XMC1302-T028X0128 AB [INFINEON]

32-bit XMC1000 Industrial Microcontroller ARM® Cortex®-M0;
XMC1302-T028X0128 AB
型号: XMC1302-T028X0128 AB
厂家: Infineon    Infineon
描述:

32-bit XMC1000 Industrial Microcontroller ARM® Cortex®-M0

微控制器
文件: 总78页 (文件大小:2710K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XMC1300 AB-Step  
Microcontroller Series  
for Industrial Applications  
XMC1000 Family  
ARM® Cortex®-M0  
32-bit processor core  
Data Sheet  
V2.0 2017-10  
Microcontrollers  
Edition 2017-10  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2017 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
XMC1300 AB-Step  
Microcontroller Series  
for Industrial Applications  
XMC1000 Family  
ARM® Cortex®-M0  
32-bit processor core  
Data Sheet  
V2.0 2017-10  
Microcontrollers  
XMC1300 AB-Step  
XMC1000 Family  
XMC1300 Data Sheet  
Revision History: V2.0 2017-10  
Previous Version: V1.9 2017-03  
Page  
Subjects  
Page 10, Add marking option for XMC1302-T28X0032, XMC1302-T28X0064,  
Page 13  
XMC1302-T28X0128, XMC1302-T28X0200.  
Trademarks  
C166™, TriCore™, XMC™ and DAVE™ are trademarks of Infineon Technologies AG.  
ARM®, ARM Powered® and AMBA® are registered trademarks of ARM, Limited.  
Cortex™, CoreSight™, ETM™, Embedded Trace Macrocell™ and Embedded Trace  
Buffer™ are trademarks of ARM, Limited.  
We Listen to Your Comments  
Is there any information in this document that you feel is wrong, unclear or missing?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
mcdocu.comments@infineon.com  
Data Sheet  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Table of Contents  
Table of Contents  
1
Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Device Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Device Type Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Chip Identification Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
1.1  
1.2  
1.3  
1.4  
2
2.1  
2.2  
2.2.1  
2.2.2  
2.2.3  
General Device Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Logic Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Pin Configuration and Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Package Pin Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Port I/O Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Hardware Controlled I/O Function Description . . . . . . . . . . . . . . . . . . . 27  
3
3.1  
Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Pin Reliability in Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Input/Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Analog to Digital Converters (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Out of Range Comparator (ORC) Characteristics . . . . . . . . . . . . . . . . . 46  
Analog Comparator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Temperature Sensor Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Power Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Flash Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Testing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Power-Up and Supply Monitoring Characteristics . . . . . . . . . . . . . . . . 57  
On-Chip Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Serial Wire Debug Port (SW-DP) Timing . . . . . . . . . . . . . . . . . . . . . . . 61  
SPD Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Peripheral Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Synchronous Serial Interface (USIC SSC) Timing . . . . . . . . . . . . . . 63  
Inter-IC (IIC) Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Inter-IC Sound (IIS) Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . 68  
3.1.1  
3.1.2  
3.1.3  
3.1.4  
3.2  
3.2.1  
3.2.2  
3.2.3  
3.2.4  
3.2.5  
3.2.6  
3.2.7  
3.3  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
3.3.5  
3.3.6  
3.3.6.1  
3.3.6.2  
3.3.6.3  
4
Package and Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
4.1  
4.1.1  
4.2  
Data Sheet  
5
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Table of Contents  
5
Quality Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Data Sheet  
6
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
About this Document  
About this Document  
This Data Sheet is addressed to embedded hardware and software developers. It  
provides the reader with detailed descriptions about the ordering designations, available  
features, electrical and physical characteristics of the XMC1300 series devices.  
The document describes the characteristics of a superset of the XMC1300 series  
devices. For simplicity, the various device types are referred to by the collective term  
XMC1300 throughout this document.  
XMC1000 Family User Documentation  
The set of user documentation includes:  
Reference Manual  
– decribes the functionality of the superset of devices.  
Data Sheets  
– list the complete ordering designations, available features and electrical  
characteristics of derivative devices.  
Errata Sheets  
– list deviations from the specifications given in the related Reference Manual or  
Data Sheets. Errata Sheets are provided for the superset of devices.  
Attention: Please consult all parts of the documentation set to attain consolidated  
knowledge about your device.  
Application related guidance is provided by Users Guides and Application Notes.  
Please refer to http://www.infineon.com/xmc1000 to get access to the latest versions  
of those documents.  
Data Sheet  
7
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Summary of Features  
1
Summary of Features  
The XMC1300 devices are members of the XMC1000 Family of microcontrollers based  
on the ARM Cortex-M0 processor core. The XMC1300 series addresses the real-time  
control needs of motor control, digital power conversion. It also features peripherals for  
LED Lighting applications.  
SWD  
Cortex-M0  
Analog system  
Debug  
system  
CPU  
SPD  
EVR  
2 x DCO  
NVIC  
Temperature sensor  
ANACTRL SFRs  
PRNG  
AHB to APB  
Bridge  
PAU  
AHB-Lite Bus  
Flash SFRs  
200k + 0.5k1)  
Flash  
ACMP &  
ORC  
MATH  
CCU40  
16k  
SRAM  
USIC0  
VADC  
ERU0  
PORTS  
WDT  
BCCU0  
CCU80  
POSIF0  
8k ROM  
Memories  
SCU  
RTC  
1) 0.5kbytes of sector 0 (readable only).  
Figure 1  
System Block Diagram  
CPU Subsystem  
CPU Core  
– High-performance 32-bit ARM Cortex-M0 CPU  
– Most 16-bit Thumb and subset of 32-bit Thumb2 instruction set  
– Single cycle 32-bit hardware multiplier  
– System timer (SysTick) for Operating System support  
Data Sheet  
8
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Summary of Features  
– Ultra low power consumption  
Nested Vectored Interrupt Controller (NVIC)  
Event Request Unit (ERU) for processing of external and internal service requests  
MATH Co-processor (MATH)  
– CORDIC unit for trigonometric calculation  
– division unit  
On-Chip Memories  
8 kbytes on-chip ROM  
16 kbytes on-chip high-speed SRAM  
up to 200 kbytes on-chip Flash program and data memory  
Communication Peripherals  
Two Universal Serial Interface Channels (USIC), usable as UART, double-SPI,  
quad-SPI, IIC, IIS and LIN interfaces  
Analog Frontend Peripherals  
A/D Converters  
– up to 12 analog input pins  
– 2 sample and hold stages with 8 analog input channels each  
– fast 12-bit analog to digital converter with adjustable gain  
Up to 8 channels of out of range comparators (ORC)  
Up to 3 fast analog comparators (ACMP)  
Temperature Sensor (TSE)  
Industrial Control Peripherals  
Capture/Compare Units 4 (CCU4) as general purpose timers  
Capture/Compare Units 8 (CCU8) for motor control and power conversion  
Position Interfaces (POSIF) for hall and quadrature encoders and motor positioning  
Brightness and Colour Control Unit (BCCU), for LED color and dimming application  
System Control  
Window Watchdog Timer (WDT) for safety sensitive applications  
Real Time Clock module with alarm support (RTC)  
System Control Unit (SCU) for system configuration and control  
Pseudo random number generator (PRNG) for fast random data generation  
Input/Output Lines  
Tri-stated in input mode  
Push/pull or open drain output mode  
Data Sheet  
9
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Summary of Features  
Configurable pad hysteresis  
On-Chip Debug Support  
Support for debug features: 4 breakpoints, 2 watchpoints  
Various interfaces: ARM serial wire debug (SWD), single pin debug (SPD)  
1.1  
Ordering Information  
The ordering code for an Infineon microcontroller provides an exact reference to a  
specific product. The code “XMC1<DDD>-<Z><PPP><T><FFFF>” identifies:  
<DDD> the derivatives function set  
<Z> the package variant  
– T: TSSOP  
– Q: VQFN  
<PPP> package pin count  
<T> the temperature range:  
– F: -40°C to 85°C  
– X: -40°C to 105°C  
<FFFF> the Flash memory size.  
For ordering codes for the XMC1300 please contact your sales representative or local  
distributor.  
This document describes several derivatives of the XMC1300 series, some descriptions  
may not apply to a specific product. Please see Table 1.  
For simplicity the term XMC1300 is used for all derivatives throughout this document.  
1.2  
Device Types  
These device types are available and can be ordered through Infineon’s direct and/or  
distribution channels.  
Table 1  
Synopsis of XMC1300 Device Types  
Package  
Derivative  
Flash  
SRAM  
Kbytes  
Kbytes  
XMC1301-T016F0008  
XMC1301-T016F0016  
XMC1301-T016F0032  
XMC1301-T016X0008  
XMC1301-T016X0016  
XMC1302-T016X0008  
PG-TSSOP-16-8  
PG-TSSOP-16-8  
PG-TSSOP-16-8  
PG-TSSOP-16-8  
PG-TSSOP-16-8  
PG-TSSOP-16-8  
8
16  
16  
16  
16  
16  
16  
16  
32  
8
16  
8
Data Sheet  
10  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Summary of Features  
Table 1  
Synopsis of XMC1300 Device Types (cont’d)  
Derivative  
Package  
Flash  
Kbytes  
SRAM  
Kbytes  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
XMC1302-T016X0016  
XMC1302-T016X0032  
XMC1302-T028X0016  
XMC1302-T028X0032  
XMC1302-T028X0064  
XMC1302-T028X0128  
XMC1302-T028X0200  
XMC1301-T038F0008  
XMC1301-T038F0016  
XMC1301-T038F0032  
XMC1301-T038X0032  
XMC1301-T038F0064  
XMC1302-T038X0016  
XMC1302-T038X0032  
XMC1302-T038X0064  
XMC1302-T038X0128  
XMC1302-T038X0200  
XMC1301-Q024F0008  
XMC1301-Q024F0016  
XMC1302-Q024F0016  
XMC1302-Q024F0032  
XMC1302-Q024F0064  
XMC1302-Q024X0016  
XMC1302-Q024X0032  
XMC1302-Q024X0064  
XMC1301-Q040F0008  
XMC1301-Q040F0016  
XMC1301-Q040F0032  
XMC1302-Q040X0016  
XMC1302-Q040X0032  
PG-TSSOP-16-8  
PG-TSSOP-16-8  
PG-TSSOP-28-8  
PG-TSSOP-28-8  
PG-TSSOP-28-8  
PG-TSSOP-28-8  
PG-TSSOP-28-8  
PG-TSSOP-38-9  
PG-TSSOP-38-9  
PG-TSSOP-38-9  
PG-TSSOP-38-9  
PG-TSSOP-38-9  
PG-TSSOP-38-9  
PG-TSSOP-38-9  
PG-TSSOP-38-9  
PG-TSSOP-38-9  
PG-TSSOP-38-9  
PG-VQFN-24-19  
PG-VQFN-24-19  
PG-VQFN-24-19  
PG-VQFN-24-19  
PG-VQFN-24-19  
PG-VQFN-24-19  
PG-VQFN-24-19  
PG-VQFN-24-19  
PG-VQFN-40-13  
PG-VQFN-40-13  
PG-VQFN-40-13  
PG-VQFN-40-13  
PG-VQFN-40-13  
16  
32  
16  
32  
64  
128  
200  
8
16  
32  
32  
64  
16  
32  
64  
128  
200  
8
16  
16  
32  
64  
16  
32  
64  
8
16  
32  
16  
32  
Data Sheet  
11  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Summary of Features  
Table 1  
Synopsis of XMC1300 Device Types (cont’d)  
Derivative  
Package  
Flash  
Kbytes  
SRAM  
Kbytes  
16  
XMC1302-Q040X0064  
XMC1302-Q040X0128  
XMC1302-Q040X0200  
PG-VQFN-40-13  
PG-VQFN-40-13  
PG-VQFN-40-13  
64  
128  
200  
16  
16  
1.3  
Device Type Features  
The following table lists the available features per device type.  
Table 2  
Features of XMC1300 Device Types1)  
Derivative  
ADC channel  
ACMP  
BCCU  
MATH  
XMC1301-T016  
XMC1302-T016  
XMC1302-T028  
XMC1301-T038  
XMC1302-T038  
XMC1301-Q024  
XMC1302-Q024  
XMC1301-Q040  
XMC1302-Q040  
11  
11  
14  
16  
16  
13  
13  
16  
16  
2
2
3
3
3
3
3
3
3
-
-
1
1
-
1
1
-
1
-
1
-
1
-
1
-
1
1
1) Features that are not included in this table are available in all the derivatives  
Table 3  
ADC Channels 1)  
VADC0 G0  
Package  
VADC0 G1  
PG-TSSOP-16  
PG-TSSOP-28  
PG-TSSOP-38  
PG-VQFN-24  
PG-VQFN-40  
CH0..CH5  
CH0..CH7  
CH0..CH7  
CH0..CH7  
CH0..CH7  
CH0..CH4  
CH0 .. CH4, CH7  
CH0..CH7  
CH0..CH4  
CH0..CH7  
1) Some pins in a package may be connected to more than one channel. For the detailed mapping see the Port  
I/O Function table.  
Data Sheet  
12  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Summary of Features  
1.4  
Chip Identification Number  
The Chip Identification Number allows software to identify the marking. It is a 8 words  
value with the most significant 7 words stored in Flash configuration sector 0 (CS0) at  
address location : 1000 0F00H (MSB) - 1000 0F1BH (LSB). The least significant word and  
most significant word of the Chip Identification Number are the value of registers  
DBGROMID and IDCHIP, respectively.  
Table 4  
XMC1300 Chip Identification Number  
Value  
Derivative  
Marking  
XMC1301-T016F0008  
XMC1301-T016F0016  
XMC1301-T016F0032  
XMC1301-T016X0008  
XMC1301-T016X0016  
XMC1302-T016X0008  
XMC1302-T016X0016  
XMC1302-T016X0032  
XMC1302-T028X0016  
XMC1302-T028X0032  
XMC1302-T028X0064  
XMC1302-T028X0128  
XMC1302-T028X0200  
XMC1301-T038F0008  
00013032 01CF00FF 00001FF7 0000100F  
00000C00 00001000 00003000 201ED083H  
AB  
00013032 01CF00FF 00001FF7 0000100F  
00000C00 00001000 00005000 201ED083H  
AB  
AB  
AB  
AB  
AB  
AB  
AB  
AB  
AB  
AB  
AB  
AB  
AB  
00013032 01CF00FF 00001FF7 0000100F  
00000C00 00001000 00009000 201ED083H  
00013033 01CF00FF 00001FF7 0000100F  
00000C00 00001000 00003000 201ED083H  
00013033 01CF00FF 00001FF7 0000100F  
00000C00 00001000 00005000 201ED083H  
00013033 01FF00FF 00001FF7 0000900F  
00000C00 00001000 00003000 201ED083H  
00013033 01FF00FF 00001FF7 0000900F  
00000C00 00001000 00005000 201ED083H  
00013033 01FF00FF 00001FF7 0000900F  
00000C00 00001000 00009000 201ED083H  
00013023 01FF00FF 00001FF7 0000900F  
00000C00 00001000 00005000 201ED083H  
00013023 01FF00FF 00001FF7 0000900F  
00000C00 00001000 00009000 201ED083H  
00013023 01FF00FF 00001FF7 0000900F  
00000C00 00001000 00011000 201ED083H  
00013023 01FF00FF 00001FF7 0000900F  
00000C00 00001000 00021000 201ED083H  
00013023 01FF00FF 00001FF7 0000900F  
00000C00 00001000 00033000 201ED083H  
00013012 01CF00FF 00001FF7 0000100F  
00000C00 00001000 00003000 201ED083H  
Data Sheet  
13  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Summary of Features  
Table 4  
XMC1300 Chip Identification Number (cont’d)  
Derivative  
Value  
Marking  
XMC1301-T038F0016  
XMC1301-T038F0032  
XMC1301-T038X0032  
XMC1301-T038F0064  
XMC1302-T038X0016  
XMC1302-T038X0032  
XMC1302-T038X0064  
XMC1302-T038X0128  
XMC1302-T038X0200  
XMC1301-Q024F0008  
XMC1301-Q024F0016  
XMC1302-Q024F0016  
XMC1302-Q024F0032  
XMC1302-Q024F0064  
XMC1302-Q024X0016  
XMC1302-Q024X0032  
XMC1302-Q024X0064  
00013012 01CF00FF 00001FF7 0000100F  
00000C00 00001000 00005000 201ED083H  
AB  
AB  
AB  
AB  
AB  
AB  
AB  
AB  
AB  
AB  
AB  
AB  
AB  
AB  
AB  
AB  
AB  
00013012 01CF00FF 00001FF7 0000100F  
00000C00 00001000 00009000 201ED083H  
00013013 01CF00FF 00001FF7 0000100F  
00000C00 00001000 00009000 201ED083H  
00013012 01CF00FF 00001FF7 0000100F  
00000C00 00001000 00011000 201ED083H  
00013013 01FF00FF 00001FF7 0000900F  
00000C00 00001000 00005000 201ED083H  
00013013 01FF00FF 00001FF7 0000900F  
00000C00 00001000 00009000 201ED083H  
00013013 01FF00FF 00001FF7 0000900F  
00000C00 00001000 00011000 201ED083H  
00013013 01FF00FF 00001FF7 0000900F  
00000C00 00001000 00021000 201ED083H  
00013013 01FF00FF 00001FF7 0000900F  
00000C00 00001000 00033000 201ED083H  
00013062 01CF00FF 00001FF7 0000100F  
00000C00 00001000 00003000 201ED083H  
00013062 01CF00FF 00001FF7 0000100F  
00000C00 00001000 00005000 201ED083H  
00013062 01FF00FF 00001FF7 0000900F  
00000C00 00001000 00005000 201ED083H  
00013062 01FF00FF 00001FF7 0000900F  
00000C00 00001000 00009000 201ED083H  
00013062 01FF00FF 00001FF7 0000900F  
00000C00 00001000 00011000 201ED083H  
00013063 01FF00FF 00001FF7 0000900F  
00000C00 00001000 00005000 201ED083H  
00013063 01FF00FF 00001FF7 0000900F  
00000C00 00001000 00009000 201ED083H  
00013063 01FF00FF 00001FF7 0000900F  
00000C00 00001000 00011000 201ED083H  
Data Sheet  
14  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Summary of Features  
Table 4  
XMC1300 Chip Identification Number (cont’d)  
Derivative  
Value  
Marking  
XMC1301-Q040F0008  
XMC1301-Q040F0016  
XMC1301-Q040F0032  
XMC1302-Q040X0016  
XMC1302-Q040X0032  
XMC1302-Q040X0064  
XMC1302-Q040X0128  
XMC1302-Q040X0200  
00013042 01CF00FF 00001FF7 0000100F  
00000C00 00001000 00003000 201ED083H  
AB  
AB  
AB  
AB  
AB  
AB  
AB  
AB  
00013042 01CF00FF 00001FF7 0000100F  
00000C00 00001000 00005000 201ED083H  
00013042 01CF00FF 00001FF7 0000100F  
00000C00 00001000 00009000 201ED083H  
00013043 01FF00FF 00001FF7 0000900F  
00000C00 00001000 00005000 201ED083H  
00013043 01FF00FF 00001FF7 0000900F  
00000C00 00001000 00009000 201ED083H  
00013043 01FF00FF 00001FF7 0000900F  
00000C00 00001000 00011000 201ED083H  
00013043 01FF00FF 00001FF7 0000900F  
00000C00 00001000 00021000 201ED083H  
00013043 01FF00FF 00001FF7 0000900F  
00000C00 00001000 00033000 201ED083H  
Data Sheet  
15  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
General Device Information  
2
General Device Information  
This section summarizes the logic symbols and package pin configurations with a  
detailed list of the functional I/O mapping.  
2.1  
Logic Symbols  
VDDP  
VSSP  
(2)  
VDDP  
(1)  
VSSP  
(1)  
(2)  
Port 0  
16 bit  
Port 0  
12 bit  
Port 1  
6 bit  
Port 1  
4 bit  
XMC13XX  
TSSOP-38  
XMC13XX  
TSSOP-28  
Port 2  
4 bit  
Port 2  
4 bit  
Port 2  
8 bit  
Port 2  
6 bit  
VDDP  
VSSP  
(1)  
(1)  
Port 0  
8 bit  
XMC13XX  
TSSOP-16  
Port 2  
3 bit  
Port 2  
3 bit  
Figure 2  
XMC1300 Logic Symbol for TSSOP-38, TSSOP-28 and TSSOP-16  
Data Sheet  
16  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
General Device Information  
VDDP  
VSSP  
(1)  
VDD VSS VDDP VSSP  
(1) (1) (2) (1)  
(1)  
Port 0  
10 bit  
Port 0  
16 bit  
Port 1  
4 bit  
Port 1  
7 bit  
XMC1300  
VQFN-24  
XMC1300  
VQFN-40  
Port 2  
4 bit  
Port 2  
4 bit  
Port 2  
4 bit  
Port 2  
8 bit  
Figure 3  
XMC1300 Logic Symbol for VQFN-24 and VQFN-40  
Data Sheet  
17  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
General Device Information  
2.2  
Pin Configuration and Definition  
The following figures summarize all pins, showing their locations on the different  
packages.  
P2.4  
P2.5  
1
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
P2.3  
Top View  
2
P2.2  
P2.6  
3
P2.1  
P2.7  
4
P2.0  
P2.8  
5
P0.15  
P0.14  
P0.13  
P2.9  
6
P2.10  
P2.11  
SSP/VSS  
7
8
P0.12  
P0.11  
P0.10  
V
9
VDDP/VDD  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
P1.5  
P1.4  
P1.3  
P0.9  
P0.8  
VDDP  
P1.2  
P1.1  
P1.0  
VSSP  
P0.7  
P0.6  
P0.5  
P0.4  
P0.3  
P0.0  
P0.1  
P0.2  
Figure 4  
XMC1300 PG-TSSOP-38 Pin Configuration (top view)  
Data Sheet  
18  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
General Device Information  
P2.6  
P2.7  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
P2.5  
Top View  
2
P2.2  
P2.8  
3
P2.1  
P2.9  
4
P2.0  
P2.10  
P2.11  
SSP/VSS  
5
P0.15  
P0.14  
P0.13  
6
V
7
VDDP/VDD  
P1.3  
8
P0.12  
P0.10  
9
P1.2  
10  
11  
12  
13  
14  
P0.9  
P1.1  
P0.8  
P0.7  
P1.0  
P0.0  
P0.6  
P0.5  
P0.4  
Figure 5  
XMC1300 PG-TSSOP-28 Pin Configuration (top view)  
P2.7/P2.8  
P2.9  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
P2.6  
P2.0  
P0.15  
P0.14  
P0.9  
P0.8  
P0.7  
P0.6  
Top View  
P2.10  
P2.11  
V
SSP/VSS  
VDDP/VDD  
P0.0  
P0.5  
Figure 6  
XMC1300 PG-TSSOP-16 Pin Configuration (top view)  
Data Sheet  
19  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
General Device Information  
18 17 16 15 14 13  
P0.8  
P0.9  
12  
P1.2  
P1.3  
19  
20  
11  
10  
9
21  
22  
V
P0.12  
P0.13  
P0.14  
P0.15  
DDP/V DD  
SSP /V SS  
V
8
23  
24  
P2.11  
P2.10  
7
1
2
3
4
5
6
Figure 7  
XMC1300 PG-VQFN-24 Pin Configuration (top view)  
Data Sheet  
20  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
General Device Information  
30 29 28 27 26 25 24 23 22 21  
VSSP  
VDDP  
P1.2  
P1.3  
P1.4  
P1.5  
31  
32  
33  
20  
19  
18  
17  
16  
15  
14  
P0.8  
P0.9  
34  
35  
36  
P1.6  
VDDP  
P0.10  
P0.11  
P0.12  
P0.13  
P0.14  
P0.15  
37  
38  
39  
40  
VDD  
VSS  
13  
12  
11  
P2.11  
P2.10  
1
2
3
4
5
6
7
8
9
10  
Figure 8  
XMC1300 PG-VQFN-40 Pin Configuration (top view)  
Data Sheet  
21  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
General Device Information  
2.2.1  
Package Pin Summary  
The following general building block is used to describe each pin:  
Table 5  
Function  
Px.y  
Package Pin Mapping Description  
Package A  
Package B  
...  
Pad Type  
N
N
Pad Class  
The table is sorted by the “Function” column, starting with the regular Port pins (Px.y),  
followed by the supply pins.  
The following columns, titled with the supported package variants, lists the package pin  
number to which the respective function is mapped in that package.  
The “Pad Type” indicates the employed pad type:  
STD_INOUT(standard bi-directional pads)  
STD_INOUT/AN (standard bi-directional pads with analog input)  
High Current (high current bi-directional pads)  
STD_IN/AN (standard input pads with analog input)  
Power (power supply)  
Details about the pad properties are defined in the Electrical Parameters.  
Table 6  
Package Pin Mapping  
Function VQFN TSSOP TSSOP VQFN TSSOP Pad  
Notes  
40  
38  
28  
24  
16  
Type  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
23  
17  
13  
15  
7
STD_IN  
OUT  
24  
25  
26  
27  
28  
29  
18  
19  
20  
21  
22  
23  
-
-
-
STD_IN  
OUT  
-
-
-
STD_IN  
OUT  
-
-
-
STD_IN  
OUT  
14  
15  
16  
-
-
STD_IN  
OUT  
16  
17  
8
9
STD_IN  
OUT  
STD_IN  
OUT  
Data Sheet  
22  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
General Device Information  
Table 6  
Package Pin Mapping (cont’d)  
Function VQFN TSSOP TSSOP VQFN TSSOP Pad  
Notes  
40  
38  
28  
24  
16  
Type  
P0.7  
P0.8  
P0.9  
P0.10  
P0.11  
P0.12  
P0.13  
P0.14  
P0.15  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P2.0  
30  
24  
17  
18  
10  
STD_IN  
OUT  
33  
34  
35  
36  
37  
38  
39  
40  
22  
21  
20  
19  
18  
17  
16  
1
27  
28  
29  
30  
31  
32  
33  
34  
16  
15  
14  
13  
12  
11  
-
18  
19  
20  
-
19  
20  
-
11  
12  
-
STD_IN  
OUT  
STD_IN  
OUT  
STD_IN  
OUT  
-
-
STD_IN  
OUT  
21  
22  
23  
24  
12  
11  
10  
9
21  
22  
23  
24  
14  
13  
12  
11  
-
-
STD_IN  
OUT  
-
STD_IN  
OUT  
13  
14  
-
STD_IN  
OUT  
STD_IN  
OUT  
High  
Current  
-
High  
Current  
-
High  
Current  
-
High  
Current  
-
-
High  
Current  
-
-
-
High  
Current  
-
-
-
STD_IN  
OUT  
35  
25  
1
15  
STD_IN  
OUT/AN  
Data Sheet  
23  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
General Device Information  
Table 6  
Package Pin Mapping (cont’d)  
Function VQFN TSSOP TSSOP VQFN TSSOP Pad  
Notes  
40  
38  
28  
24  
16  
Type  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
P2.8  
P2.9  
P2.10  
P2.11  
VSS  
2
36  
26  
2
-
STD_IN  
OUT/AN  
3
37  
38  
1
27  
-
3
-
-
STD_IN/  
AN  
4
-
STD_IN/  
AN  
5
-
-
-
STD_IN/  
AN  
6
2
28  
1
-
-
STD_IN/  
AN  
7
3
4
5
5
6
7
8
9
16  
1
1
2
3
4
5
STD_IN/  
AN  
8
4
2
STD_IN/  
AN  
9
5
3
STD_IN/  
AN  
10  
11  
12  
13  
6
4
STD_IN/  
AN  
7
5
STD_IN  
OUT/AN  
8
6
STD_IN  
OUT/AN  
9
7
Power  
Supply GND,  
ADC reference  
GND  
VDD  
14  
15  
10  
10  
8
8
10  
10  
6
6
Power  
Supply VDD,  
ADC reference  
voltage/ ORC  
reference voltage  
VDDP  
Power  
When VDD is  
supplied, VDDP  
has to be  
supplied with the  
same voltage.  
Data Sheet  
24  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
General Device Information  
Table 6  
Package Pin Mapping (cont’d)  
Function VQFN TSSOP TSSOP VQFN TSSOP Pad  
Notes  
40  
31  
32  
38  
25  
26  
-
28  
-
24  
-
16  
-
Type  
VSSP  
VDDP  
VSSP  
Power  
Power  
Power  
I/O port ground  
I/O port supply  
-
-
-
Exp.  
Pad  
-
Exp.  
Pad  
-
Exposed Die  
Pad  
The exposed die  
pad is connected  
internally to  
VSSP. For proper  
operation, it is  
mandatory to  
connect the  
exposed pad to  
the board ground.  
For thermal  
aspects, please  
refer to the  
Package and  
Reliability  
chapter.  
2.2.2  
Port I/O Function Description  
The following general building block is used to describe the I/O functions of each PORT  
pin:  
Table 7  
Port I/O Function Description  
Outputs  
Function  
Inputs  
ALT1  
ALTn  
Input  
Input  
P0.0  
Pn.y  
MODA.OUT  
MODC.INA  
MODA.INA  
MODA.OUT  
MODC.INB  
Data Sheet  
25  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
General Device Information  
Pn.y  
XMC1000  
Control Logic  
PAD  
VDDP  
Input 0  
...  
MODA.INA  
Input n  
HWI0  
MODA  
MODB  
Pn.y  
HWI1  
SW  
ALT1  
MODB.OUT  
...  
ALTn  
HWO0  
HWO1  
GND  
Figure 9  
Simplified Port Structure  
Pn.y is the port pin name, defining the control and data bits/registers associated with it.  
As GPIO, the port is under software control. Its input value is read via Pn_IN.y, Pn_OUT  
defines the output value.  
Up to seven alternate output functions (ALT1/2/3/4/5/6/7) can be mapped to a single port  
pin, selected by Pn_IOCR.PC. The output value is directly driven by the respective  
module, with the pin characteristics controlled by the port registers (within the limits of  
the connected pad).  
The port pin input can be connected to multiple peripherals. Most peripherals have an  
input multiplexer to select between different possible input sources.  
The input path is also active while the pin is configured as output. This allows to feedback  
an output to on-chip resources without wasting an additional external pin.  
Please refer to the Port I/O Functions table for the complete Port I/O function mapping.  
Data Sheet  
26  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
General Device Information  
2.2.3  
Hardware Controlled I/O Function Description  
The following general building block is used to describe the hardware I/O and pull control  
functions of each PORT pin:  
Table 8  
Hardware Controlled I/O Function Description  
Function  
Outputs  
HWO0  
Inputs  
Pull Control  
HW0_PD  
HWI0  
HW0_PU  
P0.0  
Pn.y  
MODB.OUT  
MODB.INA  
MODC.OUT  
MODC.OUT  
By Pn_HWSEL, it is possible to select between different hardware “masters”  
(HWO0/HWI0, HWO1/HWI1). The selected peripheral can take control of the pin(s).  
Hardware control overrules settings in the respective port pin registers. Additional  
hardware signals HW0_PD/HW1_PD and HW0_PU/HW1_PU controlled by the  
peripherals can be used to control the pull devices of the pin.  
Please refer to the Hardware Controlled I/O Functions table for the complete hardware  
I/O and pull control function mapping.  
Data Sheet  
27  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Data Sheet  
Ports, V2.3  
2-28  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Data Sheet  
Ports, V2.3  
2-29  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Data Sheet  
Ports, V2.3  
2-30  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Data Sheet  
Ports, V3.1  
2-31  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Data Sheet  
Ports, V3.1  
2-32  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
3
Electrical Parameters  
This section provides the electrical parameters which are implementation-specific for the  
XMC1300.  
3.1  
General Parameters  
3.1.1  
Parameter Interpretation  
The parameters listed in this section represent partly the characteristics of the XMC1300  
and partly its requirements on the system. To aid interpreting the parameters easily  
when evaluating them for a design, they are indicated by the abbreviations in the  
“Symbol” column:  
CC  
Such parameters indicate Controller Characteristics, which are distinctive feature of  
the XMC1300 and must be regarded for a system design.  
SR  
Such parameters indicate System Requirements, which must be provided by the  
application system in which the XMC1300 is designed in.  
Data Sheet  
33  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
3.1.2  
Absolute Maximum Ratings  
Stresses above the values listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only and functional operation of  
the device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions may affect device reliability.  
Table 9  
Absolute Maximum Rating Parameters  
Symbol Values  
Parameter  
Unit Note /  
Test Cond  
Min Typ. Max.  
.
ition  
Junction temperature  
Storage temperature  
TJ  
SR -40  
SR -40  
115  
125  
6
°C  
°C  
V
TST  
Voltage on power supply pin VDDP SR -0.3  
with respect to VSSP  
Voltage on digital pins with  
respect to VSSP  
VIN  
SR -0.5  
V
DDP + 0.5  
V
whichever  
is lower  
1)  
or max. 6  
Voltage on P2 pins with  
VINP2 SR -0.3  
VDDP + 0.3  
V
2)  
respect to VSSP  
Voltage on analog input pins VAIN  
with respect to VSSP  
-0.5  
VDDP + 0.5  
V
whichever  
is lower  
VAREF SR  
or max. 6  
10  
Input current on any pin  
during overload condition  
IIN  
SR -10  
mA  
mA  
Absolute maximum sum of all ΣIIN SR -50  
inputcurrentsduringoverload  
condition  
+50  
1) Excluding port pins P2.[1,2,6,7,8,9,11].  
2) Applicable to port pins P2.[1,2,6,7,8,9,11].  
Data Sheet  
34  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
3.1.3  
Pin Reliability in Overload  
When receiving signals from higher voltage devices, low-voltage devices experience  
overload currents and voltages that go beyond their own IO power supplies specification.  
Table 10 defines overload conditions that will not cause any negative reliability impact if  
all the following conditions are met:  
full operation life-time is not exceeded  
Operating Conditions are met for  
– pad supply levels (VDDP  
)
– temperature  
If a pin current is outside of the Operating Conditions but within the overload  
conditions, then the parameters of this pin as stated in the Operating Conditions can no  
longer be guaranteed. Operation is still possible in most cases but with relaxed  
parameters.  
Note: An overload condition on one or more pins does not require a reset.  
Note: A series resistor at the pin to limit the current to the maximum permitted overload  
current is sufficient to handle failure situations like short to battery.  
Table 10  
Overload Parameters  
Symbol  
Parameter  
Values  
Unit Note /  
Test Condition  
Min. Typ. Max.  
Input current on any port pin IOV SR -5  
during overload condition  
5
mA  
mA  
Absolute sum of all input  
circuit currents during  
overload condition  
IOVS SR  
25  
Figure 10 shows the path of the input currents during overload via the ESD protection  
structures. The diodes against VDDP and ground are a simplified representation of these  
ESD protection structures.  
Data Sheet  
35  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
VDDP  
VDDP  
Pn.y  
IOVx  
GND  
ESD  
GND  
Pad  
Figure 10  
Input Overload Current via ESD structures  
Table 11 and Table 12 list input voltages that can be reached under overload conditions.  
Note that the absolute maximum input voltages as defined in the Absolute Maximum  
Ratings must not be exceeded during overload.  
Table 11  
PN-Junction Characterisitics for positive Overload  
OV = 5 mA  
Pad Type  
I
Standard, High-current,  
AN/DIG_IN  
V
V
V
IN = VDDP + 0.5 V  
AIN = VDDP + 0.5 V  
AREF = VDDP + 0.5 V  
P2.[1,2,6:9,11]  
V
INP2 = VDDP + 0.3 V  
Table 12  
PN-Junction Characterisitics for negative Overload  
OV = 5 mA  
Pad Type  
I
Standard, High-current,  
AN/DIG_IN  
V
V
V
IN = VSS - 0.5 V  
AIN = VSS - 0.5 V  
AREF = VSS - 0.5 V  
P2.[1,2,6:9,11]  
V
INP2 = VSS - 0.3 V  
Data Sheet  
36  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
3.1.4  
Operating Conditions  
The following operating conditions must not be exceeded in order to ensure correct  
operation and reliability of the XMC1300. All parameters specified in the following tables  
refer to these operating conditions, unless noted otherwise.  
Table 13  
Operating Conditions Parameters  
Symbol Values  
Parameter  
Unit Note /  
Test Condition  
Min.  
SR -40  
-40  
Digital supply voltage1) VDDP SR 1.8  
Typ.  
Max.  
85  
Ambient Temperature TA  
°C  
°C  
V
Temp. Range F  
Temp. Range X  
105  
5.5  
MCLK Frequency  
PCLK Frequency  
fMCLK CC  
fPCLK CC  
33.2  
66.4  
MHz CPU clock  
MHz Peripherals  
clock  
Short circuit current of ISC  
digital outputs  
SR -5  
5
mA  
Absolute sum of short ΣISC_D SR  
circuit currents of the  
device  
25  
mA  
1) See also the Supply Monitoring thresholds, Chapter 3.3.2.  
Data Sheet  
37  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
3.2  
DC Parameters  
3.2.1  
Input/Output Characteristics  
Table 14 provides the characteristics of the input/output pins of the XMC1300.  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
Note: Unless otherwise stated, input DC and AC characteristics, including peripheral  
timings, assume that the input pads operate with the standard hysteresis.  
Table 14  
Input/Output Characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Limit Values Unit Test Conditions  
Min.  
Max.  
Output low voltage on  
port pins  
(with standard pads)  
VOLP CC  
1.0  
V
V
V
I
I
OL = 11 mA (5 V)  
OL = 7 mA (3.3 V)  
0.4  
1.0  
I
I
OL = 5 mA (5 V)  
OL = 3.5 mA (3.3 V)  
Output low voltage on  
high current pads  
VOLP1 CC  
I
I
OL = 50 mA (5 V)  
OL = 25 mA (3.3 V)  
0.32  
0.4  
V
V
V
I
I
OL = 10 mA (5 V)  
OL = 5 mA (3.3 V)  
Output high voltage on VOHP CC VDDP  
-
-
-
-
-
I
I
OH = -10 mA (5 V)  
OH = -7 mA (3.3 V)  
port pins  
(with standard pads)  
1.0  
VDDP  
0.4  
V
V
V
V
I
I
OH = -4.5 mA (5 V)  
OH = -2.5 mA (3.3 V)  
Output high voltage on VOHP1 CC VDDP  
I
I
I
OH = -6 mA (5 V)  
OH = -8 mA (3.3 V)  
OH = -4 mA (3.3 V)  
high current pads  
0.32  
VDDP  
1.0  
VDDP  
0.4  
Input low voltage on port VILPS SR  
pins  
0.19 × V  
VDDP  
CMOS Mode  
(5 V, 3.3 V & 2.2 V)  
(Standard Hysteresis)  
Data Sheet  
38  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
Table 14  
Input/Output Characteristics (Operating Conditions apply) (cont’d)  
Parameter  
Symbol  
Limit Values Unit Test Conditions  
Min.  
Max.  
Input high voltage on  
port pins  
VIHPS SR 0.7 ×  
V
CMOS Mode  
(5 V, 3.3 V & 2.2 V)  
VDDP  
(Standard Hysteresis)  
Input low voltage on port VILPL SR  
pins  
0.08 × V  
VDDP  
CMOS Mode  
(5 V, 3.3 V & 2.2 V)18)  
(Large Hysteresis)  
Input high voltage on  
port pins  
VIHPL SR 0.85 ×  
V
CMOS Mode  
VDDP  
(5 V, 3.3 V & 2.2 V)18)  
(Large Hysteresis)  
Rise time on High  
Current Pad1)  
tHCPR CC  
9
ns  
ns  
ns  
50 pF @ 5 V2)  
50 pF @ 3.3 V3)  
50 pF @ 1.8 V4)  
12  
25  
Fall time on High  
Current Pad1)  
tHCPF CC  
9
ns  
ns  
ns  
50 pF @ 5 V2)  
50 pF @ 3.3 V3)  
50 pF @ 1.8 V4)  
12  
25  
Rise time on Standard tR  
CC  
CC  
12  
15  
31  
ns  
ns  
ns  
50 pF @ 5 V5)  
50 pF @ 3.3 V6)  
50 pF @ 1.8 V7)  
Pad1)  
Fall time on Standard  
Pad1)  
tF  
12  
15  
31  
ns  
ns  
ns  
50 pF @ 5 V5)  
50 pF @ 3.3 V6)  
50 pF @ 1.8 V7)  
Data Sheet  
39  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
Table 14  
Input/Output Characteristics (Operating Conditions apply) (cont’d)  
Parameter  
Symbol  
Limit Values Unit Test Conditions  
Min.  
Max.  
Input Hysteresis8)  
HYS CC 0.08 ×  
V
V
V
CMOS Mode (5 V),  
Standard Hysteresis  
VDDP  
0.03 ×  
VDDP  
CMOS Mode (3.3 V),  
Standard Hysteresis  
0.02 ×  
VDDP  
CMOS Mode (2.2 V),  
Standard Hysteresis  
0.5 ×  
VDDP VDDP  
0.75 × V  
0.75 × V  
CMOS Mode(5 V),  
Large Hysteresis  
0.4 ×  
VDDP VDDP  
CMOS Mode(3.3 V),  
Large Hysteresis  
0.2 ×  
VDDP VDDP  
0.65 × V  
CMOS Mode(2.2 V),  
Large Hysteresis  
Pin capacitance (digital CIO  
inputs/outputs)  
CC  
10  
50  
50  
1
pF  
Pull-up resistor on port RPUP CC 20  
pins  
kohm VIN = VSSP  
kohm VIN = VDDP  
Pull-down resistor on  
port pins  
Input leakage current9) IOZP  
RPDP CC 20  
CC -1  
SR  
SR -10  
μA  
V
0 < VIN < VDDP  
TA 105 °C  
,
10)  
Voltage on any pin  
during VDDP power off  
VPO  
IMP  
0.3  
11  
Maximum current per  
pin (excluding P1, VDDP  
and VSS)  
mA  
Maximum current per  
high currrent pins  
IMP1A SR -10  
50  
mA  
mA  
18)  
Maximum current into  
IMVDD1 SR  
130  
V
DDP (TSSOP16,  
VQFN24)  
18)  
Maximum current into  
IMVDD2 SR  
260  
mA  
V
DDP (TSSOP38,  
VQFN40)  
Data Sheet  
40  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
Table 14  
Input/Output Characteristics (Operating Conditions apply) (cont’d)  
Parameter  
Symbol  
Limit Values Unit Test Conditions  
Min.  
Max.  
18)  
18)  
Maximum current out of IMVSS1 SR  
SS (TSSOP16,  
VQFN24)  
130  
mA  
mA  
V
Maximum current out of IMVSS2 SR  
260  
V
SS (TSSOP38,  
VQFN40)  
1) Rise/Fall time parameters are taken with 10% - 90% of supply.  
2) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.150 ns/pF at 5 V supply voltage.  
3) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.205 ns/pF at 3.3 V supply voltage.  
4) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.445 ns/pF at 1.8 V supply voltage.  
5) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.225 ns/pF at 5 V supply voltage.  
6) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.288 ns/pF at 3.3 V supply voltage.  
7) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.588 ns/pF at 1.8 V supply voltage.  
8) Hysteresis is implemented to avoid meta stable states and switching due to internal ground bounce. It cannot  
be guaranteed that it suppresses switching due to external system noise.  
9) An additional error current (IINJ) will flow if an overload current flows through an adjacent pin.  
10) However, for applications with strict low power-down current requirements, it is mandatory that no active  
voltage source is supplied at any GPIO pin when VDDP is powered off.  
Data Sheet  
41  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
3.2.2  
Analog to Digital Converters (ADC)  
Table 15 shows the Analog to Digital Converter (ADC) characteristics.  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
Table 15  
ADC Characteristics (Operating Conditions apply)1)  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Min.  
DD_int SR 2.0  
Typ. Max.  
Supply voltage range  
(internal reference)  
V
3.0  
V
SHSCFG.AREF = 11B  
CALCTR.CALGNSTC  
= 0CH  
3.0  
3.0  
5.5  
5.5  
V
V
SHSCFG.AREF = 10B  
SHSCFG.AREF = 00B  
Supply voltage range VDD_ext  
(external reference)  
SR  
Analog input voltage  
range  
VAIN SR  
VSSP  
- 0.05  
VDDP  
+
V
0.05  
Auxiliary analog  
reference ground  
VREFGND  
SR  
VSSP  
- 0.05  
1.0  
0.2  
V
V
V
G0CH0  
G1CH0  
VSSP  
- 0.05  
Internal reference  
voltage (full scale  
value)  
VREFINT  
CC  
5
Switched capacitance CAINS CC  
of an analog input  
1.2  
1.2  
4.5  
4.5  
2
pF  
pF  
pF  
pF  
pF  
pF  
GNCTRxz.GAINy=00B  
(unity gain)  
2
GNCTRxz.GAINy=01B  
(gain g1)  
6
GNCTRxz.GAINy=10B  
(gain g2)  
6
GNCTRxz.GAINy=11B  
(gain g3)  
Total capacitance of  
an analog input  
CAINT CC  
10  
10  
Total capacitance of  
the reference input  
CAREFT  
CC  
Data Sheet  
42  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
Table 15  
ADC Characteristics (Operating Conditions apply)1) (cont’d)  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Min.  
Typ. Max.  
Gain settings  
GIN CC  
1
GNCTRxz.GAINy=00B  
(unity gain)  
3
GNCTRxz.GAINy=01B  
(gain g1)  
6
GNCTRxz.GAINy=10B  
(gain g2)  
12  
GNCTRxz.GAINy=11B  
(gain g3)  
Sample Time  
t
sample CC 3  
3
1 /  
fADC  
V
V
V
DD = 5.0 V  
DD = 3.3 V  
DD = 2.0 V  
1 /  
fADC  
30  
20  
1 /  
fADC  
Sigma delta loop hold tSD_hold  
time  
μs  
Residual charge stored  
in an active sigma delta  
loop remains available  
2)  
CC  
Conversion time  
in fast compare mode  
t
t
CF CC  
9
1 /  
fADC  
2)  
Conversion time  
in 12-bit mode  
C12 CC  
20  
1 /  
fADC  
Maximum sample rate fC12 CC  
fADC / –  
1 sample  
pending  
in 12-bit mode 3)  
42.5  
fADC / –  
2 samples  
pending  
2)  
62.5  
Conversion time  
in 10-bit mode  
t
C10 CC  
18  
1 /  
fADC  
Maximum sample rate fC10 CC  
f
ADC / –  
40.5  
ADC / –  
58.5  
1 sample  
pending  
in 10-bit mode 3)  
f
2 samples  
pending  
2)  
Conversion time  
in 8-bit mode  
t
C8 CC  
16  
1 /  
fADC  
Data Sheet  
43  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
Table 15  
ADC Characteristics (Operating Conditions apply)1) (cont’d)  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Min.  
Typ. Max.  
Maximum sample rate fC8 CC  
f
ADC / –  
1 sample  
pending  
in 8-bit mode 3)  
38.5  
f
ADC / –  
2 samples  
pending  
54.5  
RMS noise 4)  
ENRMS  
1.5  
LSB DC input,  
CC  
12  
VDD = 5.0 V,  
VAIN = 2.5 V  
,
25°C  
DNL error  
INL error  
EADNL CC –  
±2.0 –  
±4.0 –  
±0.5 –  
±3.6 –  
LSB  
12  
EAINL CC  
LSB  
12  
Gain error with  
external reference  
EAGAIN  
CC  
%
SHSCFG.AREF = 00B  
(calibrated)  
Gain error with internal EAGAIN  
%
SHSCFG.AREF = 1XB  
(calibrated),  
-40°C - 105°C  
reference 5)  
CC  
±2.0 –  
±8.0 –  
%
SHSCFG.AREF = 1XB  
(calibrated),  
0°C - 85°C  
Offset error  
EAOFF CC –  
mV Calibrated,  
DD = 5.0 V  
V
1) The parameters are defined for ADC clock frequency fSH = 32MHz, SHSCFG.DIVS = 0000B. Usage of any  
other frequencies may affect the ADC performance.  
2) No pending samples assumed, excluding sampling time and calibration.  
3) Includes synchronization and calibration (average of gain and offset calibration).  
4) This parameter can also be defined as an SNR value: SNR[dB] = 20 × log(AMAXeff / NRMS).  
With AMAXeff = 2N / 2, SNR[dB] = 20 × log ( 2048 / NRMS) [N = 12].  
NRMS = 1.5 LSB12, therefore, equals SNR = 20 × log (2048 / 1.5) = 62.7 dB.  
5) Includes error from the reference voltage.  
Data Sheet  
44  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
CH7  
VAIN  
.
.
SAR  
Converter  
:
CH0  
VREF  
VREFGND  
VREFINT  
VAREF  
VSS  
VDD  
Internal  
Reference  
VDDint  
VDDext  
/
CHNR  
REFSEL  
AREF  
MC_VADC_AREFPATHS  
Figure 11  
ADC Voltage Supply  
Data Sheet  
45  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
3.2.3  
Out of Range Comparator (ORC) Characteristics  
The Out-of-Range Comparator (ORC) triggers on analog input voltages (VAIN) above the  
VDDP on selected input pins (ORCx.AIN) and generates a service request trigger  
(ORCx.OUT).  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
Table 16  
Out of Range Comparator (ORC) Characteristics (Operating  
Conditions apply; VDDP = 3.0 V - 5.5 V; CL = 0.25 pF)  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Min. Typ. Max.  
DC Switching Level VODC CC 54  
183 mV VAIN VDDP + VODC  
Hysteresis  
VOHYS CC 15  
tOPDD CC 103  
88  
54  
-
mV  
ns  
ns  
ns  
ns  
Always detected  
Overvoltage Pulse  
VAIN VDDP + 150 mV  
VAIN VDDP + 350 mV  
VAIN VDDP + 150 mV  
VAIN VDDP + 350 mV  
VAIN VDDP + 150 mV  
VAIN VDDP + 350 mV  
-
Never detected  
Overvoltage Pulse  
tOPDN CC  
21  
11  
Detection Delay of a tODD CC 39  
132 ns  
121 ns  
persistent  
Overvoltage  
31  
Release Delay  
tORD CC 44  
57  
240 ns  
340 ns  
300 ns  
VAIN VDDP; VDDP = 5 V  
VAIN VDDP; VDDP = 3.3 V  
ORCCTRL.ENORCx = 1  
Enable Delay  
tOED CC −  
VDDP  
ORCx.AIN  
VSS  
ORCx.OUT  
tODD  
tORD  
Figure 12  
ORCx.OUT Trigger Generation  
Data Sheet  
46  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
VAIN(V)  
T > tOPDD  
tOPDN < T < tOPDD  
T < tOPDN  
VDDP + 350 mV  
VDDP + 150 mV  
tOPDN < T < tOPDD  
T > tOPDD  
T < tOPDN  
T > tOPDD  
VDDP + 60 mV  
VDDP  
Never  
detected  
Overvoltage  
Pulse  
Never  
detected  
Overvoltage  
Pulse  
Overvoltage  
may be  
detected  
Never  
detected  
Overvoltage  
Pulse  
Overvoltage  
may be  
detected  
Always detected  
Overvoltage Pulse  
Always detected  
Overvoltage Pulse  
Overvoltage  
may be  
detected  
(long enough,  
level uncertain  
(Too low)  
(Too short)  
(Too short)  
)
VSSA  
Figure 13  
ORC Detection Ranges  
Data Sheet  
47  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
3.2.4  
Analog Comparator Characteristics  
Table 17 below shows the Analog Comparator characteristics.  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
Table 17  
Analog Comparator Characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
Unit Notes/  
Test Conditions  
Min. Typ. Max.  
Input Voltage  
Input Offset  
VCMP  
SR -0.05  
VDDP  
0.05  
+
V
VCMPOFF CC  
+/-3  
mV High power mode  
Δ VCMP < 200 mV  
+/-20 –  
mV Low power mode  
Δ VCMP < 200 mV  
Propagation  
Delay1)  
tPDELAY  
CC  
25  
ns  
ns  
ns  
ns  
μA  
High power mode,  
Δ VCMP = 100 mV  
80  
High power mode,  
Δ VCMP = 25 mV  
250  
700  
100  
Low power mode,  
Δ VCMP = 100 mV  
Low power mode,  
Δ VCMP = 25 mV  
Current  
Consumption  
IACMP  
CC  
First active ACMP in  
high power mode,  
ΔVCMP > 30 mV  
66  
μA  
Each additional  
ACMP in high power  
mode, ΔVCMP > 30 mV  
10  
6
μA  
μA  
First active ACMP in  
low power mode  
Each additional  
ACMP in low power  
mode  
Input Hysteresis VHYS  
Filter Delay1)  
tFDELAY  
CC  
CC  
+/-15 –  
mV  
ns  
5
1) Total Analog Comparator Delay is the sum of Propagation Delay and Filter Delay.  
Data Sheet  
48  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
3.2.5  
Temperature Sensor Characteristics  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
Table 18  
Temperature Sensor Characteristics  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min. Typ. Max.  
Measurement time  
tM CC  
10  
ms  
Temperature sensor range  
Sensor Accuracy1)  
T
T
SR SR  
-40  
115 °C  
TSAL CC -6  
-10  
6
°C  
°C  
°C  
TJ > 20°C  
10  
0°C TJ 20°C  
TJ < 0°C  
-/+8  
Start-up time after enabling  
t
TSSTE SR −  
15  
μs  
1) The temperature sensor accuracy is independent of the supply voltage.  
Data Sheet  
49  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
3.2.6  
Power Supply Current  
The total power supply current defined below consists of a leakage and a switching  
component.  
Application relevant values are typically lower than those given in the following tables,  
and depend on the customer's system operating conditions (e.g. thermal connection or  
used application configurations).  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
Table 19  
Power Supply Parameters; VDDP = 5V  
Parameter  
Symbol  
Values  
Unit  
Note /  
Min Typ.1) Max.  
.
Test Condition  
Active mode current  
Peripherals enabled  
fMCLK / fPCLK in MHz2)  
I
I
I
I
DDPAE CC −  
9.2  
8.1  
6.6  
5.5  
4
12  
-
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
32 / 64  
24 / 48  
16 / 32  
8 / 16  
1 / 1  
-
-
-
Active mode current  
Peripherals disabled  
fMCLK / fPCLK in MHz3)  
DDPAD CC −  
4.8  
4.1  
3.3  
2.7  
1.5  
7.3  
6.3  
5.2  
4.2  
3.3  
6.6  
5.8  
5.1  
4.4  
3.7  
-
32 / 64  
24 / 48  
16 / 32  
8 / 16  
1 / 1  
-
-
-
-
Active mode current  
DDPAR CC −  
-
32 / 64  
24 / 48  
16 / 32  
8 / 16  
1 / 1  
Code execution from RAM  
Flash is powered down  
fMCLK / fPCLK in MHz  
-
-
-
-
Sleep mode current  
DDPSE CC −  
-
32 / 64  
24 / 48  
16 / 32  
8 / 16  
1 / 1  
Peripherals clock enabled  
-
fMCLK / fPCLK in MHz4)  
-
-
-
Data Sheet  
50  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
Table 19  
Power Supply Parameters; VDDP = 5V  
Parameter  
Symbol  
Values  
Unit  
Note /  
Min Typ.1) Max.  
.
Test Condition  
Sleep mode current  
Peripherals clock disabled  
Flash active  
I
I
I
DDPSD CC −  
DDPSR CC −  
DDPDS CC −  
1.8  
1.7  
1.6  
1.5  
1.4  
1.2  
1.1  
1.0  
0.8  
0.7  
0.24  
6
-
-
-
-
-
-
-
-
-
-
-
-
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
cycles  
32 / 64  
24 / 48  
16 / 32  
8 / 16  
1 / 1  
fMCLK / fPCLK in MHz5)  
Sleep mode current  
32 / 64  
24 / 48  
16 / 32  
8 / 16  
1 / 1  
Peripherals clock disabled  
Flash powered down  
fMCLK / fPCLK in MHz6)  
Deep Sleep mode current7)  
Wake-up time from Sleep to tSSA CC  
Active mode8)  
Wake-up time from Deep  
Sleep to Active mode9)  
t
DSA CC  
280  
-
μsec  
1) The typical values are measured at TA = + 25 °C and VDDP = 5 V.  
2) CPU and all peripherals clock enabled, Flash is in active mode.  
3) CPU enabled, all peripherals clock disabled, Flash is in active mode.  
4) CPU in sleep, all peripherals clock enabled and Flash is in active mode.  
5) CPU in sleep, Flash is in active mode.  
6) CPU in sleep, Flash is powered down and code executed from RAM after wake-up.  
7) CPU in sleep, peripherals clock disabled, Flash is powered down and code executed from RAM after wake-up.  
8) CPU in sleep, Flash is in active mode during sleep mode.  
9) CPU in sleep, Flash is in powered down mode during deep sleep mode.  
Data Sheet  
51  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
Figure 14 shows typical graphs for active mode supply current for VDDP = 5V, VDDP  
=
3.3V, VDDP = 1.8V across different clock frequencies.  
10  
9
8
7
6
IDDPA E 5V/3.3V  
IDDPA E 1.8V  
5
4
3
2
1
0
I (mA)  
IDDPA D 5V/3.3V/1.8V  
1/1  
8/16  
16/32 24/48 32/64  
MCLK / PCLK (MHz)  
Condition:  
1. TA = +25° C  
Figure 14  
Active mode, a) peripherals clocks enabled, b) peripherals clocks  
disabled: Supply current IDDPA over supply voltage VDDP for different clock  
frequencies  
Data Sheet  
52  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
Figure 15 shows typical graphs for sleep mode current for VDDP = 5V, VDDP = 3.3V, VDDP  
= 1.8V across different clock frequencies.  
1 .4  
1 .2  
1
0 .8  
I (m A)  
0 .6  
ID DPS R  
5 V/3.3V/1.8V  
0 .4  
0 .2  
0
1 /1  
8 /1 6 1 6 /32 2 4 /48 3 2 /64  
M CLK / P CL K (M Hz)  
C o n d itio n :  
1 . T A = + 2 5 ° C  
Figure 15  
Sleep mode, peripherals clocks disabled, Flash powered down:  
Supply current IDDPSR over supply voltage VDDP for different clock frequencies  
Data Sheet  
53  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
Table 20 provides the active current consumption of some modules operating at 5 V  
power supply at 25° C. The typical values shown are used as a reference guide on the  
current consumption when these modules are enabled.  
Table 20  
Typical Active Current Consumption  
Active Current  
Consumption  
Symbol  
Limit  
Values  
Unit  
Test Condition  
Typ.  
Baseload current ICPUDDC  
5.04  
mA  
Modules including Core, SCU,  
PORT, memories, ANATOP1)  
VADC and SHS  
USIC0  
IADCDDC  
3.4  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Set CGATCLR0.VADC to 12)  
Set CGATCLR0.USIC0 to 13)  
Set CGATCLR0.CCU40 to 14)  
Set CGATCLR0.CCU80 to 15)  
Set CGATCLR0.POSIF0 to 16)  
Set CGATCLR0.BCCU0 to 17)  
Set CGATCLR0.MATH to 18)  
Set CGATCLR0.WDT to 19)  
Set CGATCLR0.RTC to 110)  
IUSIC0DDC 0.87  
ICCU40DDC 0.94  
ICCU80DDC 0.42  
CCU40  
CCU80  
POSIF0  
BCCU0  
MATH  
IPIF0DDC  
0.26  
IBCCU0DDC 0.24  
IMATHDDC 0.35  
WDT  
IWDTDDC  
IRTCDDC  
0.03  
0.01  
RTC  
1) Baseload current is measured with device running in user mode, MCLK=PCLK=32 MHz, with an endless loop  
in the flash memory. The clock to the modules stated in CGATSTAT0 are gated.  
2) Active current is measured with: module enabled, MCLK=32 MHz, running in auto-scan conversion mode  
3) Active current is measured with: module enabled, alternating messages sent to PC at 57.6kbaud every 200ms  
4) Active current is measured with: module enabled, MCLK=PCLK=32 MHz, 1 CCU4 slice for PWM switching  
from 1500Hz and 1000Hz at regular intervals, 1 CCU4 slice in capture mode for reading period and duty cycle  
5) Active current is measured with: module enabled, MCLK=PCLK=32 MHz, 1 CCU8 slice with PWM frequency  
at 1500Hz and a period match interrupt used to toggle duty cycle between 10% and 90%  
6) Active current is measured with: module enabled, MCLK=32 MHz, PCLK=64MHz, hall sensor mode  
7) Active current is measured with: module enabled, MCLK=32 MHz, PCLK=64MHz, FCLK=0.8MHz, Normal  
mode (BCCU Clk = FCLK/4), 3 BCCU Channels and 1 Dimming Engine, change color or dim every 1s  
8) Active current is measured with: module enabled, MCLK=32 MHz, PCLK=64MHz, tangent calculation in while  
loop; CORDIC circular rotation, no keep, autostart; 32-by-32 bit signed DIV, autostart, DVS right shift by 11  
9) Active current is measured with: module enabled, MCLK=32 MHz, time-out mode; WLB = 0, WUB =  
0x00008000; WDT serviced every 1s  
10) Active current is measured with: module enabled, MCLK=32 MHz, Periodic interrupt enabled  
Data Sheet  
54  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
3.2.7  
Flash Memory Parameters  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
Table 21  
Flash Memory Parameters  
Symbol  
Parameter  
Values  
Unit  
Note /  
Test Condition  
Min. Typ. Max.  
Erase Time per  
page / sector  
t
t
t
ERASE CC  
PSER CC  
WU CC  
6.8 7.1 7.6  
ms  
Program time per  
block  
102 152 204  
μs  
Wake-Up time  
32.2  
50  
μs  
Read time per word  
Data Retention Time  
ta CC  
RET CC  
ns  
t
10  
years Max. 100 erase /  
program cycles  
Flash Wait States 1)  
N
WSFLASH CC 0  
0
0
1
2
1
fMCLK = 8 MHz  
fMCLK = 16 MHz  
fMCLK = 32 MHz  
0
1
0
1
1.3  
0
Fixed Flash Wait  
States configured in  
bit  
NFWSFLASH  
SR  
NVM_CONFIG1.FI  
XWS = 1B,  
fMCLK 16 MHz  
NVM_NVMCONF.WS  
1
1
1
NVM_CONFIG1.FI  
XWS = 1B,  
16 MHz < fMCLK  
32 MHz  
Erase Cycles  
N
ECYC CC  
5*104 cycles Sum of page and  
sector erase cycles  
2*106 cycles  
Total Erase Cycles  
NTECYC CC  
1) Flash wait states are automatically inserted by the Flash module during memory read when needed. Typical  
values are calculated from the execution of the Dhrystone benchmark program.  
Data Sheet  
55  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
3.3  
AC Parameters  
3.3.1  
Testing Waveforms  
VDDP  
90%  
90%  
10%  
10%  
VSS  
tR  
tF  
Figure 16  
Rise/Fall Time Parameters  
VDDP  
VDDP / 2  
VDDP / 2  
Test Points  
VSS  
Figure 17  
Testing Waveform, Output Delay  
VLOAD + 0.1V  
VOH - 0.1V  
VOL + 0.1V  
Timing  
Reference  
Points  
VLOAD - 0.1V  
Figure 18  
Testing Waveform, Output High Impedance  
Data Sheet  
56  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
3.3.2  
Power-Up and Supply Monitoring Characteristics  
Table 22 provides the characteristics of the power-up and supply monitoring in  
XMC1300.  
The guard band between the lowest valid operating voltage and the brownout reset  
threshold provides a margin for noise immunity and hysteresis. The electrical  
parameters may be violated while VDDP is outside its operating range.  
The brownout detection triggers a reset within the defined range. The prewarning  
detection can be used to trigger an early warning and issue corrective and/or fail-safe  
actions in case of a critical supply voltage drop.  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
Table 22  
Power-Up and Supply Monitoring Parameters (Operating Conditions  
apply)  
Parameter  
Symbol  
Values  
Typ. Max.  
Unit Note /  
Test Condition  
Min.  
V
V
DDP ramp-up time  
DDP slew rate  
t
RAMPUP SR VDDP  
/
107  
0.1  
10  
μs  
SVDDPrise  
S
VDDPOP SR  
0
V/μs Slope during  
normal operation  
SVDDP10 SR  
0
0
V/μs Slope during fast  
transient within +/-  
10% of VDDP  
S
VDDPrise SR  
10  
V/μs Slope during  
power-on or  
restart after  
brownout event  
SVDDPfall1) SR 0  
0.25 V/μs Slope during  
supply falling out  
of the +/-10%  
limits2)  
V
DDP prewarning  
V
DDPPW CC 2.1  
2.85  
4.2  
2.25 2.4  
V
V
V
ANAVDEL.VDEL_  
SELECT = 00B  
voltage  
3
3.15  
4.6  
ANAVDEL.VDEL_  
SELECT = 01B  
4.4  
ANAVDEL.VDEL_  
SELECT = 10B  
Data Sheet  
57  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
Table 22  
Power-Up and Supply Monitoring Parameters (Operating Conditions  
apply) (cont’d)  
Parameter  
Symbol  
Values  
Typ. Max.  
1.62 1.75  
Unit Note /  
Test Condition  
Min.  
DDPBO CC 1.55  
V
DDP brownout reset  
V
V
V
calibrated, before  
user code starts  
running  
voltage  
V
DDP voltage to  
DDPPA CC  
1.0  
V
ensure defined pad  
states  
Start-up time from  
power-on reset  
t
t
SSW SR  
320  
8.25  
μs  
ms  
Time to the first  
user code  
instruction3)  
BMI program time  
BMI SR  
Time taken from a  
user-triggered  
system reset after  
BMI installation is  
is requested  
1) A capacitor of at least 100 nF has to be added between VDDP and VSSP to fulfill the requirement as stated  
for this parameter.  
2) Valid for a 100 nF buffer capacitor connected to supply pin where current from capacitor is forwarded only to  
the chip. A larger capacitor value has to be chosen if the power source sink a current.  
3) This values does not include the ramp-up time. During startup firmware execution, MCLK is running at 32 MHz  
and the clocks to peripheral as specified in register CGATSTAT0 are gated.  
5.0V  
VDDPPW  
}
VDDP  
VDDPBO  
Figure 19  
Supply Threshold Parameters  
Data Sheet  
58  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
3.3.3  
On-Chip Oscillator Characteristics  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
Table 23 provides the characteristics of the 64 MHz clock output from the digital  
controlled oscillator, DCO1 in XMC1300.  
Table 23  
64 MHz DCO1 Characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
Unit Test Conditions  
Min. Typ. Max.  
Nominal frequency fNOM CC  
64  
MHz under nominal  
conditions1) after  
trimming  
Accuracy2)  
ΔfLT CC -1.7  
3.4  
4.0  
%
with respect to fNOM(typ),  
over temperature  
(TA = 0 °C to 85 °C)  
-3.9  
%
with respect to fNOM(typ),  
over temperature  
(TA = -40 °C to 105 °C)  
1) The deviation is relative to the factory trimmed frequency at nominal VDDC and TA = + 25 °C.  
2) The accuracy can be further improved through alternative methods, refer to XMC1000 Oscillator Handling  
Application Note.  
Data Sheet  
59  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
Figure 20 shows the typical curves for the accuracy of DCO1, with and without  
calibration based on temperature sensor, respectively.  
4.00  
3.00  
2.00  
Without calibration based  
on temperature sensor  
1.00  
With calibration based on  
temperature sensor  
0.00  
-1.00  
-2.00  
-3.00  
-4.00  
-50 -40 -30 -20 -10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100 110 120  
°
Temperature [ C]  
Figure 20  
Typical DCO1 accuracy over temperature  
Table 24 provides the characteristics of the 32 kHz clock output from digital controlled  
oscillators, DCO2 in XMC1300.  
Table 24  
32 kHz DCO2 Characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
Unit Test Conditions  
Min. Typ. Max.  
Nominal frequency  
Accuracy  
fNOM CC –  
32.75 –  
kHz under nominal  
conditions1) after trimming  
ΔfLT CC -1.7  
3.4  
%
%
with respect to fNOM(typ),  
over temperature  
(0 °C to 85 °C)  
-3.9  
4.0  
with respect to fNOM(typ),  
over temperature  
(-40 °C to 105 °C)  
1) The deviation is relative to the factory trimmed frequency at nominal VDDC and TA = + 25 °C.  
Data Sheet  
60  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
3.3.4  
Serial Wire Debug Port (SW-DP) Timing  
The following parameters are applicable for communication through the SW-DP  
interface.  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
Table 25  
SWD Interface Timing Parameters(Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
50  
Typ. Max.  
SWDCLK high time  
SWDCLK low time  
t1 SR  
t2 SR  
t3 SR  
500000 ns  
500000 ns  
50  
SWDIO input setup  
10  
ns  
to SWDCLK rising edge  
SWDIO input hold  
t4 SR  
10  
ns  
after SWDCLK rising edge  
SWDIO output valid time t5 CC  
after SWDCLK rising edge  
4
68  
62  
ns  
ns  
ns  
CL = 50 pF  
CL = 30 pF  
SWDIO output hold time t6 CC  
from SWDCLK rising edge  
t1  
t2  
SWDCLK  
t6  
SWDIO  
(Output)  
t5  
t3  
t4  
SWDIO  
(Input )  
Figure 21  
SWD Timing  
Data Sheet  
61  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
3.3.5  
SPD Timing Requirements  
The optimum SPD decision time between 0B and 1B is 0.75 µs. With this value the  
system has maximum robustness against frequency deviations of the sampling clock on  
tool and on device side. However it is not always possible to exactly match this value  
with the given constraints for the sample clock. For instance for a oversampling rate of  
4, the sample clock will be 8 MHz and in this case the closest possible effective decision  
time is 5.5 clock cycles (0.69 µs).  
Table 26  
Optimum Number of Sample Clocks for SPD  
Sample Effective Remark  
Sample Sampling Sample  
Freq.  
Factor  
Clocks 0B Clocks 1B Decision  
Time1)  
8 MHz  
4
1 to 5  
6 to 12  
0.69 µs  
The other closest option  
(0.81 µs) for the effective  
decision time is less robust.  
1) Nominal sample frequency period multiplied with 0.5 + (max. number of 0B sample clocks)  
For a balanced distribution of the timing robustness of SPD between tool and device, the  
timing requirements for the tool are:  
Frequency deviation of the sample clock is +/- 5%  
Effective decision time is between 0.69 µs and 0.75 µs (calculated with nominal  
sample frequency)  
Data Sheet  
62  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
3.3.6  
Peripheral Timings  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
3.3.6.1 Synchronous Serial Interface (USIC SSC) Timing  
The following parameters are applicable for a USIC channel operated in SSC mode.  
Note: Operating Conditions apply.  
Table 27  
USIC SSC Master Mode Timing  
Symbol Values  
Typ. Max.  
Parameter  
Unit Note /  
Test Condition  
Min.  
CLK CC 62.5  
SCLKOUT master clock  
period  
t
ns  
ns  
Slave select output SELO t1 CC 80  
active to first SCLKOUT  
transmit edge  
Slave select output SELO t2 CC  
inactive after last  
0
ns  
SCLKOUT receive edge  
Data output DOUT[3:0]  
valid time  
t3 CC -10  
t4 SR 80  
10  
ns  
ns  
Receive data input  
DX0/DX[5:3] setup time to  
SCLKOUT receive edge  
Data input DX0/DX[5:3]  
hold time from SCLKOUT  
receive edge  
t5 SR  
0
ns  
Data Sheet  
63  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
Table 28  
USIC SSC Slave Mode Timing  
Parameter  
Symbol  
Min.  
Values  
Unit Note /  
Test Condition  
Typ. Max.  
DX1 slave clock period  
tCLK SR 125  
t10 SR 10  
ns  
ns  
Select input DX2 setup to  
first clock input DX1 transmit  
edge1)  
Select input DX2 hold after t11 SR 10  
last clock input DX1 receive  
edge1)  
ns  
ns  
ns  
ns  
Receive data input  
t12 SR 10  
DX0/DX[5:3] setup time to  
shift clock receive edge1)  
Data input DX0/DX[5:3] hold t13 SR 10  
time from clock input DX1  
receive edge1)  
Data output DOUT[3:0] valid t14 CC -  
80  
time  
1) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and  
receive data input (bits DXnCR.DSEN = 0).  
Data Sheet  
64  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
Master Mode Timing  
t1  
t2  
Select Output  
SELOx  
Inactive  
Inactive  
Active  
Clock Output  
SCLKOUT  
Receive  
Edge  
Last Receive  
Edge  
First Transmit  
Edge  
Transmit  
Edge  
t3  
t3  
Data Output  
DOUT[3:0]  
t4  
t4  
t5  
t5  
Data Input  
DX0/DX[5:3]  
Data  
valid  
Data  
valid  
Slave Mode Timing  
t10  
t11  
Select Input  
DX2  
Inactive  
Active  
Inactive  
Clock Input  
DX1  
Receive  
Edge  
Last Receive  
Edge  
First Transmit  
Edge  
Transmit  
Edge  
t12  
t12  
t13  
t13  
Data Input  
DX0/DX[5:3]  
Data  
valid  
Data  
valid  
t14  
t14  
Data Output  
DOUT[3:0]  
Transmit Edge: with this clock edge, transmit data is shifted to transmit data output.  
Receive Edge: with this clock edge, receive data at receive data input is latched.  
Drawn for BRGH.SCLKCFG = 00B. Also valid for for SCLKCFG = 01B with inverted SCLKOUT signal.  
USIC_SSC_TMGX.VSD  
Figure 22  
USIC - SSC Master/Slave Mode Timing  
Note: This timing diagram shows a standard configuration, for which the slave select  
signal is low-active, and the serial clock signal is not shifted and not inverted.  
Data Sheet  
65  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
3.3.6.2 Inter-IC (IIC) Interface Timing  
The following parameters are applicable for a USIC channel operated in IIC mode.  
Note: Operating Conditions apply.  
Table 29  
USIC IIC Standard Mode Timing1)  
Symbol Values  
Parameter  
Unit Note /  
Test Condition  
Min.  
Typ.  
Max.  
Fall time of both SDA and t1  
-
-
300  
ns  
ns  
µs  
ns  
µs  
µs  
µs  
µs  
µs  
µs  
SCL  
CC/SR  
Rise time of both SDA and t2  
-
-
-
-
-
-
-
-
-
-
1000  
SCL  
CC/SR  
Data hold time  
t3  
0
-
-
-
-
-
-
-
-
CC/SR  
Data set-up time  
t4  
250  
4.7  
4.0  
4.0  
4.7  
4.0  
4.7  
CC/SR  
LOW period of SCL clock t5  
CC/SR  
HIGH period of SCL clock t6  
CC/SR  
t7  
CC/SR  
Hold time for (repeated)  
START condition  
Set-up time for repeated t8  
START condition  
CC/SR  
Set-up time for STOP  
condition  
t9  
CC/SR  
Bus free time between a t10  
STOP and START  
CC/SR  
condition  
Capacitive load for each  
bus line  
Cb SR  
-
-
400  
pF  
1) Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines  
need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device,  
approximalely 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.  
Data Sheet  
66  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
Table 30  
USIC IIC Fast Mode Timing1)  
Parameter  
Symbol  
Min.  
Values  
Typ.  
-
Unit Note /  
Test Condition  
Max.  
Fall time of both SDA and t1  
20 +  
300  
ns  
SCL CC/SR 0.1*Cb  
2)  
Rise time of both SDA and t2  
20 +  
-
-
-
-
-
-
-
-
-
300  
ns  
µs  
ns  
µs  
µs  
µs  
µs  
µs  
µs  
SCL  
CC/SR 0.1*Cb  
Data hold time  
t3  
0
-
-
-
-
-
-
-
-
CC/SR  
Data set-up time  
t4  
100  
1.3  
0.6  
0.6  
0.6  
0.6  
1.3  
CC/SR  
LOW period of SCL clock t5  
CC/SR  
HIGH period of SCL clock t6  
CC/SR  
t7  
CC/SR  
Hold time for (repeated)  
START condition  
Set-up time for repeated t8  
START condition  
CC/SR  
Set-up time for STOP  
condition  
t9  
CC/SR  
Bus free time between a t10  
STOP and START  
CC/SR  
condition  
Capacitive load for each  
bus line  
Cb SR  
-
-
400  
pF  
1) Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines  
need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device,  
approximalely 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.  
2) Cb refers to the total capacitance of one bus line in pF.  
Data Sheet  
67  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
t1  
t2  
t4  
70%  
30%  
SDA  
SCL  
t1  
t3  
t2  
t6  
9th  
clock  
t7  
t5  
t10  
S
SDA  
SCL  
t8  
t7  
t9  
9th  
clock  
Sr  
P
S
Figure 23  
USIC IIC Stand and Fast Mode Timing  
3.3.6.3 Inter-IC Sound (IIS) Interface Timing  
The following parameters are applicable for a USIC channel operated in IIS mode.  
Note: Operating Conditions apply.  
Table 31  
USIC IIS Master Transmitter Timing  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
Typ.  
Max.  
Clock period  
t1 CC  
2/fMCLK  
4/fMCLK  
-
-
-
-
-
-
ns  
ns  
ns  
VDDP 3 V  
VDDP < 3 V  
Clock HIGH  
Clock Low  
t2 CC  
t3 CC  
0.35 x  
t1min  
0.35 x  
t1min  
-
-
-
ns  
Hold time  
t4 CC  
t5 CC  
0
-
-
-
ns  
Clock rise time  
0.15 x ns  
t1min  
Data Sheet  
68  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Electrical Parameters  
t1  
t2  
t5  
t4  
t3  
SCK  
WA/  
DOUT  
Figure 24  
USIC IIS Master Transmitter Timing  
USIC IIS Slave Receiver Timing  
Table 32  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
Typ.  
Max.  
Clock period  
Clock HIGH  
t6 SR  
t7 SR  
4/fMCLK  
-
-
-
-
ns  
ns  
0.35 x  
t6min  
Clock Low  
Set-up time  
Hold time  
t8 SR  
t9 SR  
0.35 x  
t6min  
-
-
-
-
-
-
ns  
ns  
ns  
0.2 x  
t6min  
t10 SR 10  
t6  
t7  
t8  
t9  
SCK  
t10  
WA/  
DIN  
Figure 25  
USIC IIS Slave Receiver Timing  
Data Sheet  
69  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Package and Reliability  
4
Package and Reliability  
The XMC1300 is a member of the XMC1000 Family of microcontrollers. It is also  
compatible to a certain extent with members of similar families or subfamilies.  
Each package is optimized for the device it houses. Therefore, there may be slight  
differences between packages of the same pin-count but for different device types. In  
particular, the size of the exposed die pad may vary.  
If different device types are considered or planned for an application, it must be ensured  
that the board layout fits all packages under consideration.  
4.1  
Package Parameters  
Table 33 provides the thermal characteristics of the packages used in XMC1300.  
Table 33  
Thermal Characteristics of the Packages  
Parameter  
Symbol  
Limit Values  
Min. Max.  
Unit  
Package Types  
Exposed Die Pad  
Dimensions  
Ex × Ey  
CC  
-
-
2.7 × 2.7 mm  
3.7 × 3.7 mm  
PG-VQFN-24-19  
PG-VQFN-40-13  
PG-TSSOP-16-81)  
PG-TSSOP-28-161)  
PG-TSSOP-38-91)  
PG-VQFN-24-191)  
PG-VQFN-40-131)  
Thermal resistance  
Junction-Ambient  
RΘJA CC -  
104.6  
83.2  
70.3  
46.0  
38.4  
K/W  
K/W  
K/W  
K/W  
K/W  
-
-
-
-
1) Device mounted on a 4-layer JEDEC board (JESD 51-5); exposed pad soldered.  
Note: For electrical reasons, it is required to connect the exposed pad to the board  
ground VSSP, independent of EMC and thermal requirements.  
4.1.1  
Thermal Considerations  
When operating the XMC1300 in a system, the total heat generated in the chip must be  
dissipated to the ambient environment to prevent overheating and the resulting thermal  
damage.  
The maximum heat that can be dissipated depends on the package and its integration  
into the target board. The “Thermal resistance RΘJA” quantifies these parameters. The  
power dissipation must be limited so that the average junction temperature does not  
exceed 115 °C.  
Data Sheet  
70  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Package and Reliability  
The difference between junction temperature and ambient temperature is determined by  
ΔT = (PINT + PIOSTAT + PIODYN) × RΘJA  
The internal power consumption is defined as  
P
INT = VDDP × IDDP (switching current and leakage current).  
The static external power consumption caused by the output drivers is defined as  
IOSTAT = Σ((VDDP-VOH) × IOH) + Σ(VOL × IOL)  
P
The dynamic external power consumption caused by the output drivers (PIODYN) depends  
on the capacitive load connected to the respective pins and their switching frequencies.  
If the total power dissipation for a given system configuration exceeds the defined limit,  
countermeasures must be taken to ensure proper system operation:  
Reduce VDDP, if possible in the system  
Reduce the system frequency  
Reduce the number of output pins  
Reduce the load on active output drivers  
Data Sheet  
71  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Package and Reliability  
4.2  
Package Outlines  
Figure 26  
PG-TSSOP-38-9  
Data Sheet  
72  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Package and Reliability  
Figure 27  
PG-TSSOP-28-16  
Data Sheet  
73  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Package and Reliability  
Figure 28  
PG-TSSOP-16-8  
Data Sheet  
74  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Package and Reliability  
Figure 29  
PG-VQFN-24-19  
Data Sheet  
75  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Package and Reliability  
Figure 30  
PG-VQFN-40-13  
All dimensions in mm.  
Data Sheet  
76  
V2.0, 2017-10  
XMC1300 AB-Step  
XMC1000 Family  
Quality Declaration  
5
Quality Declaration  
Table 34 shows the characteristics of the quality parameters in the XMC1300.  
Table 34  
Quality Parameters  
Symbol Limit Values  
Parameter  
Unit Notes  
Min.  
Max.  
ESD susceptibility  
according to Human Body SR  
Model (HBM)  
VHBM  
-
2000  
V
V
Conforming to  
EIA/JESD22-  
A114-B  
ESD susceptibility  
VCDM  
-
500  
Conforming to  
according to Charged  
Device Model (CDM) pins  
SR  
JESD22-C101-C  
Moisture sensitivity level  
MSL  
CC  
-
-
3
-
JEDEC  
J-STD-020D  
Soldering temperature  
TSDR  
SR  
260  
°C  
Profile according  
to JEDEC  
J-STD-020D  
Data Sheet  
77  
V2.0, 2017-10  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

XMC1302-T028X0200 AB

32-bit XMC1000 Industrial Microcontroller ARM® Cortex®-M0

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XMC1302-T038

Microcontroller Series for Industrial Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XMC1302-T038X0016

RISC Microcontroller, 32-Bit, FLASH, 33.2MHz, CMOS, PDSO38, TSSOP-38

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XMC1302-T038X0032

RISC Microcontroller, 32-Bit, FLASH, 33.2MHz, CMOS, PDSO38, TSSOP-38

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XMC1302-T038X0064

RISC Microcontroller, 32-Bit, FLASH, 33.2MHz, CMOS, PDSO38, TSSOP-38

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XMC1302-T038X0128

RISC Microcontroller, 32-Bit, FLASH, 33.2MHz, CMOS, PDSO38, TSSOP-38

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XMC1302-T038X0200

RISC Microcontroller, 32-Bit, FLASH, 33.2MHz, CMOS, PDSO38, TSSOP-38

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XMC1302-T038X0200AA

Material Content Data Sheet

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XMC1302-T038X0200AA_15

Material Content Data Sheet

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XMC1302T016X0032ABXUMA1

RISC Microcontroller, 32-Bit, FLASH, 32MHz, CMOS, PDSO16, TSSOP-16

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XMC1302T038X0016ABXUMA1

RISC Microcontroller, 32-Bit, FLASH, 32MHz, CMOS, PDSO38, TSSOP-38

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XMC1302T038X0032ABXUMA1

IC MCU 32BIT 32KB FLASH 38TSSOP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON