XMC4100/XMC4200 [INFINEON]

32-bit XMC1000 Industrial Microcontroller ARM® Cortex®-M0;
XMC4100/XMC4200
型号: XMC4100/XMC4200
厂家: Infineon    Infineon
描述:

32-bit XMC1000 Industrial Microcontroller ARM® Cortex®-M0

微控制器
文件: 总91页 (文件大小:2166K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XMC4100 / XMC4200  
Microcontroller Series  
for Industrial Applications  
XMC4000 Family  
ARM® Cortex®-M4  
32-bit processor core  
Data Sheet  
V1.5 2023-04  
Microcontrollers  
Edition 2023-04  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2023 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
XMC4100 / XMC4200  
Microcontroller Series  
for Industrial Applications  
XMC4000 Family  
ARM® Cortex®-M4  
32-bit processor core  
Data Sheet  
V1.5 2023-04  
Microcontrollers  
XMC4100 / XMC4200  
XMC4000 Family  
XMC4[12]00 Data Sheet  
Revision History: V1.5 2023-04  
Previous Versions:  
V1.4 2018-09  
V1.3 2015-10  
V1.2 2014-06  
V1.1 2014-03  
V1.0 2013-10  
V0.6 2012-11  
Page  
Subjects  
V1.5 2023-04  
86  
Deleted package details: PG-LQFP-64-19 and PG-VQFN-48-53.  
Added package details: PG-TQFP-64-21.  
88  
89  
Deleted Table 56 and 57.  
Added package diagram: PG-TQFP-64-21.  
Deleted package diagram: PG-LQFP-64-19.  
Trademarks  
C166™, TriCore™, XMC™ and DAVE™ are trademarks of Infineon Technologies AG.  
ARM®, ARM Powered®, Cortex®, Thumb® and AMBA® are registered trademarks of  
ARM, Limited.  
CoreSight™, ETM™, Embedded Trace Macrocell™ and Embedded Trace Buffer™ are  
trademarks of ARM, Limited.  
Synopsys™ is a trademark of Synopsys, Inc.  
We Listen to Your Comments  
Is there any information in this document that you feel is wrong, unclear or missing?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
mcdocu.comments@infineon.com  
Data Sheet  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Table of Contents  
Table of Contents  
1
Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Device Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Package Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Device Type Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Definition of Feature Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Identification Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
2
2.1  
2.2  
2.2.1  
2.2.2  
2.2.2.1  
2.3  
General Device Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Logic Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Pin Configuration and Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Package Pin Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Port I/O Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Port I/O Function Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Power Connection Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3
3.1  
Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Pin Reliability in Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Pad Driver and Pad Classes Summary . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Input/Output Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Analog to Digital Converters (ADCx) . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Digital to Analog Converters (DACx) . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Out-of-Range Comparator (ORC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
High Resolution PWM (HRPWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
HRC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
CMP and 10-bit DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Low Power Analog Comparator (LPAC) . . . . . . . . . . . . . . . . . . . . . . . . 55  
Die Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
USB Device Interface DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . 57  
Oscillator Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Power Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Flash Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Testing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Power-Up and Supply Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Power Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
3.1.1  
3.1.2  
3.1.3  
3.1.4  
3.1.5  
3.2  
3.2.1  
3.2.2  
3.2.3  
3.2.4  
3.2.5  
3.2.5.1  
3.2.5.2  
3.2.5.3  
3.2.6  
3.2.7  
3.2.8  
3.2.9  
3.2.10  
3.2.11  
3.3  
3.3.1  
3.3.2  
3.3.3  
Data Sheet  
5
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Table of Contents  
3.3.4  
3.3.5  
3.3.6  
3.3.7  
Phase Locked Loop (PLL) Characteristics . . . . . . . . . . . . . . . . . . . . . . 72  
Internal Clock Source Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
JTAG Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Serial Wire Debug Port (SW-DP) Timing . . . . . . . . . . . . . . . . . . . . . . . . 77  
Peripheral Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Synchronous Serial Interface (USIC SSC) Timing . . . . . . . . . . . . . . 78  
Inter-IC (IIC) Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Inter-IC Sound (IIS) Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . 83  
USB Interface Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
3.3.8  
3.3.8.1  
3.3.8.2  
3.3.8.3  
3.3.9  
4
Package and Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
4.1  
4.1.1  
4.2  
5
Quality Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Data Sheet  
6
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
About this Document  
About this Document  
This Data Sheet is addressed to embedded hardware and software developers. It  
provides the reader with detailed descriptions about the ordering designations, available  
features, electrical and physical characteristics of the XMC4[12]00 series devices.  
The document describes the characteristics of a superset of the XMC4[12]00 series  
devices. For simplicity, the various device types are referred to by the collective term  
XMC4[12]00 throughout this manual.  
XMC4000 Family User Documentation  
The set of user documentation includes:  
Reference Manual  
– describes the functionality of the superset of devices.  
Data Sheets  
– list the complete ordering designations, available features and electrical  
characteristics of derivative devices.  
Errata Sheets  
– list deviations from the specifications given in the related Reference Manual or  
Data Sheets. Errata Sheets are provided for the superset of devices.  
Attention: Please consult all parts of the documentation set to attain consolidated  
knowledge about your device.  
Application related guidance is provided by Users Guides and Application Notes.  
Please refer to http://www.infineon.com/xmc4000 to get access to the latest versions  
of those documents.  
Data Sheet  
7
V1.4, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Summary of Features  
1
Summary of Features  
The XMC4[12]00 devices are members of the XMC4000 Family of microcontrollers  
based on the ARM Cortex-M4 processor core. The XMC4000 is a family of high  
performance and energy efficient microcontrollers optimized for Industrial Connectivity,  
Industrial Control, Power Conversion, Sense & Control.  
Figure 1  
System Block Diagram  
CPU Subsystem  
CPU Core  
– High Performance 32-bit ARM Cortex-M4 CPU  
– 16-bit and 32-bit Thumb2 instruction set  
– DSP/MAC instructions  
– System timer (SysTick) for Operating System support  
Floating Point Unit  
Memory Protection Unit  
Nested Vectored Interrupt Controller  
One General Purpose DMA with up-to 8 channels  
Event Request Unit (ERU) for programmable processing of external and internal  
service requests  
Flexible CRC Engine (FCE) for multiple bit error detection  
Data Sheet  
8
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Summary of Features  
On-Chip Memories  
16 KB on-chip boot ROM  
up to 16 KB on-chip high-speed program memory  
up to 24 KB on-chip high speed data memory  
up to 256 KB on-chip Flash Memory with 1 KB instruction cache  
Communication Peripherals  
Universal Serial Bus, USB 2.0 device, with integrated PHY  
Controller Area Network interface (MultiCAN), Full-CAN/Basic-CAN with two nodes,  
64 message objects (MO), data rate up to 1 MBit/s  
Four Universal Serial Interface Channels (USIC), providing four serial channels,  
usable as UART, double-SPI, quad-SPI, IIC, IIS and LIN interfaces  
LED and Touch-Sense Controller (LEDTS) for Human-Machine interface  
Analog Frontend Peripherals  
Two Analog-Digital Converters (VADC) of 12-bit resolution, 8 channels each, with  
input out-of-range comparators  
Digital-Analog Converter (DAC) with two channels of 12-bit resolution  
Industrial Control Peripherals  
Two Capture/Compare Units 4 (CCU4) for use as general purpose timers  
One Capture/Compare Units 8 (CCU8) for motor control and power conversion  
Four High Resoultion PWM (HRPWM) channels  
One Position Interface (POSIF) for servo motor positioning  
Window Watchdog Timer (WDT) for safety sensitive applications  
Die Temperature Sensor (DTS)  
Real Time Clock module with alarm support  
System Control Unit (SCU) for system configuration and control  
Input/Output Lines  
Programmable port driver control module (PORTS)  
Individual bit addressability  
Tri-stated in input mode  
Push/pull or open drain output mode  
Boundary scan test support over JTAG interface  
On-Chip Debug Support  
Full support for debug features: 8 breakpoints, CoreSight, trace  
Various interfaces: ARM-JTAG, SWD, single wire trace  
Data Sheet  
9
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Summary of Features  
1.1  
Ordering Information  
The ordering code for an Infineon microcontroller provides an exact reference to a  
specific product. The code “XMC4<DDD>-<Z><PPP><T><FFFF>” identifies:  
<DDD> the derivatives function set  
<Z> the package variant  
– E: LFBGA  
– F: LQFP, TQFP  
– Q: VQFN  
<PPP> package pin count  
<T> the temperature range:  
– F: -40°C to 85°C  
– K: -40°C to 125°C  
<FFFF> the Flash memory size.  
For ordering codes for the XMC4[12]00 please contact your sales representative or local  
distributor.  
This document describes several derivatives of the XMC4100 and XMC4200 series,  
some descriptions may not apply to a specific product. Please see Table 1.  
For simplicity the term XMC4[12]00 is used for all derivatives throughout this document.  
1.2  
Device Types  
These device types are available and can be ordered through Infineon’s direct and/or  
distribution channels.  
Table 1  
Synopsis of XMC4[12]00 Device Types  
Derivative1)  
Package  
Flash Kbytes  
SRAM Kbytes  
XMC4200-F64x256  
XMC4200-Q48x256  
XMC4100-F64x128  
XMC4100-Q48x128  
XMC4104-F64x64  
XMC4104-Q48x64  
XMC4104-F64x128  
XMC4104-Q48x128  
XMC4108-F64x64  
XMC4108-Q48x64  
PG-yQFP-642)  
PG-VQFN-48  
PG-yQFP-642)  
PG-VQFN-48  
PG-yQFP-642)  
PG-VQFN-48  
PG-yQFP-642)  
PG-VQFN-48  
PG-yQFP-642)  
PG-VQFN-48  
256  
256  
128  
128  
64  
40  
40  
20  
20  
20  
20  
20  
20  
20  
20  
64  
128  
128  
64  
64  
1) x is a placeholder for the supported temperature range.  
2) y is a placeholder for the QFP package variant, LQFP or TQFP depending on the stepping, see Section 1.3.  
Data Sheet  
10  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Summary of Features  
1.3  
Package Variants  
Different markings of the XMC4[12]00 use different package variants. Details of those  
packages are given in the “Package Parameters” section of the Data Sheet.  
Table 2  
XMC4[12]00 Package Variants  
Package Variant  
XMC4[12]00-F64  
XMC4[12]00-Q48  
XMC4[12]00-F64  
XMC4[12]00-Q48  
Marking  
Package  
EES-AA, ES-AA, ES-AB, AB  
PG-LQFP-64-19  
PG-VQFN-48-53  
PG-TQFP-64-19  
PG-VQFN-48-71  
BA  
1.4  
Device Type Features  
The following table lists the available features per device type.  
Table 3  
Features of XMC4[12]00 Device Types  
Derivative1)  
LEDTS Intf.  
USB Intf.  
USIC Chan. MultiCAN  
Nodes, MO  
XMC4200-F64x256  
XMC4200-Q48x256  
XMC4100-F64x128  
XMC4100-Q48x128  
1
1
1
1
1
1
1
1
2 x 2  
2 x 2  
2 x 2  
2 x 2  
N0, N1  
MO[0..63]  
N0, N1  
MO[0..63]  
N0, N1  
MO[0..63]  
N0, N1  
MO[0..63]  
XMC4104-F64x64  
XMC4104-Q48x64  
XMC4104-F64x128  
XMC4104-Q48x128  
XMC4108-F64x64  
XMC4108-Q48x64  
1
1
1
1
2 x 2  
2 x 2  
2 x 2  
2 x 2  
2 x 2  
2 x 2  
N0, MO[0..31]  
N0, MO[0..31]  
1) x is a placeholder for the supported temperature range.  
Data Sheet  
11  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Summary of Features  
Table 4  
Features of XMC4[12]00 Device Types  
Derivative1)  
ADC  
Chan.  
DAC  
Chan.  
CCU4  
Slice  
CCU8  
Slice  
POSIF  
Intf.  
HRPWM  
Intf.  
XMC4200-F64x256  
XMC4200-Q48x256  
XMC4100-F64x128  
XMC4100-Q48x128  
XMC4104-F64x64  
XMC4104-Q48x64  
XMC4104-F64x128  
XMC4104-Q48x128  
XMC4108-F64x64  
XMC4108-Q48x64  
10  
9
2
2
2
2
2
2
2
2
2
2
2 x 4  
2 x 4  
2 x 4  
2 x 4  
2 x 4  
2 x 4  
2 x 4  
2 x 4  
2 x 4  
2 x 4  
1 x 4  
1 x 4  
1 x 4  
1 x 4  
1 x 4  
1 x 4  
1 x 4  
1 x 4  
1 x 4  
1 x 4  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
10  
9
10  
9
10  
9
10  
9
1) x is a placeholder for the supported temperature range.  
1.5  
Definition of Feature Variants  
The XMC4[12]00 types are offered with several memory sizes and number of available  
VADC channels. Table 5 describes the location of the available Flash memory, Table 6  
describes the location of the available SRAMs, Table 7 the available VADC channels.  
Table 5  
Flash Memory Ranges  
Total Flash Size  
Cached Range  
Uncached Range  
256 Kbytes  
0800 0000H  
0C00 0000H   
0803 FFFFH  
0C03 FFFFH  
128 Kbytes  
64 Kbytes  
0800 0000H   
0801 FFFFH  
0C00 0000H   
0C01 FFFFH  
0800 0000H   
0C00 0000H   
0800 FFFFH  
0C00 FFFFH  
Data Sheet  
12  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Summary of Features  
Table 6  
SRAM Memory Ranges  
Total SRAM Size  
Program SRAM  
System Data SRAM  
40 Kbytes  
1FFF C000H   
2000 0000H   
1FFF FFFFH  
2000 5FFFH  
20 Kbytes  
1FFF E000H   
2000 0000H   
1FFF FFFFH  
2000 2FFFH  
Table 7  
ADC Channels1)  
Package  
VADC G0  
VADC G1  
LQFP-64, TQFP-64  
PG-VQFN-48  
CH0, CH3..CH7  
CH0, CH3..CH7  
CH0, CH1, CH3, CH6  
CH0, CH1, CH3  
1) Some pins in a package may be connected to more than one channel. For the detailed mapping see the Port  
I/O Function table.  
1.6  
Identification Registers  
The identification registers allow software to identify the marking.  
Table 8 XMC4200 Identification Registers  
Register Name  
SCU_IDCHIP  
SCU_IDCHIP  
SCU_IDCHIP  
JTAG IDCODE  
JTAG IDCODE  
JTAG IDCODE  
Value  
Marking  
0004 2001H  
0004 2002H  
0004 2003H  
101D D083H  
201D D083H  
301D D083H  
EES-AA, ES-AA  
ES-AB, AB  
BA  
EES-AA, ES-AA  
ES-AB, AB  
BA  
Data Sheet  
13  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Summary of Features  
Table 9  
XMC4100 Identification Registers  
Register Name  
SCU_IDCHIP  
SCU_IDCHIP  
SCU_IDCHIP  
JTAG IDCODE  
JTAG IDCODE  
JTAG IDCODE  
Value  
Marking  
0004 2001H  
0004 2002H  
0004 1003H  
101D D083H  
201D D083H  
301D D083H  
EES-AA, ES-AA  
ES-AB, AB  
BA  
EES-AA, ES-AA  
ES-AB, AB  
BA  
Data Sheet  
14  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
General Device Information  
2
General Device Information  
This section summarizes the logic symbols and package pin configurations with a  
detailed list of the functional I/O mapping.  
2.1  
Logic Symbols  
Figure 2  
XMC4[12]00 Logic Symbol PG-LQFP-64 and PG-TQFP-64  
Data Sheet  
15  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
General Device Information  
Figure 3  
XMC4[12]00 Logic Symbol PG-VQFN-48  
Data Sheet  
16  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
General Device Information  
2.2  
Pin Configuration and Definition  
The following figures summarize all pins, showing their locations on the different  
packages.  
Figure 4  
XMC4[12]00 PG-LQFP-64 and PG-TQFP-64 Pin Configuration  
(top view)  
Data Sheet  
17  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
General Device Information  
Figure 5  
XMC4[12]00 PG-VQFN-48 Pin Configuration (top view)  
Data Sheet  
18  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
General Device Information  
2.2.1  
Package Pin Summary  
The following general scheme is used to describe each pin:  
Table 10  
Function  
Package Pin Mapping Description  
Package A  
Package B  
...  
Pad  
Notes  
Type  
Name  
N
Ax  
...  
A1+  
The table is sorted by the “Function” column, starting with the regular Port pins (Px.y),  
followed by the dedicated pins (i.e. PORST) and supply pins.  
The following columns, titled with the supported package variants, lists the package pin  
number to which the respective function is mapped in that package.  
The “Pad Type” indicates the employed pad type (A1, A1+, special=special pad,  
In=input pad, AN/DIG_IN=analog and digital input, Power=power supply). Details about  
the pad properties are defined in the Electrical Parameters.  
In the “Notes”, special information to the respective pin/function is given, i.e. deviations  
from the default configuration after reset. Per default the regular Port pins are configured  
as direct input with no internal pull device active.  
Table 11  
Function  
Package Pin Mapping  
LQFP-64  
TQFP-64  
VQFN-48  
Pad Type  
Notes  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
2
2
A1+  
A1+  
A1+  
A1+  
A1+  
A1+  
A1+  
A1+  
1
1
64  
63  
62  
61  
60  
58  
48  
47  
46  
45  
44  
43  
After a system reset, via  
HWSEL this pin selects the  
DB.TDI function.  
P0.8  
57  
42  
A1+  
After a system reset, via  
HWSEL this pin selects the  
DB.TRST function, with a  
weak pull-down active.  
P0.9  
4
3
-
-
A1+  
A1+  
P0.10  
Data Sheet  
19  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
General Device Information  
Table 11  
Function  
Package Pin Mapping (cont’d)  
LQFP-64  
TQFP-64  
VQFN-48  
Pad Type  
Notes  
P0.11  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.7  
P1.8  
P1.9  
P1.15  
P2.0  
P2.1  
59  
52  
51  
50  
49  
48  
47  
55  
54  
53  
46  
34  
33  
-
A1+  
A1+  
A1+  
A1+  
A1+  
A1+  
A1+  
A1+  
A1+  
A1+  
A1+  
A1+  
A1+  
40  
39  
38  
37  
36  
35  
-
-
-
-
26  
25  
After a system reset, via  
HWSEL this pin selects the  
DB.TDO function.  
P2.2  
32  
31  
30  
29  
36  
35  
28  
27  
26  
25  
5
24  
23  
22  
21  
-
A1+  
P2.3  
A1+  
P2.4  
A1+  
P2.5  
A1+  
P2.6  
A1+  
P2.7  
-
A1+  
P2.8  
-
A1+  
P2.9  
-
A1+  
P2.14  
P2.15  
P3.0  
-
A1+  
-
A1+  
-
A1+  
P14.0  
P14.3  
P14.4  
P14.5  
P14.6  
P14.7  
P14.8  
20  
19  
18  
17  
16  
15  
24  
16  
15  
14  
13  
12  
11  
20  
AN/DIG_IN  
AN/DIG_IN  
AN/DIG_IN  
AN/DIG_IN  
AN/DIG_IN  
AN/DIG_IN  
AN/DAC/DIG_IN  
Data Sheet  
20  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
General Device Information  
Table 11  
Function  
Package Pin Mapping (cont’d)  
LQFP-64  
TQFP-64  
VQFN-48  
Pad Type  
Notes  
P14.9  
23  
14  
7
19  
-
AN/DAC/DIG_IN  
AN/DIG_IN  
special  
P14.14  
USB_DP  
USB_DM  
HIB_IO_0  
4
6
3
special  
10  
7
A1 special  
At the first power-up and with  
every reset of the hibernate  
domain this pin is configured  
as open-drain output and  
drives "0".  
As output the medium driver  
mode is active.  
TCK  
TMS  
45  
44  
34  
33  
A1  
Weak pull-down active.  
A1+  
Weak pull-up active.  
As output the strong-soft  
driver mode is active.  
PORST  
43  
32  
special  
Strong pull-down controlled  
by EVR.  
Weak pull-up active while  
strong pull-down is not active.  
XTAL1  
39  
40  
11  
12  
13  
29  
30  
8
clock_IN  
clock_O  
clock_IN  
clock_O  
Power  
XTAL2  
RTC_XTAL1  
RTC_XTAL2  
VBAT  
9
10  
When VDDP is supplied  
VBAT has to be supplied as  
well.  
VDDA/VAREF 22  
VSSA/VAGND 21  
18  
17  
AN_Power/AN_ Shared analog supply and  
Ref reference voltage pin.  
AN_Power/AN_ Shared analog supply and  
Ref  
reference ground pin.  
VDDC  
VDDC  
VDDP  
VDDP  
VDDP  
VSS  
9
6
Power  
Power  
Power  
Power  
Power  
Power  
42  
8
31  
5
38  
56  
37  
28  
41  
27  
Data Sheet  
21  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
General Device Information  
Table 11  
Function  
Package Pin Mapping (cont’d)  
LQFP-64  
TQFP-64  
VQFN-48  
Pad Type  
Notes  
VSSO  
VSS  
41  
-
Power  
Power  
Exp. Pad  
Exp. Pad  
Exposed Die Pad  
The exposed die pad is  
connected internally to VSS.  
For proper operation, it is  
mandatory to connect the  
exposed pad directly to the  
common ground on the  
board.  
For thermal aspects, please  
refer to the Data Sheet.  
Board layout examples are  
given in an application note.  
Data Sheet  
22  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
General Device Information  
2.2.2  
Port I/O Functions  
The following general scheme is used to describe each PORT pin:  
Table 12  
Function  
Port I/O Function Description  
Outputs  
Inputs  
Input  
ALT1  
ALTn  
HWO0  
HWI0  
Input  
P0.0  
Pn.y  
MODA.OUT MODB.OUT MODB.INA MODC.INA  
MODA.INA MODC.INB  
MODA.OUT  
Figure 6  
Simplified Port Structure  
Pn.y is the port pin name, defining the control and data bits/registers associated with it.  
As GPIO, the port is under software control. Its input value is read via Pn_IN.y, Pn_OUT  
defines the output value.  
Up to four alternate output functions (ALT1/2/3/4) can be mapped to a single port pin,  
selected by Pn_IOCR.PC. The output value is directly driven by the respective module,  
with the pin characteristics controlled by the port registers (within the limits of the  
connected pad).  
The port pin input can be connected to multiple peripherals. Most peripherals have an  
input multiplexer to select between different possible input sources.  
The input path is also active while the pin is configured as output. This allows to feedback  
an output to on-chip resources without wasting an additional external pin.  
By Pn_HWSEL it is possible to select between different hardware “masters”  
(HWO0/HWI0). The selected peripheral can take control of the pin(s). Hardware control  
overrules settings in the respective port pin registers.  
Data Sheet  
23  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Data Sheet  
24  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Data Sheet  
25  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Data Sheet  
26  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
2.3  
Power Connection Scheme  
Figure 7 shows a reference power connection scheme for the XMC4[12]00.  
Figure 7  
Power Connection Scheme  
Every power supply pin needs to be connected. Different pins of the same supply need  
also to be externally connected. As example, all VDDP pins must be connected externally  
to one VDDP net. In this reference scheme one 100 nF capacitor is connected at each  
supply pin against VSS. An additional 10 μF capacitor is connected to the VDDP nets and  
an additional 4.7uF capacitor to the VDDC nets.  
Data Sheet  
27  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
The XMC4[12]00 has a common ground concept, all VSS, VSSA and VSSO pins share the  
same ground potential. In packages with an exposed die pad it must be connected to the  
common ground as well.  
There are no dedicated connections for the analog reference VAREF and VAGND. Instead,  
they share the same pins as the analog supply pins VDDA and VSSA.Some analog  
channels can optionally serve as “Alternate Reference”; further details on this operating  
mode are described in the Reference Manual.  
When VDDP is supplied, VBAT must be supplied as well. If no other supply source (e.g.  
battery) is connected to VBAT, the VBAT pin can also be connected directly to VDDP  
.
Data Sheet  
28  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
3
Electrical Parameters  
3.1  
General Parameters  
3.1.1  
Parameter Interpretation  
The parameters listed in this section partly represent the characteristics of the  
XMC4[12]00 and partly its requirements on the system. To aid interpreting the  
parameters easily when evaluating them for a design, they are marked with an two-letter  
abbreviation in column “Symbol”:  
CC  
Such parameters indicate Controller Characteristics, which are a distinctive feature  
of the XMC4[12]00 and must be regarded for system design.  
SR  
Such parameters indicate System Requirements, which must be provided by the  
application system in which the XMC4[12]00 is designed in.  
Data Sheet  
29  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
3.1.2  
Absolute Maximum Ratings  
Stresses above the values listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only and functional operation of  
the device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions may affect device reliability.  
Table 14  
Absolute Maximum Rating Parameters  
Symbol Values  
Min. Typ. Max.  
Parameter  
Unit Note /  
Test Con  
dition  
Storage temperature  
Junction temperature  
TST SR -65  
TJ SR -40  
150  
150  
4.3  
C  
°C  
V
Voltage at 3.3 V power supply VDDP SR  
pins with respect to VSS  
Voltage on any Class A and VIN  
dedicated input pin with  
respect to VSS  
SR -1.0  
V
DDP + 1.0  
V
whichever  
is lower  
or max. 4.3  
Voltage on any analog input VAIN  
-1.0  
V
DDP + 1.0  
V
whichever  
is lower  
pin with respect to VAGND  
VAREF SR  
or max. 4.3  
Input current on any pin  
during overload condition  
IIN  
SR -10  
+10  
mA  
mA  
Absolute maximum sum of all IIN SR -25  
input circuit currents for one  
port group during overload  
condition1)  
+25  
Absolute maximum sum of all IIN SR -100 –  
input circuit currents during  
+100  
mA  
overload condition  
1) The port groups are defined in Table 18.  
Data Sheet  
30  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
Figure 8 explains the input voltage ranges of VIN and VAIN and its dependency to the  
supply level of VDDP.The input voltage must not exceed 4.3 V, and it must not be more  
than 1.0 V above VDDP. For the range up to VDDP + 1.0 V also see the definition of the  
overload conditions in “Pin Reliability in Overload".  
Figure 8  
Absolute Maximum Input Voltage Ranges  
Data Sheet  
31  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
3.1.3  
Pin Reliability in Overload  
When receiving signals from higher voltage devices, low-voltage devices experience  
overload currents and voltages that go beyond their own IO power supplies specification.  
Table 15 defines overload conditions that will not cause any negative reliability impact if  
all the following conditions are met:  
full operation life-time is not exceeded  
“Operating Conditions" are met for  
– pad supply levels (VDDP or VDDA  
)
– temperature  
If a pin current is outside of the “Operating Conditions" but within the overload  
parameters, then the parameters functionality of this pin as stated in the Operating  
Conditions can no longer be guaranteed. Operation is still possible in most cases but  
with relaxed parameters.  
Note: An overload condition on one or more pins does not require a reset.  
Note: A series resistor at the pin to limit the current to the maximum permitted overload  
current is sufficient to handle failure situations like short to battery.  
Table 15  
Overload Parameters  
Symbol  
Parameter  
Values  
Unit Note /  
Test Condition  
Min. Typ. Max.  
Input current on any port pin IOV SR -5  
during overload condition  
5
mA  
Absolute sum of all input  
circuit currents for one port  
group during overload  
condition1)  
IOVG SR  
20  
20  
80  
mA IOVx|, for all  
IOVx 0 mA  
mA IOVx|, for all  
IOVx 0 mA  
Absolute sum of all input  
circuit currents during  
overload condition  
IOVS SR  
mA IOVG  
1) The port groups are defined in Table 18.  
Figure 9 shows the path of the input currents during overload via the ESD protection  
structures. The diodes against VDDP and ground are a simplified representation of these  
ESD protection structures.  
Data Sheet  
32  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
Figure 9  
Input Overload Current via ESD structures  
Table 16 and Table 17 list input voltages that can be reached under overload conditions.  
Note that the absolute maximum input voltages as defined in the “Absolute Maximum  
Ratings" must not be exceeded during overload.  
Table 16  
Pad Type  
A1 / A1+  
PN-Junction Characterisitics for positive Overload  
OV = 5 mA, TJ = -40 °C OV = 5 mA, TJ = 150 °C  
I
I
V
V
IN = VDDP + 1.0 V  
IN = VDDP + 1.0 V  
V
V
IN = VDDP + 0.75 V  
IN = VDDP + 0.75 V  
AN/DIG_IN  
Table 17  
Pad Type  
A1 / A1+  
PN-Junction Characterisitics for negative Overload  
OV = 5 mA, TJ = -40 °C OV = 5 mA, TJ = 150 °C  
I
I
V
V
IN = VSS - 1.0 V  
IN = VDDP - 1.0 V  
V
V
IN = VSS - 0.75 V  
IN = VDDP - 0.75 V  
AN/DIG_IN  
Table 18  
Port Groups for Overload and Short-Circuit Current Sum  
Parameters  
Group  
Pins  
1
2
3
4
P0.[12:0], P3.0  
P14.[8:0]  
P2.[15:0]  
P1.[15:0]  
Data Sheet  
33  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
3.1.4  
Pad Driver and Pad Classes Summary  
This section gives an overview on the different pad driver classes and its basic  
characteristics. More details (mainly DC parameters) are defined in the “Input/Output  
Pins".  
Table 19  
Pad Driver and Pad Classes Overview  
Class Power Type  
Supply  
Sub-Class  
Speed  
Grade  
Load Termination  
A
3.3 V  
LVTTL A1  
6 MHz  
100 pF No  
I/O,  
(e.g. GPIO)  
LVTTL  
outputs  
A1+  
(e.g. serial I/Os)  
25 MHz  
50 pF Series termination  
recommended  
Figure 10  
Output Slopes with different Pad Driver Modes  
Figure 10 is a qualitative display of the resulting output slope performance with  
different output driver modes. The detailed input and output characteristics are listed in  
“Input/Output Pins".  
Data Sheet  
34  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
3.1.5  
Operating Conditions  
The following operating conditions must not be exceeded in order to ensure correct  
operation and reliability of the XMC4[12]00. All parameters specified in the following  
tables refer to these operating conditions, unless noted otherwise.  
Table 20  
Operating Conditions Parameters  
Symbol Values  
Parameter  
Unit Note /  
Test Condition  
Min.  
Typ.  
Max.  
85  
Ambient Temperature  
TA SR -40  
°C  
°C  
V
Temp. Range F  
Temp. Range K  
-40  
125  
3.632)  
Digital supply voltage  
Core Supply Voltage  
V
DDP SR 3.131) 3.3  
VDDC  
CC  
1)  
1.3  
V
Generated  
internally  
Digital ground voltage  
VSS SR 0  
DDA SR 3.0  
3.62)  
V
V
ADC analog supply  
voltage  
V
3.3  
Analog ground voltage for VSSA SR -0.1  
0
0.1  
V
V
VDDA  
Battery Supply Voltage  
for Hibernate Domain3)  
V
BAT SR 1.954)  
3.63  
When VDDP is  
supplied VBAT  
has to be  
supplied as well.  
System Frequency  
fSYS SR  
80  
5
MHz  
mA  
Short circuit current of  
digital outputs  
ISC SR -5  
Absolute sum of short  
circuit currents per pin  
group5)  
ISC_PG  
SR  
20  
mA  
mA  
Absolute sum of short  
circuit currents of the  
device  
ISC_D  
SR  
100  
1) See also the Supply Monitoring thresholds, Section 3.3.2.  
2) Voltage overshoot to 4.0 V is permissible at Power-Up and PORST low, provided the pulse duration is less  
than 100 s and the cumulated sum of the pulses does not exceed 1 h over lifetime.  
3) Different limits apply for LPAC operation, Section 3.2.6.  
4) To start the hibernate domain it is required that VBAT 2.1 V, for a reliable start of the oscillation of RTC_XTAL  
in crystal mode it is required that VBAT 3.0 V.  
5) The port groups are defined in Table 18.  
Data Sheet  
35  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
3.2  
DC Parameters  
3.2.1  
Input/Output Pins  
The digital input stage of the shared analog/digital input pins is identical to the input  
stage of the standard digital input/output pins.  
The pull-up characteristics (IPUH) and the input high and low voltage levels (VIH and VIL)  
of the PORST pin are identical to the respective values of the standard digital  
input/output pins.  
Table 21  
Standard Pad Parameters  
Parameter  
Symbol  
Min.  
Values  
Max.  
Unit Note / Test Condition  
Pin capacitance (digital CIO CC  
10  
pF  
inputs/outputs)  
1)  
Pull-down current  
Pull-up current  
|IPDL  
SR  
|
150  
A  
A  
A  
A  
V
V
V
V
V
0.6 VDDP  
0.36 VDDP  
0.6 VDDP  
0.36 VDDP  
IN  
IN  
IN  
IN  
2)  
2)  
1)  
10  
10  
|IPUH  
SR  
|
100  
Input Hysteresis for  
HYSA  
0.1   
VDDP  
pads of all A classes3) CC  
PORST spike filter  
always blocked pulse  
duration  
t
SF1 CC  
10  
ns  
ns  
PORST spike filter  
pass-through pulse  
duration  
t
SF2 CC 100  
PORST pull-down  
current  
|IPPD  
CC  
|
13  
mA Vi 1.0 V  
1) Current required to override the pull device with the opposite logic level (“force current”).  
With active pull device, at load currents between force and keep current the input state is undefined.  
2) Load current at which the pull device still maintains the valid logic level (“keep current”).  
With active pull device, at load currents between force and keep current the input state is undefined.  
3) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can not  
be guaranteed that it suppresses switching due to external system noise.  
Data Sheet  
36  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
Figure 11  
Pull Device Input Characteristics  
Figure 11 visualizes the input characteristics with an active internal pull device:  
in the cases “A” the internal pull device is overridden by a strong external driver;  
in the cases “B” the internal pull device defines the input logical state against a weak  
external load.  
Data Sheet  
37  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
Table 22  
Standard Pads Class_A1  
Parameter  
Symbol  
Min.  
Values  
Max.  
500  
Unit Note /  
Test Condition  
Input leakage current  
Input high voltage  
Input low voltage  
I
OZA1 CC -500  
nA  
V
0 V VIN VDDP  
V
V
IHA1 SR 0.6 VDDP  
V
DDP + 0.3  
max. 3.6 V  
ILA1 SR -0.3  
0.36 VDDP  
V
Output high voltage,  
POD1) = weak  
VOHA1  
CC  
V
DDP - 0.4  
V
IOH -400 A  
IOH -500 A  
IOH -1.4 mA  
IOH -2 mA  
2.4  
V
Output high voltage,  
POD1) = medium  
V
DDP - 0.4  
V
2.4  
V
Output low voltage  
Fall time  
VOLA1  
CC  
0.4  
V
IOL 500 A;  
POD1) = weak  
0.4  
150  
50  
V
IOL 2 mA;  
POD1) = medium  
t
t
FA1 CC  
ns  
ns  
ns  
ns  
CL = 20 pF;  
POD1) = weak  
CL = 50 pF;  
POD1) = medium  
Rise time  
RA1 CC  
150  
50  
CL = 20 pF;  
POD1) = weak  
CL = 50 pF;  
POD1) = medium  
1) POD = Pin Out Driver  
Table 23  
Standard Pads Class_A1+  
Parameter  
Symbol  
Min.  
Values  
Unit Note /  
Test Condition  
Max.  
Input leakage current  
Input high voltage  
Input low voltage  
I
OZA1+ CC -1  
1
A  
V
0 V VIN VDDP  
V
V
IHA1+ SR 0.6 VDDP  
V
DDP + 0.3  
max. 3.6 V  
ILA1+ SR -0.3  
0.36 VDDP  
V
Data Sheet  
38  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
Table 23  
Standard Pads Class_A1+  
Parameter  
Symbol  
Min.  
Values  
Max.  
Unit Note /  
Test Condition  
Output high voltage, VOHA1+  
V
DDP - 0.4  
V
V
V
V
V
V
V
IOH -400 A  
IOH -500 A  
IOH -1.4 mA  
IOH -2 mA  
POD1) = weak  
CC  
2.4  
Output high voltage,  
POD1) = medium  
V
DDP - 0.4  
2.4  
Output high voltage,  
POD1) = strong  
V
DDP - 0.4  
IOH -1.4 mA  
IOH -2 mA  
2.4  
Output low voltage  
VOLA1+  
0.4  
IOL 500 A;  
CC  
POD1) = weak  
0.4  
0.4  
150  
50  
V
IOL 2 mA;  
POD1) = medium  
V
IOL 2 mA;  
POD1) = strong  
Fall time  
t
FA1+ CC  
ns  
ns  
ns  
CL = 20 pF;  
POD1) = weak  
CL = 50 pF;  
POD1) = medium  
28  
CL = 50 pF;  
POD1) = strong;  
edge = slow  
16  
ns  
CL = 50 pF;  
POD1) = strong;  
edge = soft;  
Rise time  
t
RA1+ CC  
150  
50  
ns  
ns  
ns  
CL = 20 pF;  
POD1) = weak  
CL = 50 pF;  
POD1) = medium  
28  
CL = 50 pF;  
POD1) = strong;  
edge = slow  
16  
ns  
CL = 50 pF;  
POD1) = strong;  
edge = soft  
1) POD = Pin Out Driver  
Data Sheet  
39  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
Table 24  
HIB_IO Class_A1 special Pads  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
Max.  
Input leakage current  
Input high voltage  
Input low voltage  
IOZHIB  
CC  
-500  
500  
nA  
V
0 V VIN VBAT  
VIHHIB  
SR  
0.6 VBAT  
V
BAT + 0.3  
max. 3.6 V  
VILHIB  
-0.3  
0.36 VBAT  
V
SR  
Input Hysteresis for  
HIB_IO pins1)  
HYSHIB 0.1 VBAT  
V
V
VBAT 3.13 V  
VBAT 3.13 V  
CC  
0.06   
VBAT  
Output high voltage,  
POD1) = medium  
VOHHIB  
CC  
V
BAT - 0.4  
V
IOH -1.4 mA  
IOL 2 mA  
Output low voltage  
VOLHIB  
CC  
0.4  
50  
V
Fall time  
t
t
FHIB CC  
ns  
ns  
ns  
ns  
VBAT 3.13 V  
CL = 50 pF  
100  
50  
VBAT 3.13 V  
CL = 50 pF  
Rise time  
RHIB CC  
VBAT 3.13 V  
CL = 50 pF  
100  
VBAT 3.13 V  
CL = 50 pF  
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can not  
be guaranteed that it suppresses switching due to external system noise.  
Data Sheet  
40  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
3.2.2  
Analog to Digital Converters (ADCx)  
Table 25  
ADC Parameters (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
Typ. Max.  
Analog reference voltage VAREF  
V
VAREF = VDDA  
SR  
shared analog  
supply and  
reference input  
pin  
Alternate reference  
voltage5)  
VAREF  
SR  
VAGND  
+ 1  
VDDA  
V
V
0.051)  
Analog reference ground VAGND  
VAGND = VSSA  
SR  
shared analog  
supply and  
reference input  
pin  
Alternate reference  
voltage range2)5)  
VAREF  
VAGND  
SR  
-
1
VDDA  
0.1  
V
Analog input voltage  
V
AIN SR VAGND  
VDDA  
V
Input leakage at analog  
inputs3)  
I
OZ1 CC -100  
200  
nA  
0.03 VDDA   
VAIN 0.97 VDDA  
-500  
100  
500  
nA  
nA  
0 V VAIN 0.03  
VDDA  
-100  
0.97 VDDA  
VAIN VDDA  
Internal ADC clock  
f
ADCI CC  
2
30  
MHz VDDA = 3.3 V  
Switched capacitance at CAINSW  
4
6.5  
pF  
the analog voltage inputs4) CC  
Total capacitance of an  
analog input  
CAINTOT  
CC  
12  
15  
20  
30  
pF  
pF  
Switched capacitance at CAREFSW  
the alternate reference  
CC  
voltage input5)6)  
Data Sheet  
41  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
Table 25  
ADC Parameters (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
Typ. Max.  
Total capacitance of the  
alternate reference  
inputs5)  
CAREFTOT  
CC  
20  
40  
pF  
Total Unadjusted Error  
TUE CC -6  
6
LSB 12-bit resolution;  
V
V
DDA = 3.3 V;  
AREF = VDDA  
Differential Non-Linearity EADNL  
-4.5  
4.5  
LSB  
7)  
Error8)  
CC  
Gain Error8)  
EAGAIN  
-6  
6
LSB  
CC  
Integral Non-Linearity8)  
Offset Error8)  
EAINLCC -4.5  
4.5  
6
LSB  
LSB  
EAOFF  
-6  
CC  
RMS Noise9)  
ENRMS  
1
210)11) LSB  
CC  
Worst case ADC VDDA  
power supply current per CC  
active converter  
IDDAA  
1.5  
2
mA during conversion  
VDDP = 3.6 V,  
TJ = 150 oC  
Charge consumption on  
alternate reference per  
conversion5)  
QCONV  
CC  
30  
pC  
0 V VAREF  
VDDA  
12)  
ON resistance of the  
analog input path  
R
AIN CC  
600 1 200 Ohm  
550 900 Ohm  
ON resistance for the ADC RAIN7T  
test (pull down for AIN7) CC  
180  
1) A running conversion may become imprecise in case the normal conditions are violated (voltage overshoot).  
2) If the analog reference voltage is below VDDA, then the ADC converter errors increase. If the reference voltage  
is reduced by the factor k (k<1), TUE, DNL, INL, Gain, and Offset errors increase also by the factor 1/k.  
3) The leakage current definition is a continuous function, as shown in figure ADCx Analog Inputs Leakage. The  
numerical values defined determine the characteristic points of the given continuous linear approximation -  
they do not define step function (see Figure 14).  
4) The sampling capacity of the conversion C-network is pre-charged to VAREF/2 before the sampling moment.  
Because of the parasitic elements, the voltage measured at AINx can deviate from VAREF/2.  
5) Applies to AINx, when used as alternate reference input.  
6) This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage  
at once. Instead, smaller capacitances are successively switched to the reference voltage.  
7) For 10-bit conversions, the errors are reduced to 1/4; for 8-bit conversions, the errors are reduced to 1/16.  
Never less than ±1 LSB.  
Data Sheet  
42  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
8) The sum of DNL/INL/GAIN/OFF errors does not exceed the related total unadjusted error TUE.  
9) This parameter is valid for soldered devices and requires careful analog board design.  
10) Resulting worst case combined error is arithmetic combination of TUE and ENRMS.  
11) Value is defined for one sigma Gauss distribution.  
12) The resulting current for a conversion can be calculated with IAREF = QCONV / tc.  
The fastest 12-bit post-calibrated conversion of tc = 566 ns results in a typical average current of  
I
AREF = 53 μA.  
Figure 12  
VADC Reference Voltage Range  
Data Sheet  
43  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
The power-up calibration of the ADC requires a maximum number of 4 352 fADCI cycles.  
Figure 13  
ADCx Input Circuits  
Figure 14  
ADCx Analog Input Leakage Current  
Data Sheet  
44  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
Conversion Time  
Table 26  
Conversion Time (Operating Conditions apply)  
Parameter  
Symbol Values  
Unit Note  
Conversion  
time  
tC CC 2 TADC  
+
s  
N = 8, 10, 12 for  
N-bit conversion  
(2 + N + STC + PC +DM) TADCI  
T
T
ADC = 1 / fPERIPH  
ADCI = 1 / fADCI  
STC defines additional clock cycles to extend the sample time  
PC adds two cycles if post-calibration is enabled  
DM adds one cycle for an extended conversion time of the MSB  
Conversion Time Examples  
System assumptions (max. fADC):  
fADC = 80 MHz i.e. tADC = 12.5 ns, DIVA = 2, fADCI = 26.7 MHz i.e. tADCI = 37.5 ns  
According to the given formulas the following minimum conversion times can be  
achieved (STC = 0, DM = 0):  
12-bit post-calibrated conversion (PC = 2):  
t
CN12C = (2 + 12 + 2) tADCI + 2 tADC = 16 37.5 ns + 2 12.5 ns = 625 ns  
12-bit uncalibrated conversion:  
CN12 = (2 + 12) tADCI + 2 tADC = 14 37.5 ns + 2 12.5 ns = 550 ns  
10-bit uncalibrated conversion:  
CN10 = (2 + 10) tADCI + 2 tADC = 12 37.5 ns + 2 12.5 ns = 475 ns  
8-bit uncalibrated:  
CN8 = (2 + 8) tADCI + 2 tADC = 10 37.5 ns + 2 12.5 ns = 400 ns  
t
t
t
System assumptions (max. fADCI):  
ADC = 60 MHz i.e. tADC = 16.67 ns, DIVA = 1, fADCI = 30 MHz i.e. tADCI = 33.33 ns  
12-bit post-calibrated conversion (PC = 2):  
CN12C = (2 + 12 + 2) tADCI + 2 tADC = 16 33.33 ns + 2 16.67 ns = 566 ns  
f
t
Data Sheet  
45  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
3.2.3  
Digital to Analog Converters (DACx)  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
Table 27  
DAC Parameters (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit  
Note /  
Test Condition  
Min.  
Typ. Max.  
RMS supply current IDD  
CC  
2.5  
4
mA  
per active DAC  
channel,  
without load  
currents of DAC  
outputs  
Resolution  
RES  
CC  
12  
Bit  
Update rate  
fURATE_ACC  
2
Msam data rate, where  
ple/s DAC can follow  
64 LSB code jumps  
to ± 1LSB accuracy  
Update rate  
Settling time  
Slew rate  
f
URATE_F CC   
5
2
Msam data rate, where  
ple/s DAC can follow  
64 LSB code jumps  
to ± 4 LSB accuracy  
tSETTLE CC  
1
s  
at full scale jump,  
output voltage  
reaches target  
value ± 20 LSB  
SR  
CC  
2
5
V/s  
Minimum output  
voltage  
VOUT_MIN  
CC  
0.3  
V
code value  
unsigned: 000H;  
signed: 800H  
Maximum output  
voltage  
VOUT_MAX  
CC  
2.5  
V
code value  
unsigned: FFFH;  
signed: 7FFH  
Integral non-  
linearity1)  
INL  
CC -5.5  
±2.5 5.5  
±1  
LSB  
LSB  
RL 5 kOhm,  
CL 50 pF  
Differential non-  
linearity  
DNL CC -2  
2
RL 5 kOhm,  
CL 50 pF  
Data Sheet  
46  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
Table 27  
DAC Parameters (Operating Conditions apply) (cont’d)  
Parameter  
Symbol  
Values  
Typ. Max.  
±20  
Unit  
Note /  
Test Condition  
Min.  
Offset error  
Gain error  
EDOFF CC  
mV  
%
EDG_IN CC -5  
0
5
Startup time  
tSTARTUP CC  
15  
30  
s  
time from output  
enabling till code  
valid ±16 LSB  
3dB Bandwidth of  
Output Buffer  
fC1  
CC 2.5  
5
MHz verified by design  
Output sourcing  
current  
IOUT_SOURCE  
CC  
-30  
0.6  
mA  
mA  
Output sinking  
current  
IOUT_SINK  
CC  
Output resistance  
Load resistance  
Load capacitance  
ROUT CC  
5
50  
Ohm  
kOhm  
pF  
RL  
CL  
SR  
SR  
50  
Signal-to-Noise  
Ratio  
SNR CC  
THD CC  
PSRR CC  
70  
dB  
dB  
dB  
examination  
bandwidth < 25 kHz  
Total Harmonic  
Distortion  
70  
56  
examination  
bandwidth < 25 kHz  
Power Supply  
Rejection Ratio  
to VDDA  
verified by design  
1) According to best straight line method.  
Conversion Calculation  
Unsigned:  
DACxDATA = 4095 (VOUT - VOUT_MIN) / (VOUT_MAX - VOUT_MIN  
)
Signed:  
DACxDATA = 4095 (VOUT - VOUT_MIN) / (VOUT_MAX - VOUT_MIN) - 2048  
Data Sheet  
47  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
Figure 15  
DAC Conversion Examples  
Data Sheet  
48  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
3.2.4  
Out-of-Range Comparator (ORC)  
The Out-of-Range Comparator (ORC) triggers on analog input voltages (VAIN) above the  
analog reference1) (VAREF) on selected input pins (GxORCy) and generates a service  
request trigger (GxORCOUTy).  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
The parameters in Table 28 apply for the maximum reference voltage  
V
AREF = VDDA + 50 mV.  
Table 28  
ORC Parameters (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
DC Switching Level VODC CC 100  
Typ. Max.  
125  
200  
mV Ax-marking devices  
VAIN VAREF + VODC  
Hysteresis  
VOHYS CC 50  
VODC mV  
Detection Delay of a tODD CC 55  
450  
ns  
Ax-marking devices  
persistent  
VAIN VAREF + 200 mV  
Overvoltage  
45  
105  
ns  
ns  
VAIN VAREF + 400 mV  
Always detected  
tOPDD CC 440  
Ax-marking devices  
Overvoltage Pulse  
VAIN VAREF + 200 mV  
90  
ns  
ns  
VAIN VAREF + 400 mV  
Never detected  
tOPDN CC  
49  
Ax-marking devices  
Overvoltage Pulse  
VAIN VAREF + 200 mV  
30  
ns  
ns  
ns  
VAIN VAREF + 400 mV  
VAIN VAREF  
Release Delay  
Enable Delay  
tORD CC 65  
tOED CC  
105  
200  
100  
1) Always the standard VADC reference, alternate references do not apply to the ORC.  
Data Sheet  
49  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
Figure 16  
GxORCOUTy Trigger Generation  
Figure 17  
ORC Detection Ranges  
Data Sheet  
50  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
3.2.5  
High Resolution PWM (HRPWM)  
The following chapters describe the operating conditions, characteristics and timing  
requirements, for all the components inside the HRPWM module. Each description is  
given for just one sub unit, e.g., one CSG or one HRC.  
All the timing information is related to the module clock, fhrpwm  
.
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
3.2.5.1 HRC characteristics  
Table 29 summarizes the characteristics of the HRC units.  
Table 29  
HRC characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
High resolution step  
size1)2)  
tHRS CC –  
150  
ps  
Startup time (after reset  
release)  
tstart CC –  
2
s  
1) The step size for clock frequencies equal to 180, 120 and 80 MHz is 150 ps.  
2) The step size for clock frequencies different from 180, 120 and 80 MHz but within the range from 180 to 64  
MHz can be between 118 to 180 ps (fixed over process and operating conditions)  
3.2.5.2 CMP and 10-bit DAC characteristics  
The Table 30 summarizes the characteristics of the CSG unit.  
The specified characteristics require that the setup of the HRPWM follows the  
initialization sequence as documented in the Reference Manual.  
Table 30  
CMP and 10-bit DAC characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Typ.  
10  
Unit Note /  
Test Condition  
Min.  
Max.  
DAC Resolution  
RES  
bits  
CC  
DAC differential  
nonlinearity  
DNL  
CC  
-1  
1.5  
3
LSB Monotonic  
behavior  
See Figure 18  
DAC integral nonlinearity INL CC -3  
LSB See Figure 18  
Data Sheet  
51  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
Table 30  
CMP and 10-bit DAC characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
CSG Output Jitter  
DCSG  
1
clk  
CC  
Bias startup time  
tstart CC –  
98  
us  
Bias supply current  
IDDbias  
400  
A  
CC  
CSGy startup time  
Input operation current1)  
High Speed Mode  
tCSGS  
CC  
2
s  
IDDCIN  
CC  
-10  
33  
A  
See Figure 19  
DAC output voltage range VDOUT  
VSS  
VDDP  
80  
V
CC  
DAC propagation delay - tFShs  
ns  
ns  
See Figure 20  
See Figure 20  
Full scale  
CC  
InputSelectorpropagation tDhs CC  
100  
delay - Full scale  
Comparator bandwidth  
DAC CLK frequency  
Supply current  
tDhs CC 20  
ns  
fclk SR  
30  
940  
MHz  
A  
IDDhs  
CC  
Low Speed Mode  
DAC output voltage range VDOUT  
0.1   
VDDP  
VDDP  
160  
200  
V
2)  
CC  
DAC propagation delay - tFSls CC –  
Full Scale  
ns  
ns  
See Figure 20  
See Figure 20  
InputSelectorpropagation tDls CC  
delay - Full Scale  
Comparator bandwidth  
DAC CLK frequency  
Supply current  
tDls CC 20  
ns  
fclk SR  
30  
300  
MHz  
A  
IDDls  
CC  
1) Typical input resistance RCIN = 100kOhm.  
2) The INL error increases for DAC output voltages below this limit.  
Data Sheet  
52  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
Figure 18  
CSG DAC INL and DNL example  
Figure 19  
Input operation current  
Data Sheet  
53  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
Figure 20  
DAC and Input Selector Propagation Delay  
3.2.5.3 Clocks  
HRPWM DAC Conversion Clock  
The DAC conversion clock can be generated internally or it can be controlled via a  
HRPWM module pin.  
Table 31  
External DAC conversion trigger operating conditions  
Parameter  
Symbol  
Values  
Typ. Max.  
Unit Note /  
Test Con  
dition  
Min.  
Frequency  
ON time  
fetrg SR  
302)  
MHz  
ns  
1)2)  
1)2)  
tonetrg SR 2Tccu  
toffetrg SR 2Tccu  
OFF time  
ns  
1) 50% duty cycle is not obligatory  
2) Only valid if the signal was not previously synchronized/generated with the fccu clock (or a synchronous clock)  
CSG External Clock  
It is possible to select an external source, that can be used as a clock for the slope  
generation, HRPWMx.ECLKy. This clock is synchronized internally with the module  
clock and therefore the external clock needs to meet the criterion described on Table 32.  
Data Sheet  
54  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
Table 32  
External clock operating conditions  
Parameter  
Symbol  
Values  
Typ. Max.  
Unit Note /  
Test Con  
Min.  
dition  
Frequency  
ON time  
feclk SR  
fhrpwm/4 MHz  
1)2)  
1)2)  
toneclk SR 2Tccu  
toffeclk SR 2Tccu  
ns  
ns  
OFF time  
Only the  
rising  
edge is  
used  
1) 50% duty cycle is not obligatory  
2) Only valid if the signal was not previously synchronized/generated with the fccu clock (or a synchronous clock)  
3.2.6  
Low Power Analog Comparator (LPAC)  
The Low Power Analog Comparator (LPAC) triggers a wake-up event from Hibernate  
state or an interrupt trigger during normal operation. It does so by comparing VBAT or  
another external sensor voltage VLPS with a pre-programmed threshold voltage.  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
Table 33  
Low Power Analog Comparator Parameters  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min. Typ. Max.  
V
BAT supply voltage range for VBAT SR 2.1  
3.6  
V
V
LPAC operation  
Sensor voltage range  
VLPCS  
0
1.2  
CC  
Threshold step size  
Threshold trigger accuracy  
Conversion time  
Vth CC  
Vth CC  
18.75   
mV  
%
±10  
for Vth > 0.4 V  
tLPCC CC  
250  
15  
s  
Average current consumption ILPCAC  
over time  
A conversion  
CC  
interval 10 ms1)  
1)  
Current consumption during  
conversion  
I
LPCC CC  
150  
A  
1) Single channel conversion, measuring VBAT = 3.3 V, 8 cycles settling time  
Data Sheet  
55  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
3.2.7  
Die Temperature Sensor  
The Die Temperature Sensor (DTS) measures the junction temperature TJ.  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
Table 34  
Die Temperature Sensor Parameters  
Symbol Values  
Min. Typ. Max.  
Parameter  
Unit Note /  
Test Condition  
Temperature sensor range  
TSR SR -40  
TLE CC  
150  
°C  
°C  
Linearity Error  
(to the below defined formula)  
±1  
per TJ 30 °C  
Offset Error  
TOE CC   
±6  
°C TOE = TJ - TDTS  
VDDP 3.3 V1)  
Measurement time  
tM  
CC   
100  
10  
s  
s  
Start-up time after reset  
inactive  
tTSST SR   
1) At VDDP_max = 3.63 V the typical offset error increases by an additional TOE = ±1 °C.  
The following formula calculates the temperature measured by the DTS in [oC] from the  
RESULT bit field of the DTSSTAT register.  
Temperature TDTS = (RESULT - 605) / 2.05 [°C]  
This formula and the values defined in Table 34 apply with the following calibration  
values:  
DTSCON.BGTRIM = 8H  
DTSCON.REFTRIM = 4H  
Data Sheet  
56  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
3.2.8  
USB Device Interface DC Characteristics  
The Universal Serial Bus (USB) Interface is compliant to the USB Rev. 2.0 Specification.  
High-Speed Mode is not supported.  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
Table 35  
USB Device Data Line (USB_DP, USB_DM) Parameters (Operating  
Conditions apply)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
Typ. Max.  
Input low voltage  
VIL SR  
0.8  
V
V
Input high voltage  
(driven)  
VIH SR 2.0  
VIHZ SR 2.7  
VDIS CC 0.2  
VCM CC 0.8  
VOL CC 0.0  
VOH CC 2.8  
Input high voltage  
(floating) 1)  
3.6  
V
Differential input  
sensitivity  
V
Differential common  
mode range  
2.5  
V
Output low voltage  
0.3  
V
1.5 kOhm pull-  
up to 3.6 V  
Output high voltage  
3.6  
V
15 kOhm pull-  
down to 0 V  
DP pull-up resistor (idle RPUI CC 900  
bus)  
1 575  
3 090  
Ohm  
Ohm  
DP pull-up resistor  
(upstream port  
receiving)  
RPUA CC 1 425  
ZINP CC 300  
Input impedance DP,  
DM  
kOhm 0 V VIN VDDP  
Driver output resistance ZDRV CC 28  
44  
Ohm  
DP, DM  
1) Measured at A-connector with 1.5 kOhm ± 5% to 3.3 V ± 0.3 V connected to USB_DP or USB_DM and at B-  
connector with 15 kOhm ± 5% to ground connected to USB_DP and USB_DM.  
Data Sheet  
57  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
3.2.9  
Oscillator Pins  
Note: It is strongly recommended to measure the oscillation allowance (negative  
resistance) in the final target system (layout) to determine the optimal parameters  
for the oscillator operation. Please refer to the limits specified by the crystal or  
ceramic resonator supplier.  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
The oscillator pins can be operated with an external crystal (see Figure 21) or in direct  
input mode (see Figure 22).  
Figure 21  
Oscillator in Crystal Mode  
Data Sheet  
58  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
Figure 22  
Oscillator in Direct Input Mode  
Data Sheet  
59  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
Table 36  
OSC_XTAL Parameters  
Parameter  
Symbol  
Min.  
Values  
Typ.  
Unit Note /  
Test Condition  
Max.  
Input frequency  
f
OSC SR  
4
4
40  
MHz Direct Input Mode  
selected  
25  
10  
MHz External Crystal  
Mode selected  
Oscillator start-up  
time1)2)  
tOSCS  
ms  
CC  
Input voltage at XTAL1 VIX SR -0.5  
VDDP  
0.5  
+
+
+
V
Input amplitude (peak-  
to-peak) at XTAL12)3)  
V
V
V
PPX SR 0.4   
VDDP  
1.0  
V
VDDP  
Input high voltage at  
XTAL14)  
IHBXSR 1.0  
ILBX SR -0.5  
VDDP  
0.5  
V
Input low voltage at  
XTAL14)  
0.4  
V
Input leakage current at IILX1 CC -100  
XTAL1  
100  
nA  
Oscillator power  
down  
0 V VIX VDDP  
1)  
tOSCS is defined from the moment the oscillator is enabled wih SCU_OSCHPCTRL.MODE until the oscillations  
reach an amplitude at XTAL1 of 0.4 * VDDP  
.
2) The external oscillator circuitry must be optimized by the customer and checked for negative resistance and  
amplitude as recommended and specified by crystal suppliers.  
3) If the shaper unit is enabled and not bypassed.  
4) If the shaper unit is bypassed, dedicated DC-thresholds have to be met.  
Data Sheet  
60  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
Table 37  
RTC_XTAL Parameters  
Symbol  
Parameter  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
fOSC SR   
Max.  
Input frequency  
32.768   
kHz  
s
Oscillator start-up  
time1)2)3)  
tOSCS  
5
CC  
Input voltage at  
RTC_XTAL1  
VIX SR -0.3  
VBAT  
0.3  
+
+
V
V
Input amplitude (peak-  
to-peak) at  
V
PPX SR 0.4  
RTC_XTAL12)4)  
Input high voltage at  
RTC_XTAL15)  
V
V
IHBXSR 0.6   
VBAT  
0.3  
V
V
VBAT  
Input low voltage at  
RTC_XTAL15)  
ILBX SR -0.3  
0.36   
VBAT  
Input Hysteresis for  
RTC_XTAL13)6)  
VHYSX  
CC  
0.1   
VBAT  
V
3.0 V   
V
BAT < 3.6 V  
0.03   
V
V
BAT < 3.0 V  
VBAT  
Input leakage current at IILX1 CC -100  
RTC_XTAL1  
100  
nA  
Oscillator power  
down  
0 V VIX VBAT  
1)  
tOSCS is defined from the moment the oscillator is enabled by the user with SCU_OSCULCTRL.MODE until the  
oscillations reach an amplitude at RTC_XTAL1 of 400 mV.  
2) The external oscillator circuitry must be optimized by the customer and checked for negative resistance and  
amplitude as recommended and specified by crystal suppliers.  
3) For a reliable start of the oscillation in crystal mode it is required that VBAT 3.0 V. A running oscillation is  
maintained across the full VBAT voltage range.  
4) If the shaper unit is enabled and not bypassed.  
5) If the shaper unit is bypassed, dedicated DC-thresholds have to be met.  
6) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can not  
be guaranteed that it suppresses switching due to external system noise.  
Data Sheet  
61  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
3.2.10  
Power Supply Current  
The total power supply current defined below consists of a leakage and a switching  
component.  
Application relevant values are typically lower than those given in the following tables,  
and depend on the customer's system operating conditions (e.g. thermal connection or  
used application configurations).  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
If not stated otherwise, the operating conditions for the parameters in the following table  
are:  
V
DDP = 3.3 V, TA = 25 oC  
Table 38  
Power Supply Parameters  
Symbol  
Parameter  
Values  
Min. Typ. Max.  
Unit  
Note /  
Test Condition  
Active supply current1)  
Peripherals enabled  
Frequency:  
IDDPA CC   
80  
75  
73  
59  
50  
24  
19  
mA  
80 / 80 / 80  
80 / 40 / 40  
40 / 40 / 80  
24 / 24 / 24  
1 / 1 / 1  
fCPU / fPERIPH / fCCU in MHz  
IDDPA CC   
Active supply current  
Code execution from RAM  
Flash in Sleep mode  
Frequency:  
mA  
mA  
80 / 80 / 80  
80 / 40 / 40  
fCPU / fPERIPH / fCCU in MHz  
Active supply current2)  
Peripherals disabled  
Frequency:  
IDDPA CC   
63  
62  
60  
54  
50  
80 / 80 / 80  
80 / 40 / 40  
40 / 40 / 80  
24 / 24 / 24  
1 / 1 / 1  
fCPU / fPERIPH in MHz  
Data Sheet  
62  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
Table 38  
Power Supply Parameters  
Symbol  
Parameter  
Values  
Min. Typ. Max.  
Unit  
Note /  
Test Condition  
Sleep supply current3)  
Peripherals enabled  
Frequency:  
IDDPS CC   
76  
73  
70  
56  
47  
46  
59  
58  
57  
51  
46  
46  
6.9  
4.3  
3.8  
mA  
80 / 80 / 80  
80 / 40 / 40  
40 / 40 / 80  
24 / 24 / 24  
1 / 1 / 1  
fCPU / fPERIPH / fCCU in MHz  
fCPU / fPERIPH / fCCU in kHz  
100 / 100 / 100  
80 / 80 / 80  
80 / 40 / 40  
40 / 40 / 80  
24 / 24 / 24  
1 / 1 / 1  
Sleep supply current4)  
Peripherals disabled  
Frequency:  
IDDPS CC   
mA  
mA  
fCPU / fPERIPH / fCCU in MHz  
fCPU / fPERIPH / fCCU in kHz  
100 / 100 / 100  
24 / 24 / 24  
4 / 4 / 4  
Deep Sleep supply  
current5)  
Flash in Sleep mode  
Frequency:  
IDDPD CC  
1 / 1 / 1  
fCPU / fPERIPH / fCCU in MHz  
fCPU / fPERIPH / fCCU in kHz  
4.5  
100 / 100 / 100  
6)  
Hibernate supply current  
RTC on7)  
IDDPH CC  
10.8  
8.0  
6.8  
10.3  
7.5  
6.3  
A  
A  
V
V
V
V
V
V
BAT = 3.3 V  
BAT = 2.4 V  
BAT = 2.0 V  
BAT = 3.3 V  
BAT = 2.4 V  
BAT = 2.0 V  
Hibernate supply current  
RTC off8)  
IDDPH CC  
Worst case active supply  
current9)  
IDDPA CC   
140 mA  
VDDP = 3.6 V,  
TJ = 150 oC  
10)  
V
DDA power supply current IDDA CC  
DDP current at PORST Low IDDP_PORST  
CC  
11)  
mA  
mA  
I
24  
VDDP = 3.6 V,  
TJ = 150 oC  
Data Sheet  
63  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
Table 38  
Power Supply Parameters  
Symbol  
Parameter  
Values  
Min. Typ. Max.  
Unit  
Note /  
Test Condition  
Power Dissipation  
PDISS CC   
6
1
W
VDDP = 3.6 V,  
TJ = 150 oC  
Wake-uptimefromSleepto tSSA CC   
Active mode  
cycles  
ms  
Wake-up time from Deep  
Sleep to Active mode  
Defined by the  
wake-up of the  
Flash module,  
see  
Section 3.2.11  
Wake-up time from  
Hibernate mode  
ms  
Wake-up via  
power-on reset  
event, see  
Section 3.3.2  
1) CPU executing code from Flash, all peripherals idle.  
2) CPU executing code from Flash. USB and CCU clock off.  
3) CPU in sleep, all peripherals idle, Flash in Active mode.  
4) CPU in sleep, Flash in Active mode.  
5) CPU in sleep, peripherals disabled, after wake-up code execution from RAM.  
6) To wake-up the Flash from its Sleep mode, fCPU 1 MHz is required.  
7) OSC_ULP operating with external crystal on RTC_XTAL  
8) OSC_ULP off, Hibernate domain operating with OSC_SI clock  
9) Test Power Loop: fSYS = 80 MHz, CPU executing benchmark code from Flash, all CCUs in 100kHz timer mode,  
all ADC groups in continuous conversion mode, USICs as SPI in internal loop-back mode, CAN in 500kHz  
internal loop-back mode, interrupt triggered DMA block transfers to parity protected RAMs and FCE, DTS  
measurements and FPU calculations.  
The power consumption of each customer application will most probably be lower than this value, but must be  
evaluated separately.  
10) IDDP decreases typically by 3.5 mA when fSYS decreases by 10 MHz, at constant TJ  
11) Sum of currents of all active converters (ADC and DAC)  
Data Sheet  
64  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
Peripheral Idle Currents  
Test conditions:  
f
V
sys and derived clocks at 80 MHz  
DDP = 3.3 V, Ta =25 °C  
all peripherals are held in reset (see the PRSTAT registers in the Reset Control Unit  
of the SCU)  
the peripheral clocks are disabled (see CGATSTAT registers in the Clock Control  
Unit of the SCU  
no I/O activity  
the given values are a result of differential measurements with asserted and  
deasserted peripheral reset and enabled clock of the peripheral under test  
The tested peripheral is left in the state after the peripheral reset is deasserted, no further  
initialisation or configuration is done. E.g. no timer is running in the CCUs, no  
communication active in the USICs, etc.  
Table 39  
Peripheral Idle Currents  
Parameter  
Symbol  
Min.  
Values  
Typ.  
Unit  
Note /  
Test Condition  
Max.  
PORTS  
USB  
I
PER CC  
0.3  
mA  
FCE  
WDT  
POSIFx1)  
MultiCAN  
ERU  
1.0  
LEDTSCU0  
CCU4x1)  
CCU8x1)  
DAC (digital)2)  
1.3  
3.0  
4.5  
6.0  
USICx  
VADC (digital)2)  
DMAx  
1) Enabling the fCCU clock for the POSIFx/CCU4x/CCU8x modules adds approximately IPER = 1.8 mA,  
disregarding which and how many of those peripherals are enabled.  
2) The current consumption of the analog components are given in the dedicated Data Sheet sections of the  
respective peripheral.  
Data Sheet  
65  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
3.2.11  
Flash Memory Parameters  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
Table 40  
Flash Memory Parameters  
Parameter  
Symbol  
Min.  
Values  
Typ.  
5
Unit  
Note /  
Test Condition  
Max.  
Erase Time per 256  
Kbyte Sector  
tERP CC  
5.5  
s
s
s
Erase Time per 64 Kbyte tERP CC  
Sector  
1.2  
0.3  
1.4  
0.4  
Erase Time per 16 Kbyte tERP CC  
Logical Sector  
Program time per page1)  
t
PRP CC  
5.5  
11  
15  
ms  
ms  
Erase suspend delay  
tFL_ErSusp  
CC  
Wait time after margin  
change  
tFL_Margin 10  
Del CC  
s  
Wake-up time  
t
WU CC  
270  
s  
Read access time  
ta CC  
20  
ns  
For operation  
with 1 / fCPU < ta  
waitstatesmust  
be configured2)  
Data Retention Time,  
Physical Sector3)4)  
t
RET CC 20  
RETL CC 20  
years Max. 1000  
erase/program  
cycles  
Data Retention Time,  
Logical Sector3)4)  
t
years Max. 100  
erase/program  
cycles  
Data Sheet  
66  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
Table 40  
Flash Memory Parameters  
Parameter  
Symbol  
Min.  
Values  
Unit Note /  
Test Condition  
Typ. Max.  
Data Retention Time,  
UserConfigurationBlock  
(UCB)3)4)  
tRTU CC 20  
years Max. 4  
erase/program  
cycles per UCB  
Endurance on 64 Kbyte NEPS4  
Physical Sector PS4 CC  
10000  
cycles BA-marking  
devices only!  
Cycling  
distributed over  
life time5)  
1) In case the Program Verify feature detects weak bits, these bits will be programmed once more. The  
reprogramming takes an additional time of 5.5 ms.  
2) The following formula applies to the wait state configuration: FCON.WSPFLASH (1 / fCPU) ta.  
3) Storage and inactive time included.  
4) Values given are valid for an average weighted junction temperature of TJ = 110°C.  
5) Only valid with robust EEPROM emulation algorithm, equally cycling the logical sectors. For more details see  
the Reference Manual.  
Data Sheet  
67  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
3.3  
AC Parameters  
3.3.1  
Testing Waveforms  
Figure 23  
Rise/Fall Time Parameters  
Figure 24  
Testing Waveform, Output Delay  
Figure 25  
Testing Waveform, Output High Impedance  
Data Sheet  
68  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
3.3.2  
Power-Up and Supply Monitoring  
PORST is always asserted when VDDP and/or VDDC violate the respective thresholds.  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
Figure 26  
PORST Circuit  
Table 41  
Supply Monitoring Parameters  
Symbol  
Parameter  
Values  
Unit Note /  
Test Condition  
Min. Typ. Max.  
3)  
Digital supply voltage reset VPOR CC 2.791)  
threshold  
3.052)  
1.17  
V
V
V
Core supply voltage reset VPV CC  
threshold  
V
DDP voltage to ensure  
VDDPPA  
1.0  
defined pad states  
CC  
PORST rise time  
tPR SR  
2
s  
Startup time from power-on tSSW CC  
reset with code execution  
from Flash  
2.5  
3.5  
ms  
Time to the first  
user code  
instruction  
V
DDC ramp up time  
tVCR CC  
550  
s  
Ramp up after  
power-on or  
after a reset  
triggered by a  
violation of  
V
POR or VPV  
1) Minimum threshold for reset assertion.  
Data Sheet  
69  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
2) Maximum threshold for reset deassertion.  
3) The VDDP monitoring has a typical hysteresis of VPORHYS = 180 mV.  
Figure 27  
3.3.3  
Power-Up Behavior  
Power Sequencing  
While starting up and shutting down as well as when switching power modes of the  
system it is important to limit the current load steps. A typical cause for such load steps  
is changing the CPU frequency fCPU. Load steps exceeding the below defined values  
may cause a power on reset triggered by the supply monitor.  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
Data Sheet  
70  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
Table 42  
Power Sequencing Parameters  
Symbol  
Parameter  
Values  
Unit Note /  
Test Condition  
Min. Typ. Max.  
Positive Load Step Current IPLS SR  
-
-
-
50  
mA Load increase  
on VDDP  
t 10 ns  
Negative Load Step  
Current  
INLS SR  
VLS CC  
150  
±100  
mA Load decrease  
on VDDP  
t 10 ns  
V
DDC Voltage Over-  
mV For maximum  
positive or  
/ Undershoot from Load  
Step  
negative load  
step  
Positive Load Step Settling tPLSS SR 50  
Time  
-
s  
s  
Negative Load Step  
Settling Time  
tNLSS SR 100  
-
External Buffer Capacitor CEXT SR  
3
4.7  
6
F  
In addition  
on VDDC  
C = 100 nF  
capacitor on  
each VDDC pin  
Positive Load Step Examples  
System assumptions:  
fCPU = fSYS, target frequency fCPU = 80 MHz, main PLL fVCO = 480 MHz, stepping done by  
K2 divider, tPLSS between individual steps:  
24 MHz - 48 MHz - 80 MHz (K2 steps 20 - 10 - 6)  
24 MHz - 60 MHz - 80 MHz (K2 steps 20 - 8 - 6)  
Data Sheet  
71  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
3.3.4  
Phase Locked Loop (PLL) Characteristics  
Main and USB PLL  
Table 43  
PLL Parameters  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
Accumulated Jitter  
Duty Cycle1)  
DP CC  
±5  
ns  
%
accumulated  
over 300 cycles  
fSYS = 80 MHz  
D
DC CC 46  
50  
54  
Low pulse to  
total period,  
assuming an  
idealinputclock  
source  
PLL base frequency  
fPLLBASE 30  
140  
MHz  
CC  
VCO input frequency  
VCO frequency range  
PLL lock-in time  
f
REF CC  
4
16  
MHz  
MHz  
s  
fVCO CC 260  
520  
400  
tL CC  
1) 50% for even K2 divider values, 50±(10/K2) for odd K2 divider values.  
Data Sheet  
72  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
3.3.5  
Internal Clock Source Characteristics  
Fast Internal Clock Source  
Table 44  
Fast Internal Clock Parameters  
Parameter  
Symbol  
Values  
Typ.  
36.5  
24  
Unit Note /  
Test Condition  
Min.  
Max.  
Nominal frequency  
Accuracy  
fOFINC  
CC  
MHz not calibrated  
MHz calibrated  
fOFI  
CC  
-0.5  
0.5  
%
automatic  
calibration1)2)  
-15  
15  
%
factory  
calibration,  
V
DDP = 3.3 V  
no calibration,  
DDP = 3.3 V  
-25  
-7  
25  
7
%
%
V
Variation over  
voltage range3)  
3.13 V VDDP  
3.63 V  
Start-up time  
tOFIS CC  
50  
s  
1) Error in addition to the accuracy of the reference clock.  
2) Automatic calibration compensates variations of the temperature and in the VDDP supply voltage.  
3) Deviations from the nominal VDDP voltage induce an additional error to the uncalibrated and/or factory  
calibrated oscillator frequency.  
Data Sheet  
73  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
Slow Internal Clock Source  
Table 45  
Slow Internal Clock Parameters  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
Max.  
Nominal frequency  
Accuracy  
fOSI CC  
32.768   
kHz  
fOSI  
CC  
-4  
4
%
VBAT = const.  
0 °C TA   
85 °C  
-5  
5
%
VBAT = const.  
TA 0 °C or  
TA 85 °C  
-5  
5
%
%
2.4 V VBAT  
TA = 25 °C  
,
-10  
10  
1.95 V   
V
BAT < 2.4 V,  
TA = 25 °C  
Start-up time  
tOSIS CC   
50  
s  
Data Sheet  
74  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
3.3.6  
JTAG Interface Timing  
The following parameters are applicable for communication through the JTAG debug  
interface. The JTAG module is fully compliant with IEEE1149.1-2000.  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
Note: Operating conditions apply.  
Table 46  
JTAG Interface Timing Parameters  
Symbol Values  
Parameter  
Unit Note /  
Test Condition  
Min.  
Typ.  
Max.  
TCK clock period  
TCK clock period  
t1 SR 30  
ns  
ns  
For CL = 20 pF  
on TDO  
t1 SR 40  
For CL = 50 pF  
on TDO  
TCK high time  
t2 SR 10  
t3 SR 10  
4
4
ns  
ns  
ns  
ns  
ns  
TCK low time  
TCK clock rise time  
TCK clock fall time  
t4 SR  
t5 SR  
t6 SR  
6
TDI/TMS setup  
to TCK rising edge  
TDI/TMS hold  
t7 SR  
6
ns  
after TCK rising edge  
TDO valid after TCK falling t8 CC  
3
2
17  
ns  
ns  
ns  
CL = 50 pF  
CL = 20 pF  
edge1) (propagation delay)  
TDO hold after TCK falling t18 CC  
edge1)  
TDO high imped. to valid t9 CC  
14  
ns  
ns  
CL = 50 pF  
CL = 50 pF  
from TCK falling edge1)2)  
TDO valid to high imped. t10 CC  
13.5  
from TCK falling edge1)  
1) The falling edge on TCK is used to generate the TDO timing.  
2) The setup time for TDO is given implicitly by the TCK cycle time.  
Data Sheet  
75  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
Figure 28  
Test Clock Timing (TCK)  
Figure 29  
JTAG Timing  
Data Sheet  
76  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
3.3.7  
Serial Wire Debug Port (SW-DP) Timing  
The following parameters are applicable for communication through the SW-DP  
interface.  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
Note: Operating conditions apply.  
Table 47  
SWD Interface Timing Parameters (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
Typ. Max.  
SWDCLK clock period  
tSC SR 25  
40  
ns  
ns  
CL = 30 pF  
CL = 50 pF  
SWDCLK high time  
SWDCLK low time  
t1 SR 10  
t2 SR 10  
500000 ns  
500000 ns  
SWDIO input setup  
t3 SR  
6
ns  
to SWDCLK rising edge  
SWDIO input hold  
t4 SR  
6
ns  
after SWDCLK rising edge  
SWDIO output valid time t5 CC  
after SWDCLK rising edge  
3
17  
13  
ns  
ns  
ns  
CL = 50 pF  
CL = 30 pF  
SWDIO output hold time t6 CC  
from SWDCLK rising edge  
Figure 30  
SWD Timing  
Data Sheet  
77  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
3.3.8  
Peripheral Timing  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
Note: Operating conditions apply.  
3.3.8.1 Synchronous Serial Interface (USIC SSC) Timing  
The following parameters are applicable for a USIC channel operated in SSC mode.  
Note: Operating Conditions apply.  
Table 48  
USIC SSC Master Mode Timing  
Symbol Values  
Typ. Max.  
Parameter  
Unit Note /  
Test Condition  
Min.  
CLK CC 40  
SCLKOUT master clock  
period  
t
ns  
ns  
Slave select output SELO t1 CC tSYS  
active to first SCLKOUT  
-
6.51)  
transmit edge  
Slave select output SELO t2 CC tSYS  
inactive after last  
-
ns  
8.51)  
SCLKOUT receive edge  
Data output DOUT[3:0]  
valid time  
t3 CC -6  
t4 SR 23  
8
ns  
ns  
Receive data input  
DX0/DX[5:3] setup time to  
SCLKOUT receive edge  
Data input DX0/DX[5:3]  
hold time from SCLKOUT  
receive edge  
t5 SR  
1
ns  
1)  
tSYS = 1 / fPB  
Data Sheet  
78  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
Table 49  
USIC SSC Slave Mode Timing  
Parameter  
Symbol  
Min.  
Values  
Unit Note /  
Test Condition  
Typ. Max.  
DX1 slave clock period  
tCLK SR 66.6  
t10 SR 3  
ns  
ns  
Select input DX2 setup to  
first clock input DX1 transmit  
edge1)  
Select input DX2 hold after t11 SR 4  
last clock input DX1 receive  
edge1)  
ns  
ns  
ns  
ns  
Receive data input  
t12 SR 6  
DX0/DX[5:3] setup time to  
shift clock receive edge1)  
Data input DX0/DX[5:3] hold t13 SR 4  
time from clock input DX1  
receive edge1)  
Data output DOUT[3:0] valid t14 CC 0  
24  
time  
1) These input timing are valid for asynchronous input signal handling of slave select input, shift clock input, and  
receive data input (bits DXnCR.DSEN = 0).  
Data Sheet  
79  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
Figure 31  
USIC - SSC Master/Slave Mode Timing  
Note: This timing diagram shows a standard configuration, for which the slave select  
signal is low-active, and the serial clock signal is not shifted and not inverted.  
Data Sheet  
80  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
3.3.8.2 Inter-IC (IIC) Interface Timing  
The following parameters are applicable for a USIC channel operated in IIC mode.  
Note: Operating Conditions apply.  
Table 50  
USIC IIC Standard Mode Timing1)  
Symbol Values  
Parameter  
Unit Note /  
Test Condition  
Min.  
Typ.  
Max.  
Fall time of both SDA and t1  
-
-
300  
ns  
ns  
μs  
ns  
μs  
μs  
μs  
μs  
μs  
μs  
SCL  
CC/SR  
Rise time of both SDA and t2  
-
-
-
-
-
-
-
-
-
-
1000  
SCL  
CC/SR  
Data hold time  
t3  
0
-
-
-
-
-
-
-
-
CC/SR  
Data set-up time  
t4  
250  
4.7  
4.0  
4.0  
4.7  
4.0  
4.7  
CC/SR  
LOW period of SCL clock t5  
CC/SR  
HIGH period of SCL clock t6  
CC/SR  
t7  
CC/SR  
Hold time for (repeated)  
START condition  
Set-up time for repeated t8  
START condition  
CC/SR  
Set-up time for STOP  
condition  
t9  
CC/SR  
Bus free time between a t10  
STOP and START  
CC/SR  
condition  
Capacitive load for each  
bus line  
Cb SR  
-
-
400  
pF  
1) Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines  
need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device,  
approximalely 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.  
Data Sheet  
81  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
Table 51  
USIC IIC Fast Mode Timing1)  
Parameter  
Symbol  
Min.  
Values  
Typ.  
-
Unit Note /  
Test Condition  
Max.  
Fall time of both SDA and t1  
SCL CC/SR 0.1*Cb  
20 +  
300  
ns  
ns  
2)  
Rise time of both SDA and t2  
20 +  
-
300  
SCL  
CC/SR 0.1*Cb  
2)  
Data hold time  
Data set-up time  
t3  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
μs  
ns  
μs  
μs  
μs  
μs  
μs  
μs  
CC/SR  
t4  
100  
1.3  
0.6  
0.6  
0.6  
0.6  
1.3  
CC/SR  
LOW period of SCL clock t5  
CC/SR  
HIGH period of SCL clock t6  
CC/SR  
t7  
CC/SR  
Hold time for (repeated)  
START condition  
Set-up time for repeated t8  
START condition  
CC/SR  
Set-up time for STOP  
condition  
t9  
CC/SR  
Bus free time between a t10  
STOP and START  
CC/SR  
condition  
Capacitive load for each  
bus line  
Cb SR  
-
-
400  
pF  
1) Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines  
need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device,  
approximalely 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.  
2) Cb refers to the total capacitance of one bus line in pF.  
Data Sheet  
82  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
Figure 32  
USIC IIC Stand and Fast Mode Timing  
3.3.8.3 Inter-IC Sound (IIS) Interface Timing  
The following parameters are applicable for a USIC channel operated in IIS mode.  
Note: Operating Conditions apply.  
Table 52  
USIC IIS Master Transmitter Timing  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
Typ.  
Max.  
Clock period  
t1 CC  
t2 CC  
33.3  
ns  
ns  
Clock high time  
0.35 x  
t1min  
Clock low time  
t3 CC  
0.35 x  
t1min  
ns  
Hold time  
t4 CC  
t5 CC  
0
ns  
Clock rise time  
0.15 x ns  
t1min  
Data Sheet  
83  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
Figure 33  
USIC IIS Master Transmitter Timing  
USIC IIS Slave Receiver Timing  
Table 53  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
Typ.  
Max.  
Clock period  
t6 SR  
t7 SR  
66.6  
ns  
ns  
Clock high time  
0.35 x  
t6min  
Clock low time  
Set-up time  
Hold time  
t8 SR  
t9 SR  
0.35 x  
t6min  
ns  
ns  
ns  
0.2 x  
t6min  
t10 SR  
0
Figure 34  
USIC IIS Slave Receiver Timing  
Data Sheet  
84  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Electrical Parameters  
3.3.9  
USB Interface Characteristics  
The Universal Serial Bus (USB) Interface is compliant to the USB Rev. 2.0 Specification.  
High-Speed Mode is not supported.  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
Table 54  
USB Timing Parameters (operating conditions apply)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
Typ. Max.  
Rise time  
Fall time  
tR  
tF  
CC  
CC  
4
4
20  
ns  
ns  
%
V
CL = 50 pF  
CL = 50 pF  
CL = 50 pF  
CL = 50 pF  
20  
Rise/Fall time matching tR/tF  
Crossover voltage VCRS  
CC 90  
CC 1.3  
111.11  
2.0  
Figure 35  
USB Signal Timing  
Data Sheet  
85  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Package and Reliability  
4
Package and Reliability  
The XMC4[12]00 is a member of the XMC4000 Family of microcontrollers. It is also  
compatible to a certain extent with members of similar families or subfamilies.  
Each package is optimized for the device it houses. Therefore, there may be slight  
differences between packages of the same pin-count but for different device types. In  
particular, the size of the Exposed Die Pad may vary.  
If different device types are considered or planned for an application, it must be ensured  
that the board layout fits all packages under consideration.  
4.1  
Package Parameters  
Table 55 provides the thermal characteristics of the packages used in XMC4[12]00. The  
availability of different packages for different markings is listed in Table 2.  
Table 55  
Thermal Characteristics of the Packages  
Limit Values  
Parameter  
Symbol  
Unit  
Package Types  
Min. Max.  
PG-TQFP-64-19  
PG-TQFP-64-21  
-
5.7 5.7 mm  
5.2 5.2 mm  
Exposed Die Pad  
Dimensions  
Ex Ey  
CC  
-
-
-
-
PG-VQFN-48-71  
PG-TQFP-64-191)  
23.4  
34.8  
K/W  
K/W  
Thermal resistance  
Junction-Ambient  
RJA  
CC  
PG-TQFP-64-211)  
PG-VQFN-48-711)  
Package thickness  
1.0±0.05mm  
PG-TQFP-64-19  
PG-TQFP-64-21  
-
1.2 Max mm  
1) Device mounted on a 4-layer JEDEC board (JESD 51-7) with thermal vias; exposed pad soldered.  
Note: For electrical reasons, it is required to connect the exposed pad to the board  
ground VSS, independent of EMC and thermal requirements.  
Data Sheet  
86  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Package and Reliability  
4.1.1  
Thermal Considerations  
When operating the XMC4[12]00 in a system, the total heat generated in the chip must  
be dissipated to the ambient environment to prevent overheating and the resulting  
thermal damage.  
The maximum heat that can be dissipated depends on the package and its integration  
into the target board. The “Thermal resistance RJA” quantifies these parameters. The  
power dissipation must be limited so that the average junction temperature does not  
exceed 150 °C.  
The difference between junction temperature and ambient temperature is determined by  
T = (PINT + PIOSTAT + PIODYN) RJA  
The internal power consumption is defined as  
P
INT = VDDP IDDP (switching current and leakage current).  
The static external power consumption caused by the output drivers is defined as  
IOSTAT = ((VDDP-VOH) IOH) + (VOL IOL  
P
)
The dynamic external power consumption caused by the output drivers (PIODYN) depends  
on the capacitive load connected to the respective pins and their switching frequencies.  
If the total power dissipation for a given system configuration exceeds the defined limit,  
countermeasures must be taken to ensure proper system operation:  
Reduce VDDP, if possible in the system  
Reduce the system frequency  
Reduce the number of output pins  
Reduce the load on active output drivers  
Data Sheet  
87  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Package and Reliability  
4.2  
Package Outlines  
The availability of different packages for different devices types is listed in Table 1,  
specific packages for different device markings are listed in Table 2.  
+0.07  
15 x 0.5 = 7.5  
-0.04  
H
0.5  
0.15  
0.6  
0.08  
64x  
C
C
SEATING PLANE COPLANARITY  
2)  
+0.07  
-0.03  
0.2  
M
0.08 A-B D C 64x  
12  
10  
0.2 A-B D 64x  
1)  
D
5.7  
4.9  
0.2 A-B D H 4x  
Exposed Diepad  
A
B
64  
64  
1
1
Index Marking  
1) Does not include plastic or metal protrusion of 0.25 max. per side  
2) Does not include dambar protrusion of 0.08 max. per side  
PG-TQFP-64-19-PO V02  
Figure 36  
PG-TQFP-64-19 (Plastic Green Thin Profile Quad Flat Package)  
Data Sheet  
88  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Package and Reliability  
PG-TQFP-64-21  
Figure 37  
PG-TQFP-64-21 (Plastic Green Thin Profile Quad Flat Package)  
11 x 0.5  
0.5  
= 5.5  
7
0.9 MAX.  
(0.2)  
A
0.1 A  
C
2x  
B
25  
36  
24  
0.1 C  
48x  
37  
48  
0.05 C  
COPLANARITY  
0.05  
5.2  
M
0.05  
A
B
C
A
13  
12  
1
Index Marking  
0.1 B  
Index Marking  
C
2x  
+0.05  
-0.07  
48x  
0.25  
0.05  
0.4  
M
C
0.1  
0.05  
B
C
C
0.05 MAX.  
STANDOFF  
M
PG-VQFN-48-71-PO V02  
Figure 38  
PG-VQFN-48-71 (Plastic Green Very Thin Profile Flat Non Leaded  
Package)  
All dimensions in mm.  
You can find complete information about Infineon packages, packing and marking in our  
Infineon Internet Page “Packages”: http://www.infineon.com/packages  
Data Sheet  
89  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
XMC4100 / XMC4200  
XMC4000 Family  
Quality Declarations  
5
Quality Declarations  
The qualification of the XMC4[12]00 is executed according to the JEDEC standard  
JESD47H.  
Note: For automotive applications refer to the Infineon automotive microcontrollers.  
Table 56  
Quality Parameters  
Symbol  
Values  
Note /  
Test Condition  
Parameter  
Unit  
Min. Typ. Max.  
TJ 109°C,  
devicepermanent  
on  
Operation lifetime  
tOP CC 20  
a
ESD susceptibility  
according to Human Body  
Model (HBM)  
VHBM  
EIA/JESD22-  
A114-B  
2 000  
V
SR  
ESD susceptibility  
according to Charged  
Device Model (CDM)  
VCDM  
SR  
Conforming to  
JESD22-C101-C  
500  
3
V
MSL  
JEDEC  
J-STD-020D  
Moisture sensitivity level  
CC  
Profile according  
to JEDEC  
J-STD-020D  
TSDR  
SR  
Soldering temperature  
260  
°C  
Data Sheet  
90  
V1.5, 2023-04  
Subject to Agreement on the Use of Product Information  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

XMC4104-F64F128 BA

XMC4100 / 4200系列属于基于ARM Cortex-M4处理器内核的XMC4000系列工业微控制器。 XMC4100 / 4200系列微控制器充分利用了英飞凌数十年的微控制器设计经验,提供优化的解决方案,足以应对当今嵌入式控制应用的性能挑战。XMC4100/4200 系列将 ARM Cortex-M4 内核的扩展功能和性能与功能强大的片上外设子系统和片上存储器单元相结合。

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XMC4104-F64F64 BA

XMC4100 / 4200系列属于基于ARM Cortex-M4处理器内核的XMC4000系列工业微控制器。 XMC4100 / 4200系列微控制器充分利用了英飞凌数十年的微控制器设计经验,提供优化的解决方案,足以应对当今嵌入式控制应用的性能挑战。XMC4100/4200 系列将 ARM Cortex-M4 内核的扩展功能和性能与功能强大的片上外设子系统和片上存储器单元相结合。

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XMC4104-F64K128 BA

XMC4100 / 4200系列属于基于ARM Cortex-M4处理器内核的XMC4000系列工业微控制器。 XMC4100 / 4200系列微控制器充分利用了英飞凌数十年的微控制器设计经验,提供优化的解决方案,足以应对当今嵌入式控制应用的性能挑战。XMC4100/4200 系列将 ARM Cortex-M4 内核的扩展功能和性能与功能强大的片上外设子系统和片上存储器单元相结合。

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XMC4104-F64K64 BA

XMC4100 / 4200系列属于基于ARM Cortex-M4处理器内核的XMC4000系列工业微控制器。 XMC4100 / 4200系列微控制器充分利用了英飞凌数十年的微控制器设计经验,提供优化的解决方案,足以应对当今嵌入式控制应用的性能挑战。XMC4100/4200 系列将 ARM Cortex-M4 内核的扩展功能和性能与功能强大的片上外设子系统和片上存储器单元相结合。 

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XMC4104-F64x128

Microcontroller Series for Industrial Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XMC4104-F64x64

Microcontroller Series for Industrial Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XMC4104-Q48F64 BA

XMC4100 / 4200系列属于基于ARM Cortex-M4处理器内核的XMC4000系列工业微控制器。 XMC4100 / 4200系列微控制器充分利用了英飞凌数十年的微控制器设计经验,提供优化的解决方案,足以应对当今嵌入式控制应用的性能挑战。XMC4100/4200 系列将 ARM Cortex-M4 内核的扩展功能和性能与功能强大的片上外设子系统和片上存储器单元相结合。

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XMC4104-Q48K128 BA

XMC4100 / 4200系列属于基于ARM Cortex-M4处理器内核的XMC4000系列工业微控制器。 XMC4100 / 4200系列微控制器充分利用了英飞凌数十年的微控制器设计经验,提供优化的解决方案,足以应对当今嵌入式控制应用的性能挑战。XMC4100/4200 系列将 ARM Cortex-M4 内核的扩展功能和性能与功能强大的片上外设子系统和片上存储器单元相结合。

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XMC4104-Q48K64 BA

XMC4100 / 4200系列属于基于ARM Cortex-M4处理器内核的XMC4000系列工业微控制器。 XMC4100 / 4200系列微控制器充分利用了英飞凌数十年的微控制器设计经验,提供优化的解决方案,足以应对当今嵌入式控制应用的性能挑战。XMC4100/4200 系列将 ARM Cortex-M4 内核的扩展功能和性能与功能强大的片上外设子系统和片上存储器单元相结合。

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XMC4104-Q48x128

Microcontroller Series for Industrial Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XMC4104-Q48x64

Microcontroller Series for Industrial Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

XMC4108-F64K64 BA

XMC4100 / 4200系列属于基于ARM Cortex-M4处理器内核的XMC4000系列工业微控制器。 XMC4100 / 4200系列微控制器充分利用了英飞凌数十年的微控制器设计经验,提供优化的解决方案,足以应对当今嵌入式控制应用的性能挑战。XMC4100/4200 系列将 ARM Cortex-M4 内核的扩展功能和性能与功能强大的片上外设子系统和片上存储器单元相结合。

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON