XE164GM72F80LAAFXUMA1 [INFINEON]

Microcontroller, CMOS;
XE164GM72F80LAAFXUMA1
型号: XE164GM72F80LAAFXUMA1
厂家: Infineon    Infineon
描述:

Microcontroller, CMOS

微控制器
文件: 总128页 (文件大小:1726K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
16-Bit  
Architecture  
XE164FM, XE164GM,  
XE164HM, XE164KM  
16-Bit Single-Chip  
Real Time Signal Controller  
XE166 Family / Base Line  
Data Sheet  
V2.1 2011-07  
Microcontrollers  
Edition 2011-07  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2011 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
16-Bit  
Architecture  
XE164FM, XE164GM,  
XE164HM, XE164KM  
16-Bit Single-Chip  
Real Time Signal Controller  
XE166 Family / Base Line  
Data Sheet  
V2.1 2011-07  
Microcontrollers  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
XE164xM  
Revision History: V2.1, 2011-07  
Previous Version(s):  
V2.0, 2009-03  
V1.3, 2008-11  
V1.2, 2008-09  
V1.1, 2008-06 Preliminary  
V1.0, 2008-06 (Intermediate version)  
Page  
39  
Subjects (major changes since last revisions)  
ID registers added  
86  
ADC capacitances corrected (typ. vs. max.)  
90  
Conditions relaxed for ΔfINT  
Range for fWU adapted according to PCN 2010-013-A  
Added startup time from power-on tSPO  
127  
Quality declarations added  
Trademarks  
C166, TriCore, and DAVEare trademarks of Infineon Technologies AG.  
We Listen to Your Comments  
Is there any information in this document that you feel is wrong, unclear or missing?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
mcdocu.comments@infineon.com  
Data Sheet  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Table of Contents  
Table of Contents  
1
1.1  
1.2  
Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Basic Device Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Definition of Feature Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2
2.1  
2.2  
General Device Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Pin Configuration and Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Identification Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Memory Subsystem and Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
External Bus Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Central Processing Unit (CPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Memory Protection Unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Memory Checker Module (MCHK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Interrupt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
On-Chip Debug Support (OCDS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Capture/Compare Unit (CAPCOM2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Capture/Compare Units CCU6x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
General Purpose Timer (GPT12E) Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Real Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
A/D Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Universal Serial Interface Channel Modules (USIC) . . . . . . . . . . . . . . . . . 62  
MultiCAN Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
System Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Parallel Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
3.8  
3.9  
3.10  
3.11  
3.12  
3.13  
3.14  
3.15  
3.16  
3.17  
3.18  
3.19  
4
4.1  
Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Absolut Maximum Rating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Pad Timing Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
DC Parameters for Lower Voltage Area . . . . . . . . . . . . . . . . . . . . . . . . 79  
Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Analog/Digital Converter Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
System Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Flash Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
4.1.1  
4.1.2  
4.1.3  
4.1.4  
4.2  
4.2.1  
4.2.2  
4.2.3  
4.3  
4.4  
4.5  
Data Sheet  
5
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Table of Contents  
4.6  
AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Testing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Definition of Internal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Phase Locked Loop (PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Wakeup Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Selecting and Changing the Operating Frequency . . . . . . . . . . . . . 100  
External Clock Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Pad Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
External Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Bus Cycle Control with the READY Input . . . . . . . . . . . . . . . . . . . . 112  
Synchronous Serial Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Debug Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
4.6.1  
4.6.2  
4.6.2.1  
4.6.2.2  
4.6.2.3  
4.6.3  
4.6.4  
4.6.5  
4.6.5.1  
4.6.6  
4.6.7  
5
Package and Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Quality Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
5.1  
5.2  
5.3  
Data Sheet  
6
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Summary of Features  
16-Bit Single-Chip  
Real Time Signal Controller  
XE164xM (XE166 Family)  
1
Summary of Features  
For a quick overview and easy reference, the features of the XE164xM are summarized  
here.  
High-performance CPU with five-stage pipeline and MPU  
– 12.5 ns instruction cycle at 80 MHz CPU clock (single-cycle execution)  
– One-cycle 32-bit addition and subtraction with 40-bit result  
– One-cycle multiplication (16 × 16 bit)  
– Background division (32 / 16 bit) in 21 cycles  
– One-cycle multiply-and-accumulate (MAC) instructions  
– Enhanced Boolean bit manipulation facilities  
– Zero-cycle jump execution  
– Additional instructions to support HLL and operating systems  
– Register-based design with multiple variable register banks  
– Fast context switching support with two additional local register banks  
– 16 Mbytes total linear address space for code and data  
– 1024 Bytes on-chip special function register area (C166 Family compatible)  
– Integrated Memory Protection Unit (MPU)  
Interrupt system with 16 priority levels for up to 96 sources  
– Selectable external inputs for interrupt generation and wake-up  
– Fastest sample-rate 12.5 ns  
Eight-channel interrupt-driven single-cycle data transfer with  
Peripheral Event Controller (PEC), 24-bit pointers cover total address space  
Clock generation from internal or external clock sources,  
using on-chip PLL or prescaler  
Hardware CRC-Checker with Programmable Polynomial to Supervise On-Chip  
Memory Areas  
On-chip memory modules  
– 8 Kbytes on-chip stand-by RAM (SBRAM)  
– 2 Kbytes on-chip dual-port RAM (DPRAM)  
– Up to 16 Kbytes on-chip data SRAM (DSRAM)  
– Up to 32 Kbytes on-chip program/data SRAM (PSRAM)  
– Up to 576 Kbytes on-chip program memory (Flash memory)  
– Memory content protection through Error Correction Code (ECC)  
On-Chip Peripheral Modules  
– Multi-functional general purpose timer unit with 5 timers  
– 16-channel general purpose capture/compare unit (CAPCOM2)  
Data Sheet  
7
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Summary of Features  
– Up to 3 capture/compare units for flexible PWM signal generation (CCU6x)  
– Two Synchronizable A/D Converters with a total of up to 16 channels, 10-bit  
resolution, conversion time below 1 μs, optional data preprocessing (data  
reduction, range check), broken wire detection  
– Up to 6 serial interface channels to be used as UART, LIN, high-speed  
synchronous channel (SPI), IIC bus interface (10-bit addressing, 400 kbit/s), IIS  
interface  
– On-chip MultiCAN interface (Rev. 2.0B active) with up to 128 message objects  
(Full CAN/Basic CAN) on up to 4 CAN nodes and gateway functionality  
– On-chip system timer and on-chip real time clock  
Up to 12 Mbytes external address space for code and data  
– Programmable external bus characteristics for different address ranges  
– Multiplexed or demultiplexed external address/data buses  
– Selectable address bus width  
– 16-bit or 8-bit data bus width  
– Four programmable chip-select signals  
Single power supply from 3.0 V to 5.5 V  
Programmable watchdog timer and oscillator watchdog  
Up to 76 general purpose I/O lines  
On-chip bootstrap loaders  
Supported by a full range of development tools including C compilers, macro-  
assembler packages, emulators, evaluation boards, HLL debuggers, simulators,  
logic analyzer disassemblers, programming boards  
On-chip debug support via Device Access Port (DAP) or JTAG interface  
100-pin Green LQFP package, 0.5 mm (19.7 mil) pitch  
Data Sheet  
8
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Summary of Features  
Ordering Information  
The ordering code for an Infineon microcontroller provides an exact reference to a  
specific product. This ordering code identifies:  
the function set of the corresponding product type  
the temperature range:  
– SAF-…: -40°C to 85°C  
– SAK-…: -40°C to 125°C  
the package and the type of delivery.  
For ordering codes for the XE164xM please contact your sales representative or local  
distributor.  
This document describes several derivatives of the XE164xM group:  
Table 1 lists these derivatives and summarizes the differences.  
As this document refers to all of these derivatives, some descriptions may not apply to a  
specific product, in particular to the special device types.  
For simplicity the term XE164xM is used for all derivatives throughout this document.  
XE164xM device types are available and can be ordered through Infineon’s direct and/or  
distribution channels.  
Data Sheet  
9
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Summary of Features  
1.1  
Basic Device Types  
Basic device types are available and can be ordered through Infineon’s direct and/or  
distribution channels.  
Table 1  
Synopsis of XE164xM Basic Device Types  
Derivative1)  
Flash  
PSRAM  
Capt./Comp. ADC4) Interfaces4)  
Memory2) DSRAM3) Modules  
Chan.  
XE164FM-  
72FxxL  
576 Kbytes 32 Kbytes CC2  
16 Kbytes CCU60/1/2  
11 + 5 4 CAN Nodes,  
6 Serial Chan.  
XE164FM-  
48FxxL  
384 Kbytes 16 Kbytes CC2  
16 Kbytes CCU60/1/2  
11 + 5 4 CAN Nodes,  
6 Serial Chan.  
XE164FM-  
24FxxL  
192 Kbytes 8 Kbytes  
16 Kbytes CCU60/1/2  
576 Kbytes 32 Kbytes CC2  
CC2  
11 + 5 4 CAN Nodes,  
6 Serial Chan.  
XE164GM-  
72FxxL  
6 + 5 2 CAN Nodes,  
4 Serial Chan.  
16 Kbytes CCU60/1  
XE164GM-  
48FxxL  
384 Kbytes 16 Kbytes CC2  
16 Kbytes CCU60/1  
6 + 5 2 CAN Nodes,  
4 Serial Chan.  
XE164GM-  
24FxxL  
192 Kbytes 8 Kbytes  
CC2  
6 + 5 2 CAN Nodes,  
4 Serial Chan.  
16 Kbytes CCU60/1  
XE164HM-  
72FxxL  
576 Kbytes 32 Kbytes CC2  
16 Kbytes CCU60/1/2  
11 + 5 No CAN Nodes,  
6 Serial Chan.  
XE164HM-  
48FxxL  
384 Kbytes 16 Kbytes CC2  
16 Kbytes CCU60/1/2  
11 + 5 No CAN Nodes,  
6 Serial Chan.  
XE164HM-  
24FxxL  
192 Kbytes 8 Kbytes  
16 Kbytes CCU60/1/2  
576 Kbytes 32 Kbytes CC2  
CC2  
11 + 5 No CAN Nodes,  
6 Serial Chan.  
XE164KM-  
72FxxL  
6 + 5 No CAN Nodes,  
6 Serial Chan.  
16 Kbytes CCU60/1  
XE164KM-  
48FxxL  
384 Kbytes 16 Kbytes CC2  
16 Kbytes CCU60/1  
6 + 5 No CAN Nodes,  
6 Serial Chan.  
XE164KM-  
24FxxL  
192 Kbytes 8 Kbytes  
CC2  
6 + 5 No CAN Nodes,  
6 Serial Chan.  
16 Kbytes CCU60/1  
1) xx is a placeholder for the available speed grade (in MHz).  
2) Specific information about the on-chip Flash memory in Table 2.  
3) All derivatives additionally provide 8 Kbytes SBRAM and 2 Kbytes DPRAM.  
4) Specific information about the available channels in Table 4.  
Analog input channels are listed for each Analog/Digital Converter module separately (ADC0 + ADC1).  
Data Sheet  
10  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Summary of Features  
1.2  
Definition of Feature Variants  
The XE164xM types are offered with several Flash memory sizes. Table 2 describes the  
location of the available memory areas for each Flash memory size.  
Table 2  
Flash Memory Allocation  
Total Flash Size  
Flash Area A1) Flash Area B  
Flash Area C  
576 Kbytes  
C0’0000H …  
C1’0000H …  
CC’0000H …  
C0’EFFFH  
C7’FFFFH  
CC’FFFFH  
384 Kbytes  
192 Kbytes  
C0’0000H …  
C0’EFFFH  
C1’0000H …  
C4’FFFFH  
CC’0000H …  
CC’FFFFH  
C0’0000H …  
C1’0000H …  
CC’0000H …  
C0’EFFFH  
C1’FFFFH  
CC’FFFFH  
1) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0’F000H to C0’FFFFH).  
Table 3  
Flash Memory Module Allocation (in Kbytes)  
Total Flash Size  
576 Kbytes  
Flash 01)  
Flash 1  
256  
64  
Flash 2  
Flash 3  
64  
256  
---  
---  
---  
384 Kbytes  
256  
64  
192 Kbytes  
128  
---  
64  
1) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0’F000H to C0’FFFFH).  
The XE164xM types are offered with different interface options. Table 4 lists the  
available channels for each option.  
Table 4  
Interface Channel Association  
Available Channels  
Total Number  
11 ADC0 channels  
6 ADC0 channels  
5 ADC1 channels  
4 CAN nodes  
CH0, CH2 CH5, CH8 CH11, CH13, CH15  
CH0, CH2 CH5, CH8  
CH0, CH2, CH4, CH5, CH6 (overlay: CH8 CH11)  
CAN0, CAN1, CAN2, CAN3  
128 message objects  
2 CAN nodes  
CAN0, CAN1  
128 message objects  
6 serial channels  
4 serial channels  
U0C0, U0C1, U1C0, U1C1, U2C0, U2C1  
U0C0, U0C1, U1C0, U1C1  
Data Sheet  
11  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Summary of Features  
The XE164xM types are offered with several SRAM memory sizes. Figure 1 shows the  
allocation rules for PSRAM and DSRAM. Note that the rules differ:  
PSRAM allocation starts from the lower address  
DSRAM allocation starts from the higher address  
For example 8 Kbytes of PSRAM will be allocated at E0’0000h-E0’1FFFh and 8 Kbytes  
of DSRAM will be at 00’C000h-00’DFFFh.  
E7'FFFFh  
00'DFFFh  
(EF'FFFFh)  
Reserved for  
PSRAM  
Available  
DSRAM  
Available  
PSRAM  
Reserved for  
DSRAM  
E0'0000h  
00'8000h  
(E8'0000h)  
MC_XC_SRAM_ALLOCATION  
Figure 1  
SRAM Allocation  
Data Sheet  
12  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
General Device Information  
2
General Device Information  
The XE164xM series (16-Bit Single-Chip  
Real Time Signal Controller) is a part of the Infineon XE166 Family of full-feature single-  
chip CMOS microcontrollers. These devices extend the functionality and performance of  
the C166 Family in terms of instructions (MAC unit), peripherals, and speed. They  
combine high CPU performance (up to 80 million instructions per second) with extended  
peripheral functionality and enhanced IO capabilities. Optimized peripherals can be  
adapted flexibly to meet the application requirements. These derivatives utilize clock  
generation via PLL and internal or external clock sources. On-chip memory modules  
include program Flash, program RAM, and data RAM.  
VAREFVAGND VDDIM VDDI1 VDDP VSS  
(1) (1)  
(1) (3) (9) (4)  
Port 0  
8 bit  
XTAL1  
XTAL2  
ESR0  
Port 1  
8 bit  
Port 2  
11 bit  
Port 10  
16 bit  
Port 6  
2 bit  
Port 15  
2 bit  
Port 7  
1 bit  
Port 5  
7 bit  
PORST TRST DAP/JTAG Debug  
2 / 4 bit  
2 bit  
via Port Pins  
TESTM  
MC_XY_LOGSYMB100  
Figure 2  
XE164xM Logic Symbol  
Data Sheet  
13  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
General Device Information  
2.1  
Pin Configuration and Definition  
The pins of the XE164xM are described in detail in Table 5, which includes all alternate  
functions. For further explanations please refer to the footnotes at the end of the table.  
The following figure summarizes all pins, showing their locations on the four sides of the  
package.  
VSS  
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VDDPB  
P0.7  
P10.7  
P10.6  
P0.6  
P10.5  
P10.4  
P0.5  
P10.3  
P2.10  
P2.13  
VDDI1  
P0.4  
P10.2  
P0.3  
P10.1  
P10.0  
P0.2  
P2.9  
P2.8  
P0.1  
P2.7  
P0.0  
VDDPB  
VSS  
VDDPB  
TESTM  
P7.2  
TRST  
P7.0  
P7.3  
P7.1  
P7.4  
9
VDDIM  
P6.0  
P6.1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
P6.2  
LQFP-100  
VDDPA  
P15.0  
P15.2  
P15.4  
P15.5  
P15.6  
VAREF  
VAGND  
P5.0  
P5.2  
P5.3  
VDDPB  
MC_XY_PIN100  
Figure 3  
XE164xM Pin Configuration (top view)  
Data Sheet  
14  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
General Device Information  
Key to Pin Definitions  
Ctrl.: The output signal for a port pin is selected by bit field PC in the associated  
register Px_IOCRy. Output O0 is selected by setting the respective bit field PC to  
1x00B, output O1 is selected by 1x01B, etc.  
Output signal OH is controlled by hardware.  
Type: Indicates the pad type and its power supply domain (A, B, M, 1).  
– St: Standard pad  
– Sp: Special pad e.g. XTALx  
– DP: Double pad - can be used as standard or high speed pad  
– In: Input only pad  
– PS: Power supply pad  
Table 5  
Pin Definitions and Functions  
Ctrl. Type Function  
Pin Symbol  
3
TESTM  
I
In/B Testmode Enable  
Enables factory test modes, must be held HIGH for  
normal operation (connect to VDDPB).  
An internal pull-up device will hold this pin high  
when nothing is driving it.  
4
P7.2  
O0 / I St/B Bit 2 of Port 7, General Purpose Input/Output  
EMUX0  
O1  
I
St/B External Analog MUX Control Output 0 (ADC1)  
St/B CCU62 Position Input 0  
CCU62_CCP  
OS0A  
TDI_C  
IH  
St/B JTAG Test Data Input  
If JTAG pos. C is selected during start-up, an  
internal pull-up device will hold this pin high when  
nothing is driving it.  
5
TRST  
I
In/B Test-System Reset Input  
For normal system operation, pin TRST should be  
held low. A high level at this pin at the rising edge  
of PORST activates the XE164xM’s debug  
system. In this case, pin TRST must be driven low  
once to reset the debug system.  
An internal pull-down device will hold this pin low  
when nothing is driving it.  
Data Sheet  
15  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
General Device Information  
Table 5  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
6
P7.0  
O0 / I St/B Bit 0 of Port 7, General Purpose Input/Output  
T3OUT  
T6OUT  
TDO_A  
O1  
O2  
St/B GPT12E Timer T3 Toggle Latch Output  
St/B GPT12E Timer T6 Toggle Latch Output  
OH / St/B JTAG Test Data Output / DAP1 Input/Output  
IH  
If DAP pos. 0 or 2 is selected during start-up, an  
internal pull-down device will hold this pin low  
when nothing is driving it.  
ESR2_1  
P7.3  
I
St/B ESR2 Trigger Input 1  
7
O0 / I St/B Bit 3 of Port 7, General Purpose Input/Output  
EMUX1  
O1  
St/B External Analog MUX Control Output 1 (ADC1)  
St/B USIC0 Channel 1 Shift Data Output  
St/B USIC0 Channel 0 Shift Data Output  
St/B CCU62 Position Input 1  
U0C1_DOUT O2  
U0C0_DOUT O3  
CCU62_CCP  
OS1A  
I
TMS_C  
IH  
St/B JTAG Test Mode Selection Input  
If JTAG pos. C is selected during start-up, an  
internal pull-up device will hold this pin low when  
nothing is driving it.  
U0C1_DX0F  
P7.1  
I
St/B USIC0 Channel 1 Shift Data Input  
8
O0 / I St/B Bit 1 of Port 7, General Purpose Input/Output  
EXTCLK  
O1  
I
St/B Programmable Clock Signal Output  
St/B CCU62 Emergency Trap Input  
CCU62_CTR  
APA  
BRKIN_C  
I
St/B OCDS Break Signal Input  
Data Sheet  
16  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
General Device Information  
Table 5  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
9
P7.4  
O0 / I St/B Bit 4 of Port 7, General Purpose Input/Output  
EMUX2  
O1  
St/B External Analog MUX Control Output 2 (ADC1)  
St/B USIC0 Channel 1 Shift Data Output  
U0C1_DOUT O2  
U0C1_SCLK O3  
OUT  
St/B USIC0 Channel 1 Shift Clock Output  
CCU62_CCP  
OS2A  
I
St/B CCU62 Position Input 2  
TCK_C  
IH  
St/B DAP0/JTAG Clock Input  
If JTAG pos. C is selected during start-up, an  
internal pull-up device will hold this pin high when  
nothing is driving it.  
If DAP pos. 2 is selected during start-up, an  
internal pull-down device will hold this pin low  
when nothing is driving it.  
U0C0_DX0D  
U0C1_DX1E  
P6.0  
I
I
St/B USIC0 Channel 0 Shift Data Input  
St/B USIC0 Channel 1 Shift Clock Input  
11  
O0 / I DA/A Bit 0 of Port 6, General Purpose Input/Output  
EMUX0  
O1  
O2  
O3  
DA/A External Analog MUX Control Output 0 (ADC0)  
DA/A CAN Node 2 Transmit Data Output  
DA/A OCDS Break Signal Output  
TxDC2  
BRKOUT  
ADCx_REQG I  
TyG  
DA/A External Request Gate Input for ADC0/1  
U1C1_DX0E  
P6.1  
I
DA/A USIC1 Channel 1 Shift Data Input  
12  
O0 / I DA/A Bit 1 of Port 6, General Purpose Input/Output  
EMUX1  
T3OUT  
O1  
O2  
DA/A External Analog MUX Control Output 1 (ADC0)  
DA/A GPT12E Timer T3 Toggle Latch Output  
DA/A USIC1 Channel 1 Shift Data Output  
U1C1_DOUT O3  
ADCx_REQT  
RyE  
I
DA/A External Request Trigger Input for ADC0/1  
RxDC2E  
ESR1_6  
I
I
DA/A CAN Node 2 Receive Data Input  
DA/A ESR1 Trigger Input 6  
Data Sheet  
17  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
General Device Information  
Table 5  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
13  
P6.2  
O0 / I DA/A Bit 2 of Port 6, General Purpose Input/Output  
EMUX2  
T6OUT  
O1  
O2  
DA/A External Analog MUX Control Output 2 (ADC0)  
DA/A GPT12E Timer T6 Toggle Latch Output  
DA/A USIC1 Channel 1 Shift Clock Output  
U1C1_SCLK O3  
OUT  
U1C1_DX1C  
P15.0  
I
I
I
I
I
I
I
I
I
I
I
I
DA/A USIC1 Channel 1 Shift Clock Input  
In/A Bit 0 of Port 15, General Purpose Input  
In/A Analog Input Channel 0 for ADC1  
In/A Bit 2 of Port 15, General Purpose Input  
In/A Analog Input Channel 2 for ADC1  
In/A GPT12E Timer T5 Count/Gate Input  
In/A Bit 4 of Port 15, General Purpose Input  
In/A Analog Input Channel 4 for ADC1  
In/A GPT12E Timer T6 Count/Gate Input  
In/A Bit 5 of Port 15, General Purpose Input  
In/A Analog Input Channel 5 for ADC1  
15  
16  
ADC1_CH0  
P15.2  
ADC1_CH2  
T5INA  
17  
18  
P15.4  
ADC1_CH4  
T6INA  
P15.5  
ADC1_CH5  
T6EUDA  
In/A GPT12E Timer T6 External Up/Down Control  
Input  
19  
P15.6  
I
I
-
In/A Bit 6 of Port 15, General Purpose Input  
In/A Analog Input Channel 6 for ADC1  
ADC1_CH6  
VAREF  
20  
21  
22  
PS/A Reference Voltage for A/D Converters ADC0/1  
VAGND  
-
PS/A Reference Ground for A/D Converters ADC0/1  
P5.0  
I
I
I
I
I
In/A Bit 0 of Port 5, General Purpose Input  
In/A Analog Input Channel 0 for ADC0  
In/A Bit 2 of Port 5, General Purpose Input  
In/A Analog Input Channel 2 for ADC0  
In/A JTAG Test Data Input  
ADC0_CH0  
P5.2  
23  
ADC0_CH2  
TDI_A  
Data Sheet  
18  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
General Device Information  
Table 5  
Pin Definitions and Functions (cont’d)  
Ctrl. Type Function  
Pin Symbol  
24  
P5.3  
I
I
I
I
I
I
In/A Bit 3 of Port 5, General Purpose Input  
ADC0_CH3  
T3INA  
In/A Analog Input Channel 3 for ADC0  
In/A GPT12E Timer T3 Count/Gate Input  
In/A Bit 4 of Port 5, General Purpose Input  
In/A Analog Input Channel 4 for ADC0  
28  
P5.4  
ADC0_CH4  
T3EUDA  
In/A GPT12E Timer T3 External Up/Down Control  
Input  
TMS_A  
P5.5  
I
I
I
I
In/A JTAG Test Mode Selection Input  
29  
30  
In/A Bit 5 of Port 5, General Purpose Input  
In/A Analog Input Channel 5 for ADC0  
In/A External Run Control Input for T12 of CCU60  
ADC0_CH5  
CCU60_T12  
HRB  
P5.8  
I
I
I
In/A Bit 8 of Port 5, General Purpose Input  
In/A Analog Input Channel 8 for ADC0  
In/A Analog Input Channel 8 for ADC1  
ADC0_CH8  
ADC1_CH8  
CCU6x_T12H I  
RC  
In/A External Run Control Input for T12 of  
CCU60/1/2  
CCU6x_T13H I  
RC  
In/A External Run Control Input for T13 of  
CCU60/1/2  
U2C0_DX0F  
P5.9  
I
I
I
I
I
I
I
I
I
I
I
In/A USIC2 Channel 0 Shift Data Input  
In/A Bit 9 of Port 5, General Purpose Input  
In/A Analog Input Channel 9 for ADC0  
In/A Analog Input Channel 9 for ADC1  
In/A CAPCOM2 Timer T7 Count Input  
In/A Bit 10 of Port 5, General Purpose Input  
In/A Analog Input Channel 10 for ADC0  
In/A Analog Input Channel 10 for ADC1  
In/A OCDS Break Signal Input  
31  
32  
ADC0_CH9  
ADC1_CH9  
CC2_T7IN  
P5.10  
ADC0_CH10  
ADC1_CH10  
BRKIN_A  
U2C1_DX0F  
In/A USIC2 Channel 1 Shift Data Input  
In/A External Run Control Input for T13 of CCU61  
CCU61_T13  
HRA  
Data Sheet  
19  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
General Device Information  
Table 5  
Pin Definitions and Functions (cont’d)  
Ctrl. Type Function  
Pin Symbol  
33  
P5.11  
I
I
I
I
I
I
I
I
In/A Bit 11 of Port 5, General Purpose Input  
ADC0_CH11  
ADC1_CH11  
P5.13  
In/A Analog Input Channel 11 for ADC0  
In/A Analog Input Channel 11 for ADC1  
In/A Bit 13 of Port 5, General Purpose Input  
In/A Analog Input Channel 13 for ADC0  
In/A Bit 15 of Port 5, General Purpose Input  
In/A Analog Input Channel 15 for ADC0  
In/A CAN Node 2 Receive Data Input  
34  
35  
ADC0_CH13  
P5.15  
ADC0_CH15  
RxDC2F  
P2.12  
36  
O0 / I St/B Bit 12 of Port 2, General Purpose Input/Output  
U0C0_SELO O1  
4
St/B USIC0 Channel 0 Select/Control 4 Output  
U0C1_SELO O2  
3
St/B USIC0 Channel 1 Select/Control 3 Output  
TXDC2  
READY  
P2.11  
O3  
IH  
St/B CAN Node 2 Transmit Data Output  
St/B External Bus Interface READY Input  
37  
O0 / I St/B Bit 11 of Port 2, General Purpose Input/Output  
U0C0_SELO O1  
2
St/B USIC0 Channel 0 Select/Control 2 Output  
U0C1_SELO O2  
2
St/B USIC0 Channel 1 Select/Control 2 Output  
BHE/WRH  
OH  
St/B External Bus Interf. High-Byte Control Output  
Can operate either as Byte High Enable (BHE) or  
as Write strobe for High Byte (WRH).  
39  
P2.0  
O0 / I St/B Bit 0 of Port 2, General Purpose Input/Output  
AD13  
OH / St/B External Bus Interface Address/Data Line 13  
IH  
RxDC0C  
T5INB  
I
I
St/B CAN Node 0 Receive Data Input  
St/B GPT12E Timer T5 Count/Gate Input  
Data Sheet  
20  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
General Device Information  
Table 5  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
40  
P2.1  
O0 / I St/B Bit 1 of Port 2, General Purpose Input/Output  
TxDC0  
AD14  
O1  
St/B CAN Node 0 Transmit Data Output  
OH / St/B External Bus Interface Address/Data Line 14  
IH  
T5EUDB  
I
St/B GPT12E Timer T5 External Up/Down Control  
Input  
ESR1_5  
P2.2  
I
St/B ESR1 Trigger Input 5  
41  
O0 / I St/B Bit 2 of Port 2, General Purpose Input/Output  
O1 St/B CAN Node 1 Transmit Data Output  
TxDC1  
AD15  
OH / St/B External Bus Interface Address/Data Line 15  
IH  
ESR2_5  
P4.0  
I
St/B ESR2 Trigger Input 5  
42  
43  
O0 / I St/B Bit 0 of Port 4, General Purpose Input/Output  
O3 / I St/B CAPCOM2 CC24IO Capture Inp./ Compare Out.  
CC2_CC24  
CS0  
OH  
O0 / I St/B Bit 3 of Port 2, General Purpose Input/Output  
St/B USIC0 Channel 0 Shift Data Output  
O3 / I St/B CAPCOM2 CC16IO Capture Inp./ Compare Out.  
St/B External Bus Interface Chip Select 0 Output  
P2.3  
U0C0_DOUT O1  
CC2_CC16  
A16  
OH  
St/B External Bus Interface Address Line 16  
St/B ESR2 Trigger Input 0  
ESR2_0  
U0C0_DX0E  
U0C1_DX0D  
RxDC0A  
P4.1  
I
I
I
I
St/B USIC0 Channel 0 Shift Data Input  
St/B USIC0 Channel 1 Shift Data Input  
St/B CAN Node 0 Receive Data Input  
44  
O0 / I St/B Bit 1 of Port 4, General Purpose Input/Output  
O2 St/B CAN Node 2 Transmit Data Output  
O3 / I St/B CAPCOM2 CC25IO Capture Inp./ Compare Out.  
TxDC2  
CC2_CC25  
CS1  
OH  
I
St/B External Bus Interface Chip Select 1 Output  
St/B CCU62 Position Input 0  
CCU62_CCP  
OS0B  
T4EUDB  
I
I
St/B GPT12E Timer T4 External Up/Down Control  
Input  
ESR1_8  
St/B ESR1 Trigger Input 8  
Data Sheet  
21  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
General Device Information  
Table 5  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
45  
P2.4  
U0C1_DOUT O1  
O0 / I St/B Bit 4 of Port 2, General Purpose Input/Output  
St/B USIC0 Channel 1 Shift Data Output  
St/B CAN Node 0 Transmit Data Output  
TxDC0  
O2  
CC2_CC17  
A17  
O3 / I St/B CAPCOM2 CC17IO Capture Inp./ Compare Out.  
OH  
St/B External Bus Interface Address Line 17  
St/B ESR1 Trigger Input 0  
ESR1_0  
U0C0_DX0F  
RxDC1A  
P2.5  
I
I
I
St/B USIC0 Channel 0 Shift Data Input  
St/B CAN Node 1 Receive Data Input  
46  
O0 / I St/B Bit 5 of Port 2, General Purpose Input/Output  
U0C0_SCLK O1  
OUT  
St/B USIC0 Channel 0 Shift Clock Output  
TxDC0  
O2  
St/B CAN Node 0 Transmit Data Output  
CC2_CC18  
A18  
O3 / I St/B CAPCOM2 CC18IO Capture Inp./ Compare Out.  
OH  
St/B External Bus Interface Address Line 18  
St/B USIC0 Channel 0 Shift Clock Input  
St/B ESR1 Trigger Input 10  
U0C0_DX1D  
ESR1_10  
P4.2  
I
I
47  
O0 / I St/B Bit 2 of Port 4, General Purpose Input/Output  
O2 St/B CAN Node 2 Transmit Data Output  
O3 / I St/B CAPCOM2 CC26IO Capture Inp./ Compare Out.  
TxDC2  
CC2_CC26  
CS2  
OH  
St/B External Bus Interface Chip Select 2 Output  
St/B GPT12E Timer T2 Count/Gate Input  
St/B CCU62 Position Input 1  
T2INA  
I
I
CCU62_CCP  
OS1B  
Data Sheet  
22  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
General Device Information  
Table 5  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
48  
P2.6  
O0 / I St/B Bit 6 of Port 2, General Purpose Input/Output  
U0C0_SELO O1  
0
St/B USIC0 Channel 0 Select/Control 0 Output  
U0C1_SELO O2  
1
St/B USIC0 Channel 1 Select/Control 1 Output  
CC2_CC19  
A19  
O3 / I St/B CAPCOM2 CC19IO Capture Inp./ Compare Out.  
OH  
St/B External Bus Interface Address Line 19  
St/B USIC0 Channel 0 Shift Control Input  
St/B CAN Node 0 Receive Data Input  
St/B ESR2 Trigger Input 6  
U0C0_DX2D  
RxDC0D  
ESR2_6  
P4.3  
I
I
I
49  
O0 / I St/B Bit 3 of Port 4, General Purpose Input/Output  
St/B USIC0 Channel 1 Shift Data Output  
O3 / I St/B CAPCOM2 CC27IO Capture Inp./ Compare Out.  
U0C1_DOUT O1  
CC2_CC27  
CS3  
OH  
St/B External Bus Interface Chip Select 3 Output  
St/B CAN Node 2 Receive Data Input  
RxDC2A  
T2EUDA  
I
I
St/B GPT12E Timer T2 External Up/Down Control  
Input  
CCU62_CCP  
OS2B  
I
St/B CCU62 Position Input 2  
53  
P0.0  
O0 / I St/B Bit 0 of Port 0, General Purpose Input/Output  
U1C0_DOUT O1  
St/B USIC1 Channel 0 Shift Data Output  
St/B CCU61 Channel 0 IOutput  
CCU61_CC6 O3  
0
A0  
OH  
St/B External Bus Interface Address Line 0  
St/B USIC1 Channel 0 Shift Data Input  
St/B CCU61 Channel 0 Input  
U1C0_DX0A  
I
I
CCU61_CC6  
0INA  
ESR1_11  
I
St/B ESR1 Trigger Input 11  
Data Sheet  
23  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
General Device Information  
Table 5  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
54  
55  
56  
P2.7  
O0 / I St/B Bit 7 of Port 2, General Purpose Input/Output  
U0C1_SELO O1  
0
St/B USIC0 Channel 1 Select/Control 0 Output  
U0C0_SELO O2  
1
St/B USIC0 Channel 0 Select/Control 1 Output  
CC2_CC20  
A20  
O3 / I St/B CAPCOM2 CC20IO Capture Inp./ Compare Out.  
OH  
St/B External Bus Interface Address Line 20  
St/B USIC0 Channel 1 Shift Control Input  
St/B CAN Node 1 Receive Data Input  
St/B ESR2 Trigger Input 7  
U0C1_DX2C  
RxDC1C  
ESR2_7  
P0.1  
I
I
I
O0 / I St/B Bit 1 of Port 0, General Purpose Input/Output  
U1C0_DOUT O1  
TxDC0 O2  
St/B USIC1 Channel 0 Shift Data Output  
St/B CAN Node 0 Transmit Data Output  
St/B CCU61 Channel 1 Output  
CCU61_CC6 O3  
1
A1  
OH  
St/B External Bus Interface Address Line 1  
St/B USIC1 Channel 0 Shift Data Input  
St/B CCU61 Channel 1 Input  
U1C0_DX0B  
I
I
CCU61_CC6  
1INA  
U1C0_DX1A  
P2.8  
I
St/B USIC1 Channel 0 Shift Clock Input  
O0 / I DP/B Bit 8 of Port 2, General Purpose Input/Output  
U0C1_SCLK O1  
OUT  
DP/B USIC0 Channel 1 Shift Clock Output  
EXTCLK  
O2  
DP/B Programmable Clock Signal Output  
1)  
CC2_CC21  
A21  
O3 / I DP/B CAPCOM2 CC21IO Capture Inp./ Compare Out.  
OH  
I
DP/B External Bus Interface Address Line 21  
DP/B USIC0 Channel 1 Shift Clock Input  
U0C1_DX1D  
Data Sheet  
24  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
General Device Information  
Table 5  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
57  
P2.9  
U0C1_DOUT O1  
O0 / I St/B Bit 9 of Port 2, General Purpose Input/Output  
St/B USIC0 Channel 1 Shift Data Output  
St/B CAN Node 1 Transmit Data Output  
TxDC1  
CC2_CC22  
A22  
O2  
O3 / I St/B CAPCOM2 CC22IO Capture Inp./ Compare Out.  
OH  
I
St/B External Bus Interface Address Line 22  
St/B Clock Signal Input 1  
CLKIN1  
TCK_A  
IH  
St/B DAP0/JTAG Clock Input  
If JTAG pos. A is selected during start-up, an  
internal pull-up device will hold this pin high when  
nothing is driving it.  
If DAP pos. 0 is selected during start-up, an  
internal pull-down device will hold this pin low  
when nothing is driving it.  
58  
P0.2  
O0 / I St/B Bit 2 of Port 0, General Purpose Input/Output  
U1C0_SCLK O1  
OUT  
St/B USIC1 Channel 0 Shift Clock Output  
TxDC0  
O2  
St/B CAN Node 0 Transmit Data Output  
St/B CCU61 Channel 2 Output  
CCU61_CC6 O3  
2
A2  
OH  
St/B External Bus Interface Address Line 2  
St/B USIC1 Channel 0 Shift Clock Input  
St/B CCU61 Channel 2 Input  
U1C0_DX1B  
I
I
CCU61_CC6  
2INA  
Data Sheet  
25  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
General Device Information  
Table 5  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
59  
P10.0  
O0 / I St/B Bit 0 of Port 10, General Purpose Input/Output  
U0C1_DOUT O1  
St/B USIC0 Channel 1 Shift Data Output  
St/B CCU60 Channel 0 Output  
CCU60_CC6 O2  
0
AD0  
OH / St/B External Bus Interface Address/Data Line 0  
IH  
CCU60_CC6  
0INA  
I
St/B CCU60 Channel 0 Input  
ESR1_2  
I
I
I
St/B ESR1 Trigger Input 2  
U0C0_DX0A  
U0C1_DX0A  
P10.1  
St/B USIC0 Channel 0 Shift Data Input  
St/B USIC0 Channel 1 Shift Data Input  
60  
O0 / I St/B Bit 1 of Port 10, General Purpose Input/Output  
U0C0_DOUT O1  
St/B USIC0 Channel 0 Shift Data Output  
St/B CCU60 Channel 1 Output  
CCU60_CC6 O2  
1
AD1  
OH / St/B External Bus Interface Address/Data Line 1  
IH  
CCU60_CC6  
1INA  
I
St/B CCU60 Channel 1 Input  
U0C0_DX1A  
U0C0_DX0B  
P0.3  
I
I
St/B USIC0 Channel 0 Shift Clock Input  
St/B USIC0 Channel 0 Shift Data Input  
61  
O0 / I St/B Bit 3 of Port 0, General Purpose Input/Output  
U1C0_SELO O1  
0
St/B USIC1 Channel 0 Select/Control 0 Output  
St/B USIC1 Channel 1 Select/Control 1 Output  
St/B CCU61 Channel 0 Output  
U1C1_SELO O2  
1
CCU61_COU O3  
T60  
A3  
OH  
St/B External Bus Interface Address Line 3  
St/B USIC1 Channel 0 Shift Control Input  
St/B CAN Node 0 Receive Data Input  
U1C0_DX2A  
RxDC0B  
I
I
Data Sheet  
26  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
General Device Information  
Table 5  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
62  
P10.2  
O0 / I St/B Bit 2 of Port 10, General Purpose Input/Output  
U0C0_SCLK O1  
OUT  
St/B USIC0 Channel 0 Shift Clock Output  
CCU60_CC6 O2  
2
St/B CCU60 Channel 2 Output  
AD2  
OH / St/B External Bus Interface Address/Data Line 2  
IH  
CCU60_CC6  
2INA  
I
St/B CCU60 Channel 2 Input  
U0C0_DX1B  
P0.4  
I
St/B USIC0 Channel 0 Shift Clock Input  
63  
O0 / I St/B Bit 4 of Port 0, General Purpose Input/Output  
U1C1_SELO O1  
0
St/B USIC1 Channel 1 Select/Control 0 Output  
St/B USIC1 Channel 0 Select/Control 1 Output  
St/B CCU61 Channel 1 Output  
U1C0_SELO O2  
1
CCU61_COU O3  
T61  
A4  
OH  
St/B External Bus Interface Address Line 4  
St/B USIC1 Channel 1 Shift Control Input  
St/B CAN Node 1 Receive Data Input  
St/B ESR2 Trigger Input 8  
U1C1_DX2A  
RxDC1B  
ESR2_8  
P2.13  
I
I
I
65  
66  
O0 / I St/B Bit 13 of Port 2, General Purpose Input/Output  
U2C1_SELO O1  
2
St/B USIC2 Channel 1 Select/Control 2 Output  
RxDC2D  
P2.10  
I
St/B CAN Node 2 Receive Data Input  
O0 / I St/B Bit 10 of Port 2, General Purpose Input/Output  
U0C1_DOUT O1  
St/B USIC0 Channel 1 Shift Data Output  
U0C0_SELO O2  
3
St/B USIC0 Channel 0 Select/Control 3 Output  
CC2_CC23  
A23  
O3 / I St/B CAPCOM2 CC23IO Capture Inp./ Compare Out.  
OH  
St/B External Bus Interface Address Line 23  
St/B USIC0 Channel 1 Shift Data Input  
U0C1_DX0E  
CAPINA  
I
I
St/B GPT12E Register CAPREL Capture Input  
Data Sheet  
27  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
General Device Information  
Table 5  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
67  
P10.3  
O0 / I St/B Bit 3 of Port 10, General Purpose Input/Output  
CCU60_COU O2  
T60  
St/B CCU60 Channel 0 Output  
AD3  
OH / St/B External Bus Interface Address/Data Line 3  
IH  
U0C0_DX2A  
U0C1_DX2A  
P0.5  
I
I
St/B USIC0 Channel 0 Shift Control Input  
St/B USIC0 Channel 1 Shift Control Input  
68  
O0 / I St/B Bit 5 of Port 0, General Purpose Input/Output  
U1C1_SCLK O1  
OUT  
St/B USIC1 Channel 1 Shift Clock Output  
St/B USIC1 Channel 0 Select/Control 2 Output  
St/B CCU61 Channel 2 Output  
U1C0_SELO O2  
2
CCU61_COU O3  
T62  
A5  
OH  
St/B External Bus Interface Address Line 5  
St/B USIC1 Channel 1 Shift Clock Input  
St/B USIC1 Channel 0 Shift Clock Input  
St/B CAN Node 3 Receive Data Input  
U1C1_DX1A  
U1C0_DX1C  
RXDC3E  
P10.4  
I
I
I
69  
O0 / I St/B Bit 4 of Port 10, General Purpose Input/Output  
U0C0_SELO O1  
3
St/B USIC0 Channel 0 Select/Control 3 Output  
CCU60_COU O2  
T61  
St/B CCU60 Channel 1 Output  
AD4  
OH / St/B External Bus Interface Address/Data Line 4  
IH  
U0C0_DX2B  
U0C1_DX2B  
ESR1_9  
I
I
I
St/B USIC0 Channel 0 Shift Control Input  
St/B USIC0 Channel 1 Shift Control Input  
St/B ESR1 Trigger Input 9  
Data Sheet  
28  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
General Device Information  
Table 5  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
70  
P10.5  
O0 / I St/B Bit 5 of Port 10, General Purpose Input/Output  
U0C1_SCLK O1  
OUT  
St/B USIC0 Channel 1 Shift Clock Output  
CCU60_COU O2  
T62  
St/B CCU60 Channel 2 Output  
U2C0_DOUT O3  
St/B USIC2 Channel 0 Shift Data Output  
AD5  
OH / St/B External Bus Interface Address/Data Line 5  
IH  
U0C1_DX1B  
P0.6  
I
St/B USIC0 Channel 1 Shift Clock Input  
71  
O0 / I St/B Bit 6 of Port 0, General Purpose Input/Output  
U1C1_DOUT O1  
TxDC1 O2  
St/B USIC1 Channel 1 Shift Data Output  
St/B CAN Node 1 Transmit Data Output  
St/B CCU61 Channel 3 Output  
CCU61_COU O3  
T63  
A6  
OH  
St/B External Bus Interface Address Line 6  
St/B USIC1 Channel 1 Shift Data Input  
St/B CCU61 Emergency Trap Input  
U1C1_DX0A  
I
I
CCU61_CTR  
APA  
U1C1_DX1B  
P10.6  
I
St/B USIC1 Channel 1 Shift Clock Input  
72  
O0 / I St/B Bit 6 of Port 10, General Purpose Input/Output  
U0C0_DOUT O1  
St/B USIC0 Channel 0 Shift Data Output  
U1C0_SELO O3  
0
St/B USIC1 Channel 0 Select/Control 0 Output  
AD6  
OH / St/B External Bus Interface Address/Data Line 6  
IH  
U0C0_DX0C  
U1C0_DX2D  
I
I
I
St/B USIC0 Channel 0 Shift Data Input  
St/B USIC1 Channel 0 Shift Control Input  
St/B CCU60 Emergency Trap Input  
CCU60_CTR  
APA  
Data Sheet  
29  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
General Device Information  
Table 5  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
73  
P10.7  
O0 / I St/B Bit 7 of Port 10, General Purpose Input/Output  
U0C1_DOUT O1  
St/B USIC0 Channel 1 Shift Data Output  
St/B CCU60 Channel 3 Output  
CCU60_COU O2  
T63  
AD7  
OH / St/B External Bus Interface Address/Data Line 7  
IH  
U0C1_DX0B  
I
I
St/B USIC0 Channel 1 Shift Data Input  
St/B CCU60 Position Input 0  
CCU60_CCP  
OS0A  
T4INB  
P0.7  
I
St/B GPT12E Timer T4 Count/Gate Input  
74  
O0 / I St/B Bit 7 of Port 0, General Purpose Input/Output  
U1C1_DOUT O1  
St/B USIC1 Channel 1 Shift Data Output  
U1C0_SELO O2  
3
St/B USIC1 Channel 0 Select/Control 3 Output  
TxDC3  
A7  
O3  
St/B CAN Node 3 Transmit Data Output  
St/B External Bus Interface Address Line 7  
St/B USIC1 Channel 1 Shift Data Input  
St/B CCU61 Emergency Trap Input  
OH  
U1C1_DX0B  
I
I
CCU61_CTR  
APB  
78  
P1.0  
O0 / I St/B Bit 0 of Port 1, General Purpose Input/Output  
U1C0_MCLK O1  
OUT  
St/B USIC1 Channel 0 Master Clock Output  
U1C0_SELO O2  
4
St/B USIC1 Channel 0 Select/Control 4 Output  
A8  
OH  
St/B External Bus Interface Address Line 8  
St/B ESR1 Trigger Input 3  
ESR1_3  
I
I
CCU62_CTR  
APB  
St/B CCU62 Emergency Trap Input  
T6INB  
I
St/B GPT12E Timer T6 Count/Gate Input  
Data Sheet  
30  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
General Device Information  
Table 5  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
79  
P10.8  
O0 / I St/B Bit 8 of Port 10, General Purpose Input/Output  
U0C0_MCLK O1  
OUT  
St/B USIC0 Channel 0 Master Clock Output  
St/B USIC0 Channel 1 Select/Control 0 Output  
St/B USIC2 Channel 1 Shift Data Output  
U0C1_SELO O2  
0
U2C1_DOUT O3  
AD8  
OH / St/B External Bus Interface Address/Data Line 8  
IH  
CCU60_CCP  
OS1A  
I
St/B CCU60 Position Input 1  
U0C0_DX1C  
BRKIN_B  
T3EUDB  
I
I
I
St/B USIC0 Channel 0 Shift Clock Input  
St/B OCDS Break Signal Input  
St/B GPT12E Timer T3 External Up/Down Control  
Input  
80  
P10.9  
O0 / I St/B Bit 9 of Port 10, General Purpose Input/Output  
U0C0_SELO O1  
4
St/B USIC0 Channel 0 Select/Control 4 Output  
U0C1_MCLK O2  
OUT  
St/B USIC0 Channel 1 Master Clock Output  
AD9  
OH / St/B External Bus Interface Address/Data Line 9  
IH  
CCU60_CCP  
OS2A  
I
St/B CCU60 Position Input 2  
TCK_B  
IH  
St/B DAP0/JTAG Clock Input  
If JTAG pos. B is selected during start-up, an  
internal pull-up device will hold this pin high when  
nothing is driving it.  
If DAP pos. 1 is selected during start-up, an  
internal pull-down device will hold this pin low  
when nothing is driving it.  
T3INB  
I
St/B GPT12E Timer T3 Count/Gate Input  
Data Sheet  
31  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
General Device Information  
Table 5  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
81  
P1.1  
O0 / I St/B Bit 1 of Port 1, General Purpose Input/Output  
CCU62_COU O1  
T62  
St/B CCU62 Channel 2 Output  
U1C0_SELO O2  
5
St/B USIC1 Channel 0 Select/Control 5 Output  
U2C1_DOUT O3  
St/B USIC2 Channel 1 Shift Data Output  
St/B External Bus Interface Address Line 9  
St/B ESR2 Trigger Input 3  
A9  
OH  
ESR2_3  
U2C1_DX0C  
P10.10  
I
I
St/B USIC2 Channel 1 Shift Data Input  
82  
O0 / I St/B Bit 10 of Port 10, General Purpose Input/Output  
U0C0_SELO O1  
0
St/B USIC0 Channel 0 Select/Control 0 Output  
CCU60_COU O2  
T63  
St/B CCU60 Channel 3 Output  
AD10  
OH / St/B External Bus Interface Address/Data Line 10  
IH  
U0C0_DX2C  
U0C1_DX1A  
TDI_B  
I
St/B USIC0 Channel 0 Shift Control Input  
St/B USIC0 Channel 1 Shift Clock Input  
I
IH  
St/B JTAG Test Data Input  
If JTAG pos. B is selected during start-up, an  
internal pull-up device will hold this pin high when  
nothing is driving it.  
83  
P10.11  
O0 / I St/B Bit 11 of Port 10, General Purpose Input/Output  
U1C0_SCLK O1  
OUT  
St/B USIC1 Channel 0 Shift Clock Output  
BRKOUT  
AD11  
O2  
St/B OCDS Break Signal Output  
OH / St/B External Bus Interface Address/Data Line 11  
IH  
U1C0_DX1D  
RxDC2B  
I
St/B USIC1 Channel 0 Shift Clock Input  
St/B CAN Node 2 Receive Data Input  
I
TMS_B  
IH  
St/B JTAG Test Mode Selection Input  
If JTAG pos. B is selected during start-up, an  
internal pull-up device will hold this pin high when  
nothing is driving it.  
Data Sheet  
32  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
General Device Information  
Table 5  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
84  
P1.2  
O0 / I St/B Bit 2 of Port 1, General Purpose Input/Output  
CCU62_CC6 O1  
2
St/B CCU62 Channel 2 Output  
U1C0_SELO O2  
6
St/B USIC1 Channel 0 Select/Control 6 Output  
St/B USIC2 Channel 1 Shift Clock Output  
U2C1_SCLK O3  
OUT  
A10  
OH  
St/B External Bus Interface Address Line 10  
St/B ESR1 Trigger Input 4  
ESR1_4  
I
I
CCU61_T12  
HRB  
St/B External Run Control Input for T12 of CCU61  
CCU62_CC6  
2INA  
I
St/B CCU62 Channel 2 Input  
U2C1_DX0D  
U2C1_DX1C  
P10.12  
I
I
St/B USIC2 Channel 1 Shift Data Input  
St/B USIC2 Channel 1 Shift Clock Input  
85  
O0 / I St/B Bit 12 of Port 10, General Purpose Input/Output  
U1C0_DOUT O1  
St/B USIC1 Channel 0 Shift Data Output  
St/B CAN Node 2 Transmit Data Output  
TxDC2  
TDO_B  
O2  
OH / St/B JTAG Test Data Output / DAP1 Input/Output  
IH  
If DAP pos. 1 is selected during start-up, an  
internal pull-down device will hold this pin low  
when nothing is driving it.  
AD12  
OH / St/B External Bus Interface Address/Data Line 12  
IH  
U1C0_DX0C  
U1C0_DX1E  
I
I
St/B USIC1 Channel 0 Shift Data Input  
St/B USIC1 Channel 0 Shift Clock Input  
Data Sheet  
33  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
General Device Information  
Table 5  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
86  
P10.13  
U1C0_DOUT O1  
TxDC3 O2  
O0 / I St/B Bit 13 of Port 10, General Purpose Input/Output  
St/B USIC1 Channel 0 Shift Data Output  
St/B CAN Node 3 Transmit Data Output  
St/B USIC1 Channel 0 Select/Control 3 Output  
U1C0_SELO O3  
3
WR/WRL  
OH  
St/B External Bus Interface Write Strobe Output  
Active for each external write access, when WR,  
active for ext. writes to the low byte, when WRL.  
U1C0_DX0D  
P1.3  
I
St/B USIC1 Channel 0 Shift Data Input  
87  
O0 / I St/B Bit 3 of Port 1, General Purpose Input/Output  
CCU62_COU O1  
T63  
St/B CCU62 Channel 3 Output  
U1C0_SELO O2  
7
St/B USIC1 Channel 0 Select/Control 7 Output  
St/B USIC2 Channel 0 Select/Control 4 Output  
U2C0_SELO O3  
4
A11  
OH  
St/B External Bus Interface Address Line 11  
St/B ESR2 Trigger Input 4  
ESR2_4  
I
I
CCU62_T12  
HRB  
St/B External Run Control Input for T12 of CCU62  
89  
P10.14  
O0 / I St/B Bit 14 of Port 10, General Purpose Input/Output  
U1C0_SELO O1  
1
St/B USIC1 Channel 0 Select/Control 1 Output  
U0C1_DOUT O2  
St/B USIC0 Channel 1 Shift Data Output  
St/B External Bus Interface Read Strobe Output  
St/B ESR2 Trigger Input 2  
RD  
OH  
ESR2_2  
U0C1_DX0C  
RxDC3C  
I
I
I
St/B USIC0 Channel 1 Shift Data Input  
St/B CAN Node 3 Receive Data Input  
Data Sheet  
34  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
General Device Information  
Table 5  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
90  
P1.4  
O0 / I St/B Bit 4 of Port 1, General Purpose Input/Output  
CCU62_COU O1  
T61  
St/B CCU62 Channel 1 Output  
U1C1_SELO O2  
4
St/B USIC1 Channel 1 Select/Control 4 Output  
St/B USIC2 Channel 0 Select/Control 5 Output  
U2C0_SELO O3  
5
A12  
OH  
I
St/B External Bus Interface Address Line 12  
St/B USIC2 Channel 0 Shift Control Input  
U2C0_DX2B  
P10.15  
91  
O0 / I St/B Bit 15 of Port 10, General Purpose Input/Output  
U1C0_SELO O1  
2
St/B USIC1 Channel 0 Select/Control 2 Output  
U0C1_DOUT O2  
U1C0_DOUT O3  
St/B USIC0 Channel 1 Shift Data Output  
St/B USIC1 Channel 0 Shift Data Output  
St/B External Bus Interf. Addr. Latch Enable Output  
St/B USIC0 Channel 1 Shift Clock Input  
ALE  
OH  
I
U0C1_DX1C  
P1.5  
92  
O0 / I St/B Bit 5 of Port 1, General Purpose Input/Output  
CCU62_COU O1  
T60  
St/B CCU62 Channel 0 Output  
U1C1_SELO O2  
3
St/B USIC1 Channel 1 Select/Control 3 Output  
BRKOUT  
A13  
O3  
OH  
I
St/B OCDS Break Signal Output  
St/B External Bus Interface Address Line 13  
St/B USIC2 Channel 0 Shift Data Input  
U2C0_DX0C  
Data Sheet  
35  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
General Device Information  
Table 5  
Pin Definitions and Functions (cont’d)  
Pin Symbol  
Ctrl. Type Function  
93  
P1.6  
O0 / I St/B Bit 6 of Port 1, General Purpose Input/Output  
CCU62_CC6 O1 / I St/B CCU62 Channel 1 Output  
1
U1C1_SELO O2  
2
St/B USIC1 Channel 1 Select/Control 2 Output  
U2C0_DOUT O3  
St/B USIC2 Channel 0 Shift Data Output  
St/B External Bus Interface Address Line 14  
St/B USIC2 Channel 0 Shift Data Input  
St/B CCU62 Channel 1 Input  
A14  
OH  
U2C0_DX0D  
I
I
CCU62_CC6  
1INA  
94  
P1.7  
O0 / I St/B Bit 7 of Port 1, General Purpose Input/Output  
CCU62_CC6 O1  
0
St/B CCU62 Channel 0 Output  
U1C1_MCLK O2  
OUT  
St/B USIC1 Channel 1 Master Clock Output  
St/B USIC2 Channel 0 Shift Clock Output  
U2C0_SCLK O3  
OUT  
A15  
OH  
St/B External Bus Interface Address Line 15  
St/B USIC2 Channel 0 Shift Clock Input  
St/B CCU62 Channel 0 Input  
U2C0_DX1C  
I
I
CCU62_CC6  
0INA  
95  
96  
XTAL2  
XTAL1  
O
I
Sp/M Crystal Oscillator Amplifier Output  
Sp/M Crystal Oscillator Amplifier Input  
To clock the device from an external source, drive  
XTAL1, while leaving XTAL2 unconnected.  
Voltages on XTAL1 must comply to the core  
supply voltage VDDIM  
.
ESR2_9  
I
St/B ESR2 Trigger Input 9  
Data Sheet  
36  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
General Device Information  
Table 5  
Pin Definitions and Functions (cont’d)  
Ctrl. Type Function  
In/B Power On Reset Input  
Pin Symbol  
97  
PORST  
I
A low level at this pin resets the XE164xM  
completely. A spike filter suppresses input pulses  
<10 ns. Input pulses >100 ns safely pass the filter.  
The minimum duration for a safe recognition  
should be 120 ns.  
An internal pull-up device will hold this pin high  
when nothing is driving it.  
98  
ESR1  
O0 / I St/B External Service Request 1  
After power-up, an internal weak pull-up device  
holds this pin high when nothing is driving it.  
St/B CAN Node 0 Receive Data Input  
St/B USIC1 Channel 0 Shift Data Input  
St/B USIC1 Channel 0 Shift Control Input  
St/B USIC1 Channel 1 Shift Data Input  
St/B USIC1 Channel 1 Shift Control Input  
St/B USIC2 Channel 1 Shift Control Input  
RxDC0E  
I
I
I
I
I
I
U1C0_DX0F  
U1C0_DX2C  
U1C1_DX0C  
U1C1_DX2B  
U2C1_DX2C  
ESR0  
99  
10  
O0 / I St/B External Service Request 0  
After power-up, ESR0 operates as open-drain  
bidirectional reset with a weak pull-up.  
St/B USIC1 Channel 0 Shift Data Input  
St/B USIC1 Channel 0 Shift Control Input  
U1C0_DX0E  
U1C0_DX2B  
VDDIM  
I
I
-
PS/M Digital Core Supply Voltage for Domain M  
Decouple with a ceramic capacitor, see Data  
Sheet for details.  
38, VDDI1  
64,  
88  
-
-
PS/1 Digital Core Supply Voltage for Domain 1  
Decouple with a ceramic capacitor, see Data  
Sheet for details.  
All VDDI1 pins must be connected to each other.  
14  
VDDPA  
PS/A Digital Pad Supply Voltage for Domain A  
Connect decoupling capacitors to adjacent  
V
DDP/VSS pin pairs as close as possible to the pins.  
Note: The A/D_Converters and ports P5, P6 and  
P15 are fed from supply voltage VDDPA  
.
Data Sheet  
37  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
General Device Information  
Table 5  
Pin Definitions and Functions (cont’d)  
Ctrl. Type Function  
- PS/B Digital Pad Supply Voltage for Domain B  
Connect decoupling capacitors to adjacent  
DDP/VSS pin pairs as close as possible to the pins.  
Pin Symbol  
2,  
VDDPB  
25,  
27,  
50,  
52,  
75,  
77,  
100  
V
Note: The on-chip voltage regulators and all ports  
except P5, P6 and P15 are fed from supply  
voltage VDDPB  
.
1,  
VSS  
-
PS/-- Digital Ground  
26,  
51,  
76  
All VSS pins must be connected to the ground-line  
or ground-plane.  
Note: Also the exposed pad is connected  
internally to VSS. To improve the EMC  
behavior, it is recommended to connect the  
exposed pad to the board ground.  
For thermal aspects, please refer to the  
Data Sheet. Board layout examples are  
given in an application note.  
1) To generate the reference clock output for bus timing measurement, fSYS must be selected as source for  
EXTCLK and P2.8 must be selected as output pin. Also the high-speed clock pad must be enabled. This  
configuration is referred to as reference clock output signal CLKOUT.  
Data Sheet  
38  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
General Device Information  
2.2  
Identification Registers  
The identification registers describe the current version of the XE164xM and of its  
modules.  
Table 6  
XE164xM Identification Registers  
Short Name  
SCU_IDMANUF  
SCU_IDCHIP  
SCU_IDMEM  
SCU_IDPROG  
JTAG_ID  
Value  
1820H  
3801H  
30D0H  
1313H  
Address  
00’F07EH  
00’F07CH  
00’F07AH  
00’F078H  
Notes  
0017’E083H ---  
marking EES-AA, ES-AA or AA  
Data Sheet  
39  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Functional Description  
3
Functional Description  
The architecture of the XE164xM combines advantages of RISC, CISC, and DSP  
processors with an advanced peripheral subsystem in a well-balanced design. On-chip  
memory blocks allow the design of compact systems-on-silicon with maximum  
performance suited for computing, control, and communication.  
The on-chip memory blocks (program code memory and SRAM, dual-port RAM, data  
SRAM) and the generic peripherals are connected to the CPU by separate high-speed  
buses. Another bus, the LXBus, connects additional on-chip resources and external  
resources (see Figure 4). This bus structure enhances overall system performance by  
enabling the concurrent operation of several subsystems of the XE164xM.  
The block diagram gives an overview of the on-chip components and the advanced  
internal bus structure of the XE164xM.  
OCDS  
Debug Support  
DPRAM  
DSRAM  
PSRAM  
EBC  
LXBus Control  
External Bus  
Control  
CPU  
Flash  
Memory  
MAC Unit  
MCHK  
WDT  
RTC  
System Functions  
Clock, Reset, Power  
Control, StandByRAM  
MPU  
Interrupt& PEC  
Interrupt Bus  
CC2  
Modules Modules  
ADC0 ADC1  
Module Module  
GPT  
CCU6x  
USICx  
Modules  
Multi  
CAN  
10-Bit 10-Bit  
Shared  
MOs  
8-Bit  
8-Bit  
5
16  
Chan.  
3+1  
Chan.  
each  
2
for  
Nodes  
Timers  
Chan.  
each  
Analog and Digital General Purpose IO (GPIO) Ports  
MC_BL_BLOCKDIAGRAM  
Figure 4  
Block Diagram  
Data Sheet  
40  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Functional Description  
3.1  
Memory Subsystem and Organization  
The memory space of the XE164xM is configured in the von Neumann architecture. In  
this architecture all internal and external resources, including code memory, data  
memory, registers and I/O ports, are organized in the same linear address space.  
Table 7  
XE164xM Memory Map 1)  
Address Area  
Start Loc. End Loc. Area Size2)  
Notes  
IMB register space  
FF’FF00H FF’FFFFH 256 Bytes  
Reserved (Access trap) F0’0000H  
Reserved for EPSRAM E8’8000H  
FF’FEFFH <1 Mbyte  
EF’FFFFH 480 Kbytes  
E8’7FFFH 32 Kbytes  
E7’FFFFH 480 Kbytes  
E0’7FFFH 32 Kbytes  
Minus IMB registers  
Mirrors EPSRAM  
With Flash timing  
Mirrors PSRAM  
Maximum speed  
Emulated PSRAM  
Reserved for PSRAM  
Program SRAM  
E8’0000H  
E0’8000H  
E0’0000H  
Reserved for Flash  
Program Flash 3  
Program Flash 2  
Program Flash 1  
Program Flash 0  
CD’0000H DF’FFFFH <1.25 Mbytes –  
CC’0000H CC’FFFFH 64 Kbytes  
C8’0000H CB’FFFFH 256 Kbytes  
C4’0000H C7’FFFFH 256 Kbytes  
C0’0000H C3’FFFFH 256 Kbytes  
3)  
External memory area 40’0000H  
Available Ext. IO area4) 21’0000H  
BF’FFFFH 8 Mbytes  
3F’FFFFH < 2 Mbytes  
Minus USIC/CAN  
Reserved  
20’BC00H 20’FFFFH 17 Kbytes  
USIC alternate regs.  
20’B000H  
20’8000H  
20’BFFFH 4 Kbytes  
20’AFFFH 12 Kbytes  
Accessed via EBC  
Accessed via EBC  
MultiCAN alternate  
regs.  
Reserved  
20’6000H  
20’4000H  
20’0000H  
20’7FFFH 8 Kbytes  
20’5FFFH 8 Kbytes  
20’3FFFH 16 Kbytes  
1F’FFFFH < 2 Mbytes  
USIC registers  
MultiCAN registers  
Accessed via EBC  
Accessed via EBC  
External memory area 01’0000H  
Minus segment 0  
SFR area  
00’FE00H 00’FFFFH 0.5 Kbyte  
Dual-Port RAM  
Reserved for DPRAM  
ESFR area  
00’F600H  
00’F200H  
00’F000H  
00’E000H  
00’FDFFH 2 Kbytes  
00’F5FFH 1 Kbyte  
00’F1FFH 0.5 Kbyte  
00’EFFFH 4 Kbytes  
XSFR area  
Data Sheet  
41  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Functional Description  
Table 7  
XE164xM Memory Map (cont’d)1)  
Start Loc. End Loc. Area Size2)  
Address Area  
Data SRAM  
Notes  
00’A000H  
00’8000H  
00’DFFFH 16 Kbytes  
00’9FFFH 8 Kbytes  
00’7FFFH 32 Kbytes  
Reserved for DSRAM  
External memory area 00’0000H  
1) Accesses to the shaded areas are reserved. In devices with external bus interface these accesses generate  
external bus accesses.  
2) The areas marked with “<” are slightly smaller than indicated. See column “Notes”.  
3) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0’F000H to C0’FFFFH).  
4) Several pipeline optimizations are not active within the external IO area. This is necessary to control external  
peripherals properly.  
This common memory space consists of 16 Mbytes organized as 256 segments of  
64 Kbytes; each segment contains four data pages of 16 Kbytes. The entire memory  
space can be accessed bytewise or wordwise. Portions of the on-chip DPRAM and the  
register spaces (ESFR/SFR) additionally are directly bit addressable.  
The internal data memory areas and the Special Function Register areas (SFR and  
ESFR) are mapped into segment 0, the system segment.  
The Program Management Unit (PMU) handles all code fetches and, therefore, controls  
access to the program memories such as Flash memory and PSRAM.  
The Data Management Unit (DMU) handles all data transfers and, therefore, controls  
access to the DSRAM and the on-chip peripherals.  
Both units (PMU and DMU) are connected to the high-speed system bus so that they can  
exchange data. This is required if operands are read from program memory, code or  
data is written to the PSRAM, code is fetched from external memory, or data is read from  
or written to external resources. These include peripherals on the LXBus such as USIC  
or MultiCAN. The system bus allows concurrent two-way communication for maximum  
transfer performance.  
Up to 32 Kbytes of on-chip Program SRAM (PSRAM) are provided to store user code  
or data. The PSRAM is accessed via the PMU and is optimized for code fetches. A  
section of the PSRAM with programmable size can be write-protected.  
Up to 16 Kbytes of on-chip Data SRAM (DSRAM) are used for storage of general user  
data. The DSRAM is accessed via a separate interface and is optimized for data access.  
2 Kbytes of on-chip Dual-Port RAM (DPRAM) provide storage for user-defined  
variables, for the system stack, and for general purpose register banks. A register bank  
can consist of up to 16 word-wide (R0 to R15) and/or byte-wide (RL0, RH0, …, RL7,  
RH7) General Purpose Registers (GPRs).  
The upper 256 bytes of the DPRAM are directly bit addressable. When used by a GPR,  
any location in the DPRAM is bit addressable.  
Data Sheet  
42  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Functional Description  
8 Kbytes of on-chip Stand-By SRAM (SBRAM) provide storage for system-relevant  
user data that must be preserved while the major part of the device is powered down.  
The SBRAM is accessed via a specific interface and is powered in domain M.  
1024 bytes (2 × 512 bytes) of the address space are reserved for the Special Function  
Register areas (SFR space and ESFR space). SFRs are word-wide registers which are  
used to control and monitor functions of the different on-chip units. Unused SFR  
addresses are reserved for future members of the XE166 Family. In order to ensure  
upward compatibility they should either not be accessed or written with zeros.  
The on-chip Flash memory stores code, constant data, and control data. The on-chip  
Flash memory consists of 1 module of 64 Kbytes (preferably for data storage) and  
modules with a maximum capacity of 256 Kbytes each. Each module is organized in  
sectors of 4 Kbytes.  
The uppermost 4-Kbyte sector of segment 0 (located in Flash module 0) is used  
internally to store operation control parameters and protection information.  
Note: The actual size of the Flash memory depends on the chosen device type.  
Each sector can be separately write protected1), erased and programmed (in blocks of  
128 Bytes). The complete Flash area can be read-protected. A user-defined password  
sequence temporarily unlocks protected areas. The Flash modules combine 128-bit  
read access with protected and efficient writing algorithms for programming and erasing.  
Dynamic error correction provides extremely high read data security for all read access  
operations. Access to different Flash modules can be executed in parallel.  
For Flash parameters, please see Section 4.5.  
Memory Content Protection  
The contents of on-chip memories can be protected against soft errors (induced e.g. by  
radiation) by activating the parity mechanism or the Error Correction Code (ECC).  
The parity mechanism can detect a single-bit error and prevent the software from using  
incorrect data or executing incorrect instructions.  
The ECC mechanism can detect and automatically correct single-bit errors. This  
supports the stable operation of the system.  
It is strongly recommended to activate the ECC mechanism wherever possible because  
this dramatically increases the robustness of an application against such soft errors.  
1) To save control bits, sectors are clustered for protection purposes, they remain separate for  
programming/erasing.  
Data Sheet  
43  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Functional Description  
3.2  
External Bus Controller  
All external memory access operations are performed by a special on-chip External Bus  
Controller (EBC). The EBC also controls access to resources connected to the on-chip  
LXBus (MultiCAN and the USIC modules). The LXBus is an internal representation of  
the external bus that allows access to integrated peripherals and modules in the same  
way as to external components.  
The EBC can be programmed either to Single Chip Mode, when no external memory is  
required, or to an external bus mode with the following selections1):  
Address Bus Width with a range of 0 … 24-bit  
Data Bus Width 8-bit or 16-bit  
Bus Operation Multiplexed or Demultiplexed  
The bus interface uses Port 10 and Port 2 for addresses and data. In the demultiplexed  
bus modes, the lower addresses are output separately on Port 0 and Port 1. The number  
of active segment address lines is selectable, restricting the external address space to  
8 Mbytes … 64 Kbytes. This is required when interface lines shall be assigned to Port 2.  
External CS signals (address windows plus default) can be generated and output on  
Port 4 in order to save external glue logic. External modules can be directly connected  
to the common address/data bus and their individual select lines.  
Important timing characteristics of the external bus interface are programmable (with  
registers TCONCSx/FCONCSx) to allow the user to adapt it to a wide range of different  
types of memories and external peripherals.  
Access to very slow memories or modules with varying access times is supported by a  
special ‘Ready’ function. The active level of the control input signal is selectable.  
In addition, up to four independent address windows may be defined (using registers  
ADDRSELx) to control access to resources with different bus characteristics. These  
address windows are arranged hierarchically where window 4 overrides window 3, and  
window 2 overrides window 1. All accesses to locations not covered by these four  
address windows are controlled by TCONCS0/FCONCS0. The currently active window  
can generate a chip select signal.  
The external bus timing is based on the rising edge of the reference clock output  
CLKOUT. The external bus protocol is compatible with that of the standard C166 Family.  
1) Bus modes are switched dynamically if several address windows with different mode settings are used.  
Data Sheet  
44  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Functional Description  
3.3  
Central Processing Unit (CPU)  
The core of the CPU consists of a 5-stage execution pipeline with a 2-stage instruction-  
fetch pipeline, a 16-bit arithmetic and logic unit (ALU), a 32-bit/40-bit multiply and  
accumulate unit (MAC), a register-file providing three register banks, and dedicated  
SFRs. The ALU features a multiply-and-divide unit, a bit-mask generator, and a barrel  
shifter.  
PSRAM  
Flash/ROM  
PMU  
CPU  
Prefetch  
CSP  
IP  
VECSEG  
TFR  
2-Stage  
Prefetch  
Pipeline  
Unit  
CPUCON1  
CPUCON2  
Branch  
Unit  
5-Stage  
Pipeline  
Injection/  
Exception  
Handler  
DPRAM  
Return  
Stack  
FIFO  
IFU  
DPP0  
IPIP  
IDX0  
IDX1  
QX0  
QX1  
QR0  
QR1  
SPSEG  
SP  
CP  
R15  
DPP1  
DPP2  
DPP3  
STKOV  
STKUN  
R15  
R14  
R14  
GPRs  
GPRs  
+/-  
+/-  
ADU  
s  
R1  
R0  
R1  
Division Unit  
Multiply Unit  
Bit-Mask-Gen.  
Barrel-Shifter  
R0  
Multiply  
Unit  
MRW  
R0  
R0  
MCW  
MSW  
MDC  
PSW  
RF  
+/-  
+/-  
MDH  
MDL  
ONES  
ALU  
DSRAM  
EBC  
Peripherals  
Buffer  
WB  
MAH  
MAL  
ZEROS  
MAC  
DMU  
mca04917_x.vsd  
Figure 5  
CPU Block Diagram  
Data Sheet  
45  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Functional Description  
With this hardware most XE164xM instructions are executed in a single machine cycle  
of 12.5 ns with an 80-MHz CPU clock. For example, shift and rotate instructions are  
always processed during one machine cycle, no matter how many bits are shifted. Also,  
multiplication and most MAC instructions execute in one cycle. All multiple-cycle  
instructions have been optimized so that they can be executed very fast; for example, a  
32-/16-bit division is started within 4 cycles while the remaining cycles are executed in  
the background. Another pipeline optimization, the branch target prediction, eliminates  
the execution time of branch instructions if the prediction was correct.  
The CPU has a register context consisting of up to three register banks with 16 word-  
wide GPRs each at its disposal. One of these register banks is physically allocated within  
the on-chip DPRAM area. A Context Pointer (CP) register determines the base address  
of the active register bank accessed by the CPU at any time. The number of these  
register bank copies is only restricted by the available internal RAM space. For easy  
parameter passing, a register bank may overlap others.  
A system stack of up to 32 Kwords is provided for storage of temporary data. The system  
stack can be allocated to any location within the address space (preferably in the on-chip  
RAM area); it is accessed by the CPU with the stack pointer (SP) register. Two separate  
SFRs, STKOV and STKUN, are implicitly compared with the stack pointer value during  
each stack access to detect stack overflow or underflow.  
The high performance of the CPU hardware implementation can be best utilized by the  
programmer with the highly efficient XE164xM instruction set. This includes the following  
instruction classes:  
Standard Arithmetic Instructions  
DSP-Oriented Arithmetic Instructions  
Logical Instructions  
Boolean Bit Manipulation Instructions  
Compare and Loop Control Instructions  
Shift and Rotate Instructions  
Prioritize Instruction  
Data Movement Instructions  
System Stack Instructions  
Jump and Call Instructions  
Return Instructions  
System Control Instructions  
Miscellaneous Instructions  
The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes  
and words. A variety of direct, indirect or immediate addressing modes are provided to  
specify the required operands.  
Data Sheet  
46  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Functional Description  
3.4  
Memory Protection Unit (MPU)  
The XE164xM’s Memory Protection Unit (MPU) protects user-specified memory areas  
from unauthorized read, write, or instruction fetch accesses. The MPU can protect the  
whole address space including the peripheral area. This completes establisched  
mechanisms such as the register security mechanism or stack overrun/underrun  
detection.  
Four Protection Levels support flexible system programming where operating system,  
low level drivers, and applications run on separate levels. Each protection level permits  
different access restrictions for instructions and/or data.  
Every access is checked (if the MPU is enabled) and an access violating the permission  
rules will be marked as invalid and leads to a protection trap.  
A set of protection registers for each protection level specifies the address ranges and  
the access permissions. Applications requiring more than 4 protection levels can  
dynamically re-program the protection registers.  
3.5  
Memory Checker Module (MCHK)  
The XE164xM’s Memory Checker Module calculates a checksum (fractional polynomial  
division) on a block of data, often called Cyclic Redundancy Code (CRC). It is based on  
a 32-bit linear feedback shift register and may, therefore, also be used to generate  
pseudo-random numbers.  
The Memory Checker Module is a 16-bit parallel input signature compression circuitry  
which enables error detection within a block of data stored in memory, registers, or  
communicated e.g. via serial communication lines. It reduces the probability of error  
masking due to repeated error patterns by calculating the signature of blocks of data.  
The polynomial used for operation is configurable, so most of the commonly used  
polynomials may be used. Also, the block size for generating a CRC result is  
configurable via a local counter. An interrupt may be generated if testing the current data  
block reveals an error.  
An autonomous CRC compare circuitry is included to enable redundant error detection,  
e.g. to enable higher safety integrity levels.  
The Memory Checker Module provides enhanced fault detection (beyond parity or ECC)  
for data and instructions in volatile and non volatile memories. This is especially  
important for the safety and reliability of embedded systems.  
Data Sheet  
47  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Functional Description  
3.6  
Interrupt System  
The architecture of the XE164xM supports several mechanisms for fast and flexible  
response to service requests; these can be generated from various sources internal or  
external to the microcontroller. Any of these interrupt requests can be programmed to be  
serviced by the Interrupt Controller or by the Peripheral Event Controller (PEC).  
Where in a standard interrupt service the current program execution is suspended and  
a branch to the interrupt vector table is performed, just one cycle is ‘stolen’ from the  
current CPU activity to perform a PEC service. A PEC service implies a single byte or  
word data transfer between any two memory locations with an additional increment of  
either the PEC source pointer, the destination pointer, or both. An individual PEC  
transfer counter is implicitly decremented for each PEC service except when performing  
in the continuous transfer mode. When this counter reaches zero, a standard interrupt is  
performed to the corresponding source-related vector location. PEC services are  
particularly well suited to supporting the transmission or reception of blocks of data. The  
XE164xM has eight PEC channels, each whith fast interrupt-driven data transfer  
capabilities.  
With a minimum interrupt response time of 7/111) CPU clocks, the XE164xM can react  
quickly to the occurrence of non-deterministic events.  
Interrupt Nodes and Source Selection  
The interrupt system provides 96 physical nodes with separate control register  
containing an interrupt request flag, an interrupt enable flag and an interrupt priority bit  
field. Most interrupt sources are assigned to a dedicated node. A particular subset of  
interrupt sources shares a set of nodes. The source selection can be programmed using  
the interrupt source selection (ISSR) registers.  
External Request Unit (ERU)  
A dedicated External Request Unit (ERU) is provided to route and preprocess selected  
on-chip peripheral and external interrupt requests. The ERU features 4 programmable  
input channels with event trigger logic (ETL) a routing matrix and 4 output gating units  
(OGU). The ETL features rising edge, falling edge, or both edges event detection. The  
OGU combines the detected interrupt events and provides filtering capabilities  
depending on a programmable pattern match or miss.  
Trap Processing  
The XE164xM provides efficient mechanisms to identify and process exceptions or error  
conditions that arise during run-time, the so-called ‘Hardware Traps’. A hardware trap  
causes an immediate system reaction similar to a standard interrupt service (branching  
1) Depending if the jump cache is used or not.  
Data Sheet  
48  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Functional Description  
to a dedicated vector table location). The occurrence of a hardware trap is also indicated  
by a single bit in the trap flag register (TFR). Unless another higher-priority trap service  
is in progress, a hardware trap will interrupt any ongoing program execution. In turn,  
hardware trap services can normally not be interrupted by standard or PEC interrupts.  
Depending on the package option up to 3 External Service Request (ESR) pins are  
provided. The ESR unit processes their input values and allows to implement user  
controlled trap functions (System Requests SR0 and SR1). In this way reset, wakeup  
and power control can be efficiently realized.  
Software interrupts are supported by the ‘TRAP’ instruction in combination with an  
individual trap (interrupt) number. Alternatively to emulate an interrupt by software a  
program can trigger interrupt requests by writing the Interrupt Request (IR) bit of an  
interrupt control register.  
3.7  
On-Chip Debug Support (OCDS)  
The On-Chip Debug Support system built into the XE164xM provides a broad range of  
debug and emulation features. User software running on the XE164xM can be debugged  
within the target system environment.  
The OCDS is controlled by an external debugging device via the debug interface. This  
either consists of the 2-pin Device Access Port (DAP) or of the JTAG port conforming to  
IEEE-1149. The debug interface can be completed with an optional break interface.  
The debugger controls the OCDS with a set of dedicated registers accessible via the  
debug interface (DAP or JTAG). In addition the OCDS system can be controlled by the  
CPU, e.g. by a monitor program. An injection interface allows the execution of OCDS-  
generated instructions by the CPU.  
Multiple breakpoints can be triggered by on-chip hardware, by software, or by an  
external trigger input. Single stepping is supported, as is the injection of arbitrary  
instructions and read/write access to the complete internal address space. A breakpoint  
trigger can be answered with a CPU halt, a monitor call, a data transfer, or/and the  
activation of an external signal.  
Tracing data can be obtained via the debug interface, or via the external bus interface  
for increased performance.  
Tracing of program execution is supported by the XE166 Family emulation device.  
The DAP interface uses two interface signals, the JTAG interface uses four interface  
signals, to communicate with external circuitry. The debug interface can be amended  
with two optional break lines.  
Data Sheet  
49  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Functional Description  
3.8  
Capture/Compare Unit (CAPCOM2)  
The CAPCOM2 unit supports generation and control of timing sequences on up to  
16 channels with a maximum resolution of one system clock cycle (eight cycles in  
staggered mode). The CAPCOM2 unit is typically used to handle high-speed I/O tasks  
such as pulse and waveform generation, pulse width modulation (PWM), digital to  
analog (D/A) conversion, software timing, or time recording with respect to external  
events.  
Two 16-bit timers (T7/T8) with reload registers provide two independent time bases for  
the capture/compare register array.  
The input clock for the timers is programmable to several prescaled values of the internal  
system clock, or may be derived from an overflow/underflow of timer T6 in module GPT2.  
This provides a wide range or variation for the timer period and resolution and allows  
precise adjustments to the application-specific requirements. In addition, an external  
count input allows event scheduling for the capture/compare registers relative to external  
events.  
The capture/compare register array contains 16 dual purpose capture/compare  
registers, each of which may be individually allocated to either CAPCOM timer and  
programmed for capture or compare function.  
All registers have each one port pin associated with it which serves as an input pin for  
triggering the capture function, or as an output pin to indicate the occurrence of a  
compare event.  
When a capture/compare register has been selected for capture mode, the current  
contents of the allocated timer will be latched (‘captured’) into the capture/compare  
register in response to an external event at the port pin which is associated with this  
register. In addition, a specific interrupt request for this capture/compare register is  
generated. Either a positive, a negative, or both a positive and a negative external signal  
transition at the pin can be selected as the triggering event.  
The contents of all registers which have been selected for one of the five compare modes  
are continuously compared with the contents of the allocated timers.  
When a match occurs between the timer value and the value in a capture/compare  
register, specific actions will be taken based on the selected compare mode.  
Table 8  
Compare Modes  
Compare Modes  
Function  
Mode 0  
Interrupt-only compare mode;  
Several compare interrupts per timer period are possible  
Mode 1  
Pin toggles on each compare match;  
Several compare events per timer period are possible  
Data Sheet  
50  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Functional Description  
Table 8  
Compare Modes (cont’d)  
Compare Modes  
Function  
Mode 2  
Interrupt-only compare mode;  
Only one compare interrupt per timer period is generated  
Mode 3  
Pin set ‘1’ on match; pin reset ‘0’ on compare timer overflow;  
Only one compare event per timer period is generated  
Double Register  
Mode  
Two registers operate on one pin;  
Pin toggles on each compare match;  
Several compare events per timer period are possible  
Single Event Mode  
Generates single edges or pulses;  
Can be used with any compare mode  
Data Sheet  
51  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Functional Description  
Reload Reg.  
T7REL  
fCC  
T7  
T7IN  
T6OUF  
Input  
Control  
Timer T7  
T7IRQ  
CC16IO  
CC17IO  
CC16IRQ  
CC17IRQ  
Mode  
Control  
(Capture  
or  
Sixteen  
16-bit  
Capture/  
Compare  
Registers  
Compare)  
CC31IO  
CC31IRQ  
T8IRQ  
T8  
Input  
fCC  
Timer T8  
T6OUF  
Control  
Reload Reg.  
T8REL  
MC_CAPCOM2_BLOCKDIAG  
Figure 6  
CAPCOM2 Unit Block Diagram  
Data Sheet  
52  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Functional Description  
3.9  
Capture/Compare Units CCU6x  
The XE164xM types feature the CCU60, CCU61, CCU62 unit(s).  
The CCU6 is a high-resolution capture and compare unit with application-specific  
modes. It provides inputs to start the timers synchronously, an important feature in  
devices with several CCU6 modules.  
The module provides two independent timers (T12, T13), that can be used for PWM  
generation, especially for AC motor control. Additionally, special control modes for block  
commutation and multi-phase machines are supported.  
Timer 12 Features  
Three capture/compare channels, where each channel can be used either as a  
capture or as a compare channel.  
Supports generation of a three-phase PWM (six outputs, individual signals for high-  
side and low-side switches)  
16-bit resolution, maximum count frequency = peripheral clock  
Dead-time control for each channel to avoid short circuits in the power stage  
Concurrent update of the required T12/13 registers  
Center-aligned and edge-aligned PWM can be generated  
Single-shot mode supported  
Many interrupt request sources  
Hysteresis-like control mode  
Automatic start on a HW event (T12HR, for synchronization purposes)  
Timer 13 Features  
One independent compare channel with one output  
16-bit resolution, maximum count frequency = peripheral clock  
Can be synchronized to T12  
Interrupt generation at period match and compare match  
Single-shot mode supported  
Automatic start on a HW event (T13HR, for synchronization purposes)  
Additional Features  
Block commutation for brushless DC drives implemented  
Position detection via Hall sensor pattern  
Automatic rotational speed measurement for block commutation  
Integrated error handling  
Fast emergency stop without CPU load via external signal (CTRAP)  
Control modes for multi-channel AC drives  
Output levels can be selected and adapted to the power stage  
Data Sheet  
53  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Functional Description  
CCU6 Module Kernel  
fSYS  
compare  
1
Channel 0  
T12 Channel 1  
Channel 2  
Dead-  
time  
Control  
Multi-  
channel  
Control  
Trap  
Control  
TxHR  
1
1
start  
Interrupts  
T13 Channel 3  
compare  
1
3
2
2
2
3
1
Input / Output Control  
mc_ccu6_blockdiagram.vsd  
Figure 7  
CCU6 Block Diagram  
Timer T12 can work in capture and/or compare mode for its three channels. The modes  
can also be combined. Timer T13 can work in compare mode only. The multi-channel  
control unit generates output patterns that can be modulated by timer T12 and/or timer  
T13. The modulation sources can be selected and combined for signal modulation.  
Data Sheet  
54  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Functional Description  
3.10  
General Purpose Timer (GPT12E) Unit  
The GPT12E unit is a very flexible multifunctional timer/counter structure which can be  
used for many different timing tasks such as event timing and counting, pulse width and  
duty cycle measurements, pulse generation, or pulse multiplication.  
The GPT12E unit incorporates five 16-bit timers organized in two separate modules,  
GPT1 and GPT2. Each timer in each module may either operate independently in a  
number of different modes or be concatenated with another timer of the same module.  
Each of the three timers T2, T3, T4 of module GPT1 can be configured individually for  
one of four basic modes of operation: Timer, Gated Timer, Counter, and Incremental  
Interface Mode. In Timer Mode, the input clock for a timer is derived from the system  
clock and divided by a programmable prescaler. Counter Mode allows timer clocking in  
reference to external events.  
Pulse width or duty cycle measurement is supported in Gated Timer Mode, where the  
operation of a timer is controlled by the ‘gate’ level on an external input pin. For these  
purposes each timer has one associated port pin (TxIN) which serves as a gate or clock  
input. The maximum resolution of the timers in module GPT1 is 4 system clock cycles.  
The counting direction (up/down) for each timer can be programmed by software or  
altered dynamically by an external signal on a port pin (TxEUD), e.g. to facilitate position  
tracking.  
In Incremental Interface Mode the GPT1 timers can be directly connected to the  
incremental position sensor signals A and B through their respective inputs TxIN and  
TxEUD. Direction and counting signals are internally derived from these two input  
signals, so that the contents of the respective timer Tx corresponds to the sensor  
position. The third position sensor signal TOP0 can be connected to an interrupt input.  
Timer T3 has an output toggle latch (T3OTL) which changes its state on each timer  
overflow/underflow. The state of this latch may be output on pin T3OUT e.g. for time out  
monitoring of external hardware components. It may also be used internally to clock  
timers T2 and T4 for measuring long time periods with high resolution.  
In addition to the basic operating modes, T2 and T4 may be configured as reload or  
capture register for timer T3. A timer used as capture or reload register is stopped. The  
contents of timer T3 is captured into T2 or T4 in response to a signal at the associated  
input pin (TxIN). Timer T3 is reloaded with the contents of T2 or T4, triggered either by  
an external signal or a selectable state transition of its toggle latch T3OTL. When both  
T2 and T4 are configured to alternately reload T3 on opposite state transitions of T3OTL  
with the low and high times of a PWM signal, this signal can be continuously generated  
without software intervention.  
Data Sheet  
55  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Functional Description  
T3CON.BPS1  
2n:1  
Basic Clock  
fGPT  
Interrupt  
Aux. Timer T2  
Request  
(T2IRQ)  
U/D  
T2IN  
T2  
Mode  
Control  
Reload  
T2EUD  
Capture  
Interrupt  
Request  
(T3IRQ)  
T3  
Core Timer T3  
T3OTL  
Toggle  
Latch  
T3IN  
Mode  
Control  
T3OUT  
U/D  
T3EUD  
Capture  
Reload  
T4IN  
T4  
Mode  
Control  
Interrupt  
Request  
(T4IRQ)  
Aux. Timer T4  
T4EUD  
U/D  
MC_GPT_BLOCK1  
Figure 8  
Block Diagram of GPT1  
Data Sheet  
56  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Functional Description  
With its maximum resolution of 2 system clock cycles, the GPT2 module provides  
precise event control and time measurement. It includes two timers (T5, T6) and a  
capture/reload register (CAPREL). Both timers can be clocked with an input clock which  
is derived from the CPU clock via a programmable prescaler or with external signals. The  
counting direction (up/down) for each timer can be programmed by software or altered  
dynamically with an external signal on a port pin (TxEUD1)). Concatenation of the timers  
is supported with the output toggle latch (T6OTL) of timer T6, which changes its state on  
each timer overflow/underflow.  
The state of this latch may be used to clock timer T5, and/or it may be output on pin  
T6OUT. The overflows/underflows of timer T6 can also be used to clock the CAPCOM2  
timers and to initiate a reload from the CAPREL register.  
The CAPREL register can capture the contents of timer T5 based on an external signal  
transition on the corresponding port pin (CAPIN); timer T5 may optionally be cleared  
after the capture procedure. This allows the XE164xM to measure absolute time  
differences or to perform pulse multiplication without software overhead.  
The capture trigger (timer T5 to CAPREL) can also be generated upon transitions of  
GPT1 timer T3 inputs T3IN and/or T3EUD. This is especially advantageous when T3  
operates in Incremental Interface Mode.  
1) Exception: T5EUD is not connected to a pin.  
Data Sheet  
57  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Functional Description  
T6CON.BPS2  
2n:1  
Basic Clock  
Interrupt  
fGPT  
GPT2 Timer T5  
Request  
(T5IRQ)  
T5IN  
T5  
Mode  
Control  
U/D  
T5EUD  
Clear  
Capture  
CAPIN  
GPT2 CAPREL  
CAPREL  
Mode  
Control  
Interrupt  
Request  
(CRIRQ)  
Reload  
Clear  
T3IN/  
T3EUD  
Interrupt  
Request  
(T6IRQ)  
Toggle  
FF  
GPT2 Timer T6  
U/D  
T6OTL  
T6OUT  
T6OUF  
T6  
Mode  
Control  
T6IN  
T6EUD  
MC_GPT_BLOCK2  
Figure 9  
Block Diagram of GPT2  
Data Sheet  
58  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Functional Description  
3.11  
Real Time Clock  
The Real Time Clock (RTC) module of the XE164xM can be clocked with a clock signal  
selected from internal sources or external sources (pins).  
The RTC basically consists of a chain of divider blocks:  
Selectable 32:1 and 8:1 dividers (on - off)  
The reloadable 16-bit timer T14  
The 32-bit RTC timer block (accessible via registers RTCH and RTCL) consisting of:  
– a reloadable 10-bit timer  
– a reloadable 6-bit timer  
– a reloadable 6-bit timer  
– a reloadable 10-bit timer  
All timers count up. Each timer can generate an interrupt request. All requests are  
combined to a common node request.  
fRTC  
MUX  
:
32  
RUN  
RTCINT  
MUX  
Interrupt Sub Node  
: 8  
CNT  
INT0  
CNT  
INT1  
CNT  
INT2  
CNT  
INT3  
PRE  
REFCLK  
REL-Register  
T14REL  
10 Bits  
6 Bits  
6 Bits  
10 Bits  
fCNT  
T14  
10 Bits  
6 Bits  
6 Bits  
10 Bits  
T14-Register  
CNT-Register  
MCB05568B  
Figure 10  
RTC Block Diagram  
Note: The registers associated with the RTC are only affected by a power reset.  
Data Sheet  
59  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Functional Description  
The RTC module can be used for different purposes:  
System clock to determine the current time and date  
Cyclic time-based interrupt, to provide a system time tick independent of CPU  
frequency and other resources  
48-bit timer for long-term measurements  
Alarm interrupt at a defined time  
Data Sheet  
60  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Functional Description  
3.12  
A/D Converters  
For analog signal measurement, up to two 10-bit A/D converters (ADC0, ADC1) with  
11 + 5 multiplexed input channels and a sample and hold circuit have been integrated  
on-chip. 4 inputs can be converted by both A/D converters. Conversions use the  
successive approximation method. The sample time (to charge the capacitors) and the  
conversion time are programmable so that they can be adjusted to the external circuit.  
The A/D converters can also operate in 8-bit conversion mode, further reducing the  
conversion time.  
Several independent conversion result registers, selectable interrupt requests, and  
highly flexible conversion sequences provide a high degree of programmability to meet  
the application requirements. Both modules can be synchronized to allow parallel  
sampling of two input channels.  
For applications that require more analog input channels, external analog multiplexers  
can be controlled automatically. For applications that require fewer analog input  
channels, the remaining channel inputs can be used as digital input port pins.  
The A/D converters of the XE164xM support two types of request sources which can be  
triggered by several internal and external events.  
Parallel requests are activated at the same time and then executed in a predefined  
sequence.  
Queued requests are executed in a user-defined sequence.  
In addition, the conversion of a specific channel can be inserted into a running sequence  
without disturbing that sequence. All requests are arbitrated according to the priority  
level assigned to them.  
Data reduction features reduce the number of required CPU access operations allowing  
the precise evaluation of analog inputs (high conversion rate) even at a low CPU speed.  
Result data can be reduced by limit checking or accumulation of results.  
The Peripheral Event Controller (PEC) can be used to control the A/D converters or to  
automatically store conversion results to a table in memory for later evaluation, without  
requiring the overhead of entering and exiting interrupt routines for each data transfer.  
Each A/D converter contains eight result registers which can be concatenated to build a  
result FIFO. Wait-for-read mode can be enabled for each result register to prevent the  
loss of conversion data.  
In order to decouple analog inputs from digital noise and to avoid input trigger noise,  
those pins used for analog input can be disconnected from the digital input stages. This  
can be selected for each pin separately with the Port x Digital Input Disable registers.  
The Auto-Power-Down feature of the A/D converters minimizes the power consumption  
when no conversion is in progress.  
Broken wire detection for each channel and a multiplexer test mode provide information  
to verify the proper operation of the analog signal sources (e.g. a sensor system).  
Data Sheet  
61  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Functional Description  
3.13  
Universal Serial Interface Channel Modules (USIC)  
The XE164xM features the USIC modules USIC0, USIC1, USIC2. Each module  
provides two serial communication channels.  
The Universal Serial Interface Channel (USIC) module is based on a generic data shift  
and data storage structure which is identical for all supported serial communication  
protocols. Each channel supports complete full-duplex operation with a basic data buffer  
structure (one transmit buffer and two receive buffer stages). In addition, the data  
handling software can use FIFOs.  
The protocol part (generation of shift clock/data/control signals) is independent of the  
general part and is handled by protocol-specific preprocessors (PPPs).  
The USIC’s input/output lines are connected to pins by a pin routing unit. The inputs and  
outputs of each USIC channel can be assigned to different interface pins, providing great  
flexibility to the application software. All assignments can be made during runtime.  
Bus  
Buffer & Shift Structure Protocol Preprocessors  
Pins  
Control 0  
PPP_A  
PPP_B  
PPP_C  
PPP_D  
DBU  
0
DSU  
0
Control 1  
PPP_A  
PPP_B  
PPP_C  
PPP_D  
DBU  
1
DSU  
1
fsys  
Fractional  
Dividers  
Baud rate  
Generators  
USIC_basic.vsd  
Figure 11  
General Structure of a USIC Module  
The regular structure of the USIC module brings the following advantages:  
Higher flexibility through configuration with same look-and-feel for data management  
Reduced complexity for low-level drivers serving different protocols  
Wide range of protocols with improved performances (baud rate, buffer handling)  
Data Sheet  
62  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Functional Description  
Target Protocols  
Each USIC channel can receive and transmit data frames with a selectable data word  
width from 1 to 16 bits in each of the following protocols:  
UART (asynchronous serial channel)  
– module capability: maximum baud rate = fSYS / 4  
– data frame length programmable from 1 to 63 bits  
– MSB or LSB first  
LIN Support (Local Interconnect Network)  
– module capability: maximum baud rate = fSYS / 16  
– checksum generation under software control  
– baud rate detection possible by built-in capture event of baud rate generator  
SSC/SPI (synchronous serial channel with or without data buffer)  
– module capability: maximum baud rate = fSYS / 2, limited by loop delay  
– number of data bits programmable from 1 to 63, more with explicit stop condition  
– MSB or LSB first  
– optional control of slave select signals  
IIC (Inter-IC Bus)  
– supports baud rates of 100 kbit/s and 400 kbit/s  
IIS (Inter-IC Sound Bus)  
– module capability: maximum baud rate = fSYS / 2  
Note: Depending on the selected functions (such as digital filters, input synchronization  
stages, sample point adjustment, etc.), the maximum achievable baud rate can be  
limited. Please note that there may be additional delays, such as internal or  
external propagation delays and driver delays (e.g. for collision detection in UART  
mode, for IIC, etc.).  
Data Sheet  
63  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Functional Description  
3.14  
MultiCAN Module  
The MultiCAN module contains independently operating CAN nodes with Full-CAN  
functionality which are able to exchange Data and Remote Frames using a gateway  
function. Transmission and reception of CAN frames is handled in accordance with CAN  
specification V2.0 B (active). Each CAN node can receive and transmit standard frames  
with 11-bit identifiers as well as extended frames with 29-bit identifiers.  
All CAN nodes share a common set of message objects. Each message object can be  
individually allocated to one of the CAN nodes. Besides serving as a storage container  
for incoming and outgoing frames, message objects can be combined to build gateways  
between the CAN nodes or to set up a FIFO buffer.  
Note: The number of CAN nodes and message objects depends on the selected device  
type.  
The message objects are organized in double-chained linked lists, where each CAN  
node has its own list of message objects. A CAN node stores frames only into message  
objects that are allocated to its own message object list and it transmits only messages  
belonging to this message object list. A powerful, command-driven list controller  
performs all message object list operations.  
MultiCAN Module Kernel  
TXDCn  
CAN  
Node n  
RXDCn  
Clock  
Control  
fCAN  
Message  
Object  
Buffer  
Linked  
List  
Control  
Address  
Decoder  
Port  
Control  
TXDC0  
RXDC0  
CAN  
Node 0  
Interrupt  
Control  
CAN Control  
mc_multican_block.vsd  
Figure 12  
Block Diagram of MultiCAN Module  
Data Sheet  
64  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Functional Description  
MultiCAN Features  
CAN functionality conforming to CAN specification V2.0 B active for each CAN node  
(compliant to ISO 11898)  
Independent CAN nodes  
Set of independent message objects (shared by the CAN nodes)  
Dedicated control registers for each CAN node  
Data transfer rate up to 1 Mbit/s, individually programmable for each node  
Flexible and powerful message transfer control and error handling capabilities  
Full-CAN functionality for message objects:  
– Can be assigned to one of the CAN nodes  
– Configurable as transmit or receive objects, or as message buffer FIFO  
– Handle 11-bit or 29-bit identifiers with programmable acceptance mask for filtering  
– Remote Monitoring Mode, and frame counter for monitoring  
Automatic Gateway Mode support  
16 individually programmable interrupt nodes  
Analyzer mode for CAN bus monitoring  
3.15  
System Timer  
The System Timer consists of a programmable prescaler and two concatenated timers  
(10 bits and 6 bits). Both timers can generate interrupt requests. The clock source can  
be selected and the timers can also run during power reduction modes.  
Therefore, the System Timer enables the software to maintain the current time for  
scheduling functions or for the implementation of a clock.  
Data Sheet  
65  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Functional Description  
3.16  
Watchdog Timer  
The Watchdog Timer is one of the fail-safe mechanisms which have been implemented  
to prevent the controller from malfunctioning for longer periods of time.  
The Watchdog Timer is always enabled after an application reset of the chip. It can be  
disabled and enabled at any time by executing the instructions DISWDT and ENWDT  
respectively. The software has to service the Watchdog Timer before it overflows. If this  
is not the case because of a hardware or software failure, the Watchdog Timer  
overflows, generating a prewarning interrupt and then a reset request.  
The Watchdog Timer is a 16-bit timer clocked with the system clock divided by 16,384  
or 256. The Watchdog Timer register is set to a prespecified reload value (stored in  
WDTREL) in order to allow further variation of the monitored time interval. Each time it  
is serviced by the application software, the Watchdog Timer is reloaded and the  
prescaler is cleared.  
Time intervals between 3.2 μs and 13.42 s can be monitored (@ 80 MHz).  
The default Watchdog Timer interval after power-up is 6.5 ms (@ 10 MHz).  
3.17  
Clock Generation  
The Clock Generation Unit can generate the system clock signal fSYS for the XE164xM  
from a number of external or internal clock sources:  
External clock signals with pad voltage or core voltage levels  
External crystal or resonator using the on-chip oscillator  
On-chip clock source for operation without crystal/resonator  
Wake-up clock (ultra-low-power) to further reduce power consumption  
The programmable on-chip PLL with multiple prescalers generates a clock signal for  
maximum system performance from standard crystals, a clock input signal, or from the  
on-chip clock source. See also Section 4.6.2.  
The Oscillator Watchdog (OWD) generates an interrupt if the crystal oscillator frequency  
falls below a certain limit or stops completely. In this case, the system can be supplied  
with an emergency clock to enable operation even after an external clock failure.  
All available clock signals can be output on one of two selectable pins.  
Data Sheet  
66  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Functional Description  
3.18  
Parallel Ports  
The XE164xM provides up to 76 I/O lines which are organized into 7 input/output ports  
and 2 input ports. All port lines are bit-addressable, and all input/output lines can be  
individually (bit-wise) configured via port control registers. This configuration selects the  
direction (input/output), push/pull or open-drain operation, activation of pull devices, and  
edge characteristics (shape) and driver characteristics (output current) of the port  
drivers. The I/O ports are true bidirectional ports which are switched to high impedance  
state when configured as inputs. During the internal reset, all port pins are configured as  
inputs without pull devices active.  
All port lines have alternate input or output functions associated with them. These  
alternate functions can be programmed to be assigned to various port pins to support the  
best utilization for a given application. For this reason, certain functions appear several  
times in Table 9.  
All port lines that are not used for alternate functions may be used as general purpose  
I/O lines.  
Table 9  
Summary of the XE164xM’s Ports  
Port  
Width  
I/O Connected Modules  
P0  
8
I/O EBC (A7…A0),  
CCU6, USIC, CAN  
P1  
P2  
P4  
8
I/O EBC (A15…A8),  
CCU6, USIC  
14  
4
I/O EBC (READY, BHE, A23…A16, AD15…AD13, D15…D13),  
CAN, CC2, GPT12E, USIC, DAP/JTAG  
I/O EBC (CS3…CS0),  
CC2, CAN, GPT12E, USIC  
P5  
11  
3
I
Analog Inputs, CCU6, DAP/JTAG, GPT12E, CAN  
P6  
I/O ADC, CAN, GPT12E  
P7  
5
I/O CAN, GPT12E, SCU, DAP/JTAG, CCU6, ADC, USIC  
P10  
16  
I/O EBC (ALE, RD, WR, AD12…AD0, D12…D0),  
CCU6, USIC, DAP/JTAG, CAN  
P15  
5
I
Analog Inputs, GPT12E  
Data Sheet  
67  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Functional Description  
3.19  
Instruction Set Summary  
Table 10 lists the instructions of the XE164xM.  
The addressing modes that can be used with a specific instruction, the function of the  
instructions, parameters for conditional execution of instructions, and the opcodes for  
each instruction can be found in the “Instruction Set Manual”.  
This document also provides a detailed description of each instruction.  
Table 10  
Mnemonic  
ADD(B)  
Instruction Set Summary  
Description  
Bytes  
2 / 4  
2 / 4  
2 / 4  
2 / 4  
2
Add word (byte) operands  
ADDC(B)  
SUB(B)  
Add word (byte) operands with Carry  
Subtract word (byte) operands  
Subtract word (byte) operands with Carry  
SUBC(B)  
MUL(U)  
(Un)Signed multiply direct GPR by direct GPR  
(16- × 16-bit)  
DIV(U)  
(Un)Signed divide register MDL by direct GPR (16-/16-bit) 2  
(Un)Signed long divide reg. MD by direct GPR (32-/16-bit) 2  
DIVL(U)  
CPL(B)  
Complement direct word (byte) GPR  
Negate direct word (byte) GPR  
Bitwise AND, (word/byte operands)  
Bitwise OR, (word/byte operands)  
Bitwise exclusive OR, (word/byte operands)  
Clear/Set direct bit  
2
NEG(B)  
AND(B)  
OR(B)  
2
2 / 4  
2 / 4  
2 / 4  
2
XOR(B)  
BCLR/BSET  
BMOV(N)  
Move (negated) direct bit to direct bit  
4
BAND/BOR/BXOR AND/OR/XOR direct bit with direct bit  
4
BCMP  
Compare direct bit to direct bit  
4
BFLDH/BFLDL  
Bitwise modify masked high/low byte of bit-addressable  
direct word memory with immediate data  
4
CMP(B)  
CMPD1/2  
CMPI1/2  
PRIOR  
Compare word (byte) operands  
2 / 4  
Compare word data to GPR and decrement GPR by 1/2 2 / 4  
Compare word data to GPR and increment GPR by 1/2  
2 / 4  
2
Determine number of shift cycles to normalize direct  
word GPR and store result in direct word GPR  
SHL/SHR  
Data Sheet  
Shift left/right direct word GPR  
2
68  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Functional Description  
Table 10  
Mnemonic  
ROL/ROR  
ASHR  
Instruction Set Summary (cont’d)  
Description  
Bytes  
2
Rotate left/right direct word GPR  
Arithmetic (sign bit) shift right direct word GPR  
Move word (byte) data  
2
MOV(B)  
MOVBS/Z  
JMPA/I/R  
JMPS  
2 / 4  
Move byte operand to word op. with sign/zero extension 2 / 4  
Jump absolute/indirect/relative if condition is met  
Jump absolute to a code segment  
4
4
4
4
JB(C)  
Jump relative if direct bit is set (and clear bit)  
Jump relative if direct bit is not set (and set bit)  
JNB(S)  
CALLA/I/R  
CALLS  
Call absolute/indirect/relative subroutine if condition is met 4  
Call absolute subroutine in any code segment  
4
4
PCALL  
Push direct word register onto system stack and call  
absolute subroutine  
TRAP  
Call interrupt service routine via immediate trap number  
Push/pop direct word register onto/from system stack  
2
2
4
PUSH/POP  
SCXT  
Push direct word register onto system stack and update  
register with word operand  
RET(P)  
Return from intra-segment subroutine  
2
(and pop direct word register from system stack)  
RETS  
Return from inter-segment subroutine  
Return from interrupt service subroutine  
Software Break  
2
RETI  
2
SBRK  
SRST  
2
Software Reset  
4
IDLE  
Enter Idle Mode  
4
PWRDN  
SRVWDT  
Unused instruction1)  
4
Service Watchdog Timer  
4
DISWDT/ENWDT Disable/Enable Watchdog Timer  
4
EINIT  
End-of-Initialization Register Lock  
4
ATOMIC  
EXTR  
Begin ATOMIC sequence  
2
Begin EXTended Register sequence  
Begin EXTended Page (and Register) sequence  
Begin EXTended Segment (and Register) sequence  
2
EXTP(R)  
EXTS(R)  
2 / 4  
2 / 4  
Data Sheet  
69  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Functional Description  
Table 10  
Instruction Set Summary (cont’d)  
Mnemonic  
NOP  
Description  
Bytes  
Null operation  
2
4
4
4
4
4
4
4
4
4
4
CoMUL/CoMAC  
CoADD/CoSUB  
Co(A)SHR  
CoSHL  
Multiply (and accumulate)  
Add/Subtract  
(Arithmetic) Shift right  
Shift left  
CoLOAD/STORE  
CoCMP  
Load accumulator/Store MAC register  
Compare  
CoMAX/MIN  
CoABS/CoRND  
CoMOV  
Maximum/Minimum  
Absolute value/Round accumulator  
Data move  
CoNEG/NOP  
Negate accumulator/Null operation  
1) The Enter Power Down Mode instruction is not used in the XE164xM, due to the enhanced power control  
scheme. PWRDN will be correctly decoded, but will trigger no action.  
Data Sheet  
70  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
4
Electrical Parameters  
The operating range for the XE164xM is defined by its electrical parameters. For proper  
operation the specified limits must be respected when integrating the device in its target  
environment.  
4.1  
General Parameters  
These parameters are valid for all subsequent descriptions, unless otherwise noted.  
4.1.1  
Absolut Maximum Rating Conditions  
Stresses above the values listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only. Functional operation of the  
device at these or any other conditions above those indicated in the operational sections  
of this specification is not implied. Exposure to absolute maximum rating conditions for  
an extended time may affect device reliability.  
During absolute maximum rating overload conditions (VIN > VDDP or VIN < VSS) the  
voltage on VDDP pins with respect to ground (VSS) must not exceed the values defined by  
the absolute maximum ratings.  
Table 11  
Absolute Maximum Rating Parameters  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
OH SR -30  
Max.  
Output current on a pin  
when high value is driven  
I
I
I
mA  
mA  
Output current on a pin  
when low value is driven  
OL SR  
30  
1)  
1)  
Overload current  
OV SR -10  
10  
mA  
mA  
Absolute sum of overload Σ|IOV  
|
100  
currents  
SR  
Junction Temperature  
Storage Temperature  
TJ SR  
-40  
150  
150  
6.0  
°C  
°C  
V
T
ST SR -65  
-0.5  
Digital supply voltage for VDDPA  
,
IO pads and voltage  
VDDPB  
regulators  
SR  
Voltage on any pin with  
respect to ground (Vss)  
V
IN SR -0.5  
VDDP  
+ 0.5  
V
VIN VDDP(max)  
1) Overload condition occurs if the input voltage VIN is out of the absolute maximum rating range. In this case the  
current must be limited to the listed values by design measures.  
Data Sheet  
71  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
4.1.2  
Operating Conditions  
The following operating conditions must not be exceeded to ensure correct operation of  
the XE164xM. All parameters specified in the following sections refer to these operating  
conditions, unless otherwise noticed.  
Note: Typical parameter values refer to room temperature and nominal supply voltage,  
minimum/maximum  
parameter  
values  
also  
include  
conditions  
of  
minimum/maximum temperature and minimum/maximum supply voltage.  
Additional details are described where applicable.  
Table 12  
Parameter  
Operating Conditions  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
1)  
Voltage Regulator Buffer CEVRM  
Capacitance for DMP_M SR  
1.0  
4.7  
μF  
μF  
pF  
1)2)  
Voltage Regulator Buffer CEVR1  
Capacitance for DMP_1  
0.47  
2.2  
SR  
External Load  
Capacitance  
CL SR  
203)  
pin out  
driver= default  
4)  
5)  
System frequency  
f
SYS SR  
100  
5
MHz  
Overload current for  
analog inputs6)  
I
OVA SR -2  
mA not subject to  
production test  
Overload current for digital IOVD SR -5  
5
mA not subject to  
production test  
inputs6)  
Overload current coupling KOVA  
factor for analog inputs7)  
CC  
2.5 x  
10-4  
1.5 x  
10-3  
-
IOV < 0 mA;  
not subject to  
production test  
1.0 x  
10-6  
1.0 x  
10-4  
-
IOV > 0 mA;  
not subject to  
production test  
Overload current coupling KOVD  
factor for digital I/O pins CC  
1.0 x  
10-2  
3.0 x  
10-2  
IOV < 0 mA;  
not subject to  
production test  
1.0 x  
10-4  
5.0 x  
10-3  
IOV > 0 mA;  
not subject to  
production test  
Data Sheet  
72  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
Table 12  
Operating Conditions (cont’d)  
Symbol  
Parameter  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
Absolute sum of overload Σ|IOV  
currents SR  
Digital core supply voltage VDDIM  
for domain M8)  
CC  
|
50  
mA not subject to  
production test  
1.5  
1.5  
Digital core supply voltage VDDI1  
for domain 18)  
CC  
Digital supply voltage for  
IO pads and voltage  
regulators  
V
DDP SR 4.5  
5.5  
V
V
Digital ground voltage  
V
SS SR  
0
1) To ensure the stability of the voltage regulators the EVRs must be buffered with ceramic capacitors. Separate  
buffer capacitors with the recomended values shall be connected as close as possible to each VDDIM and VDDI1  
pin to keep the resistance of the board tracks below 2 Ohm. Connect all VDDI1 pins together. The minimum  
capacitance value is required for proper operation under all conditions (e.g. temperature). Higher values  
slightly increase the startup time.  
2) Use one Capacitor for each pin.  
3) This is the reference load. For bigger capacitive loads, use the derating factors listed in the PAD properties  
section.  
4) The timing is valid for pin drivers operating in default current mode (selected after reset). Reducing the output  
current may lead to increased delays or reduced driving capability (CL).  
5) The operating frequency range may be reduced for specific device types. This is indicated in the device  
designation (...FxxL). 80 MHz devices are marked ...F80L.  
6) Overload conditions occur if the standard operating conditions are exceeded, i.e. the voltage on any pin  
exceeds the specified range: VOV > VIHmax (IOV > 0) or VOV < VILmin ((IOV < 0). The absolute sum of input  
overload currents on all pins may not exceed 50 mA. The supply voltages must remain within the specified  
limits. Proper operation under overload conditions depends on the application. Overload conditions must not  
occur on pin XTAL1 (powered by VDDIM).  
7) An overload current (IOV) through a pin injects a certain error current (IINJ) into the adjacent pins. This error  
current adds to the respective pins leakage current (IOZ). The amount of error current depends on the overload  
current and is defined by the overload coupling factor KOV. The polarity of the injected error current is inverse  
compared to the polarity of the overload current that produces it.The total current through a pin is |ITOT| = |IOZ  
|
+ (|IOV| KOV). The additional error current may distort the input voltage on analog inputs.  
8) Value is controlled by on-chip regulator  
Data Sheet  
73  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
4.1.3  
Pad Timing Definition  
If not otherwise noted, all timing parameters are tested and are valid for the  
corresponding output pins operating in strong driver, fast edge mode.  
See also “Pad Properties” on Page 103.  
4.1.4  
Parameter Interpretation  
The parameters listed in the following include both the characteristics of the XE164xM  
and its demands on the system. To aid in correctly interpreting the parameters when  
evaluating them for a design, they are marked accordingly in the column “Symbol”:  
CC (Controller Characteristics):  
The logic of the XE164xM provides signals with the specified characteristics.  
SR (System Requirement):  
The external system must provide signals with the specified characteristics to the  
XE164xM.  
Data Sheet  
74  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
4.2  
DC Parameters  
These parameters are static or average values that may be exceeded during switching  
transitions (e.g. output current).  
Leakage current is strongly dependent on the operating temperature and the voltage  
level at the respective pin. The maximum values in the following tables apply under worst  
case conditions, i.e. maximum temperature and an input level equal to the supply  
voltage.  
The value for the leakage current in an application can be determined by using the  
respective leakage derating formula (see tables) with values from that application.  
The pads of the XE164xM are designed to operate in various driver modes. The DC  
parameter specifications refer to the pad current limits specified in Section 4.6.4.  
Supply Voltage Restrictions  
The XE164xM can operate within a wide supply voltage range from 3.0 V to 5.5 V.  
However, during operation this supply voltage must remain within 10 percent of the  
selected nominal supply voltage. It cannot vary across the full operating voltage range.  
Because of the supply voltage restriction and because electrical behavior depends on  
the supply voltage, the parameters are specified separately for the upper and the lower  
voltage range.  
During operation, the supply voltages may only change with a maximum speed of  
dV/dt < 1 V/ms.  
During power-on sequences, the supply voltages may only change with a maximum  
speed of dV/dt < 5 V/μs, i.e. the target supply voltage may be reached earliest after  
approx. 1 μs.  
Note: To limit the speed of supply voltage changes, the employment of external buffer  
capacitors at pins VDDPA/VDDPB is recommended.  
Data Sheet  
75  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
Pullup/Pulldown Device Behavior  
Most pins of the XE164xM feature pullup or pulldown devices. For some special pins  
these are fixed; for the port pins they can be selected by the application.  
The specified current values indicate how to load the respective pin depending on the  
intended signal level. Figure 13 shows the current paths.  
The shaded resistors shown in the figure may be required to compensate system pull  
currents that do not match the given limit values.  
VDDP  
Pullup  
Pulldown  
VSS  
MC_XC2X_PULL  
Figure 13  
Pullup/Pulldown Current Definition  
Data Sheet  
76  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
4.2.1  
DC Parameters  
Keeping signal levels within the limits specified in this table ensures operation without  
overload conditions. For signal levels outside these specifications, also refer to the  
specification of the overload current IOV  
.
Note: Operating Conditions apply.  
Table 13 is valid under the following conditions:  
VDDP 4.5 V; VDDPtyp = 5 V; VDDP 5.5 V  
Table 13  
DC Characteristics for Upper Voltage Range  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
Pin capacitance (digital  
inputs/outputs). To be  
doubled for double bond  
pins.1)  
CIO CC  
10  
pF  
not subject to  
production test  
Input Hysteresis2)  
HYS CC 0.11 x  
V
RS = 0 Ohm  
VDDP  
Absolute input leakage  
|IOZ1  
|
10  
200  
nA  
V
V
IN > 0 V;  
IN < VDDP  
current on pins of analog CC  
ports3)  
Absolute input leakage  
current for all other pins.  
To be doubled for double  
bond pins.3)1)4)  
|IOZ2  
CC  
|
0.2  
0.2  
5
μA  
μA  
TJ 110 °C;  
V
V
IN < VDDP  
IN > VSS  
;
15  
TJ150 °C;  
V
V
6)  
IN < VDDP  
IN > VSS  
;
Pull Level Force Current5) |IPLF| SR 250  
μA  
μA  
6)  
Pull Level Keep Current7) |IPLK  
|
30  
SR  
Input high voltage  
(all except XTAL1)  
V
IH SR 0.7 x  
VDDP  
+ 0.3  
V
V
V
V
VDDP  
Input low voltage  
(all except XTAL1)  
Output High voltage8)  
VIL SR -0.3  
0.3 x  
VDDP  
V
OH CC VDDP  
IOH IOHmax  
- 1.0  
9)  
VDDP  
IOH IOHnom  
- 0.4  
Data Sheet  
77  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
Table 13  
DC Characteristics for Upper Voltage Range (cont’d)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
Typ.  
Max.  
1.0  
Output Low Voltage8)  
V
OL CC  
V
V
IOL IOLmax  
IOL IOLnom  
9)  
0.4  
1) Because each double bond pin is connected to two pads (standard pad and high-speed pad), it has twice the  
normal value. For a list of affected pins refer to the pin definitions table in chapter 2.  
2) Not subject to production test - verified by design/characterization. Hysteresis is implemented to avoid  
metastable states and switching due to internal ground bounce. It cannot suppress switching due to external  
system noise under all conditions.  
3) If the input voltage exceeds the respective supply voltage due to ground bouncing (VIN < VSS) or supply ripple  
(VIN > VDDP), a certain amount of current may flow through the protection diodes. This current adds to the  
leakage current. An additional error current (IINJ) will flow if an overload current flows through an adjacent pin.  
Please refer to the definition of the overload coupling factor KOV  
.
4) The given values are worst-case values. In production test, this leakage current is only tested at 125 °C; other  
values are ensured by correlation. For derating, please refer to the following descriptions: Leakage derating  
depending on temperature (TJ = junction temperature [°C]): IOZ = 0.05 x e(1.5 + 0.028 x TJ>) [μA]. For example, at  
a temperature of 95 °C the resulting leakage current is 3.2 μA. Leakage derating depending on voltage level  
(DV = VDDP - VPIN [V]): IOZ = IOZtempmax - (1.6 x DV) (μA]. This voltage derating formula is an approximation  
which applies for maximum temperature.  
5) Drive the indicated minimum current through this pin to change the default pin level driven by the enabled pull  
device: VPIN VILmax for a pullup; VPIN VIHmin for a pulldown.  
6) These values apply to the fixed pull-devices in dedicated pins and to the user-selectable pull-devices in  
general purpose IO pins.  
7) Limit the current through this pin to the indicated value so that the enabled pull device can keep the default  
pin level: VPIN VIHmin for a pullup; VPIN VILmax for a pulldown.  
8) The maximum deliverable output current of a port driver depends on the selected output driver mode. This  
specification is not valid for outputs which are switched to open drain mode. In this case the respective output  
will float and the voltage is determined by the external circuit.  
9) As a rule, with decreasing output current the output levels approach the respective supply level (VOL->VSS  
OH->VDDP). However, only the levels for nominal output currents are verified.  
,
V
Data Sheet  
78  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
4.2.2  
DC Parameters for Lower Voltage Area  
Keeping signal levels within the limits specified in this table ensures operation without  
overload conditions. For signal levels outside these specifications, also refer to the  
specification of the overload current IOV  
.
Note: Operating Conditions apply.  
Table 14 is valid under the following conditions:  
VDDP 3.0 V; VDDPtyp = 3.3 V; VDDP 4.5 V  
Table 14  
DC Characteristics for Lower Voltage Range  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
Pin capacitance (digital  
inputs/outputs). To be  
doubled for double bond  
pins.1)  
CIO CC  
10  
pF  
not subject to  
production test  
Input Hysteresis2)  
HYS CC 0.07 x  
V
RS = 0 Ohm  
VDDP  
Absolute input leakage  
|IOZ1  
|
10  
200  
nA  
V
V
IN > VSS  
IN < VDDP  
;
current on pins of analog CC  
ports3)  
Absolute input leakage  
current for all other pins.  
To be doubled for double  
bond pins.3)1)4)  
|IOZ2  
CC  
|
0.2  
0.2  
2.5  
8
μA  
μA  
TJ 110 °C;  
V
V
IN < VDDP  
IN > VSS  
;
TJ 150 °C;  
V
V
6)  
IN < VDDP  
IN > VSS  
;
Pull Level Force Current5) |IPLF| SR 150  
6)  
Pull Level Keep Current7) |IPLK  
|
10  
μA  
V
SR  
Input high voltage  
(all except XTAL1)  
V
IH SR 0.7 x  
VDDP  
+ 0.3  
VDDP  
Input low voltage  
(all except XTAL1)  
VIL SR -0.3  
0.3 x  
VDDP  
V
Output High voltage8)  
V
OH CC VDDP  
V
IOH IOHmax  
- 1.0  
9)  
VDDP  
V
IOH IOHnom  
- 0.4  
Data Sheet  
79  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
Table 14  
DC Characteristics for Lower Voltage Range (cont’d)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
Typ.  
Max.  
1.0  
Output Low Voltage8)  
V
OL CC  
V
V
IOL IOLmax  
IOL IOLnom  
10)  
0.4  
1) Because each double bond pin is connected to two pads (standard pad and high-speed pad), it has twice the  
normal value. For a list of affected pins refer to the pin definitions table in chapter 2.  
2) Not subject to production test - verified by design/characterization. Hysteresis is implemented to avoid  
metastable states and switching due to internal ground bounce. It cannot suppress switching due to external  
system noise under all conditions.  
3) If the input voltage exceeds the respective supply voltage due to ground bouncing (VIN < VSS) or supply ripple  
(VIN > VDDP), a certain amount of current may flow through the protection diodes. This current adds to the  
leakage current. An additional error current (IINJ) will flow if an overload current flows through an adjacent pin.  
Please refer to the definition of the overload coupling factor KOV  
.
4) The given values are worst-case values. In production test, this leakage current is only tested at 125 °C; other  
values are ensured by correlation. For derating, please refer to the following descriptions: Leakage derating  
depending on temperature (TJ = junction temperature [°C]): IOZ = 0.05 x e(1.5 + 0.028 x TJ>) [μA]. For example, at  
a temperature of 95 °C the resulting leakage current is 3.2 μA. Leakage derating depending on voltage level  
(DV = VDDP - VPIN [V]): IOZ = IOZtempmax - (1.6 x DV) (μA]. This voltage derating formula is an approximation  
which applies for maximum temperature.  
5) Drive the indicated minimum current through this pin to change the default pin level driven by the enabled pull  
device: VPIN <= VIL for a pullup; VPIN >= VIH for a pulldown.  
6) These values apply to the fixed pull-devices in dedicated pins and to the user-selectable pull-devices in  
general purpose IO pins.  
7) Limit the current through this pin to the indicated value so that the enabled pull device can keep the default  
pin level: VPIN >= VIH for a pullup; VPIN <= VIL for a pulldown.  
8) The maximum deliverable output current of a port driver depends on the selected output driver mode. This  
specification is not valid for outputs which are switched to open drain mode. In this case the respective output  
will float and the voltage is determined by the external circuit.  
9) As a rule, with decreasing output current the output levels approach the respective supply level (VOL->VSS,  
VOH->VDDP). However, only the levels for nominal output currents are verified.  
10) As a rule, with decreasing output current the output levels approach the respective supply level (VOL->VSS  
OH->VDDP). However, only the levels for nominal output currents are verified.  
,
V
Data Sheet  
80  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
4.2.3  
Power Consumption  
The power consumed by the XE164xM depends on several factors such as supply  
voltage, operating frequency, active circuits, and operating temperature. The power  
consumption specified here consists of two components:  
The switching current IS depends on the device activity  
The leakage current ILK depends on the device temperature  
To determine the actual power consumption, always both components, switching current  
IS and leakage current ILK must be added:  
I
DDP = IS + ILK.  
Note: The power consumption values are not subject to production test. They are  
verified by design/characterization.  
To determine the total power consumption for dimensioning the external power  
supply, also the pad driver currents must be considered.  
The given power consumption parameters and their values refer to specific operating  
conditions:  
Active mode:  
Regular operation, i.e. peripherals are active, code execution out of Flash.  
Stopover mode:  
Crystal oscillator and PLL stopped, Flash switched off, clock in domain DMP_1  
stopped.  
Note: The maximum values cover the complete specified operating range of all  
manufactured devices.  
The typical values refer to average devices under typical conditions, such as  
nominal supply voltage, room temperature, application-oriented activity.  
After a power reset, the decoupling capacitors for VDDIM and VDDI1 are charged with  
the maximum possible current.  
For additional information, please refer to Section 5.2, Thermal Considerations.  
Note: Operating Conditions apply.  
Table 15  
Switching Power Consumption  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
Typ.  
Max.  
2)3)  
Power supply current  
(active)withall peripherals CC  
active and EVVRs on  
ISACT  
10 +  
0.6 x  
fSYS  
10 +  
1.0 x  
fSYS  
mA  
1)  
1)  
Power supply current in  
I
SSO CC  
0.7  
2.0  
mA  
stopover mode, EVVRs on  
1)  
fSYS in MHz.  
Data Sheet  
81  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
2) The pad supply voltage pins (VDDPB) provide the input current for the on-chip EVVRs and the current  
consumed by the pin output drivers. A small current is consumed because the drivers input stages are  
switched.  
In Fast Startup Mode (with the Flash modules deactivated), the typical current is reduced to 3 + 0.6 x fSYS  
.
3) Please consider the additional conditions described in section "Active Mode Power Supply Current".  
Active Mode Power Supply Current  
The actual power supply current in active mode not only depends on the system  
frequency but also on the configuration of the XE164xM’s subsystem.  
Besides the power consumed by the device logic the power supply pins also provide the  
current that flows through the pin output drivers.  
A small current is consumed because the drivers’ input stages are switched.  
The IO power domains can be supplied separately. Power domain A (VDDPA) supplies the  
A/D converters and Port 6. Power domain B (VDDPB) supplies the on-chip EVVRs and all  
other ports.  
During operation domain A draws a maximum current of 1.5 mA for each active A/D  
converter module from VDDPA  
.
In Fast Startup Mode (with the Flash modules deactivated), the typical current is reduced  
to (3 + 0.6×fSYS) mA.  
Data Sheet  
82  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
IS [mA]  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
ISACTmax  
ISACTtyp  
fSYS [MHz]  
20  
40  
60  
80  
MC_XC2XM_IS  
Figure 14  
Supply Current in Active Mode as a Function of Frequency  
Note: Operating Conditions apply.  
Data Sheet  
83  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
Table 16  
Leakage Power Consumption  
Symbol  
Parameter  
Values  
Typ.  
0.03  
0.5  
Unit Note /  
Test Condition  
Min.  
Max.  
0.05  
1.3  
Leakage supply current  
(DMP_1 powered)1)  
I
LK1 CC  
mA TJ= 25 °C1)  
mA TJ= 85 °C1)  
mA TJ= 125 °C1)  
mA TJ= 150 °C1)  
2.1  
6.2  
4.4  
13.7  
1) All inputs (including pins configured as inputs) are set at 0 V to 0.1 V or at VDDP - 0.1 V to VDDP and all outputs  
(including pins configured as outputs) are disconnected.  
Note: A fraction of the leakage current flows through domain DMP_A (pin VDDPA). This  
current can be calculated as 7 000 × e-α, with α = 5 000 / (273 + 1.3×TJ).  
For TJ = 150°C, this results in a current of 160 μA.  
The leakage power consumption can be calculated according to the following formulas:  
I
LK0 = 500 000 × e-α, with α = 3 000 / (273 + B×TJ)  
Parameter B must be replaced by  
1.0 for typical values  
1.6 for maximum values  
I
LK1 = 600 000 × e-α, with α = 5 000 / (273 + B×TJ)  
Parameter B must be replaced by  
1.0 for typical values  
1.3 for maximum values  
Data Sheet  
84  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
I
LK [mA]  
14  
12  
10  
8
ILK1max  
6
ILK1typ  
4
2
TJ [°C]  
-50  
0
50  
100 125 150  
MC_XY_ILKN  
Figure 15  
Leakage Supply Current as a Function of Temperature  
Data Sheet  
85  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
4.3  
Analog/Digital Converter Parameters  
These parameters describe the conditions for optimum ADC performance.  
Note: Operating Conditions apply.  
Table 17  
ADC Parameters  
Symbol  
Parameter  
Values  
Typ.  
4
Unit Note /  
Test Condition  
Min.  
Max.  
Switched capacitance at CAINSW  
5
pF  
pF  
pF  
pF  
not subject to  
production  
test1)  
an analog input  
CC  
Total capacitance at an  
analog input  
CAINT  
CC  
10  
7
12  
9
not subject to  
production  
test1)  
Switched capacitance at CAREFSW  
not subject to  
production  
test1)  
the reference input  
CC  
Total capacitance at the  
reference input  
CAREFT  
CC  
13  
15  
not subject to  
production  
test1)  
Differential Non-Linearity |EADNL  
|
0.8  
0.4  
0.8  
0.5  
1.0  
0.8  
1.2  
0.8  
20  
LSB not subject to  
production test  
Error  
CC  
Gain Error  
|EAGAIN  
|
LSB not subject to  
production test  
CC  
Integral Non-Linearity  
Offset Error  
|EAINL  
CC  
|
LSB not subject to  
production test  
|EAOFF  
|
LSB not subject to  
production test  
CC  
Analog clock frequency  
f
ADCI SR 0.5  
0.5  
MHz Upper voltage  
range  
16.5  
2
MHz Lower voltage  
range  
Input resistance of the  
selected analog channel  
RAIN CC  
kOh not subject to  
m
production  
test1)  
Input resistance of the  
reference input  
RAREF  
CC  
2
kOh not subject to  
m
production  
test1)  
Data Sheet  
86  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
Table 17  
ADC Parameters (cont’d)  
Symbol  
Parameter  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
BWG CC −  
Max.  
3)  
Broken wire detection  
delay against VAGND2)  
t
t
t
t
50  
4)  
Broken wire detection  
delay against VAREF2)  
BWR CC −  
c8 CC  
50  
Conversion time for 8-bit  
result2)  
(11 + STC) x tADCI  
+ 2 x tSYS  
Conversion time for 10-bit  
result2)  
c10 CC (13 + STC) x tADCI  
+ 2 x tSYS  
5)  
Total Unadjusted Error  
|TUE|  
CC  
1
2
LSB  
μs  
μs  
V
Wakeup time from analog  
powerdown, fast mode2)  
tWAF CC  
4
Wakeup time from analog  
powerdown, slow mode2)  
tWAS CC  
15  
1.5  
VAREF  
Analog reference ground VAGND  
VSS  
- 0.05  
SR  
6)  
5)  
Analog input voltage  
range  
VAIN SR VAGND  
V
Analog reference voltage VAREF  
VAGND  
VDDPA  
V
SR  
+ 1.0  
+ 0.05  
1) These parameter values cover the complete operating range. Under relaxed operating conditions (room  
temperature, nominal supply voltage) the typical values can be used for calculation.  
2) This parameter includes the sample time (also the additional sample time specified by STC), the time to  
determine the digital result and the time to load the result register with the conversion result. Values for the  
basic clock tADCI depend on programming.  
3) The broken wire detection delay against VAGND is measured in numbers of consecutive precharge cycles at a  
conversion rate of not more than 500 µs. Result below 10% (66H).  
4) The broken wire detection delay against VAREF is measured in numbers of consecutive precharge cycles at a  
conversion rate of not more than 10 µs. This function is influenced by leakage current, in particular at high  
temperature. Result above 80% (332H).  
5) TUE is tested at VAREF = VDDPA = 5.0 V, VAGND = 0 V. It is verified by design for all other voltages within the  
defined voltage range. The specified TUE is valid only if the absolute sum of input overload currents on analog  
port pins (see IOV specification) does not exceed 10 mA, and if VAREF and VAGND remain stable during the  
measurement time.  
6)  
VAIN may exceed VAGND or VAREF up to the absolute maximum ratings. However, the conversion result in these  
cases will be X000H or X3FFH, respectively.  
Data Sheet  
87  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
A/D Converter  
RSource  
RAIN, On  
VAIN  
-
CExt  
CAINT CAINS  
CAINS  
MCS05570  
Figure 16  
Equivalent Circuitry for Analog Inputs  
Data Sheet  
88  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
Sample time and conversion time of the XE164xM’s A/D converters are programmable.  
The timing above can be calculated using Table 18.  
The limit values for fADCI must not be exceeded when selecting the prescaler value.  
Table 18  
A/D Converter Computation Table  
GLOBCTR.5-0  
(DIVA)  
A/D Converter  
Analog Clock fADCI  
INPCRx.7-0  
(STC)  
Sample Time1)  
tS  
000000B  
000001B  
000010B  
:
fSYS  
00H  
01H  
02H  
:
tADCI × 2  
f
f
f
f
f
SYS / 2  
tADCI × 3  
SYS / 3  
tADCI × 4  
SYS / (DIVA+1)  
SYS / 63  
tADCI × (STC+2)  
tADCI × 256  
tADCI × 257  
111110B  
111111B  
FEH  
FFH  
SYS / 64  
1) The selected sample time is doubled if broken wire detection is active (due to the presampling phase).  
Converter Timing Example A:  
Assumptions:  
Analog clock  
Sample time  
fSYS = 80 MHz (i.e. tSYS = 12.5 ns), DIVA = 03H, STC = 00H  
fADCI = fSYS / 4 = 20 MHz, i.e. tADCI = 50 ns  
tS  
= tADCI × 2 = 100 ns  
Conversion 10-bit:  
tC10 = 13 × tADCI + 2 × tSYS = 13 × 50 ns + 2 × 12.5 ns = 0.675 μs  
Conversion 8-bit:  
tC8  
= 11 × tADCI + 2 × tSYS = 11 × 50 ns + 2 × 12.5 ns = 0.575 μs  
Converter Timing Example B:  
Assumptions:  
Analog clock  
Sample time  
fSYS = 40 MHz (i.e. tSYS = 25 ns), DIVA = 02H, STC = 03H  
fADCI = fSYS / 3 = 13.3 MHz, i.e. tADCI = 75 ns  
tS = tADCI × 5 = 375 ns  
Conversion 10-bit:  
tC10 = 16 × tADCI + 2 × tSYS = 16 × 75 ns + 2 × 25 ns = 1.25 μs  
Conversion 8-bit:  
tC8  
= 14 × tADCI + 2 × tSYS = 14 × 75 ns + 2 × 25 ns = 1.10 μs  
Data Sheet  
89  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
4.4  
System Parameters  
The following parameters specify several aspects which are important when integrating  
the XE164xM into an application system.  
Note: These parameters are not subject to production test but verified by design and/or  
characterization.  
Note: Operating Conditions apply.  
Table 19  
Various System Parameters  
Parameter  
Symbol  
Min.  
Values  
Typ.  
Unit Note /  
Test Condition  
Max.  
Short-term deviation of  
internal clock source  
frequency1)  
ΔfINT CC -1  
1
%
ΔTJ 10 °C  
Internal clock source  
frequency  
fINT CC 4.8  
5.0  
5.2  
MHz  
Wakeup clock source  
frequency2)  
f
WU CC 400  
210  
700  
390  
260  
200  
2.7  
kHz FREQSEL= 00  
kHz FREQSEL= 01  
kHz FREQSEL= 10  
kHz FREQSEL= 11  
140  
110  
Startup time from power-  
on with code execution  
from Flash  
tSPO CC 1.8  
2.2  
ms  
μs  
V
fWU = 500 kHz  
Startup time from stopover tSSO CC 11 /  
mode with code execution  
from PSRAM  
12 /  
3)  
3)  
fWU  
fWU  
5)  
Core voltage (PVC)  
supervision level  
V
PVC CC VLV  
VLV  
VLV  
- 0.03  
+ 0.07  
4)  
Supply watchdog (SWD) VSWD  
supervision level CC  
VLV  
VLV  
VLV  
VLV  
+ 0.15  
V
V
Lower voltage  
range5)  
- 0.106)  
VLV  
- 0.15  
VLV  
+ 0.15  
Upper voltage  
range5)  
1) The short-term frequency deviation refers to a timeframe of a few hours and is measured relative to the current  
frequency at the beginning of the respective timeframe. This parameter is useful to determine a time span for  
re-triggering a LIN synchronization.  
2) This parameter is tested for the fastest and the slowest selection. The medium selections are not subject to  
production test - verified by design/characterization  
Data Sheet  
90  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
3)  
4) This value includes a hysteresis of approximately 50 mV for rising voltage.  
5) LV = selected SWD voltage level  
fWU in MHz  
V
6) The limit VLV - 0.10 V is valid for the OK1 level. The limit for the OK2 level is VLV - 0.15 V.  
Conditions for tSPO Timing Measurement  
The time required for the transition from Power-On to Base mode is called tSPO. It is  
measured under the following conditions:  
Precondition: The pad supply is valid, i.e. VDDPB is above 3.0 V and remains above 3.0 V  
even though the XE164xM is starting up. No debugger is attached.  
Start condition: Power-on reset is removed (PORST = 1).  
End condition: External pin toggle caused by first user instruction executed from FLASH  
after startup.  
Conditions for tSSO Timing Measurement  
The time required for the transition from Stopover to Stopover Waked-Up mode is  
called tSSO. It is measured under the following conditions:  
Precondition: The Stopover mode has been entered using the procedure defined in the  
Programmer’s Guide.  
Start condition: Pin toggle on ESR pin triggering the startup sequence.  
End condition: External pin toggle caused by first user instruction executed from PSRAM  
after startup.  
Coding of bit fields LEVxV in SWD and PVC Configuration Registers  
Table 20  
Code  
Coding of bit fields LEVxV in Register SWDCON0  
Default Voltage Level  
Notes1)  
0000B  
0001B  
0010B  
0011B  
0100B  
0101B  
0110B  
0111B  
1000B  
2.9 V  
3.0 V  
3.1 V  
3.2 V  
3.3 V  
3.4 V  
3.6 V  
4.0 V  
4.2 V  
LEV1V: reset request  
Data Sheet  
91  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
Table 20  
Code  
Coding of bit fields LEVxV in Register SWDCON0 (cont’d)  
Default Voltage Level  
Notes1)  
1001B  
1010B  
1011B  
1100B  
1101B  
1110B  
1111B  
4.5 V  
4.6 V  
4.7 V  
4.8 V  
4.9 V  
5.0 V  
5.5 V  
LEV2V: no request  
1) The indicated default levels are selected automatically after a power reset.  
Table 21  
Code  
000B  
Coding of Bitfields LEVxV in Registers PVCyCONz  
Default Voltage Level  
0.95 V  
Notes1)  
001B  
1.05 V  
010B  
1.15 V  
011B  
1.25 V  
100B  
1.35 V  
LEV1V: reset request  
101B  
1.45 V  
LEV2V: interrupt request2)  
110B  
1.55 V  
111B  
1.65 V  
1) The indicated default levels are selected automatically after a power reset.  
2) Due to variations of the tolerance of both the Embedded Voltage Regulators (EVR) and the PVC levels, this  
interrupt can be triggered inadvertently, even though the core voltage is within the normal range. It is,  
therefore, recommended not to use the this warning level.  
Data Sheet  
92  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
4.5  
Flash Memory Parameters  
The XE164xM is delivered with all Flash sectors erased and with no protection installed.  
The data retention time of the XE164xM’s Flash memory (i.e. the time after which stored  
data can still be retrieved) depends on the number of times the Flash memory has been  
erased and programmed.  
Note: These parameters are not subject to production test but verified by design and/or  
characterization.  
Note: Operating Conditions apply.  
Table 22  
Flash Parameters  
Symbol  
Parameter  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
41)  
Parallel Flash module  
program/erase limit  
depending on Flash read  
activity  
NPP SR  
NFL_RD 1,  
fSYS 80 MHz  
12)  
NFL_RD > 1  
Flash erase endurance for NSEC SR 10  
cycle tRET 20 years  
security pages  
s
Flash wait states3)  
NWSFLAS  
H SR  
1
2
3
4
fSYS 8 MHz  
fSYS 13 MHz  
fSYS 17 MHz  
74)  
fSYS > 17 MHz  
Erase time per  
sector/page  
t
t
t
ER CC  
8.0  
ms  
ms  
Programming time per  
page  
PR CC  
34)  
3.5  
Data retention time  
RET CC 20  
DD SR 32  
year NEr 1 000  
s
cycles  
Drain disturb limit  
N
cycle  
s
Data Sheet  
93  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
Table 22  
Flash Parameters (cont’d)  
Symbol  
Parameter  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
15 000 cycle tRET 5 years;  
Number of erase cycles  
NEr SR  
s
Valid for up to  
64 user-  
selected  
sectors (data  
storage)  
1 000 cycle tRET 20 years  
s
1) All Flash module(s) can be erased/programmed while code is executed and/or data is read from only one  
Flash module or from PSRAM. The Flash module that delivers code/data can, of course, not be  
erased/programmed.  
2) Flash module 3 can be erased/programmed while code is executed and/or data is read from any other Flash  
module.  
3) Value of IMB_IMBCTRL.WSFLASH.  
4) Programming and erase times depend on the internal Flash clock source. The control state machine needs a  
few system clock cycles. This increases the stated durations noticably only at extremely low system clock  
frequencies.  
Access to the XE164xM Flash modules is controlled by the IMB. Built-in prefetch  
mechanisms optimize the performance for sequential access.  
Flash access waitstates only affect non-sequential access. Due to prefetch  
mechanisms, the performance for sequential access (depending on the software  
structure) is only partially influenced by waitstates.  
Data Sheet  
94  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
4.6  
AC Parameters  
These parameters describe the dynamic behavior of the XE164xM.  
4.6.1  
Testing Waveforms  
These values are used for characterization and production testing (except pin XTAL1).  
Output delay  
Hold time  
Output delay  
Hold time  
0.8 VDDP  
0.7 VDDP  
Input Signal  
(driven by tester)  
0.3 VDDP  
0.2 VDDP  
Output Signal  
(measured)  
Output timings refer to the rising edge of CLKOUT.  
Input timings are calculated from the time, when the input signal reaches  
VIH or VIL, respectively.  
MCD05556C  
Figure 17  
Input Output Waveforms  
V
Load + 0.1 V  
V
V
OH - 0.1 V  
OL + 0.1 V  
Timing  
Reference  
Points  
V
Load - 0.1 V  
For timing purposes a port pin is no longer floating when a 100 mV  
change from load voltage occurs, but begins to float when a 100 mV  
change from the loaded VOH /VOL level occurs (IOH / IOL = 20 mA).  
MCA05565  
Figure 18  
Floating Waveforms  
Data Sheet  
95  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
4.6.2  
Definition of Internal Timing  
The internal operation of the XE164xM is controlled by the internal system clock fSYS  
.
Because the system clock signal fSYS can be generated from a number of internal and  
external sources using different mechanisms, the duration of the system clock periods  
(TCSs) and their variation (as well as the derived external timing) depend on the  
mechanism used to generate fSYS. This must be considered when calculating the timing  
for the XE164xM.  
Phase Locked Loop Operation (1:N)  
fIN  
fSYS  
TCS  
Direct Clock Drive (1:1)  
fIN  
fSYS  
TCS  
Prescaler Operation (N:1)  
fIN  
fSYS  
TCS  
MC_XC2X_CLOCKGEN  
Figure 19  
Generation Mechanisms for the System Clock  
Note: The example of PLL operation shown in Figure 19 uses a PLL factor of 1:4; the  
example of prescaler operation uses a divider factor of 2:1.  
The specification of the external timing (AC Characteristics) depends on the period of the  
system clock (TCS).  
Data Sheet  
96  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
Direct Drive  
When direct drive operation is selected (SYSCON0.CLKSEL = 11B), the system clock is  
derived directly from the input clock signal CLKIN1:  
fSYS = fIN.  
The frequency of fSYS is the same as the frequency of fIN. In this case the high and low  
times of fSYS are determined by the duty cycle of the input clock fIN.  
Selecting Bypass Operation from the XTAL11) input and using a divider factor of 1 results  
in a similar configuration.  
Prescaler Operation  
When prescaler operation is selected (SYSCON0.CLKSEL = 10B, PLLCON0.VCOBY =  
1B), the system clock is derived either from the crystal oscillator (input clock signal  
XTAL1) or from the internal clock source through the output prescaler K1 (= K1DIV+1):  
fSYS = fOSC / K1.  
If a divider factor of 1 is selected, the frequency of fSYS equals the frequency of fOSC. In  
this case the high and low times of fSYS are determined by the duty cycle of the input  
clock fOSC (external or internal).  
The lowest system clock frequency results from selecting the maximum value for the  
divider factor K1:  
fSYS = fOSC / 1024.  
4.6.2.1 Phase Locked Loop (PLL)  
When PLL operation is selected (SYSCON0.CLKSEL = 10B, PLLCON0.VCOBY = 0B),  
the on-chip phase locked loop is enabled and provides the system clock. The PLL  
multiplies the input frequency by the factor F (fSYS = fIN × F).  
F is calculated from the input divider P (= PDIV+1), the multiplication factor N (=  
NDIV+1), and the output divider K2 (= K2DIV+1):  
(F = N / (P × K2)).  
The input clock can be derived either from an external source at XTAL1 or from the on-  
chip clock source.  
The PLL circuit synchronizes the system clock to the input clock. This synchronization is  
performed smoothly so that the system clock frequency does not change abruptly.  
Adjustment to the input clock continuously changes the frequency of fSYS so that it is  
locked to fIN. The slight variation causes a jitter of fSYS which in turn affects the duration  
of individual TCSs.  
1) Voltages on XTAL1 must comply to the core supply voltage VDDIM  
.
Data Sheet  
97  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
The timing in the AC Characteristics refers to TCSs. Timing must be calculated using the  
minimum TCS possible under the given circumstances.  
The actual minimum value for TCS depends on the jitter of the PLL. Because the PLL is  
constantly adjusting its output frequency to correspond to the input frequency (from  
crystal or oscillator), the accumulated jitter is limited. This means that the relative  
deviation for periods of more than one TCS is lower than for a single TCS (see formulas  
and Figure 20).  
This is especially important for bus cycles using waitstates and for the operation of  
timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train  
generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter  
is negligible.  
The value of the accumulated PLL jitter depends on the number of consecutive VCO  
output cycles within the respective timeframe. The VCO output clock is divided by the  
output prescaler K2 to generate the system clock signal fSYS. The number of VCO cycles  
is K2 × T, where T is the number of consecutive fSYS cycles (TCS).  
The maximum accumulated jitter (long-term jitter) DTmax is defined by:  
DTmax [ns] = ±(220 / (K2 × fSYS) + 4.3)  
This maximum value is applicable, if either the number of clock cycles T > (fSYS / 1.2) or  
the prescaler value K2 > 17.  
In all other cases for a timeframe of T × TCS the accumulated jitter DT is determined by:  
DT [ns] = DTmax × [(1 - 0.058 × K2) × (T - 1) / (0.83 × fSYS - 1) + 0.058 × K2]  
f
SYS in [MHz] in all formulas.  
Example, for a period of 3 TCSs @ 33 MHz and K2 = 4:  
max = ±(220 / (4 × 33) + 4.3) = 5.97 ns (Not applicable directly in this case!)  
D
D3 = 5.97 × [(1 - 0.058 × 4) × (3 - 1) / (0.83 × 33 - 1) + 0.058 × 4]  
= 5.97 × [0.768 × 2 / 26.39 + 0.232]  
= 1.7 ns  
Example, for a period of 3 TCSs @ 33 MHz and K2 = 2:  
Dmax = ±(220 / (2 × 33) + 4.3) = 7.63 ns (Not applicable directly in this case!)  
D3 = 7.63 × [(1 - 0.058 × 2) × (3 - 1) / (0.83 × 33 - 1) + 0.058 × 2]  
= 7.63 × [0.884 × 2 / 26.39 + 0.116]  
= 1.4 ns  
Data Sheet  
98  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
Acc. jitter DT  
ns  
±9  
fSYS = 33 MHz fSYS = 66 MHz  
fVCO = 66 MHz  
fVCO = 132MHz  
±8  
±7  
±6  
±5  
±4  
±3  
±2  
±1  
Cycles  
100  
T
0
1
20  
40  
60  
80  
MC_XC2X_JITTER  
Figure 20  
Approximated Accumulated PLL Jitter  
Note: The specified PLL jitter values are valid if the capacitive load per pin does not  
exceed CL = 20 pF.  
The maximum peak-to-peak noise on the pad supply voltage (measured between  
VDDPB pin 100 and VSS pin 1) is limited to a peak-to-peak voltage of VPP = 50 mV.  
This can be achieved by appropriate blocking of the supply voltage as close as  
possible to the supply pins and using PCB supply and ground planes.  
Data Sheet  
99  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
PLL frequency band selection  
Different frequency bands can be selected for the VCO so that the operation of the PLL  
can be adjusted to a wide range of input and output frequencies:  
Table 23  
System PLL Parameters  
Symbol  
Parameter  
Values  
Unit Note /  
Test Condition  
Min.  
VCO CC 50  
100  
VCO CC 10  
20  
Typ.  
Max.  
110  
160  
40  
VCO output frequency  
(VCO controlled)  
f
f
MHz VCOSEL = 00B  
MHz VCOSEL = 01B  
MHz VCOSEL = 00B  
MHz VCOSEL = 01B  
VCO output frequency  
(VCO free-running)  
80  
4.6.2.2 Wakeup Clock  
When wakeup operation is selected (SYSCON0.CLKSEL = 00B), the system clock is  
derived from the low-frequency wakeup clock source:  
fSYS = fWU.  
In this mode, a basic functionality can be maintained without requiring an external clock  
source and while minimizing the power consumption.  
4.6.2.3 Selecting and Changing the Operating Frequency  
When selecting a clock source and the clock generation method, the required  
parameters must be carefully written to the respective bit fields, to avoid unintended  
intermediate states.  
Many applications change the frequency of the system clock (fSYS) during operation in  
order to optimize system performance and power consumption. Changing the operating  
frequency also changes the switching currents, which influences the power supply.  
To ensure proper operation of the on-chip EVRs while they generate the core voltage,  
the operating frequency shall only be changed in certain steps. This prevents overshoots  
and undershoots of the supply voltage.  
To avoid the indicated problems, recommended sequences are provided which ensure  
the intended operation of the clock system interacting with the power system.  
Please refer to the Programmer’s Guide.  
Data Sheet  
100  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
4.6.3  
External Clock Input Parameters  
These parameters specify the external clock generation for the XE164xM. The clock can  
be generated in two ways:  
By connecting a crystal or ceramic resonator to pins XTAL1/XTAL2  
By supplying an external clock signal  
– This clock signal can be supplied either to pin XTAL1 (core voltage domain) or to  
pin CLKIN1 (IO voltage domain)  
If connected to CLKIN1, the input signal must reach the defined input levels VIL and VIH.  
If connected to XTAL1, a minimum amplitude VAX1 (peak-to-peak voltage) is sufficient for  
the operation of the on-chip oscillator.  
Note: The given clock timing parameters (t1 t4) are only valid for an external clock  
input signal.  
Note: Operating Conditions apply.  
Table 24  
External Clock Input Characteristics  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
Oscillator frequency  
fOSC SR  
4
40  
MHz Input = clock  
signal  
4
16  
20  
MHz Input = crystal  
or ceramic  
resonator  
XTAL1 input current  
absolute value  
|IIL| CC  
μA  
Input clock high time  
Input clock low time  
Input clock rise time  
Input clock fall time  
t1 SR  
t2 SR  
t3 SR  
t4 SR  
6
6
8
8
ns  
ns  
ns  
ns  
Input voltage amplitude on VAX1 SR 0.3 x  
V
V
V
V
4 to 16 MHz  
XTAL11)  
VDDIM  
0.4 x  
VDDIM  
16 to 25 MHz  
0.5 x  
VDDIM  
25 to 40 MHz  
2)  
Input voltage range limits  
for signal on XTAL1  
VIX1 SR -1.7 +  
1.7  
VDDIM  
Data Sheet  
101  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
1) The amplitude voltage VAX1 refers to the offset voltage VOFF. This offset voltage must be stable during the  
operation and the resulting voltage peaks must remain within the limits defined by VIX1  
.
2) Overload conditions must not occur on pin XTAL1.  
Note: For crystal or ceramic resonator operation, it is strongly recommended to measure  
the oscillation allowance (negative resistance) in the final target system (layout) to  
determine the optimum parameters for oscillator operation.  
The manufacturers of crystals and ceramic resonators offer an oscillator  
evaluation service. This evaluation checks the crystal/resonator specification  
limits to ensure a reliable oscillator operation.  
t1  
t3  
0.9 VAX1  
VOFF  
VAX1  
0.1 VAX1  
t2  
t4  
tOSC = 1/fOSC  
MC_EXTCLOCK  
Figure 21  
External Clock Drive XTAL1  
Data Sheet  
102  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
4.6.4  
Pad Properties  
The output pad drivers of the XE164xM can operate in several user-selectable modes.  
Strong driver mode allows controlling external components requiring higher currents  
such as power bridges or LEDs. Reducing the driving power of an output pad reduces  
electromagnetic emissions (EME). In strong driver mode, selecting a slower edge  
reduces EME.  
The dynamic behavior, i.e. the rise time and fall time, depends on the applied external  
capacitance that must be charged and discharged. Timing values are given for a  
capacitance of 20 pF, unless otherwise noted.  
In general, the performance of a pad driver depends on the available supply voltage  
VDDP. The following table lists the pad parameters.  
Note: These parameters are not subject to production test but verified by design and/or  
characterization.  
Note: Operating Conditions apply.  
Data Sheet  
103  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
Table 25 is valid under the following conditions:  
VDDP 4.5 V; VDDPtyp = 5 V; VDDP 5.5 V; CL 20 pF; CL 100 pF;  
Table 25  
Standard Pad Parameters for Upper Voltage Range  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
Typ.  
Max.  
10  
Maximum output driver  
IOmax  
mA Strong driver  
mA Medium driver  
mA Weak driver  
mA Strong driver  
mA Medium driver  
mA Weak driver  
current (absolute value)1) CC  
4.0  
0.5  
2.5  
1.0  
0.1  
Nominal output driver  
current (absolute value)  
IOnom  
CC  
Rise and Fall times (10% - tRF CC  
90%)  
4.2 +  
0.14 x  
CL  
ns  
Strong driver;  
Sharp edge  
11.6 + ns  
0.22 x  
CL  
Strong driver;  
Medium edge  
20.6 + ns  
0.22 x  
CL  
Strong driver;  
Slow edge  
23 +  
0.6 x  
CL  
ns  
Medium driver  
Weak driver  
212 + ns  
1.9 x  
CL  
1) The total output current that may be drawn at a given time must be limited to protect the supply rails from  
damage. For any group of 16 neighboring output pins, the total output current in each direction (ΣIOL and Σ-  
I
OH) must remain below 50 mA.  
Data Sheet  
104  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
Table 26 is valid under the following conditions:  
VDDP 3.0 V; VDDPtyp = 3.3 V; VDDP 4.5 V; CL 20 pF; CL 100 pF;  
Table 26  
Standard Pad Parameters for Lower Voltage Range  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
Typ.  
Max.  
10  
Maximum output driver  
IOmax  
mA Strong driver  
mA Medium driver  
mA Weak driver  
mA Strong driver  
mA Medium driver  
mA Weak driver  
current (absolute value)1) CC  
2.5  
0.5  
2.5  
1.0  
0.1  
Nominal output driver  
current (absolute value)  
IOnom  
CC  
Rise and Fall times (10% - tRF CC  
90%)  
6.2 +  
0.24 x  
CL  
ns  
ns  
ns  
ns  
Strong driver;  
Sharp edge  
24 +  
0.3 x  
CL  
Strong driver;  
Medium edge  
34 +  
0.3 x  
CL  
Strong driver;  
Slow edge  
37 +  
0.65 x  
CL  
Medium driver  
Weak driver  
500 + ns  
2.5 x  
CL  
1) The total output current that may be drawn at a given time must be limited to protect the supply rails from  
damage. For any group of 16 neighboring output pins, the total output current in each direction (ΣIOL and Σ-  
I
OH) must remain below 50 mA.  
Data Sheet  
105  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
4.6.5  
External Bus Timing  
The following parameters specify the behavior of the XE164xM bus interface.  
Note: These parameters are not subject to production test but verified by design and/or  
characterization.  
Note: Operating Conditions apply.  
Bus Interface Performance Limits  
The output frequency at the bus interface pins is limited by the performance of the output  
drivers. The fast clock driver (used for CLKOUT) can drive 80-MHz signals, the standard  
drivers can drive 40-MHz signals  
Therefore, the speed of the EBC must be limited, either by limiting the system frequency  
to fSYS 80 MHz or by adding waitstates so that signal transitions have a minimum  
distance of 12.5 ns.  
For a description of the bus protocol and the programming of its variable timing  
parameters, please refer to the User’s Manual.  
Table 27  
EBC Parameters  
Symbol  
Parameter  
Values  
Unit Note /  
Test Condition  
Min.  
Typ.  
Max.  
CLKOUT Cycle Time1)  
CLKOUT high time  
CLKOUT low time  
CLKOUT rise time  
CLKOUT fall time  
t5 CC  
2
2
1 / fSYS  
3
3
ns  
t6 CC  
t7 CC  
t8 CC  
t9 CC  
ns  
1) The CLKOUT cycle time is influenced by PLL jitter. For longer periods the relative deviation decreases (see  
PLL deviation formula).  
t9  
t8  
t5  
t6  
t7  
CLKOUT  
MC_X_EBCCLKOUT  
Figure 22  
CLKOUT Signal Timing  
Data Sheet  
106  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
Note: The term CLKOUT refers to the reference clock output signal which is generated  
by selecting fSYS as the source signal for the clock output signal EXTCLK on pin  
P2.8 and by enabling the high-speed clock driver on this pin.  
Variable Memory Cycles  
External bus cycles of the XE164xM are executed in five consecutive cycle phases (AB,  
C, D, E, F). The duration of each cycle phase is programmable (via the TCONCSx  
registers) to adapt the external bus cycles to the respective external module (memory,  
peripheral, etc.).  
The duration of the access phase can optionally be controlled by the external module  
using the READY handshake input.  
This table provides a summary of the phases and the ranges for their length.  
Table 28  
Programmable Bus Cycle Phases (see timing diagrams)  
Parameter Valid Values Unit  
Bus Cycle Phase  
Address setup phase, the standard duration of this tpAB  
phase (1 … 2 TCS) can be extended by 0 … 3 TCS  
if the address window is changed  
1 … 2 (5)  
TCS  
Command delay phase  
tpC  
tpD  
tpE  
tpF  
0 … 3  
0 … 1  
1 … 32  
0 … 3  
TCS  
TCS  
TCS  
TCS  
Write Data setup/MUX Tristate phase  
Access phase  
Address/Write Data hold phase  
Note: The bandwidth of a parameter (from minimum to maximum value) covers the  
whole operating range (temperature, voltage) as well as process variations. Within  
a given device, however, this bandwidth is smaller than the specified range. This  
is also due to interdependencies between certain parameters. Some of these  
interdependencies are described in additional notes (see standard timing).  
Note: Operating Conditions apply; CL = 20 pF.  
Data Sheet  
107  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
Table 29  
EBC External Bus Timing for Upper Voltage Range  
Parameter  
Symbol  
Values  
Typ.  
7
Unit Note /  
Test Condition  
Min.  
Max.  
Output valid delay for RD,  
WR(L/H)  
t
10 CC  
11 CC  
13  
ns  
ns  
ns  
ns  
Output valid delay for  
BHE, ALE  
t
7
8
8
14  
14  
15  
Address output valid delay t12 CC  
for A23 ... A0  
Address output valid delay t13 CC  
for AD15 ... AD0 (MUX  
mode)  
Output valid delay for CS  
t
14 CC  
7
8
13  
15  
ns  
ns  
Data output valid delay for t15 CC  
AD15 ... AD0 (write data,  
MUX mode)  
Data output valid delay for t16 CC  
D15 ... D0 (write data,  
DEMUX mode)  
8
15  
ns  
Output hold time for RD,  
WR(L/H)  
t20 CC  
t21 CC  
t23 CC  
-2  
-2  
-3  
6
6
6
8
ns  
ns  
ns  
Output hold time for BHE,  
ALE  
10  
8
Address output hold time  
for AD15 ... AD0  
Output hold time for CS  
t
24 CC  
25 CC  
-3  
-3  
6
6
11  
8
ns  
ns  
Data output hold time for  
D15 ... D0 and AD15 ...  
AD0  
t
Input setup time for  
READY, D15 ... D0, AD15  
... AD0  
t
30 SR  
31 SR  
25  
0
15  
-7  
ns  
ns  
Input hold time READY,  
D15 ... D0, AD15 ... AD01)  
t
1) Read data are latched with the same internal clock edge that triggers the address change and the rising edge  
of RD. Address changes before the end of RD have no impact on (demultiplexed) read cycles. Read data can  
change after the rising edge of RD.  
Data Sheet  
108  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
Table 30  
EBC External Bus Timing for Lower Voltage Range  
Parameter  
Symbol  
Values  
Typ.  
11  
Unit Note /  
Test Condition  
Min.  
Max.  
Output valid delay for RD,  
WR(L/H)  
t
10 CC  
11 CC  
20  
ns  
ns  
ns  
ns  
Output valid delay for  
BHE, ALE  
t
10  
11  
10  
21  
22  
22  
Address output valid delay t12 CC  
for A23 ... A0  
Address output valid delay t13 CC  
for AD15 ... AD0 (MUX  
mode)  
Output valid delay for CS  
t
14 CC  
10  
10  
13  
22  
ns  
ns  
Data output valid delay for t15 CC  
AD15 ... AD0 (write data,  
MUX mode)  
Data output valid delay for t16 CC  
D15 ... D0 (write data,  
DEMUX mode)  
10  
22  
ns  
Output hold time for RD,  
WR(L/H)  
t20 CC  
t21 CC  
t23 CC  
-2  
-2  
-3  
8
8
8
10  
10  
10  
ns  
ns  
ns  
Output hold time for BHE,  
ALE  
Address output hold time  
for AD15 ... AD0  
Output hold time for CS  
t
24 CC  
25 CC  
-3  
-3  
8
8
11  
10  
ns  
ns  
Data output hold time for  
D15 ... D0 and AD15 ...  
AD0  
t
Input setup time for  
READY, D15 ... D0, AD15  
... AD0  
t
30 SR  
31 SR  
29  
0
17  
-9  
ns  
ns  
Input hold time READY,  
D15 ... D0, AD15 ... AD01)  
t
1) Read data are latched with the same internal clock edge that triggers the address change and the rising edge  
of RD. Address changes before the end of RD have no impact on (demultiplexed) read cycles. Read data can  
change after the rising edge of RD.  
Data Sheet  
109  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
tpAB  
tpC  
tpD  
tpE  
tpF  
CLKOUT  
ALE  
t21  
t11  
t11/t12/t14  
t24  
A23-A16,  
BHE, CSx  
High Address  
t20  
t10  
RD  
WR(L/H)  
t31  
t13  
t23  
t30  
AD15-AD0  
(read)  
Low Address  
Low Address  
Data In  
t13  
t15  
t25  
AD15-AD0  
(write)  
Data Out  
MC_X_EBCMUX  
Figure 23  
Multiplexed Bus Cycle  
Data Sheet  
110  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
tpAB  
tpC  
tpD  
tpE  
tpF  
CLKOUT  
ALE  
t21  
t11  
t11/t12/t14  
t24  
A23-A0,  
BHE, CSx  
Address  
t20  
t10  
RD  
WR(L/H)  
t31  
t30  
D15-D0  
(read)  
Data In  
t16  
t25  
D15-D0  
(write)  
Data Out  
MC_X_EBCDEMUX  
Figure 24  
Demultiplexed Bus Cycle  
Data Sheet  
111  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
4.6.5.1 Bus Cycle Control with the READY Input  
The duration of an external bus cycle can be controlled by the external circuit using the  
READY input signal. The polarity of this input signal can be selected.  
Synchronous READY permits the shortest possible bus cycle but requires the input  
signal to be synchronous to the reference signal CLKOUT.  
An asynchronous READY signal puts no timing constraints on the input signal but incurs  
a minimum of one waitstate due to the additional synchronization stage. The minimum  
duration of an asynchronous READY signal for safe synchronization is one CLKOUT  
period plus the input setup time.  
An active READY signal can be deactivated in response to the trailing (rising) edge of  
the corresponding command (RD or WR).  
If the next bus cycle is controlled by READY, an active READY signal must be disabled  
before the first valid sample point in the next bus cycle. This sample point depends on  
the programmed phases of the next cycle.  
Data Sheet  
112  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
tpD  
tpE  
tpRDY  
tpF  
CLKOUT  
RD, WR  
t10  
t20  
t31  
t30  
D15-D0  
(read)  
Data In  
t25  
D15-D0  
(write)  
Data Out  
t31  
t30  
t31  
t30  
READY  
Synchronous  
Not Rdy  
READY  
t31  
t30  
t31  
t30  
READY  
Asynchron.  
Not Rdy  
READY  
MC_X_EBCREADY  
Figure 25  
READY Timing  
Note: If the READY input is sampled inactive at the indicated sampling point (“Not Rdy”)  
a READY-controlled waitstate is inserted (tpRDY),  
sampling the READY input active at the indicated sampling point (“Ready”)  
terminates the currently running bus cycle.  
Note the different sampling points for synchronous and asynchronous READY.  
This example uses one mandatory waitstate (see tpE) before the READY input  
value is used.  
Data Sheet  
113  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
4.6.6  
Synchronous Serial Interface Timing  
The following parameters are applicable for a USIC channel operated in SSC mode.  
Note: These parameters are not subject to production test but verified by design and/or  
characterization.  
Note: Operating Conditions apply; CL = 20 pF.  
Table 31  
USIC SSC Master Mode Timing for Upper Voltage Range  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
Slave select output SELO t1 CC  
active to first SCLKOUT  
transmit edge  
tSYS  
ns  
- 8 1)  
Slave select output SELO t2 CC  
inactive after last  
tSYS  
ns  
- 6 1)  
SCLKOUT receive edge  
Data output DOUT valid  
time  
t3 CC  
-6  
9
ns  
ns  
Receive data input setup t4 SR  
time to SCLKOUT receive  
edge  
31  
Data input DX0 hold time t5 SR  
from SCLKOUT receive  
edge  
-4  
ns  
1)  
tSYS = 1 / fSYS  
Table 32  
USIC SSC Master Mode Timing for Lower Voltage Range  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
Slave select output SELO t1 CC  
active to first SCLKOUT  
transmit edge  
tSYS  
ns  
ns  
ns  
- 10 1)  
Slave select output SELO t2 CC  
inactive after last  
SCLKOUT receive edge  
tSYS  
- 9 1)  
Data output DOUT valid  
time  
t3 CC  
-7  
11  
Data Sheet  
114  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
Table 32  
USIC SSC Master Mode Timing for Lower Voltage Range (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
Receive data input setup t4 SR  
time to SCLKOUT receive  
edge  
40  
ns  
Data input DX0 hold time t5 SR  
from SCLKOUT receive  
edge  
-5  
ns  
1)  
tSYS = 1 / fSYS  
Table 33  
USIC SSC Slave Mode Timing for Upper Voltage Range  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
Select input DX2 setup to  
first clock input DX1  
transmit edge1)  
t10 SR  
7
ns  
ns  
ns  
ns  
ns  
Select input DX2 hold after t11 SR  
last clock input DX1  
7
7
5
7
receive edge1)  
Receive data input setup  
time to shift clock receive  
edge1)  
t12 SR  
t13 SR  
t14 CC  
Data input DX0 hold time  
from clock input DX1  
receive edge1)  
Data output DOUT valid  
time  
33  
1) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and  
receive data input (bits DXnCR.DSEN = 0).  
Data Sheet  
115  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
Table 34  
USIC SSC Slave Mode Timing for Lower Voltage Range  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
Select input DX2 setup to  
first clock input DX1  
transmit edge1)  
t10 SR  
7
ns  
ns  
ns  
ns  
ns  
Select input DX2 hold after t11 SR  
last clock input DX1  
7
7
5
8
receive edge1)  
Receive data input setup  
time to shift clock receive  
edge1)  
t12 SR  
t13 SR  
t14 CC  
Data input DX0 hold time  
from clock input DX1  
receive edge1)  
Data output DOUT valid  
time  
41  
1) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and  
receive data input (bits DXnCR.DSEN = 0).  
Data Sheet  
116  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
Master Mode Timing  
t1  
t2  
Select Output  
SELOx  
Inactive  
Inactive  
Active  
Clock Output  
SCLKOUT  
Receive  
Edge  
Last Receive  
Edge  
First Transmit  
Edge  
Transmit  
Edge  
t3  
t3  
Data Output  
DOUT  
t4  
t4  
t5  
t5  
Data Input  
DX0  
Data  
valid  
Data  
valid  
Slave Mode Timing  
t10  
t11  
Select Input  
DX2  
Inactive  
Active  
Inactive  
Clock Input  
DX1  
Receive  
Edge  
Last Receive  
Edge  
First Transmit  
Edge  
Transmit  
Edge  
t12  
t12  
t13  
t13  
Data Input  
DX0  
Data  
valid  
Data  
valid  
t14  
t14  
Data Output  
DOUT  
Transmit Edge: with this clock edge, transmit data is shifted to transmit data output.  
Receive Edge: with this clock edge, receive data at receive data input is latched.  
Drawn for BRGH.SCLKCFG = 00B. Also valid for for SCLKCFG = 01B with inverted SCLKOUT signa.l  
USIC_SSC_TMGX.VSD  
Figure 26  
USIC - SSC Master/Slave Mode Timing  
Note: This timing diagram shows a standard configuration where the slave select signal  
is low-active and the serial clock signal is not shifted and not inverted.  
Data Sheet  
117  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
4.6.7  
Debug Interface Timing  
The debugger can communicate with the XE164xM either via the 2-pin DAP interface or  
via the standard JTAG interface.  
Debug via DAP  
The following parameters are applicable for communication through the DAP debug  
interface.  
Note: These parameters are not subject to production test but verified by design and/or  
characterization.  
Note: Operating Conditions apply; CL= 20 pF.  
Table 35  
DAP Interface Timing for Upper Voltage Range  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
251)  
8
Typ.  
Max.  
DAP0 clock period  
DAP0 high time  
t11 SR  
t12 SR  
t13 SR  
t14 SR  
t15 SR  
t16 SR  
4
4
ns  
ns  
ns  
ns  
ns  
ns  
DAP0 low time  
8
DAP0 clock rise time  
DAP0 clock fall time  
DAP1 setup to DAP0  
rising edge  
6
pad_type= stan  
dard  
DAP1 hold after DAP0  
rising edge  
t
17 SR  
19 CC  
6
ns  
ns  
pad_type= stan  
dard  
DAP1 valid per DAP0  
clock period2)  
t
17  
20  
pad_type= stan  
dard  
1) The debug interface cannot operate faster than the overall system, therefore t11 tSYS  
.
2) The Host has to find a suitable sampling point by analyzing the sync telegram response.  
Data Sheet  
118  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
Table 36  
DAP Interface Timing for Lower Voltage Range  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
251)  
8
Typ.  
Max.  
DAP0 clock period  
DAP0 high time  
t11 SR  
t12 SR  
t13 SR  
t14 SR  
t15 SR  
t16 SR  
4
4
ns  
ns  
ns  
ns  
ns  
ns  
DAP0 low time  
8
DAP0 clock rise time  
DAP0 clock fall time  
DAP1 setup to DAP0  
rising edge  
6
pad_type= stan  
dard  
DAP1 hold after DAP0  
rising edge  
t
17 SR  
19 CC  
6
ns  
ns  
pad_type= stan  
dard  
DAP1 valid per DAP0  
clock period2)  
t
12  
17  
pad_type= stan  
dard  
1) The debug interface cannot operate faster than the overall system, therefore t11 tSYS  
.
2) The Host has to find a suitable sampling point by analyzing the sync telegram response.  
t11  
0.9 VDDP  
0.1 VDDP  
0.5 VDDP  
t15  
t14  
t12  
t13  
MC_DAP0  
Figure 27  
Test Clock Timing (DAP0)  
Data Sheet  
119  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
DAP0  
t16  
t17  
DAP1  
MC_DAP1_RX  
Figure 28  
DAP Timing Host to Device  
t11  
DAP1  
t19  
MC_DAP1_TX  
Figure 29  
DAP Timing Device to Host  
Note: The transmission timing is determined by the receiving debugger by evaluating the  
sync-request synchronization pattern telegram.  
Data Sheet  
120  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
Debug via JTAG  
The following parameters are applicable for communication through the JTAG debug  
interface. The JTAG module is fully compliant with IEEE1149.1-2000.  
Note: These parameters are not subject to production test but verified by design and/or  
characterization.  
Note: Operating Conditions apply; CL= 20 pF.  
Table 37  
JTAG Interface Timing for Upper Voltage Range  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
501)  
16  
16  
Typ.  
Max.  
2)  
TCK clock period  
TCK high time  
t1 SR  
t2 SR  
t3 SR  
t4 SR  
t5 SR  
t6 SR  
8
8
ns  
ns  
ns  
ns  
ns  
ns  
TCK low time  
TCK clock rise time  
TCK clock fall time  
TDI/TMS setup to TCK  
rising edge  
6
TDI/TMS hold after TCK  
rising edge  
t7 SR  
6
ns  
ns  
ns  
TDO valid from TCK falling t8 CC  
25  
25  
29  
29  
edge (propagation delay)3)  
TDO high impedance to  
valid output from TCK  
falling edge4)3)  
t9 CC  
TDO valid output to high  
impedance from TCK  
falling edge3)  
t
10 CC  
25  
29  
ns  
ns  
TDO hold after TCK falling t18 CC  
5
edge3)  
1) The debug interface cannot operate faster than the overall system, therefore t1 tSYS  
2) Under typical conditions, the interface can operate at transfer rates up to 20 MHz.  
3) The falling edge on TCK is used to generate the TDO timing.  
.
4) The setup time for TDO is given implicitly by the TCK cycle time.  
Data Sheet  
121  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
Table 38  
JTAG Interface Timing for Lower Voltage Range  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
501)  
16  
16  
Typ.  
Max.  
2)  
TCK clock period  
TCK high time  
t1 SR  
t2 SR  
t3 SR  
t4 SR  
t5 SR  
t6 SR  
8
8
ns  
ns  
ns  
ns  
ns  
ns  
TCK low time  
TCK clock rise time  
TCK clock fall time  
TDI/TMS setup to TCK  
rising edge  
6
TDI/TMS hold after TCK  
rising edge  
t7 SR  
6
ns  
ns  
ns  
TDO valid from TCK falling t8 CC  
32  
32  
36  
36  
edge (propagation delay)3)  
TDO high impedance to  
valid output from TCK  
falling edge4)3)  
t9 CC  
TDO valid output to high  
impedance from TCK  
falling edge3)  
t
10 CC  
32  
36  
ns  
ns  
TDO hold after TCK falling t18 CC  
5
edge3)  
1) The debug interface cannot operate faster than the overall system, therefore t1 tSYS  
2) Under typical conditions, the interface can operate at transfer rates up to 20 MHz.  
3) The falling edge on TCK is used to generate the TDO timing.  
.
4) The setup time for TDO is given implicitly by the TCK cycle time.  
Data Sheet  
122  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Electrical Parameters  
t1  
0.9 VDDP  
0.1 VDDP  
0.5 VDDP  
t5  
t4  
t2  
t3  
MC_JTAG_TCK  
Figure 30  
Test Clock Timing (TCK)  
TCK  
t6  
t7  
TMS  
TDI  
t6  
t7  
t9  
t8  
t10  
TDO  
MC_JTAG  
Figure 31  
JTAG Timing  
Data Sheet  
123  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Package and Reliability  
5
Package and Reliability  
The XE166 Family devices use the package type PG-LQFP (Plastic Green - Low Profile  
Quad Flat Package). The following specifications must be regarded to ensure proper  
integration of the XE164xM in its target environment.  
5.1  
Packaging  
These parameters specify the packaging rather than the silicon.  
Table 39  
Package Parameters (PG-LQFP-100-8)  
Parameter  
Symbol  
Limit Values  
Max.  
Unit Notes  
Min.  
Exposed Pad Dimension Ex × Ey  
6.2 × 6.2  
mm  
W
Power Dissipation  
PDISS  
RΘJA  
1.0  
47  
29  
23  
Thermal resistance  
Junction-Ambient  
K/W No thermal via1)  
K/W 4-layer, no pad2)  
K/W 4-layer, pad3)  
1) Device mounted on a 2-layer JEDEC board (according to JESD 51-3) or a 4-layer board without thermal vias;  
exposed pad not soldered.  
2) Device mounted on a 4-layer JEDEC board (according to JESD 51-7) with thermal vias; exposed pad not  
soldered.  
3) Device mounted on a 4-layer JEDEC board (according to JESD 51-7) with thermal vias; exposed pad soldered  
to the board.  
Note: To improve the EMC behavior, it is recommended to connect the exposed pad to  
the board ground, independent of the thermal requirements.  
Board layout examples are given in an application note.  
Package Compatibility Considerations  
The XE164xM is a member of the XE166 Family of microcontrollers. It is also compatible  
to a certain extent with members of similar families or subfamilies.  
Each package is optimized for the device it houses. Therefore, there may be slight  
differences between packages of the same pin-count but for different device types. In  
particular, the size of the Exposed Pad (if present) may vary.  
If different device types are considered or planned for an application, it must be ensured  
that the board layout fits all packages under consideration.  
Data Sheet  
124  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Package and Reliability  
Package Outlines  
H
0.5  
0.15  
0.6  
0.08 C  
100x  
C
12  
0.05  
0.22  
M
0.08 A-B D C 100x  
16  
14  
0.2 A-B  
0.2 A-B  
100x  
Bottom View  
Ex  
D
1)  
4x  
D H  
D
A
B
100  
1
100  
1
Index Marking  
Exposed Diepad  
1) Does not include plastic or metal protrusion of 0.25 max. per side  
PG-LQFP-100-3, -4, -8-PO V11  
Figure 32  
PG-LQFP-100-8 (Plastic Green Thin Quad Flat Package)  
All dimensions in mm.  
You can find complete information about Infineon packages, packing and marking in our  
Infineon Internet Page “Packages”: http://www.infineon.com/packages  
Data Sheet  
125  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Package and Reliability  
5.2  
Thermal Considerations  
When operating the XE164xM in a system, the total heat generated in the chip must be  
dissipated to the ambient environment to prevent overheating and the resulting thermal  
damage.  
The maximum heat that can be dissipated depends on the package and its integration  
into the target board. The “Thermal resistance RΘJA” quantifies these parameters. The  
power dissipation must be limited so that the average junction temperature does not  
exceed 125 °C.  
The difference between junction temperature and ambient temperature is determined by  
ΔT = (PINT + PIOSTAT + PIODYN) × RΘJA  
The internal power consumption is defined as  
P
INT = VDDP × IDDP (switching current and leakage current).  
The static external power consumption caused by the output drivers is defined as  
IOSTAT = Σ((VDDP-VOH) × IOH) + Σ(VOL × IOL)  
P
The dynamic external power consumption caused by the output drivers (PIODYN) depends  
on the capacitive load connected to the respective pins and their switching frequencies.  
If the total power dissipation for a given system configuration exceeds the defined limit,  
countermeasures must be taken to ensure proper system operation:  
Reduce VDDP, if possible in the system  
Reduce the system frequency  
Reduce the number of output pins  
Reduce the load on active output drivers  
Data Sheet  
126  
V2.1, 2011-07  
XE164FM, XE164GM, XE164HM, XE164KM  
XE166 Family / Base Line  
Package and Reliability  
5.3  
Quality Declarations  
The operation lifetime of the XE164xM depends on the operating temperature. The life  
time decreases with increasing temperature as shown in Table 41.  
Table 40  
Quality Parameters  
Symbol  
Parameter  
Values  
Unit Note /  
Test Condition  
Min.  
Typ.  
Max.  
20  
Operation lifetime  
ESD susceptibility  
t
OP CC  
a
See Table 41  
VHBM  
2 000  
V
EIA/JESD22-  
A114-B  
according to Human Body SR  
Model (HBM)  
Moisture sensitivity level  
MSL CC −  
3
JEDEC  
J-STD-020C  
Table 41  
Operating Time  
20 a  
Lifetime dependency from Temperature  
Operating Temperature  
TJ 110°C  
95 500 h  
68 500 h  
49 500 h  
26 400 h  
14 500 h  
TJ = 120°C  
TJ = 125°C  
TJ = 130°C  
TJ = 140°C  
TJ = 150°C  
Data Sheet  
127  
V2.1, 2011-07  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

XE164GM72F80LAAKXUMA1

Microcontroller, CMOS,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XE164GN

Real Time Signal Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XE164GN-16F80L

16-Bit Single-Chip Real Time Signal Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XE164GN-24F80L

16-Bit Single-Chip Real Time Signal Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XE164GN-40F80L

16-Bit Single-Chip Real Time Signal Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XE164H72F66LACFXQMA1

Microcontroller, 16-Bit, FLASH, C166SV2 CPU, 80MHz, CMOS, PQFP100,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XE164H72F66LACFXUMA1

Microcontroller, 16-Bit, FLASH, C166SV2 CPU, 80MHz, CMOS, PQFP100,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XE164H96F66LACFXQMA1

Microcontroller, 16-Bit, FLASH, C166SV2 CPU, 66MHz, CMOS, PQFP100, 0.50 MM PITCH, GREEN, PLASTIC, LQFP-100

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XE164H96F66LACFXUMA1

Microcontroller, 16-Bit, FLASH, C166SV2 CPU, 66MHz, CMOS, PQFP100, 0.50 MM PITCH, GREEN, PLASTIC, LQFP-100

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XE164HM72F80LAAFXUMA1

Microcontroller, CMOS,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XE164HN

Real Time Signal Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XE164HN-16F80L

16-Bit Single-Chip Real Time Signal Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON