Flash module 0) is used  
internally to store operation control parameters and protection information.  
Each sector can be separately write protected1), erased and programmed (in blocks of  
128 Bytes). The complete Flash area can be read-protected. A user-defined password  
sequence temporarily unlocks protected areas. The Flash modules combine 128-bit  
read access with protected and efficient writing algorithms for programming and erasing.  
Dynamic error correction provides extremely high read data security for all read access  
operations. Access to different Flash modules can be executed in parallel.  
For Flash parameters, please see Section 4.6.  
Memory Content Protection  
The contents of on-chip memories can be protected against soft errors (induced e.g. by  
radiation) by activating the parity mechanism or the Error Correction Code (ECC).  
The parity mechanism can detect a single-bit error and prevent the software from using  
incorrect data or executing incorrect instructions.  
The ECC mechanism can detect and automatically correct single-bit errors. This  
supports the stable operation of the system.  
It is strongly recommended to activate the ECC mechanism wherever possible because  
this dramatically increases the robustness of an application against such soft errors.  
1) To save control bits, sectors are clustered for protection purposes, they remain separate for  
programming/erasing.  
Data Sheet  
22  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Functional Description  
3.2  
Central Processing Unit (CPU)  
The core of the CPU consists of a 5-stage execution pipeline with a 2-stage instruction-  
fetch pipeline, a 16-bit arithmetic and logic unit (ALU), a 32-bit/40-bit multiply and  
accumulate unit (MAC), a register-file providing three register banks, and dedicated  
SFRs. The ALU features a multiply-and-divide unit, a bit-mask generator, and a barrel  
shifter.  
PSRAM  
Flash/ROM  
PMU  
CPU  
Prefetch  
CSP  
IP  
VECSEG  
TFR  
2-Stage  
Prefetch  
Pipeline  
Unit  
CPUCON1  
CPUCON2  
Branch  
Unit  
5-Stage  
Pipeline  
Injection/  
Exception  
Handler  
DPRAM  
Return  
Stack  
FIFO  
IFU  
DPP0  
IPIP  
IDX0  
IDX1  
QX0  
QX1  
QR0  
QR1  
SPSEG  
SP  
CP  
R15  
DPP1  
DPP2  
DPP3  
STKOV  
STKUN  
R15  
R14  
R14  
GPRs  
GPRs  
+/-  
+/-  
ADU  
s  
R1  
R0  
R1  
Division Unit  
Multiply Unit  
Bit-Mask-Gen.  
Barrel-Shifter  
R0  
Multiply  
Unit  
MRW  
R0  
R0  
MCW  
MSW  
MDC  
PSW  
RF  
+/-  
+/-  
MDH  
MDL  
ONES  
ALU  
DSRAM  
EBC  
Peripherals  
Buffer  
WB  
MAH  
MAL  
ZEROS  
MAC  
DMU  
mca04917_x.vsd  
Figure 4  
CPU Block Diagram  
Data Sheet  
23  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Functional Description  
With this hardware most XE161FU instructions are executed in a single machine cycle  
of 15.2 ns @ 66-MHz CPU clock. For example, shift and rotate instructions are always  
processed during one machine cycle, no matter how many bits are shifted. Also,  
multiplication and most MAC instructions execute in one cycle. All multiple-cycle  
instructions have been optimized so that they can be executed very fast; for example, a  
32-/16-bit division is started within 4 cycles while the remaining cycles are executed in  
the background. Another pipeline optimization, the branch target prediction, eliminates  
the execution time of branch instructions if the prediction was correct.  
The CPU has a register context consisting of up to three register banks with 16 word-  
wide GPRs each at its disposal. One of these register banks is physically allocated within  
the on-chip DPRAM area. A Context Pointer (CP) register determines the base address  
of the active register bank accessed by the CPU at any time. The number of these  
register bank copies is only restricted by the available internal RAM space. For easy  
parameter passing, a register bank may overlap others.  
A system stack of up to 32 Kwords is provided for storage of temporary data. The system  
stack can be allocated to any location within the address space (preferably in the on-chip  
RAM area); it is accessed by the CPU with the stack pointer (SP) register. Two separate  
SFRs, STKOV and STKUN, are implicitly compared with the stack pointer value during  
each stack access to detect stack overflow or underflow.  
The high performance of the CPU hardware implementation can be best utilized by the  
programmer with the highly efficient XE161FU instruction set. This includes the following  
instruction classes:  
Standard Arithmetic Instructions  
DSP-Oriented Arithmetic Instructions  
Logical Instructions  
Boolean Bit Manipulation Instructions  
Compare and Loop Control Instructions  
Shift and Rotate Instructions  
Prioritize Instruction  
Data Movement Instructions  
System Stack Instructions  
Jump and Call Instructions  
Return Instructions  
System Control Instructions  
Miscellaneous Instructions  
The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes  
and words. A variety of direct, indirect or immediate addressing modes are provided to  
specify the required operands.  
Data Sheet  
24  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Functional Description  
3.3  
Memory Protection Unit (MPU)  
The XE161FU’s Memory Protection Unit (MPU) protects user-specified memory areas  
from unauthorized read, write, or instruction fetch accesses. The MPU can protect the  
whole address space including the peripheral area. This completes established  
mechanisms such as the register security mechanism or stack overrun/underrun  
detection.  
Four Protection Levels support flexible system programming where operating system,  
low level drivers, and applications run on separate levels. Each protection level permits  
different access restrictions for instructions and/or data.  
Every access is checked (if the MPU is enabled) and an access violating the permission  
rules will be marked as invalid and leads to a protection trap.  
A set of protection registers for each protection level specifies the address ranges and  
the access permissions. Applications requiring more than 4 protection levels can  
dynamically re-program the protection registers.  
3.4  
Memory Checker Module (MCHK)  
The XE161FU’s Memory Checker Module calculates a checksum (fractional polynomial  
division) on a block of data, often called Cyclic Redundancy Code (CRC). It is based on  
a 32-bit linear feedback shift register and may, therefore, also be used to generate  
pseudo-random numbers.  
The Memory Checker Module is a 16-bit parallel input signature compression circuitry  
which enables error detection within a block of data stored in memory, registers, or  
communicated e.g. via serial communication lines. It reduces the probability of error  
masking due to repeated error patterns by calculating the signature of blocks of data.  
The polynomial used for operation is configurable, so most of the commonly used  
polynomials may be used. Also, the block size for generating a CRC result is  
configurable via a local counter. An interrupt may be generated if testing the current data  
block reveals an error.  
An autonomous CRC compare circuitry is included to enable redundant error detection,  
e.g. to enable higher safety integrity levels.  
The Memory Checker Module provides enhanced fault detection (beyond parity or ECC)  
for data and instructions in volatile and non volatile memories. This is especially  
important for the safety and reliability of embedded systems.  
Data Sheet  
25  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Functional Description  
3.5  
Interrupt System  
The architecture of the XE161FU supports several mechanisms for fast and flexible  
response to service requests; these can be generated from various sources internal or  
external to the microcontroller. Any of these interrupt requests can be programmed to be  
serviced by the Interrupt Controller or by the Peripheral Event Controller (PEC).  
Using a standard interrupt service the current program execution is suspended and a  
branch to the interrupt vector table is performed. With the PEC just one cycle is ‘stolen’  
from the current CPU activity to perform the PEC service. A PEC service implies a single  
byte or word data transfer between any two memory locations with an additional  
increment of either the PEC source pointer, the destination pointer, or both. An individual  
PEC transfer counter is implicitly decremented for each PEC service except when  
performing in the continuous transfer mode. When this counter reaches zero, a standard  
interrupt is performed to the corresponding source-related vector location. PEC services  
are particularly well suited to supporting the transmission or reception of blocks of data.  
The XE161FU has eight PEC channels, each with fast interrupt-driven data transfer  
capabilities.  
With a minimum interrupt response time of 7/111) CPU clocks, the XE161FU can react  
quickly to the occurrence of non-deterministic events.  
Interrupt Nodes and Source Selection  
The interrupt system provides 46 physical nodes with separate control register  
containing an interrupt request flag, an interrupt enable flag and an interrupt priority bit  
field. Most interrupt sources are assigned to a dedicated node. A particular subset of  
interrupt sources shares a set of nodes. The source selection can be programmed using  
the interrupt source selection (ISSR) registers.  
External Request Unit (ERU)  
A dedicated External Request Unit (ERU) is provided to route and preprocess selected  
on-chip peripheral and external interrupt requests. The ERU features 4 programmable  
input channels with event trigger logic (ETL) a routing matrix and 4 output gating units  
(OGU). The ETL features rising edge, falling edge, or both edges event detection. The  
OGU combines the detected interrupt events and provides filtering capabilities  
depending on a programmable pattern match or miss.  
Trap Processing  
The XE161FU provides efficient mechanisms to identify and process exceptions or error  
conditions that arise during run-time, the so-called ‘Hardware Traps’. A hardware trap  
causes an immediate system reaction similar to a standard interrupt service (branching  
1) Depending if the jump cache is used or not.  
Data Sheet  
26  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Functional Description  
to a dedicated vector table location). The occurrence of a hardware trap is also indicated  
by a single bit in the trap flag register (TFR). Unless another higher-priority trap service  
is in progress, a hardware trap will interrupt any ongoing program execution. In turn,  
hardware trap services can normally not be interrupted by standard or PEC interrupts.  
Depending on the package option up to 3 External Service Request (ESR) pins are  
provided. The ESR unit processes their input values and allows to implement user  
controlled trap functions (System Requests SR0 and SR1). In this way reset, wakeup  
and power control can be efficiently realized.  
Software interrupts are supported by the ‘TRAP’ instruction in combination with an  
individual trap (interrupt) number. Alternatively to emulate an interrupt by software a  
program can trigger interrupt requests by writing the Interrupt Request (IR) bit of an  
interrupt control register.  
3.6  
On-Chip Debug Support (OCDS)  
The On-Chip Debug Support system built into the XE161FU provides a broad range of  
debug and emulation features. User software running on the XE161FU can be debugged  
within the target system environment.  
The OCDS is controlled by an external debugging device via the debug interface. This  
consists of the 2-pin Device Access Port (DAP) or of the 1-pin Single Pin DAP (SPD) or  
of the JTAG port conforming to IEEE-1149. The debug interface can be completed with  
an optional break interface.  
The debugger controls the OCDS with a set of dedicated registers accessible via the  
debug interface (SPD, DAP or JTAG). In addition the OCDS system can be controlled  
by the CPU, e.g. by a monitor program. An injection interface allows the execution of  
OCDS-generated instructions by the CPU.  
Multiple breakpoints can be triggered by on-chip hardware, by software, or by an  
external trigger input. Single stepping is supported, as is the injection of arbitrary  
instructions and read/write access to the complete internal address space. A breakpoint  
trigger can be answered with a CPU halt, a monitor call, a data transfer, or/and the  
activation of an external signal.  
Tracing of data can be obtained via the debug interface, or via the external bus interface  
for increased performance.  
Tracing of program execution is supported by the XE166 Family emulation device.  
The SPD interface uses one interface signal, DAP interface uses two interface signals,  
the JTAG interface uses four interface signals, to communicate with external circuitry.  
The debug interface can be amended with two optional break lines.  
Data Sheet  
27  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Functional Description  
3.7  
Capture/Compare Unit (CC2)  
The CAPCOM unit supports generation and control of timing sequences on up to  
16 channels with a maximum resolution of one system clock cycle (eight cycles in  
staggered mode). The CAPCOM unit is typically used to handle high-speed I/O tasks  
such as pulse and waveform generation, pulse width modulation (PWM), digital to  
analog (D/A) conversion, software timing, or time recording with respect to external  
events.  
Two 16-bit timers with reload registers provide two independent time bases for the  
capture/compare register array.  
The input clock for the timers is programmable to several prescaled values of the internal  
system clock, or may be derived from an overflow/underflow of timer T6 in module GPT2.  
This provides a wide range of variation for the timer period and resolution and allows  
precise adjustments to the application specific requirements. In addition, external count  
inputs allow event scheduling for the capture/compare registers relative to external  
events.  
The capture/compare register array contains 16 dual purpose capture/compare  
registers, each of which may be individually allocated to either CAPCOM timer and  
programmed for capture or compare function.  
All registers have each one port pin associated with it which serves as an input pin for  
triggering the capture function, or as an output pin to indicate the occurrence of a  
compare event.  
When a capture/compare register has been selected for capture mode, the current  
contents of the allocated timer will be latched (‘captured’) into the capture/compare  
register in response to an external event at the port pin which is associated with this  
register. In addition, a specific interrupt request for this capture/compare register is  
generated. Either a positive, a negative, or both a positive and a negative external signal  
transition at the pin can be selected as the triggering event.  
The contents of all registers which have been selected for one of the five compare modes  
are continuously compared with the contents of the allocated timers.  
When a match occurs between the timer value and the value in a capture/compare  
register, specific actions will be taken based on the selected compare mode.  
Table 9  
Compare Modes  
Compare Modes  
Function  
Mode 0  
Interrupt-only compare mode;  
Several compare interrupts per timer period are possible  
Mode 1  
Pin toggles on each compare match;  
Several compare events per timer period are possible  
Data Sheet  
28  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Functional Description  
Table 9  
Compare Modes (cont’d)  
Compare Modes  
Function  
Mode 2  
Interrupt-only compare mode;  
Only one compare interrupt per timer period is generated  
Mode 3  
Pin set ‘1’ on match; pin reset ‘0’ on compare timer overflow;  
Only one compare event per timer period is generated  
Double Register  
Mode  
Two registers operate on one pin;  
Pin toggles on each compare match;  
Several compare events per timer period are possible  
Single Event Mode  
Generates single edges or pulses;  
Can be used with any compare mode  
When a capture/compare register has been selected for capture mode, the current  
contents of the allocated timer will be latched (‘captured’) into the capture/compare  
register in response to an external event at the port pin associated with this register. In  
addition, a specific interrupt request for this capture/compare register is generated.  
Either a positive, a negative, or both a positive and a negative external signal transition  
at the pin can be selected as the triggering event.  
The contents of all registers selected for one of the five compare modes are continuously  
compared with the contents of the allocated timers.  
When a match occurs between the timer value and the value in a capture/compare  
register, specific actions will be taken based on the compare mode selected.  
Data Sheet  
29  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Functional Description  
Reload Reg.  
T7REL  
fCC  
T7  
T7IN  
T6OUF  
Input  
Control  
Timer T7  
T7IRQ  
CC16IO  
CC17IO  
CC16IRQ  
CC17IRQ  
Mode  
Control  
(Capture  
or  
Sixteen  
16-bit  
Capture/  
Compare  
Registers  
Compare)  
CC31IO  
CC31IRQ  
T8IRQ  
T8  
Input  
fCC  
Timer T8  
T6OUF  
Control  
Reload Reg.  
T8REL  
MC_CAPCOM2_BLOCKDIAG  
Figure 5  
CAPCOM Unit Block Diagram  
Data Sheet  
30  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Functional Description  
3.8  
Capture/Compare Units CCU6x  
The XE161FU types feature the CCU60 unit.  
CCU6 is a high-resolution capture and compare unit with application-specific modes. It  
provides inputs to start the timers synchronously, an important feature in devices with  
several CCU6 modules.  
The module provides two independent timers (T12, T13), that can be used for PWM  
generation, especially for AC motor control. Additionally, special control modes for block  
commutation and multi-phase machines are supported.  
Timer 12 Features  
Three capture/compare channels, where each channel can be used either as a  
capture or as a compare channel.  
Supports generation of a three-phase PWM (six outputs, individual signals for high-  
side and low-side switches)  
16-bit resolution, maximum count frequency = peripheral clock  
Dead-time control for each channel to avoid short circuits in the power stage  
Concurrent update of the required T12/13 registers  
Center-aligned and edge-aligned PWM can be generated  
Single-shot mode supported  
Many interrupt request sources  
Hysteresis-like control mode  
Automatic start on a HW event (T12HR, for synchronization purposes)  
Timer 13 Features  
One independent compare channel with one output  
16-bit resolution, maximum count frequency = peripheral clock  
Can be synchronized to T12  
Interrupt generation at period match and compare match  
Single-shot mode supported  
Automatic start on a HW event (T13HR, for synchronization purposes)  
Additional Features  
Block commutation for brushless DC drives implemented  
Position detection via Hall sensor pattern  
Automatic rotational speed measurement for block commutation  
Integrated error handling  
Fast emergency stop without CPU load via external signal (CTRAP)  
Control modes for multi-channel AC drives  
Output levels can be selected and adapted to the power stage  
Data Sheet  
31  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Functional Description  
CCU6 Module Kernel  
fSYS  
compare  
Channel 0  
T12 Channel 1  
Channel 2  
1
Dead-  
time  
Control  
Multi-  
channel  
Control  
Trap  
Control  
TxHR  
1
1
start  
Interrupts  
T13 Channel 3  
compare  
1
3
2
2
2
3
1
Input / Output Control  
mc_ccu6_blockdiagram.vsd  
Figure 6  
CCU6 Block Diagram  
Timer T12 can work in capture and/or compare mode for its three channels. The modes  
can also be combined. Timer T13 can work in compare mode only. The multi-channel  
control unit generates output patterns that can be modulated by timer T12 and/or timer  
T13. The modulation sources can be selected and combined for signal modulation.  
Data Sheet  
32  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Functional Description  
3.9  
General Purpose Timer (GPT12E) Unit  
The GPT12E unit is a very flexible multifunctional timer/counter structure which can be  
used for many different timing tasks such as event timing and counting, pulse width and  
duty cycle measurements, pulse generation, or pulse multiplication.  
The GPT12E unit incorporates five 16-bit timers organized in two separate modules,  
GPT1 and GPT2. Each timer in each module may either operate independently in a  
number of different modes or be concatenated with another timer of the same module.  
Each of the three timers T2, T3, T4 of module GPT1 can be configured individually for  
one of four basic modes of operation: Timer, Gated Timer, Counter, and Incremental  
Interface Mode. In Timer Mode, the input clock for a timer is derived from the system  
clock and divided by a programmable prescaler. Counter Mode allows timer clocking in  
reference to external events.  
Pulse width or duty cycle measurement is supported in Gated Timer Mode, where the  
operation of a timer is controlled by the ‘gate’ level on an external input pin. For these  
purposes each timer has one associated port pin (TxIN) which serves as a gate or clock  
input. The maximum resolution of the timers in module GPT1 is 4 system clock cycles.  
The counting direction (up/down) for each timer can be programmed by software or  
altered dynamically by an external signal on a port pin (TxEUD), e.g. to facilitate position  
tracking.  
In Incremental Interface Mode the GPT1 timers can be directly connected to the  
incremental position sensor signals A and B through their respective inputs TxIN and  
TxEUD. Direction and counting signals are internally derived from these two input  
signals, so that the contents of the respective timer Tx corresponds to the sensor  
position. The third position sensor signal TOP0 can be connected to an interrupt input.  
Timer T3 has an output toggle latch (T3OTL) which changes its state on each timer  
overflow/underflow. The state of this latch may be output on pin T3OUT e.g. for time out  
monitoring of external hardware components. It may also be used internally to clock  
timers T2 and T4 for measuring long time periods with high resolution.  
In addition to the basic operating modes, T2 and T4 may be configured as reload or  
capture register for timer T3. A timer used as capture or reload register is stopped. The  
contents of timer T3 is captured into T2 or T4 in response to a signal at the associated  
input pin (TxIN). Timer T3 is reloaded with the contents of T2 or T4, triggered either by  
an external signal or a selectable state transition of its toggle latch T3OTL. When both  
T2 and T4 are configured to alternately reload T3 on opposite state transitions of T3OTL  
with the low and high times of a PWM signal, this signal can be continuously generated  
without software intervention.  
Note: Signals T2IN, T2EUD, T4EUD, T6OUT, T6IN and T6EUD are not connected to  
pins.  
Data Sheet  
33  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Functional Description  
T3CON.BPS1  
2n:1  
Basic Clock  
fGPT  
Interrupt  
Aux. Timer T2  
Request  
(T2IRQ)  
U/D  
T2IN  
T2  
Mode  
Control  
Reload  
T2EUD  
Capture  
Interrupt  
Request  
(T3IRQ)  
T3  
Core Timer T3  
T3OTL  
Toggle  
Latch  
T3IN  
Mode  
Control  
T3OUT  
U/D  
T3EUD  
Capture  
Reload  
T4IN  
T4  
Mode  
Control  
Interrupt  
Request  
(T4IRQ)  
Aux. Timer T4  
T4EUD  
U/D  
MC_GPT_BLOCK1  
Figure 7  
Block Diagram of GPT1  
Data Sheet  
34  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Functional Description  
With its maximum resolution of 2 system clock cycles, the GPT2 module provides  
precise event control and time measurement. It includes two timers (T5, T6) and a  
capture/reload register (CAPREL). Both timers can be clocked with an input clock which  
is derived from the CPU clock via a programmable prescaler or with external signals. The  
counting direction (up/down) for each timer can be programmed by software or altered  
dynamically with an external signal on a port pin (TxEUD). Concatenation of the timers  
is supported with the output toggle latch (T6OTL) of timer T6, which changes its state on  
each timer overflow/underflow.  
The state of this latch may be used to clock timer T5, and/or it may be output on pin  
T6OUT. The overflows/underflows of timer T6 can also be used to clock the CAPCOM2  
timers and to initiate a reload from the CAPREL register.  
The CAPREL register can capture the contents of timer T5 based on an external signal  
transition on the corresponding port pin (CAPIN); timer T5 may optionally be cleared  
after the capture procedure. This allows the XE161FU to measure absolute time  
differences or to perform pulse multiplication without software overhead.  
The capture trigger (timer T5 to CAPREL) can also be generated upon transitions of  
GPT1 timer T3 inputs T3IN and/or T3EUD. This is especially advantageous when T3  
operates in Incremental Interface Mode.  
Data Sheet  
35  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Functional Description  
T6CON.BPS2  
2n:1  
Basic Clock  
GPT2 Timer T5  
fGPT  
Interrupt  
Request  
(T5IRQ)  
T5IN  
T5  
Mode  
Control  
U/D  
T5EUD  
Clear  
Capture  
CAPIN  
GPT2 CAPREL  
CAPREL  
Mode  
Control  
Interrupt  
Request  
(CRIRQ)  
Reload  
Clear  
T3IN/  
T3EUD  
Interrupt  
Request  
(T6IRQ)  
Toggle  
FF  
GPT2 Timer T6  
U/D  
T6OTL  
T6OUT  
T6OUF  
T6  
Mode  
Control  
T6IN  
T6EUD  
MC_GPT_BLOCK2  
Figure 8  
Block Diagram of GPT2  
Data Sheet  
36  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Functional Description  
3.10  
Real Time Clock  
The Real Time Clock (RTC) module of the XE161FU can be clocked with a clock signal  
selected from internal sources or external sources (pins).  
The RTC basically consists of a chain of divider blocks:  
Selectable 32:1 and 8:1 dividers (on - off)  
The reloadable 16-bit timer T14  
The 32-bit RTC timer block (accessible via registers RTCH and RTCL) consisting of:  
– a reloadable 10-bit timer  
– a reloadable 6-bit timer  
– a reloadable 6-bit timer  
– a reloadable 10-bit timer  
All timers count up. Each timer can generate an interrupt request. All requests are  
combined to a common node request.  
fRTC  
MUX  
:
32  
RUN  
RTCINT  
MUX  
Interrupt Sub Node  
: 8  
CNT  
INT0  
CNT  
INT1  
CNT  
INT2  
CNT  
INT3  
PRE  
REFCLK  
REL-Register  
T14REL  
10 Bits  
6 Bits  
6 Bits  
10 Bits  
fCNT  
T14  
10 Bits  
6 Bits  
6 Bits  
10 Bits  
T14-Register  
CNT-Register  
MCB05568B  
Figure 9  
RTC Block Diagram  
Note: The registers associated with the RTC are only affected by a power reset.  
Data Sheet  
37  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Functional Description  
The RTC module can be used for different purposes:  
System clock to determine the current time and date  
Cyclic time-based interrupt, to provide a system time tick independent of CPU  
frequency and other resources  
48-bit timer for long-term measurements  
Alarm interrupt at a defined time  
Data Sheet  
38  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Functional Description  
3.11  
A/D Converters  
For analog signal measurement, a 12-bit A/D converters (ADC0) with 10 multiplexed  
input channels and a sample and hold circuit have been integrated on-chip. Conversions  
use the successive approximation method. The sample time (to charge the capacitors)  
and the conversion time are programmable so that they can be adjusted to the external  
circuit. The A/D converters can also operate in 8-bit and 10-bit conversion mode, further  
reducing the conversion time.  
Several independent conversion result registers, selectable interrupt requests, and  
highly flexible conversion sequences provide a high degree of programmability to meet  
the application requirements.  
For applications that require more analog input channels, external analog multiplexers  
can be controlled automatically. For applications that require fewer analog input  
channels, the remaining channel inputs can be used as digital input port pins.  
The A/D converters of the XE161FU support two types of request sources which can be  
triggered by several internal and external events.  
Parallel requests are activated at the same time and then executed in a predefined  
sequence.  
Queued requests are executed in a user-defined sequence.  
In addition, the conversion of a specific channel can be inserted into a running sequence  
without disturbing that sequence. All requests are arbitrated according to the priority  
level assigned to them.  
Data reduction features reduce the number of required CPU access operations allowing  
the precise evaluation of analog inputs (high conversion rate) even at a low CPU speed.  
Result data can be reduced by limit checking or accumulation of results. Two cascadable  
filters build the hardware to generate a configurable moving average.  
The Peripheral Event Controller (PEC) can be used to control the A/D converters or to  
automatically store conversion results to a table in memory for later evaluation, without  
requiring the overhead of entering and exiting interrupt routines for each data transfer.  
Each A/D converter contains eight result registers which can be concatenated to build a  
result FIFO. Wait-for-read mode can be enabled for each result register to prevent the  
loss of conversion data.  
In order to decouple analog inputs from digital noise and to avoid input trigger noise,  
those pins used for analog input can be disconnected from the digital input stages. This  
can be selected for each pin separately with the Port x Digital Input Disable registers.  
The Auto-Power-Down feature of the A/D converters minimizes the power consumption  
when no conversion is in progress.  
Broken wire detection for each channel and a multiplexer test mode provide information  
to verify the proper operation of the analog signal sources (e.g. a sensor system).  
Data Sheet  
39  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Functional Description  
3.12  
Universal Serial Interface Channel Modules (USIC)  
The XE161FU features the USIC module USIC0. The module provides two serial  
communication channels.  
The Universal Serial Interface Channel (USIC) module is based on a generic data shift  
and data storage structure which is identical for all supported serial communication  
protocols. Each channel supports complete full-duplex operation with a basic data buffer  
structure (one transmit buffer and two receive buffer stages). In addition, the data  
handling software can use FIFOs.  
The protocol part (generation of shift clock/data/control signals) is independent of the  
general part and is handled by protocol-specific preprocessors (PPPs).  
The USIC’s input/output lines are connected to pins by a pin routing unit. The inputs and  
outputs of each USIC channel can be assigned to different interface pins, providing great  
flexibility to the application software. All assignments can be made during runtime.  
Bus  
Buffer & Shift Structure Protocol Preprocessors  
Pins  
Control 0  
PPP_A  
PPP_B  
PPP_C  
PPP_D  
DBU  
0
DSU  
0
Control 1  
PPP_A  
PPP_B  
PPP_C  
PPP_D  
DBU  
1
DSU  
1
fsys  
Fractional  
Dividers  
Baud rate  
Generators  
USIC_basic.vsd  
Figure 10  
General Structure of a USIC Module  
The regular structure of the USIC module brings the following advantages:  
Higher flexibility through configuration with same look-and-feel for data management  
Reduced complexity for low-level drivers serving different protocols  
Wide range of protocols with improved performances (baud rate, buffer handling)  
Data Sheet  
40  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Functional Description  
Target Protocols  
Each USIC channel can receive and transmit data frames with a selectable data word  
width from 1 to 16 bits in each of the following protocols:  
UART (asynchronous serial channel)  
– module capability: maximum baud rate = fSYS / 4  
– data frame length programmable from 1 to 63 bits  
– MSB or LSB first  
LIN Support (Local Interconnect Network)  
– module capability: maximum baud rate = fSYS / 16  
– checksum generation under software control  
– baud rate detection possible by built-in capture event of baud rate generator  
SSC/SPI (synchronous serial channel with or without data buffer)  
– module capability: maximum baud rate = fSYS / 2, limited by loop delay  
– number of data bits programmable from 1 to 63, more with explicit stop condition  
– MSB or LSB first  
– optional control of slave select signals  
IIC (Inter-IC Bus)  
– supports baud rates of 100 kbit/s and 400 kbit/s  
IIS (Inter-IC Sound Bus)  
– module capability: maximum baud rate = fSYS / 2  
Note: Depending on the selected functions (such as digital filters, input synchronization  
stages, sample point adjustment, etc.), the maximum achievable baud rate can be  
limited. Please note that there may be additional delays, such as internal or  
external propagation delays and driver delays (e.g. for collision detection in UART  
mode, for IIC, etc.).  
3.13  
System Timer  
The System Timer consists of a programmable prescaler and two concatenated timers  
(10 bits and 6 bits). Both timers can generate interrupt requests. The clock source can  
be selected and the timers can also run during power reduction modes.  
Therefore, the System Timer enables the software to maintain the current time for  
scheduling functions or for the implementation of a clock.  
3.14  
Window Watchdog Timer  
The Window Watchdog Timer is one of the fail-safe mechanisms which have been  
implemented to prevent the controller from malfunctioning for longer periods of time.  
The Window Watchdog Timer is always enabled after an application reset of the chip. It  
can be disabled and enabled at any time by executing the instructions DISWDT and  
ENWDT respectively. The software has to service the Window Watchdog Timer before  
Data Sheet  
41  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Functional Description  
it overflows. If this is not the case because of a hardware or software failure, the Window  
Watchdog Timer overflows, generating a reset request.  
The Window Watchdog Timer has a ‘programmable window boundary’, it disallows  
refresh during the Window Watchdog Timer’s count-up. A refresh during this window-  
boundary will cause the Window Watchdog Timer to also generate a reset request.  
The Window Watchdog Timer is a 16-bit timer clocked with either the system clock or the  
independent wake-up oscillator clock, divided by 16,384 or 256. The Window Watchdog  
Timer register is set to a prespecified reload value (stored in WDTREL) in order to allow  
further variation of the monitored time interval. Each time it is serviced by the application  
software, the Window Watchdog Timer is reloaded.  
When clocked by fSYS = 66 MHz, time intervals between 15.2 ns and 16.3 s can be  
monitored.  
When clocked by fWU = 500 kHz, time intervals between 2.0 µs and 2147.5 s can be  
monitored.  
The default Watchdog Timer interval after power-up is 0.13 s (@ fWU = 500 kHz).  
3.15  
Clock Generation  
The Clock Generation Unit can generate the system clock signal fSYS for the XE161FU  
from a number of external or internal clock sources:  
External clock signals with pad voltage or core voltage levels  
External crystal or resonator using the on-chip oscillator  
On-chip clock source for operation without crystal/resonator  
Wake-up clock (ultra-low-power) to further reduce power consumption  
The programmable on-chip PLL with multiple prescalers generates a clock signal for  
maximum system performance from standard crystals, a clock input signal, or from the  
on-chip clock source. See also Section 4.7.2.  
The Oscillator Watchdog (OWD) generates an interrupt if the crystal oscillator frequency  
falls below a certain limit or stops completely. In this case, the system can be supplied  
with an emergency clock to enable operation even after an external clock failure.  
All available clock signals can be output on the EXTCLK pin.  
Data Sheet  
42  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Functional Description  
3.16  
Parallel Ports  
The XE161FU provides up to 33 I/O lines which are organized into 3 input/output ports  
and 1 input port. All port lines are bit-addressable, and all input/output lines can be  
individually (bit-wise) configured via port control registers. This configuration selects the  
direction (input/output), push/pull or open-drain operation, activation of pull devices, and  
edge characteristics (shape) and driver characteristics (output current) of the port  
drivers. The I/O ports are true bidirectional ports which are switched to high impedance  
state when configured as inputs. During the internal reset, all port pins are configured as  
inputs without pull devices active.  
All port lines have alternate input or output functions associated with them. These  
alternate functions can be programmed to be assigned to various port pins to support the  
best utilization for a given application. For this reason, certain functions appear several  
times in Table 10.  
All port lines that are not used for alternate functions may be used as general purpose  
I/O lines.  
Table 10  
Summary of the XE161FU’s Ports  
Group  
Width  
I/O Connected Modules  
P2  
12  
I/O Analog inputs, ADC, CC2, DAP/JTAG, GPT12E, SCU,  
USIC  
P5  
6
I
Analog inputs, CCU6, JTAG, GPT12E, CC2  
P6  
3
I/O Analog inputs, ADC, JTAG, GPT12E  
I/O CCU6, GPT12E, DAP/JTAG, SPD, USIC  
P10  
12  
Data Sheet  
43  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Functional Description  
3.17  
Power Management  
The XE161FU provides the means to control the power it consumes either at a given  
time or averaged over a certain duration.  
Two mechanisms can be used (and partly in parallel):  
Clock Generation Management controls the frequency of internal and external  
clock signals. Clock signals for currently inactive parts of logic are disabled  
automatically. The user can drastically reduce the consumed power by reducing the  
XE161FU system clock frequency.  
External circuits can be controlled using the programmable frequency output  
EXTCLK.  
Peripheral Management permits temporary disabling of peripheral modules. Each  
peripheral can be disabled and enabled separately. The CPU can be switched off  
while the peripherals can continue to operate.  
Wake-up from power reduction modes can be triggered either externally with signals  
generated by the external system, or internally by the on-chip wake-up timer. This  
supports intermittent operation of the XE161FU by generating cyclic wake-up signals.  
Full performance is available to quickly react to action requests while the intermittent  
sleep phases greatly reduce the average system power consumption.  
Note: When selecting the supply voltage and the clock source and generation method,  
the required parameters must be carefully written to the respective bit fields, to  
avoid unintended intermediate states. Recommended sequences are provided  
which ensure the intended operation of power supply system and clock system.  
Please refer to the Programmer’s Guide.  
Data Sheet  
44  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Functional Description  
3.18  
Instruction Set Summary  
Table 11 lists the instructions of the XE161FU.  
The addressing modes that can be used with a specific instruction, the function of the  
instructions, parameters for conditional execution of instructions, and the opcodes for  
each instruction can be found in the “Instruction Set Manual”.  
This document also provides a detailed description of each instruction.  
Table 11  
Mnemonic  
ADD(B)  
Instruction Set Summary  
Description  
Bytes  
2 / 4  
2 / 4  
2 / 4  
2 / 4  
2
Add word (byte) operands  
ADDC(B)  
SUB(B)  
Add word (byte) operands with Carry  
Subtract word (byte) operands  
Subtract word (byte) operands with Carry  
SUBC(B)  
MUL(U)  
(Un)Signed multiply direct GPR by direct GPR  
(16- × 16-bit)  
DIV(U)  
(Un)Signed divide register MDL by direct GPR (16-/16-bit) 2  
(Un)Signed long divide reg. MD by direct GPR (32-/16-bit) 2  
DIVL(U)  
CPL(B)  
Complement direct word (byte) GPR  
Negate direct word (byte) GPR  
Bitwise AND, (word/byte operands)  
Bitwise OR, (word/byte operands)  
Bitwise exclusive OR, (word/byte operands)  
Clear/Set direct bit  
2
NEG(B)  
AND(B)  
OR(B)  
2
2 / 4  
2 / 4  
2 / 4  
2
XOR(B)  
BCLR/BSET  
BMOV(N)  
Move (negated) direct bit to direct bit  
4
BAND/BOR/BXOR AND/OR/XOR direct bit with direct bit  
4
BCMP  
Compare direct bit to direct bit  
4
BFLDH/BFLDL  
Bitwise modify masked high/low byte of bit-addressable  
direct word memory with immediate data  
4
CMP(B)  
CMPD1/2  
CMPI1/2  
PRIOR  
Compare word (byte) operands  
2 / 4  
Compare word data to GPR and decrement GPR by 1/2 2 / 4  
Compare word data to GPR and increment GPR by 1/2  
2 / 4  
2
Determine number of shift cycles to normalize direct  
word GPR and store result in direct word GPR  
SHL/SHR  
Data Sheet  
Shift left/right direct word GPR  
2
45  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Functional Description  
Table 11  
Mnemonic  
ROL/ROR  
ASHR  
Instruction Set Summary (cont’d)  
Description  
Bytes  
Rotate left/right direct word GPR  
2
Arithmetic (sign bit) shift right direct word GPR  
Move word (byte) data  
2
MOV(B)  
MOVBS/Z  
JMPA/I/R  
JMPS  
2 / 4  
Move byte operand to word op. with sign/zero extension 2 / 4  
Jump absolute/indirect/relative if condition is met  
Jump absolute to a code segment  
4
4
4
4
JB(C)  
Jump relative if direct bit is set (and clear bit)  
Jump relative if direct bit is not set (and set bit)  
JNB(S)  
CALLA/I/R  
CALLS  
Call absolute/indirect/relative subroutine if condition is met 4  
Call absolute subroutine in any code segment  
4
4
PCALL  
Push direct word register onto system stack and call  
absolute subroutine  
TRAP  
Call interrupt service routine via immediate trap number  
Push/pop direct word register onto/from system stack  
2
2
4
PUSH/POP  
SCXT  
Push direct word register onto system stack and update  
register with word operand  
RET(P)  
Return from intra-segment subroutine  
2
(and pop direct word register from system stack)  
RETS  
Return from inter-segment subroutine  
Return from interrupt service subroutine  
Software Break  
2
RETI  
2
SBRK  
SRST  
2
Software Reset  
4
IDLE  
Enter Idle Mode  
4
PWRDN  
SRVWDT  
Unused instruction1)  
4
Service Watchdog Timer  
4
DISWDT/ENWDT Disable/Enable Watchdog Timer  
4
EINIT  
End-of-Initialization Register Lock  
4
ATOMIC  
EXTR  
Begin ATOMIC sequence  
2
Begin EXTended Register sequence  
Begin EXTended Page (and Register) sequence  
Begin EXTended Segment (and Register) sequence  
2
EXTP(R)  
EXTS(R)  
2 / 4  
2 / 4  
Data Sheet  
46  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Functional Description  
Table 11  
Mnemonic  
NOP  
Instruction Set Summary (cont’d)  
Description  
Bytes  
Null operation  
2
4
4
4
4
CoMUL/CoMAC  
CoADD/CoSUB  
Co(A)SHR  
Multiply (and accumulate)  
Add/Subtract  
(Arithmetic) Shift right  
Shift left  
CoSHL  
CoLOAD/STORE  
CoCMP  
Load accumulator/Store MAC register  
Compare  
4
4
4
4
4
4
CoMAX/MIN  
CoABS/CoRND  
CoMOV  
Maximum/Minimum  
Absolute value/Round accumulator  
Data move  
CoNEG/NOP  
Negate accumulator/Null operation  
1) The Enter Power Down Mode instruction is not used in the XE161FU, due to the enhanced power control  
scheme. PWRDN will be correctly decoded, but will trigger no action.  
Data Sheet  
47  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Functional Description  
Data Sheet  
48  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
4
Electrical Parameters  
The operating range for the XE161FU is defined by its electrical parameters. For proper  
operation the specified limits must be respected when integrating the device in its target  
environment.  
4.1  
General Parameters  
These parameters are valid for all subsequent descriptions, unless otherwise noted.  
Table 12  
Absolute Maximum Rating Parameters  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
OH SR -15  
Max.  
Output current on a pin  
when high value is driven  
I
I
I
mA  
mA  
Output current on a pin  
when low value is driven  
OL SR  
15  
1)  
1)  
Overload current  
OV SR -5  
5
mA  
mA  
Absolute sum of overload Σ|IOV  
|
50  
currents  
SR  
Junction Temperature  
Storage Temperature  
TJ SR  
-40  
150  
150  
6.0  
°C  
°C  
V
T
ST SR -65  
Digital supply voltage for  
IO pads and voltage  
regulators  
V
DDP SR -0.5  
Voltage on any pin with  
respect to ground (Vss)  
V
IN SR -0.5  
VDDP  
0.5  
+
V
VINVDDP(max)  
1) Overload condition occurs if the input voltage VIN is out of the absolute maximum rating range. In this case the  
current must be limited to the listed values by design measures.  
Note: Stresses above the values listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only. Functional operation  
of the device at these or any other conditions above those indicated in the  
operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for an extended time may affect device reliability.  
During absolute maximum rating overload conditions (VIN > VDDP or VIN < VSS) the  
voltage on VDDP pins with respect to ground (VSS) must not exceed the values  
defined by the absolute maximum ratings.  
Data Sheet  
48  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
4.1.1  
Operating Conditions  
The following operating conditions must not be exceeded to ensure correct operation of  
the XE161FU. All parameters specified in the following sections refer to these operating  
conditions, unless otherwise noticed.  
Note: Typical parameter values refer to room temperature and nominal supply voltage,  
minimum/maximum  
parameter  
values  
also  
include  
conditions  
of  
minimum/maximum temperature and minimum/maximum supply voltage.  
Additional details are described where applicable.  
Table 13  
Parameter  
Operating Conditions  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
1)2)  
Voltage Regulator Buffer CEVRM  
1.0  
4.7  
μF  
Capacitance for DMP_M SR  
External Load  
Capacitance  
CL SR  
203)  
pF  
pin out  
driver= default  
4)  
5)  
System frequency  
f
SYS SR  
66  
5
MHz  
Overload current for  
analog inputs6)  
I
OVA SR -2  
mA not subject to  
production test  
Overload current for digital IOVD SR -5  
5
mA not subject to  
production test  
inputs6)  
Overload current coupling KOVA  
factor for analog inputs7)  
CC  
2.5 x  
10-4  
1.5 x  
10-3  
-
IOV< 0 mA; not  
subject to  
production test  
1.0 x  
10-6  
1.0 x  
10-4  
-
IOV> 0 mA; not  
subject to  
production test  
Data Sheet  
49  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
Table 13  
Operating Conditions (cont’d)  
Parameter  
Symbol  
Min.  
Values  
Unit Note /  
Test Condition  
Typ.  
Max.  
Overload current coupling KOVD  
factor for digital I/O pins CC  
1.0 x  
10-2  
3.0 x  
10-2  
IOV< 0 mA; not  
subject to  
production test  
1.0 x  
10-4  
5.0 x  
10-3  
IOV> 0 mA; not  
subject to  
production test  
Absolute sum of overload Σ|IOV  
currents SR  
|
30  
mA not subject to  
production test  
Digital core supply voltage VDDIM  
1.5  
V
V
for domain M8)  
CC  
Digital supply voltage for  
IO pads and voltage  
regulators  
V
DDP SR 3.0  
5.5  
Digital ground voltage  
V
SS SR  
0
V
1) To ensure the stability of the voltage regulators the EVRs must be buffered with ceramic capacitors. Separate  
buffer capacitors with the recomended values shall be connected as close as possible to each VDDIM pin to  
keep the resistance of the board tracks below 2 Ohm. Connect all VDDIM pins together. The minimum  
capacitance value is required for proper operation under all conditions (e.g. temperature). Higher values  
slightly increase the startup time.  
2) Use one Capacitor for each pin.  
3) This is the reference load. For bigger capacitive loads, use the derating factors listed in the PAD properties  
section.  
4) The timing is valid for pin drivers operating in default current mode (selected after reset). Reducing the output  
current may lead to increased delays or reduced driving capability (CL).  
5) The operating frequency range may be reduced for specific device types. This is indicated in the device  
designation (...FxxL). 40 MHz devices are marked ...F40L.  
6) Overload conditions occur if the standard operating conditions are exceeded, i.e. the voltage on any pin  
exceeds the specified range: VOV > VIHmax (IOV > 0) or VOV < VILmin ((IOV < 0). The absolute sum of input  
overload currents on all pins may not exceed 50 mA. The supply voltages must remain within the specified  
limits. Proper operation under overload conditions depends on the application. Overload conditions must not  
occur on pin XTAL1.  
7) An overload current (IOV) through a pin injects a certain error current (IINJ) into the adjacent pins. This error  
current adds to the respective pins leakage current (IOZ). The amount of error current depends on the overload  
current and is defined by the overload coupling factor KOV. The polarity of the injected error current is inverse  
compared to the polarity of the overload current that produces it.The total current through a pin is |ITOT| = |IOZ  
|
+ (|IOV| KOV). The additional error current may distort the input voltage on analog inputs.  
Data Sheet  
50  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
8) Value is controlled by on-chip regulator.  
4.2  
Voltage Range definitions  
The XE161FU timing depends on the supply voltage. If such a dependency exists the  
timing values are given for 2 voltage areas commonly used. The voltage areas are  
defined in the following tables.  
Table 14  
Upper Voltage Range Definition  
Symbol Values  
Parameter  
Unit Note /  
Test Condition  
Min.  
DDP SR 4.5  
Typ.  
Max.  
Digital supply voltage for  
IO pads and voltage  
regulators  
V
5.0  
5.5  
V
Table 15  
Lower Voltage Range Definition  
Symbol Values  
Parameter  
Unit Note /  
Test Condition  
Min.  
DDP SR 3.0  
Typ.  
Max.  
Digital supply voltage for  
IO pads and voltage  
regulators  
V
3.3  
4.5  
V
4.2.1  
Parameter Interpretation  
The parameters listed in the following include both the characteristics of the XE161FU  
and its demands on the system. To aid in correctly interpreting the parameters when  
evaluating them for a design, they are marked accordingly in the column “Symbol”:  
CC (Controller Characteristics):  
The logic of the XE161FU provides signals with the specified characteristics.  
SR (System Requirement):  
The external system must provide signals with the specified characteristics to the  
XE161FU.  
Data Sheet  
51  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
4.3  
DC Parameters  
These parameters are static or average values that may be exceeded during switching  
transitions (e.g. output current).  
The XE161FU can operate within a wide supply voltage range from 3.0 V to 5.5 V.  
However, during operation this supply voltage must remain within 10 percent of the  
selected nominal supply voltage. It cannot vary across the full operating voltage range.  
Because of the supply voltage restriction and because electrical behavior depends on  
the supply voltage, the parameters are specified separately for the upper and the lower  
voltage range.  
During operation, the supply voltages may only change with a maximum speed of  
dV/dt < 1 V/ms.  
Leakage current is strongly dependent on the operating temperature and the voltage  
level at the respective pin. The maximum values in the following tables apply under worst  
case conditions, i.e. maximum temperature and an input level equal to the supply  
voltage.  
The value for the leakage current in an application can be determined by using the  
respective leakage derating formula (see tables) with values from that application.  
The pads of the XE161FU are designed to operate in various driver modes. The DC  
parameter specifications refer to the pad current limits specified in Section 4.7.4.  
Data Sheet  
52  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
Pullup/Pulldown Device Behavior  
Most pins of the XE161FU feature pullup or pulldown devices. For some special pins  
these are fixed; for the port pins they can be selected by the application.  
The specified current values indicate how to load the respective pin depending on the  
intended signal level. Figure 11 shows the current paths.  
The shaded resistors shown in the figure may be required to compensate system pull  
currents that do not match the given limit values.  
VDDP  
Pullup  
Pulldown  
VSS  
MC_XC2X_PULL  
Figure 11  
Pullup/Pulldown Current Definition  
Data Sheet  
53  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
4.3.1  
DC Parameters for Upper Voltage Area  
Keeping signal levels within the limits specified in this table ensures operation without  
overload conditions. For signal levels outside these specifications, also refer to the  
specification of the overload current IOV  
.
Note: Operating Conditions apply.  
Table 16 is valid under the following conditions: VDDP5.5 V; VDDPtyp. 5 V; VDDP4.5 V  
Table 16  
DC Characteristics for Upper Voltage Range  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
Pin capacitance (digital  
inputs/outputs).  
CIO CC  
10  
pF  
not subject to  
production test  
Input Hysteresis1)  
HYS CC 0.11 x  
V
RS= 0 Ohm  
VDDP  
Absolute input leakage  
|IOZ1  
|
10  
200  
nA  
VIN> VSS ;  
VIN< VDDP  
current on pins of analog CC  
ports2)  
Absolute input leakage  
|IOZ2  
CC  
|
0.2  
0.2  
5
μA  
μA  
μA  
TJ110 °C;  
VIN> VSS ;  
VIN< VDDP  
current for all other pins.  
2)3)  
10  
TJ150 °C;  
VIN> VSS  
;
VIN< VDDP  
Pull Level Force Current4) |IPLF| SR 220  
VINVIHmin  
(pulldown_ena  
bled);  
VINVILmax  
(pullup_enable  
d)  
Pull Level Keep Current5) |IPLK  
|
30  
μA  
VINVIHmin  
(pullup_enable  
d);  
VINVILmax  
(pulldown_ena  
bled)  
SR  
Input high voltage (all  
except XTAL1)  
V
IH SR 0.7 x  
VDDP  
0.3  
+
V
VDDP  
Data Sheet  
54  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
Table 16  
DC Characteristics for Upper Voltage Range (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
VIL SR -0.3  
Max.  
Input low voltage  
(all except XTAL1)  
Output High voltage6)  
0.3 x  
VDDP  
V
V
V
V
OH CC VDDP  
-
-
IOHIOHmax  
1.0  
7)  
VDDP  
IOHIOHnom  
0.4  
8)  
Output Low Voltage6)  
V
OL CC  
0.4  
1.0  
V
V
IOLIOLnom  
IOLIOLmax  
1) Not subject to production test - verified by design/characterization. Hysteresis is implemented to avoid  
metastable states and switching due to internal ground bounce. It cannot suppress switching due to external  
system noise under all conditions.  
2) If the input voltage exceeds the respective supply voltage due to ground bouncing (VIN < VSS) or supply ripple  
(VIN > VDDP), a certain amount of current may flow through the protection diodes. This current adds to the  
leakage current. An additional error current (IINJ) will flow if an overload current flows through an adjacent pin.  
Please refer to the definition of the overload coupling factor KOV  
.
3) The given values are worst-case values. In production test, this leakage current is only tested at 125 °C; other  
values are ensured by correlation. For derating, please refer to the following descriptions: Leakage derating  
depending on temperature (TJ = junction temperature [°C]): IOZ = 0.05 x e(1.5 + 0.028 x TJ>) [μA]. For example, at  
a temperature of 95 °C the resulting leakage current is 3.2 μA. Leakage derating depending on voltage level  
(DV = VDDP - VPIN [V]): IOZ = IOZtempmax - (1.6 x DV) (μA]. This voltage derating formula is an approximation  
which applies for maximum temperature.  
4) Drive the indicated minimum current through this pin to change the default pin level driven by the enabled pull  
device.  
5) Limit the current through this pin to the indicated value so that the enabled pull device can keep the default  
pin level.  
6) The maximum deliverable output current of a port driver depends on the selected output driver mode. This  
specification is not valid for outputs which are switched to open drain mode. In this case the respective output  
will float and the voltage is determined by the external circuit.  
7) As a rule, with decreasing output current the output levels approach the respective supply level (VOL->VSS,  
VOH->VDDP). However, only the levels for nominal output currents are verified.  
8) As a rule, with decreasing output current the output levels approach the respective supply level (VOL->VSS  
OH->VDDP). However, only the levels for nominal output currents are verified.  
,
V
Data Sheet  
55  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
4.3.2  
DC Parameters for Lower Voltage Area  
Keeping signal levels within the limits specified in this table ensures operation without  
overload conditions. For signal levels outside these specifications, also refer to the  
specification of the overload current IOV  
.
Note: Operating Conditions apply.  
Table 17 is valid under the following conditions: VDDP3.0 V; VDDPtyp. 3.3 V;  
VDDP4.5 V  
Table 17  
DC Characteristics for Lower Voltage Range  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
Pin capacitance (digital  
inputs/outputs).  
CIO CC  
10  
pF  
not subject to  
production test  
Input Hysteresis1)  
HYS CC 0.07 x  
V
RS= 0 Ohm  
VDDP  
Absolute input leakage  
|IOZ1  
|
10  
200  
nA  
VIN> VSS ;  
VIN< VDDP  
current on pins of analog CC  
ports2)  
Absolute input leakage  
|IOZ2  
CC  
|
0.2  
0.2  
2
6
μA  
μA  
μA  
TJ110 °C;  
VIN> VSS ;  
VIN< VDDP  
current for all other pins.  
2)3)  
TJ150 °C;  
VIN> VSS  
;
VIN< VDDP  
Pull Level Force Current4) |IPLF| SR 150  
VINVIHmin  
(pulldown_ena  
bled);  
VINVILmax  
(pullup_enable  
d) ;  
Pull Level Keep Current5) |IPLK  
|
10  
μA  
VINVIHmin  
(pullup_enable  
d);  
SR  
VINVILmax  
(pulldown_ena  
bled)  
Data Sheet  
56  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
Table 17  
DC Characteristics for Lower Voltage Range (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
IH SR 0.7 x  
VDDP  
VIL SR -0.3  
Max.  
Input high voltage (all  
except XTAL1)  
V
VDDP  
0.3  
+
V
V
V
V
Input low voltage  
(all except XTAL1)  
Output High voltage6)  
0.3 x  
VDDP  
V
OH CC VDDP  
-
-
IOHIOHmax  
1.0  
7)  
VDDP  
IOHIOHnom  
0.4  
8)  
Output Low Voltage6)  
V
OL CC  
0.4  
1.0  
V
V
IOLIOLnom  
IOLIOLmax  
1) Not subject to production test - verified by design/characterization. Hysteresis is implemented to avoid  
metastable states and switching due to internal ground bounce. It cannot suppress switching due to external  
system noise under all conditions.  
2) If the input voltage exceeds the respective supply voltage due to ground bouncing (VIN < VSS) or supply ripple  
(VIN > VDDP), a certain amount of current may flow through the protection diodes. This current adds to the  
leakage current. An additional error current (IINJ) will flow if an overload current flows through an adjacent pin.  
Please refer to the definition of the overload coupling factor KOV  
.
3) The given values are worst-case values. In production test, this leakage current is only tested at 125 °C; other  
values are ensured by correlation. For derating, please refer to the following descriptions: Leakage derating  
depending on temperature (TJ = junction temperature [°C]): IOZ = 0.05 x e(1.5 + 0.028 x TJ>) [μA]. For example, at  
a temperature of 95 °C the resulting leakage current is 3.2 μA. Leakage derating depending on voltage level  
(DV = VDDP - VPIN [V]): IOZ = IOZtempmax - (1.6 x DV) (μA]. This voltage derating formula is an approximation  
which applies for maximum temperature.  
4) Drive the indicated minimum current through this pin to change the default pin level driven by the enabled pull  
device.  
5) Limit the current through this pin to the indicated value so that the enabled pull device can keep the default  
pin level.  
6) The maximum deliverable output current of a port driver depends on the selected output driver mode. This  
specification is not valid for outputs which are switched to open drain mode. In this case the respective output  
will float and the voltage is determined by the external circuit.  
7) As a rule, with decreasing output current the output levels approach the respective supply level (VOL->VSS,  
VOH->VDDP). However, only the levels for nominal output currents are verified.  
8) As a rule, with decreasing output current the output levels approach the respective supply level (VOL->VSS  
OH->VDDP). However, only the levels for nominal output currents are verified.  
,
V
Data Sheet  
57  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
4.3.3  
Power Consumption  
The power consumed by the XE161FU depends on several factors such as supply  
voltage, operating frequency, active circuits, and operating temperature. The power  
consumption specified here consists of two components:  
The switching current IS depends on the device activity  
The leakage current ILK depends on the device temperature  
To determine the actual power consumption, always both components, switching current  
IS and leakage current ILK must be added:  
I
DDP = IS + ILK.  
Note: The power consumption values are not subject to production test. They are  
verified by design/characterization.  
To determine the total power consumption for dimensioning the external power  
supply, also the pad driver currents must be considered.  
The given power consumption parameters and their values refer to specific operating  
conditions:  
Active mode:  
Regular operation, i.e. peripherals are active, code execution out of Flash.  
Stopover mode:  
Crystal oscillator and PLL stopped, Flash switched off, clock in most parts of domain  
DMP_M stopped.  
Note: The maximum values cover the complete specified operating range of all  
manufactured devices.  
The typical values refer to average devices under typical conditions, such as  
nominal supply voltage, room temperature, application-oriented activity.  
After a power reset, the decoupling capacitors for VDDIM are charged with the  
maximum possible current.  
For additional information, please refer to Section 5.2, Thermal Considerations.  
Note: Operating Conditions apply.  
Data Sheet  
58  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
Table 18  
Switching Power Consumption  
Symbol  
Parameter  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
7 + 0.6 mA power_mode=  
Power supply current  
(active)withall peripherals CC  
active and EVVRs on  
ISACT  
5.5 +  
0.4 x  
fSYS  
1)  
x fSYS  
active ;  
1)  
voltage_range=  
both 2)3)4)  
Power supply current in  
stopover mode, EVVRs on  
I
SSO CC  
0.7  
2.0  
mA power_mode=  
stopover ;  
voltage_range=  
both  
1)  
fSYS in MHz  
2) The pad supply voltage pins (VDDPB) provide the input current for the on-chip EVVRs and the current  
consumed by the pin output drivers. A small current is consumed because the drivers input stages are  
switched.  
3) Please consider the additional conditions described in section "Active Mode Power Supply Current".  
4) The pad supply voltage only has a minor influence on this parameter.  
Active Mode Power Supply Current  
The actual power supply current in active mode not only depends on the system  
frequency but also on the configuration of the XE161FU’s subsystem.  
Besides the power consumed by the device logic the power supply pins also provide the  
current that flows through the pin output drivers.  
A small current is consumed because the drivers’ input stages are switched.  
Data Sheet  
59  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
IS [mA]  
60  
50  
40  
30  
20  
10  
ISACTmax  
ISACTtyp  
fSYS [MHz]  
20  
40  
60  
80  
MC_XC2XU_IS  
Figure 12  
Supply Current in Active Mode as a Function of Frequency  
Note: Operating Conditions apply.  
Table 19  
Leakage Power Consumption  
Symbol  
Parameter  
Values  
Typ.  
0.03  
0.4  
Unit Note /  
Test Condition  
Min.  
Max.  
0.04  
0.95  
4.6  
Leakage supply current1)2)  
I
LK1 CC  
mA TJ= 25 °C  
mA TJ= 85 °C  
mA TJ= 125 °C  
mA TJ= 150 °C  
1.5  
3.3  
10.1  
1) The supply current caused by leakage depends mainly on the junction temperature and the supply voltage.  
The temperature difference between the junction temperature TJ and the ambient temperature TA must be  
taken into account. As this fraction of the supply current does not depend on device activity, it must be added  
to other power consumption values.  
2) All inputs (including pins configured as inputs) are set at 0 V to 0.1 V or at VDDP - 0.1 V to VDDP and all outputs  
(including pins configured as outputs) are disconnected.  
Leakage Power Consumption Calculation  
The leakage power consumption can be calculated according to the following formulas:  
Data Sheet  
60  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
ILK1 = 440,000 + e-α with α = 5000 / (273 + B×TJ)  
Parameter B must be replaced by  
1.0 for typical values  
1.3 for maximum values  
ILK [mA]  
ILK1max  
12  
10  
8
6
ILK1typ  
4
2
TJ [°C]  
-50  
0
50  
100 125 150  
MC_XC2XU_ILKN  
Figure 13  
Leakage Supply Current as a Function of Temperature  
Data Sheet  
61  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
4.4  
Analog/Digital Converter Parameters  
These parameters describe the conditions for optimum ADC performance.  
Note: Operating Conditions apply.  
Table 20  
ADC Parameters for All Voltage Ranges  
Parameter  
Symbol  
Values  
Typ.  
9
Unit Note /  
Test Condition  
Min.  
Max.  
Switched capacitance at CAINSW  
an analog input  
20  
pF  
pF  
pF  
pF  
not subject to  
CC  
production test  
1)  
Total capacitance at an  
analog input  
CAINT  
CC  
20  
15  
20  
30  
30  
40  
not subject to  
production test  
1)  
Switched capacitance at CAREFSW  
the reference input  
not subject to  
CC  
production test  
1)  
Total capacitance at the  
reference input  
CAREFT  
CC  
not subject to  
production test  
1)  
Broken wire detection  
delay against VAGND2)  
t
t
t
BWG CC −  
503)  
504)  
Broken wire detection  
delay against VAREF2)  
BWR CC  
c8 CC  
Conversion time for 8-bit  
result2)  
(10 + STC x tADCI + 2 x  
tSYS  
Conversion time for 10-bit tc10 CC (12 + STC x tADCI + 2 x  
result2)  
tSYS  
Conversion time for 12-bit tc12 CC (16 + STC x tADCI + 2 x  
result2)  
tSYS  
Analog reference ground VAGND  
VSS  
0.05  
-
1.5  
V
V
V
SR  
5)  
Analog input voltage  
range  
V
AIN SR VAGND  
VAREF  
Analog reference voltage VAREF  
VAGND  
VDDPB  
SR  
+ 1.0  
+ 0.05  
1) These parameter values cover the complete operating range. Under relaxed operating conditions  
(temperature, supply voltage) typical values can be used for calculation.  
Data Sheet  
62  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
2) This parameter includes the sample time (also the additional sample time specified by STC), the time to  
determine the digital result and the time to load the result register with the conversion result. Values for the  
basic clock tADCI depend on programming.  
3) The broken wire detection delay against VAGND is measured in numbers of consecutive precharge cycles at a  
conversion rate of not more than 500 µs. Result below 10% (66H)  
4) The broken wire detection delay against VAREF is measured in numbers of consecutive precharge cycles at a  
conversion rate of not more than 10 µs. This function is influenced by leakage current, in particular at high  
temperature. Result above 80% (332H)  
5)  
VAIN may exceed VAGND or VAREF up to the absolute maximum ratings. However, the conversion result in these  
cases will be X000H or X3FFH, respectively.  
Table 21  
ADC Parameters for Upper Voltage Range  
Parameter  
Symbol  
Values  
Typ.  
0.9  
Unit Note /  
Test Condition  
Min.  
Max.  
Input resistance of the  
selected analog channel  
R
AIN CC  
1.5  
kOh not subject to  
production test  
m
1)  
Input resistance of the  
reference input  
RAREF  
CC  
0.5  
1
kOh not subject to  
m
production test  
1)  
Differential Non-Linearity |EADNL  
|
2.5  
2.5  
2.0  
2.0  
5.0  
6.0  
4.0  
4.0  
20  
LSB  
LSB  
LSB  
LSB  
Error2)3)4)5)  
CC  
Gain Error2)3)4)5)  
|EAGAIN|  
CC  
Integral Non-  
Linearity2)3)4)5)  
|EAINL|  
CC  
Offset Error2)3)4)5)  
|EAOFF|  
CC  
Analog clock frequency  
f
ADCI SR 2  
2
MHz Std. reference  
input (VAREF  
)
17.5  
5.5  
7.0  
11.5  
MHz Alt. reference  
input (CH0)  
Total Unadjusted Error3)4) |TUE|  
CC  
2.5  
LSB  
6)7)  
Wakeup time from analog tWAF CC  
powerdown, fast mode  
μs  
μs  
Wakeup time from analog tWAS CC  
powerdown, slow mode  
Data Sheet  
63  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
1) These parameter values cover the complete operating range. Under relaxed operating conditions  
(temperature, supply voltage) typical values can be used for calculation.  
2) The sum of DNL/INL/GAIN/OFF errors does not exceed the related TUE total unadjusted error.  
3) If a reduced analog reference voltage between 1V and VDDPB / 2 is used, then there are additional decrease  
in the ADC speed and accuracy.  
4) If the analog reference voltage range is below VDDPB but still in the defined range of VDDPB / 2 and VDDPB is  
used, then the ADC converter errors increase. If the reference voltage is reduced by the factor k (k<1), TUE,  
DNL, INL, Gain and Offset errors increase also by the factor 1/k.  
5) If the analog reference voltage is > VDDPB, then the ADC converter errors increase.  
6) TUE is based on 12-bit conversion.  
7) TUE is tested at VAREF = VDDPB = 5.0 V, VAGND = 0 V. It is verified by design for all other voltages within the  
defined voltage range. The specified TUE is valid only if the absolute sum of input overload currents on analog  
port pins (see IOV specification) does not exceed 10 mA, and if VAREF and VAGND remain stable during the  
measurement time.  
Table 22  
ADC Parameters for Lower Voltage Range  
Parameter  
Symbol  
Values  
Typ.  
1.4  
Unit Note /  
Test Condition  
Min.  
Max.  
Input resistance of the  
selected analog channel  
R
AIN CC  
2.5  
kOh not subject to  
production test  
m
1)  
Input resistance of the  
reference input  
RAREF  
CC  
1.0  
2.0  
kOh not subject to  
m
production test  
1)  
Differential Non-Linearity |EADNL  
|
2.5  
3.0  
2.5  
2.0  
5.5  
LSB  
LSB  
LSB  
LSB  
Error2)3)4)5)  
CC  
Gain Error2)3)4)5)  
|EAGAIN  
|
8.0  
CC  
Integral Non-  
Linearity2)3)4)5)  
|EAINL  
CC  
|
7.5  
Offset Error2)3)4)5)  
|EAOFF  
|
5.5  
CC  
Analog clock frequency  
f
ADCI SR 2  
2
16.7  
12.1  
7.5  
MHz Std. reference  
input (VAREF  
)
MHz Alt. reference  
input (CH0)  
Total Unadjusted Error3)4) |TUE|  
CC  
2.5  
LSB  
6)7)  
Data Sheet  
64  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
Table 22  
ADC Parameters for Lower Voltage Range (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
Wakeup time from analog tWAF CC  
powerdown, fast mode  
8.5  
μs  
μs  
Wakeup time from analog tWAS CC  
15.0  
powerdown, slow mode  
1) These parameter values cover the complete operating range. Under relaxed operating conditions  
(temperature, supply voltage) typical values can be used for calculation.  
2) The sum of DNL/INL/GAIN/OFF errors does not exceed the related TUE total unadjusted error.  
3) If a reduced analog reference voltage between 1V and VDDPB / 2 is used, then there are additional decrease  
in the ADC speed and accuracy.  
4) If the analog reference voltage range is below VDDPB but still in the defined range of VDDPB / 2 and VDDPB is  
used, then the ADC converter errors increase. If the reference voltage is reduced by the factor k (k<1), TUE,  
DNL, INL, Gain and Offset errors increase also by the factor 1/k.  
5) If the analog reference voltage is > VDDPB, then the ADC converter errors increase.  
6) TUE is based on 12-bit conversion.  
7) TUE is tested at VAREF = VDDPB = 3.3 V, VAGND = 0 V. It is verified by design for all other voltages within the  
defined voltage range. The specified TUE is valid only if the absolute sum of input overload currents on analog  
port pins (see IOV specification) does not exceed 10 mA, and if VAREF and VAGND remain stable during the  
measurement time.  
A/D Converter  
RSource  
RAIN, On  
VAIN  
-
CExt  
CAINT CAINS  
CAINS  
MCS05570  
Figure 14  
Equivalent Circuitry for Analog Inputs  
Sample time and conversion time of the XE161FU’s A/D converters are programmable.  
The timing above can be calculated using Table 23.  
The limit values for fADCI must not be exceeded when selecting the prescaler value.  
Data Sheet  
65  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
Table 23  
A/D Converter Computation Table  
GLOBCTR.5-0  
(DIVA)  
A/D Converter  
Analog Clock fADCI  
INPCRx.7-0  
Sample Time1)  
tS  
(STC)  
00H  
01H  
02H  
:
000000B  
000001B  
000010B  
:
fSYS  
tADCI × 2  
f
f
f
f
f
SYS / 2  
tADCI × 3  
SYS / 3  
tADCI × 4  
SYS / (DIVA+1)  
SYS / 63  
tADCI × (STC+2)  
tADCI × 256  
tADCI × 257  
111110B  
111111B  
FEH  
FFH  
SYS / 64  
1) The selected sample time is doubled if broken wire detection is active (due to the presampling phase).  
Converter Timing Example A:  
Assumptions:  
Analog clock  
Sample time  
fSYS = 66 MHz (i.e. tSYS = 15.2 ns), DIVA = 03H, STC = 00H  
fADCI = fSYS / 4 = 16.5 MHz, i.e. tADCI = 60.6 ns  
tS  
= tADCI × 2 = 121.2 ns  
Conversion 12-bit:  
tC12 = 16 × tADCI + 2 × tSYS = 16 × 60.6 ns + 2 × 15.2 ns = 1.0 μs  
Conversion 10-bit:  
tC10 = 12 × tADCI + 2 × tSYS = 12 × 60.6 ns + 2 × 15.2 ns = 0.758 μs  
Conversion 8-bit:  
tC8  
= 10 × tADCI + 2 × tSYS = 10 × 60.6 ns + 2 × 15.2 ns = 0.636 μs  
Converter Timing Example B:  
Assumptions:  
Analog clock  
Sample time  
fSYS = 40 MHz (i.e. tSYS = 25 ns), DIVA = 01H, STC = 00H  
fADCI = fSYS / 2 = 20 MHz, i.e. tADCI = 50 ns  
tS = tADCI × 2 = 100 ns  
Conversion 12-bit:  
tC12 = 16 × tADCI + 2 × tSYS = 16 × 50 ns + 2 × 25 ns = 0.85 μs  
Conversion 10-bit:  
tC10 = 12 × tADCI + 2 × tSYS = 12 × 50 ns + 2 × 25 ns = 0.65 μs  
Data Sheet  
66  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
Conversion 8-bit:  
tC8  
= 10 × tADCI + 2 × tSYS = 10 × 50 ns + 2 × 25 ns = 0.55 μs  
Data Sheet  
67  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
4.5  
System Parameters  
The following parameters specify several aspects which are important when integrating  
the XE161FU into an application system.  
Note: These parameters are not subject to production test but verified by design and/or  
characterization.  
Note: Operating Conditions apply.  
Table 24  
Various System Parameters  
Parameter  
Symbol  
Min.  
Values  
Typ.  
Unit Note /  
Test Condition  
Max.  
Short-term deviation of  
internal clock source  
frequency1)  
ΔfINT CC -1  
1
%
ΔTJ = 10°C  
Internal clock source  
frequency  
f
f
INT CC 4.8  
5.0  
5.2  
MHz  
Wakeup clock source  
frequency2)  
WU CC 400  
210  
700  
390  
260  
200  
2.4  
kHz FREQSEL= 00  
kHz FREQSEL= 01  
kHz FREQSEL= 10  
kHz FREQSEL= 11  
140  
110  
Startup time from power-  
on with code execution  
from Flash  
t
SPO CC 1.4  
1.9  
ms  
f
WU = 500 kHz  
Startup time from stopover tSSO CC 11 /  
12 /  
fWU  
μs  
3)  
3)  
mode with code execution  
fWU  
from PSRAM  
5)  
Core voltage (PVC)  
supervision level  
V
PVC CC VLV  
-
VLV  
VLV  
VLV  
VLV  
0.074)  
VLV  
0.15  
+
V
V
V
0.03  
Supply watchdog (SWD) VSWD  
supervision level CC  
VLV  
-
+
voltage_range=  
lower 5)  
0.106)  
VLV  
0.15  
-
VLV  
+
voltage_range=  
upper 5)  
0.15  
1) The short-term frequency deviation refers to a timeframe of a few hours and is measured relative to the current  
frequency at the beginning of the respective timeframe. This parameter is useful to determine a time span for  
re-triggering a LIN synchronization.  
2) This parameter is tested for the fastest and the slowest selection. The medium selections are not subject to  
production test - verified by design/characterization.  
3)  
fWU in MHz.  
Data Sheet  
68  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
4) This value includes a hysteresis of approximately 50 mV for rising voltage.  
5) LV = selected SWD voltage level  
V
6) The limit VLV - 0.10 V is valid for the OK1 level. The limit for the OK2 level is VLV - 0.15 V.  
Conditions for tSPO Timing Measurement  
The time required for the transition from Power-On to Base mode is called tSPO. It is  
measured under the following conditions:  
Precondition: The pad supply is valid, i.e. VDDPB is above 3.0 V and remains above 3.0 V  
even though the XE161FU is starting up. No debugger is attached.  
Start condition: Power on reset is removed (PORST = 1).  
End condition: External pin toggle caused by first user instruction executed from Flash  
after startup.  
Conditions for tSSO Timing Measurement  
The time required for the transition from Stopover to Stopover Waked-Up mode is  
called tSSO. It is measured under the following conditions:  
Precondition: The Stopover mode has been entered using the procedure defined in the  
Programmer’s Guide.  
Start condition: Pin toggle on ESR pin triggering the startup sequence.  
End condition: External pin toggle caused by first user instruction executed from PSRAM  
after startup.  
Data Sheet  
69  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
Coding of bit fields LEVxV in SWD Configuration Registers  
After power-on the supply watch dog is preconfigured to operate in the lower voltage  
range.  
Table 25  
Code  
Coding of bit fields LEVxV in Register SWDCON0  
Default Voltage Level  
Notes1)  
0000B  
-
out of valid operation range  
LEV1V: reset request  
step width is 0.1 V  
0001B  
3.0 V  
0010B - 0101B  
0110B  
3.1 V - 3.4 V  
3.6 V  
0111B  
4.0 V  
1000B  
4.2 V  
1001B  
4.5 V  
LEV2V: no request  
step width is 0.1 V  
1010B - 1110B  
1111B  
4.6 V - 5.0 V  
5.5 V  
1) The indicated default levels are selected automatically after a power reset.  
Coding of bit fields LEVxV in PVC Configuration Registers  
The core voltages are controlled internally to the nominal value of 1.5 V; a variation of  
±10 % is allowed. These operation conditions limit the possible PVC monitoring values  
to the predefined reset values shown in Table 26.  
Table 26  
Code  
Coding of bit fields LEVxV in Registers PVCyCONz  
Default Voltage Level  
Notes1)  
000B - 011B  
100B  
-
out of valid operation range  
LEV1V: reset request  
LEV2V: interrupt request2)  
out of valid operation range  
1.35 V  
1.45 V  
-
101B  
110B - 111B  
1) The indicated default levels are selected automatically after a power reset.  
2) Due to variations of the tolerance of both the Embedded Voltage Regulators (EVR) and PVC levels, this  
interrupt can be triggered inadvertently, even though the core voltage is within the normal range. It is,  
therefore, recommended not to use this warning level.  
Data Sheet  
70  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
4.6  
Flash Memory Parameters  
The XE161FU is delivered with all Flash sectors erased and with no protection installed.  
The data retention time of the XE161FU’s Flash memory (i.e. the time after which stored  
data can still be retrieved) depends on the number of times the Flash memory has been  
erased and programmed.  
Note: These parameters are not subject to production test but verified by design and/or  
characterization.  
Note: Operating Conditions apply.  
Table 27  
Flash Parameters  
Symbol  
Parameter  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
11)  
Parallel Flash module  
program/erase limit  
depending on Flash read  
activity  
NPP SR  
NFL_RD1  
Flash erase endurance  
for security pages  
NSEC SR 10  
cycle tRET20 years  
s
Flash wait states2)  
NWSFLASH  
SR  
1
2
3
4
fSYS8 MHz  
fSYS13 MHz  
fSYS17 MHz  
73)  
fSYS> 17 MHz  
Erase time per  
sector/page  
t
t
t
ER CC  
PR CC  
8.0  
ms  
ms  
Programming time per  
page  
33)  
3.5  
Data retention time  
RET CC 20  
DD SR 32  
year NER1,000 cycl  
s
es  
Drain disturb limit  
N
cycle  
s
Data Sheet  
71  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
Table 27  
Flash Parameters (cont’d)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
Typ.  
Max.  
15000 cycle tRET5 years;  
Number of erase cycles  
NER SR  
s
Valid for up to  
64 user  
selected  
sectors (data  
storage)  
1000  
cycle tRET20 years  
s
1) All Flash module(s) can be erased/programmed while code is executed and/or data is read from only one Flash  
module or from PSRAM. The Flash module that delivers code/data can, of course, not be erased/programmed.  
2) Value of IMB_IMBCTRL.WSFLASH.  
3) Programming and erase times depend on the internal Flash clock source. The control state machine needs a  
few system clock cycles. This increases the stated durations noticably only at extremely low system clock  
frequencies.  
Access to the XE161FU Flash modules is controlled by the IMB. Built-in prefetch  
mechanisms optimize the performance for sequential access.  
Flash access waitstates only affect non-sequential access. Due to prefetch  
mechanisms, the performance for sequential access (depending on the software  
structure) is only partially influenced by waitstates.  
Data Sheet  
72  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
4.7  
AC Parameters  
These parameters describe the dynamic behavior of the XE161FU.  
4.7.1  
Testing Waveforms  
These values are used for characterization and production testing (except pin XTAL1).  
Output delay  
Hold time  
Output delay  
Hold time  
0.8 VDDP  
0.7 VDDP  
Input Signal  
(driven by tester)  
0.3 VDDP  
0.2 VDDP  
Output Signal  
(measured)  
Output timings refer to the rising edge of CLKOUT.  
Input timings are calculated from the time, when the input signal reaches  
VIH or VIL, respectively.  
MCD05556C  
Figure 15  
Input Output Waveforms  
V
Load + 0.1 V  
V
V
OH - 0.1 V  
OL + 0.1 V  
Timing  
Reference  
Points  
V
Load - 0.1 V  
For timing purposes a port pin is no longer floating when a 100 mV  
change from load voltage occurs, but begins to float when a 100 mV  
change from the loaded VOH /VOL level occurs (IOH / IOL = 20 mA).  
MCA05565  
Figure 16  
Floating Waveforms  
Data Sheet  
73  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
4.7.2  
Definition of Internal Timing  
The internal operation of the XE161FU is controlled by the internal system clock fSYS  
.
Because the system clock signal fSYS can be generated from a number of internal and  
external sources using different mechanisms, the duration of the system clock periods  
(TCSs) and their variation (as well as the derived external timing) depend on the  
mechanism used to generate fSYS. This must be considered when calculating the timing  
for the XE161FU.  
Phase Locked Loop Operation (1:N)  
fIN  
fSYS  
TCS  
Direct Clock Drive (1:1)  
fIN  
fSYS  
TCS  
Prescaler Operation (N:1)  
fIN  
fSYS  
TCS  
MC_XC2X_CLOCKGEN  
Figure 17  
Generation Mechanisms for the System Clock  
Note: The example of PLL operation shown in Figure 17 uses a PLL factor of 1:4; the  
example of prescaler operation uses a divider factor of 2:1.  
The specification of the external timing (AC Characteristics) depends on the period of the  
system clock (TCS).  
Data Sheet  
74  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
Direct Drive  
When direct drive operation is selected (SYSCON0.CLKSEL = 11B), the system clock is  
derived directly from the input clock signal CLKIN1:  
f
SYS = fIN.  
The frequency of fSYS is the same as the frequency of fIN. In this case the high and low  
times of fSYS are determined by the duty cycle of the input clock fIN.  
Selecting Bypass Operation from the XTAL11) input and using a divider factor of 1 results  
in a similar configuration.  
Prescaler Operation  
When prescaler operation is selected (SYSCON0.CLKSEL = 10B, PLLCON0.VCOBY =  
1B), the system clock is derived either from the crystal oscillator (input clock signal  
XTAL1) or from the internal clock source through the output prescaler K1 (= K1DIV+1):  
f
SYS = fOSC / K1.  
If a divider factor of 1 is selected, the frequency of fSYS equals the frequency of fOSC. In  
this case the high and low times of fSYS are determined by the duty cycle of the input  
clock fOSC (external or internal).  
The lowest system clock frequency results from selecting the maximum value for the  
divider factor K1:  
f
SYS = fOSC / 1024.  
4.7.2.1 Phase Locked Loop (PLL)  
When PLL operation is selected (SYSCON0.CLKSEL = 10B, PLLCON0.VCOBY = 0B),  
the on-chip phase locked loop is enabled and provides the system clock. The PLL  
multiplies the input frequency by the factor F (fSYS = fIN × F).  
F is calculated from the input divider P (= PDIV+1), the multiplication factor N (=  
NDIV+1), and the output divider K2 (= K2DIV+1):  
(F = N / (P × K2)).  
The input clock can be derived either from an external source at XTAL1 or from the on-  
chip clock source.  
The PLL circuit synchronizes the system clock to the input clock. This synchronization is  
performed smoothly so that the system clock frequency does not change abruptly.  
Adjustment to the input clock continuously changes the frequency of fSYS so that it is  
locked to fIN. The slight variation causes a jitter of fSYS which in turn affects the duration  
of individual TCSs.  
1) Voltages on XTAL1 must comply to the core supply voltage VDDIM  
.
Data Sheet  
75  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
The timing in the AC Characteristics refers to TCSs. Timing must be calculated using the  
minimum TCS possible under the given circumstances.  
The actual minimum value for TCS depends on the jitter of the PLL. Because the PLL is  
constantly adjusting its output frequency to correspond to the input frequency (from  
crystal or oscillator), the accumulated jitter is limited. This means that the relative  
deviation for periods of more than one TCS is lower than for a single TCS (see formulas  
and Figure 18).  
This is especially important for bus cycles using waitstates and for the operation of  
timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train  
generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter  
is negligible.  
The value of the accumulated PLL jitter depends on the number of consecutive VCO  
output cycles within the respective timeframe. The VCO output clock is divided by the  
output prescaler K2 to generate the system clock signal fSYS. The number of VCO cycles  
is K2 × T, where T is the number of consecutive fSYS cycles (TCS).  
The maximum accumulated jitter (long-term jitter) DTmax is defined by:  
DTmax [ns] = ±(220 / (K2 × fSYS) + 4.3)  
This maximum value is applicable, if either the number of clock cycles T > (fSYS / 1.2) or  
the prescaler value K2 > 17.  
In all other cases for a timeframe of T × TCS the accumulated jitter DT is determined by:  
DT [ns] = DTmax × [(1 - 0.058 × K2) × (T - 1) / (0.83 × fSYS - 1) + 0.058 × K2]  
f
SYS in [MHz] in all formulas.  
Example, for a period of 3 TCSs @ 33 MHz and K2 = 4:  
max = ±(220 / (4 × 33) + 4.3) = 5.97 ns (Not applicable directly in this case!)  
D
D3 = 5.97 × [(1 - 0.058 × 4) × (3 - 1) / (0.83 × 33 - 1) + 0.058 × 4]  
= 5.97 × [0.768 × 2 / 26.39 + 0.232]  
= 1.7 ns  
Example, for a period of 3 TCSs @ 33 MHz and K2 = 2:  
Dmax = ±(220 / (2 × 33) + 4.3) = 7.63 ns (Not applicable directly in this case!)  
D3 = 7.63 × [(1 - 0.058 × 2) × (3 - 1) / (0.83 × 33 - 1) + 0.058 × 2]  
= 7.63 × [0.884 × 2 / 26.39 + 0.116]  
= 1.4 ns  
Data Sheet  
76  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
Acc. jitter DT  
ns  
±9  
fSYS = 33 MHz fSYS = 66 MHz  
fVCO = 66 MHz  
fVCO = 132MHz  
±8  
±7  
±6  
±5  
±4  
±3  
±2  
±1  
Cycles  
100  
T
0
1
20  
40  
60  
80  
MC_XC2X_JITTER  
Figure 18  
Approximated Accumulated PLL Jitter  
Note: The specified PLL jitter values are valid if the capacitive load per pin does not  
exceed CL = 20 pF.  
The maximum peak-to-peak noise on the pad supply voltage (measured between  
V
DDPB pin and VSS pin) is limited to a peak-to-peak voltage of VPP = 50 mV. This  
can be achieved by appropriate blocking of the supply voltage as close as possible  
to the supply pins and using PCB supply and ground planes.  
PLL frequency band selection  
Different frequency bands can be selected for the VCO so that the operation of the PLL  
can be adjusted to a wide range of input and output frequencies:  
Data Sheet  
77  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
Table 28  
System PLL Parameters  
Parameter  
Symbol  
Min.  
Values  
Typ.  
Unit Note /  
Test Condition  
Max.  
VCO output frequency  
fVCO CC 50  
110  
MHz VCOSEL= 00B;  
VCOmode=  
controlled  
10  
40  
MHz VCOSEL= 00B;  
VCOmode= free  
running  
100  
160  
80  
MHz VCOSEL= 01B;  
VCOmode=  
controlled  
20  
MHz VCOSEL= 01B;  
VCOmode= free  
running  
4.7.2.2 Wakeup Clock  
When wakeup operation is selected (SYSCON0.CLKSEL = 00B), the system clock is  
derived from the low-frequency wakeup clock source:  
f
SYS = fWU.  
In this mode, a basic functionality can be maintained without requiring an external clock  
source and while minimizing the power consumption.  
4.7.2.3 Selecting and Changing the Operating Frequency  
When selecting a clock source and the clock generation method, the required  
parameters must be carefully written to the respective bit fields, to avoid unintended  
intermediate states.  
Many applications change the frequency of the system clock (fSYS) during operation in  
order to optimize system performance and power consumption. Changing the operating  
frequency also changes the switching currents, which influences the power supply.  
To ensure proper operation of the on-chip EVRs while they generate the core voltage,  
the operating frequency shall only be changed in certain steps. This prevents overshoots  
and undershoots of the supply voltage.  
To avoid the indicated problems, recommended sequences are provided which ensure  
the intended operation of the clock system interacting with the power system.  
Please refer to the Programmer’s Guide.  
Data Sheet  
78  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
4.7.3  
External Clock Input Parameters  
These parameters specify the external clock generation for the XE161FU. The clock can  
be generated in two ways:  
By connecting a crystal or ceramic resonator to pins XTAL1/XTAL2.  
By supplying an external clock signal. This clock signal can be supplied either to  
pin XTAL1 (core voltage domain) or to pin CLKIN1 (IO voltage domain).  
If connected to CLKIN1, the input signal must reach the defined input levels VIL and VIH.  
If connected to XTAL1, a minimum amplitude VAX1 (peak-to-peak voltage) is sufficient for  
the operation of the on-chip oscillator.  
Note: The given clock timing parameters (t1 t4) are only valid for an external clock  
input signal.  
Note: Operating Conditions apply.  
Table 29  
External Clock Input Characteristics  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
Oscillator frequency  
f
OSC SR  
4
40  
MHz Input= Clock  
Signal  
4
16  
20  
MHz Input= Crystal  
or Resonator  
XTAL1 input current  
absolute value  
|IIL| CC  
μA  
Input clock high time  
Input clock low time  
Input clock rise time  
Input clock fall time  
t1 SR  
t2 SR  
t3 SR  
t4 SR  
6
6
8
8
8
8
ns  
ns  
ns  
ns  
Input voltage amplitude on VAX1 SR 0.3 x  
V
V
V
V
fOSC4 MHz;  
fOSC16 MHz  
XTAL11)  
VDDIM  
0.4 x  
VDDIM  
fOSC16 MHz;  
fOSC25 MHz  
0.5 x  
VDDIM  
fOSC25 MHz;  
fOSC40 MHz  
2)  
Input voltage range limits  
for signal on XTAL1  
V
IX1 SR -1.7 +  
1.7  
VDDIM  
1) The amplitude voltage VAX1 refers to the offset voltage VOFF. This offset voltage must be stable during the  
operation and the resulting voltage peaks must remain within the limits defined by VIX1  
.
Data Sheet  
79  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
2) Overload conditions must not occur on pin XTAL1.  
Note: For crystal/resonator operation, it is strongly recommended to measure the  
oscillation allowance (negative resistance) in the final target system (layout) to  
determine the optimum parameters for oscillator operation.  
The manufacturers of crystals and ceramic resonators offer an oscillator  
evaluation service. This evaluation checks the crystal/resonator specification  
limits to ensure a reliable oscillatior operation.  
t1  
t3  
0.9 VAX1  
VOFF  
VAX1  
0.1 VAX1  
t2  
t4  
tOSC = 1/fOSC  
MC_EXTCLOCK  
Figure 19  
External Clock Drive XTAL1  
Data Sheet  
80  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
4.7.4  
Pad Properties  
The output pad drivers of the XE161FU can operate in several user-selectable modes.  
Strong driver mode allows controlling external components requiring higher currents  
such as power bridges or LEDs. Reducing the driving power of an output pad reduces  
electromagnetic emissions (EME). In strong driver mode, selecting a slower edge  
reduces EME.  
The dynamic behavior, i.e. the rise time and fall time, depends on the applied external  
capacitance that must be charged and discharged. Timing values are given for a  
capacitance of 20 pF, unless otherwise noted.  
In general, the performance of a pad driver depends on the available supply voltage  
V
DDP. Therefore the following tables list the pad parameters for the upper voltage range  
and the lower voltage range, respectively.  
Note: These parameters are not subject to production test but verified by design and/or  
characterization.  
Note: Operating Conditions apply.  
Table 30 is valid under the following conditions: VDDP5.5 V; VDDPtyp. 5 V; VDDP4.5 V  
Table 30  
Standard Pad Parameters for Upper Voltage Range  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
Maximum output driver  
IOmax  
3.0  
mA Driver_Strength  
= Medium  
current (absolute value)1) CC  
5.0  
0.5  
1.0  
1.6  
0.25  
mA Driver_Strength  
= Strong  
mA Driver_Strength  
= Weak  
Nominal output driver  
current (absolute value)  
IOnom  
CC  
mA Driver_Strength  
= Medium  
mA Driver_Strength  
= Strong  
mA Driver_Strength  
= Weak  
Data Sheet  
81  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
Table 30  
Standard Pad Parameters for Upper Voltage Range (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
Rise and Fall times (10% - tRF CC  
90%)  
38 +  
0.6 x  
CL  
ns  
ns  
CL20 pF;  
CL100 pF;  
Driver_Strength  
= Medium  
1 +  
0.45 x  
CL  
CL20 pF;  
CL100 pF;  
Driver_Strength  
= Strong ;  
Driver_Edge=  
Soft  
16 +  
0.45 x  
CL  
ns  
CL20 pF;  
CL100 pF;  
Driver_Strength  
= Strong ;  
Driver_Edge=  
Slow  
200 + ns  
2.5 x  
CL20 pF;  
CL100 pF;  
Driver_Strength  
= Weak  
CL  
1) The total output current that may be drawn at a given time must be limited to protect the supply rails from  
damage. For any group of 16 neighboring output pins, the total output current in each direction (ΣIOL and Σ-  
I
OH) must remain below 25 mA.  
Table 31  
Standard Pad Parameters for Lower Voltage Range  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
Maximum output driver  
IOmax  
1.8  
mA Driver_Strength  
= Medium  
current (absolute value)1) CC  
3.0  
0.3  
mA Driver_Strength  
= Strong  
mA Driver_Strength  
= Weak  
Data Sheet  
82  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
Table 31  
Standard Pad Parameters for Lower Voltage Range (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
Nominal output driver  
current (absolute value)  
IOnom  
CC  
0.8  
mA Driver_Strength  
= Medium  
1.0  
mA Driver_Strength  
= Strong  
0.15  
mA Driver_Strength  
= Weak  
Rise and Fall times (10% - tRF CC  
90%)  
73 +  
0.85 x  
CL  
ns  
CL20 pF;  
CL100 pF;  
Driver_Strength  
= Medium  
6 + 0.6 ns  
x CL  
CL20 pF;  
CL100 pF;  
Driver_Strength  
= Strong ;  
Driver_Edge=  
Soft  
33 +  
0.6 x  
CL  
ns  
CL20 pF;  
CL100 pF;  
Driver_Strength  
= Strong ;  
Driver_Edge=  
Slow  
385 + ns  
3.25 x  
CL  
CL20 pF;  
CL100 pF;  
Driver_Strength  
= Weak  
1) The total output current that may be drawn at a given time must be limited to protect the supply rails from  
damage. For any group of 16 neighboring output pins, the total output current in each direction (ΣIOL and Σ-  
I
OH) must remain below 25 mA.  
Data Sheet  
83  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
4.7.5  
Synchronous Serial Interface Timing  
The following parameters are applicable for a USIC channel operated in SSC mode.  
Note: These parameters are not subject to production test but verified by design and/or  
characterization.  
Note: Operating Conditions apply.  
Table 32  
is valid under the following conditions: CL= 20 pF; SSC= master ;  
voltage_range= upper  
Table 32  
USIC SSC Master Mode Timing for Upper Voltage Range  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
Slave select output SELO t1 CC  
active to first SCLKOUT  
transmit edge  
tSYS  
-
ns  
81)  
Slave select output SELO t2 CC  
inactive after last  
tSYS  
-
ns  
61)  
SCLKOUT receive edge  
Data output DOUT valid  
time  
t3 CC  
-6  
9
ns  
ns  
Receive data input setup t4 SR  
time to SCLKOUT receive  
edge  
31  
Data input DX0 hold time t5 SR  
from SCLKOUT receive  
edge  
-4  
ns  
1)  
tSYS = 1 / fSYS  
Data Sheet  
84  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
Table 33  
is valid under the following conditions: CL= 20 pF; SSC= master ;  
voltage_range= lower  
Table 33  
USIC SSC Master Mode Timing for Lower Voltage Range  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
Slave select output SELO t1 CC  
active to first SCLKOUT  
transmit edge  
tSYS  
-
ns  
101)  
Slave select output SELO t2 CC  
inactive after last  
tSYS  
-
ns  
91)  
SCLKOUT receive edge  
Data output DOUT valid  
time  
t3 CC  
-7  
11  
ns  
ns  
Receive data input setup t4 SR  
time to SCLKOUT receive  
edge  
40  
Data input DX0 hold time t5 SR  
from SCLKOUT receive  
edge  
-5  
ns  
1)  
tSYS = 1 / fSYS  
Table 34  
is valid under the following conditions: CL= 20 pF; SSC= slave ;  
voltage_range= upper  
Table 34  
USIC SSC Slave Mode Timing for Upper Voltage Range  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
Select input DX2 setup to  
first clock input DX1  
transmit edge1)  
t
10 SR  
10  
ns  
ns  
ns  
Select input DX2 hold after t11 SR  
last clock input DX1  
7
7
receive edge1)  
Receive data input setup  
time to shift clock receive  
edge1)  
t12 SR  
Data Sheet  
85  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
Table 34  
USIC SSC Slave Mode Timing for Upper Voltage Range (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
Data input DX0 hold time  
from clock input DX1  
receive edge1)  
t
t
13 SR  
14 CC  
5
ns  
Data output DOUT valid  
time  
7
33  
ns  
1) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and  
receive data input (bits DXnCR.DSEN = 0).  
Table 35  
is valid under the following conditions: CL= 20 pF; SSC= slave ;  
voltage_range= lower  
Table 35  
USIC SSC Slave Mode Timing for Lower Voltage Range  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
Select input DX2 setup to  
first clock input DX1  
transmit edge1)  
t
10 SR  
10  
ns  
ns  
ns  
ns  
ns  
Select input DX2 hold after t11 SR  
last clock input DX1  
7
7
5
8
receive edge1)  
Receive data input setup  
time to shift clock receive  
edge1)  
t
t
t
12 SR  
13 SR  
14 CC  
Data input DX0 hold time  
from clock input DX1  
receive edge1)  
Data output DOUT valid  
time  
41  
1) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and  
receive data input (bits DXnCR.DSEN = 0).  
Data Sheet  
86  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
Master Mode Timing  
t1  
t2  
Select Output  
SELOx  
Inactive  
Inactive  
Active  
Clock Output  
SCLKOUT  
Receive  
Edge  
Last Receive  
Transmit  
Edge  
First Transmit  
Edge  
Edge  
t3  
t3  
Data Output  
DOUT  
t4  
t4  
t5  
t5  
Data Input  
DX0  
Data  
valid  
Data  
valid  
Slave Mode Timing  
t10  
t11  
Select Input  
DX2  
Inactive  
Active  
Inactive  
Clock Input  
DX1  
Receive  
Edge  
Last Receive  
Edge  
First Transmit  
Edge  
Transmit  
Edge  
t12  
t12  
t13  
t13  
Data Input  
DX0  
Data  
valid  
Data  
valid  
t14  
t14  
Data Output  
DOUT  
Transmit Edge: with this clock edge, transmit data is shifted to transmit data output.  
Receive Edge: with this clock edge, receive data at receive data input is latched.  
Drawn for BRGH.SCLKCFG = 00B. Also valid for for SCLKCFG = 01B with inverted SCLKOUT signa.l  
USIC_SSC_TMGX.VSD  
Figure 20  
USIC - SSC Master/Slave Mode Timing  
Note: This timing diagram shows a standard configuration where the slave select signal  
is low-active and the serial clock signal is not shifted and not inverted.  
Data Sheet  
87  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
4.7.6  
Debug Interface Timing  
The debugger can communicate with the XE161FU via 1-pin SPD interface, via the 2-  
pin DAP interface or via the standard JTAG interface.  
Debug via DAP  
The following parameters are applicable for communication through the DAP debug  
interface.  
Note: These parameters are not subject to production test but verified by design and/or  
characterization.  
Note: Operating Conditions apply.  
Table 36 is valid under the following conditions: CL= 20 pF; voltage_range= upper  
Table 36  
DAP Interface Timing for Upper Voltage Range  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
Typ.  
Max.  
DAP0 clock period  
DAP0 high time  
t
t
t
t
t
t
11 SR  
12 SR  
13 SR  
14 SR  
15 SR  
16 SR  
1001)  
4
4
ns  
ns  
ns  
ns  
ns  
ns  
8
8
6
DAP0 low time  
DAP0 clock rise time  
DAP0 clock fall time  
DAP1 setup to DAP0  
rising edge  
pad_type= stan  
dard  
DAP1 hold after DAP0  
rising edge  
t
t
17 SR  
19 CC  
6
ns  
ns  
pad_type= stan  
dard  
DAP1 valid per DAP0  
clock period2)  
92  
95  
pad_type= stan  
dard  
1) The debug interface cannot operate faster than the overall system, therefore t11 tSYS  
.
2) The Host has to find a suitable sampling point by analyzing the sync telegram response.  
Data Sheet  
88  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
Table 37 is valid under the following conditions: CL= 20 pF; voltage_range= lower  
Table 37  
DAP Interface Timing for Lower Voltage Range  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
Typ.  
Max.  
DAP0 clock period  
DAP0 high time  
t
t
t
t
t
t
11 SR  
12 SR  
13 SR  
14 SR  
15 SR  
16 SR  
1001)  
4
4
ns  
ns  
ns  
ns  
ns  
ns  
8
8
6
DAP0 low time  
DAP0 clock rise time  
DAP0 clock fall time  
DAP1 setup to DAP0  
rising edge  
pad_type= stan  
dard  
DAP1 hold after DAP0  
rising edge  
t
t
17 SR  
19 CC  
6
ns  
ns  
pad_type= stan  
dard  
DAP1 valid per DAP0  
clock period2)  
87  
92  
pad_type= stan  
dard  
1) The debug interface cannot operate faster than the overall system, therefore t11 tSYS  
.
2) The Host has to find a suitable sampling point by analyzing the sync telegram response.  
t11  
0.9 VDDP  
0.1 VDDP  
0.5 VDDP  
t15  
t14  
t12  
t13  
MC_DAP0  
Figure 21  
Test Clock Timing (DAP0)  
Data Sheet  
89  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
DAP0  
DAP1  
t16  
t17  
MC_DAP1_RX  
Figure 22  
DAP Timing Host to Device  
t11  
DAP1  
t19  
MC_DAP1_TX  
Figure 23  
DAP Timing Device to Host  
Note: The transmission timing is determined by the receiving debugger by evaluating the  
sync-request synchronization pattern telegram.  
Data Sheet  
90  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
Debug via JTAG  
The following parameters are applicable for communication through the JTAG debug  
interface. The JTAG module is fully compliant with IEEE1149.1-2000.  
Note: These parameters are not subject to production test but verified by design and/or  
characterization.  
Note: Operating Conditions apply.  
Table 38 is valid under the following conditions: CL= 20 pF; voltage_range= upper  
Table 38  
JTAG Interface Timing for Upper Voltage Range  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
1001)  
16  
16  
Typ.  
Max.  
2)  
TCK clock period  
TCK high time  
t1 SR  
t2 SR  
t3 SR  
t4 SR  
t5 SR  
t6 SR  
8
8
ns  
ns  
ns  
ns  
ns  
ns  
TCK low time  
TCK clock rise time  
TCK clock fall time  
TDI/TMS setup to TCK  
rising edge  
6
TDI/TMS hold after TCK  
rising edge  
t7 SR  
6
ns  
ns  
ns  
TDO valid from TCK falling t8 CC  
29  
29  
32  
32  
edge (propagation delay)3)  
TDO high impedance to  
valid output from TCK  
falling edge4)3)  
t9 CC  
TDO valid output to high  
impedance from TCK  
falling edge3)  
t
10 CC  
29  
32  
ns  
ns  
TDO hold after TCK falling t18 CC  
5
edge3)  
1) The debug interface cannot operate faster than the overall system, therefore t1 tSYS  
.
2) Under typical conditions, the JTAG interface can operate at transfer rates up to 10 MHz.  
3) The falling edge on TCK is used to generate the TDO timing.  
4) The setup time for TDO is given implicitly by the TCK cycle time.  
Data Sheet  
91  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
Table 39 is valid under the following conditions: CL= 20 pF; voltage_range= lower  
Table 39  
JTAG Interface Timing for Lower Voltage Range  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
1001)  
16  
16  
Typ.  
Max.  
TCK clock period  
TCK high time  
t1 SR  
t2 SR  
t3 SR  
t4 SR  
t5 SR  
t6 SR  
8
8
ns  
ns  
ns  
ns  
ns  
ns  
TCK low time  
TCK clock rise time  
TCK clock fall time  
TDI/TMS setup to TCK  
rising edge  
6
TDI/TMS hold after TCK  
rising edge  
t7 SR  
6
ns  
ns  
ns  
TDO valid from TCK falling t8 CC  
39  
39  
43  
43  
edge (propagation delay)2)  
TDO high impedance to  
valid output from TCK  
falling edge3)2)  
t9 CC  
TDO valid output to high  
impedance from TCK  
falling edge2)  
t
10 CC  
39  
43  
ns  
ns  
TDO hold after TCK falling t18 CC  
5
edge2)  
1) The debug interface cannot operate faster than the overall system, therefore t1 tSYS  
.
2) The falling edge on TCK is used to generate the TDO timing.  
3) The setup time for TDO is given implicitly by the TCK cycle time.  
Data Sheet  
92  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
t1  
0.9 VDDP  
0.5 VDDP  
0.1 VDDP  
t5  
t4  
t2  
t3  
MC_JTAG_TCK  
Figure 24  
Test Clock Timing (TCK)  
TCK  
t6  
t7  
TMS  
TDI  
t6  
t7  
t9  
t8  
t10  
TDO  
t18  
MC_JTAG  
Figure 25  
JTAG Timing  
Data Sheet  
93  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
Debug via SPD  
The SPD interface will work with standard SPD tools having a sample/output clock  
frequency deviation of +/- 5% or less.  
Note: For further details please refer to application note AP24004 in section SPD Timing  
Requirements.  
Note: Operating Conditions apply.  
Data Sheet  
94  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Electrical Parameters  
Data Sheet  
95  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Package and Reliability  
5
Package and Reliability  
The XE166 Family devices use the package type:  
PG-VQFN (Plastic Green - Very Thin Profile Quad Flat Non-Leaded Package)  
The following specifications must be regarded to ensure proper integration of the  
XE161FU in its target environment.  
5.1  
Packaging  
These parameters specify the packaging rather than the silicon.  
Table 40  
Package Parameters (PG-VQFN-48-54)  
Parameter  
Symbol  
Limit Values  
Max.  
Unit Notes  
Min.  
Exposed Pad Dimension Ex × Ey  
5.2 x 5.2  
mm  
W
Power Dissipation  
PDISS  
RΘJA  
0.6  
75  
Thermal resistance  
Junction-Ambient  
K/W No thermal via,  
2-layer1)  
51  
K/W No thermal via,  
4-layer2)  
46  
36  
K/W 4-layer, no pad3)  
K/W 4-layer, pad4)  
1) Device mounted on a 2-layer JEDEC board (according to JESD 51-3) without thermal vias; exposed pad not  
soldered.  
2) Device mounted on a 4-layer JEDEC board (according to JESD 51-7) without thermal vias; exposed pad not  
soldered.  
3) Device mounted on a 4-layer JEDEC board (according to JESD 51-7) with thermal vias; exposed pad not  
soldered.  
4) Device mounted on a 4-layer JEDEC board (according to JESD 51-7) with thermal vias; exposed pad soldered  
to the board.  
Note: To improve the EMC behavior, it is recommended to connect the exposed pad to  
the board ground, independent of the thermal requirements.  
Board layout examples are given in an application note.  
Package Compatibility Considerations  
The XE161FU is a member of the XE166 Family of microcontrollers. It is also compatible  
to a certain extent with members of similar families or subfamilies.  
Each package is optimized for the device it houses. Therefore, there may be slight  
differences between packages of the same pin-count but for different device types. In  
Data Sheet  
95  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Package and Reliability  
particular, the size of the Exposed Pad (if present) may vary.  
If different device types are considered or planned for an application, it must be ensured  
that the board layout fits all packages under consideration.  
Package Outlines  
0.9 MAX.  
11 x 0.5 = 5.5  
0.5  
0.1  
7
A
(0.65)  
6.8  
B
+0.03  
48x  
36  
25  
24  
13  
37  
48  
0.08  
0.26  
1
12  
Index Marking  
48x  
0.1  
0.4 x 45˚  
Index Marking  
0.05  
0.23  
0.15  
M
A B C  
(0.2)  
0.05 MAX.  
0.03  
(5.2)  
(6.2)  
C
PG-VQFN-48-15, -19, -20, -22, -24, -48, -51, -52, -53, -55, -56-PO V12  
Figure 26  
PG-VQFN-48-54 (Plastic Green Thin Quad Flat Package)  
All dimensions in mm.  
You can find complete information about Infineon packages, packing and marking in our  
Infineon Internet Page “Packages”: http://www.infineon.com/packages  
Data Sheet  
96  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Package and Reliability  
5.2  
Thermal Considerations  
When operating the XE161FU in a system, the total heat generated in the chip must be  
dissipated to the ambient environment to prevent overheating and the resulting thermal  
damage.  
The maximum heat that can be dissipated depends on the package and its integration  
into the target board. The “Thermal resistance RΘJA” quantifies these parameters. The  
power dissipation must be limited so that the average junction temperature does not  
exceed 150 °C.  
The difference between junction temperature and ambient temperature is determined by  
ΔT = (PINT + PIOSTAT + PIODYN) × RΘJA  
The internal power consumption is defined as  
P
INT = VDDP × IDDP (switching current and leakage current).  
The static external power consumption caused by the output drivers is defined as  
IOSTAT = Σ((VDDP-VOH) × IOH) + Σ(VOL × IOL)  
P
The dynamic external power consumption caused by the output drivers (PIODYN) depends  
on the capacitive load connected to the respective pins and their switching frequencies.  
If the total power dissipation for a given system configuration exceeds the defined limit,  
countermeasures must be taken to ensure proper system operation:  
Reduce VDDP, if possible in the system  
Reduce the system frequency  
Reduce the number of output pins  
Reduce the load on active output drivers  
Data Sheet  
97  
V1.2, 2012-07  
XE161FU  
XE166 Family / Compact Line  
Package and Reliability  
5.3  
Quality Declarations  
The operation lifetime of the XE161FU depends on the operating temperature. The  
lifetime decreases with increasing temperature as shown in Table 42.  
Table 41  
Quality Parameters  
Symbol  
Parameter  
Values  
Unit Note /  
Test Condition  
Min.  
Typ.  
Max.  
20  
Operation lifetime  
ESD susceptibility  
t
OP CC  
a
See Table 42  
VHBM  
2000  
V
EIA/JESD22-  
A114-B  
according to Human Body SR  
Model (HBM)  
Moisture sensitivity level  
MSL CC −  
3
JEDEC  
J-STD-020C  
Table 42  
Operating Time  
20 a  
Lifetime Dependency on Temperature  
Operating Temperature  
TJ 110°C  
95 500 h  
68 500 h  
49 500 h  
26 400 h  
14 500 h  
TJ = 120°C  
TJ = 125°C  
TJ = 130°C  
TJ = 140°C  
TJ = 150°C  
Data Sheet  
98  
V1.2, 2012-07  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

XE161FU8F40VAAKXUMA1

RISC Microcontroller, 16-Bit, FLASH, 40MHz, CMOS, PQCC48, 0.50 MM PITCH, GREEN, PLASTIC, VQFN-48

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XE161HL12F80VAAFXUMA1

RISC Microcontroller, CMOS,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XE162FL12F66LAAKXQSA1

RISC Microcontroller, CMOS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XE162FM72F80LRABFXUMA1

Microcontroller, 16-Bit, FLASH, 80MHz, CMOS, PQFP64, LQFP-64

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XE162FN

16-Bit Single-Chip Real Time Signal Controller XE166 Family / Value Line

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XE162FN-16F80L

16-Bit Single-Chip Real Time Signal Controller XE166 Family / Value Line

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XE162FN-24F80L

16-Bit Single-Chip Real Time Signal Controller XE166 Family / Value Line

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XE162FN-40F80L

16-Bit Single-Chip Real Time Signal Controller XE166 Family / Value Line

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XE162FN16F80LAAFXUMA1

RISC Microcontroller, CMOS,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XE162FN40F80LAAFXQSA1

Microcontroller, 16-Bit, FLASH, 80MHz, CMOS, PQFP64, LQFP-64

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XE162FN40F80LAAKXUMA1

RISC Microcontroller, CMOS,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XE162FN_13

Real Time Signal Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON