82X38 [INTEL]

Express Chipset; Express芯片组
82X38
型号: 82X38
厂家: INTEL    INTEL
描述:

Express Chipset
Express芯片组

文件: 总342页 (文件大小:2370K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
Intel X38 Express Chipset  
Datasheet  
— For the Intel® 82X38 Memory Controller Hub (MCH)  
October 2007  
Document Number: 317610-001  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR  
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS  
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING  
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,  
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for  
use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
®
The Intel 82X38Memory Controller Hub (MCH) may contain design defects or errors known as errata, which may cause the product to deviate from  
published specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
2
2
I C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I C bus/protocol and was developed by Intel.  
2
Implementations of the I C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North American Philips  
Corporation.  
®
®
®
No computer system can provide absolute security under all conditions. Intel Trusted Execution Technology (Intel TXT) is a security technology under  
®
development by Intel and requires for operation a computer system with Intel Virtualization Technology, a Intel Trusted Execution Technology-  
enabled Intel processor, chipset, BIOS, Authenticated Code Modules, and an Intel or other Intel Trusted Execution Technology compatible measured  
virtual machine monitor. In addition, Intel Trusted Execution Technology requires the system to contain a TPMv1.2 as defined by the Trusted Computing  
®
®
Group and specific software for some uses.  
Intel, Pentium, Xeon, and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other  
countries.  
*Other names and brands may be claimed as the property of others.  
©
Copyright 2007, Intel Corporation  
2
Datasheet  
Contents  
1
Introduction............................................................................................................ 15  
1.1  
1.2  
Terminology ..................................................................................................... 16  
MCH Overview .................................................................................................. 19  
1.2.1 Host Interface........................................................................................ 19  
1.2.2 System Memory Interface ....................................................................... 19  
1.2.3 Direct Media Interface (DMI).................................................................... 20  
1.2.4 PCI Express* Interface............................................................................ 21  
1.2.5 MCH Clocking ........................................................................................ 22  
1.2.6 Power Management ................................................................................ 22  
1.2.7 Thermal Sensor ..................................................................................... 22  
2
Signal Description ................................................................................................... 23  
2.1  
2.2  
Host Interface Signals........................................................................................ 24  
System Memory (DDR2/DDR3) Interface Signals ................................................... 27  
2.2.1 System Memory Channel A Interface Signals.............................................. 27  
2.2.2 System Memory Channel B Interface Signals.............................................. 28  
2.2.3 System Memory Miscellaneous Signals ...................................................... 29  
PCI Express* Interface Signals............................................................................ 30  
Controller Link Interface Signals.......................................................................... 30  
Clocks, Reset, and Miscellaneous......................................................................... 31  
Direct Media Interface........................................................................................ 32  
Power and Grounds ........................................................................................... 32  
2.3  
2.4  
2.5  
2.6  
2.7  
3
System Address Map ............................................................................................... 33  
3.1  
Legacy Address Range ....................................................................................... 36  
3.1.1 DOS Range (0h – 9_FFFFh) ..................................................................... 36  
3.1.2 Expansion Area (C_0000h-D_FFFFh)......................................................... 37  
3.1.3 Extended System BIOS Area (E_0000h–E_FFFFh)....................................... 37  
3.1.4 System BIOS Area (F_0000h–F_FFFFh)..................................................... 38  
3.1.5 PAM Memory Area Details........................................................................ 38  
Main Memory Address Range (1MB – TOLUD)........................................................ 38  
3.2.1 ISA Hole (15 MB –16 MB)........................................................................ 39  
3.2.2 TSEG.................................................................................................... 40  
3.2.3 Pre-allocated Memory ............................................................................. 40  
PCI Memory Address Range (TOLUD 4 GB) ........................................................ 41  
3.3.1 APIC Configuration Space (FEC0_0000h–FECF_FFFFh)................................. 43  
3.3.2 HSEG (FEDA_0000h–FEDB_FFFFh) ........................................................... 43  
3.3.3 FSB Interrupt Memory Space (FEE0_0000–FEEF_FFFF)................................ 43  
3.3.4 High BIOS Area...................................................................................... 43  
Main Memory Address Space (4 GB to TOUUD)...................................................... 44  
3.4.1 Memory Re-claim Background.................................................................. 45  
3.4.2 Memory Reclaiming ................................................................................ 45  
PCI Express* Configuration Address Space ........................................................... 45  
PCI Express* Address Space............................................................................... 46  
System Management Mode (SMM)....................................................................... 47  
3.7.1 SMM Space Definition ............................................................................. 47  
3.7.2 SMM Space Restrictions .......................................................................... 48  
3.7.3 SMM Space Combinations........................................................................ 48  
3.7.4 SMM Control Combinations ...................................................................... 49  
3.7.5 SMM Space Decode and Transaction Handling ............................................ 49  
3.7.6 Processor WB Transaction to an Enabled SMM Address Space....................... 49  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
Datasheet  
3
3.7.7 SMM Access Through TLB.........................................................................49  
Memory Shadowing............................................................................................50  
I/O Address Space.............................................................................................50  
3.9.1 PCI Express* I/O Address Mapping............................................................51  
3.8  
3.9  
4
MCH Register Description.........................................................................................53  
4.1  
4.2  
Register Terminology .........................................................................................54  
Configuration Process and Registers.....................................................................55  
4.2.1 Platform Configuration Structure...............................................................55  
Configuration Mechanisms ..................................................................................56  
4.3.1 Standard PCI Configuration Mechanism......................................................56  
4.3.2 PCI Express Enhanced Configuration Mechanism .........................................57  
Routing Configuration Accesses ...........................................................................58  
4.4.1 Internal Device Configuration Accesses......................................................59  
4.4.2 Bridge Related Configuration Accesses.......................................................60  
4.4.2.1 PCI Express Configuration Accesses.............................................60  
4.4.2.2 DMI Configuration Accesses........................................................60  
I/O Mapped Registers.........................................................................................61  
4.5.1 CONFIG_ADDRESS—Configuration Address Register....................................61  
4.5.2 CONFIG_DATA—Configuration Data Register ..............................................62  
4.3  
4.4  
4.5  
5
DRAM Controller Registers (D0:F0)..........................................................................63  
5.1  
Configuration Register Details..............................................................................65  
5.1.1 VID—Vendor Identification.......................................................................65  
5.1.2 DID—Device Identification .......................................................................65  
5.1.3 PCICMD—PCI Command ..........................................................................66  
5.1.4 PCISTS—PCI Status ................................................................................67  
5.1.5 RID—Revision Identification .....................................................................68  
5.1.6 CC—Class Code ......................................................................................68  
5.1.7 MLT—Master Latency Timer......................................................................68  
5.1.8 HDR—Header Type .................................................................................69  
5.1.9 SVID—Subsystem Vendor Identification.....................................................69  
5.1.10 SID—Subsystem Identification..................................................................69  
5.1.11 CAPPTR—Capabilities Pointer....................................................................70  
5.1.12 PXPEPBAR—PCI Express* Egress Port Base Address ....................................70  
5.1.13 MCHBAR—MCH Memory Mapped Register Range Base .................................71  
5.1.14 DEVEN—Device Enable............................................................................72  
5.1.15 PCIEXBAR—PCI Express* Register Range Base Address ...............................73  
5.1.16 DMIBAR—Root Complex Register Range Base Address.................................75  
5.1.17 PAM0—Programmable Attribute Map 0.......................................................76  
5.1.18 PAM1—Programmable Attribute Map 1.......................................................77  
5.1.19 PAM2—Programmable Attribute Map 2.......................................................78  
5.1.20 PAM3—Programmable Attribute Map 3.......................................................79  
5.1.21 PAM4—Programmable Attribute Map 4.......................................................80  
5.1.22 PAM5—Programmable Attribute Map 5.......................................................81  
5.1.23 PAM6—Programmable Attribute Map 6.......................................................82  
5.1.24 LAC—Legacy Access Control.....................................................................83  
5.1.25 REMAPBASE—Remap Base Address Register...............................................83  
5.1.26 REMAPLIMIT—Remap Limit Address Register..............................................84  
5.1.27 SMRAM—System Management RAM Control................................................85  
5.1.28 ESMRAMC—Extended System Management RAM Control..............................86  
5.1.29 TOM—Top of Memory ..............................................................................87  
5.1.30 TOUUD—Top of Upper Usable Dram ..........................................................87  
5.1.31 BSM—Base of Stolen Memory...................................................................88  
5.1.32 TSEGMB—TSEG Memory Base ..................................................................88  
5.1.33 TOLUD—Top of Low Usable DRAM.............................................................89  
5.1.34 ERRSTS—Error Status .............................................................................90  
5.1.35 ERRCMD—Error Command .......................................................................92  
5.1.36 SMICMD—SMI Command.........................................................................93  
4
Datasheet  
5.1.37 SKPD—Scratchpad Data .......................................................................... 93  
5.1.38 CAPID0—Capability Identifier................................................................... 94  
MCHBAR .......................................................................................................... 97  
5.2.1 CHDECMISC—Channel Decode Misc .......................................................... 99  
5.2.2 C0DRB0—Channel 0 DRAM Rank Boundary Address 0 ............................... 100  
5.2.3 C0DRB1—Channel 0 DRAM Rank Boundary Address 1 ............................... 101  
5.2.4 C0DRB2—Channel 0 DRAM Rank Boundary Address 2 ............................... 102  
5.2.5 C0DRB3—Channel 0 DRAM Rank Boundary Address 3 ............................... 102  
5.2.6 C0DRA01—Channel 0 DRAM Rank 0,1 Attribute........................................ 103  
5.2.7 C0DRA23—Channel 0 DRAM Rank 2,3 Attribute........................................ 104  
5.2.8 C0CYCTRKPCHG—Channel 0 CYCTRK PCHG ............................................. 104  
5.2.9 C0CYCTRKACT—Channel 0 CYCTRK ACT.................................................. 105  
5.2.10 C0CYCTRKWR—Channel 0 CYCTRK WR.................................................... 106  
5.2.11 C0CYCTRKRD—Channel 0 CYCTRK READ ................................................. 107  
5.2.12 C0CYCTRKREFR—Channel 0 CYCTRK REFR............................................... 107  
5.2.13 C0CKECTRL—Channel 0 CKE Control....................................................... 108  
5.2.14 C0REFRCTRL—Channel 0 DRAM Refresh Control ....................................... 109  
5.2.15 C0ECCERRLOG—Channel 0 ECC Error Log................................................ 111  
5.2.16 C0ODTCTRL—Channel 0 ODT Control...................................................... 112  
5.2.17 C1DRB0—Channel 1 DRAM Rank Boundary Address 0 ............................... 112  
5.2.18 C1DRB1—Channel 1 DRAM Rank Boundary Address 1 ............................... 113  
5.2.19 C1DRB2—Channel 1 DRAM Rank Boundary Address 2 ............................... 113  
5.2.20 C1DRB3—Channel 1 DRAM Rank Boundary Address 3 ............................... 114  
5.2.21 C1DRA01—Channel 1 DRAM Rank 0,1 Attributes....................................... 114  
5.2.22 C1DRA23—Channel 1 DRAM Rank 2,3 Attributes....................................... 114  
5.2.23 C1CYCTRKPCHG—Channel 1 CYCTRK PCHG ............................................. 115  
5.2.24 C1CYCTRKACT—Channel 1 CYCTRK ACT.................................................. 115  
5.2.25 C1CYCTRKWR—Channel 1 CYCTRK WR.................................................... 116  
5.2.26 C1CYCTRKRD—Channel 1 CYCTRK READ ................................................. 117  
5.2.27 C1CKECTRL—Channel 1 CKE Control....................................................... 118  
5.2.28 C1REFRCTRL—Channel 1 DRAM Refresh Control ....................................... 119  
5.2.29 C1ECCERRLOG—Channel 1 ECC Error Log................................................ 120  
5.2.30 C1ODTCTRL—Channel 1 ODT Control...................................................... 121  
5.2.31 EPC0DRB0—EP Channel 0 DRAM Rank Boundary Address 0........................ 122  
5.2.32 EPC0DRB1—EP Channel 0 DRAM Rank Boundary Address 1........................ 122  
5.2.33 EPC0DRB2—EP Channel 0 DRAM Rank Boundary Address 2........................ 122  
5.2.34 EPC0DRB3—EP Channel 0 DRAM Rank Boundary Address 3........................ 123  
5.2.35 EPC0DRA01—EP Channel 0 DRAM Rank 0,1 Attribute ................................ 123  
5.2.36 EPC0DRA23—EP Channel 0 DRAM Rank 2,3 Attribute ................................ 124  
5.2.37 EPDCYCTRKWRTPRE—EPD CYCTRK WRT PRE ........................................... 124  
5.2.38 EPDCYCTRKWRTACT—EPD CYCTRK WRT ACT........................................... 125  
5.2.39 EPDCYCTRKWRTWR—EPD CYCTRK WRT WR............................................. 125  
5.2.40 EPDCYCTRKWRTREF—EPD CYCTRK WRT REF ........................................... 126  
5.2.41 EPDCYCTRKWRTRD—EPD CYCTRK WRT READ .......................................... 126  
5.2.42 EPDCKECONFIGREG—EPD CKE Related Configuration................................ 127  
5.2.43 EPDREFCONFIG—EP DRAM Refresh Configuration ..................................... 128  
5.2.44 TSC1—Thermal Sensor Control 1............................................................ 130  
5.2.45 TSC2—Thermal Sensor Control 2............................................................ 131  
5.2.46 TSS—Thermal Sensor Status ................................................................. 133  
5.2.47 TSTTP—Thermal Sensor Temperature Trip Point ....................................... 134  
5.2.48 TCO—Thermal Calibration Offset ............................................................ 135  
5.2.49 THERM1—Thermal Hardware Protection................................................... 136  
5.2.50 TIS—Thermal Interrupt Status ............................................................... 136  
5.2.51 TSMICMD—Thermal SMI Command......................................................... 138  
5.2.52 PMSTS—Power Management Status ........................................................ 139  
EPBAR ........................................................................................................... 140  
5.3.1 EPESD—EP Element Self Description ....................................................... 140  
5.3.2 EPLE1D—EP Link Entry 1 Description....................................................... 141  
5.3.3 EPLE1A—EP Link Entry 1 Address ........................................................... 141  
5.3.4 EPLE2D—EP Link Entry 2 Description....................................................... 142  
5.2  
5.3  
Datasheet  
5
5.3.5 EPLE2A—EP Link Entry 2 Address............................................................142  
5.3.6 EPLE3D—EP Link Entry 3 Description.......................................................143  
5.3.7 EPLE3A—EP Link Entry 3 Address............................................................144  
6
Host-Primary PCI Express* Bridge Registers (D1:F0) ............................................145  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
6.7  
6.8  
6.9  
VID1—Vendor Identification ..............................................................................147  
DID1—Device Identification...............................................................................148  
PCICMD1—PCI Command .................................................................................148  
PCISTS1—PCI Status........................................................................................150  
RID1—Revision Identification ............................................................................151  
CC1—Class Code .............................................................................................151  
CL1—Cache Line Size .......................................................................................152  
HDR1—Header Type.........................................................................................152  
PBUSN1—Primary Bus Number ..........................................................................152  
6.10 SBUSN1—Secondary Bus Number......................................................................153  
6.11 SUBUSN1—Subordinate Bus Number..................................................................153  
6.12 IOBASE1—I/O Base Address .............................................................................154  
6.13 IOLIMIT1—I/O Limit Address.............................................................................154  
6.14 SSTS1—Secondary Status.................................................................................155  
6.15 MBASE1—Memory Base Address........................................................................156  
6.16 MLIMIT1—Memory Limit Address .......................................................................157  
6.17 PMBASE1—Prefetchable Memory Base Address ....................................................158  
6.18 PMLIMIT1—Prefetchable Memory Limit Address....................................................159  
6.19 PMBASEU1—Prefetchable Memory Base Address Upper.........................................160  
6.20 PMLIMITU1—Prefetchable Memory Limit Address Upper ........................................161  
6.21 CAPPTR1—Capabilities Pointer...........................................................................161  
6.22 INTRLINE1—Interrupt Line................................................................................162  
6.23 INTRPIN1—Interrupt Pin...................................................................................162  
6.24 BCTRL1—Bridge Control ...................................................................................162  
6.25 PM_CAPID1—Power Management Capabilities......................................................164  
6.26 PM_CS1—Power Management Control/Status ......................................................165  
6.27 SS_CAPID—Subsystem ID and Vendor ID Capabilities ..........................................166  
6.28 SS—Subsystem ID and Subsystem Vendor ID......................................................166  
6.29 MSI_CAPID—Message Signaled Interrupts Capability ID........................................167  
6.30 MC—Message Control.......................................................................................167  
6.31 MA—Message Address......................................................................................168  
6.32 MD—Message Data ..........................................................................................168  
6.33 PE_CAPL—PCI Express* Capability List ...............................................................168  
6.34 PE_CAP—PCI Express* Capabilities ....................................................................169  
6.35 DCAP—Device Capabilities ................................................................................169  
6.36 DCTL—Device Control.......................................................................................170  
6.37 DSTS—Device Status .......................................................................................171  
6.38 LCAP—Link Capabilities.....................................................................................172  
6.39 LCTL—Link Control...........................................................................................174  
6.40 LSTS—Link Status............................................................................................176  
6.41 SLOTCAP—Slot Capabilities ...............................................................................177  
6.42 SLOTCTL—Slot Control .....................................................................................178  
6.43 SLOTSTS—Slot Status ......................................................................................180  
6.44 RCTL—Root Control..........................................................................................181  
6.45 RSTS—Root Status ..........................................................................................182  
6.46 PELC—PCI Express Legacy Control .....................................................................182  
6.47 VCECH—Virtual Channel Enhanced Capability Header............................................183  
6.48 PVCCAP1—Port VC Capability Register 1 .............................................................183  
6.49 PVCCAP2—Port VC Capability Register 2 .............................................................184  
6.50 PVCCTL—Port VC Control ..................................................................................184  
6.51 VC0RCAP—VC0 Resource Capability ...................................................................185  
6.52 VC0RCTL—VC0 Resource Control .......................................................................186  
6.53 VC0RSTS—VC0 Resource Status ........................................................................187  
6.54 RCLDECH—Root Complex Link Declaration Enhanced............................................187  
6.55 ESD—Element Self Description ..........................................................................188  
6
Datasheet  
6.56 LE1D—Link Entry 1 Description ......................................................................... 188  
6.57 LE1A—Link Entry 1 Address.............................................................................. 189  
6.58 PESSTS—PCI Express* Sequence Status ............................................................ 189  
7
Intel Manageability Engine Subsystem PCI (D3:F0,F3).......................................... 191  
7.1  
HECI Function in ME Subsystem (D3:F0) ............................................................ 191  
7.1.1 ID—Identifiers ..................................................................................... 192  
7.1.2 CMD—Command .................................................................................. 192  
7.1.3 STS—Device Status.............................................................................. 193  
7.1.4 RID—Revision ID.................................................................................. 193  
7.1.5 CC—Class Code.................................................................................... 193  
7.1.6 CLS—Cache Line Size............................................................................ 194  
7.1.7 MLT—Master Latency Timer ................................................................... 194  
7.1.8 HTYPE—Header Type ............................................................................ 194  
7.1.9 HECI_MBAR—HECI MMIO Base Address................................................... 195  
7.1.10 SS—Sub System Identifiers ................................................................... 195  
7.1.11 CAP—Capabilities Pointer....................................................................... 196  
7.1.12 INTR—Interrupt Information.................................................................. 196  
7.1.13 MGNT—Minimum Grant......................................................................... 196  
7.1.14 MLAT—Maximum Latency...................................................................... 197  
7.1.15 HFS—Host Firmware Status ................................................................... 197  
7.1.16 PID—PCI Power Management Capability ID.............................................. 197  
7.1.17 PC—PCI Power Management Capabilities ................................................. 198  
7.1.18 PMCS—PCI Power Management Control And Status................................... 198  
7.1.19 MID—Message Signaled Interrupt Identifiers............................................ 199  
7.1.20 MC—Message Signaled Interrupt Message Control..................................... 199  
7.1.21 MA—Message Signaled Interrupt Message Address.................................... 200  
7.1.22 MUA—Message Signaled Interrupt Upper Address (Optional) ...................... 200  
7.1.23 MD—Message Signaled Interrupt Message Data........................................ 200  
7.1.24 HIDM—HECI Interrupt Delivery Mode...................................................... 201  
KT IO/ Memory Mapped Device Specific Registers [D3:F3] .................................... 202  
7.2.1 KTRxBR—KT Receive Buffer .................................................................. 202  
7.2.2 KTTHR—KT Transmit Holding ................................................................ 203  
7.2.3 KTDLLR—KT Divisor Latch LSB .............................................................. 203  
7.2.4 KTIER—KT Interrupt Enable .................................................................. 204  
7.2.5 KTDLMR—KT Divisor Latch MSB ............................................................. 204  
7.2.6 KTIIR—KT Interrupt Identification .......................................................... 205  
7.2.7 KTFCR—KT FIFO Control ....................................................................... 206  
7.2.8 KTLCR—KT Line Control ....................................................................... 207  
7.2.9 KTMCR—KT Modem Control .................................................................. 208  
7.2.10 KTLSR—KT Line Status ......................................................................... 209  
7.2.11 KTMSR—KT Modem Status ................................................................... 210  
7.2.12 KTSCR—KT Scratch ............................................................................. 210  
7.2  
8
Host-Secondary PCI Express* Bridge Registers (D6:F0) ....................................... 211  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.9  
VID1—Vendor Identification.............................................................................. 213  
DID1—Device Identification .............................................................................. 214  
PCICMD1—PCI Command................................................................................. 214  
PCISTS1—PCI Status ....................................................................................... 216  
RID1—Revision Identification............................................................................ 217  
CC1—Class Code............................................................................................. 217  
CL1—Cache Line Size....................................................................................... 218  
HDR1—Header Type ........................................................................................ 218  
PBUSN1—Primary Bus Number.......................................................................... 218  
8.10 SBUSN1—Secondary Bus Number...................................................................... 219  
8.11 SUBUSN1—Subordinate Bus Number ................................................................. 219  
8.12 IOBASE1—I/O Base Address............................................................................. 220  
8.13 IOLIMIT1—I/O Limit Address ............................................................................ 220  
8.14 SSTS1—Secondary Status ................................................................................ 221  
8.15 MBASE1—Memory Base Address........................................................................ 222  
Datasheet  
7
8.16 MLIMIT1—Memory Limit Address .......................................................................223  
8.17 PMBASE1—Prefetchable Memory Base Address Upper...........................................224  
8.18 PMLIMIT1—Prefetchable Memory Limit Address....................................................225  
8.19 PMBASEU1—Prefetchable Memory Base Address Upper.........................................226  
8.20 PMLIMITU1—Prefetchable Memory Limit Address Upper ........................................227  
8.21 CAPPTR1—Capabilities Pointer...........................................................................228  
8.22 INTRLINE1—Interrupt Line................................................................................228  
8.23 INTRPIN1—Interrupt Pin...................................................................................228  
8.24 BCTRL1—Bridge Control ...................................................................................229  
8.25 PM_CAPID1—Power Management Capabilities......................................................230  
8.26 PM_CS1—Power Management Control/Status ......................................................231  
8.27 SS_CAPID—Subsystem ID and Vendor ID Capabilities ..........................................232  
8.28 SS—Subsystem ID and Subsystem Vendor ID......................................................232  
8.29 MSI_CAPID—Message Signaled Interrupts Capability ID........................................233  
8.30 MC—Message Control.......................................................................................233  
8.31 MA—Message Address......................................................................................234  
8.32 MD—Message Data ..........................................................................................234  
8.33 PE_CAPL—PCI Express* Capability List ...............................................................234  
8.34 PE_CAP—PCI Express* Capabilities ....................................................................235  
8.35 DCAP—Device Capabilities ................................................................................235  
8.36 DCTL—Device Control.......................................................................................236  
8.37 DSTS—Device Status .......................................................................................237  
8.38 LCAP—Link Capabilities.....................................................................................238  
8.39 LCTL—Link Control...........................................................................................240  
8.40 LSTS—Link Status............................................................................................242  
8.41 SLOTCAP—Slot Capabilities ...............................................................................243  
8.42 SLOTCTL—Slot Control .....................................................................................244  
8.43 SLOTSTS—Slot Status ......................................................................................246  
8.44 RCTL—Root Control..........................................................................................247  
8.45 RSTS—Root Status ..........................................................................................248  
8.46 PELC—PCI Express Legacy Control .....................................................................248  
8.47 VCECH—Virtual Channel Enhanced Capability Header............................................249  
8.48 PVCCAP1—Port VC Capability Register 1 .............................................................249  
8.49 PVCCAP2—Port VC Capability Register 2 .............................................................250  
8.50 PVCCTL—Port VC Control ..................................................................................250  
8.51 VC0RCAP—VC0 Resource Capability ...................................................................251  
8.52 VC0RCTL—VC0 Resource Control .......................................................................252  
8.53 VC0RSTS—VC0 Resource Status ........................................................................253  
8.54 RCLDECH—Root Complex Link Declaration Enhanced............................................253  
8.55 ESD—Element Self Description ..........................................................................254  
8.56 LE1D—Link Entry 1 Description..........................................................................255  
8.57 LE1A—Link Entry 1 Address ..............................................................................255  
9
Direct Media Interface (DMI) RCRB........................................................................257  
9.1  
9.2  
9.3  
9.4  
9.5  
9.6  
9.7  
9.8  
9.9  
DMIVCECH—DMI Virtual Channel Enhanced Capability ..........................................258  
DMIPVCCAP1—DMI Port VC Capability Register 1 .................................................258  
DMIPVCCTL—DMI Port VC Control......................................................................259  
DMIVC0RCAP—DMI VC0 Resource Capability .......................................................259  
DMIVC0RCTL0—DMI VC0 Resource Control .........................................................260  
DMIVC0RSTS—DMI VC0 Resource Status............................................................261  
DMIVC1RCAP—DMI VC1 Resource Capability .......................................................261  
DMIVC1RCTL1—DMI VC1 Resource Control .........................................................262  
DMIVC1RSTS—DMI VC1 Resource Status............................................................263  
9.10 DMILCAP—DMI Link Capabilities ........................................................................263  
9.11 DMILCTL—DMI Link Control...............................................................................264  
9.12 DMILSTS—DMI Link Status ...............................................................................264  
8
Datasheet  
10  
Functional Description........................................................................................... 265  
10.1 Host Interface................................................................................................. 265  
10.1.1 FSB IOQ Depth .................................................................................... 265  
10.1.2 FSB OOQ Depth ................................................................................... 265  
10.1.3 FSB GTL+ Termination.......................................................................... 265  
10.1.4 FSB Dynamic Bus Inversion ................................................................... 265  
10.1.5 APIC Cluster Mode Support.................................................................... 266  
10.2 System Memory Controller ............................................................................... 267  
10.2.1 System Memory Organization Modes....................................................... 267  
10.2.1.1 Single Channel Mode............................................................... 267  
10.2.1.2 Dual Channel Modes................................................................ 267  
10.2.2 System Memory Technology Supported................................................... 269  
10.2.3 Error Checking and Correction................................................................ 270  
10.3 PCI Express* .................................................................................................. 273  
10.3.1 PCI Express* Architecture ..................................................................... 273  
10.3.1.1 Transaction Layer ................................................................... 273  
10.3.1.2 Data Link Layer ...................................................................... 273  
10.3.1.3 Physical Layer ........................................................................ 273  
10.4 Thermal Sensor............................................................................................... 274  
10.4.1 PCI Device 0, Function 0 ....................................................................... 274  
10.4.2 MCHBAR Thermal Sensor Registers......................................................... 274  
10.5 Power Management ......................................................................................... 275  
10.6 Clocking......................................................................................................... 275  
11  
Electrical Characteristics ....................................................................................... 277  
11.1 Absolute Minimum and Maximum Ratings ........................................................... 277  
11.2 Current Consumption....................................................................................... 279  
11.3 Signal Groups................................................................................................. 280  
11.4 Buffer Supply and DC Characteristics ................................................................. 283  
11.4.1 I/O Buffer Supply Voltages .................................................................... 283  
11.4.2 General DC Characteristics .................................................................... 284  
12  
13  
Ballout and Package Information........................................................................... 287  
12.1 Ballout Information.......................................................................................... 287  
12.2 Package Information........................................................................................ 311  
Testability ............................................................................................................. 313  
13.1 XOR Test Mode Initialization ............................................................................. 313  
13.2 XOR Chain Definition ....................................................................................... 314  
13.3 XOR Chains .................................................................................................... 315  
13.3.1 XOR Chains for DDR2 (No ECC).............................................................. 316  
13.3.2 XOR Chains for DDR2 (ECC) .................................................................. 325  
13.3.3 XOR Chains for DDR3 (No ECC).............................................................. 334  
Datasheet  
9
Figures  
1
2
3
4
5
6
7
8
9
Intel® X38 Express Chipset System Diagram Example...................................................16  
System Address Ranges ............................................................................................35  
DOS Legacy Address Range .......................................................................................36  
Main Memory Address Range .....................................................................................39  
Pre-allocated Memory Example for 64 MB DRAM, 1 MB stolen and 1 MB TSEG...................40  
PCI Memory Address Range ......................................................................................42  
Conceptual Platform PCI Configuration Diagram............................................................55  
Memory Map to PCI Express Device Configuration Space................................................58  
MCH Configuration Cycle Flow Chart............................................................................59  
10 System Clocking Diagram........................................................................................276  
11 MCH Ballout Diagram (Top View Left – Columns 45–31) ..............................................288  
12 MCH Ballout Diagram (Top View Middle – Columns 30–16)...........................................289  
13 MCH Ballout Diagram (Top View Left – Columns 15–1) ................................................290  
14 MCH Package Drawing ............................................................................................311  
15 XOR Test Mode Initialization Cycles...........................................................................313  
Tables  
1
Intel Specification.....................................................................................................18  
2
3
4
5
6
7
8
9
Expansion Area Memory Segments .............................................................................37  
Extended System BIOS Area Memory Segments ...........................................................37  
System BIOS Area Memory Segments.........................................................................38  
Transaction Address Ranges – Compatible, High, and TSEG............................................47  
SMM Space Table .....................................................................................................48  
SMM Control Table....................................................................................................49  
DRAM Controller Register Address Map........................................................................63  
MCHBAR Register Address Map...................................................................................97  
10 DRAM Rank Attribute Register Programming ..............................................................103  
11 EPBAR Address Map................................................................................................140  
12 Host-PCI Express Bridge Register Address Map (D1:F0)...............................................145  
13 HECI Function in ME Subsystem (D3:F0) Register Address Map ....................................191  
14 KT IO/Memory Mapped Register Address Map.............................................................202  
15 Host-Secondary PCI Express* Bridge Register Address Map (D6:F0)..............................211  
16 Direct Media Interface Register Address Map..............................................................257  
17 Host Interface 4X, 2X, and 1X Signal Groups..............................................................266  
18 Sample System Memory Dual Channel Symmetric Organization Mode............................267  
19 Sample System Memory Dual Channel Asymmetric Organization Mode with  
Intel® Flex Memory Mode Enabled............................................................................268  
20 Sample System Memory Dual Channel Asymmetric Organization Mode with  
Intel® Flex Memory Mode Disabled ...........................................................................268  
21 Supported DIMM Module Configurations.....................................................................269  
22 Syndrome Bit Values...............................................................................................270  
23 Absolute Minimum and Maximum Ratings ..................................................................277  
24 Current Consumption in S0......................................................................................279  
25 Signal Groups ........................................................................................................281  
26 I/O Buffer Supply Voltage........................................................................................283  
27 DC Characteristics ..................................................................................................284  
28 MCH Ballout Sorted By Name ...................................................................................291  
29 MCH Ballout Sorted By Ball ......................................................................................301  
30 XOR Chain 14 Functionality......................................................................................314  
31 XOR Chain Outputs.................................................................................................315  
32 XOR Chain 0 (DDR2, NoECC) ...................................................................................316  
33 XOR Chain 1 (DDR2, NoECC) ...................................................................................316  
34 XOR Chain 2 (DDR2, NoECC) ...................................................................................317  
10  
Datasheet  
35 XOR Chain 3 (DDR2, NoECC)................................................................................... 317  
36 XOR Chain 4 (DDR2, NoECC)................................................................................... 318  
37 XOR Chain 5 (DDR2, NoECC)................................................................................... 318  
38 XOR Chain 6 (DDR2, NoECC)................................................................................... 318  
39 XOR Chain 7 (DDR2, NoECC)................................................................................... 319  
40 XOR Chain 8 (DDR2, NoECC)................................................................................... 320  
41 XOR Chain 9 (DDR2, NoECC)................................................................................... 320  
42 XOR Chain 10 (DDR2, NoECC) ................................................................................. 320  
43 XOR Chain 11 (DDR2, NoECC) ................................................................................. 321  
44 XOR Chain 12 (DDR2, NoECC) ................................................................................. 322  
45 XOR Chain 13 (DDR2, NoECC) ................................................................................. 322  
46 XOR Chain 14 (DDR2, NoECC) ................................................................................. 323  
47 XOR Chain 0 (DDR2, ECC)....................................................................................... 325  
48 XOR Chain 1 (DDR2, ECC)....................................................................................... 326  
49 XOR Chain 2 (DDR2, ECC)....................................................................................... 326  
50 XOR Chain 3 (DDR2, ECC)....................................................................................... 326  
51 XOR Chain 4 (DDR2, ECC)....................................................................................... 327  
52 XOR Chain 5 (DDR2, ECC)....................................................................................... 327  
53 XOR Chain 6 (DDR2, ECC)....................................................................................... 328  
54 XOR Chain 7 (DDR2, ECC)....................................................................................... 329  
55 XOR Chain 8 (DDR2, ECC)....................................................................................... 329  
56 XOR Chain 9 (DDR2, ECC)....................................................................................... 329  
57 XOR Chain 10 (DDR2, ECC)..................................................................................... 330  
58 XOR Chain 11 (DDR2, ECC)..................................................................................... 331  
59 XOR Chain 12 (DDR2, ECC)..................................................................................... 331  
60 XOR Chain 13 (DDR2, ECC)..................................................................................... 331  
61 XOR Chain 14 (DDR2, ECC)..................................................................................... 332  
62 XOR Chain 0 (DDR3, NoECC)................................................................................... 334  
63 XOR Chain 1 (DDR3, NoECC)................................................................................... 334  
64 XOR Chain 2 (DDR3, NoECC)................................................................................... 335  
65 XOR Chain 3 (DDR3, NoECC)................................................................................... 335  
66 XOR Chain 4 (DDR3, NoECC)................................................................................... 336  
67 XOR Chain 5 (DDR3, NoECC)................................................................................... 336  
68 XOR Chain 6 (DDR3, NoECC)................................................................................... 336  
69 XOR Chain 7 (DDR3, NoECC)................................................................................... 337  
70 XOR Chain 8 (DDR3, NoECC)................................................................................... 338  
71 XOR Chain 9 (DDR3, NoECC)................................................................................... 338  
72 XOR Chain 10 (DDR3, NoECC) ................................................................................. 338  
73 XOR Chain 11 (DDR3, NoECC) ................................................................................. 339  
74 XOR Chain 12 (DDR3, NoECC) ................................................................................. 340  
75 XOR Chain 13 (DDR3, NoECC) ................................................................................. 340  
76 XOR Chain 14 (DDR3, NoECC) ................................................................................. 341  
Datasheet  
11  
Revision History  
Revision  
Number  
Description  
Revision Date  
-001  
Initial release  
October 2007  
12  
Datasheet  
®
Intel 82X38 MCH Features  
Processor/Host Interface (FSB)  
PCI Express* Interface  
®
Supports Intel Core™2 Duo desktop processor  
Supports Intel Core™2 Quad desktop processor  
800/1067/1333 MT/s (200/266/333 MHz) FSB  
Hyper-Threading Technology (HT Technology)  
FSB Dynamic Bus Inversion (DBI)  
36-bit host bus addressing  
12-deep In-Order Queue  
1-deep Defer Queue  
GTL+ bus driver with integrated GTL termination resistors  
Supports cache Line Size of 64 bytes  
Two x16 PCI Express ports  
Compatible with the PCI Express Base Specification,  
Revision 2.0  
®
Raw bit rate on data pins of 5 Gb/s resulting in a real  
bandwidth per pair of 500 MB/s  
Thermal Sensor  
Catastrophic Trip Point support  
Hot Trip Point support for SMI generation  
Power Management  
PC99 suspend to DRAM support (“STR, mapped to  
ACPI state S3)  
System Memory Interface  
ACPI Revision 2.0 compatible power management  
Supports processor states: C0, C1, C2  
Supports System states: S0, S1, S3 (Cold), and S5  
Supports processor Thermal Management 2  
One or two channels (each channel consisting of 64 data lines)  
Single or Dual Channel memory organization  
DDR2-800/667 frequencies  
DDR3-1066/800 frequencies  
Unbuffered, ECC and non-ECC DDR2 or non-ECC DDR3 DIMMs  
Package  
FC-BGA  
Supports 1-Gb, 512-Mb DDR2 or DDR3 technologies for x8 and  
x16 devices  
40 mm × 40 mm package size  
1300 balls, located in a non-grid pattern  
8 GB maximum memory  
Direct Media Interface (DMI)  
Chip-to-chip connection interface to Intel ICH9  
2 GB/s point-to-point DMI to ICH9 (1 GB/s each direction)  
100 MHz reference clock (shared with PCI Express graphics  
attach)  
32-bit downstream addressing  
Messaging and Error Handling  
§
Datasheet  
13  
14  
Datasheet  
Introduction  
1
Introduction  
The Intel® X38 Express Chipset is designed for use with the Intel® CoreTM2 Duo  
processor and Intel® Core™2 Quad processor in high-end desktop and workstation  
platforms. The chipset contains two components: 82X38 MCH for the host bridge and  
I/O Controller Hub 9 (ICH9) for the I/O subsystem. The ICH9 is the ninth generation  
I/O Controller Hub and provides a multitude of I/O related functions. Figure 1 shows an  
example system block diagram for the Intel® X38 Express Chipset.  
This document is the datasheet for the Intel® 82X38 Memory Controller Hub (MCH).  
Topics covered include; signal description, system memory map, PCI register  
description, a description of the MCH interfaces and major functional units, electrical  
characteristics, ballout definitions, and package characteristics.  
Note:  
Note:  
Unless otherwise specified, ICH9 refers to the Intel® 82801IB ICH9 and Intel® 82801IR  
ICH9R I/O Controller Hub 9 components.  
The term ICH9 refers to the ICH9 and ICH9R components.  
Datasheet  
15  
Introduction  
1.1  
Terminology  
Figure 1.  
Intel® X38 Express Chipset System Diagram Example  
Processor  
System Memory  
DDR2/3  
CH A  
CH B  
DDR2 /  
DDR3  
Intel® 82X38  
MCH  
PCI Express  
PCI Express  
PCI Express x16  
PCI Express x16  
DDR2 /DDR3  
C Link – Still  
connect on non-  
AMT system  
DMI  
Power  
Management  
USB2. 0  
12 Ports  
Clock  
Generation  
GPIO  
SATA  
SMBus2.0 /  
I2C  
6 Ports  
Intel® ICH 9  
SST/PECI  
(Fan Speed Control)  
Gb LAN  
WLAN  
SPI  
SPI  
Flash  
6 PCIe x1  
Slots  
LPC  
Firmware  
SIO  
PCIe Bus  
4 PCI Masters  
PCI Bus  
Term  
Description  
Used in this specification to refer to one or more hardware components that  
connect processor complexes to the I/O and memory subsystems. The chipset  
may include a variety of integrated devices.  
Chipset / Root  
– Complex  
Controller Link is a proprietary chip-to-chip connection between the MCH and  
ICH. The chipset requires that Clink is connected in the platform.  
CLink  
Core  
DBI  
The internal base logic in the MCH  
Dynamic Bus Inversion  
DDR2  
DDR3  
A second generation Double Data Rate SDRAM memory technology  
A third generation Double Data Rate SDRAM memory technology  
16  
Datasheet  
Introduction  
Term  
Description  
Direct Media Interface is a proprietary chip-to-chip connection between the  
MCH and ICH. This interface is based on the standard PCI Express*  
specification.  
DMI  
A collection of physical, logical or virtual resources that are allocated to work  
Domain  
together. Domain is used as a generic term for virtual machines, partitions,  
etc.  
EP  
PCI Express Egress Port  
FSB  
Front Side Bus. Synonymous with Host or processor bus  
Full reset is when PWROK is de-asserted. Warm reset is when both RSTIN#  
and PWROK are asserted.  
Full Reset  
MCH  
Memory Controller Hub component that contains the processor interface,  
DRAM controller, and PCI Express port. It communicates with the I/O  
controller hub (Intel® ICH9) over the DMI interconnect. .  
Host  
INTx  
This term is used synonymously with processor  
An interrupt request signal where X stands for interrupts A, B, C and D  
Ninth generation I/O Controller Hub component that contains the primary PCI  
interface, LPC interface, USB2.0, SATA, and other I/O functions. For this MCH,  
the term ICH refers to the ICH9.  
Intel® ICH9  
IOQ  
In Order Queue  
Message Signaled Interrupt. A transaction conveying interrupt information to  
the receiving agent through the same path that normally carries read and  
write commands.  
MSI  
OOQ  
Out of Order Queueing  
A high-speed serial interface whose configuration is software compatible with  
the legacy PCI specifications.  
PCI Express*  
The physical PCI bus that is driven directly by the Intel® ICH9.  
Communication between Primary PCI and the MCH occurs over DMI. The  
Primary PCI bus is not PCI Bus 0 from a configuration standpoint.  
Primary PCI  
Rank  
A unit of DRAM corresponding to eight x8 SDRAM devices in parallel or four  
x16 SDRAM devices in parallel, ignoring ECC. These devices are usually, but  
not always, mounted on a single side of a DIMM.  
SCI  
System Control Interrupt. Used in ACPI protocol.  
System Error. An indication that an unrecoverable error has occurred on an  
I/O bus.  
SERR  
System Management Interrupt. Used to indicate any of several system  
conditions such as thermal sensor events, throttling activated, access to  
System Management RAM, chassis open, or other system state related  
activity.  
SMI  
Intel® Trusted Execution Technology (TXT) defines platform level  
enhancements that provide the building blocks for creating trusted platforms.  
Intel® TXT  
VCO  
Voltage Controlled Oscillator  
Datasheet  
17  
Introduction  
Table 1.  
Intel Specification  
Document Name  
Intel® X38 Express Chipset Specification Update  
Location  
http://www.intel.com/design/  
chipsets/specupdt/317611.htm  
Intel® X38 Express Chipset Thermal and Mechanical Design http://www.intel.com/design/  
Guide  
chipsets/designex/317612.htm  
Intel® Core™2 Duo Processor and Intel® Pentium® Dual  
Core Thermal and Mechanical Design Guide  
http://www.intel.com/design/  
processor/designex/317804.htm  
Intel® I/O Controller Hub 9 (ICH9) Family Thermal  
Mechanical Design Guide.  
http://www.intel.com/design/  
chipsets/designex/316974.htm  
http://www.intel.com/design/  
chipsets/datashts/316972.htm  
Intel® I/O Controller Hub 9 (ICH9) Family Datasheet  
http://www.intel.com/design/  
chipsets/applnots/316970.htm  
Designing for Energy Efficiency White Paper  
Intel® X38 Express Chipset Memory Technology and  
Configuration Guide White Paper  
318469  
Intel® P35/G33 Express Chipset Memory Technology and  
Configuration Guide White Paper  
http://www.intel.com/design/  
chipsets/applnots/316971.htm  
Advanced Configuration and Power Interface Specification,  
Version 2.0  
http://www.acpi.info/  
http://www.acpi.info/  
Advanced Configuration and Power Interface Specification,  
Version 1.0b  
http://www.pcisig.com/  
specifications  
The PCI Local Bus Specification, Version 2.3  
http://www.pcisig.com/  
specifications  
PCI Express* Specification, Version 1.1  
18  
Datasheet  
Introduction  
1.2  
MCH Overview  
The role of a MCH in a system is to manage the flow of information between its four  
interfaces: the processor interface, the system memory interface, the PCI Express  
interface, and the I/O Controller through DMI interface. This includes arbitrating  
between the four interfaces when each initiates transactions. It supports one or two  
channels of DDR2 or DDR3 SDRAM. It also supports the PCI Express based external  
device attach. The Intel X38 Express Chipset platform supports the ninth generation  
I/O Controller Hub (Intel ICH9) to provide I/O related features.  
1.2.1  
Host Interface  
The MCH supports a single LGA775 socket processor. The MCH supports a FSB  
frequency of 800/1066/1333 MHz. Host-initiated I/O cycles are decoded to PCI  
Express, DMI, or the MCH configuration space. Host-initiated memory cycles are  
decoded to PCI Express, DMI or system memory. PCI Express device accesses to non-  
cacheable system memory are not snooped on the host bus. Memory accesses initiated  
from PCI Express using PCI semantics and from DMI to system SDRAM will be snooped  
on the host bus.  
Processor/Host Interface (FSB) Details  
• Supports the Intel® CoreTM2 Duo processor and Intel® Core™2 Quad processor  
• Supports Front Side Bus (FSB) at the following Frequency Ranges:  
— 800/1066/1333MT/s  
• Supports FSB Dynamic Bus Inversion (DBI)  
• Supports 36-bit host bus addressing, allowing the processor to access the entire  
64 GB of the host address space.  
• Has a 12-deep In-Order Queue to support up to twelve outstanding pipelined  
address requests on the host bus  
• Has a 1-deep Defer Queue  
• Uses GTL+ bus driver with integrated GTL termination resistors  
• Supports a Cache Line Size of 64 bytes  
1.2.2  
System Memory Interface  
The MCH integrates a system memory DDR2/DDR3 controller with two, 64-bit wide  
interfaces. The buffers support both SSTL_1.8 (Stub Series Terminated Logic for 1.8 V)  
and SSTL_1.5 (Stub Series Terminated Logic for 1.5 V) signal interfaces. The memory  
controller interface is fully configurable through a set of control registers.  
System Memory Interface Details  
• Directly supports one or two channels of DDR2 or DDR3 memory with a maximum  
of two DIMMs per channel.  
• Supports single and dual channel memory organization modes.  
• Supports a data burst length of eight for all memory organization modes.  
• Supports memory data transfer rates of 667 and 800 MHz for DDR2 and 800, 1066,  
and 1333 MHz for DDR3.  
• I/O Voltage of 1.8 V for DDR2 and 1.5 V for DDR3.  
• Supports both un-buffered ECC and non-ECC DDR2 or non-ECC DDR3 DIMMs.  
Datasheet  
19  
Introduction  
• Supports maximum memory bandwidth of 6.4 GB/s in single-channel mode or  
12.8 GB/s in dual-channel mode assuming DDR2 800 MHz.  
• Supports maximum memory bandwidth of 10.6GB/s in single-channel mode or  
21 GB/s in dual-channel mode assuming DDR3 1333 MHz.  
• Supports 512-Mb and 1-Gb DDR2 or DDR3 DRAM technologies for x8 and x16  
devices.  
• Using 512 Mb device technologies, the smallest memory capacity possible is  
256 MB, assuming Single Channel Mode with a single x16 single sided un-buffered  
non-ECC DIMM memory configuration.  
• Using 1 Gb device technologies, the largest memory capacity possible is 8 GB,  
assuming Dual Channel Mode with four x8 double sided un-buffered non-ECC or  
ECC DIMM memory configurations.  
Note: The ability to support greater than the largest memory capacity is subject to  
availability of higher density memory devices.  
• Supports up to 32 simultaneous open pages per channel (assuming 4 ranks of  
8 bank devices)  
• Supports opportunistic refresh scheme  
• Supports Partial Writes to memory using Data Mask (DM) signals  
• Supports a memory thermal management scheme to selectively manage reads  
and/or writes. Memory thermal management can be triggered either by on-die  
thermal sensor, or by preset limits. Management limits are determined by weighted  
sum of various commands that are scheduled on the memory interface.  
1.2.3  
Direct Media Interface (DMI)  
Direct Media Interface (DMI) is the chip-to-chip connection between the MCH and  
ICH9. This high-speed interface integrates advanced priority-based servicing allowing  
for concurrent traffic and true isochronous transfer capabilities. Base functionality is  
completely software transparent permitting current and legacy software to operate  
normally.  
To provide for true isochronous transfers and configurable Quality of Service (QoS)  
transactions, the ICH9 supports two virtual channels on DMI: VC0 and VC1. These two  
channels provide a fixed arbitration scheme where VC1 is always the highest priority.  
VC0 is the default conduit of traffic for DMI and is always enabled. VC1 must be  
specifically enabled and configured at both ends of the DMI link (i.e., the ICH9 and  
MCH).  
• A chip-to-chip connection interface to Intel ICH9  
• 2 GB/s point-to-point DMI to ICH9 (1 GB/s each direction)  
• 100 MHz reference clock (shared with PCI Express)  
• 32-bit downstream addressing  
• APIC and MSI interrupt messaging support. Will send Intel-defined “End Of  
Interrupt” broadcast message when initiated by the processor.  
• Message Signaled Interrupt (MSI) messages  
• SMI, SCI, and SERR error indication  
20  
Datasheet  
Introduction  
1.2.4  
PCI Express* Interface  
The MCH supports two 16-lane (x16) PCI Express ports. The PCI Express ports are  
compliant to the PCI Express* Base Specification revision 2.0. The x16 ports operate at  
a frequency of 5 Gb/s on each lane while employing 8b/10b encoding, and support a  
maximum theoretical bandwidth of 8.0 GB/s in each direction.  
The PCI Express interface includes:  
Two, 16-lane PCI Express ports intended for external device attach, compatible to  
the PCI Express* Base Specification, Revision 2.0.  
• PCI Express frequency of 2.5 GHz resulting in 5.0 Gb/s each direction per lane.  
• Raw bit-rate on the data pins of 5.0 Gb/s, resulting in a real bandwidth per pair of  
500 MB/s given the 8b/10b encoding used to transmit data across this interface  
• Maximum theoretical realized bandwidth on the interface of 8 GB/s in each  
direction simultaneously, for an aggregate of 16 GB/s when x16.  
• PCI Express Enhanced Addressing Mechanism allows for accessing the device  
configuration space in a flat memory mapped fashion.  
• Automatic discovery, negotiation, and training of link out of reset.  
• Supports traditional PCI style traffic (asynchronous snooped, PCI ordering)  
• Supports traditional AGP style traffic (asynchronous non-snooped, PCI Express-  
relaxed ordering)  
• Hierarchical PCI-compliant configuration mechanism for downstream devices  
(i.e., normal PCI 2.3 Configuration space as a PCI-to-PCI bridge).  
• Supports “static” lane numbering reversal. This method of lane reversal is  
controlled by a Hardware Reset strap, and reverses both the receivers and  
transmitters for all lanes (e.g., TX[15]->TX[0], RX[15]->RX[0]). This method is  
transparent to all external devices and is different than lane reversal as defined in  
the PCI Express Specification. In particular, link initialization is not affected by  
static lane reversal.  
• When two, 16-lane PCI Express ports are used, the second port supports either PCI  
Express Gen1.1 I/O cards with x8, x4 or x1 lanes or PCI Express Gen1/Gen2  
Graphics cards with x16 or x1 lanes.  
Datasheet  
21  
Introduction  
1.2.5  
MCH Clocking  
Differential host clock of 200/266/333 MHz. Supports FSB transfer rates of  
800/1066/1333 MT/s.  
• Differential memory clocks of 333/400/533 MHz. Supports memory  
transfer rates of DDR2-667, DDR2-800, DDR3-800, and DDR3-1067.  
The PCI Express* PLL of 100 MHz Serial Reference Clock generates the PCI  
Express core clock of 250 MHz.  
• All of the above clocks are capable of tolerating Spread Spectrum clocking.  
Host, memory, and PCI Express PLLs are disabled until PWROK is asserted.  
1.2.6  
Power Management  
MCH Power Management support includes:  
• PC99 suspend to DRAM support (“STR, mapped to ACPI state S3)  
• SMRAM space remapping to A0000h (128 KB)  
• Supports extended SMRAM space above 256 MB, and cacheable (cacheability  
controlled by processor)  
• ACPI Rev 1.0b compatible power management  
• Supports processor states: C0, C1, and C2  
• Supports System states: S0, S1, S3 (Cold), and S5  
• Supports processor Thermal Management 2 (TM2)  
• Supports Manageability states M0, M1–S3, M1–S5, Moff–S3, Moff–S5, Moff-M1  
1.2.7  
Thermal Sensor  
MCH Thermal Sensor support includes:  
• Catastrophic Trip Point support for emergency clock gating for the MCH  
• Hot Trip Point support for SMI generation  
§ §  
22  
Datasheet  
Signal Description  
2
Signal Description  
This chapter provides a detailed description of MCH signals. The signals are arranged in  
functional groups according to their associated interface.  
The following notations are used to describe the signal type.  
Signal Type  
Description  
PCI Express interface signals. These signals are compatible with PCI Express 2.0  
Signaling Environment AC Specifications and are AC coupled. The buffers are  
not 3.3 V tolerant. Differential voltage spec = (|D+ – D-|) * 2 = 1.2 Vmax.  
Single-ended maximum = 1.25 V. Single-ended minimum = 0 V.  
PCI Express*  
Direct Media Interface signals. These signals are compatible with PCI Express  
1.1 Signaling Environment AC Specifications, but are DC coupled. The buffers  
are not 3.3 V tolerant. Differential voltage spec = (|D+ - D-|) * 2 = 1.2 Vmax.  
Single-ended maximum = 1.25 V. Single-ended minimum = 0 V.  
DMI  
CMOS  
COD  
CMOS buffers. 1.5 V tolerant.  
CMOS Open Drain buffers. 3.3 V tolerant.  
High Voltage CMOS buffers. 3.3 V tolerant.  
High Voltage CMOS input-only buffers. 3.3 V tolerant.  
HVCMOS  
HVIN  
Stub Series Termination Logic. These are 1.8 V output capable buffers. 1.8 V  
tolerant.  
SSTL_1.8  
SSTL_1.5  
Stub Series Termination Logic. These are 1.5 V output capable buffers. 1.5 V  
tolerant  
Analog reference or output. May be used as a threshold voltage or for buffer  
compensation.  
A
Gunning Transceiver Logic signaling technology. Implements a voltage level as  
defined by VTT of 1.2 V and/or 1.1 V.  
GTL+  
Datasheet  
23  
Signal Description  
2.1  
Host Interface Signals  
Note: Unless otherwise noted, the voltage level for all signals in this interface is tied to  
the termination voltage of the Host Bus (VTT).  
Signal Name  
Type  
Description  
Address Strobe: The processor bus owner asserts FSB_ADSB  
to indicate the first of two cycles of a request phase. The MCH  
can assert this signal for snoop cycles and interrupt messages.  
I/O  
FSB_ADSB  
GTL+  
Block Next Request: Used to block the current request bus  
owner from issuing new requests. This signal is used to  
dynamically control the processor bus pipeline depth.  
I/O  
FSB_BNRB  
FSB_BPRIB  
GTL+  
Priority Agent Bus Request: The MCH is the only Priority  
Agent on the processor bus. It asserts this signal to obtain the  
ownership of the address bus. This signal has priority over  
symmetric bus requests and will cause the current symmetric  
owner to stop issuing new transactions unless the FSB_LOCKB  
signal was asserted.  
O
GTL+  
Bus Request 0: The MCH pulls the processor bus’  
FSB_BREQ0B signal low during FSB_CPURSTB. The processors  
sample this signal on the active-to-inactive transition of  
FSB_CPURSTB. The minimum setup time for this signal is 4  
HCLKs. The minimum hold time is 2 HCLKs and the maximum  
hold time is 20 HCLKs. FSB_BREQ0B should be tri-stated after  
the hold time requirement has been satisfied.  
O
FSB_BREQ0B  
FSB_CPURSTB  
GTL+  
CPU Reset: The FSB_CPURSTB pin is an output from the MCH.  
The MCH asserts FSB_CPURSTB while RSTINB (PCIRST# from  
the ICH) is asserted and for approximately 1 ms after RSTINB  
is de-asserted. The FSB_CPURSTB allows the processors to  
begin execution in a known state.  
O
GTL+  
I/O  
Data Bus Busy: Used by the data bus owner to hold the data  
bus for transfers requiring more than one cycle.  
FSB_DBSYB  
FSB_DEFERB  
GTL+  
Defer: Signals that the MCH will terminate the transaction  
currently being snooped with either a deferred response or with  
a retry response.  
O
GTL+  
Dynamic Bus Inversion: Driven along with the  
FSB_DB_[63:0] signals. Indicates if the associated signals are  
inverted or not. FSB_DINVB_[3:0] are asserted such that the  
number of data bits driven electrically low (low voltage) within  
the corresponding 16 bit group never exceeds 8.  
I/O  
FSB_DINVB_[3:0]  
FSB_DRDYB  
FSB_DINVB_x  
FSB_DINVB_3  
FSB_DINVB_2  
FSB_DINVB_1  
FSB_DINVB_0  
Data Bits  
GTL+ 4x  
FSB_DB_[63:48]  
FSB_DB_[47:32]  
FSB_DB_[31:16]  
FSB_DB_[15:0]  
I/O  
Data Ready: Asserted for each cycle that data is transferred.  
GTL+  
24  
Datasheet  
Signal Description  
Signal Name  
Type  
Description  
Host Address Bus: FSB_AB_[35:3] connect to the processor  
address bus. During processor cycles, the FSB_AB_[35:3] are  
inputs. The MCH drives FSB_AB_[35:3] during snoop cycles on  
behalf of DMI and PCI Express initiators. FSB_AB_[35:3] are  
transferred at 2x rate. Note that the address is inverted on the  
processor bus. The values are driven by the MCH between  
PWROK assertion and FSB_CPURSTINB deassertion to allow  
processor configuration.  
I/O  
FSB_AB_[35:3]  
GTL+ 2x  
Host Address Strobe: The source synchronous strobes used  
to transfer FSB_AB_[31:3] and FSB_REQB_[4:0] at the 2x  
transfer rate.  
I/O  
FSB_ADSTBB_[1:0]  
FSB_DB_[63:0]  
Strobe  
Address Bits  
GTL+ 2x  
FSB_ADSTBB_0  
FSB_ADSTBB_1  
FSB_AB_[16:3], FSB_REQB_[4:0]  
FSB_AB_[31:17]  
Host Data: These signals are connected to the processor data  
bus. Data on FSB_DB_[63:0] is transferred at a 4x rate. Note  
that the data signals may be inverted on the processor bus,  
depending on the FSB_DINVB_[3:0] signals.  
I/O  
GTL+ 4x  
Differential Host Data Strobes: The differential source  
synchronous strobes used to transfer FSB_DB_[63:0] and  
FSB_DINVB_[3:0] at the 4x transfer rate.  
Named this way because they are not level sensitive. Data is  
captured on the falling edge of both strobes. Hence, they are  
pseudo-differential, and not true differential.  
FSB_DSTBPB_[3:0]  
I/O  
FSB_DSTBNB_[3:0] GTL+ 4x  
Strobe  
Data Bits  
FSB_DSTB[P,N]B_3  
FSB_DSTB[P,N]B_2  
FSB_DSTB[P,N]B_1  
FSB_DSTB[P,N]B_0  
FSB_DB_[63:48], HDINVB_3  
FSB_DB_[47:32], HDINVB_2  
FSB_DB_[31:16], HDINVB_1  
FSB_DB_[15:0], HDINVB_0  
Hit: Indicates that a caching agent holds an unmodified version  
of the requested line. Also, driven in conjunction with  
FSB_HITMB by the target to extend the snoop window.  
I/O  
FSB_HITB  
GTL+  
Hit Modified: Indicates that a caching agent holds a modified  
version of the requested line and that this agent assumes  
responsibility for providing the line. Also, driven in conjunction  
with FSB_HITB to extend the snoop window.  
I/O  
FSB_HITMB  
GTL+  
Host Lock: All processor bus cycles sampled with the assertion  
of FSB_LOCKB and FSB_ADSB, until the negation of  
FSB_LOCKB must be atomic, i.e. no DMI or PCI Express access  
to DRAM are allowed when FSB_LOCKB is asserted by the  
processor.  
I
FSB_LOCKB  
GTL+  
Host Request Command: Defines the attributes of the  
request. FSB_REQB_[4:0] are transferred at 2x rate. Asserted  
by the requesting agent during both halves of Request Phase.  
In the first half the signals define the transaction type to a level  
of detail that is sufficient to begin a snoop request. In the  
second half the signals carry additional information to define  
the complete transaction type.  
I/O  
FSB_REQB_[4:0]  
GTL+  
2x  
The transactions supported by the MCH Host Bridge are defined  
in the Host Interface section of this document.  
Datasheet  
25  
Signal Description  
Signal Name  
FSB_TRDYB  
Type  
Description  
O
Host Target Ready: Indicates that the target of the processor  
transaction is able to enter the data transfer phase.  
GTL+  
Response Signals: Indicates type of response according to  
the table at left:  
Encoding Response Type  
000  
001  
010  
011  
100  
101  
110  
111  
Idle state  
Retry response  
O
Deferred response  
FSB_RSB_[2:0]  
GTL+  
Reserved (not driven by MCH)  
Hard Failure (not driven by MCH)  
No data response  
Implicit Writeback  
Normal data response  
Host RCOMP: Used to calibrate the Host GTL+ I/O buffers.  
I/O  
A
FSB_RCOMP  
This signal is powered by the Host Interface termination rail  
(VTT). Connects to FSB_XRCOMP1IN in the package.  
I/O  
A
Slew Rate Compensation: Compensation for the Host  
Interface for rising edges.  
FSB_SCOMP  
I/O  
A
Slew Rate Compensation: Compensation for the Host  
Interface for falling edges.  
FSB_SCOMPB  
Host Voltage Swing: These signals provide reference voltages  
used by the FSB RCOMP circuits. FSB_XSWING is used for the  
signals handled by FSB_XRCOMP.  
I/O  
A
FSB_SWING  
I/O  
A
Host Reference Voltage: Reference voltage input for the  
Data signals of the Host GTL interface.  
FSB_DVREF  
I/O  
A
Host Reference Voltage: Reference voltage input for the  
Address signals of the Host GTL interface.  
FSB_ACCVREF  
26  
Datasheet  
Signal Description  
2.2  
System Memory (DDR2/DDR3) Interface Signals  
2.2.1  
System Memory Channel A Interface Signals  
Signal Name  
Type  
Description  
SDRAM Differential Clocks:  
O
DDR_A_CK  
DDR2: Three per DIMM  
DDR3: Two per DIMM  
SSTL-1.8/1.5  
SDRAM Inverted Differential Clocks:  
O
DDR_A_CKB  
DDR2: Three per DIMM  
DDR3: Two per DIMM  
SSTL-1.8/1.5  
DDR_A_CSB_3  
DDR_A_CSB_2  
DDR_A_CSB_0  
O
DDR2/DDR3 Device Rank 3, 2, and 0 Chip Selects  
DDR2 Device Rank 1 Chip Select  
SSTL-1.8/1.5  
O
DDR_A_CSB_1  
SSTL-1.8  
O
DDR3_A_CSB_1  
DDR_A_CKE_[3:0]  
DDR3 Device Rank 1 Chip Select  
SSTL-1.5  
O
DDR2/DDR3 Clock Enable:  
SSTL-1.8/1.5  
(1 per Device Rank)  
O
DDR2/DDR3 On Die Termination:  
DDR_A_ODT_[3:0]  
DDR_A_MA_[14:1]  
DDR_A_MA_0  
SSTL-1.8/1.5  
(1 per Device Rank)  
O
DDR2/DDR3 Address Signals [14:1]  
DDR2 Address Signal 0  
SSTL-1.8/1.5  
O
SSTL-1.8  
O
DDR3_A_MA_0  
DDR_A_BS_[2:0]  
DDR_A_RASB  
DDR3 Address Signal 0  
SSTL-1.5  
O
DDR2/DDR3 Bank Select  
SSTL-1.8/1.5  
O
DDR2/DDR3 Row Address Select signal  
DDR2/DDR3 Column Address Select signal  
DDR2 Write Enable signal  
SSTL-1.8/1.5  
O
DDR_A_CASB  
SSTL-1.8/1.5  
O
DDR_A_WEB  
SSTL-1.8  
O
DDR3_A_WEB  
DDR3 Write Enable signal  
SSTL-1.5  
I/O  
DDR_A_DQ_[63:0]  
DDR2/DDR3 Data Lines  
SSTL-1.8/1.5  
Datasheet  
27  
Signal Description  
Signal Name  
Type  
Description  
I/O  
DDR_A_CB_[7:0]  
ECC Check Byte  
SSTL-1.8  
O
DDR_A_DM_[7:0]  
DDR_A_DQS_[8:0]  
DDR_A_DQSB_[8:0]  
DDR2/DDR3 Data Mask  
SSTL-1.8/1.5  
I/O  
DDR2/DDR3 Data Strobes  
SSTL-1.8/1.5  
I/O  
DDR2/DDR3 Data Strobe Complements  
SSTL-1.8/1.5  
2.2.2  
System Memory Channel B Interface Signals  
Signal Name  
Type  
Description  
SDRAM Differential Clocks:  
O
DDR_B_CK  
DDR2: Three per DIMM  
DDR3: Two per DIMM  
SSTL-1.8/1.5  
SDRAM Inverted Differential Clocks:  
O
DDR_B_CKB  
DDR2: Three per DIMM  
DDR3: Two per DIMM  
SSTL-1.8/1.5  
O
DDR2/DDR3 Device Rank 3, 2, 1, and 0 Chip  
Select  
DDR_B_CSB_[3:0]  
SSTL-1.8/1.5  
O
DDR2/DDR3 Clock Enable:  
DDR_B_CKE_[3:0]  
SSTL-1.8/1.5  
(1 per Device Rank)  
O
DDR2/DDR3 Device Rank 2, 1, and 0 On Die  
Termination  
DDR_B_ODT_[2:0]  
DDR_B_ODT_3  
DDR3_B_ODT_3  
DDR_B_MA_[14:0]  
DDR_B_BS_[2:0]  
DDR_B_RASB  
SSTL-1.8/1.5  
O
DDR2 Device Rank 3 On Die Termination  
DDR3 Device Rank 3 On Die Termination  
DDR2/DDR3 Address Signals [14:0]  
DDR2/DDR3 Bank Select  
SSTL-1.8  
O
SSTL-1.5  
O
SSTL-1.8/1.5  
O
SSTL-1.8/1.5  
O
DDR2/DDR3 Row Address Select signal  
DDR2/DDR3 Column Address Select signal  
DDR2/DDR3 Write Enable signal  
DDR2/DDR3 Data Lines  
SSTL-1.8/1.5  
O
DDR_B_CASB  
SSTL-1.8/1.5  
O
DDR_B_WEB  
SSTL-1.8/1.5  
I/O  
DDR_B_DQ_[63:0]  
SSTL-1.8/1.5  
28  
Datasheet  
Signal Description  
Signal Name  
Type  
Description  
I/O  
DDR_B_CB_[7:0]  
ECC Check Byte  
SSTL-1.8  
O
DDR_B_DM_[7:0]  
DDR_B_DQS_[8:0]  
DDR2/DDR3 Data Mask  
SSTL-1.8/1.5  
I/O  
DDR2/DDR3 Data Strobes  
SSTL-1.8/1.5  
I/O  
DDR_B_DQSB_[8:0  
]
DDR2/DDR3 Data Strobe Complements  
SSTL-1.8/1.5  
2.2.3  
System Memory Miscellaneous Signals  
Signal Name  
Type  
Description  
I/O  
A
DDR_RCOMPXPD  
System Memory Pull-down RCOMP  
I/O  
A
DDR_RCOMPXPU  
DDR_RCOMPYPD  
DDR_RCOMPYPU  
DDR_VREF  
System Memory Pull-up RCOMP  
System Memory Pull-down RCOMP  
System Memory Pull-up RCOMP  
System Memory Reference Voltage  
System Memory Pull-up Reference Signal  
System Memory Pull-down Reference Signal  
DDR3 VCC_DDR Power OK  
I/O  
A
I/O  
A
I
A
I
DDR_RCOMPVOH  
DDR_RCOMPVOL  
DDR3_DRAM_PWROK  
DDR3_DRAMRSTB  
A
I
A
I
A
O
DDR3 Reset Signal  
SSTL-1.5  
Datasheet  
29  
Signal Description  
2.3  
PCI Express* Interface Signals  
Signal Name  
Type  
Description  
Primary PCI Express Receive Differential Pair  
PEG_RXN_[15:0]  
PEG_RXP_[15:0]  
I/O  
The MCH supports a maximum width of x16 where all lanes are  
used.  
PCIE  
Primary PCI Express Transmit Differential Pair  
PEG_TXN_[15:0]  
PEG_TXP_[15:0]  
O
The MCH supports a maximum width of x16 where all lanes are  
used.  
PCIE  
PEG2_RXN_[15:0]  
PEG2_RXP_[15:0]  
I/O  
Secondary PCI Express Receive Differential Pair. The MCH  
supports a maximum width of x16 where all lanes are used.  
PCIE  
PEG2_TXN_[15:0]  
PEG2_TXP_[15:0]  
O
Secondary PCI Express Transmit Differential Pair. The MCH  
supports a maximum width of x16 where all lanes are used.  
PCIE  
I
EXP_COMPO  
EXP_COMPI  
EXP2_COMPO  
EXP2_COMPI  
Primary PCI Express Output Current Compensation  
Primary PCI Express Input Current Compensation  
Secondary PCI Express Output Current Compensation  
Secondary PCI Express Input Current Compensation  
A
I
A
I
A
I
A
2.4  
Controller Link Interface Signals  
Signal Name  
CL_DATA  
Type  
Description  
I/O  
Controller Link Data (Bi-directional)  
CMOS  
I/O  
CL_CLK  
Controller Link Clock (Bi-directional)  
Controller Link VREF  
CMOS  
I
CL_VREF  
CL_RST#  
CMOS  
I
Controller Link Reset (Active low)  
CMOS  
30  
Datasheet  
Signal Description  
2.5  
Clocks, Reset, and Miscellaneous  
Signal Name  
Type  
Description  
Differential Host Clock In: These pins receive a differential  
host clock from the external clock synthesizer. This clock is used  
by all of the MCH logic that is in the Host clock domain.  
HPL_CLKINP  
HPL_CLKINN  
I
CMOS  
Differential Primary PCI Express Clock In: These pins  
receive a differential 100 MHZ Serial Reference clock from the  
external clock synthesizer. This clock is used to generate the  
clocks necessary for the support of Primary PCI Express and  
DMI.  
EXP_CLKINP  
EXP_CLKINN  
I
CMOS  
Differential Secondary PCI Express Clock In: These pins  
receive a differential 100 MHZ Serial Reference clock from the  
external clock synthesizer. This clock is used to generate the  
clocks necessary for the support of Secondary PCI Express.  
EXP2_CLKINP  
EXP2_CLKINN  
I
CMOS  
Reset In: When asserted this signal will asynchronously reset  
the MCH logic. This signal is connected to the PCIRST# output  
of the ICH. All PCI Express output signals and DMI output  
signals will also tri-state compliant to PCI Express Rev 2.0  
specification.  
I
RSTINB  
SSTL  
This input should have a Schmitt trigger to avoid spurious  
resets.  
This signal is required to be 3.3 V tolerant.  
CL Power OK: When asserted, CL_PWROK is an indication to  
the MCH that core power (VCC_CL) has been stable for at least  
10 us.  
I/O  
CL_PWROK  
EXP_SLR  
SSTL  
PCI Express* Static Lane Reversal/Form Factor  
Selection: MCH’s PCI Express lane numbers are reversed to  
differentiate BTX and ATX form factors  
I
CMOS  
0 = MCH PCI Express lane numbers are reversed (BTX)  
1 = Normal operation (ATX)  
Bus Speed Select: At the deassertion of PWROK, the value  
sampled on these pins determines the expected frequency of  
the bus.  
I
BSEL[2:0]  
MTYPE  
CMOS  
Memory Type: Determines DDR2 or DDR3 board  
I
0 = DDR3  
1 = DDR2  
GTL+  
I/O  
SSTL  
O
Power OK: When asserted, PWROK is an indication to the MCH  
that core power has been stable for at least 10 us.  
PWROK  
ICH_SYNCB  
ALLZTEST  
XORTEST  
ICH Sync: This signal synchronizes the MCH with the ICH.  
HVCMOS  
I
All Z Test: This signal is used for chipset Bed of Nails testing to  
execute All Z Test. It is used as output for XOR Chain testing.  
GTL+  
I
XOR Chain Test: This signal is used for chipset Bed of Nails  
testing to execute XOR Chain Test.  
GTL+  
In Circuit Test: These pins should be connected to test points  
on the motherboard. They are internally shorted to the package  
ground and can be used to determine if the corner balls on the  
MCH are correctly soldered down to the motherboard. These  
pins should NOT connect to ground on the motherboard. If  
TEST[3:0] are not going to be used, they should be left as no  
connects.  
I/O  
A
TEST[3:0]  
Datasheet  
31  
Signal Description  
2.6  
2.7  
Direct Media Interface  
Signal Name  
Type  
Description  
DMI_RXP_[3:0]  
DMI_RXN_[3:0]  
I
Direct Media Interface: Receive differential pair (RX). MCH-  
ICH serial interface input  
DMI  
DMI_TXP_[3:0]  
DMI_TXN_[3:0]  
O
Direct Media Interface: Transmit differential pair (TX).  
MCH-ICH serial interface output  
DMI  
Power and Grounds  
Name  
Voltage  
Description  
VCC  
VTT  
1.25 V  
1.1 V/1.2 V  
1.25 V  
Core Power  
Processor System Bus Power  
PCI Express* and DMI Power  
DDR2/DDR3 System Memory Power  
DDR2/DDR3 System Clock Memory Power  
3.3 V CMOS Power  
VCC_EXP  
VCC_DDR  
VCC_CKDDR  
VCC3_3  
1.8 V/1.5V  
1.8V/1.5V  
3.3 V  
VCCAPLL_EXP  
VCCAPLL_EXP2  
VCCA_hplL  
VCCA_mpl  
VCCABG_EXP  
VCC_CL  
1.25 V  
Primary PCI Express PLL Analog Power  
Secondary PCI Express PLL Analog Power  
Host PLL Analog Power  
1.25 V  
1.25 V  
1.25 V  
System Memory PLL Analog Power  
PCI Express* Analog Power  
Controller Link Aux Power  
3.3 V  
1.25 V  
VSS  
0 V  
Ground  
§ §  
32  
Datasheet  
System Address Map  
3
System Address Map  
The MCH supports 64 GB (36 bit) of host address space and 64 KB+3 of addressable  
I/O space. There is a programmable memory address space under the 1 MB region  
which is divided into regions which can be individually controlled with programmable  
attributes such as Disable, Read/Write, Write Only, or Read Only. Attribute  
programming is described in the Register Description section. This section focuses on  
how the memory space is partitioned and what the separate memory regions are used  
for. I/O address space has simpler mapping and is explained near the end of this  
section.  
The MCH supports PCI Express* upper pre-fetchable base/limit registers. This allows  
the PCI Express unit to claim IO accesses above 36 bit, complying with the PCI Express  
Specification. Addressing of greater than 8 GB is allowed on either the DMI Interface or  
PCI Express interface. The MCH supports a maximum of 8 GB of DRAM. No DRAM  
memory will be accessible above 8 GB.  
In the following sections, it is assumed that all of the compatibility memory ranges  
reside on the DMI Interface. The MCH does not remap APIC or any other memory  
spaces above TOLUD (Top of Low Usable DRAM). The TOLUD register is set to the  
appropriate value by BIOS. The reclaim base/reclaim limit registers remap logical  
accesses bound for addresses above 4 GB onto physical addresses that fall within  
DRAM.  
The Address Map includes a number of programmable ranges:  
• Device 0  
— PXPEPBAR – Egress port registers. Necessary for setting up VC1 as an  
isochronous channel using time based weighted round robin arbitration. (4 KB  
window)  
— MCHBAR – Memory mapped range for internal MCH registers. For example,  
memory buffer register controls. (16 KB window)  
— PCIEXBAR – Flat memory-mapped address spaced to access device  
configuration registers. This mechanism can be used to access PCI  
configuration space (0–FFh) and Extended configuration space (100h–FFFh) for  
PCI Express devices. This enhanced configuration access mechanism is defined  
in the PCI Express specification. (64 MB, 128 MB, or 256 MB window).  
— DMIBAR –This window is used to access registers associated with the Direct  
Media Interface (DMI) register memory range. (4 KB window)  
• Device 1  
— MBASE1/MLIMIT1 – PCI Express port non-prefetchable memory access window.  
— PMBASE1/PMLIMIT1 – PCI Express port prefetchable memory access window.  
— PMUBASE/PMULIMIT – PCI Express port upper prefetchable memory access  
window  
— IOBASE1/IOLIMIT1 – PCI Express port I/O access window.  
Datasheet  
33  
System Address Map  
• Device 3  
— ME Control  
• Device 6, Function 0  
— MBASE1/MLIMIT1 – PCI Express port non-prefetchable memory access window.  
— PMBASE1/PMLIMIT1 – PCI Express port prefetchable memory access window.  
— PMUBASE/PMULIMIT – PCI Express port upper prefetchable memory access  
window  
— IOBASE1/IOLIMIT1 – PCI Express port I/O access window.  
The rules for the above programmable ranges are:  
1. ALL of these ranges MUST be unique and NON-OVERLAPPING. It is the BIOS or  
system designers' responsibility to limit memory population so that adequate PCI,  
PCI Express, High BIOS, and PCI Express Memory Mapped space, and APIC  
memory space can be allocated.  
2. In the case of overlapping ranges with memory, the memory decode will be given  
priority. This is an Intel Trusted Execution Technology requirement. It is necessary  
to get Intel TET protection checks, avoiding potential attacks.  
3. There are NO Hardware Interlocks to prevent problems in the case of overlapping  
ranges.  
4. Accesses to overlapped ranges may produce indeterminate results.  
5. The only peer-to-peer cycles allowed below the top of Low Usable memory (register  
TOLUD) are DMI Interface to PCI Express range writes.  
Figure 2 represents system memory address map in a simplified form.  
34  
Datasheet  
System Address Map  
Figure 2.  
System Address Ranges  
NOTE: Do not follow the EP UMA requirement.  
Datasheet  
35  
System Address Map  
3.1  
Legacy Address Range  
This area is divided into the following address regions:  
• 0 - 640 KB – DOS Area  
• 640 - 768 KB – Legacy Video Buffer Area  
• 768 - 896 KB in 16 KB sections (total of 8 sections) – Expansion Area  
• 896 -960 KB in 16 KB sections (total of 4 sections) – Extended System BIOS Area  
• 960 KB - 1 MB Memory – System BIOS Area  
Figure 3.  
DOS Legacy Address Range  
1 MB  
000F_FFFFh  
000F_0000h  
000E_FFFFh  
000E_0000h  
000D_FFFFh  
System BIOS (Upper)  
64 KB  
960 KB  
896 KB  
Extended System BIOS (Lower)  
64 KB (16 KB x 4)  
Expansion Area  
128 KB (16 KB x 8)  
000C_0000h  
000B_FFFFh  
768 KB  
640 KB  
Legacy Video Area  
(SMM Memory)  
128 KB  
000A_0000h  
0009_FFFFh  
DOS Area  
0000_0000h  
3.1.1  
DOS Range (0h – 9_FFFFh)  
The DOS area is 640 KB (0000_0000h – 0009_FFFFh) in size and is always mapped to  
the main memory controlled by the MCH.  
36  
Datasheet  
System Address Map  
3.1.2  
Expansion Area (C_0000h-D_FFFFh)  
This 128 KB ISA Expansion region (000C_0000h – 000D_FFFFh) is divided into eight  
16 KB segments. Each segment can be assigned one of four Read/Write states: read-  
only, write-only, read/write, or disabled. Typically, these blocks are mapped through  
MCH and are subtractive decoded to ISA space. Memory that is disabled is not  
remapped.  
Non-snooped accesses from PCI Express or DMI to this region are always sent to  
DRAM.  
Table 2.  
Expansion Area Memory Segments  
Memory Segments  
Attributes  
Comments  
0C0000h – 0C3FFFh  
0C4000h – 0C7FFFh  
0C8000h – 0CBFFFh  
0CC000h – 0CFFFFh  
0D0000h – 0D3FFFh  
0D4000h – 0D7FFFh  
0D8000h – 0DBFFFh  
0DC000h – 0DFFFFh  
WE RE  
WE RE  
WE RE  
WE RE  
WE RE  
WE RE  
WE RE  
WE RE  
Add-on BIOS  
Add-on BIOS  
Add-on BIOS  
Add-on BIOS  
Add-on BIOS  
Add-on BIOS  
Add-on BIOS  
Add-on BIOS  
3.1.3  
Extended System BIOS Area (E_0000h–E_FFFFh)  
This 64 KB area (000E_0000h – 000E_FFFFh) is divided into four 16 KB segments. Each  
segment can be assigned independent read and write attributes so it can be mapped  
either to main DRAM or to DMI Interface. Typically, this area is used for RAM or ROM.  
Memory segments that are disabled are not remapped elsewhere.  
Non-snooped accesses from PCI Express or DMI to this region are always sent to  
DRAM.  
Table 3.  
Extended System BIOS Area Memory Segments  
Memory Segments  
Attributes  
Comments  
0E0000h – 0E3FFFh  
0E4000h – 0E7FFFh  
0E8000h – 0EBFFFh  
0EC000h – 0EFFFFh  
WE RE  
WE RE  
WE RE  
WE RE  
BIOS Extension  
BIOS Extension  
BIOS Extension  
BIOS Extension  
Datasheet  
37  
System Address Map  
3.1.4  
System BIOS Area (F_0000h–F_FFFFh)  
This area is a single 64 KB segment (000F_0000h – 000F_FFFFh). This segment can be  
assigned read and write attributes. It is by default (after reset) Read/Write disabled  
and cycles are forwarded to DMI Interface. By manipulating the Read/Write attributes,  
the MCH can “shadow” BIOS into the main DRAM. When disabled, this segment is not  
remapped.  
Non-snooped accesses from PCI Express or DMI to this region are always sent to  
DRAM.  
Table 4.  
System BIOS Area Memory Segments  
Memory Segments  
Attributes  
Comments  
0F0000h – 0FFFFFh  
WE RE  
BIOS Area  
3.1.5  
PAM Memory Area Details  
The 13 sections from 768 KB to 1 MB comprise what is also known as the PAM Memory  
Area.  
The MCH does not handle IWB (Implicit Write-Back) cycles targeting DMI. Since all  
memory residing on DMI should be set as non-cacheable, there will normally not be  
IWB cycles targeting DMI. However, DMI becomes the default target for processor and  
DMI originated accesses to disabled segments of the PAM region. If the MTRRs covering  
the PAM regions are set to WB or RD it is possible to get IWB cycles targeting DMI. This  
may occur for processor originated cycles (in a DP system) and for DMI originated  
cycles to disabled PAM regions.  
For example, say that a particular PAM region is set for “Read Disabled” and the MTRR  
associated with this region is set to WB. A DMI master generates a memory read  
targeting the PAM region. A snoop is generated on the FSB and the result is an IWB.  
Since the PAM region is “Read Disabled” the default target for the Memory Read  
becomes DMI. The IWB associated with this cycle will cause the MCH to hang.  
Non-snooped accesses from PCI Express or DMI to this region are always sent to  
DRAM.  
3.2  
Main Memory Address Range (1MB – TOLUD)  
This address range extends from 1 MB to the top of Low Usable physical memory that is  
permitted to be accessible by the MCH (as programmed in the TOLUD register). All  
accesses to addresses within this range will be forwarded by the MCH to the DRAM  
unless it falls into the optional TSEG, or optional ISA Hole.  
38  
Datasheet  
System Address Map  
Figure 4.  
Main Memory Address Range  
8 GB  
Main Memory  
.
.
.
.
.
FFFF_FFFFh  
4 GB  
FLASH  
APIC  
LT  
PCI Memory Range  
TSEG (1MB/2MB/8MB,  
optional)  
Main Memory  
0100_0000h  
00F0_0000h  
ISA Hole (optional)  
Main Memory  
0010_0000h  
0h  
DOS Compatibility Memory  
3.2.1  
ISA Hole (15 MB –16 MB)  
A hole can be created at 15 MB–16 MB as controlled by the fixed hole enable in  
Device 0 space. Accesses within this hole are forwarded to the DMI Interface. The  
range of physical DRAM memory disabled by opening the hole is not remapped to the  
top of the memory – that physical DRAM space is not accessible. This 15–16 MB hole is  
an optionally enabled ISA hole.  
The ISA Hole is used by validation and customer SV teams for some of their test cards.  
That is why it is being supported. There is no inherent BIOS request for the 15–16 MB  
window.  
Datasheet  
39  
System Address Map  
3.2.2  
TSEG  
TSEG is optionally 1 MB, 2 MB, or 8 MB in size. TSEG is below stolen memory, which is  
at the top of Low Usable physical memory (TOLUD). SMM-mode processor accesses to  
enabled TSEG access the physical DRAM at the same address. Non-processor  
originated accesses are not allowed to SMM space. PCI Express, and DMI originated  
cycles to enabled SMM space are handled as invalid cycle type with reads and writes to  
location 0 and byte enables turned off for writes. When the extended SMRAM space is  
enabled, processor accesses to the TSEG range without SMM attribute or without WB  
attribute are also forwarded to memory as invalid accesses (see table 8). Non-SMM-  
mode Write Back cycles that target TSEG space are completed to DRAM for cache  
coherency. When SMM is enabled the maximum amount of memory available to the  
system is equal to the amount of physical DRAM minus the value in the TSEG register  
which is fixed at 1 MB, 2 MB, or 8 MB.  
3.2.3  
Pre-allocated Memory  
Voids of physical addresses that are not accessible as general system memory and  
reside within system memory address range (< TOLUD) are created for SMM-mode,  
and stolen memory. It is the responsibility of BIOS to properly initialize these  
regions. The following table details the location and attributes of the regions.  
Enabling/Disabling these ranges are described in the MCH Control Register Device 0  
(GCC).  
Figure 5.  
Pre-allocated Memory Example for 64 MB DRAM, 1 MB stolen and 1 MB TSEG  
Memory Segments  
Attributes  
Comments  
0000_0000h – 03CF_FFFFh  
R/W  
Available System Memory 61 MB  
SMM Mode Only -  
processor Reads  
TSEG Address Range & Pre-allocated  
memory  
03D0_0000h – 03DF_FFFFh  
40  
Datasheet  
System Address Map  
3.3  
PCI Memory Address Range (TOLUD 4 GB)  
This address range, from the top of low usable DRAM (TOLUD) to 4 GB is normally  
mapped to the DMI Interface.  
Device 0 exceptions are:  
• Addresses decoded to the egress port registers (PXPEPBAR)  
• Addresses decoded to the memory mapped range for internal MCH registers  
(MCHBAR)  
• Addresses decoded to the flat memory-mapped address spaced to access device  
configuration registers (PCIEXBAR)  
• Addresses decoded to the registers associated with the Direct Media Interface  
(DMI) register memory range. (DMIBAR)  
With PCI Express port, there are two exceptions to this rule.  
• Addresses decoded to the PCI Express Memory Window defined by the MBASE1,  
MLIMIT1, registers are mapped to PCI Express.  
• Addresses decoded to the PCI Express prefetchable Memory Window defined by the  
PMBASE1, PMLIMIT1, registers are mapped to PCI Express.  
In an Intel ME configuration, there are exceptions to this rule:  
1. Addresses decoded to the ME Keyboard and Text MMIO range (EPKTBAR)  
2. Addresses decoded to the ME HECI MMIO range (EPHECIBAR)  
3. Addresses decoded to the ME HECI2 MMIO range (EPHECI2BAR)  
Some of the MMIO Bars may be mapped to this range or to the range above TOUUD.  
There are sub-ranges within the PCI Memory address range defined as APIC  
Configuration Space, FSB Interrupt Space, and High BIOS Address Range. The  
exceptions listed above for the PCI Express ports MUST NOT overlap with these  
ranges.  
Datasheet  
41  
System Address Map  
Figure 6.  
PCI Memory Address Range  
4 GB  
FFFF_FFFFh  
FFE0_0000h  
High BIOS  
4 GB – 2 MB  
DMI Interface  
(subtractive decode)  
FEF0_0000h  
4 GB – 17 MB  
4 GB – 18 MB  
4 GB – 19 MB  
FSB Interrupts  
FEE0_0000h  
FED0_0000h  
DMI Interface  
(subtractive decode)  
Local (CPU) APIC  
I/O APIC  
Optional HSEG  
FEC8_0000h  
FEC0_0000h  
FEDA_0000h to  
FEDB_FFFFh  
4 GB – 20 MB  
DMI Interface  
(subtractive decode)  
F000_0000h  
E000_0000h  
4 GB – 256 MB  
Possible address  
range/size (not  
ensured)  
PCI Express Configuration  
Space  
4 GB – 512 MB  
BARs and  
PCI Express  
Port could be  
here.  
DMI Interface  
(subtractive decode)  
TOLUD  
42  
Datasheet  
System Address Map  
3.3.1  
APIC Configuration Space (FEC0_0000h–FECF_FFFFh)  
This range is reserved for APIC configuration space. The I/O APIC(s) usually reside in  
the ICH portion of the chipset.  
The IOAPIC spaces are used to communicate with IOAPIC interrupt controllers that  
may be populated in the system. Since it is difficult to relocate an interrupt controller  
using plug-and-play software, fixed address decode regions have been allocated for  
them. Processor accesses to the default IOAPIC region (FEC0_0000h to FEC7_FFFFh)  
are always forwarded to DMI.  
The MCH optionally supports additional I/O APICs behind the PCI Express port. When  
enabled via the PCI Express Configuration register (Device 1 Offset 200h), the PCI  
Express port will positively decode a subset of the APIC configuration space –  
specifically FEC8_0000h thru FECF_FFFFh. Memory request to this range would then be  
forwarded to the PCI Express port. When disabled, any access within entire APIC  
Configuration space (FEC0_0000h to FECF_FFFFh) is forwarded to DMI.  
3.3.2  
HSEG (FEDA_0000h–FEDB_FFFFh)  
This optional segment from FEDA_0000h to FEDB_FFFFh provides a remapping window  
to SMM Memory. It is sometimes called the High SMM memory space. SMM-mode  
processor accesses to the optionally enabled HSEG are remapped to 000A_0000h –  
000B_FFFFh. Non-SMM-mode processor accesses to enabled HSEG are considered  
invalid and are terminated immediately on the FSB. The exceptions to this rule are  
Non-SMM-mode Write Back cycles which are remapped to SMM space to maintain  
cache coherency. PCI Express and DMI originated cycles to enabled SMM space are not  
allowed. Physical DRAM behind the HSEG transaction address is not remapped and is  
not accessible. All cacheline writes with WB attribute or Implicit write backs to the  
HSEG range are completed to DRAM like an SMM cycle.  
3.3.3  
3.3.4  
FSB Interrupt Memory Space (FEE0_0000–FEEF_FFFF)  
The FSB Interrupt space is the address used to deliver interrupts to the FSB. Any  
device on PCI Express or DMI may issue a Memory Write to 0FEEx_xxxxh. The MCH will  
forward this Memory Write along with the data to the FSB as an Interrupt Message  
Transaction. The MCH terminates the FSB transaction by providing the response and  
asserting HTRDYB. This Memory Write cycle does not go to DRAM.  
High BIOS Area  
The top 2 MB (FFE0_0000h – FFFF_FFFFh) of the PCI Memory Address Range is  
reserved for System BIOS (High BIOS), extended BIOS for PCI devices, and the A20  
alias of the system BIOS. The processor begins execution from the High BIOS after  
reset. This region is mapped to DMI Interface so that the upper subset of this region  
aliases to 16 MB–256 KB range. The actual address space required for the BIOS is less  
than 2 MB but the minimum processor MTRR range for this region is 2 MB so that full  
2 MB must be considered.  
Datasheet  
43  
System Address Map  
3.4  
Main Memory Address Space (4 GB to TOUUD)  
The MCH supports 36 bit addressing. The maximum main memory size supported is  
8 GB total DRAM memory. A hole between TOLUD and 4 GB occurs when main memory  
size approaches 4 GB or larger. As a result, TOM, and TOUUD registers and  
RECLAIMBASE/RECLAIMLIMIT registers become relevant.  
The new reclaim configuration registers exist to reclaim lost main memory space. The  
greater than 32 bit reclaim handling will be handled similar to other MCHs.  
Upstream read and write accesses above 36-bit addressing will be treated as invalid  
cycles by PCI Express and DMI.  
Top of Memory  
The “Top of Memory” (TOM) register reflects the total amount of populated physical  
memory. This is NOT necessarily the highest main memory address (holes may exist in  
main memory address map due to addresses allocated for memory-mapped I/O above  
TOM). TOM is used to allocate the Intel Management Engine's stolen memory. The Intel  
ME stolen size register reflects the total amount of physical memory stolen by the Intel  
ME. The ME stolen memory is located at the top of physical memory. The ME stolen  
memory base is calculated by subtracting the amount of memory stolen by the Intel ME  
from TOM.  
The Top of Upper Usable Dram (TOUUD) register reflects the total amount of  
addressable DRAM. If reclaim is disabled, TOUUD will reflect TOM minus Intel ME stolen  
size. If reclaim is enabled, then it will reflect the reclaim limit. Also, the reclaim base  
will be the same as TOM minus ME stolen memory size to the nearest 64 MB alignment.  
TOLUD register is restricted to 4 GB memory (A[31:20]), but the MCH can support up  
to 16 GB, limited by DRAM pins. For physical memory greater than 4 GB, the TOUUD  
register helps identify the address range in between the 4 GB boundary and the top of  
physical memory. This identifies memory that can be directly accessed (including  
reclaim address calculation) which is useful for memory access indication, early path  
indication, and trusted read indication. When reclaim is enabled, TOLUD must be  
64 MB aligned, but when reclaim is disabled, TOLUD can be 1 MB aligned.  
C1DRB3 cannot be used directly to determine the effective size of memory as the  
values programmed in the DRBs depend on the memory mode (stacked, interleaved).  
The Reclaim Base/Limit registers also can not be used because reclaim can be disabled.  
The C0DRB3 register is used for memory channel identification (channel 0 vs. channel  
1) in the case of stacked memory.  
44  
Datasheet  
System Address Map  
3.4.1  
Memory Re-claim Background  
The following are examples of Memory Mapped IO devices are typically located below  
4 GB:  
• High BIOS  
• HSEG  
• TSEG  
• XAPIC  
• Local APIC  
• FSB Interrupts  
• Mbase/Mlimit  
• Memory Mapped IO space that supports only 32 B addressing  
The MCH provides the capability to re-claim the physical memory overlapped by the  
Memory Mapped I/O logical address space. The MCH re-maps physical memory from  
the Top of Low Memory (TOLUD) boundary up to the 4 GB boundary to an equivalent  
sized logical address range located just below the Intel ME's stolen memory.  
3.4.2  
Memory Reclaiming  
An incoming address (referred to as a logical address) is checked to see if it falls in the  
memory re-map window. The bottom of the re-map window is defined by the value in  
the RECLAIMBASE register. The top of the re-map window is defined by the value in the  
RECLAIMLIMIT register. An address that falls within this window is reclaimed to the  
physical memory starting at the address defined by the TOLUD register. The TOLUD  
register must be 64M aligned when RECLAIM is enabled, but can be 1M aligned when  
reclaim is disabled.  
3.5  
PCI Express* Configuration Address Space  
There is a device 0 register, PCIEXBAR, which defines the base address for the  
configuration space associated with all devices and functions that are potentially a part  
of the PCI Express root complex hierarchy. The size of this range will be programmable  
for the MCH. BIOS must assign this address range such that it will not conflict with any  
other address ranges.  
See the configuration portion of this document for more details.  
Datasheet  
45  
System Address Map  
3.6  
PCI Express* Address Space  
The MCH can be programmed to direct memory accesses to the PCI Express interface  
when addresses are within either of two ranges specified via registers in MCH’s Device  
1 configuration space.  
• The first range is controlled via the Memory Base Register (MBASE) and Memory  
Limit Register (MLIMIT) registers.  
• The second range is controlled via the Pre-fetchable Memory Base (PMBASE) and  
Pre-fetchable Memory Limit (PMLIMIT) registers.  
Conceptually, address decoding for each range follows the same basic concept. The top  
12 bits of the respective Memory Base and Memory Limit registers correspond to  
address bits A[31:20] of a memory address . For the purpose of address decoding, the  
MCH assumes that address bits A[19:0] of the memory base are zero and that address  
bits A[19:0] of the memory limit address are FFFFFh. This forces each memory address  
range to be aligned to 1MB boundary and to have a size granularity of 1 MB.  
The MCH positively decodes memory accesses to PCI Express memory address space  
as defined by the following equations:  
Memory_Base_Address Address Memory_Limit_Address  
Prefetchable_Memory_Base_Address Address Prefetchable_Memory_Limit_Address  
The window size is programmed by the plug-and-play configuration software. The  
window size depends on the size of memory claimed by the PCI Express device.  
Normally these ranges will reside above the Top-of-Low Usable-DRAM and below High  
BIOS and APIC address ranges. They MUST reside above the top of low memory  
(TOLUD) if they reside below 4 GB and MUST reside above top of upper memory  
(TOUUD) if they reside above 4 GB or they will steal physical DRAM memory space.  
It is essential to support a separate Pre-fetchable range in order to apply USWC  
attribute (from the processor point of view) to that range. The USWC attribute is used  
by the processor for write combining.  
Note that the MCH Device 1 memory range registers described above are used to  
allocate memory address space for any PCI Express devices sitting on PCI Express that  
require such a window.  
The PCICMD1 register can override the routing of memory accesses to PCI Express. In  
other words, the memory access enable bit must be set in the device 1 PCICMD1  
register to enable the memory base/limit and pre-fetchable base/limit windows.  
For the MCH, the upper PMUBASE1/PMULIMIT1 registers have been implemented for  
PCI Express Spec compliance. The MCH locates MMIO space above 4 GB using these  
registers.  
46  
Datasheet  
System Address Map  
3.7  
System Management Mode (SMM)  
System Management Mode uses main memory for System Management RAM (SMM  
RAM). The MCH supports: Compatible SMRAM (C_SMRAM), High Segment (HSEG), and  
Top of Memory Segment (TSEG). System Management RAM space provides a memory  
area that is available for the SMI handlers and code and data storage. This memory  
resource is normally hidden from the system OS so that the processor has immediate  
access to this memory space upon entry to SMM. MCH provides three SMRAM options:  
• Below 1 MB option that supports compatible SMI handlers.  
• Above 1 MB option that allows new SMI handlers to execute with write-back  
cacheable SMRAM.  
• Optional TSEG area of 1 MB, 2 MB, or 8 MB in size. The TSEG area lies below stolen  
memory.  
The above 1 MB solutions require changes to compatible SMRAM handlers code to  
properly execute above 1 MB.  
Note:  
DMI Interface and PCI Express masters are not allowed to access the SMM space.  
3.7.1  
SMM Space Definition  
SMM space is defined by its addressed SMM space and its DRAM SMM space. The  
addressed SMM space is defined as the range of bus addresses used by the processor  
to access SMM space. DRAM SMM space is defined as the range of physical DRAM  
memory locations containing the SMM code. SMM space can be accessed at one of  
three transaction address ranges: Compatible, High, and TSEG. The Compatible and  
TSEG SMM space is not remapped and therefore the addressed and DRAM SMM space  
is the same address range. Since the High SMM space is remapped the addressed and  
DRAM SMM space is a different address range. Note that the High DRAM space is the  
same as the Compatible Transaction Address space. Table 5 describes three unique  
address ranges.  
• Compatible Transaction Address  
• High Transaction Address  
• TSEG Transaction Address  
Table 5.  
Transaction Address Ranges – Compatible, High, and TSEG  
SMM Space Enabled  
Transaction Address Space  
DRAM Space (DRAM)  
Compatible  
High  
000A_0000h to 000B_FFFFh  
FEDA_0000h to FEDB_FFFFh  
000A_0000h to 000B_FFFFh  
000A_0000h to 000B_FFFFh  
(TOLUD–STOLEN–TSEG) to  
TOLUD–STOLEN  
(TOLUD–STOLEN–TSEG) to  
TOLUD–STOLEN  
TSEG  
Datasheet  
47  
System Address Map  
3.7.2  
SMM Space Restrictions  
If any of the following conditions are violated, the results of SMM accesses are  
unpredictable and may cause the system to hang:  
1. The Compatible SMM space must not be set-up as cacheable.  
2. High or TSEG SMM transaction address space must not overlap address space  
assigned to system DRAM, or to any “PCI” devices (including DMI Interface and  
PCI-Express). This is a BIOS responsibility.  
3. Both D_OPEN and D_CLOSE must not be set to 1 at the same time.  
4. When TSEG SMM space is enabled, the TSEG space must not be reported to the  
OS as available DRAM. This is a BIOS responsibility.  
5. Any address translated through the GMADR TLB must not target DRAM from  
A_0000–F_FFFFh.  
3.7.3  
SMM Space Combinations  
When High SMM is enabled (G_SMRAME=1 and H_SMRAM_EN=1) the Compatible SMM  
space is effectively disabled. Processor originated accesses to the Compatible SMM  
space are forwarded to PCI Express; otherwise they are forwarded to the DMI  
Interface. PCI Express and DMI Interface originated accesses are never allowed to  
access SMM space.  
Table 6.  
SMM Space Table  
Global Enable  
G_SMRAME  
High Enable  
H_SMRAM_EN  
TSEG Enable  
TSEG_EN  
Compatible  
(C) Range  
High (H)  
Range  
TSEG (T)  
Range  
0
1
1
1
1
X
0
0
1
1
X
0
1
0
1
Disable  
Enable  
Disable  
Disable  
Disable  
Enable  
Enable  
Disable  
Disable  
Enable  
Disable  
Enable  
Enable  
Disabled  
Disabled  
48  
Datasheet  
System Address Map  
3.7.4  
SMM Control Combinations  
The G_SMRAME bit provides a global enable for all SMM memory. The D_OPEN bit  
allows software to write to the SMM ranges without being in SMM mode. BIOS software  
can use this bit to initialize SMM code at powerup. The D_LCK bit limits the SMM range  
access to only SMM mode accesses. The D_CLS bit causes SMM (both CSEG and TSEG)  
data accesses to be forwarded to the DMI Interface or PCI Express. The SMM software  
can use this bit to write to video memory while running SMM code out of DRAM.  
Table 7.  
SMM Control Table  
Processor  
in SMM  
Mode  
SMM Code  
Access  
SMM Data  
Access  
G_SMRAME  
D_LCK  
D_CLS  
D_OPEN  
0
1
1
1
1
1
1
1
1
x
0
0
0
0
0
1
1
1
X
X
0
0
1
1
X
0
1
x
0
0
1
0
1
x
x
x
x
0
1
x
1
x
0
1
1
Disable  
Disable  
Enable  
Enable  
Enable  
Invalid  
Disable  
Enable  
Enable  
Disable  
Disable  
Enable  
Enable  
Disable  
Invalid  
Disable  
Enable  
Disable  
3.7.5  
3.7.6  
SMM Space Decode and Transaction Handling  
Only the processor is allowed to access SMM space. PCI Express and DMI Interface  
originated transactions are not allowed to SMM space.  
Processor WB Transaction to an Enabled SMM Address  
Space  
Processor Writeback transactions (REQa[1]# = 0) to enabled SMM Address Space must  
be written to the associated SMM DRAM even though D_OPEN=0 and the transaction is  
not performed in SMM mode. This ensures SMM space cache coherency when cacheable  
extended SMM space is used.  
3.7.7  
SMM Access Through TLB  
Accesses through TLB address translation to enabled SMM DRAM space are not allowed.  
Writes will be routed to Memory address 000C_0000h with byte enables de-asserted  
and reads will be routed to Memory address 000C_0000h. If a TLB translated address  
hits enabled SMM DRAM space, an error is recorded.  
PCI Express and DMI Interface originated accesses are never allowed to access SMM  
space directly or through the TLB address translation. If a TLB translated address hits  
enabled SMM DRAM space, an error is recorded.  
PCI Express and DMI Interface write accesses through GMADR range will be snooped.  
Assesses to GMADR linear range (defined via fence registers) are supported. PCI  
Express and DMI Interface tileY and tileX writes to GMADR are not supported. If, when  
translated, the resulting physical address is to enabled SMM DRAM space, the request  
will be remapped to address 000C_0000h with de-asserted byte enables.  
Datasheet  
49  
System Address Map  
PCI Express and DMI Interface read accesses to the GMADR range are not supported  
therefore will have no address translation concerns. PCI Express and DMI Interface  
reads to GMADR will be remapped to address 000C_0000h. The read will complete with  
UR (unsupported request) completion status.  
Fetches are always decoded (at fetch time) to ensure not in SMM (actually, anything  
above base of TSEG or 640 K–1 M). Thus, they will be invalid and go to address  
000C_0000h, but that isn’t specific to PCI Express or DMI; it applies to processor. Also,  
since the GMADR snoop would not be directly to the SMM space, there wouldn’t be a  
writeback to SMM. In fact, the writeback would also be invalid (because it uses the  
same translation) and go to address 000C_0000h.  
3.8  
3.9  
Memory Shadowing  
Any block of memory that can be designated as read-only or write-only can be  
“shadowed” into MCH DRAM memory. Typically this is done to allow ROM code to  
execute more rapidly out of main DRAM. ROM is used as a read-only during the copy  
process while DRAM at the same time is designated write-only. After copying, the  
DRAM is designated read-only so that ROM is shadowed. Processor bus transactions are  
routed accordingly.  
I/O Address Space  
The MCH does not support the existence of any other I/O devices beside itself on the  
processor bus. The MCH generates either DMI Interface or PCI Express bus cycles for  
all processor I/O accesses that it does not claim. Within the host bridge, the MCH  
contains two internal registers in the processor I/O space, Configuration Address  
Register (CONFIG_ADDRESS) and the Configuration Data Register (CONFIG_DATA).  
These locations are used to implement configuration space access mechanism.  
The processor allows 64 K+3 bytes to be addressed within the I/O space. The MCH  
propagates the processor I/O address without any translation on to the destination bus  
and therefore provides addressability for 64K+3 byte locations. Note that the upper 3  
locations can be accessed only during I/O address wrap-around when processor bus  
HAB_16 address signal is asserted. HAB_16 is asserted on the processor bus whenever  
an I/O access is made to 4 bytes from address 0FFFDh, 0FFFEh, or 0FFFFh. HAB_16 is  
also asserted when an I/O access is made to 2 bytes from address 0FFFFh.  
The I/O accesses (other than ones used for configuration space access) are forwarded  
normally to the DMI Interface bus unless they fall within the PCI Express I/O address  
range as defined by the mechanisms explained below. I/O writes are NOT posted.  
Memory writes to ICH or PCI Express are posted. The PCICMD1 register can disable the  
routing of I/O cycles to the PCI Express.  
The MCH responds to I/O cycles initiated on PCI Express or DMI with an UR status.  
Upstream I/O cycles and configuration cycles should never occur. If one does occur, the  
request will route as a read to Memory address 000C_0000h so a completion is  
naturally generated (whether the original request was a read or write). The transaction  
will complete with an UR completion status.  
I/O reads that lie within 8-byte boundaries but cross 4-byte boundaries are issued from  
the processor as 1 transaction. The MCH will break this into 2 separate transactions.  
I/O writes that lie within 8-byte boundaries but cross 4-byte boundaries are assumed  
to be split into 2 transactions by the processor.  
50  
Datasheet  
System Address Map  
3.9.1  
PCI Express* I/O Address Mapping  
The MCH can be programmed to direct non-memory (I/O) accesses to the PCI Express  
bus interface when processor initiated I/O cycle addresses are within the PCI Express I/  
O address range. This range is controlled via the I/O Base Address (IOBASE) and I/O  
Limit Address (IOLIMIT) registers in MCH Device 1 configuration space.  
Address decoding for this range is based on the following concept. The top 4 bits of the  
respective I/O Base and I/O Limit registers correspond to address bits A[15:12] of an  
I/O address. For the purpose of address decoding, the MCH assumes that lower 12  
address bits A[11:0] of the I/O base are zero and that address bits A[11:0] of the I/O  
limit address are FFFh. This forces the I/O address range alignment to 4 KB boundary  
and produces a size granularity of 4 KB.  
The MCH positively decodes I/O accesses to PCI Express I/O address space as defined  
by the following equation:  
I/O_Base_Address Processor I/O Cycle Address I/O_Limit_Address  
The effective size of the range is programmed by the plug-and-play configuration  
software and it depends on the size of I/O space claimed by the PCI Express device.  
Note that the MCH Device 1 and/or Device 6 I/O address range registers defined above  
are used for all I/O space allocation for any devices requiring such a window on PCI  
Express.  
The PCICMD1 register can disable the routing of I/O cycles to PCI Express.  
§ §  
Datasheet  
51  
System Address Map  
52  
Datasheet  
MCH Register Description  
4
MCH Register Description  
The MCH contains two sets of software accessible registers, accessed via the Host  
processor I/O address space: Control registers and internal configuration registers.  
• Control registers are I/O mapped into the processor I/O space, which control  
access to PCI and PCI Express configuration space (see Chapter 6).  
• Internal configuration registers residing within the MCH are partitioned into two  
logical device register sets (“logical” since they reside within a single physical  
device). The first register set is dedicated to Host Bridge functionality (i.e., DRAM  
configuration, other chipset operating parameters and optional features). The  
second register block is dedicated to Host-to-PCI Express Bridge functions (controls  
PCI Express interface configurations and operating parameters).  
The MCH internal registers (I/O Mapped, Configuration and PCI Express Extended  
Configuration registers) are accessible by the processor. The registers that reside within  
the lower 256 bytes of each device can be accessed as Byte, Word (16-bit), or DWord  
(32-bit) quantities, with the exception of CONFIG_ADDRESS, which can only be  
accessed as a DWord. All multi-byte numeric fields use “little-endian” ordering (i.e.,  
lower addresses contain the least significant parts of the field). Registers that reside in  
bytes 256 through 4095 of each device may only be accessed using memory-mapped  
transactions in DWord (32-bit) quantities.  
Some of the MCH registers described in this section contain reserved bits. These bits  
are labeled “Reserved. Software must deal correctly with fields that are reserved. On  
reads, software must use appropriate masks to extract the defined bits and not rely on  
reserved bits being any particular value. On writes, software must ensure that the  
values of reserved bit positions are preserved. That is, the values of reserved bit  
positions must first be read, merged with the new values for other bit positions and  
then written back. Note the software does not need to perform read, merge, and write  
operation for the Configuration Address Register.  
In addition to reserved bits within a register, the MCH contains address locations in the  
configuration space of the Host Bridge entity that are marked either “Reserved” or  
“Intel Reserved. The MCH responds to accesses to “Reserved” address locations by  
completing the host cycle. When a “Reserved” register location is read, a zero value is  
returned. (“Reserved” registers can be 8-, 16-, or 32-bits in size). Writes to “Reserved”  
registers have no effect on the MCH. Registers that are marked as “Intel Reserved”  
must not be modified by system software. Writes to “Intel Reserved” registers may  
cause system failure. Reads from “Intel Reserved” registers may return a non-zero  
value.  
Upon a Full Reset, the MCH sets its entire set of internal configuration registers to  
predetermined default states. Some register values at reset are determined by external  
strapping options. The default state represents the minimum functionality feature set  
required to successfully bringing up the system. Hence, it does not represent the  
optimal system configuration. It is the responsibility of the system initialization  
software (usually BIOS) to properly determine the DRAM configurations, operating  
parameters and optional system features that are applicable, and to program the MCH  
registers accordingly.  
Datasheet  
53  
MCH Register Description  
4.1  
Register Terminology  
The following table shows the register-related terminology that is used.  
Item  
Description  
RO  
Read Only bit(s). Writes to these bits have no effect.  
RO/S  
Read Only / Sticky. Writes to these bits have no effect. These are status bits only. Bits are  
not returned to their default values by “warm” reset, but will be reset with a cold/  
complete reset (for PCI Express related bits, a cold reset is “Power Good Reset” as  
defined in the PCI Express specification).  
RS/WC  
Read Set / Write Clear bit(s). These bits are set to ‘1’ when read and then will continue to  
remain set until written. A write of ‘1’ clears (sets to ‘0’) the corresponding bit(s) and a  
write of ‘0’ has no effect.  
R/W  
Read / Write bit(s). These bits can be read and written.  
R/WC  
Read / Write Clear bit(s). These bits can be read. Internal events may set this bit. A write  
of ‘1’ clears (sets to ‘0’) the corresponding bit(s) and a write of ‘0’ has no effect.  
R/WC/S  
Read / Write Clear / Sticky bit(s). These bits can be read. Internal events may set this bit.  
A write of ‘1’ clears (sets to ‘0’) the corresponding bit(s) and a write of ‘0’ has no effect.  
Bits are not cleared by "warm" reset, but will be reset with a cold/complete reset (for PCI  
Express related bits a cold reset is “Power Good Reset” as defined in the PCI Express  
Specification).  
R/W/L  
R/W/K  
R/W/L  
Read / Write / Lockable bit(s). These bits can be read and written. Additionally, there is a  
bit (which may or may not be a bit marked R/W/L) that, when set, prohibits this bit field  
from being writeable (bit field becomes Read Only).  
Read / Write / Key bit(s). These bits can be read and written by software. Additionally this  
bit when set, prohibits some other bit field(s) from being writeable (bit fields become  
Read Only).  
Read / Write / Lockable bit(s). These bits can be read and written. Additionally there is a  
bit (which may or may not be a bit marked R/W/L) that, when set, prohibits this bit field  
from being writeable (bit field becomes Read Only).  
R/W/S  
R/WSC  
R/WSC/L  
Read / Write / Sticky bit(s). These bits can be read and written. Bits are not cleared by  
"warm" reset, but will be reset with a cold/complete reset (for PCI Express related bits a  
cold reset is “Power Good Reset” as defined in the PCI Express Specification).  
Read / Write Self Clear bit(s). These bits can be read and written. When the bit is ‘1,  
hardware may clear the bit to ‘0’ based upon internal events, possibly sooner than any  
subsequent read could retrieve a ‘1.  
Read / Write Self Clear / Lockable bit(s). These bits can be read and written. When the bit  
is ‘1, hardware may clear the bit to ‘0’ based upon internal events, possibly sooner than  
any subsequent read could retrieve a ‘1. Additionally there is a bit (which may or may not  
be a bit marked R/W/L) that, when set, prohibits this bit field from being writeable (bit  
field becomes Read Only).  
R/WO  
W
Write Once bit(s). Once written, bits with this attribute become Read Only. These bits can  
only be cleared by a Reset.  
Write Only. Whose bits may be written, but will always-return zeros when read. They are  
used for write side effects. Any data written to these registers cannot be retrieved.  
54  
Datasheet  
MCH Register Description  
4.2  
Configuration Process and Registers  
4.2.1  
Platform Configuration Structure  
The DMI physically connects the MCH and the Intel ICH9; thus, from a configuration  
standpoint, the DMI is logically PCI bus 0. As a result, all devices internal to the MCH  
and the ICH appear to be on PCI bus 0.  
Note:  
The ICH9 internal LAN controller does not appear on bus 0 – it appears on the external  
PCI bus and this number is configurable.  
The system’s primary PCI expansion bus is physically attached to the ICH and from a  
configuration perspective, appears to be a hierarchical PCI bus behind a PCI-to-PCI  
bridge; therefore, it has a programmable PCI Bus number. The PCI Express interface  
appears to system software to be a real PCI bus behind a PCI-to-PCI bridge that is a  
device resident on PCI bus 0.  
Note:  
A physical PCI bus 0 does not exist; DMI and the internal devices in the MCH and ICH  
logically constitute PCI Bus 0 to configuration software (see Figure 7).  
Figure 7.  
Conceptual Platform PCI Configuration Diagram  
CPU  
MCH  
PCI Configuration Window  
in I/O Space  
Primary Host-PCI  
Express Bridge  
Bus 0 Device 1  
DRAM Controller  
Interface Device  
Bus 0  
Device 0  
Manageability  
Engine Device  
Bus 0  
Secondary Host-  
PCI Express Bridge  
Bus 0 Device 6  
Device 3  
Direct Media Interface  
Datasheet  
55  
MCH Register Description  
The MCH contains four PCI devices within a single physical component. The  
configuration registers for the four devices are mapped as devices residing on PCI  
bus 0.  
Device 0: Host Bridge/DRAM Controller. Logically this appears as a PCI device  
residing on PCI bus 0. Device 0 contains the standard PCI header registers, PCI  
Express base address register, DRAM control (including thermal/throttling control),  
and configuration for the DMI and other MCH specific registers.  
Device 1: Primary Host-PCI Express Bridge. Logically this appears as a  
“virtual” PCI-to-PCI bridge residing on PCI bus 0 and is compliant with PCI Express  
Specification Rev 1.0. Device 1 contains the standard PCI-to-PCI bridge registers  
and the standard PCI Express/PCI configuration registers (including the PCI  
Express memory address mapping). It also contains Isochronous and Virtual  
Channel controls in the PCI Express extended configuration space.  
Device 3: Manageability Engine Device. Logically, this appears as a PCI device  
residing on PCI bus 0. Physically, device 3.  
Device 6: Secondary Host-PCI Express Bridge. Logically this appears as a  
“virtual” PCI-to-PCI bridge residing on PCI bus 0 and is compliant with PCI Express  
Specification Rev 1.0. Device 6 contains the standard PCI-to-PCI bridge registers  
and the standard PCI Express/PCI configuration registers (including the PCI  
Express memory address mapping). It also contains Isochronous and Virtual  
Channel controls in the PCI Express extended configuration space.  
4.3  
Configuration Mechanisms  
The processor is the originator of configuration cycles so the FSB is the only interface in  
the platform where these mechanisms are used. The MCH translates transactions  
received through both configuration mechanisms to the same format.  
4.3.1  
Standard PCI Configuration Mechanism  
The following is the mechanism for translating processor I/O bus cycles to configuration  
cycles.  
The PCI specification defines a slot based "configuration space" that allows each device  
to contain up to 8 functions with each function containing up to 256 8-bit configuration  
registers. The PCI specification defines two bus cycles to access the PCI configuration  
space: Configuration Read and Configuration Write. Memory and I/O spaces are  
supported directly by the processor. Configuration space is supported by a mapping  
mechanism implemented within the MCH.  
The configuration access mechanism makes use of the CONFIG_ADDRESS Register (at  
I/O address 0CF8h though 0CFBh) and CONFIG_DATA Register (at I/O address 0CFCh  
though 0CFFh). To reference a configuration register a DW I/O write cycle is used to  
place a value into CONFIG_ADDRESS that specifies the PCI bus, the device on that bus,  
the function within the device and a specific configuration register of the device  
function being accessed. CONFIG_ADDRESS[31] must be 1 to enable a configuration  
cycle. CONFIG_DATA then becomes a window into the four bytes of configuration space  
specified by the contents of CONFIG_ADDRESS. Any read or write to CONFIG_DATA will  
result in the MCH translating the CONFIG_ADDRESS into the appropriate configuration  
cycle.  
56  
Datasheet  
MCH Register Description  
The MCH is responsible for translating and routing the processor’s I/O accesses to the  
CONFIG_ADDRESS and CONFIG_DATA registers to internal MCH configuration  
registers, DMI or PCI Express.  
4.3.2  
PCI Express Enhanced Configuration Mechanism  
PCI Express extends the configuration space to 4096 bytes per device/function as  
compared to 256 bytes allowed by PCI Specification Revision 2.3. PCI Express  
configuration space is divided into a PCI 2.3 compatible region, which consists of the  
first 256B of a logical device’s configuration space and a PCI Express extended region,  
which consists of the remaining configuration space.  
The PCI compatible region can be accessed using either the Standard PCI Configuration  
Mechanism or using the PCI Express Enhanced Configuration Mechanism described in  
this section. The extended configuration registers may only be accessed using the PCI  
Express Enhanced Configuration Mechanism. To maintain compatibility with PCI  
configuration addressing mechanisms, system software must access the extended  
configuration space using 32-bit operations (32-bit aligned) only. These 32-bit  
operations include byte enables allowing only appropriate bytes within the DWord to be  
accessed. Locked transactions to the PCI Express memory mapped configuration  
address space are not supported. All changes made using either access mechanism are  
equivalent.  
The PCI Express Enhanced Configuration Mechanism utilizes a flat memory-mapped  
address space to access device configuration registers. This address space is reported  
by the system firmware to the operating system. There is a register, PCIEXBAR, that  
defines the base address for the block of addresses below 4 GB for the configuration  
space associated with busses, devices and functions that are potentially a part of the  
PCI Express root complex hierarchy. In the PCIEXBAR register there exists controls to  
limit the size of this reserved memory mapped space. 256 MB is the amount of address  
space required to reserve space for every bus, device, and function that could possibly  
exist. Options for 128 MB and 64 MB exist in order to free up those addresses for other  
uses. In these cases the number of busses and all of their associated devices and  
functions are limited to 128 or 64 busses respectively.  
The PCI Express Configuration Transaction Header includes an additional 4 bits  
(ExtendedRegisterAddress[3:0]) between the Function Number and Register Address  
fields to provide indexing into the 4 KB of configuration space allocated to each  
potential device. For PCI Compatible Configuration Requests, the Extended Register  
Address field must be all zeros.  
Datasheet  
57  
MCH Register Description  
Figure 8.  
Memory Map to PCI Express Device Configuration Space  
FFFFFFFh  
FFFFFh  
FFFh  
7FFFh  
Bus 255  
Device 31  
Function 7  
PCI Express*  
Extended  
Configuration  
Space  
FFFFh  
7FFFh  
1FFFh  
FFFh  
FFh  
PCI  
1FFFFFh  
Bus 1  
Bus 0  
Function 1  
Function 0  
Compatible  
Config Space  
Device 1  
Device 0  
FFFFFh  
0h  
3Fh  
PCI  
Compatible  
Config Header  
Located By PCI  
Express* Base  
Address  
MemMap PCIExpress  
As with PCI devices, each device is selected based on decoded address information that  
is provided as a part of the address portion of Configuration Request packets. A PCI  
Express device will decode all address information fields (bus, device, function and  
extended address numbers) to provide access to the correct register.  
To access this space (steps 1, 2, 3 are done only once by BIOS),  
1. Use the PCI compatible configuration mechanism to enable the PCI Express  
enhanced configuration mechanism by writing 1 to bit 0 of the PCIEXBAR register.  
2. Use the PCI compatible configuration mechanism to write an appropriate PCI  
Express base address into the PCIEXBAR register.  
3. Calculate the host address of the register you wish to set using (PCI Express base  
+ (bus number * 1 MB) + (device number * 32KB) + (function number * 4 KB) +  
(1 B * offset within the function) = host address).  
4. Use a memory write or memory read cycle to the calculated host address to write  
or read that register.  
4.4  
Routing Configuration Accesses  
The MCH supports two PCI related interfaces: DMI and PCI Express. The MCH is  
responsible for routing PCI and PCI Express configuration cycles to the appropriate  
device that is an integrated part of the MCH or to one of these two interfaces.  
Configuration cycles to the ICH internal devices and Primary PCI (including downstream  
devices) are routed to the ICH via DMI. Configuration cycles to the PCI Express PCI  
compatibility configuration space are routed to the PCI Express port device or  
associated link.  
58  
Datasheet  
MCH Register Description  
Figure 9.  
MCH Configuration Cycle Flow Chart  
DW I/O Write to  
CONFIG_ADDRESS  
with bit 31 = 1  
I/O Read/Write to  
CONFIG_DATA  
Yes  
Bus# = 0  
No  
MCH Generates  
Type 1 Access  
to PCI Express  
Bus# > SEC BUS  
Device# = 0 &  
Function# = 0  
Yes  
Yes  
MCH Claims  
Bus# SUB BUS  
in MCH Dev 1  
No  
No  
Device# = 1 &  
Dev # 1 Enabled  
& Function# = 0  
Bus# =  
SECONDARYBUS  
in MCH Dev 1  
Yes  
Yes  
MCH Claims  
No  
No  
MCH Generates  
DMI Type 1  
MCH Generates  
DMI Type 0  
Configuration Cycle  
Configuration Cycle  
MCH Generates  
Type 0 Access  
to PCI Express  
Yes  
Device# = 0  
No  
MCH allows cycle to  
go to DMI resulting  
in Master Abort  
4.4.1  
Internal Device Configuration Accesses  
The MCH decodes the Bus Number (bits 23:16) and the Device Number fields of the  
CONFIG_ADDRESS register. If the Bus Number field of CONFIG_ADDRESS is 0 the  
configuration cycle is targeting a PCI Bus #0 device.  
If the targeted PCI Bus 0 device exists in the MCH and is not disabled, the configuration  
cycle is claimed by the appropriate device.  
Datasheet  
59  
MCH Register Description  
4.4.2  
Bridge Related Configuration Accesses  
Configuration accesses on PCI Express or DMI are PCI Express Configuration TLPs  
(Transaction Layer Packets):  
• Bus Number [7:0] is Header Byte 8 [7:0]  
• Device Number [4:0] is Header Byte 9 [7:3]  
• Function Number [2:0] is Header Byte 9 [2:0]  
And special fields for this type of TLP:  
• Extended Register Number [3:0] is Header Byte 10 [3:0]  
• Register Number [5:0] is Header Byte 11 [7:2]  
See the PCI Express specification for more information on both the PCI 2.3 compatible  
and PCI Express Enhanced Configuration Mechanism and transaction rules.  
4.4.2.1  
PCI Express Configuration Accesses  
When the Bus Number of a type 1 Standard PCI Configuration cycle or PCI Express  
Enhanced Configuration access matches the Device 1 Secondary Bus Number a PCI  
Express Type 0 Configuration TLP is generated on the PCI Express link targeting the  
device directly on the opposite side of the link. This should be Device 0 on the bus  
number assigned to the PCI Express link (likely Bus 1).  
The device on other side of link must be Device 0. The MCH will Master Abort any  
Type 0 Configuration access to a non-zero Device number. If there is to be more than  
one device on that side of the link there must be a bridge implemented in the  
downstream device.  
When the Bus Number of a type 1 Standard PCI Configuration cycle or PCI Express  
Enhanced Configuration access is within the claimed range (between the upper bound  
of the bridge device’s Subordinate Bus Number register and the lower bound of the  
bridge device’s Secondary Bus Number register) but does not match the Device 1  
Secondary Bus Number, a PCI Express Type 1 Configuration TLP is generated on the  
secondary side of the PCI Express link.  
PCI Express Configuration Writes:  
• Internally the host interface unit will translate writes to PCI Express extended  
configuration space to configuration writes on the backbone.  
• Writes to extended space are posted on the FSB, but non-posted on the PCI  
Express or DMI (i.e., translated to config writes)  
4.4.2.2  
DMI Configuration Accesses  
Accesses to disabled MCH internal devices, bus numbers not claimed by the Host-PCI  
Express bridge, or PCI Bus #0 devices not part of the MCH will subtractively decode to  
the ICH and consequently be forwarded over the DMI via a PCI Express configuration  
TLP.  
If the Bus Number is zero, the MCH will generate a Type 0 Configuration Cycle TLP on  
DMI. If the Bus Number is non-zero, and falls outside the range claimed by the Host-  
PCI Express bridge, the MCH will generate a Type 1 Configuration Cycle TLP on DMI.  
The ICH routes configurations accesses in a manner similar to the MCH. The ICH  
decodes the configuration TLP and generates a corresponding configuration access.  
Accesses targeting a device on PCI Bus #0 may be claimed by an internal device. The  
ICH compares the non-zero Bus Number with the Secondary Bus Number and  
60  
Datasheet  
MCH Register Description  
Subordinate Bus Number registers of its PCI-to-PCI bridges to determine if the  
configuration access is meant for Primary PCI, or some other downstream PCI bus or  
PCI Express link.  
Configuration accesses that are forwarded to the ICH9, but remain unclaimed by any  
device or bridge will result in a master abort.  
4.5  
I/O Mapped Registers  
The MCH contains two registers that reside in the processor I/O address space the  
Configuration Address (CONFIG_ADDRESS) Register and the Configuration Data  
(CONFIG_DATA) Register. The Configuration Address Register enables/disables the  
configuration space and determines what portion of configuration space is visible  
through the Configuration Data window.  
4.5.1  
CONFIG_ADDRESS—Configuration Address Register  
I/O Address:  
Default Value:  
Access:  
0CF8h Accessed as a DW  
00000000h  
R/W  
32 bits  
Size:  
CONFIG_ADDRESS is a 32-bit register that can be accessed only as a DW. A Byte or  
Word reference will "pass through" the Configuration Address Register and DMI onto  
the Primary PCI bus as an I/O cycle. The CONFIG_ADDRESS register contains the Bus  
Number, Device Number, Function Number, and Register Number for which a  
subsequent configuration access is intended.  
Access &  
Default  
Bit  
Description  
Configuration Enable (CFGE):  
R/W  
0b  
31  
0 = Disable  
0 = Enable.  
30:24  
Reserved  
Bus Number: If the Bus Number is programmed to 00h the target of the  
Configuration Cycle is a PCI Bus 0 agent. If this is the case and the MCH  
is not the target (i.e., the device number is 2), then a DMI Type 0  
Configuration Cycle is generated.  
If the Bus Number is non-zero and does not fall within the ranges  
enumerated by device 1’s Secondary Bus Number or Subordinate Bus  
Number Register, then a DMI Type 1 Configuration Cycle is generated.  
If the Bus Number is non-zero and matches the value programmed into  
the Secondary Bus Number Register of device 1, a Type 0 PCI  
configuration cycle will be generated on PCI Express.  
R/W  
00h  
23:16  
If the Bus Number is non-zero, greater than the value in the Secondary  
Bus Number register of device 1 and less than or equal to the value  
programmed into the Subordinate Bus Number Register of device 1 a  
Type 1 PCI configuration cycle will be generated on PCI Express.  
This field is mapped to byte 8 [7:0] of the request header format during  
PCI Express Configuration cycles and A[23:16] during the DMI Type 1  
configuration cycles.  
Datasheet  
61  
MCH Register Description  
Access &  
Default  
Bit  
Description  
Device Number: This field selects one agent on the PCI bus selected by  
the Bus Number. When the Bus Number field is “00” the MCH decodes the  
Device Number field. The MCH is always Device Number 0 for the Host  
bridge entity, Device Number 1 for the Host-PCI Express entity.  
Therefore, when the Bus Number =0 and the Device Number equals 0, 1,  
or 2 the internal MCH devices are selected.  
R/W  
00h  
15:11  
This field is mapped to byte 6 [7:3] of the request header format during  
PCI Express Configuration cycles and A [15:11] during the DMI  
configuration cycles.  
Function Number: This field allows the configuration registers of a  
particular function in a multi-function device to be accessed. The MCH  
ignores configuration cycles to its internal devices if the function number  
is not equal to 0 or 1.  
R/W  
10:8  
000b  
This field is mapped to byte 6 [2:0] of the request header format during  
PCI Express Configuration cycles and A[10:8] during the DMI  
configuration cycles.  
Register Number: This field selects one register within a particular Bus,  
Device, and Function as specified by the other fields in the Configuration  
Address Register.  
R/W  
00h  
7:2  
1:0  
This field is mapped to byte 7 [7:2] of the request header format during  
PCI Express Configuration cycles and A[7:2] during the DMI  
Configuration cycles.  
Reserved  
4.5.2  
CONFIG_DATA—Configuration Data Register  
I/O Address:  
Default Value:  
Access:  
0CFCh  
00000000h  
R/W  
Size:  
32 bits  
CONFIG_DATA is a 32-bit read/write window into configuration space. The portion of  
configuration space that is referenced by CONFIG_DATA is determined by the contents  
of CONFIG_ADDRESS.  
Access &  
Default  
Bit  
Description  
Configuration Data Window (CDW): If bit 31 of CONFIG_ADDRESS  
is 1, any I/O access to the CONFIG_DATA register will produce a  
configuration transaction using the contents of CONFIG_ADDRESS to  
determine the bus, device, function, and offset of the register to be  
accessed.  
R/W  
31:0  
0000 0000 h  
§
62  
Datasheet  
DRAM Controller Registers (D0:F0)  
5
DRAM Controller Registers  
(D0:F0)  
The DRAM Controller registers are in Device 0 (D0), Function 0 (F0).  
Warning:  
Address locations that are not listed are considered Intel Reserved registers locations.  
Reads to Reserved registers may return non-zero values. Writes to reserved locations  
may cause system failures.  
All registers that are defined in the PCI 2.3 specification, but are not necessary or  
implemented in this component are simply not included in this document. The  
reserved/unimplemented space in the PCI configuration header space is not  
documented as such in this summary.  
Table 8.  
DRAM Controller Register Address Map  
Address  
Offset  
Register  
Symbol  
Default  
Value  
Register Name  
Access  
0–1h  
2–3h  
4–5h  
6–7h  
8h  
VID  
DID  
Vendor Identification  
8086h  
29E0h  
0006h  
0090h  
00h  
RO  
RO  
Device Identification  
PCI Command  
PCICMD  
PCISTS  
RID  
RO, RW  
RO, RWC  
RO  
PCI Status  
Revision Identification  
Class Code  
9–Bh  
Dh  
CC  
060000h  
00h  
RO  
MLT  
Master Latency Timer  
Header Type  
RO  
Eh  
HDR  
00h  
RO  
2C–2Dh  
2E–2Fh  
34h  
SVID  
SID  
Subsystem Vendor Identification  
Subsystem Identification  
Capabilities Pointer  
0000h  
0000h  
E0h  
RWO  
RWO  
RO  
CAPPTR  
0000000000  
000000h  
40–47h  
PXPEPBAR  
PCI Express Egress Port Base Address  
RO, RW/L  
MCH Memory Mapped Register Range  
Base  
0000000000  
000000h  
48–4Fh  
54–57h  
60–67h  
MCHBAR  
DEVEN  
RO, RW/L  
RO, RW/L  
Device Enable  
000023DBh  
PCI Express Register Range Base  
Address  
00000000E0  
000000h  
RO, RW/L,  
RW/L/K  
PCIEXBAR  
Root Complex Register Range Base  
Address  
0000000000  
000000h  
68–6Fh  
DMIBAR  
RO, RW/L  
90h  
91h  
92h  
93h  
94h  
95h  
PAM0  
PAM1  
PAM2  
PAM3  
PAM4  
PAM5  
Programmable Attribute Map 0  
Programmable Attribute Map 1  
Programmable Attribute Map 2  
Programmable Attribute Map 3  
Programmable Attribute Map 4  
Programmable Attribute Map 5  
00h  
00h  
00h  
00h  
00h  
00h  
RO, RW/L  
RO, RW/L  
RO, RW/L  
RO, RW/L  
RO, RW/L  
RO, RW/L  
Datasheet  
63  
DRAM Controller Registers (D0:F0)  
Table 8.  
DRAM Controller Register Address Map  
Address  
Offset  
Register  
Symbol  
Default  
Access  
Value  
Register Name  
96h  
97h  
PAM6  
LAC  
Programmable Attribute Map 6  
Legacy Access Control  
00h  
00h  
RO, RW/L  
RW, RW/L,  
RO  
98–99h  
9A–9Bh  
REMAPBASE Remap Base Address Register  
REMAPLIMIT Remap Limit Address Register  
03FFh  
0000h  
RO, RW/L  
RO, RW/L  
RO, RW/L,  
RW, RW/L/K  
9Dh  
9Eh  
SMRAM  
System Management RAM Control  
02h  
38h  
Extended System Management RAM  
Control  
RW/L, RWC,  
RO  
ESMRAMC  
A0–A1h  
A2–A3h  
A4–A7h  
AC–AFh  
B0–B1h  
C8–C9h  
CA–CBh  
CC–CDh  
DC–DFh  
TOM  
TOUUD  
BSM  
Top of Memory  
0001h  
0000h  
RO, RW/L  
RW/L  
Top of Upper Usable Dram  
Base of Stolen Memory  
TSEG Memory Base  
Top of Low Usable DRAM  
Error Status  
00000000h  
00000000h  
0010h  
RW/L, RO  
RO, RW/L  
RW/L, RO  
RWC/S, RO  
RW, RO  
TSEGMB  
TOLUD  
ERRSTS  
ERRCMD  
SMICMD  
SKPD  
0000h  
Error Command  
0000h  
SMI Command  
0000h  
RO, RW  
RW  
Scratchpad Data  
00000000h  
0000000181  
064000010C  
0009h  
E0–EBh  
CAPID0  
Capability Identifier  
RO  
64  
Datasheet  
DRAM Controller Registers (D0:F0)  
5.1  
Configuration Register Details  
5.1.1  
VID—Vendor Identification  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: 0–1h  
Default Value:  
Access:  
Size:  
8086h  
RO  
16 bits  
This register combined with the Device Identification register uniquely identifies any  
PCI device.  
Default  
Value  
Bit  
Access  
RO  
Description  
15:0  
8086h  
Vendor Identification Number (VID): PCI standard identification for Intel.  
5.1.2  
DID—Device Identification  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: 2–3h  
Default Value:  
Access:  
Size:  
29E0h  
RO  
16 bits  
This register combined with the Vendor Identification register uniquely identifies any  
PCI device.  
Default  
Value  
Bit  
Access  
Description  
Device Identification Number (DID): This field identifier assigned to the  
MCH core/primary PCI device.  
15:0  
RO  
29E0h  
Datasheet  
65  
DRAM Controller Registers (D0:F0)  
5.1.3  
PCICMD—PCI Command  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: 4–5h  
Default Value:  
Access:  
Size:  
0006h  
RO, RW  
16 bits  
Since MCH Device 0 does not physically reside on PCI_A many of the bits are not  
implemented.  
Default  
Value  
Bit  
Access  
Description  
15:9  
RO  
00h  
Reserved  
SERR Enable (SERRE): This bit is a global enable bit for Device 0 SERR  
messaging. The MCH does not have an SERR signal. The MCH communicates the  
SERR condition by sending an SERR message over DMI to the ICH.  
1 = The MCH is enabled to generate SERR messages over DMI for specific  
Device 0 error conditions that are individually enabled in the ERRCMD and  
DMIUEMSK registers. The error status is reported in the ERRSTS, PCISTS,  
and DMIUEST registers.  
8
RW  
0b  
0 = The SERR message is not generated by the MCH for Device 0.  
Note that this bit only controls SERR messaging for the Device 0. Device 1 has  
its own SERRE bits to control error reporting for error conditions occurring in  
that device. The control bits are used in a logical OR manner to enable the SERR  
DMI message mechanism.  
Address/Data Stepping Enable (ADSTEP): Address/data stepping is not  
implemented in the MCH, and this bit is hardwired to 0. Writes to this bit  
position have no effect.  
7
6
RO  
0b  
0b  
Parity Error Enable (PERRE): Controls whether or not the Master Data Parity  
Error bit in the PCI Status register can bet set.  
RW  
0 = Master Data Parity Error bit in PCI Status register can NOT be set.  
1 = Master Data Parity Error bit in PCI Status register CAN be set.  
5
4
3
2
RO  
RO  
RO  
RO  
0b  
0b  
0b  
1b  
Reserved  
Memory Write and Invalidate Enable (MWIE): The MCH will never issue  
memory write and invalidate commands. This bit is therefore hardwired to 0.  
Writes to this bit position will have no effect.  
Reserved  
Bus Master Enable (BME): The MCH is always enabled as a master on the  
backbone. This bit is hardwired to a "1". Writes to this bit position have no  
effect.  
Memory Access Enable (MAE): The MCH always allows access to main  
memory. This bit is not implemented and is hardwired to 1. Writes to this bit  
position have no effect.  
1
0
RO  
RO  
1b  
0b  
I/O Access Enable (IOAE): This bit is not implemented in the MCH and is  
hardwired to a 0. Writes to this bit position have no effect.  
66  
Datasheet  
DRAM Controller Registers (D0:F0)  
5.1.4  
PCISTS—PCI Status  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: 6–7h  
Default Value:  
Access:  
Size:  
0090h  
RO, RWC  
16 bits  
This status register reports the occurrence of error events on Device 0's PCI interface.  
Since the MCH Device 0 does not physically reside on PCI_A many of the bits are not  
implemented.  
Default  
Value  
Bit  
Access  
Description  
Detected Parity Error (DPE): This bit is set when this Device receives a  
Poisoned TLP.  
15  
RWC  
RWC  
0b  
Signaled System Error (SSE): This bit is set to 1 when the MCH Device 0  
generates an SERR message over DMI for any enabled Device 0 error condition.  
Device 0 error conditions are enabled in the PCICMD, ERRCMD, and DMIUEMSK  
registers. Device 0 error flags are read/reset from the PCISTS, ERRSTS, or  
DMIUEST registers. Software clears this bit by writing a 1 to it.  
14  
0b  
Received Master Abort Status (RMAS): This bit is set when the MCH  
generates a DMI request that receives an Unsupported Request completion  
packet. Software clears this bit by writing a 1 to it.  
13  
12  
11  
RWC  
RWC  
RO  
0b  
0b  
0b  
Received Target Abort Status (RTAS): This bit is set when the MCH  
generates a DMI request that receives a Completer Abort completion packet.  
Software clears this bit by writing a 1 to it.  
Signaled Target Abort Status (STAS): The MCH will not generate a Target  
Abort DMI completion packet or Special Cycle. This bit is not implemented in the  
MCH and is hardwired to a 0. Writes to this bit position have no effect.  
DEVSEL Timing (DEVT): These bits are hardwired to "00". Writes to these bit  
positions have no affect. Device 0 does not physically connect to PCI_A. These  
bits are set to "00" (fast decode) so that optimum DEVSEL timing for PCI_A is  
not limited by the MCH.  
10:9  
RO  
RWC  
RO  
00b  
0b  
Master Data Parity Error Detected (DPD): This bit is set when DMI received  
a Poisoned completion from ICH.  
8
7
This bit can only be set when the Parity Error Enable bit in the PCI Command  
register is set.  
Fast Back-to-Back (FB2B): This bit is hardwired to 1. Writes to these bit  
positions have no effect. Device 0 does not physically connect to PCI_A. This bit  
is set to 1 (indicating fast back-to-back capability) so that the optimum setting  
for PCI_A is not limited by the MCH.  
1b  
6
5
RO  
RO  
0b  
0b  
Reserved  
66 MHz Capable: Does not apply to PCI Express. Hardwired to 0.  
Capability List (CLIST): This bit is hardwired to 1 to indicate to the  
configuration software that this device/function implements a list of new  
capabilities. A list of new capabilities is accessed via register CAPPTR at  
configuration address offset 34h. Register CAPPTR contains an offset pointing to  
the start address within configuration space of this device where the Capability  
Identification register resides.  
4
RO  
RO  
1b  
3:0  
0000b  
Reserved  
Datasheet  
67  
DRAM Controller Registers (D0:F0)  
5.1.5  
RID—Revision Identification  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: 8h  
Default Value:  
Access:  
Size:  
00h  
RO  
8 bits  
This register contains the revision number of the MCH Device 0. These bits are read  
only and writes to this register have no effect.  
Default  
Value  
Bit  
Access  
Description  
Revision Identification Number (RID): This is an 8-bit value that indicates  
the revision identification number for the MCH Device 0.  
7:0  
RO  
00h  
5.1.6  
CC—Class Code  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: 9–Bh  
Default Value:  
Access:  
Size:  
060000h  
RO  
24 bits  
This register identifies the basic function of the device, a more specific sub-class, and a  
register-specific programming interface.  
Default  
Value  
Bit  
Access  
Description  
Base Class Code (BCC): This is an 8-bit value that indicates the base class  
code for the MCH. This code has the value 06h, indicating a Bridge device.  
23:16  
15:8  
RO  
RO  
06h  
Sub-Class Code (SUBCC): This is an 8-bit value that indicates the category of  
Bridge into which the MCH falls. The code is 00h indicating a Host Bridge.  
00h  
00h  
Programming Interface (PI): This is an 8-bit value that indicates the  
programming interface of this device. This value does not specify a particular  
register set layout and provides no practical use for this device.  
7:0  
RO  
5.1.7  
MLT—Master Latency Timer  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: Dh  
Default Value:  
Access:  
Size:  
00h  
RO  
8 bits  
Device 0 in the MCH is not a PCI master. Therefore this register is not implemented.  
Default  
Value  
Bit  
Access  
RO  
Description  
7:0  
00h  
Reserved  
68  
Datasheet  
DRAM Controller Registers (D0:F0)  
5.1.8  
HDR—Header Type  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: Eh  
Default Value:  
Access:  
Size:  
00h  
RO  
8 bits  
This register identifies the header layout of the configuration space. No physical  
register exists at this location.  
Default  
Value  
Bit  
Access  
Description  
PCI Header (HDR): This field always returns 0 to indicate that the MCH is a  
single function device with standard header layout. Reads and writes to this  
location have no effect.  
7:0  
RO  
00h  
5.1.9  
SVID—Subsystem Vendor Identification  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: 2C–2Dh  
Default Value:  
Access:  
Size:  
0000h  
RWO  
16 bits  
This value is used to identify the vendor of the subsystem.  
Default  
Value  
Bit  
Access  
Description  
Subsystem Vendor ID (SUBVID): This field should be programmed during  
boot-up to indicate the vendor of the system board. After it has been written  
once, it becomes read only.  
15:0  
RWO  
0000h  
5.1.10  
SID—Subsystem Identification  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: 2E–2Fh  
Default Value:  
Access:  
Size:  
0000h  
RWO  
16 bits  
This value is used to identify a particular subsystem.  
Default  
Value  
Bit  
Access  
Description  
Subsystem ID (SUBID): This field should be programmed during BIOS  
initialization. After it has been written once, it becomes read only.  
15:0  
RWO  
0000h  
Datasheet  
69  
DRAM Controller Registers (D0:F0)  
5.1.11  
CAPPTR—Capabilities Pointer  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: 34h  
Default Value:  
Access:  
Size:  
E0h  
RO  
8 bits  
The CAPPTR provides the offset that is the pointer to the location of the first device  
capability in the capability list.  
Default  
Value  
Bit  
Access  
Description  
Capabilities Pointer (CAPPTR): Pointer to the offset of the first capability ID  
register block. In this case the first capability is the product-specific Capability  
Identifier (CAPID0).  
7:0  
RO  
E0h  
5.1.12  
PXPEPBAR—PCI Express* Egress Port Base Address  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: 40–47h  
Default Value:  
Access:  
Size:  
0000000000000000h  
RO, RW/L  
64 bits  
This is the base address for the PCI Express Egress Port MMIO Configuration space.  
There is no physical memory within this 4 KB window that can be addressed. The 4 KB  
reserved by this register does not alias to any PCI 2.3 compliant memory mapped  
space. On reset, the EGRESS port MMIO configuration space is disabled and must be  
enabled by writing a 1 to PXPEPBAREN [Dev 0, offset 40h, bit 0]  
All the bits in this register are locked in Intel® TXT mode.  
Default  
Value  
Bit  
Access  
Description  
63:36  
RO  
0000000h Reserved  
PCI Express Egress Port MMIO Base Address (PXPEPBAR): This field  
corresponds to bits 35 to 12 of the base address PCI Express Egress Port  
MMIO configuration space. BIOS will program this register resulting in a base  
address for a 4 KB block of contiguous memory address space. This register  
ensures that a naturally aligned 4KB space is allocated within the first 64 GB  
of addressable memory space. System Software uses this base address to  
program the MCH MMIO register set. All the bits in this register are locked in  
Intel TXT mode.  
35:12  
RW/L  
000000h  
11:1  
0
RO  
000h  
0b  
Reserved  
PXPEPBAR Enable (PXPEPBAREN):  
0 = PXPEPBAR is disabled and does not claim any memory  
RW/L  
1 = PXPEPBAR memory mapped accesses are claimed and decoded  
appropriately  
This register is locked by Intel TXT.  
70  
Datasheet  
DRAM Controller Registers (D0:F0)  
5.1.13  
MCHBAR—MCH Memory Mapped Register Range Base  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: 48–4Fh  
Default Value:  
Access:  
Size:  
0000000000000000h  
RO, RW/L  
64 bits  
This is the base address for the MCH Memory Mapped Configuration space. There is no  
physical memory within this 16KB window that can be addressed. The 16 KB reserved  
by this register does not alias to any PCI 2.3 compliant memory mapped space. On  
reset, the MCH MMIO Memory Mapped Configuration space is disabled and must be  
enabled by writing a 1 to MCHBAREN [Dev 0, offset48h, bit 0]  
All the bits in this register are locked in Intel TXT mode.  
The register space contains memory control, initialization, timing, and buffer strength  
registers; clocking registers; and power and thermal management registers. The 16 KB  
space reserved by the MCHBAR register is not accessible during Intel TXT mode of  
operation or if the ME security lock is asserted (MESMLCK.ME_SM_lock at PCI device 0,  
function 0, offset F4h) except for the following offset ranges.  
02B8h to 02BFh: Channel 0 Throttle Counter Status Registers  
06B8h to 06BFh: Channel 1 Throttle Counter Status Registers  
0CD0h to 0CFFh: Thermal Sensor Control Registers  
3000h to 3FFFh: Unlocked registers for future expansion  
Default  
Value  
Bit  
Access  
Description  
63:36  
RO  
0000000h Reserved  
MCH Memory Mapped Base Address (MCHBAR): This field corresponds to  
bits 35:14 of the base address MCH Memory Mapped configuration space.  
BIOS will program this register resulting in a base address for a 16 KB block of  
000000h contiguous memory address space. This register ensures that a naturally  
aligned 16 KB space is allocated within the first 64 GB of addressable memory  
space. System Software uses this base address to program the MCH Memory  
Mapped register set. All the bits in this register are locked in Intel TXT mode.  
35:14  
RW/L  
13:1  
0
RO  
0000h  
Reserved  
MCHBAR Enable (MCHBAREN):  
0 = MCHBAR is disabled and does not claim any memory  
RW/L  
0b  
1 = MCHBAR memory mapped accesses are claimed and decoded  
appropriately  
This register is locked by Intel TXT.  
Datasheet  
71  
DRAM Controller Registers (D0:F0)  
5.1.14  
DEVEN—Device Enable  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: 54–57h  
Default Value:  
Access:  
Size:  
000023DBh  
RO, RW/L  
32 bits  
Allows for enabling/disabling of PCI devices and functions that are within the MCH. The  
table below the bit definitions describes the behavior of all combinations of transactions  
to devices controlled by this register. All the bits in this register are Intel TXT Lockable.  
Default  
Value  
Bit  
Access  
Description  
31:14  
RO  
RW/L  
RO  
00000h Reserved  
PE1 Enable (D6EN):  
0 = Bus 0, Device 6 is disabled and hidden.  
13  
1b  
1 = Bus 1, Device 6 is enabled and visible.  
NOTE:  
12:11  
00b  
Reserved  
EP Function 3 (D3F3EN):  
0 = Bus 0, Device 3, Function 3 is disabled and hidden  
1 = Bus 0, Device 3, Function 3 is enabled and visible  
If Device 3 Function 0 is disabled and hidden, then Device 3 Function 3 is also  
disabled and hidden independent of the state of this bit.  
9
RW/L  
1b  
If this MCH does not have ME capability (CAPID0[57] = 1 or CAPID0[56] = 1),  
then Device 3, Function 3 is disabled and hidden independent of the state of this  
bit.  
EP Function 2 (D3F2EN):  
0 = Bus 0, Device 3, Function 2 is disabled and hidden  
1 = Bus 0, Device 3, Function 2 is enabled and visible  
If Device 3 Function 0 is disabled and hidden, then Device 3 Function 2 is also  
disabled and hidden independent of the state of this bit.  
8
RW/L  
1b  
If this MCH does not have ME capability (CAPID0[57] = 1 or CAPID0[56] = 1),  
then Device 3, Function 2 is disabled and hidden independent of the state of this  
bit.  
EP Function 1 (D3F1EN):  
0 = Bus 0, Device 3, Function 1 is disabled and hidden  
1 = Bus 0, Device 3, Function 1 is enabled and visible.  
7
6
RW/L  
RW/L  
1b  
1b  
If Device 3 Function 0 is disabled and hidden, then Device 3 Function 1 is also  
disabled and hidden independent of the state of this bit.  
If this MCH does not have ME capability (CAPID0[57] = 1), then Device 3,  
Function 1 is disabled and hidden independent of the state of this bit.  
EP Function 0 (D3F0EN):  
0 = Bus 0, Device 3, Function 0 is disabled and hidden  
1 = Bus 0, Device 3, Function 0 is enabled and visible.  
If this MCH does not have ME capability (CAPID0[57] = 1), then Device 3,  
Function 0 is disabled and hidden independent of the state of this bit.  
72  
Datasheet  
DRAM Controller Registers (D0:F0)  
Default  
Value  
Bit  
Access  
Description  
5:2  
RO  
0s  
Reserved  
PCI Express Port (D1EN):  
1
RW/L  
RO  
1b  
1b  
0 = Bus 0, Device 1, Function 0 is disabled and hidden.  
Bus 0, Device 1, Function 0 is enabled and visible.  
Host Bridge (D0EN): Bus 0, Device 0, Function 0 may not be disabled and is  
therefore hardwired to 1.  
0
5.1.15  
PCIEXBAR—PCI Express* Register Range Base Address  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: 60–67h  
Default Value:  
Access:  
Size:  
00000000E0000000h  
RO, RW/L, RW/L/K  
64 bits  
This is the base address for the PCI Express configuration space. This window of  
addresses contains the 4 KB of configuration space for each PCI Express device that  
can potentially be part of the PCI Express Hierarchy associated with the MCH. There is  
not actual physical memory within this window of up to 256 MB that can be addressed.  
The actual length is determined by a field in this register. Each PCI Express Hierarchy  
requires a PCI Express BASE register. The MCH supports one PCI Express hierarchy.  
The region reserved by this register does not alias to any PCI 2.3 compliant memory  
mapped space.  
On reset, this register is disabled and must be enabled by writing a 1 to the enable field  
in this register. This base address shall be assigned on a boundary consistent with the  
number of buses (defined by the Length field in this register), above TOLUD and still  
within 64 bit addressable memory space. All other bits not decoded are read only 0.  
The PCI Express Base Address cannot be less than the maximum address written to the  
Top of physical memory register (TOLUD). Software must guarantee that these ranges  
do not overlap with known ranges located above TOLUD. Software must ensure that the  
sum of Length of enhanced configuration region + TOLUD + (other known ranges  
reserved above TOLUD) is not greater than the 64-bit addressable limit of 64 GB. In  
general system implementation and number of PCI/PCI express/PCI-X buses supported  
in the hierarchy will dictate the length of the region.  
All the Bits in this register are locked in Intel TXT mode.  
Datasheet  
73  
DRAM Controller Registers (D0:F0)  
Default  
Value  
Bit  
Access  
Description  
63:36  
RO  
0000000h Reserved  
PCI Express Base Address (PCIEXBAR): This field corresponds to bits  
[35:28] of the base address for PCI Express enhanced configuration space.  
BIOS will program this register resulting in a base address for a contiguous  
memory address space; size is defined by bits [2:1] of this register.  
This Base address shall be assigned on a boundary consistent with the  
number of buses (defined by the Length field in this register) above TOLUD  
and still within 64-bit addressable memory space. The address bits decoded  
depend on the length of the region defined by this register.  
This register is locked by Intel TXT.  
35:28  
RW/L  
0Eh  
The address used to access the PCI Express configuration space for a specific  
device can be determined as follows:  
PCI Express Base Address + Bus Number * 1MB + Device Number * 32KB +  
Function Number * 4KB  
The address used to access the PCI Express configuration space for Device 1  
in this component would be PCI Express Base Address + 0 * 1MB + 1 * 32KB  
+ 0 * 4KB = PCI Express Base Address + 32KB. Remember that this address  
is the beginning of the 4KB space that contains both the PCI compatible  
configuration space and the PCI Express extended configuration space.  
All the Bits in this register are locked in Intel TXT mode.  
128MB Base Address Mask (128ADMSK): This bit is either part of the PCI  
Express Base Address (R/W) or part of the Address Mask (RO, read 0b),  
depending on the value of bits [2:1] in this register.  
27  
RW/L  
0b  
0b  
64MB Base Address Mask (64ADMSK): This bit is either part of the PCI  
Express Base Address (R/W) or part of the Address Mask (RO, read 0b),  
depending on the value of bits [2:1] in this register.  
26  
RW/L  
RO  
25:3  
000000h Reserved  
Length (LENGTH): This Field describes the length of this region.  
Enhanced Configuration Space Region/Buses Decoded  
00 = 256 MB (buses 0-255). Bits [31:28] are decoded in the PCI Express  
Base Address Field  
01 = 128 MB (Buses 0–127). Bits [31:27] are decoded in the PCI Express  
Base Address Field.  
2:1  
RW/L/K  
00b  
10 = 64 MB (Buses 0–63). Bits [31:26] are decoded in the PCI Express Base  
Address Field.  
11 = Reserved  
This register is locked by Intel TXT.  
PCIEXBAR Enable (PCIEXBAREN):  
0 = The PCIEXBAR register is disabled. Memory read and write transactions  
proceed as if there were no PCIEXBAR register. PCIEXBAR bits [35:26]  
are R/W with no functionality behind them.  
0
RW/L  
0b  
1 = The PCIEXBAR register is enabled. Memory read and write transactions  
whose address bits [35:26] match PCIEXBAR will be translated to  
configuration reads and writes within the MCH. These Translated cycles  
are routed as shown in the table above.  
This register is locked by Intel TXT.  
74  
Datasheet  
DRAM Controller Registers (D0:F0)  
5.1.16  
DMIBAR—Root Complex Register Range Base Address  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: 68–6Fh  
Default Value:  
Access:  
Size:  
0000000000000000h  
RO, RW/L  
64 bits  
This is the base address for the Root Complex configuration space. This window of  
addresses contains the Root Complex Register set for the PCI Express Hierarchy  
associated with the MCH. There is no physical memory within this 4 KB window that can  
be addressed. The 4 KB reserved by this register does not alias to any PCI 2.3  
compliant memory mapped space. On reset, the Root Complex configuration space is  
disabled and must be enabled by writing a 1 to DMIBAREN [Dev 0, offset 68h, bit 0]. All  
the Bits in this register are locked in Intel TXT mode.  
Default  
Value  
Bit  
Access  
Description  
63:36  
RO  
0000000h Reserved  
DMI Base Address (DMIBAR): This field corresponds to bits 35:12 of the  
base address DMI configuration space. BIOS will program this register  
resulting in a base address for a 4 KB block of contiguous memory address  
space. This register ensures that a naturally aligned 4KB space is allocated  
within the first 64 GB of addressable memory space. System Software uses  
this base address to program the DMI register set. All the Bits in this register  
are locked in Intel TXT mode.  
35:12  
RW/L  
000000h  
11:1  
0
RO  
000h  
0b  
Reserved  
DMIBAR Enable (DMIBAREN):  
0 = DMIBAR is disabled and does not claim any memory  
RW/L  
1 = DMIBAR memory mapped accesses are claimed and decoded  
appropriately  
This register is locked by Intel TXT.  
Datasheet  
75  
DRAM Controller Registers (D0:F0)  
5.1.17  
PAM0—Programmable Attribute Map 0  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: 90h  
Default Value:  
Access:  
Size:  
00h  
RO, RW/L  
8 bits  
This register controls the read, write, and shadowing attributes of the BIOS area from  
0F0000h–0FFFFFh. The MCH allows programmable memory attributes on 13 Legacy  
memory segments of various sizes in the 768 KB to 1 MB address range. Seven  
Programmable Attribute Map (PAM) Registers are used to support these features.  
Cacheability of these areas is controlled via the MTRR registers in the processor. Two  
bits are used to specify memory attributes for each memory segment. These bits apply  
to both host accesses and PCI initiator accesses to the PAM areas. These attributes are:  
RE - Read Enable.  
When RE = 1, the processor read accesses to the  
corresponding memory segment are claimed by the MCH and  
directed to main memory. Conversely, when RE = 0, the host  
read accesses are directed to PCI_A.  
WE - Write Enable.  
When WE = 1, the host write accesses to the corresponding  
memory segment are claimed by the MCH and directed to main  
memory. Conversely, when WE = 0, the host write accesses are  
directed to PCI_A.  
The RE and WE attributes permit a memory segment to be Read Only, Write Only,  
Read/Write, or disabled. For example, if a memory segment has RE = 1 and WE = 0,  
the segment is Read Only. Each PAM Register controls two regions, typically 16 KB in  
size.  
Note that the MCH may hang if a PCI Express Link Attach or DMI originated access to  
Read Disabled or Write Disabled PAM segments occur (due to a possible IWB to non-  
DRAM).  
For these reasons the following critical restriction is placed on the programming of the  
PAM regions: At the time that a DMI or PCI Express Link Attach accesses to the PAM  
region may occur, the targeted PAM segment must be programmed to be both readable  
and writeable.  
Default  
Value  
Bit  
Access  
Description  
7:6  
RO  
RW/L  
RO  
00b  
Reserved  
0F0000–0FFFFF Attribute (HIENABLE): This field controls the steering of  
read and write cycles that address the BIOS area from 0F0000h to 0FFFFFh.  
00 = DRAM Disabled: All accesses are directed to DMI.  
01 = Read Only: All reads are sent to DRAM. All writes are forwarded to DMI.  
10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.  
This register is locked by Intel TXT.  
5:4  
3:0  
00b  
0h  
Reserved  
76  
Datasheet  
DRAM Controller Registers (D0:F0)  
5.1.18  
PAM1—Programmable Attribute Map 1  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: 91h  
Default Value:  
Access:  
Size:  
00h  
RO, RW/L  
8 bits  
This register controls the read, write, and shadowing attributes of the BIOS areas from  
0C0000h – 0C7FFFh.  
Default  
Value  
Bit  
Access  
Description  
7:6  
RO  
RW/L  
RO  
00b  
Reserved  
0C4000h–0C7FFFh Attribute (HIENABLE): This field controls the steering of  
read and write cycles that address the BIOS area from 0C4000h to 0C7FFFh.  
00 = DRAM Disabled: Accesses are directed to DMI.  
01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to  
DMI.  
5:4  
3:2  
1:0  
00b  
00b  
00b  
10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.  
This register is locked by Intel TXT.  
Reserved  
0C0000h–0C3FFFh Attribute (LOENABLE): This field controls the steering of  
read and write cycles that address the BIOS area from 0C0000h to 0C3FFFh.  
00 = DRAM Disabled: Accesses are directed to DMI.  
01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to  
DMI.  
RW/L  
10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.  
This register is locked by Intel TXT.  
Datasheet  
77  
DRAM Controller Registers (D0:F0)  
5.1.19  
PAM2—Programmable Attribute Map 2  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: 92h  
Default Value:  
Access:  
Size:  
00h  
RO, RW/L  
8 bits  
This register controls the read, write, and shadowing attributes of the BIOS areas from  
0C8000h– 0CFFFFh.  
Default  
Value  
Bit  
Access  
Description  
7:6  
RO  
RW/L  
RO  
00b  
Reserved  
0CC000h–0CFFFFh Attribute (HIENABLE):  
00 = DRAM Disabled: Accesses are directed to DMI.  
01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to  
DMI.  
5:4  
3:2  
00b  
00b  
10 =: Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.  
This register is locked by Intel TXT.  
Reserved  
0C8000h–0CBFFFh Attribute (LOENABLE): This field controls the steering of  
read and write cycles that address the BIOS area from 0C8000h to 0CBFFFh.  
00 = DRAM Disabled: Accesses are directed to DMI.  
01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to  
DMI.  
1:0  
RW/L  
00b  
10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.  
This register is locked by Intel TXT.  
78  
Datasheet  
DRAM Controller Registers (D0:F0)  
5.1.20  
PAM3—Programmable Attribute Map 3  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: 93h  
Default Value:  
Access:  
Size:  
00h  
RO, RW/L  
8 bits  
This register controls the read, write, and shadowing attributes of the BIOS areas from  
0D0000h – 0D7FFFh.  
Default  
Value  
Bit  
Access  
Description  
7:6  
RO  
RW/L  
RO  
00b  
Reserved  
0D4000h–0D7FFFh Attribute (HIENABLE): This field controls the steering of  
read and write cycles that address the BIOS area from 0D4000h to 0D7FFFh.  
00 = DRAM Disabled: Accesses are directed to DMI.  
01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to  
DMI.  
5:4  
3:2  
1:0  
00b  
00b  
00b  
10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.  
This register is locked by Intel TXT.  
Reserved  
0D0000h–0D3FFFh Attribute (LOENABLE): This field controls the steering  
of read and write cycles that address the BIOS area from 0D0000h to 0D3FFFh.  
00 = DRAM Disabled: Accesses are directed to DMI.  
01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to  
DMI.  
RW/L  
10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.  
This register is locked by Intel TXT.  
Datasheet  
79  
DRAM Controller Registers (D0:F0)  
5.1.21  
PAM4—Programmable Attribute Map 4  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: 94h  
Default Value:  
Access:  
Size:  
00h  
RO, RW/L  
8 bits  
This register controls the read, write, and shadowing attributes of the BIOS areas from  
0D8000h – 0DFFFFh.  
Default  
Value  
Bit  
Access  
Description  
7:6  
RO  
RW/L  
RO  
00b  
Reserved  
0DC000h–0DFFFFh Attribute (HIENABLE): This field controls the  
steering of read and write cycles that address the BIOS area from 0DC000h  
to 0DFFFFh.  
00 = DRAM Disabled: Accesses are directed to DMI.  
01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to  
DMI.  
5:4  
3:2  
1:0  
00b  
00b  
00b  
10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.  
This register is locked by Intel TXT.  
Reserved  
0D8000h–0DBFFFh Attribute (LOENABLE): This field controls the  
steering of read and write cycles that address the BIOS area from 0D8000h  
to 0DBFFFh.  
00 = DRAM Disabled: Accesses are directed to DMI.  
01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to  
DMI.  
RW/L  
10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.  
This register is locked by Intel TXT.  
80  
Datasheet  
DRAM Controller Registers (D0:F0)  
5.1.22  
PAM5—Programmable Attribute Map 5  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: 95h  
Default Value:  
Access:  
Size:  
00h  
RO, RW/L  
8 bits  
This register controls the read, write, and shadowing attributes of the BIOS areas from  
0E0000h – 0E7FFFh.  
Default  
Value  
Bit  
Access  
Description  
7:6  
RO  
RW/L  
RO  
00b  
Reserved  
0E4000h–0E7FFFh Attribute (HIENABLE): This field controls the steering of  
read and write cycles that address the BIOS area from 0E4000 to 0E7FFF.  
00 = DRAM Disabled: Accesses are directed to DMI.  
01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to  
DMI.  
5:4  
3:2  
1:0  
00b  
00b  
00b  
10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.  
This register is locked by Intel TXT.  
Reserved  
0E0000h–0E3FFFh Attribute (LOENABLE): This field controls the steering of  
read and write cycles that address the BIOS area from 0E0000 to 0E3FFF.  
00 = DRAM Disabled: Accesses are directed to DMI.  
01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to  
DMI.  
RW/L  
10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.  
This register is locked by Intel TXT.  
Datasheet  
81  
DRAM Controller Registers (D0:F0)  
5.1.23  
PAM6—Programmable Attribute Map 6  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: 96h  
Default Value:  
Access:  
Size:  
00h  
RO, RW/L  
8 bits  
This register controls the read, write, and shadowing attributes of the BIOS areas from  
0E8000h–0EFFFFh.  
Default  
Value  
Bit  
Access  
Description  
7:6  
RO  
RW/L  
RO  
00b  
Reserved  
0EC000h–0EFFFFh Attribute (HIENABLE): This field controls the steering of  
read and write cycles that address the BIOS area from 0E4000h to 0E7FFFh.  
00 = DRAM Disabled: Accesses are directed to DMI.  
01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to  
DMI.  
5:4  
3:2  
1:0  
00b  
00b  
00b  
10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.  
This register is locked by Intel TXT.  
Reserved  
0E8000h–0EBFFFh Attribute (LOENABLE): This field controls the steering of  
read and write cycles that address the BIOS area from 0E0000h to 0E3FFFh.  
00 = DRAM Disabled: Accesses are directed to DMI.  
01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to  
DMI.  
RW/L  
10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.  
This register is locked by Intel TXT.  
82  
Datasheet  
DRAM Controller Registers (D0:F0)  
5.1.24  
LAC—Legacy Access Control  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: 97h  
Default Value:  
Access:  
Size:  
00h  
RW/L, RO  
8 bits  
This 8-bit register controls a fixed DRAM hole from 15–16 MB.  
Default  
Value  
Bit  
Access  
Description  
Hole Enable (HEN): This field enables a memory hole in DRAM space. The  
DRAM that lies "behind" this space is not remapped.  
0 = No memory hole.  
7
RW/L  
RO  
0b  
0s  
1 = Memory hole from 15 MB to 16 MB.  
This bit is Intel TXT lockable.  
6:0  
Reserved  
5.1.25  
REMAPBASE—Remap Base Address Register  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: 98–99h  
Default Value:  
Access:  
Size:  
03FFh  
RO, RW/L  
16 bits  
Default  
Value  
Bit  
Access  
Description  
15:10  
RO  
000000b Reserved  
Remap Base Address [35:26] (REMAPBASE): The value in this register  
defines the lower boundary of the Remap window. The Remap window is  
inclusive of this address. In the decoder A[25:0] of the Remap Base Address are  
assumed to be 0s. Thus the bottom of the defined memory range will be aligned  
to a 64MB boundary.  
9:0  
RW/L  
3FFh  
When the value in this register is greater than the value programmed into the  
Remap Limit register, the Remap window is disabled.  
These bits are Intel TXT lockable or ME stolen Memory lockable.  
Datasheet  
83  
DRAM Controller Registers (D0:F0)  
5.1.26  
REMAPLIMIT—Remap Limit Address Register  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: 9A–9Bh  
Default Value:  
Access:  
Size:  
0000h  
RO, RW/L  
16 bits  
Default  
Value  
Bit  
Access  
Description  
15:10  
RO  
000000b Reserved  
Remap Limit Address [35:26] (REMAPLMT): The value in this register  
defines the upper boundary of the Remap window. The Remap window is  
inclusive of this address. In the decoder A[25:0] of the remap limit address are  
assumed to be Fs. Thus the top of the defined range will be one less than a  
64 MB boundary.  
9:0  
RW/L  
000h  
When the value in this register is less than the value programmed into the  
Remap Base register, the Remap window is disabled.  
These Bits are Intel TXT lockable or ME stolen Memory lockable.  
84  
Datasheet  
DRAM Controller Registers (D0:F0)  
5.1.27  
SMRAM—System Management RAM Control  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: 9Dh  
Default Value:  
Access:  
Size:  
02h  
RO, RW/L, RW, RW/L/K  
8 bits  
The SMRAMC register controls how accesses to Compatible and Extended SMRAM  
spaces are treated. The Open, Close, and Lock bits function only when G_SMRAME bit  
is set to a 1. Also, the OPEN bit must be reset before the LOCK bit is set.  
Default  
Value  
Bit  
Access  
Description  
7
RO  
0b  
Reserved  
SMM Space Open (D_OPEN): When D_OPEN=1 and D_LCK=0, the SMM space  
DRAM is made visible even when SMM decode is not active. This is intended to  
help BIOS initialize SMM space. Software should ensure that D_OPEN=1 and  
D_CLS=1 are not set at the same time.  
6
5
RW/L  
0b  
0b  
SMM Space Closed (D_CLS): When D_CLS = 1 SMM space DRAM is not  
accessible to data references, even if SMM decode is active. Code references  
may still access SMM space DRAM. This will allow SMM software to reference  
through SMM space to update the display. Software should ensure that  
D_OPEN=1 and D_CLS=1 are not set at the same time.  
RW  
SMM Space Locked (D_LCK): When D_LCK is set to 1 then D_OPEN is reset to  
0 and D_LCK, D_OPEN, C_BASE_SEG, H_SMRAM_EN, TSEG_SZ and TSEG_EN  
become read only. D_LCK can be set to 1 via a normal configuration space write  
but can only be cleared by a Full Reset. The combination of D_LCK and D_OPEN  
provide convenience with security. The BIOS can use the D_OPEN function to  
initialize SMM space and then use D_LCK to "lock down" SMM space in the future  
so that no application software (or BIOS itself) can violate the integrity of SMM  
space, even if the program has knowledge of the D_OPEN function.  
4
RW/L/K  
0b  
Global SMRAM Enable (G_SMRAME): If set to a 1, then Compatible SMRAM  
functions are enabled, providing 128 KB of DRAM accessible at the A0000h  
address while in SMM (ADSB with SMM decode). To enable Extended SMRAM  
function this bit has be set to 1. Refer to the section on SMM for more details.  
Once D_LCK is set, this bit becomes read only.  
3
RW/L  
RO  
0b  
Compatible SMM Space Base Segment (C_BASE_SEG): This field indicates  
the location of SMM space. SMM DRAM is not remapped. It is simply made visible  
if the conditions are right to access SMM space, otherwise the access is  
forwarded to DMI. Since the MCH supports only the SMM space between A0000  
and BFFFF, this field is hardwired to 010b.  
2:0  
010b  
Datasheet  
85  
DRAM Controller Registers (D0:F0)  
5.1.28  
ESMRAMC—Extended System Management RAM Control  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: 9Eh  
Default Value:  
Access:  
Size:  
38h  
RW/L, RWC, RO  
8 bits  
The Extended SMRAM register controls the configuration of Extended SMRAM space.  
The Extended SMRAM (E_SMRAM) memory provides a write-back cacheable SMRAM  
memory space that is above 1 MB.  
Default  
Value  
Bit  
Access  
Description  
Enable High SMRAM (H_SMRAME): This bit controls the SMM memory space  
location (i.e., above 1 MB or below 1 MB) When G_SMRAME is 1 and H_SMRAME  
is set to 1, the high SMRAM memory space is enabled. SMRAM accesses within  
the range 0FEDA0000h to 0FEDBFFFFh are remapped to DRAM addresses within  
the range 000A0000h to 000BFFFFh. Once D_LCK has been set, this bit becomes  
read only.  
7
RW/L  
0b  
Invalid SMRAM Access (E_SMERR): This bit is set when processor has  
accessed the defined memory ranges in Extended SMRAM (High Memory and T-  
segment) while not in SMM space and with the D-OPEN bit = 0. It is software's  
responsibility to clear this bit. The software must write a 1 to this bit to clear it.  
6
RWC  
0b  
5
4
3
RO  
RO  
RO  
1b  
1b  
1b  
SMRAM Cacheable (SM_CACHE): This bit is forced to 1 by the MCH.  
L1 Cache Enable for SMRAM (SM_L1): This bit is forced to 1 by the MCH.  
L2 Cache Enable for SMRAM (SM_L2): This bit is forced to 1 by the MCH.  
TSEG Size (TSEG_SZ): Selects the size of the TSEG memory block if enabled.  
Memory from the top of DRAM space is partitioned away so that it may only be  
accessed by the processor interface and only then when the SMM bit is set in the  
request packet. Non-SMM accesses to this memory region are sent to DMI when  
the TSEG memory block is enabled.  
00 = 1 MB TSEG. (TOLUD – Stolen Memory Size – 1M) to (TOLUD – Stolen  
Memory Size).  
2:1  
RW/L  
00b  
01 = 2 MB TSEG (TOLUD – Stolen Memory Size – 2M) to (TOLUD – Stolen  
Memory Size).  
10 = 8 MB TSEG (TOLUD – Stolen Memory Size – 8M) to (TOLUD – Stolen  
Memory Size).  
11 = Reserved.  
Once D_LCK has been set, these bits become read only.  
TSEG Enable (T_EN): This bit is for enabling of SMRAM memory for Extended  
SMRAM space only. When G_SMRAME = 1 and TSEG_EN = 1, the TSEG is  
enabled to appear in the appropriate physical address space. Note that once  
D_LCK is set, this bit becomes read only.  
0
RW/L  
0b  
86  
Datasheet  
DRAM Controller Registers (D0:F0)  
5.1.29  
TOM—Top of Memory  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: A0–A1h  
Default Value:  
Access:  
Size:  
0001h  
RO, RW/L  
16 bits  
This Register contains the size of physical memory. BIOS determines the memory size  
reported to the OS using this Register.  
Default  
Value  
Bit  
Access  
Description  
15:10  
RO  
00h  
Reserved  
Top of Memory (TOM): This register reflects the total amount of populated  
physical memory. This is NOT necessarily the highest main memory address  
(holes may exist in main memory address map due to addresses allocated for  
memory mapped IO). These bits correspond to address bits 35:26 (64MB  
granularity). Bits 25:0 are assumed to be 0. All the bits in this register are  
locked in Intel TXT mode.  
9:0  
RW/L  
001h  
5.1.30  
TOUUD—Top of Upper Usable Dram  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: A2–A3h  
Default Value:  
Access:  
Size:  
0000h  
RW/L  
16 bits  
This 16 bit register defines the Top of Upper Usable DRAM.  
Configuration software must set this value to TOM minus all EP stolen memory if  
reclaim is disabled. If reclaim is enabled, this value must be set to reclaim limit + 1byte  
64 MB aligned since reclaim limit is 64 MB aligned. Address bits 19:0 are assumed to  
be 000_0000h for the purposes of address comparison. The Host interface positively  
decodes an address towards DRAM if the incoming address is less than the value  
programmed in this register and greater than or equal to 4 GB.  
These bits are Intel TXT lockable.  
Default  
Value  
Bit  
Access  
Description  
TOUUD (TOUUD): This register contains bits 35:20 of an address one byte  
above the maximum DRAM memory above 4 GB that is usable by the operating  
system. Configuration software must set this value to TOM minus all EP stolen  
memory if reclaim is disabled. If reclaim is enabled, this value must be set to  
15:0  
RW/L  
0000h reclaim limit 64 MB aligned since reclaim limit + 1byte is 64 MB aligned. Address  
bits 19:0 are assumed to be 000_0000h for the purposes of address comparison.  
The Host interface positively decodes an address towards DRAM if the incoming  
address is less than the value programmed in this register and greater than  
4 GB. All the Bits in this register are locked in Intel TXT mode.  
Datasheet  
87  
DRAM Controller Registers (D0:F0)  
5.1.31  
BSM—Base of Stolen Memory  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: A4–A7h  
Default Value:  
Access:  
Size:  
00000000h  
RW/L, RO  
32 bits  
This register contains the base address of stolen DRAM memory. BIOS determines the  
base of stolen memory by subtracting the stolen memory size (PCI Device 0 offset 52  
bits [6:4]) from TOLUD (PCI Device 0 offset B0 bits [15:04]).  
Note: This register is locked and becomes Read Only when the D_LCK bit in the SMRAM  
register is set.  
Default  
Value  
Bit  
Access  
Description  
Base of Stolen Memory (BSM): This register contains bits 31 to 20 of the base  
address of stolen DRAM memory. BIOS determines the base of stolen memory  
by subtracting the stolen memory size (PCI Device 0, offset 52h, bits 6:4) from  
TOLUD (PCI Device 0, offset B0h, bits 15:4).  
NOTE: This register is locked and becomes Read Only when the D_LCK bit in the  
SMRAM register is set.  
31:20  
RW/L  
RO  
000h  
19:0  
00000h Reserved  
5.1.32  
TSEGMB—TSEG Memory Base  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: AC–AFh  
Default Value:  
Access:  
Size:  
00000000h  
RO, RW/L  
32 bits  
This register contains the base address of TSEG DRAM memory. BIOS determines the  
base of TSEG memory by subtracting the TSEG size (PCI Device 0 offset 9E bits [2:1])  
from stolen base (PCI Device 0 offset A4 bits [31:20]).  
Once D_LCK has been set, these bits becomes read only.  
Default  
Value  
Bit  
Access  
Description  
TESG Memory base (TSEGMB): This register contains bits [31:20] of the base  
address of TSEG DRAM memory. BIOS determines the base of TSEG memory by  
subtracting the TSEG size (PCI Device 0 offset 9E bits [2:1]) from stolen base  
(PCI Device 0 offset A8 bits [31:20]).  
31:20  
19:0  
RW/L  
RO  
000h  
Once D_LCK has been set, these bits becomes read only.  
00000h Reserved  
88  
Datasheet  
DRAM Controller Registers (D0:F0)  
5.1.33  
TOLUD—Top of Low Usable DRAM  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: B0–B1h  
Default Value:  
Access:  
Size:  
0010h  
RW/L, RO  
16 bits  
This 16 bit register defines the Top of Low Usable DRAM. TSEG, and Stolen Memory are  
within the DRAM space defined. From the top, MCH optionally claims 1, 2 MB of DRAM  
for Stolen Memory and 1, 2, or 8 MB of DRAM for TSEG if enabled.  
Programming Example:  
C1DRB3 is set to 4 GB  
TSEG is enabled and TSEG size is set to 1 MB  
Stolen Memory Size set to 2 MB  
BIOS knows the OS requires 1 GB of PCI space.  
BIOS also knows the range from FEC0_0000h to FFFF_FFFFh is not usable by the  
system. This 20 MB range at the very top of addressable memory space is lost to APIC  
and Intel TXT.  
According to the above equation, TOLUD is originally calculated to: 4 GB =  
1_0000_0000h  
The system memory requirements are: 4GB (max addressable space) – 1GB (PCI  
space) – 35 MB (lost memory) = 3 GB – 35 MB (minimum granularity) = ECB0_0000h  
Since ECB0_0000h (PCI and other system requirements) is less than 1_0000_0000h,  
TOLUD should be programmed to ECBh.  
These bits are Intel TXT lockable.  
Default  
Value  
Bit  
Access  
Description  
Top of Low Usable DRAM (TOLUD): This register contains bits [31:20] of an  
address one byte above the maximum DRAM memory below 4GB that is usable  
by the operating system. Address bits [31:20] programmed to 01h implies a  
minimum memory size of 1 MB. Configuration software must set this value to  
the smaller of the following 2 choices: maximum amount memory in the system  
minus ME stolen memory plus one byte or the minimum address allocated for  
PCI memory. Address bits [19:0] are assumed to be 0_0000h for the purposes  
of address comparison. The Host interface positively decodes an address  
towards DRAM if the incoming address is less than the value programmed in this  
register.  
15:4  
RW/L  
001h  
Note that the Top of Low Usable DRAM is the lowest address above both Stolen  
memory and TSEG. BIOS determines the base of Stolen Memory by subtracting  
the Stolen Memory Size from TOLUD and further decrements by TSEG size to  
determine base of TSEG. All the Bits in this register are locked in Intel TXT  
mode.  
This register must be 64 MB aligned when reclaim is enabled.  
3:0  
RO  
0000b Reserved  
Datasheet  
89  
DRAM Controller Registers (D0:F0)  
5.1.34  
ERRSTS—Error Status  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: C8–C9h  
Default Value:  
Access:  
Size:  
0000h  
RWC/S, RO  
16 bits  
This register is used to report various error conditions via the SERR DMI messaging  
mechanism. An SERR DMI message is generated on a zero to one transition of any of  
these flags (if enabled by the ERRCMD and PCICMD registers).  
These bits are set regardless of whether or not the SERR is enabled and generated.  
After the error processing is complete, the error logging mechanism can be unlocked by  
clearing the appropriate status bit by software writing a 1 to it.  
Default  
Value  
Bit  
Access  
Description  
15  
RO  
0b  
Reserved  
Isochronous TBWRR Run Behind FIFO Full (ITCV): If set, this bit indicates  
a VC1 TBWRR is running behind, resulting in the slot timer to stop until the  
request is able to complete.  
14  
RWC/S  
0b  
If this bit is already set, then a interrupt message will not be sent on a new error  
event.  
Isochronous TBWRR Run behind FIFO Put (ITSTV): If set, this bit indicates  
a VC1 TBWRR request was put into the run behind. This will likely result in a  
resulting in a contract violation due to the MCH egress port taking too long to  
service the isochronous request.  
13  
12  
RWC/S  
RO  
0b  
0b  
If this bit is already set, then a interrupt message will not be sent on a new error  
event.  
Reserved  
MCH Thermal Sensor Event for SMI/SCI/SERR (GTSE): This bit indicates  
that a MCH Thermal Sensor trip has occurred and an SMI, SCI or SERR has been  
generated. The status bit is set only if a message is sent based on Thermal event  
enables in Error command, SMI command and SCI command registers. A trip  
point can generate one of SMI, SCI, or SERR interrupts (two or more per event is  
illegal). Multiple trip points can generate the same interrupt, if software chooses  
this mode, subsequent trips may be lost. If this bit is already set, then an  
interrupt message will not be sent on a new thermal sensor event.  
11  
RWC/S  
0b  
10  
9
RO  
RWC/S  
RO  
0b  
0b  
0b  
Reserved  
LOCK to non-DRAM Memory Flag (LCKF): When this bit is set to 1, the MCH  
has detected a lock operation to memory space that did not map into DRAM.  
8
Reserved  
DRAM Throttle Flag (DTF):  
7
RWC/S  
RO  
0b  
1 = Indicates that a DRAM Throttling condition occurred.  
0 = Software has cleared this flag since the most recent throttling event.  
6:2  
00h  
Reserved  
90  
Datasheet  
DRAM Controller Registers (D0:F0)  
Default  
Value  
Bit  
Access  
Description  
Multiple-bit DRAM ECC Error Flag (DMERR): If this bit is set to 1, a memory  
read data transfer had an uncorrectable multiple-bit error. When this bit is set,  
the address, channel number, and device number that caused the error are  
logged in the register. Once this bit is set, the fields are locked until the  
processor clears this bit by writing a 1. Software uses bits [1:0] to detect  
whether the logged error address is for Single or Multiple-bit error. This bit is  
reset on PWROK.  
1
RWC/S  
0b  
Single-bit DRAM ECC Error Flag (DSERR): If this bit is set to 1, a memory  
read data transfer had a single-bit correctable error and the corrected data was  
sent for the access. When this bit is set the address and device number that  
caused the error are logged in the DEAP register. Once this bit is set the DEAP,  
DERRSYN, and DERRDST fields are locked to further single bit error updates until  
the processor clears this bit by writing a 1. A multiple bit error that occurs after  
this bit is set will overwrite the DEAP and DERRSYN fields with the multiple-bit  
error signature and the DMERR bit will also be set. A single bit error that occurs  
after a multi-bit error will set this bit but will not overwrite the other fields. This  
bit is reset on PWROK.  
0
RWC/S  
0b  
Datasheet  
91  
DRAM Controller Registers (D0:F0)  
5.1.35  
ERRCMD—Error Command  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: CA–CBh  
Default Value:  
Access:  
Size:  
0000h  
RW, RO  
16 bits  
This register controls the MCH responses to various system errors. Since the MCH does  
not have an SERRB signal, SERR messages are passed from the MCH to the ICH over  
DMI.  
When a bit in this register is set, a SERR message will be generated on DMI whenever  
the corresponding flag is set in the ERRSTS register. The actual generation of the SERR  
message is globally enabled for Device 0 via the PCI Command register.  
Default  
Value  
Bit  
Access  
Description  
15:12  
RO  
0h  
Reserved  
SERR on MCH Thermal Sensor Event (TSESERR):  
1 = The MCH generates a DMI SERR special cycle when bit [11] of the ERRSTS is  
set. The SERR must not be enabled at the same time as the SMI for the  
same thermal sensor event.  
11  
RW  
0b  
0 = Reporting of this condition via SERR messaging is disabled.  
10  
9
RO  
RW  
RO  
0b  
0b  
0s  
Reserved  
SERR on LOCK to non-DRAM Memory (LCKERR):  
1 = The MCH will generate a DMI SERR special cycle whenever a processor lock  
cycle is detected that does not hit DRAM.  
0 = Reporting of this condition via SERR messaging is disabled.  
8:2  
Reserved  
SERR Multiple-Bit DRAM ECC Error (DMERR):  
1 = The MCH generates an SERR message over DMI when it detects a multiple-  
bit error reported by the DRAM controller.  
1
0
RW  
RW  
0b  
0b  
0 = Reporting of this condition via SERR messaging is disabled.  
For systems not supporting ECC this bit must be disabled.  
SERR on Single-bit ECC Error (DSERR):  
1 = The MCH generates an SERR special cycle over DMI when the DRAM  
controller detects a single bit error.  
0 = Reporting of this condition via SERR messaging is disabled.  
For systems that do not support ECC this bit must be disabled.  
92  
Datasheet  
DRAM Controller Registers (D0:F0)  
5.1.36  
SMICMD—SMI Command  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: CC–CDh  
Default Value:  
Access:  
Size:  
0000h  
RO, RW  
16 bits  
This register enables various errors to generate an SMI DMI special cycle. When an  
error flag is set in the ERRSTS register, it can generate an SERR, SMI, or SCI DMI  
special cycle when enabled in the ERRCMD, SMICMD, or SCICMD registers,  
respectively. Note that one and only one message type can be enabled.  
Default  
Value  
Bit  
Access  
Description  
15:12  
RO  
RW  
RO  
RW  
0h  
Reserved  
SMI on MCH Thermal Sensor Trip (TSTSMI):  
1 = A SMI DMI special cycle is generated by MCH when the thermal sensor trip  
requires an SMI. A thermal sensor trip point cannot generate more than one  
special cycle.  
11  
10:2  
1
0b  
000h  
0b  
0 = Reporting of this condition via SMI messaging is disabled.  
Reserved  
SMI on Multiple-Bit DRAM ECC Error (DMESMI):  
1 = The MCH generates an SMI DMI message when it detects a multiple-bit error  
reported by the DRAM controller.  
0 = Reporting of this condition via SMI messaging is disabled. For systems not  
supporting ECC this bit must be disabled.  
SMI on Single-bit ECC Error (DSESMI):  
1 = The MCH generates an SMI DMI special cycle when the DRAM controller  
detects a single bit error.  
0
RW  
0b  
0 = Reporting of this condition via SMI messaging is disabled. For systems that  
do not support ECC this bit must be disabled.  
5.1.37  
SKPD—Scratchpad Data  
B/D/F/Type:  
0/0/0/PCI  
Address Offset: DC–DFh  
Default Value:  
Access:  
Size:  
00000000h  
RW  
32 bits  
This register holds 32 writable bits with no functionality behind them. It is for the  
convenience of BIOS drivers.  
Default  
Value  
Bit  
Access  
Description  
0000000  
0h  
31:0  
RW  
Scratchpad Data (SKPD): 1 DWord of data storage.  
Datasheet  
93  
DRAM Controller Registers (D0:F0)  
5.1.38  
CAPID0—Capability Identifier  
B/D/F/Type:  
Address Offset:  
Default Value:  
Access:  
0/0/0/PCI  
E0–EBh  
0000000181064000010C0009h  
RO  
96 bits  
0h  
Size:  
BIOS Optimal Default  
This register provides control of bits in this register are only required for customer  
visible component differentiation.  
Default  
Value  
Bit  
Access  
Description  
95:78  
RO  
0s  
Reserved  
Dual Channel Disable (DCD): Disables dual-channel operation  
0 = Dual channel operation allowed  
1 = Only single channel operation allowed - Only channel 0 will operate, channel  
1 will be turned off and tri-stated to save power. This setting hardwires the  
rank population field for channel 1 to zero. (MCHBAR offset 660h, bits  
20:23).  
77  
76  
RO  
0b  
0b  
2 DIMMS per Channel Disable (2DPCD): Allows Dual-Channel operation but  
only supports 1 DIMM per channel.  
0 = 2 DIMMs per channel Enabled  
RO  
1 = 2 DIMMs per channel disabled. This setting hardwires bits 2 and 3 of the  
rank population field for each channel to zero. (MCHBAR offset 260h, bits  
22:23 for channel 0 and MCHBAR offset 660h, bits 22:23 for channel 1).  
75  
74:75  
72  
RO  
RO  
RO  
RO  
0b  
00b  
0b  
Chipset Intel TXT disable (LTDIS): Chipset Intel TXT disable  
Reserved  
Agent Presence Disable (APD):  
Circuit Breaker Disable (CBD):  
71  
0b  
Multiprocessor Disable (MD):  
70  
RO  
0b  
0 = MCH capable of Multiple Processors  
1 = MCH capable of uni-processor only.  
69  
RO  
RO  
RO  
RO  
RO  
0b  
0b  
FAN Speed Control Disable (FSCD):  
EastFork Disable (EFD):  
Reserved  
68  
67:65  
64:62  
61:58  
000b  
110  
Reserved  
0000b Reserved  
ME Disable (MED):  
0 = ME feature is enabled  
1 = ME feature is disabled  
57  
RO  
0b  
56  
RO  
RO  
RO  
1b  
0s  
Reserved  
Reserved  
Reserved  
55:51  
50:49  
11b  
VT-d Disable (VTDD):  
0 = Enable VT-d  
48  
47  
RO  
RO  
0b  
0b  
1 = Disable VT-d  
Reserved  
94  
Datasheet  
DRAM Controller Registers (D0:F0)  
Default  
Value  
Bit  
Access  
Description  
46  
RO  
1b  
Reserved  
Primary PCI Express Port x16 Disable (PEX16D):  
0 = Capable of x16 PCI Express Port.  
1 = Not Capable of x16 PCI Express port; instead PCI Express is limited to x8  
and below. This causes PCI Express port to enable and train logical lanes  
[7:0] only. Logical lanes [15:8] are powered down, and the Max Link Width  
field of the Link Capability register reports x8 instead of x16. (In the case of  
x8 lane reversal, lanes [15:8] are active and lanes [7:0] are powered  
down.).  
45  
44  
43  
RO  
RO  
RO  
0b  
0b  
0b  
Primary PCI Express Port Disable (PEPD):  
0 = There is a PCI Express Port on this MCH. Device 1 and associated memory  
spaces are accessible.  
1 = There is no PCI Express Port on this MCH. Device 1 and associated memory  
and I/O spaces are disabled by hardwiring the D1EN field bit 1 of the Device  
Enable register (DEVEN Dev 0 Offset 54h). In addition, Next_Pointer = 00h,  
and IO cannot decode to the PCI Express interface. From a Physical Layer  
perspective, all 16 lanes are powered down and the link does not attempt to  
train.  
Secondary PCI Express Port X16 Disable (PE2X16D):  
0 = Capable of x16 PCI Express1 Port.  
1 = Not Capable of x16 PCI Express1 port; instead PCI Express1 is limited to x8  
and below. This causes PCI Express1 port to enable and train logical lanes  
[7:0] only. Logical lanes [15:8] are powered down, and the Max Link Width  
field of the Link Capability register reports x8 instead of x16. (In the case of  
x8 lane reversal, lanes [15:8] are active and lanes [7:0] are powered  
down.)  
Secondary PCI Express Port Disable (PE2PD):  
0 = There is a secondary PCI Express Port on this MCH. Device 6 and associated  
memory spaces are accessible.  
1 = There is no secondary PCI Express Port on this MCH. Device 6 and  
associated memory and IO spaces are disabled by hardwiring the D6EN field  
bit [13] of the Device Enable register (DEVEN Dev 0 Offset 54h). All 16 lanes  
are powered down and the link does not attempt to train. In addition,  
Next_Pointer = 00h, and IO cannot decode to the PCI Express interface.  
From a Physical Layer perspective, all 16 lanes are powered down and the  
link does not attempt to train.  
42  
RO  
0b  
41  
40  
RO  
RO  
0b  
0b  
Reserved  
ECC Disable (ECCDIS):  
0 = ECC capable  
1 = Not ECC capable. Hardwires ECC enable field, bit 7, of the CWB Control  
Registers (MCHBAR Offset 243h and 643h) to "0".  
39  
38  
RO  
RO  
RO  
RO  
RO  
0b  
0b  
Reserved  
DDR3 Disable (DDR3D):  
0 = Capable of supporting DDR3 SDRAM  
1 = Not Capable of supporting DDR3 SDRAM  
37:35  
34  
000b  
0b  
Reserved  
Primary and Secondary PCI Express Gen 2 Disable (PEPSD):  
0 = Primary and secondary PCI Express Gen 2 enabled  
1 = Primary and secondary PCI Express Gen 2 disabled  
33:32  
00b  
Reserved  
Datasheet  
95  
DRAM Controller Registers (D0:F0)  
Default  
Value  
Bit  
Access  
Description  
DDR Frequency Capability (DDRFC): This field controls which values may be  
written to the Memory Frequency Select field [6:4] of the Clocking Configuration  
registers (MCHBAR Offset C00h). Any attempt to write an unsupported value will  
be ignored.  
31:30  
RO  
00b  
00 = MCH capable of up to DDR3 1067  
10 = MCH capable of up to DDR2/DDR3 800  
11 = MCH capable of up to DDR2/DDR3 667  
FSB Frequency Capability (FSBFC): This field controls which values are  
allowed in the FSB Frequency Select Field [2:0] of the Clocking Configuration  
Register. These values are determined by the BSEL[2:0] frequency straps. Any  
unsupported strap values will render the MCH System Memory Interface  
inoperable.  
29:28  
RO  
00b  
00 = MCH capable of "All" Memory Frequencies  
01 = MCH capable of up to FSB 1333  
10 = MCH capable of up to FSB 1067  
11 = MCH capable of up to FSB 800  
CAPID Version (CAPIDV): This field has the value 0001b to identify the first  
revision of the CAPID register definition.  
27:24  
23:16  
15:8  
7:0  
RO  
RO  
RO  
RO  
1h  
CAPID Length (CAPIDL): This field has the value 0Ch to indicate the structure  
length (12 bytes).  
0Ch  
00h  
09h  
Next Capability Pointer (NCP): This field is hardwired to 00h indicating the  
end of the capabilities linked list.  
Capability Identifier (CAP_ID): This field has the value 1001b to identify the  
CAP_ID assigned by the PCI SIG for vendor dependent capability pointers.  
96  
Datasheet  
DRAM Controller Registers (D0:F0)  
5.2  
MCHBAR  
Table 9.  
MCHBAR Register Address Map  
Address  
Default  
Value  
Register Symbol  
Offset  
Register Name  
Access  
111h  
CHDECMISC  
C0DRB0  
Channel Decode Misc  
00h  
RW/L  
Channel 0 DRAM Rank  
Boundary Address 0  
200–201h  
0000h  
RO, RW/L  
Channel 0 DRAM Rank  
Boundary Address 1  
202–203h  
204–205h  
206–207h  
208–209h  
20A  
C0DRB1  
C0DRB2  
C0DRB3  
C0DRA01  
C0DRA23  
0000h  
0000h  
0000h  
0000h  
0000h  
RW/L, RO  
RW/L, RO  
RO, RW/L  
RW/L  
Channel 0 DRAM Rank  
Boundary Address 2  
Channel 0 DRAM Rank  
Boundary Address 3  
Channel 0 DRAM Rank 0,1  
Attribute  
Channel 0 DRAM Rank 2,3  
Attribute  
RW/L  
250–251h  
252–255h  
256–257h  
258–25Ah  
25B–25Ch  
C0CYCTRKPCHG  
C0CYCTRKACT  
C0CYCTRKWR  
C0CYCTRKRD  
C0CYCTRKREFR  
Channel 0 CYCTRK PCHG  
Channel 0 CYCTRK ACT  
Channel 0 CYCTRK WR  
Channel 0 CYCTRK READ  
Channel 0 CYCTRK REFR  
0000h  
00000000h  
0000h  
RO, RW  
RW, RO  
RW  
000000h  
0000h  
RO, RW  
RO, RW  
RW, RW/L,  
RO  
260–263h  
269–26Eh  
C0CKECTRL  
C0REFRCTRL  
Channel 0 CKE Control  
00000800h  
Channel 0 DRAM Refresh  
Control  
021830000C  
30h  
RW, RO  
0000000000  
000000h  
280–287h  
29C–29Fh  
600–601h  
C0ECCERRLOG  
C0ODTCTRL  
C1DRB0  
Channel 0 ECC Error Log  
Channel 0 ODT Control  
RO/P, RO  
RO, RW  
00000000h  
0000h  
Channel 1 DRAM Rank  
Boundary Address 0  
RW/L, RO  
Channel 1 DRAM Rank  
Boundary Address 1  
602–603h  
604–605h  
606–607h  
608–609h  
60A–60Bh  
C1DRB1  
C1DRB2  
C1DRB3  
C1DRA01  
C1DRA23  
0000h  
0000h  
0000h  
0000h  
0000h  
RO, RW/L  
RW/L, RO  
RW/L, RO  
RW/L  
Channel 1 DRAM Rank  
Boundary Address 2  
Channel 1 DRAM Rank  
Boundary Address 3  
Channel 1 DRAM Rank 0,1  
Attributes  
Channel 1 DRAM Rank 2,3  
Attributes  
RW/L  
650–651h  
652–655h  
656–657h  
C1CYCTRKPCHG  
C1CYCTRKACT  
C1CYCTRKWR  
Channel 1 CYCTRK PCHG  
Channel 1 CYCTRK ACT  
Channel 1 CYCTRK WR  
0000h  
00000000h  
0000h  
RW, RO  
RO, RW  
RW  
Datasheet  
97  
DRAM Controller Registers (D0:F0)  
Table 9.  
MCHBAR Register Address Map  
Address  
Default  
Access  
Value  
Register Symbol  
Offset  
Register Name  
658–65Ah  
660–663h  
C1CYCTRKRD  
C1CKECTRL  
Channel 1 CYCTRK READ  
Channel 1 CKE Control  
000000h  
RW, RO  
RO, RW/L,  
RW  
00000800h  
Channel 1 DRAM Refresh  
Control  
021830000C  
30h  
669–66Eh  
C1REFRCTRL  
RW, RO  
0000000000  
000000h  
680–687h  
69C–69Fh  
A00–A01h  
C1ECCERRLOG  
C1ODTCTRL  
EPC0DRB0  
Channel 1 ECC Error Log  
Channel 1 ODT Control  
RO/P, RO  
RO, RW  
RW, RO  
00000000h  
0000h  
EP Channel 0 DRAM Rank  
Boundary Address 0  
EP Channel 0 DRAM Rank  
Boundary Address 1  
A02–A03h  
A04–A05h  
A06–A07h  
A08–A09h  
A0A–A0Bh  
EPC0DRB1  
EPC0DRB2  
EPC0DRB3  
EPC0DRA01  
EPC0DRA23  
0000h  
0000h  
0000h  
0000h  
0000h  
RW, RO  
RW, RO  
RW, RO  
RW  
EP Channel 0 DRAM Rank  
Boundary Address 2  
EP Channel 0 DRAM Rank  
Boundary Address 3  
EP Channel 0 DRAM Rank 0,1  
Attribute  
EP Channel 0 DRAM Rank 2,3  
Attribute  
RW  
A19–A1Ah EPDCYCTRKWRTPRE EPD CYCTRK WRT PRE  
A1C–A1Fh EPDCYCTRKWRTACT EPD CYCTRK WRT ACT  
A20–A21h EPDCYCTRKWRTWR EPD CYCTRK WRT WR  
A22–A23h EPDCYCTRKWRTREF EPD CYCTRK WRT REF  
A24–A26h EPDCYCTRKWRTRD EPD CYCTRK WRT READ  
0000h  
00000000h  
0000h  
RW, RO  
RO, RW  
RW, RO  
RO, RW  
RW  
0000h  
000000h  
EPD CKE related configuration  
00E0000000  
h
A28–A2Ch EPDCKECONFIGREG  
registers  
RW  
A30–A33h  
CD8h  
EPDREFCONFIG  
TSC1  
EP DRAM Refresh Configuration  
Thermal Sensor Control 1  
40000C30h  
00h  
RW, RO  
RW/L, RW,  
RS/WC  
CD9h  
CDAh  
TSC2  
TSS  
Thermal Sensor Control 2  
Thermal Sensor Status  
00h  
00h  
RO, RW/L  
RO  
Thermal Sensor Temperature  
Trip Point  
RO, RW,  
RW/L  
CDC–CDFh  
CE2h  
TSTTP  
TCO  
00000000h  
00h  
RW/L/K,  
RW/L  
Thermal Calibration Offset  
RW/L, RO,  
RW/L/K  
CE4h  
THERM1  
Thermal Hardware Protection  
00h  
CEA–CEBh  
CF1–CF1h  
F14–F17h  
TIS  
Thermal Interrupt Status  
Thermal SMI Command  
Power Management Status  
0000h  
00h  
RO, RWC  
RO, RW  
TSMICMD  
PMSTS  
00000000h  
RWC/S, RO  
98  
Datasheet  
DRAM Controller Registers (D0:F0)  
5.2.1  
CHDECMISC—Channel Decode Misc  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: 111h  
Default Value:  
Access:  
Size:  
00h  
RW/L  
8 bits  
This register provides miscellaneous CHDEC/MAGEN configuration bits.  
Default  
Value  
Bit  
Access  
Description  
7
RW/L  
0b  
Reserved  
Enhanced Mode Select (ENHMODESEL):  
00 = Swap Enabled for Bank Selects and Rank Selects  
01 = XOR Enabled for Bank Selects and Rank Selects  
10 = Swap Enabled for Bank Selects only  
6:5  
RW/L  
00b  
11 = XOR Enabled for Bank Select only  
This register is locked by ME stolen Memory lock.  
4
3
2
1
RW/L  
RW/L  
RW/L  
RW/L  
0b  
0b  
0b  
0b  
Channel 2 Enhanced Mode (CH2_ENHMODE):  
Channel 1 Enhanced Mode (CH1_ENHMODE):  
Channel 0 Enhanced Mode (CH0_ENHMODE):  
Reserved  
EP Present (EPPRSNT): This bit indicates whether EP UMA is present in the  
system or not.  
0
RW/L  
0b  
This register is locked by ME stolen Memory lock.  
Datasheet  
99  
DRAM Controller Registers (D0:F0)  
5.2.2  
C0DRB0—Channel 0 DRAM Rank Boundary Address 0  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: 200–201h  
Default Value:  
Access:  
Size:  
0000h  
RO, RW/L  
16 bits  
The DRAM Rank Boundary Registers define the upper boundary address of each DRAM  
rank with a granularity of 64MB. Each rank has its own single-word DRB register. These  
registers are used to determine which chip select will be active for a given address.  
Channel and rank map:  
ch0 rank0:  
ch0 rank1:  
ch0 rank2:  
ch0 rank3:  
ch1 rank0:  
ch1 rank1:  
ch1 rank2:  
ch1 rank3:  
200h  
202h  
204h  
206h  
600h  
602h  
604h  
606h  
Programming guide:  
Non-stacked mode:  
If Channel 0 is empty, all of the C0DRBs are programmed with 00h.  
C0DRB0 = Total memory in ch0 rank0 (in 64MB increments)  
C0DRB1 = Total memory in ch0 rank0 + ch0 rank1 (in 64MB increments)  
and so on.  
If Channel 1 is empty, all of the C1DRBs are programmed with 00h.  
C1DRB0 = Total memory in ch1 rank0 (in 64MB increments)  
C1DRB1 = Total memory in ch1 rank0 + ch1 rank1 (in 64MB increments)  
and so on.  
Stacked mode:  
CODRBs:  
Similar to Non-stacked mode.  
C1DRB0, C1DRB1 and C1DRB2:  
They are also programmed similar to non-stacked mode. Only exception is, the DRBs  
corresponding to the topmost populated rank and the (unpopulated) higher ranks in  
Channel 1 must be programmed with the value of the total Channel 1 population plus  
the value of total Channel 0 population (C0DRB3).  
Example: If only ranks 0 and 1 are populated in Ch1 in stacked mode, then  
C1DRB0 = Total memory in ch1 rank0 (in 64MB increments)  
100  
Datasheet  
DRAM Controller Registers (D0:F0)  
C1DRB1 = C0DRB3 + Total memory in ch1 rank0 + ch1 rank1 (in 64MB increments)  
(rank 1 is the topmost populated rank)  
C1DRB2 = C1DRB1  
C1DRB3 = C1DRB1  
C1DRB3:  
C1DRB3 = C0DRB3 + Total memory in Channel 1.  
Default  
Value  
Bit  
Access  
Description  
15:10  
RO  
000000b Reserved  
Channel 0 Dram Rank Boundary Address 0 (C0DRBA0): This register  
defines the DRAM rank boundary for rank0 of Channel 0 (64 MB granularity)  
=R0  
R0 = Total rank0 memory size/64MB  
R1 = Total rank1 memory size/64MB  
R2 = Total rank2 memory size/64MB  
R3 = Total rank3 memory size/64MB  
This register is locked by ME stolen Memory lock.  
9:0  
RW/L  
000h  
5.2.3  
C0DRB1—Channel 0 DRAM Rank Boundary Address 1  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: 202–203h  
Default Value:  
Access:  
Size:  
0000h  
RW/L, RO  
16 bits  
See C0DRB0 register.  
Default  
Value  
Bit  
Access  
Description  
15:10  
RO  
000000b Reserved  
Channel 0 Dram Rank Boundary Address 1 (C0DRBA1): This field defines  
the DRAM rank boundary for rank1 of Channel 0 (64 MB granularity)  
=(R1 + R0)  
R0 = Total rank0 memory size/64MB  
R1 = Total rank1 memory size/64MB  
R2 = Total rank2 memory size/64MB  
R3 = Total rank3 memory size/64MB  
This register is locked by ME stolen Memory lock.  
9:0  
RW/L  
000h  
Datasheet  
101  
DRAM Controller Registers (D0:F0)  
5.2.4  
C0DRB2—Channel 0 DRAM Rank Boundary Address 2  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: 204–205h  
Default Value:  
Access:  
Size:  
0000h  
RW/L, RO  
16 bits  
See C0DRB0 register.  
Default  
Value  
Bit  
Access  
Description  
15:10  
RO  
000000b Reserved  
Channel 0 DRAM Rank Boundary Address 2 (C0DRBA2): This register  
defines the DRAM rank boundary for rank2 of Channel 0 (64 MB granularity)  
=(R2 + R1 + R0)  
R0 = Total rank0 memory size/64MB  
R1 = Total rank1 memory size/64MB  
R2 = Total rank2 memory size/64MB  
R3 = Total rank3 memory size/64MB  
This register is locked by ME stolen Memory lock.  
9:0  
RW/L  
000h  
5.2.5  
C0DRB3—Channel 0 DRAM Rank Boundary Address 3  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: 206–207h  
Default Value:  
Access:  
Size:  
0000h  
RO, RW/L  
16 bits  
See C0DRB0 register.  
Default  
Value  
Bit  
Access  
Description  
15:10  
RO  
000000b Reserved  
Channel 0 DRAM Rank Boundary Address 3 (C0DRBA3): This register  
defines the DRAM rank boundary for rank3 of Channel 0 (64 MB granularity)  
=(R3 + R2 + R1 + R0)  
R0 = Total rank0 memory size/64MB  
R1 = Total rank1 memory size/64MB  
R2 = Total rank2 memory size/64MB  
R3 = Total rank3 memory size/64MB  
This register is locked by ME stolen Memory lock.  
9:0  
RW/L  
000h  
102  
Datasheet  
DRAM Controller Registers (D0:F0)  
5.2.6  
C0DRA01—Channel 0 DRAM Rank 0,1 Attribute  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: 208–209h  
Default Value:  
Access:  
Size:  
0000h  
RW/L  
16 bits  
The DRAM Rank Attribute Registers define the page sizes/number of banks to be used  
when accessing different ranks. These registers should be left with their default value  
(all zeros) for any rank that is unpopulated, as determined by the corresponding  
CxDRB registers. Each byte of information in the CxDRA registers describes the page  
size of a pair of ranks. Channel and rank map:  
Ch0 Rank0, 1:  
Ch0 Rank2, 3:  
Ch1 Rank0, 1:  
Ch1 Rank2, 3:  
208h–209h  
20Ah–20Bh  
608h–609h  
60Ah–60Bh  
DRA[6:0] = "00" means cfg0, DRA[6:0] ="01" means cfg1.... DRA[6:0] = "09" means  
cfg9 and so on.  
DRA[7] indicates whether it's an 8 bank config or not. DRA[7] = 0 means 4 bank,  
DRA[7] = 1 means 8 bank.  
Table 10.  
DRAM Rank Attribute Register Programming  
Page  
Config  
Tech  
DDRx  
Depth  
Width  
Row  
Col  
Bank  
Row Size  
Size  
0
1
2
3
4
5
6
7
256Mb  
256Mb  
512Mb  
512Mb  
512Mb  
512Mb  
1 Gb  
2
2
32M  
16M  
64M  
32M  
64M  
32M  
128M  
64M  
8
16  
8
13  
13  
14  
13  
13  
12  
14  
13  
10  
9
2
2
2
2
3
3
3
3
256 MB  
128 MB  
512 MB  
256 MB  
512 MB  
256 MB  
1 GB  
8k  
4k  
8k  
8k  
8k  
8k  
8k  
8k  
2
10  
10  
10  
10  
10  
10  
2
16  
8
3
3
16  
8
2,3  
2,3  
1 Gb  
16  
512 MB  
Default  
Value  
Bit  
Access  
Description  
Channel 0 DRAM Rank-1 Attributes (C0DRA1): This register defines  
DRAM pagesize/number-of-banks for rank1 for given channel.  
15:8  
RW/L  
RW/L  
00h  
See table in register description for programming.  
This register is locked by ME stolen Memory lock.  
Channel 0 DRAM Rank-0 Attributes (C0DRA0): This register defines  
DRAM page size/number-of-banks for rank0 for given channel.  
7:0  
00h  
See table in register description for programming.  
This register is locked by ME stolen Memory lock.  
Datasheet  
103  
DRAM Controller Registers (D0:F0)  
5.2.7  
C0DRA23—Channel 0 DRAM Rank 2,3 Attribute  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: 20A–20Bh  
Default Value:  
Access:  
Size:  
0000h  
RW/L  
16 bits  
See C0DRA01 register.  
Default  
Value  
Bit  
Access  
Description  
Channel 0 DRAM Rank-3 Attributes (C0DRA3): This register defines DRAM  
pagesize/number-of-banks for rank3 for given channel.  
15:8  
RW/L  
RW/L  
00h  
See table in register description for programming.  
This register is locked by ME stolen Memory lock.  
Channel 0 DRAM Rank-2 Attributes (C0DRA2): This register defines DRAM  
pagesize/number-of-banks for rank2 for given channel.  
7:0  
00h  
See table in register description for programming.  
This register is locked by ME stolen Memory lock.  
5.2.8  
C0CYCTRKPCHG—Channel 0 CYCTRK PCHG  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: 250–251h  
Default Value:  
Access:  
Size:  
0000h  
RO, RW  
16 bits  
This is the Channel 0 CYCTRK Precharge registers.  
Default  
Value  
Bit  
Access  
Description  
15:11  
RO  
00000b Reserved  
Write To PRE Delayed (C0sd_cr_wr_pchg): This field indicates the minimum  
10:6  
5:2  
RW  
00000b allowed spacing (in DRAM clocks) between the WRITE and PRE commands to the  
same rank-bank. This field corresponds to tWR in the DDR Specification.  
READ To PRE Delayed (C0sd_cr_rd_pchg): This field indicates the minimum  
0000b allowed spacing (in DRAM clocks) between the READ and PRE commands to the  
same rank-bank  
RW  
RW  
PRE To PRE Delayed (C0sd_cr_pchg_pchg): This field indicates the  
1:0  
00b  
minimum allowed spacing (in DRAM clocks) between two PRE commands to the  
same rank.  
104  
Datasheet  
DRAM Controller Registers (D0:F0)  
5.2.9  
C0CYCTRKACT—Channel 0 CYCTRK ACT  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: 252–255h  
Default Value:  
Access:  
Size:  
00000000h  
RW, RO  
32 bits  
Channel 0 CYCTRK Activate registers.  
Default  
Value  
Bit  
Access  
Description  
31:28  
RO  
0h  
Reserved  
ACT Window Count (C0sd_cr_act_windowcnt): This field indicates the  
window duration (in DRAM clocks) during which the controller counts the # of  
activate commands which are launched to a particular rank. If the number of  
activate commands launched within this window is greater than 4, then a check  
is implemented to block launch of further activates to this rank for the rest of the  
duration of this window.  
27:22  
RW  
000000b  
0b  
Max ACT Check Disable (C0sd_cr_maxact_dischk): This field enables the  
check which ensures that there are no more than four activates to a particular  
rank in a given window.  
21  
RW  
RW  
ACT to ACT Delayed (C0sd_cr_act_act[): This field indicates the minimum  
0000b allowed spacing (in DRAM clocks) between two ACT commands to the same  
rank. This field corresponds to tRRD in the DDR Specification.  
20:17  
PRE to ACT Delayed (C0sd_cr_pre_act): This field indicates the minimum  
allowed spacing (in DRAM clocks) between the PRE and ACT commands to the  
same rank-bank:12:9R/W0000bPRE-ALL to ACT Delayed.  
(C0sd_cr_preall_act):This field indicates the minimum allowed spacing (in DRAM  
16:13  
RW  
0000b  
clocks) between the PRE-ALL and ACT commands to the same rank. This field  
corresponds to tRP in the DDR Specification.  
ALLPRE to ACT Delay (C0sd0_cr_preall_act): From the launch of a  
prechargeall command wait for these many # of memory clocks before  
launching a activate command. This field corresponds to tPALL_RP in the DDR  
Specification.  
12:9  
8:0  
RW  
RW  
0h  
REF to ACT Delayed (C0sd_cr_rfsh_act): This field indicates the minimum  
allowed spacing (in DRAM clocks) between REF and ACT commands to the same  
rank. This field corresponds to tRFC in the DDR Specification.  
0000000  
00b  
Datasheet  
105  
DRAM Controller Registers (D0:F0)  
5.2.10  
C0CYCTRKWR—Channel 0 CYCTRK WR  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: 256–257h  
Default Value:  
Access:  
Size:  
0000h  
RW  
16 bits  
Channel 0 CYCTRK WR registers.  
Default  
Value  
Bit  
Access  
Description  
ACT To Write Delay (C0sd_cr_act_wr): This field indicates the minimum  
allowed spacing (in DRAM clocks) between the ACT and WRITE commands to the  
same rank-bank. This field corresponds to tRCD_wr in the DDR Specificaiton.  
15:12  
RW  
RW  
0h  
Same Rank Write To Write Delayed (C0sd_cr_wrsr_wr): This field  
indicates the minimum allowed spacing (in DRAM clocks) between two WRITE  
commands to the same rank.  
11:8  
7:4  
0h  
0h  
0h  
Different Rank Write to Write Delay (C0sd_cr_wrdr_wr): This field  
register indicates the minimum allowed spacing (in DRAM clocks) between two  
WRITE commands to different ranks. This field corresponds to tWR_WR in the  
DDR Specification.  
RW  
RW  
READ To WRTE Delay (C0sd_cr_rd_wr): This field indicates the minimum  
allowed spacing (in DRAM clocks) between the READ and WRITE commands.  
3:0  
This field corresponds to tRD_WR  
.
106  
Datasheet  
DRAM Controller Registers (D0:F0)  
5.2.11  
C0CYCTRKRD—Channel 0 CYCTRK READ  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: 258–25Ah  
Default Value:  
Access:  
Size:  
000000h  
RO, RW  
24 bits  
Channel 0 CYCTRK RD registers.  
Default  
Value  
Bit  
Access  
Description  
23:21  
RO  
000b  
Reserved  
Min ACT To READ Delayed (C0sd_cr_act_rd): This field indicates the  
minimum allowed spacing (in DRAM clocks) between the ACT and READ  
commands to the same rank-bank. This field corresponds to tRCD_rd in the DDR  
specification.  
20:17  
16:12  
11:8  
RW  
0h  
Same Rank Write To READ Delayed (C0sd_cr_wrsr_rd): This field indicates  
the minimum allowed spacing (in DRAM clocks) between the WRITE and READ  
commands to the same rank. This field corresponds to tWTR in the DDR  
specification.  
RW  
RW  
00000b  
0000b  
Different Ranks Write To READ Delayed (C0sd_cr_wrdr_rd): This field  
indicates the minimum allowed spacing (in DRAM clocks) between the WRITE  
and READ commands to different ranks. This field corresponds to tWR_RD in the  
DDR specification.  
Same Rank Read To Read Delayed (C0sd_cr_rdsr_rd): This field indicates  
7:4  
3:0  
RW  
RW  
0000b the minimum allowed spacing (in DRAM clocks) between two READ commands to  
the same rank.  
Different Ranks Read To Read Delayed (C0sd_cr_rddr_rd): This field  
0000b indicates the minimum allowed spacing (in DRAM clocks) between two READ  
commands to different ranks. This field corresponds to tRD_RD  
.
5.2.12  
C0CYCTRKREFR—Channel 0 CYCTRK REFR  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: 25B–25Ch  
Default Value:  
Access:  
Size:  
0000h  
RO, RW  
16 bits  
Channel 0 CYCTRK Refresh registers.  
Default  
Value  
Bit  
Access  
Description  
15:13  
RO  
000b  
Reserved  
Same Rank PALL to REF Delayed (C0sd_cr_pchgall_rfsh): This field  
12:9  
8:0  
RW  
0000b indicates the minimum allowed spacing (in DRAM clocks) between the PRE-ALL  
and REF commands to the same rank.  
Same Rank REF to REF Delayed (C0sd_cr_rfsh_rfsh): This field indicates  
the minimum allowed spacing (in DRAM clocks) between two REF commands to  
0000000  
RW  
00b  
same ranks.  
Datasheet  
107  
DRAM Controller Registers (D0:F0)  
5.2.13  
C0CKECTRL—Channel 0 CKE Control  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: 260–263h  
Default Value:  
Access:  
Size:  
00000800h  
RW, RW/L, RO  
32 bits  
This register provides CKE controls for Channel 0.  
Default  
Value  
Bit  
Access  
Description  
31:28  
27  
RO  
0000b Reserved  
Start the Self-Refresh Exit Sequence (sd0_cr_srcstart): This field indicates  
RW  
0b  
the request to start the self-refresh exit sequence  
CKE Pulse Width Requirement in High Phase (sd0_cr_cke_pw_hl_safe):  
This field indicates CKE pulse width requirement in high phase. This field  
corresponds to tCKE (high) in the DDR specification.  
26:24  
23  
RW  
000b  
Rank 3 Population (sd0_cr_rankpop3):  
1 = Rank 3 populated  
RW/L  
0b  
0b  
0b  
0 = Rank 3 not populated  
This register is locked by ME stolen Memory lock.  
Rank 2 Population (sd0_cr_rankpop2):  
1 = Rank 2 populated  
22  
21  
RW/L  
RW/L  
0 = Rank 2 not populated  
This register is locked by ME stolen Memory lock.  
Rank 1 Population (sd0_cr_rankpop1):  
1 = Rank 1 populated  
0 = Rank 1 not populated  
This register is locked by ME stolen Memory lock.  
Rank 0 Population (sd0_cr_rankpop0):  
1 = Rank 0 populated  
20  
RW/L  
RW  
0b  
0 = Rank 0 not populated  
This register is locked by ME stolen Memory lock.  
CKE Pulse Width Requirement in Low Phase (sd0_cr_cke_pw_lh_safe):  
This configuration register indicates CKE pulse width requirement in low phase.  
19:17  
000b  
This field corresponds to tCKE (low) in the DDR specification.  
Enable CKE Toggle for PDN Entry/Exit (sd0_cr_pdn_enable): This bit  
indicates that the toggling of CKEs (for PDN entry/exit) is enabled.  
16  
RW  
RO  
0b  
15:14  
00b  
Reserved  
Minimum Powerdown exit to Non-Read command spacing (sd0_cr_txp):  
This field indicates the minimum number of clocks to wait following assertion of  
CKE before issuing a non-read command.  
13:10  
RW  
0010b  
1010–1111 = Reserved.  
0010–1001 = 2–9clocks.  
0000–0001 = Reserved.  
Self Refresh Exit Count (sd0_cr_slfrfsh_exit_cnt): This field indicates the  
Self refresh exit count. (Program to 255). This field corresponds to tXSNR/tXSRD  
in the DDR Specification.  
0000000  
00b  
9:1  
0
RW  
RW  
Indicates only 1 DIMM Populated (sd0_cr_singledimmpop): This field  
indicates the that only 1 DIMM is populated.  
0b  
108  
Datasheet  
DRAM Controller Registers (D0:F0)  
5.2.14  
C0REFRCTRL—Channel 0 DRAM Refresh Control  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: 269–26Eh  
Default Value:  
Access:  
Size:  
021830000C30h  
RW, RO  
48 bits  
Settings to configure the DRAM refresh controller.  
Default  
Value  
Bit  
Access  
Description  
47:42  
RO  
00h  
Reserved  
Direct Rcomp Quiet Window (DIRQUIET): This configuration setting  
41:37  
36:32  
RW  
10000b indicates the amount of refresh_tick events to wait before the service of rcomp  
request in non-default mode of independent rank refresh.  
Indirect Rcomp Quiet Window (INDIRQUIET): This configuration setting  
11000b indicates the amount of refresh_tick events to wait before the service of rcomp  
request in non-default mode of independent rank refresh.  
RW  
Rcomp Wait (RCOMPWAIT): This configuration setting indicates the amount  
00110b of refresh_tick events to wait before the service of rcomp request in non-default  
mode of independent rank refresh.  
31:27  
26  
RW  
RW  
0b  
Reserved  
Refresh Counter Enable (REFCNTEN): This bit is used to enable the refresh  
counter to count during times that DRAM is not in self-refresh, but refreshes are  
not enabled. Such a condition may occur due to need to reprogram DIMMs  
following DRAM controller switch.  
This bit has no effect when Refresh is enabled (i.e. there is no mode where  
Refresh is enabled but the counter does not run) So, in conjunction with bit [23]  
REFEN, the modes are:  
25  
RW  
0b  
[REFEN:REFCNTEN] Description  
[0:0]  
[0:1]  
[1:X]  
Normal refresh disable  
Refresh disabled, but counter is accumulating refreshes.  
Normal refresh enable  
All Rank Refresh (ALLRKREF): This configuration bit enables (by default)  
that all the ranks are refreshed in a staggered/atomic fashion. If set, the ranks  
are refreshed in an independent fashion.  
24  
23  
RW  
RW  
0b  
0b  
Refresh Enable (REFEN): Refresh is enabled.  
0 = Disabled  
1 = Enabled  
DDR Initialization Done (INITDONE): Indicates that DDR initialization is  
complete.  
22  
RW  
RW  
0b  
21:20  
00b  
Reserved  
DRAM Refresh Panic Watermark (REFPANICWM): When the refresh count  
exceeds this level, a refresh request is launched to the scheduler and the  
dref_panic flag is set.  
00 = 5  
01 = 6  
10 = 7  
11 = 8  
19:18  
RW  
00b  
Datasheet  
109  
DRAM Controller Registers (D0:F0)  
Default  
Value  
Bit  
Access  
Description  
DRAM Refresh High Watermark (REFHIGHWM): When the refresh count  
exceeds this level, a refresh request is launched to the scheduler and the  
dref_high flag is set.  
00 = 3  
01 = 4  
10 = 5  
11 = 6  
17:16  
RW  
00b  
DRAM Refresh Low Watermark (REFLOWWM): When the refresh count  
exceeds this level, a refresh request is launched to the scheduler and the  
dref_low flag is set.  
00 = 1  
01 = 2  
10 = 3  
11 = 4  
15:14  
RW  
RW  
00b  
Refresh Counter Time Out Value (REFTIMEOUT): Program this field with a  
value that will provide 7.8 us at the memory clock frequency.  
At various memory clock frequencies, this results in the following values:  
00110000  
13:0  
110000b 400 Mhz -> C30 hex (Default Value)  
533 Mhz -> 104B hex  
666 Mhz -> 1450 hex  
110  
Datasheet  
DRAM Controller Registers (D0:F0)  
5.2.15  
C0ECCERRLOG—Channel 0 ECC Error Log  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: 280–287h  
Default Value:  
Access:  
Size:  
0000000000000000h  
RO/P, RO  
64 bits  
This register is used to store the error status information in ECC enabled  
configurations, along with the error syndrome and the rank/bank/row/column address  
information of the address block of main memory of which an error (single bit or multi-  
bit error) has occurred. Note that the address fields represent the address of the first  
single or the first multiple bit error occurrence after the error flag bits in the ERRSTS  
register have been cleared by software. A multiple bit error will overwrite a single bit  
error. Once the error flag bits are set as a result of an error, this bit field is locked and  
doesn't change as a result of a new error until the error flag is cleared by software.  
Same is the case with error syndrome field, but the following priority needs to be  
followed if more than one error occurs on one or more of the 4 QWs. MERR on QW0  
MERR on QW1 MERR on QW2 MERR on QW3 CERR on QW0 CERR on QW1 CERR on  
QW2 CERR on QW3  
Default  
Value  
Bit  
Access  
Description  
Error Column Address (ERRCOL): Row address of the address block of main  
memory of which an error (single bit or multi-bit error) has occurred.  
63:48  
47:32  
31:29  
RO/P  
RO/P  
RO/P  
0000h  
Error Row Address (ERRROW): Row address of the address block of main  
memory of which an error (single bit or multi-bit error) has occurred.  
0000h  
000b  
Error Bank Address (ERRBANK): Rank address of the address block of main  
memory of which an error (single bit or multi-bit error) has occurred.  
Error Rank Address (ERRRANK): Rank address of the address block of main  
memory of which an error (single bit or multi-bit error) has occurred.  
00 = rank 0 (DIMM0)  
01 = rank 1 (DIMM0)  
10 = rank 2 (DIMM1)  
11 = rank 3 (DIMM1)  
28:27  
RO/P  
00b  
26:24  
23:16  
15:2  
RO  
RO/P  
RO  
0h  
00h  
0h  
Reserved  
Error Syndrome (ERRSYND): Syndrome that describes the set of bits  
associated with the first failing quadword.  
Reserved  
Multiple Bit Error Status (MERRSTS): This bit is set when an uncorrectable  
multiple-bit error occurs on a memory read data transfer. When this bit is set,  
the address that caused the error and the error syndrome are also logged and  
they are locked until this bit is cleared. This bit is cleared when it receives an  
indication that the processor has cleared the corresponding bit in the ERRSTS  
register.  
1
0
RO/P  
RO/P  
0b  
0b  
Correctable Error Status (CERRSTS): This bit is set when a correctable  
single-bit error occurs on a memory read data transfer. When this bit is set, the  
address that caused the error and the error syndrome are also logged and they  
are locked to further single bit errors, until this bit is cleared. But, a multiple bit  
error that occurs after this bit is set will over-write the address/error syndrome  
info. This bit is cleared when it receives an indication that the processor has  
cleared the corresponding bit in the ERRSTS register.  
Datasheet  
111  
DRAM Controller Registers (D0:F0)  
5.2.16  
C0ODTCTRL—Channel 0 ODT Control  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: 29C–29Fh  
Default Value:  
Access:  
Size:  
00000000h  
RO, RW  
32 bits  
This register provides ODT controls.  
Default  
Value  
Bit  
Access  
Description  
31:12  
RO  
00000h Reserved  
DRAM ODT for Read Commands (sd0_cr_odt_duration_rd): Specifies the  
duration in MDCLKs to assert DRAM ODT for Read Commands. The Async value  
should be used when the Dynamic Powerdown bit is set. Else use the Sync value.  
11:8  
RW  
0h  
DRAM ODT for Write Commands (sd0_cr_odt_duration_wr): Specifies the  
duration in MDCLKs to assert DRAM ODT for Write Commands. The Async value  
should be used when the Dynamic Powerdown bit is set. Else use the Sync value.  
7:4  
3:0  
RW  
RW  
0h  
0h  
MCH ODT for Read Commands (sd0_cr_mchodt_duration): Specifies the  
duration in MDCLKs to assert MCH ODT for Read Commands  
5.2.17  
C1DRB0—Channel 1 DRAM Rank Boundary Address 0  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: 600–601h  
Default Value:  
Access:  
Size:  
0000h  
RW/L, RO  
16 bits  
The operation of this register is detailed in the description for the C0DRB0 register.  
Default  
Value  
Bit  
Access  
Description  
15:10  
RO  
000000b Reserved  
Channel 1 DRAM Rank Boundary Address 0 (C1DRBA0): See C0DRB0  
register.  
9:0  
RW/L  
000h  
In stacked mode, if this is the topmost populated rank in Channel 1, program  
this value to be cumulative of Ch0 DRB3.  
This register is locked by ME stolen Memory lock.  
112  
Datasheet  
DRAM Controller Registers (D0:F0)  
5.2.18  
C1DRB1—Channel 1 DRAM Rank Boundary Address 1  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: 602–603h  
Default Value:  
Access:  
Size:  
0000h  
RO, RW/L  
16 bits  
The operation of this register is detailed in the description for the C0DRB0 register.  
Default  
Value  
Bit  
Access  
Description  
15:10  
RO  
000000b Reserved  
Channel 1 DRAM Rank Boundary Address 1 (C1DRBA1): See C0DRB1  
register.  
9:0  
RW/L  
000h  
In stacked mode, if this is the topmost populated rank in Channel 1, program  
this value to be cumulative of Ch0 DRB3.  
This register is locked by ME stolen Memory lock.  
5.2.19  
C1DRB2—Channel 1 DRAM Rank Boundary Address 2  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: 604–605h  
Default Value:  
Access:  
Size:  
0000h  
RW/L, RO  
16 bits  
The operation of this register is detailed in the description for the C0DRB0 register.  
Default  
Value  
Bit  
Access  
Description  
15:10  
RO  
000000b Reserved  
Channel 1 DRAM Rank Boundary Address 2 (C1DRBA2): See C0DRB2  
register.  
9:0  
RW/L  
000h  
In stacked mode, if this is the topmost populated rank in Channel 1, program  
this value to be cumulative of Ch0 DRB3.  
This register is locked by ME stolen Memory lock.  
Datasheet  
113  
DRAM Controller Registers (D0:F0)  
5.2.20  
C1DRB3—Channel 1 DRAM Rank Boundary Address 3  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: 606–607h  
Default Value:  
Access:  
Size:  
0000h  
RW/L, RO  
16 bits  
The operation of this register is detailed in the description for the C0DRB0 register.  
Default  
Value  
Bit  
Access  
Description  
15:10  
RO  
000000b Reserved  
Channel 1 DRAM Rank Boundary Address 3 (C1DRBA3): See C0DRB3  
register.  
9:0  
RW/L  
000h  
In stacked mode, this will be cumulative of Ch0 DRB3.  
This register is locked by ME stolen Memory lock.  
5.2.21  
C1DRA01—Channel 1 DRAM Rank 0,1 Attributes  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: 608–609h  
Default Value:  
Access:  
Size:  
0000h  
RW/L  
16 bits  
The operation of this register is detailed in the description for register C0DRA01.  
Default  
Value  
Bit  
15:8  
7:0  
Access  
Description  
Channel 1 DRAM Rank-1 Attributes (C1DRA1): See C0DRA1 register.  
RW/L  
RW/L  
00h  
This register is locked by ME stolen Memory lock.  
Channel 1 DRAM Rank-0 Attributes (C1DRA0): See C0DRA0 register.  
00h  
This register is locked by ME stolen Memory lock.  
5.2.22  
C1DRA23—Channel 1 DRAM Rank 2,3 Attributes  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: 60A–60Bh  
Default Value:  
Access:  
Size:  
0000h  
RW/L  
16 bits  
The operation of this register is detailed in the description for the C0DRA01 register.  
Default  
Value  
Bit  
15:8  
7:0  
Access  
Description  
Channel 1 DRAM Rank-3 Attributes (C1DRA3): See C0DRA3 register.  
RW/L  
RW/L  
00h  
This register is locked by ME stolen Memory lock.  
Channel 1 DRAM Rank-2 Attributes (C1DRA2): See C0DRA2 register.  
00h  
This register is locked by ME stolen Memory lock.  
114  
Datasheet  
DRAM Controller Registers (D0:F0)  
5.2.23  
C1CYCTRKPCHG—Channel 1 CYCTRK PCHG  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: 650–651h  
Default Value:  
Access:  
Size:  
0000h  
RW, RO  
16 bits  
Channel 1 CYCTRK Precharge registers.  
Default  
Value  
Bit  
Access  
Description  
15:11  
RO  
00000b Reserved  
Write To PRE Delayed (C1sd_cr_wr_pchg): This field indicates the minimum  
00000b allowed spacing (in DRAM clocks) between the WRITE and PRE commands to the  
same rank-bank. This field corresponds to tWR in the DDR Specification.  
10:6  
5:2  
RW  
READ To PRE Delayed (C1sd_cr_rd_pchg): This field indicates the minimum  
0000b allowed spacing (in DRAM clocks) between the READ and PRE commands to the  
same rank-bank  
RW  
RW  
PRE To PRE Delayed (C1sd_cr_pchg_pchg): This field indicates the  
1:0  
00b  
minimum allowed spacing (in DRAM clocks) between two PRE commands to the  
same rank.  
5.2.24  
C1CYCTRKACT—Channel 1 CYCTRK ACT  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: 652–655h  
Default Value:  
Access:  
Size:  
00000000h  
RO, RW  
32 bits  
Channel 1 CYCTRK ACT registers.  
Default  
Value  
Bit  
Access  
Description  
31:28  
RO  
0h  
Reserved  
ACT Window Count (C1sd_cr_act_windowcnt): This field indicates the  
window duration (in DRAM clocks) during which the controller counts the # of  
activate commands which are launched to a particular rank. If the number of  
activate commands launched within this window is greater than 4, then a check  
is implemented to block launch of further activates to this rank for the rest of the  
duration of this window.  
27:22  
RW  
000000b  
0b  
Max ACT Check Disable (C1sd_cr_maxact_dischk):This field enables the  
check which ensures that there are no more than four activates to a particular  
rank in a given window.  
21  
RW  
RW  
ACT to ACT Delayed (C1sd_cr_act_act[): This field indicates the minimum  
0000b allowed spacing (in DRAM clocks) between two ACT commands to the same  
rank. This field corresponds to tRRD in the DDR specification.  
20:17  
Datasheet  
115  
DRAM Controller Registers (D0:F0)  
Default  
Value  
Bit  
Access  
Description  
PRE to ACT Delayed (C1sd_cr_pre_act): This field indicates the minimum  
allowed spacing (in DRAM clocks) between the PRE and ACT commands to the  
same rank-bank:12:9R/W0000bPRE-ALL to ACT Delayed  
(C1sd_cr_preall_act):This field indicates the minimum allowed spacing (in DRAM  
clocks) between the PRE-ALL and ACT commands to the same rank. This field  
corresponds to tRP in the DDR Specification.  
16:13  
RW  
0000b  
0h  
ALLPRE to ACT Delay (C1sd_cr_preall_act): From the launch of a  
prechargeall command wait for these many # of memory clocks before  
12:9  
8:0  
RW  
RW  
launching a activate command. This field corresponds to tPALL_RP  
.
REF to ACT Delayed (C1sd_cr_rfsh_act): This field indicates the minimum  
allowed spacing (in DRAM clocks) between REF and ACT commands to the same  
rank. This field corresponds to tRFC in the DDR specification.  
0000000  
00b  
5.2.25  
C1CYCTRKWR—Channel 1 CYCTRK WR  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: 656–657h  
Default Value:  
Access:  
Size:  
0000h  
RW  
16 bits  
Channel 1 CYCTRK WR registers.  
Default  
Value  
Bit  
Access  
Description  
ACT To Write Delay (C1sd_cr_act_wr): This field indicates the minimum  
allowed spacing (in DRAM clocks) between the ACT and WRITE commands to the  
same rank-bank. This field corresponds to tRCD_wr in the DDR Specification.  
15:12  
RW  
RW  
0h  
Same Rank Write To Write Delayed (C1sd_cr_wrsr_wr): This field register  
indicates the minimum allowed spacing (in DRAM clocks) between two WRITE  
commands to the same rank.  
11:8  
7:4  
0h  
0h  
0h  
Different Rank Write to Write Delay (C1sd_cr_wrdr_wr): This field  
indicates the minimum allowed spacing (in DRAM clocks) between two WRITE  
commands to different ranks. This field corresponds to tWR_WR in the DDR  
Specification.  
RW  
RW  
READ To WRTE Delay (C1sd_cr_rd_wr): This field indicates the minimum  
allowed spacing (in DRAM clocks) between the READ and WRITE commands.  
3:0  
This field corresponds to tRD_WR  
.
116  
Datasheet  
DRAM Controller Registers (D0:F0)  
5.2.26  
C1CYCTRKRD—Channel 1 CYCTRK READ  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: 658–65Ah  
Default Value:  
Access:  
Size:  
000000h  
RW, RO  
24 bits  
Channel 1 CYCTRK READ registers.  
Default  
Value  
Bit  
Access  
Description  
23:21  
RO  
0h  
Reserved  
Min ACT To READ Delayed (C1sd_cr_act_rd): This field indicates the  
minimum allowed spacing (in DRAM clocks) between the ACT and READ  
commands to the same rank-bank. This field Corresponds to tRCD_rd in the DDR  
Specification  
20:17  
16:12  
11:8  
RW  
0h  
Same Rank Write To READ Delayed (C1sd_cr_wrsr_rd): This field indicates  
the minimum allowed spacing (in DRAM clocks) between the WRITE and READ  
commands to the same rank. This field corresponds to tWTR in the DDR  
Specification.  
RW  
RW  
00000b  
0000b  
Different Ranks Write To READ Delayed (C1sd_cr_wrdr_rd): This field  
indicates the minimum allowed spacing (in DRAM clocks) between the WRITE  
and READ commands to different ranks. This field corresponds to tWR_RD in the  
DDR Specification.  
Same Rank Read To Read Delayed (C1sd_cr_rdsr_rd): This field indicates  
7:4  
3:0  
RW  
RW  
0000b the minimum allowed spacing (in DRAM clocks) between two READ commands to  
the same rank.  
Different Ranks Read To Read Delayed (C1sd_cr_rddr_rd): This field  
0000b indicates the minimum allowed spacing (in DRAM clocks) between two READ  
commands to different ranks. This field corresponds to tRD_RD  
.
Datasheet  
117  
DRAM Controller Registers (D0:F0)  
5.2.27  
C1CKECTRL—Channel 1 CKE Control  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: 660–663h  
Default Value:  
Access:  
Size:  
00000800h  
RO, RW/L, RW  
32 bits  
Channel 1 CKE Control registers.  
Default  
Value  
Bit  
Access  
Description  
31:28  
27  
RO  
0h  
Reserved  
Start the Self-Refresh Exit Sequence (sd1_cr_srcstart): This bit indicates  
the request to start the self-refresh exit sequence  
RW  
0b  
CKE Pulse Width Requirement in High Phase (sd1_cr_cke_pw_hl_safe):  
This bit indicates CKE pulse width requirement in high phase. This field  
Corresponds to tCKE (high) in the DDR Specification.  
26:24  
23  
RW  
000b  
Rank 3 Population (sd1_cr_rankpop3):  
1 = Rank 3 populated  
RW/L  
0b  
0b  
0b  
0 = Rank 3 not populated  
This register is locked by ME stolen Memory lock.  
Rank 2 Population (sd1_cr_rankpop2):  
1 = Rank 2 populated  
22  
21  
RW/L  
RW/L  
0 = Rank 2 not populated  
This register is locked by ME stolen Memory lock.  
Rank 1 Population (sd1_cr_rankpop1):  
1 = Rank 1 populated  
0 = Rank 1 not populated  
This register is locked by ME stolen Memory lock.  
Rank 0 Population (sd1_cr_rankpop0):  
1 = Rank 0 populated  
20  
RW/L  
RW  
0b  
0 = Rank 0 not populated  
This register is locked by ME stolen Memory lock.  
CKE Pulse Width Requirement in Low Phase (sd1_cr_cke_pw_lh_safe):  
This field indicates CKE pulse width requirement in low phase. This field  
Corresponds to tCKE (low) in the DDR Specification.  
19:17  
000b  
Enable CKE Toggle for PDN Entry/Exit (sd1_cr_pdn_enable): This bit  
indicates that the toggling of CKEs (for PDN entry/exit) is enabled.  
16  
RW  
RO  
0b  
15:14  
00b  
Reserved  
Minimum Powerdown Exit to Non-Read Command Spacing  
(sd1_cr_txp): This field indicates the minimum number of clocks to wait  
following assertion of CKE before issuing a non-read command.  
13:10  
RW  
0010b  
1010–1111 = Reserved.  
0010–1001 = 2–9 clocks  
0000–0001 = Reserved.  
Self Refresh Exit Count (sd1_cr_slfrfsh_exit_cnt): This configuration  
register indicates the Self refresh exit count. (Program to 255)  
0000000  
00b  
9:1  
0
RW  
RW  
Corresponds to tXSNR/tXSRD in the DDR Specification.  
Indicates Only 1 DIMM Populated (sd1_cr_singledimmpop): This field  
indicates the that only 1 DIMM is populated.  
0b  
118  
Datasheet  
DRAM Controller Registers (D0:F0)  
5.2.28  
C1REFRCTRL—Channel 1 DRAM Refresh Control  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: 669–66Eh  
Default Value:  
Access:  
Size:  
021830000C30h  
RW, RO  
48 bits  
Settings to configure the DRAM refresh controller.  
Default  
Value  
Bit  
Access  
Description  
47:42  
RO  
00h  
Reserved  
Direct Rcomp Quiet Window (DIRQUIET): This configuration setting  
41:37  
36:32  
RW  
10000b indicates the amount of refresh_tick events to wait before the service of rcomp  
request in non-default mode of independent rank refresh.  
Indirect Rcomp Quiet Window (INDIRQUIET): This configuration setting  
11000b indicates the amount of refresh_tick events to wait before the service of rcomp  
request in non-default mode of independent rank refresh.  
RW  
Rcomp Wait (RCOMPWAIT): This configuration setting indicates the amount  
00110b of refresh_tick events to wait before the service of rcomp request in non-default  
mode of independent rank refresh.  
31:27  
26  
RW  
RO  
0b  
Reserved  
Refresh Counter Enable (REFCNTEN): This bit is used to enable the refresh  
counter to count during times that DRAM is not in self-refresh, but refreshes are  
not enabled. Such a condition may occur due to need to reprogram DIMMs  
following DRAM controller switch.  
This bit has no effect when Refresh is enabled (i.e. there is no mode where  
Refresh is enabled but the counter does not run) So, in conjunction with bit 23  
REFEN, the modes are:  
25  
RW  
0b  
[REFEN:REFCNTEN]Description  
[0:0]  
[0:1]  
[1:X]  
Normal refresh disable  
Refresh disabled, but counter is accumulating refreshes.  
Normal refresh enable  
All Rank Refresh (ALLRKREF): This configuration bit enables (by default) that  
all the ranks are refreshed in a staggered/atomic fashion. If set, the ranks are  
refreshed in an independent fashion.  
24  
23  
RW  
RW  
0b  
0b  
Refresh Enable (REFEN): Refresh is enabled.  
0 = Disabled  
1 = Enabled  
DDR Initialization Done (INITDONE): Indicates that DDR initialization is  
complete.  
22  
RW  
RO  
0b  
21:20  
00b  
Reserved  
DRAM Refresh Panic Watermark (REFPANICWM): When the refresh count  
exceeds this level, a refresh request is launched to the scheduler and the  
dref_panic flag is set.  
00 = 5  
01 = 6  
10 = 7  
11 = 8  
19:18  
RW  
00b  
Datasheet  
119  
DRAM Controller Registers (D0:F0)  
Default  
Value  
Bit  
Access  
Description  
DRAM Refresh High Watermark (REFHIGHWM): When the refresh count  
exceeds this level, a refresh request is launched to the scheduler and the  
dref_high flag is set.  
00 = 3  
01 = 4  
10 = 5  
11 = 6  
17:16  
RW  
00b  
00b  
DRAM Refresh Low Watermark (REFLOWWM): When the refresh count  
exceeds this level, a refresh request is launched to the scheduler and the  
dref_low flag is set.  
00 = 1  
01 = 2  
10 = 3  
11 = 4  
15:14  
RW  
RW  
Refresh Counter Time Out Value (REFTIMEOUT): Program this field with a  
value that will provide 7.8 us at the memory clock frequency.  
0011000  
0110000  
b
At various memory clock frequencies, this results in the following values:  
400 Mhz -> C30 hex (Default Value)  
533 Mhz -> 104B hex  
13:0  
666 Mhz -> 1450 hex  
5.2.29  
C1ECCERRLOG—Channel 1 ECC Error Log  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: 680–687h  
Default Value:  
Access:  
Size:  
0000000000000000h  
RO/P, RO  
64 bits  
This register is used to store the error status information in ECC enabled  
configurations, along with the error syndrome and the rank/bank/row/column address  
information of the address block of main memory of which an error (single bit or multi-  
bit error) has occurred. Note that the address fields represent the address of the first  
single or the first multiple bit error occurrence after the error flag bits in the ERRSTS  
register have been cleared by software. A multiple bit error will overwrite a single bit  
error. Once the error flag bits are set as a result of an error, this bit field is locked and  
does not change as a result of a new error until the error flag is cleared by software.  
Same is the case with error syndrome field, but the following priority needs to be  
followed if more than one error occurs on one or more of the 4 QWs. MERR on QW0,  
MERR on QW1, MERR on QW2, MERR on QW3, CERR on QW0, CERR on QW1, CERR on  
QW2, CERR on QW3.  
Default  
Value  
Bit  
Access  
Description  
Error Column Address (ERRCOL): Row address of the address block of main  
memory of which an error (single bit or multi-bit error) has occurred.  
63:48  
47:32  
31:29  
RO/P  
RO/P  
RO/P  
0000h  
Error Row Address (ERRROW): Row address of the address block of main  
memory of which an error (single bit or multi-bit error) has occurred.  
0000h  
000b  
Error Bank Address (ERRBANK): Rank address of the address block of main  
memory of which an error (single bit or multi-bit error) has occurred.  
120  
Datasheet  
DRAM Controller Registers (D0:F0)  
Default  
Value  
Bit  
Access  
Description  
Error Rank Address (ERRRANK): Rank address of the address block of main  
memory of which an error (single bit or multi-bit error) has occurred.  
00 = rank 0 (DIMM0)  
01 = rank 1 (DIMM0)  
10 = rank 2 (DIMM1)  
11 = rank 3 (DIMM1)  
28:27  
RO/P  
00b  
26:24  
23:16  
15:2  
RO  
RO/P  
RO  
0h  
00h  
0h  
Reserved  
Error Syndrome (ERRSYND): Syndrome that describes the set of bits  
associated with the first failing quadword.  
Reserved  
Multiple Bit Error Status (MERRSTS): This bit is set when an uncorrectable  
multiple-bit error occurs on a memory read data transfer. When this bit is set,  
the address that caused the error and the error syndrome are also logged and  
they are locked until this bit is cleared. This bit is cleared when it receives an  
indication that the processor has cleared the corresponding bit in the ERRSTS  
register.  
1
RO/P  
RO/P  
0b  
0b  
Correctable Error Status (CERRSTS): This bit is set when a correctable  
single-bit error occurs on a memory read data transfer. When this bit is set, the  
address that caused the error and the error syndrome are also logged and they  
are locked to further single bit errors, until this bit is cleared. But, a multiple bit  
error that occurs after this bit is set will over-write the address/error syndrome  
info. This bit is cleared when it receives an indication that the processor has  
cleared the corresponding bit in the ERRSTS register.  
0
5.2.30  
C1ODTCTRL—Channel 1 ODT Control  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: 69C–69Fh  
Default Value:  
Access:  
Size:  
00000000h  
RO, RW  
32 bits  
This register provides ODT controls.  
Default  
Value  
Bit  
Access  
Description  
31:12  
RO  
00000h Reserved  
DRAM ODT for Read Commands (sd1_cr_odt_duration_rd): Specifies the  
duration in MDCLKs to assert DRAM ODT for Read Commands. The Async value  
should be used when the Dynamic Powerdown bit is set. Else use the Sync value.  
11:8  
RW  
0h  
DRAM ODT for Write Commands (sd1_cr_odt_duration_wr): Specifies the  
duration in MDCLKs to assert DRAM ODT for Write Commands. The Async value  
should be used when the Dynamic Powerdown bit is set. Else use the Sync value.  
7:4  
3:0  
RW  
RW  
0h  
0h  
MCH ODT for Read Commands (sd1_cr_mchodt_duration): Specifies the  
duration in MDCLKs to assert MCH ODT for Read Commands.  
Datasheet  
121  
DRAM Controller Registers (D0:F0)  
5.2.31  
EPC0DRB0—EP Channel 0 DRAM Rank Boundary Address 0  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: A00–A01h  
Default Value:  
Access:  
Size:  
0000h  
RW, RO  
16 bits  
Default  
Bit  
Access  
Description  
Value  
000000b Reserved  
000h Channel 0 Dram Rank Boundary Address 0 (C0DRBA0):  
15:10  
9:0  
RO  
RW  
5.2.32  
EPC0DRB1—EP Channel 0 DRAM Rank Boundary Address 1  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: A02–A03h  
Default Value:  
Access:  
Size:  
0000h  
RW, RO  
16 bits  
See C0DRB0 register.  
Default  
Value  
Bit  
Access  
Description  
15:10  
9:0  
RO  
000000b Reserved  
RW  
000h  
Channel 0 Dram Rank Boundary Address 1 (C0DRBA1):  
5.2.33  
EPC0DRB2—EP Channel 0 DRAM Rank Boundary Address 2  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: A04–A05h  
Default Value:  
Access:  
Size:  
0000h  
RW, RO  
16 bits  
See C0DRB0 register.  
Default  
Value  
Bit  
Access  
Description  
15:10  
9:0  
RO  
000000b Reserved  
RW  
000h  
Channel 0 DRAM Rank Boundary Address 2 (C0DRBA2):  
122  
Datasheet  
DRAM Controller Registers (D0:F0)  
5.2.34  
EPC0DRB3—EP Channel 0 DRAM Rank Boundary Address 3  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: A06–A07h  
Default Value:  
Access:  
Size:  
0000h  
RW, RO  
16 bits  
See C0DRB0 register.  
Default  
Value  
Bit  
Access  
Description  
15:10  
9:0  
RO  
000000b Reserved  
RW  
000h  
Channel 0 DRAM Rank Boundary Address 3 (C0DRBA3):  
5.2.35  
EPC0DRA01—EP Channel 0 DRAM Rank 0,1 Attribute  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: A08–A09h  
Default Value:  
Access:  
Size:  
0000h  
RW  
16 bits  
The DRAM Rank Attribute Registers define the page sizes/number of banks to be used  
when accessing different ranks. These registers should be left with their default value  
(all zeros) for any rank that is unpopulated, as determined by the corresponding  
CxDRB registers. Each byte of information in the CxDRA registers describes the page  
size of a pair of ranks. Channel and rank map:  
Ch0 Rank0, 1:  
Ch0 Rank2, 3:  
Ch1 Rank0, 1:  
Ch1 Rank2, 3:  
108h–109h  
10Ah–10Bh  
188h–189h  
18Ah–18Bh  
Default  
Value  
Bit  
Access  
Description  
Channel 0 DRAM Rank-1 Attributes (C0DRA1): This register defines DRAM  
pagesize/number-of-banks for rank1 for given channel.  
15:8  
7:0  
RW  
RW  
00h  
Channel 0 DRAM Rank-0 Attributes (C0DRA0): This register defines DRAM  
pagesize/number-of-banks for rank0 for given channel.  
00h  
Datasheet  
123  
DRAM Controller Registers (D0:F0)  
5.2.36  
EPC0DRA23—EP Channel 0 DRAM Rank 2,3 Attribute  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: A0A–A0Bh  
Default Value:  
Access:  
Size:  
0000h  
RW  
16 bits  
See C0DRA01 register.  
Default  
Value  
Bit  
Access  
Description  
Channel 0 DRAM Rank-3 Attributes (C0DRA3): This register defines DRAM  
pagesize/number-of-banks for rank3 for given channel.  
15:8  
7:0  
RW  
RW  
00h  
Channel 0 DRAM Rank-2 Attributes (C0DRA2): This register defines DRAM  
pagesize/number-of-banks for rank2 for given channel.  
00h  
5.2.37  
EPDCYCTRKWRTPRE—EPD CYCTRK WRT PRE  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: A19–A1Ah  
Default Value:  
Access:  
Size:  
0000h  
RW, RO  
16 bits  
EPD CYCTRK WRT PRE Status registers.  
Default  
Value  
Bit  
Access  
Description  
ACTTo PRE Delayed (C0sd_cr_act_pchg): This field indicates the minimum  
15:11  
RW  
RW  
00000b allowed spacing (in DRAM clocks) between the ACT and PRE commands to the  
same rank-bank  
Write To PRE Delayed (C0sd_cr_wr_pchg): This field indicates the minimum  
00000b allowed spacing (in DRAM clocks) between the WRITE and PRE commands to the  
same rank-bank  
10:6  
READ To PRE Delayed (C0sd_cr_rd_pchg): This field indicates the minimum  
0000b allowed spacing (in DRAM clocks) between the READ and PRE commands to the  
same rank-bank  
5:2  
1:0  
RW  
RO  
00b  
Reserved  
124  
Datasheet  
DRAM Controller Registers (D0:F0)  
5.2.38  
EPDCYCTRKWRTACT—EPD CYCTRK WRT ACT  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: A1C–A1Fh  
Default Value:  
Access:  
Size:  
00000000h  
RO, RW  
32 bits  
EPD CYCTRK WRT ACT Status registers.  
Default  
Value  
Bit  
Access  
Description  
31:21  
RO  
000h  
Reserved  
ACT to ACT Delayed (C0sd_cr_act_act[): This configuration register  
20:17  
16:13  
RW  
0000b indicates the minimum allowed spacing (in DRAM clocks) between two ACT  
commands to the same rank.  
PRE to ACT Delayed (C0sd_cr_pre_act): This field indicates the minimum  
allowed spacing (in DRAM clocks) between the PRE and ACT commands to the  
same rank-bank:12:9R/W0000bPRE-ALL to ACT Delayed  
(C0sd_cr_preall_act):This configuration register indicates the minimum allowed  
RW  
0000b  
spacing (in DRAM clocks) between the PRE-ALL and ACT commands to the same  
rank.  
12:9  
8:0  
RO  
0h  
Reserved  
REF to ACT Delayed (C0sd_cr_rfsh_act): This configuration register  
indicates the minimum allowed spacing (in DRAM clocks) between REF and ACT  
commands to the same rank.  
0000000  
00b  
RW  
5.2.39  
EPDCYCTRKWRTWR—EPD CYCTRK WRT WR  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: A20–A21h  
Default Value:  
Access:  
Size:  
0000h  
RW, RO  
16 bits  
EPD CYCTRK WRT WR Status registers.  
Default  
Value  
Bit  
Access  
Description  
ACT To Write Delay (C0sd_cr_act_wr): This field indicates the minimum  
allowed spacing (in DRAM clocks) between the ACT and WRITE commands to the  
same rank-bank  
15:12  
RW  
0h  
Same Rank Write To Write Delayed (C0sd_cr_wrsr_wr): This field  
indicates the minimum allowed spacing (in DRAM clocks) between two WRITE  
commands to the same rank.  
11:8  
7:4  
RW  
RO  
RW  
0h  
0h  
0h  
Reserved  
Same Rank WRITE to READ Delay (C0sd_cr_rd_wr): This field indicates the  
minimum allowed spacing (in DRAM clocks) between the WRITE and READ  
commands to the same rank.  
3:0  
Datasheet  
125  
DRAM Controller Registers (D0:F0)  
5.2.40  
EPDCYCTRKWRTREF—EPD CYCTRK WRT REF  
B/D/F/Type:  
Address Offset:  
Default Value:  
Access:  
0/0/0/MCHBAR  
A22–A23h  
0000h  
RO, RW  
16 bits  
0h  
Size:  
BIOS Optimal Default  
EPD CYCTRK WRT ACT Status registers.  
Default  
Value  
Bit  
Access  
Description  
15:9  
RO  
0s  
Reserved  
Different Rank REF to REF Delayed (C0sd_cr_rfsh_rfsh): This  
configuration register indicates the minimum allowed spacing (in DRAM clocks)  
between two REF commands to different ranks.  
0000000  
00b  
8:0  
RW  
5.2.41  
EPDCYCTRKWRTRD—EPD CYCTRK WRT READ  
B/D/F/Type:  
Address Offset:  
Default Value:  
Access:  
0/0/0/MCHBAR  
A24–A26h  
000000h  
RW  
Size:  
24 bits  
BIOS Optimal Default  
000h  
EPD CYCTRK WRT RD Status registers.  
Default  
Value  
Bit  
Access  
Description  
23:23  
22:20  
19:18  
RO  
RW  
RO  
0h  
Reserved  
EPDunit DQS Slave DLL Enable to Read Safe (EPDSDLL2RD): Configuration  
setting for Read command safe from the point of enabling the slave DLLs.  
000b  
0h  
Reserved  
Min ACT To READ Delayed (C0sd_cr_act_rd): This field indicates the  
minimum allowed spacing (in DRAM clocks) between the ACT and READ  
commands to the same rank-bank  
17:14  
RW  
0h  
Same Rank READ to WRITE Delayed (C0sd_cr_wrsr_rd): This field  
13:9  
8:6  
5:3  
2:0  
RW  
RO  
RW  
RO  
00000b indicates the minimum allowed spacing (in DRAM clocks) between the READ and  
WRITE commands.  
0h  
000b  
0h  
Reserved  
Same Rank Read To Read Delayed (C0sd_cr_rdsr_rd): This field indicates  
the minimum allowed spacing (in DRAM clocks) between two READ commands to  
the same rank.  
Reserved  
126  
Datasheet  
DRAM Controller Registers (D0:F0)  
5.2.42  
EPDCKECONFIGREG—EPD CKE Related Configuration  
B/D/F/Type:  
Address Offset:  
Default Value:  
Access:  
0/0/0/MCHBAR  
A28–A2Ch  
00E0000000h  
RW  
Size:  
40 bits  
BIOS Optimal Default  
0h  
CKE related configuration registers For EPD.  
Default  
Value  
Bit  
Access  
Description  
EPDunit TXPDLL Count (EPDTXPDLL): Specifies the delay from precharge  
39:35  
RW  
RW  
RW  
00000b power down exit to a command that requires the DRAM DLL to be operational.  
The commands are read/write.  
EPDunit TXP Count (EPDCKETXP): Specifies the timing requirement for  
34:32  
31:29  
000b  
111b  
Active power down exit or fast exit pre-charge power down exit to any command  
or slow exit pre-charge power down to Non-DLL (rd/wr/odt) command.  
Mode Select (sd0_cr_sms): Mode Select register: This configuration setting  
indicates the mode in which the controller is operating in.  
111 = Indicates normal mode of operation, else special mode of operation.  
EPDunit EMRS Command Select. (EPDEMRSSEL): EMRS mode to select  
BANK address.  
01 = EMRS  
10 = EMRS2  
11 = EMRS3  
28:27  
RW  
00b  
CKE Pulse Width Requirement in High Phase (sd0_cr_cke_pw_hl_safe):  
This field indicates CKE pulse width requirement in high phase.  
26:24  
23:20  
RW  
RW  
000b  
0h  
One-Hot Active Rank Population (ep_scr_actrank): This field indicates the  
active rank in a one hot manner  
CKE Pulse Width Requirement in Low Phase (sd0_cr_cke_pw_lh_safe):  
This field indicates CKE pulse width requirement in low phase.  
19:17  
16:15  
RW  
RO  
000b  
0h  
Reserved  
EPDunit MPR Mode (EPDMPR): MPR Read Mode  
1 = MPR mode  
14  
RW  
0b  
0b  
0 = Normal mode  
In MPR mode, only read cycles must be issued by Firmware. Page Results are  
ignored by DCS and just issues the read chip select.  
EPDunit Power Down enable for ODT Rank (EPDOAPDEN): Configuration  
to enable the ODT ranks to dynamically enter power down.  
13  
12  
RW  
RW  
1 = Enable active power down.  
0 = Disable active power down.  
EPDunit Power Down enable for Active Rank (EPDAAPDEN): Configuration  
to enable the active rank to dynamically enter power down.  
0b  
0h  
1 = Enable active power down.  
0 = Disable active power down.  
11:10  
9:1  
RO  
Reserved  
0000000 Self Refresh Exit Count (sd0_cr_slfrfsh_exit_cnt): This field indicates the  
00b Self refresh exit count. (Program to 255)  
RW  
Datasheet  
127  
DRAM Controller Registers (D0:F0)  
Default  
Value  
Bit  
Access  
Description  
Indicates Only 1 Rank Enabled (sd0_cr_singledimmpop): This field  
indicates the that only 1 rank is enabled. This bit needs to be set if there is one  
active rank and no odt ranks, or if there is one active rank and one ODT rank and  
they are the same rank.  
0
RW  
0b  
5.2.43  
EPDREFCONFIG—EP DRAM Refresh Configuration  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: A30–A33h  
Default Value:  
Access:  
Size:  
40000C30h  
RW, RO  
32 bits  
Settings to configure the EPD refresh controller.  
Default  
Value  
Bit  
Access  
Description  
31  
RO  
0b  
Reserved  
EPDunit refresh count addition for self refresh exit. (EPDREF4SR):  
Configuration indicating the number of additional refreshes that needs to be  
added to the refresh request count after exiting self refresh.  
Typical value is to add 2 refreshes.  
00 = Add 0 Refreshes  
30:29  
RW  
10b  
01 = Add 1 Refreshes  
10 = Add 2 Refreshes  
11 = Add 3 Refreshes  
Refresh Counter Enable (REFCNTEN): This bit is used to enable the refresh  
counter to count during times that DRAM is not in self-refresh, but refreshes are  
not enabled. Such a condition may occur due to need to reprogram DIMMs  
following DRAM controller switch.  
This bit has no effect when Refresh is enabled (i.e., there is no mode where  
Refresh is enabled but the counter does not run) So, in conjunction with bit [23]  
REFEN, the modes are:  
28  
RW  
0b  
[REFEN:REFCNTEN] Description  
[0:0]  
[0:1]  
[1:X]  
Normal refresh disable  
Refresh disabled, but counter is accumulating refreshes.  
Normal refresh enable  
Refresh Enable (REFEN): Refresh is enabled.  
27  
26  
RW  
RW  
0b  
0b  
0 = Disabled  
1 = Enabled  
DDR Initialization Done (INITDONE): Indicates that DDR initialization is  
complete.  
128  
Datasheet  
DRAM Controller Registers (D0:F0)  
Default  
Value  
Bit  
Access  
Description  
DRAM Refresh Hysterisis (REFHYSTERISIS): Hysterisis level - Useful for  
dref_high watermark cases. The dref_high flag is set when the dref_high  
watermark level is exceeded, and is cleared when the refresh count is less than  
the hysterisis level. This bit should be set to a value less than the high  
watermark level.  
25:22  
RW  
0000b  
0000 = 0  
0001 = 1  
.......  
1000 = 8  
DRAM Refresh High Watermark (REFHIGHWM): When the refresh count  
exceeds this level, a refresh request is launched to the scheduler and the  
dref_high flag is set.  
0000 = 0  
0001 = 1  
.......  
21:18  
RW  
0000b  
0000b  
1000 = 8  
DRAM Refresh Low Watermark (REFLOWWM): When the refresh count  
exceeds this level, a refresh request is launched to the scheduler and the  
dref_low flag is set.  
0000 = 0  
0001 = 1  
.......  
17:14  
RW  
RW  
1000 = 8  
Refresh Counter Time Out Value (REFTIMEOUT): Program this field with a  
value that will provide 7.8 us at memory clock frequency.  
0011000  
0110000  
b
At various memory clock frequencies, this results in the following values:  
400 Mhz -> C30 hex (Default Value)  
533 Mhz -> 104B hex  
13:0  
666 Mhz -> 1450 hex  
Datasheet  
129  
DRAM Controller Registers (D0:F0)  
5.2.44  
TSC1—Thermal Sensor Control 1  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: CD8h  
Default Value:  
Access:  
Size:  
00h  
RW/L, RW, RS/WC  
8 bits  
This register controls the operation of the thermal sensor.  
Bits 7:1 of this register are reset to their defaults by MPWROK.  
Bit 0 is reset to it's default by PLTRST#.  
Default  
Value  
Bit  
Access  
Description  
Thermal Sensor Enable (TSE): This bit enables power to the thermal sensor.  
Lockable via TCO bit [7].  
7
RW/L  
RW  
0b  
0 = Disabled  
1 = Enabled  
Analog Hysteresis Control (AHC): This bit enables the analog hysteresis  
control to the thermal sensor. When enabled, about 1 degree of hysteresis is  
applied. This bit should normally be off in thermometer mode since the  
thermometer mode of the thermal sensor defeats the usefulness of analog  
hysteresis.  
6
0b  
0 = Hysteresis disabled  
1 = Analog hysteresis enabled.  
Digital Hysteresis Amount (DHA): This bit determines whether no offset, 1  
LSB, 2... 15 is used for hysteresis for the trip points.  
0000 = Digital hysteresis disabled, no offset added to trip temperature  
0001 = Offset is 1 LSB added to each trip temperature when tripped  
...  
5:2  
RW  
0000b  
0110 = ~3.0 °C (Recommended setting)  
...  
1110 = Added to each trip temperature when tripped  
1111 = Added to each trip temperature when tripped  
Thermal Sensor Comparator Select (TSCS): This bit multiplexes between  
the two analog comparator outputs. Normally Catastrophic is used. Lockable via  
TCO bit [7].  
1
RW/L  
0b  
0 = Catastrophic  
1 = Hot  
130  
Datasheet  
DRAM Controller Registers (D0:F0)  
Default  
Value  
Bit  
Access  
Description  
In Use (IU): Software semaphore bit.  
After a full MCH RESET, a read to this bit returns a 0.  
After the first read, subsequent reads will return a 1.  
A write of a 1 to this bit will reset the next read value to 0.  
Writing a 0 to this bit has no effect.  
Software can poll this bit until it reads a 0, and will then own the usage of the  
thermal sensor.  
0
RS/WC  
0b  
This bit has no other effect on the hardware, and is only used as a semaphore  
among various independent software threads that may need to use the thermal  
sensor.  
Software that reads this register but does not intend to claim exclusive access of  
the thermal sensor must write a one to this bit if it reads a 0, in order to allow  
other software threads to claim it.  
See also THERM3 bit 7 and IUB, which are independent additional semaphore  
bits.  
5.2.45  
TSC2—Thermal Sensor Control 2  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: CD9h  
Default Value:  
Access:  
Size:  
00h  
RO, RW/L  
8 bits  
This register controls the operation of the thermal sensor.  
All bits in this register are reset to their defaults by MPWROK.  
Default  
Value  
Bit  
Access  
RO  
Description  
7:4  
0h  
Reserved  
Datasheet  
131  
DRAM Controller Registers (D0:F0)  
Default  
Value  
Bit  
Access  
Description  
Thermometer Mode Enable and Rate (TE): If analog thermal sensor mode is  
not enabled by setting these bits to 0000b, these bits enable the thermometer  
mode functions and set the Thermometer controller rate.  
When the Thermometer mode is disabled and TSC1[TSE] =enabled, the analog  
sensor mode should be fully functional. In the analog sensor mode, the  
Catastrophic trip is functional, and the Hot trip is functional at the offset below  
the catastrophic programmed into TSC2[CHO]. The other trip points are not  
functional in this mode.  
When Thermometer mode is enabled, all the trip points (Catastrophic, Hot,  
Aux0) will all operate using the programmed trip points and Thermometer mode  
rate.  
Note: When disabling the Thermometer mode while thermometer running, the  
Thermometer mode controller will finish the current cycle.  
Note: During boot, all other thermometer mode registers (except lock bits)  
should be programmed appropriately before enabling the Thermometer Mode.  
Clocks are memory clocks.  
Note: Since prior MCHs counted the thermometer rate in terms of host clocks  
rather than memory clocks, the clock count for each setting listed below has  
been doubled from what is was on those MCHs. This should make the actual  
thermometer rate approximately equivalent across products.  
3:0  
RW/L  
0h  
Lockable via TCO bit 7.  
0000 = Thermometer mode disabled (i.e, analog sensor mode)  
0001 = enabled, 512 clock mode  
0010 = enabled, 1024 clock mode (normal Thermometer mode operation),  
provides ~3.85 us settling time @ 266 MHz  
provides ~3.08 us settling time @ 333 MHz  
provides ~2.56 us settling time @ 400 MHz  
0011 = enabled, 1536 clock mode  
0100 = enabled, 2048 clock mode  
0101 = enabled, 3072 clock mode  
0110 = enabled, 4096 clock mode  
0111 = enabled, 6144 clock mode  
provides ~23.1 us settling time @ 266 MHz  
provides ~18.5 us settling time @ 333 MHz  
provides ~15.4 us settling time @ 400 MHz  
all other permutations reserved  
1111 = enabled, 4 clock mode (for testing digital logic)  
132  
Datasheet  
DRAM Controller Registers (D0:F0)  
5.2.46  
TSS—Thermal Sensor Status  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: CDAh  
Default Value:  
Access:  
Size:  
00h  
RO  
8 bits  
This read only register provides trip point and other status of the thermal sensor.  
All bits in this register are reset to their defaults by MPWROK.  
Default  
Value  
Bit  
Access  
Description  
Catastrophic Trip Indicator (CTI): A 1 indicates that the internal thermal  
sensor temperature is above the catastrophic setting.  
7
6
5
RO  
RO  
RO  
0b  
Hot Trip Indicator (HTI): A 1 indicates that the internal thermal sensor  
temperature is above the Hot setting.  
0b  
0b  
Aux0 Trip Indicator (A0TI): A 1 indicates that the internal thermal sensor  
temperature is above the Aux0 setting.  
Thermometer Mode Output Valid (TOV): A 1 indicates the Thermometer  
mode is able to converge to a temperature and that the TR register is reporting a  
reasonable estimate of the thermal sensor temperature. A 0 indicates the  
Thermometer mode is off, or that temperature is out of range, or that the TR  
register is being looked at before a temperature conversion has had time to  
complete.  
4
RO  
0b  
3:2  
1
RO  
RO  
00b  
0b  
Reserved  
Direct Catastrophic Comparator Read (DCCR): This bit reads the output of  
the Catastrophic comparator directly, without latching via the Thermometer  
mode circuit. Used for testing.  
Direct Hot Comparator Read (DHCR): This bit reads the output of the Hot  
comparator directly, without latching via the Thermometer mode circuit. Used  
for testing.  
0
RO  
0b  
Datasheet  
133  
DRAM Controller Registers (D0:F0)  
5.2.47  
TSTTP—Thermal Sensor Temperature Trip Point  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: CDC–CDFh  
Default Value:  
Access:  
Size:  
00000000h  
RO, RW, RW/L  
32 bits  
This register provides the following:  
• Sets the target values for the trip points in thermometer mode. See also TST[Direct  
DAC Connect Test Enable].  
• Reports the relative thermal sensor temperature.  
All bits in this register are reset to their defaults by MPWROK.  
Default  
Value  
Bit  
Access  
Description  
Relative Temperature (RELT): In Thermometer mode, the RELT field of this  
register report the relative temperature of the thermal sensor. Provides a two's  
complement value of the thermal sensor relative to the Hot Trip Point.  
Temperature above the Hot Trip Point will be positive.  
31:24  
RO  
00h  
TR and HTPS can both vary between 0 and 255. But RELT will be clipped between  
±127 to keep it an 8 bit number.  
See also TSS[Thermometer mode Output Valid]  
In the Analog mode, the RELT field reports HTPS value.  
23:16  
15:8  
RW  
00h  
00h  
Aux0 Trip point setting (A0TPS): Sets the target for the Aux0 trip point.  
Hot Trip Point Setting (HTPS): Sets the target value for the Hot trip point.  
RW/L  
Lockable via TCO bit 7.  
Catastrophic Trip Point Setting (CTPS): Sets the target for the Catastrophic  
trip point. See also TST[Direct DAC Connect Test Enable].  
7:0  
RW/L  
00h  
Lockable via TCO bit 7.  
134  
Datasheet  
DRAM Controller Registers (D0:F0)  
5.2.48  
TCO—Thermal Calibration Offset  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: CE2h  
Default Value:  
Access:  
Size:  
00h  
RW/L/K, RW/L  
8 bits  
Bit 7: reset to it's default by PLTRST#  
Bits 6:0 reset to their defaults by MPWROK  
Default  
Value  
Bit  
Access  
Description  
Lock Bit for Catastrophic (LBC): This bit, when written to a 1, locks the  
Catastrophic programming interface, including bits [7:0] of this register and bits  
[15:0] of TSTTP, bits [1],[7] of TSC 1, bits [3:0] of TSC 2, bits [4:0] of TSC 3,  
and bits [0],[7] of TST. This bit may only be set to a 0 by a hardware reset  
(PLTRST#). Writing a 0 to this bit has no effect.  
7
RW/L/K  
0b  
Calibration Offset (CO): This field contains the current calibration offset for  
the Thermal Sensor DAC inputs. The calibration offset is a twos complement  
signed number which is added to the temperature counter value to help  
generate the final value going to the thermal sensor DAC.  
This field is Read/Write and can be modified by Software unless locked by setting  
bit [7] of this register.  
The fuses cannot be programmed via this register.  
6:0  
RW/L  
00h  
Once this register has been overwritten by software, the values of the TCO fuses  
can be read using the Therm3 register.  
Note for TCO operation:  
While this is a seven-bit field, the 7th bit is sign extended to 9 bits for TCO  
operation. The range of 00h to 3fh corresponds to 0 0000 0000 to 0 0011 1111.  
The range of 41h to 7Fh corresponds to 1 1100 001 (i.e, negative 3Fh) to 1 1111  
1111 (i.e, negative 1), respectively.  
Datasheet  
135  
DRAM Controller Registers (D0:F0)  
5.2.49  
THERM1—Thermal Hardware Protection  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: CE4h  
Default Value:  
Access:  
Size:  
00h  
RW/L, RO, RW/L/K  
8 bits  
All bits in this register are reset to their defaults by PLTRST#.  
Default  
Value  
Bit  
Access  
Description  
7:4  
RO  
RW/L  
RO  
0b  
Reserved  
Halt on Catastrophic (HOC):  
0 = Continue to toggle clocks when the catastrophic sensor trips.  
3
2:1  
0
0b  
00b  
0b  
1 = All clocks are disabled when the catastrophic sensor trips. A system reset is  
required to bring the system out of a halt from the thermal sensor.  
Reserved  
Hardware Throttling Lock Bit (HTL): This bit locks bits [7:0] of this register.  
The register bits are unlocked.  
RW/L/K  
1 = The register bits are locked. It may only be set to a 0 by a hardware reset.  
Writing a 0 to this bit has no effect.  
5.2.50  
TIS—Thermal Interrupt Status  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: CEA–CEBh  
Default Value:  
Access:  
Size:  
0000h  
RO, RWC  
16 bits  
This register is used to report which specific error condition resulted in the Device 0  
Function 0 ERRSTS[Thermal Sensor event for SMI/SCI/SERR] or memory mapped IIR  
Thermal Event. SW can examine the current state of the thermal zones by examining  
the TSS. Software can distinguish internal or external Trip Event by examining  
EXTTSCS.  
Software must write a 1 to clear the status bits in this register.  
Following scenario is possible. An interrupt is initiated on a rising temperature trip, the  
appropriate DMI cycles are generated, and eventually the software services the  
interrupt and sees a rising temperature trip as the cause in the status bits for the  
interrupts. Assume that the software then goes and clears the local interrupt status bit  
in the TIS register for that trip event. It is possible at this point that a falling  
temperature trip event occurs before the software has had the time to clear the global  
interrupts status bit. But since software has already looked at the status register before  
this event happened, software may not clear the local status flag for this event.  
Therefore, after the global interrupt is cleared by sw, sw must look at the  
instantaneous status in the TSS register.  
All bits in this register are reset to their defaults by PLTRST#.  
136  
Datasheet  
DRAM Controller Registers (D0:F0)  
Default  
Value  
Bit  
Access  
Description  
15:10  
RO  
00h  
Reserved  
Was Catastrophic Thermal Sensor Interrupt Event (WCTSIE):  
1 = Indicates that a Catastrophic Thermal Sensor trip based on a higher to lower  
temperature transition thru the trip point  
9
8
RWC  
RWC  
0b  
0b  
0 = No trip for this event  
Was Hot Thermal Sensor Interrupt Event (WHTSIE):  
1 = Indicates that a Hot Thermal Sensor trip based on a higher to lower  
temperature transition thru the trip point  
0 = No trip for this event  
Was Aux0 Thermal Sensor Interrupt Event (WA0TSIE):  
1 = Indicates that an Aux0 Thermal Sensor trip based on a higher to lower  
temperature transition thru the trip point  
7
6:5  
4
RWC  
RO  
0b  
00b  
0b  
0 = No trip for this event Software must write a 1 to clear this status bit.  
Reserved  
Catastrophic Thermal Sensor Interrupt Event (CTSIE):  
1 = Indicates that a Catastrophic Thermal Sensor trip event occurred based on a  
lower to higher temperature transition thru the trip point.  
RWC  
0 = No trip for this event Software must write a 1 to clear this status bit.  
Hot Thermal Sensor Interrupt Event (HTSIE):  
1 = Indicates that a Hot Thermal Sensor trip event occurred based on a lower to  
higher temperature transition thru the trip point.  
3
RWC  
0b  
0 = No trip for this event Software must write a 1 to clear this status bit.  
Aux0 Thermal Sensor Interrupt Event (A0TSIE):  
1 = Indicates that an Aux0 Thermal Sensor trip event occurred based on a lower  
to higher temperature transition thru the trip point.  
2
RWC  
RO  
0b  
0 = No trip for this event Software must write a 1 to clear this status bit.  
1:0  
00b  
Reserved  
Datasheet  
137  
DRAM Controller Registers (D0:F0)  
5.2.51  
TSMICMD—Thermal SMI Command  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: CF1h  
Default Value:  
Access:  
Size:  
00h  
RO, RW  
8 bits  
This register selects specific errors to generate a SMI DMI special cycle, as enabled by  
the Device 0 SMI Error Command Register [SMI on MCH Thermal Sensor Trip]. The SMI  
must not be enabled at the same time as the SERR/SCI for the thermal sensor event.  
All bits in this register are reset to their defaults by PLTRST#.  
Default  
Value  
Bit  
Access  
Description  
7:3  
RO  
00h  
Reserved  
SMI on MCH Catastrophic Thermal Sensor Trip (SMGCTST):  
1 = Does not mask the generation of an SMI DMI special cycle on a catastrophic  
thermal sensor trip.  
2
1
0
RW  
0b  
0b  
0b  
0 = Disable reporting of this condition via SMI messaging.  
SMI on MCH Hot Thermal Sensor Trip (SMGHTST):  
1 = Does not mask the generation of an SMI DMI special cycle on a Hot thermal  
sensor trip.  
RW  
RW  
0 = Disable reporting of this condition via SMI messaging.  
SMI on MCH Aux Thermal Sensor Trip (SMGATST):  
1 = Does not mask the generation of an SMI DMI special cycle on an Auxiliary  
thermal sensor trip.  
0 = Disable reporting of this condition via SMI messaging.  
138  
Datasheet  
DRAM Controller Registers (D0:F0)  
5.2.52  
PMSTS—Power Management Status  
B/D/F/Type:  
0/0/0/MCHBAR  
Address Offset: F14–F17h  
Default Value:  
Access:  
Size:  
00000000h  
RWC/S, RO  
32 bits  
This register is Reset by PWROK only.  
Default  
Value  
Bit  
Access  
Description  
31:9  
RO  
RWC/S  
RO  
000000h Reserved  
Warm Reset Occurred (WRO): Set by the PMunit whenever a Warm Reset is  
received, and cleared by PWROK=0.  
0 = No Warm Reset occurred.  
1 = Warm Reset occurred.  
8
0b  
BIOS Requirement: BIOS can check and clear this bit whenever executing  
POST code. This way BIOS knows that if the bit is set, then the PMSTS bits [1:0]  
must also be set, and if not BIOS needs to power-cycle the platform.  
7:2  
00h  
Reserved  
Channel 1 in Self-Refresh (C1SR): Set by power management hardware after  
Channel 1 is placed in self refresh as a result of a Power State or a Reset Warn  
sequence.  
Cleared by Power management hardware before starting Channel 1 self refresh  
exit sequence initiated by a power management exit.  
1
RWC/S  
0b  
Cleared by the BIOS by writing a "1" in a warm reset (Reset# asserted while  
PWROK is asserted) exit sequence.  
0 = Channel 1 not guaranteed to be in Self-Refresh.  
1 = Channel 1 in Self-Refresh.  
Channel 0 in Self-Refresh (C0SR):  
Set by power management hardware after Channel 0 is placed in self refresh as  
a result of a Power State or a Reset Warn sequence.  
Cleared by Power management hardware before starting Channel 0 self refresh  
exit sequence initiated by a power management exit.  
0
RWC/S  
0b  
Cleared by the BIOS by writing a "1" in a warm reset (Reset# asserted while  
PWROK is asserted) exit sequence.  
0 = Channel 0 not guaranteed to be in Self-Refresh.  
1 = Channel 0 in Self-Refresh.  
Datasheet  
139  
DRAM Controller Registers (D0:F0)  
5.3  
EPBAR  
Table 11.  
EPBAR Address Map  
Address  
Offset  
Register  
Symbol  
Default  
Access  
Value  
Register Name  
44–47h  
50–53h  
EPESD  
EP Element Self Description  
EP Link Entry 1 Description  
00000201h  
01000000h  
RO, RWO  
RO, RWO  
EPLE1D  
00000000000  
00000h  
58–5Fh  
60–63h  
68–6Fh  
60–63h  
68–6Fh  
EPLE1A  
EPLE2D  
EPLE2A  
EPLE3D  
EPLE3A  
EP Link Entry 1 Address  
EP Link Entry 2 Description  
EP Link Entry 2 Address  
EP Link Entry 3 Description  
EP Link Entry 3 Address  
RO, RWO  
RO, RWO  
RO  
02000002h  
00000000000  
08000h  
03000002h  
RO, RWO  
RO  
00000000000  
08000h  
5.3.1  
EPESD—EP Element Self Description  
B/D/F/Type:  
0/0/0/PXPEPBAR  
Address Offset: 44–47h  
Default Value:  
Access:  
Size:  
00000201h  
RO, RWO  
32 bits  
This register provides information about the root complex element containing this Link  
Declaration Capability.  
Default  
Value  
Bit  
Access  
Description  
Port Number (PN): This field specifies the port number associated with this  
element with respect to the component that contains this element. Value of 00h  
indicates to configuration software that this is the default egress port.  
31:24  
RO  
RWO  
RO  
00h  
Component ID (CID): Identifies the physical component that contains this  
Root Complex Element.  
23:16  
15:8  
00h  
03h  
BIOS Requirement: Must be initialized according to guidelines in the PCI  
Express* Isochronous/Virtual Channel Support Hardware Programming  
Specification (HPS).  
Number of Link Entries (NLE): Indicates the number of link entries following  
the Element Self Description. This field reports 3 (one each for PEG0,  
PEG1, and DMI).  
7:4  
3:0  
RO  
RO  
0h  
1h  
Reserved  
Element Type (ET): Indicates the type of the Root Complex Element. Value of  
1h represents a port to system memory.  
140  
Datasheet  
DRAM Controller Registers (D0:F0)  
5.3.2  
EPLE1D—EP Link Entry 1 Description  
B/D/F/Type:  
0/0/0/PXPEPBAR  
Address Offset: 50–53h  
Default Value:  
Access:  
Size:  
01000000h  
RO, RWO  
32 bits  
This register provides the first part of a Link Entry which declares an internal link to  
another Root Complex Element.  
Default  
Value  
Bit  
Access  
Description  
Target Port Number (TPN): Specifies the port number associated with the  
element targeted by this link entry (DMI). The target port number is with  
respect to the component that contains this element as specified by the target  
component ID.  
31:24  
RO  
01h  
Target Component ID (TCID): Identifies the physical or logical component  
that is targeted by this link entry.  
23:16  
RWO  
00h  
BIOS Requirement: Must be initialized according to guidelines in the PCI  
Express* Isochronous/Virtual Channel Support Hardware Programming  
Specification (HPS).  
15:2  
1
RO  
RO  
0000h Reserved  
Link Type (LTYP): Indicates that the link points to memory-mapped space (for  
0b  
RCRB). The link address specifies the 64-bit base address of the target RCRB.  
Link Valid (LV):  
0
RWO  
0b  
0 = Link Entry is not valid and will be ignored.  
1 = Link Entry specifies a valid link.  
5.3.3  
EPLE1A—EP Link Entry 1 Address  
B/D/F/Type:  
0/0/0/PXPEPBAR  
Address Offset: 58–5Fh  
Default Value:  
Access:  
Size:  
0000000000000000h  
RO, RWO  
64 bits  
This register provides the second part of a Link Entry which declares an internal link to  
another Root Complex Element.  
Default  
Value  
Bit  
Access  
Description  
63:36  
35:12  
11:0  
RO  
RWO  
RO  
0000000h Reserved  
Link Address (LA): Memory mapped base address of the RCRB that is the  
000000h  
000h  
target element (DMI) for this link entry.  
Reserved  
Datasheet  
141  
DRAM Controller Registers (D0:F0)  
5.3.4  
EPLE2D—EP Link Entry 2 Description  
B/D/F/Type:  
0/0/0/PXPEPBAR  
Address Offset: 60–63h  
Default Value:  
Access:  
Size:  
02000002h  
RO, RWO  
32 bits  
This register provides the first part of a Link Entry which declares an internal link to  
another Root Complex Element.  
Default  
Value  
Bit  
Access  
Description  
Target Port Number (TPN): Specifies the port number associated with the  
element targeted by this link entry (PEG0). The target port number is with  
respect to the component that contains this element as specified by the target  
component ID.  
31:24  
RO  
02h  
Target Component ID (TCID): Identifies the physical or logical component  
that is targeted by this link entry. A value of 0 is reserved. Component IDs start  
at 1. This value is a mirror of the value in the Component ID field of all elements  
in this component.  
23:16  
RWO  
00h  
BIOS Requirement: Must be initialized according to guidelines in the PCI  
Express* Isochronous/Virtual Channel Support Hardware Programming  
Specification (HPS).  
15:2  
1
RO  
RO  
0000h Reserved  
Link Type (LTYP): Indicates that the link points to configuration space of the  
integrated device which controls the root port for PEG0.  
1b  
0b  
The link address specifies the configuration address (segment, bus, device,  
function) of the target root port.  
Link Valid (LV):  
0
RWO  
0 = Link Entry is not valid and will be ignored.  
1 = Link Entry specifies a valid link.  
5.3.5  
EPLE2A—EP Link Entry 2 Address  
B/D/F/Type:  
0/0/0/PXPEPBAR  
Address Offset: 68–6Fh  
Default Value:  
Access:  
Size:  
0000000000008000h  
RO  
64 bits  
This register provides the second part of a Link Entry which declares an internal link to  
another Root Complex Element.  
Default  
Value  
Bit  
Access  
Description  
0000000  
00h  
63:28  
27:20  
19:15  
RO  
RO  
RO  
Reserved  
00h  
Bus Number (BUSN):  
Device Number (DEVN): Target for this link is PCI Express port PEG0  
(Device1).  
00001b  
14:12  
11:0  
RO  
RO  
000b  
000h  
Function Number (FUNN):  
Reserved  
142  
Datasheet  
DRAM Controller Registers (D0:F0)  
5.3.6  
EPLE3D—EP Link Entry 3 Description  
B/D/F/Type:  
0/0/0/PXPEPBAR  
Address Offset: 70–73h  
Default Value:  
Access:  
Size:  
03000002h  
RO, RWO  
32 bits  
This register provides the first part of a Link Entry which declares an internal link to  
another Root Complex Element.  
Default  
Value  
Bit  
Access  
Description  
Target Port Number (TPN): Specifies the port number associated with the  
element targeted by this link entry (PEG1). The target port number is with  
respect to the component that contains this element as specified by the target  
component ID.  
31:24  
RO  
03h  
Target Component ID (TCID): Identifies the physical or logical component  
that is targeted by this link entry. A value of 0 is reserved. Component IDs start  
at 1. This value is a mirror of the value in the Component ID field of all elements  
in this component.  
23:16  
RWO  
00h  
BIOS Requirement: Must be initialized according to guidelines in the PCI  
Express* Isochronous/Virtual Channel Support Hardware Programming  
Specification (HPS).  
15:2  
1
RO  
RO  
0000h Reserved  
Link Type (LTYP): Indicates that the link points to configuration space of the  
integrated device which controls the root port for PEG1.  
1b  
0b  
The link address specifies the configuration address (segment, bus, device,  
function) of the target root port.  
Link Valid (LV):  
0
RWO  
0 = Link Entry is not valid and will be ignored.  
1 = Link Entry specifies a valid link.  
Datasheet  
143  
DRAM Controller Registers (D0:F0)  
5.3.7  
EPLE3A—EP Link Entry 3 Address  
B/D/F/Type:  
0/0/0/PXPEPBAR  
Address Offset: 78–7Fh  
Default Value:  
Access:  
Size:  
0000000000008000h  
RO  
64 bits  
This register provides the second part of a Link Entry which declares an internal link to  
another Root Complex Element.  
Default  
Value  
Bit  
Access  
Description  
0000000  
00h  
63:28  
27:20  
19:15  
RO  
RO  
RO  
Reserved  
00h  
Bus Number (BUSN):  
Device Number (DEVN): Target for this link is PCI Express port PEG1  
(Device6).  
00001b  
14:12  
11:0  
RO  
RO  
000b  
000h  
Function Number (FUNN):  
Reserved  
§ §  
144  
Datasheet  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6
Host-Primary PCI Express*  
Bridge Registers (D1:F0)  
Device 1 contains the controls associated with the PCI Express root port that is the  
intended attach point for external graphics. In addition, it also functions as the virtual  
PCI-to-PCI bridge. The table below provides an address map of the D1:F0 registers  
listed by address offset in ascending order. This chapter provides a detailed bit  
description of the registers.  
Warning:  
When reading the PCI Express "conceptual" registers such as this, you may not get a  
valid value unless the register value is stable.  
The PCI Express* Specification defines two types of reserved bits:  
Reserved and Preserved:  
• Reserved for future RW implementations; software must preserve value read for  
writes to bits.  
• Reserved and Zero: Reserved for future R/WC/S implementations; software must  
use 0 for writes to bits.  
Unless explicitly documented as Reserved and Zero, all bits marked as reserved are  
part of the Reserved and Preserved type, which have historically been the typical  
definition for Reserved.  
Note:  
Most (if not all) control bits in this device cannot be modified unless the link is down.  
Software is required to first disable the link, then program the registers, and then re-  
enable the link (which will cause a full-retrain with the new settings).  
Table 12.  
Host-PCI Express Bridge Register Address Map (D1:F0) (Sheet 1 of 3)  
Address  
Offset  
Register  
Symbol  
Default  
Value  
Register Name  
Access  
0–1h  
2–3h  
4–5h  
6–7h  
8h  
VID1  
DID1  
Vendor Identification  
8086h  
29E1h  
0000h  
0010h  
00h  
RO  
RO  
Device Identification  
PCI Command  
PCICMD1  
PCISTS1  
RID1  
RO, RW  
RO, RWC  
RO  
PCI Status  
Revision Identification  
Class Code  
9–Bh  
Ch  
CC1  
060400h  
00h  
RO  
CL1  
Cache Line Size  
RW  
Eh  
HDR1  
Header Type  
01h  
RO  
18h  
PBUSN1  
SBUSN1  
SUBUSN1  
IOBASE1  
IOLIMIT1  
SSTS1  
Primary Bus Number  
Secondary Bus Number  
Subordinate Bus Number  
I/O Base Address  
I/O Limit Address  
Secondary Status  
Memory Base Address  
00h  
RO  
19h  
00h  
RW  
1Ah  
00h  
RW  
1Ch  
F0h  
RO, RW  
RW, RO  
RO, RWC  
RW, RO  
1Dh  
00h  
1E–1Fh  
20–21h  
0000h  
FFF0h  
MBASE1  
Datasheet  
145  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
Table 12.  
Host-PCI Express Bridge Register Address Map (D1:F0) (Sheet 2 of 3)  
Address  
Offset  
Register  
Symbol  
Default  
Value  
Register Name  
Access  
22–23h  
24–25h  
26–27h  
28–2Bh  
2C–2Fh  
34h  
MLIMIT1  
PMBASE1  
PMLIMIT1  
Memory Limit Address  
0000h  
FFF1h  
0001h  
RW, RO  
RW, RO  
RO, RW  
RW  
Prefetchable Memory Base Address  
Prefetchable Memory Limit Address  
PMBASEU1 Prefetchable Memory Base Address Upper 00000000h  
PMLIMITU1 Prefetchable Memory Limit Address Upper 00000000h  
RW  
CAPPTR1  
Capabilities Pointer  
88h  
00h  
RO  
3Ch  
INTRLINE1 Interrupt Line  
RW  
3Dh  
INTRPIN1  
BCTRL1  
Interrupt Pin  
01h  
RO  
3E–3Fh  
80–83h  
Bridge Control  
0000h  
C8039001h  
RO, RW  
RO  
PM_CAPID1 Power Management Capabilities  
PM_CS1 Power Management Control/Status  
RO, RW,  
RW/P  
84–87h  
00000008h  
88–8Bh  
8C–8Fh  
90–91h  
92–93h  
94–97h  
98–99h  
A0–A1h  
A2–A3h  
A4–A7h  
A8–A9h  
AA–ABh  
SS_CAPID Subsystem ID and Vendor ID Capabilities  
SS Subsystem ID and Subsystem Vendor ID  
MSI_CAPID Message Signaled Interrupts Capability ID  
0000800Dh  
00008086h  
A005h  
RO  
RWO  
RO  
MC  
MA  
Message Control  
0000h  
RW, RO  
RO, RW  
RW  
Message Address  
Message Data  
00000000h  
0000h  
MD  
PE_CAPL  
PE_CAP  
DCAP  
DCTL  
DSTS  
PCI Express Capability List  
PCI Express Capabilities  
Device Capabilities  
Device Control  
0010h  
RO  
0142h  
RO, RWO  
RO  
00008000h  
0000h  
RW, RO  
RO, RWC  
Device Status  
0000h  
020214D02  
h
AC–AFh  
B0–B1h  
LCAP  
LCTL  
Link Capabilities  
Link Control  
RO, RWO  
RO, RW,  
RW/SC  
0000h  
B2–B3h  
B4–B7h  
B8–B9h  
BA–BBh  
BC–BDh  
C0–C3h  
EC–EFh  
LSTS  
SLOTCAP  
SLOTCTL  
SLOTSTS  
RCTL  
Link Status  
1000h  
00040000h  
0000h  
RWC, RO  
RWO, RO  
RO, RW  
Slot Capabilities  
Slot Control  
Slot Status  
0000h  
RO, RWC  
RO, RW  
Root Control  
0000h  
RSTS  
Root Status  
00000000h  
00000000h  
RO, RWC  
RO, RW  
PELC  
PCI Express Legacy Control  
Virtual Channel Enhanced Capability  
Header  
100–103h  
VCECH  
14010002h  
RO  
104–107h  
108–10Bh  
PVCCAP1  
PVCCAP2  
Port VC Capability Register 1  
Port VC Capability Register 2  
00000000h  
00000000h  
RO  
RO  
146  
Datasheet  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
Table 12.  
Host-PCI Express Bridge Register Address Map (D1:F0) (Sheet 3 of 3)  
Address  
Offset  
Register  
Symbol  
Default  
Value  
Register Name  
Access  
10C–  
10Dh  
PVCCTL  
Port VC Control  
0000h  
RO, RW  
110–113h  
114–117h  
11A–11Bh  
140–143h  
144–147h  
150–153h  
VC0RCAP  
VC0RCTL  
VC0RSTS  
RCLDECH  
ESD  
VC0 Resource Capability  
VC0 Resource Control  
00000001h  
800000FFh  
0002h  
RO  
RO, RW  
RO  
VC0 Resource Status  
Root Complex Link Declaration Enhanced  
Element Self Description  
Link Entry 1 Description  
00010005h  
02000100h  
00000000h  
RO  
RO, RWO  
RO, RWO  
LE1D  
000000000  
0000000h  
158–15Fh  
218–21Fh  
LE1A  
Link Entry 1 Address  
RO, RWO  
RO  
000000000  
0000FFFh  
PESSTS  
PCI Express Sequence Status  
6.1  
VID1—Vendor Identification  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: 0–1h  
Default Value:  
Access:  
Size:  
8086h  
RO  
16 bits  
This register combined with the Device Identification register uniquely identify any PCI  
device.  
Default  
Value  
Bit  
Access  
RO  
Description  
15:0  
8086h Vendor Identification (VID1): PCI standard identification for Intel.  
Datasheet  
147  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.2  
DID1—Device Identification  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: 2–3h  
Default Value:  
Access:  
Size:  
29E1h  
RO  
16 bits  
This register combined with the Vendor Identification register uniquely identifies any  
PCI device.  
Default  
Value  
Bit  
Access  
Description  
Device Identification Number (DID1(UB)): Identifier assigned to the MCH  
device 1 (virtual PCI-to-PCI bridge, PCI Express port).  
15:8  
7:4  
RO  
RO  
RO  
29h  
Device Identification Number (DID1(HW)): Identifier assigned to the MCH  
device 1 (virtual PCI-to-PCI bridge, PCI Express port).  
Eh  
1h  
Device Identification Number (DID1(LB)): Identifier assigned to the MCH  
device 1 (virtual PCI-to-PCI bridge, PCI Express port).  
3:0  
6.3  
PCICMD1—PCI Command  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: 4–5h  
Default Value:  
Access:  
Size:  
0000h  
RO, RW  
16 bits  
Default  
Value  
Bit  
Access  
Description  
15:11  
RO  
00h  
Reserved  
INTA Assertion Disable (INTAAD):  
0 = This device is permitted to generate INTA interrupt messages.  
1 = This device is prevented from generating interrupt messages. Any INTA  
emulation interrupts already asserted must be de-asserted when this bit is  
set.  
10  
9
RW  
0b  
0b  
Only affects interrupts generated by the device (PCI INTA from a PME event)  
controlled by this command register. It does not affect upstream MSIs, upstream  
PCI INTA-INTD assert and de-assert messages.  
Fast Back-to-Back Enable (FB2B): Not Applicable or Implemented. Hardwired  
to 0.  
RO  
148  
Datasheet  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
Default  
Value  
Bit  
Access  
Description  
SERR# Message Enable (SERRE1): Controls Device 1 SERR# messaging. The  
MCH communicates the SERR# condition by sending an SERR message to the  
ICH. This bit, when set, enables reporting of non-fatal and fatal errors detected  
by the device to the Root Complex. Note that errors are reported if enabled  
either through this bit or through the PCI-Express specific bits in the Device  
Control Register.  
8
RW  
0b  
0 = The SERR message is generated by the MCH for Device 1 only under  
conditions enabled individually through the Device Control Register.  
1 = The MCH is enabled to generate SERR messages which will be sent to the  
ICH for specific Device 1 error conditions generated/detected on the primary  
side of the virtual PCI to PCI bridge (not those received by the secondary  
side). The status of SERRs generated is reported in the PCISTS1 register.  
7
6
RO  
RW  
RO  
0b  
0b  
0b  
Reserved  
Parity Error Response Enable (PERRE): Controls whether or not the Master  
Data Parity Error bit in the PCI Status register can bet set.  
0 = Master Data Parity Error bit in PCI Status register can NOT be set.  
1 = Master Data Parity Error bit in PCI Status register CAN be set.  
5:3  
Reserved  
Bus Master Enable (BME): Controls the ability of the PCI Express port to  
forward Memory and IO Read/Write Requests in the upstream direction.  
0 = This device is prevented from making memory or IO requests to its primary  
bus. Note that according to PCI Specification, as MSI interrupt messages are  
in-band memory writes, disabling the bus master enable bit prevents this  
device from generating MSI interrupt messages or passing them from its  
secondary bus to its primary bus. Upstream memory writes/reads, IO  
writes/reads, peer writes/reads, and MSIs will all be treated as illegal cycles.  
Writes are forwarded to memory address C0000h with byte enables de-  
asserted. Reads will be forwarded to memory address C0000h and will  
return Unsupported Request status (or Master abort) in its completion  
packet.  
2
RW  
0b  
1 = This device is allowed to issue requests to its primary bus. Completions for  
previously issued memory read requests on the primary bus will be issued  
when the data is available.  
This bit does not affect forwarding of Completions from the primary interface to  
the secondary interface.  
Memory Access Enable (MAE):  
0 = All of device 1's memory space is disabled.  
1 = Enable the Memory and Pre-fetchable memory address ranges defined in the  
MBASE1, MLIMIT1, PMBASE1, and PMLIMIT1 registers.  
1
0
RW  
RW  
0b  
0b  
I/O Access Enable (IOAE):  
0 = All of device 1's I/O space is disabled.  
1 = Enable the I/O address range defined in the IOBASE1, and IOLIMIT1  
registers.  
Datasheet  
149  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.4  
PCISTS1—PCI Status  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: 6–7h  
Default Value:  
Access:  
Size:  
0010h  
RO, RWC  
16 bits  
This register reports the occurrence of error conditions associated with primary side of  
the "virtual" Host-PCI Express bridge embedded within the MCH.  
Default  
Value  
Bit  
Access  
Description  
Detected Parity Error (DPE): Not Applicable or Implemented. Hardwired to 0.  
Parity (generating poisoned Transaction Layer Packets) is not supported on the  
primary side of this device.  
15  
RO  
0b  
Signaled System Error (SSE): This bit is set when this Device sends an SERR  
due to detecting an ERR_FATAL or ERR_NONFATAL condition and the SERR  
Enable bit in the Command register is 1. Both received (if enabled by  
BCTRL1[1]) and internally detected error messages do not affect this field.  
14  
RWC  
0b  
Received Master Abort Status (RMAS): Not Applicable or Implemented.  
Hardwired to 0. The concept of a master abort does not exist on primary side of  
this device.  
13  
12  
RO  
RO  
RO  
RO  
0b  
0b  
Received Target Abort Status (RTAS): Not Applicable or Implemented.  
Hardwired to 0. The concept of a target abort does not exist on primary side of  
this device.  
Signaled Target Abort Status (STAS): Not Applicable or Implemented.  
Hardwired to 0. The concept of a target abort does not exist on primary side of  
this device.  
11  
0b  
DEVSELB Timing (DEVT): This device is not the subtractively decoded device  
on bus 0. This bit field is therefore hardwired to 00 to indicate that the device  
uses the fastest possible decode.  
10:9  
00b  
Master Data Parity Error (PMDPE): Because the primary side of the PCI  
Express's virtual peer-to-peer bridge is integrated with the MCH functionality,  
there is no scenario where this bit will get set. Because hardware will never set  
this bit, it is impossible for software to have an opportunity to clear this bit or  
otherwise test that it is implemented. The PCI specification defines it as a R/WC,  
but for our implementation an RO definition behaves the same way and will meet  
all Microsoft testing requirements.  
8
RO  
0b  
This bit can only be set when the Parity Error Enable bit in the PCI Command  
register is set.  
7
6
RO  
RO  
0b  
0b  
Fast Back-to-Back (FB2B): Not Applicable or Implemented. Hardwired to 0.  
Reserved  
66/60MHz capability (CAP66): Not Applicable or Implemented. Hardwired to  
0.  
5
4
RO  
RO  
0b  
1b  
Capabilities List (CAPL): Indicates that a capabilities list is present. Hardwired  
to 1.  
INTA Status (INTAS): Indicates that an interrupt message is pending  
internally to the device. Only PME sources feed into this status bit (not PCI INTA-  
INTD assert and de-assert messages). The INTA Assertion Disable bit,  
PCICMD1[10], has no effect on this bit.  
3
RO  
RO  
0b  
2:0  
000b  
Reserved  
150  
Datasheet  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.5  
RID1—Revision Identification  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: 8h  
Default Value:  
Access:  
Size:  
see table below  
RO  
8 bits  
This register contains the revision number of the MCH device 1. These bits are read  
only and writes to this register have no effect.  
Default  
Value  
Bit  
Access  
Description  
Revision Identification Number (RID1): This is an 8-bit value that  
indicates the revision identification number for the MCH Device 0. Refer to the  
Intel® X38 PCI Express Chipset Specification Update for the value of this  
register. Refer to the Intel® X38 Express Chipset Specification Update for the  
value of this register.  
see  
description  
7:0  
RO  
6.6  
CC1—Class Code  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: 9–Bh  
Default Value:  
Access:  
Size:  
060400h  
RO  
24 bits  
This register identifies the basic function of the device, a more specific sub-class, and a  
register-specific programming interface.  
Default  
Value  
Bit  
Access  
Description  
Base Class Code (BCC): Indicates the base class code for this device. This  
code has the value 06h, indicating a Bridge device.  
23:16  
15:8  
RO  
RO  
06h  
Sub-Class Code (SUBCC): Indicates the sub-class code for this device. The  
code is 04h indicating a PCI to PCI Bridge.  
04h  
00h  
Programming Interface (PI): Indicates the programming interface of this  
device. This value does not specify a particular register set layout and provides  
no practical use for this device.  
7:0  
RO  
Datasheet  
151  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.7  
CL1—Cache Line Size  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: Ch  
Default Value:  
Access:  
Size:  
00h  
RW  
8 bits  
Default  
Value  
Bit  
Access  
Description  
Cache Line Size (Scratch pad): Implemented by PCI Express devices as a  
read-write field for legacy compatibility purposes but has no impact on any PCI  
Express device functionality.  
7:0  
RW  
00h  
6.8  
HDR1—Header Type  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: Eh  
Default Value:  
Access:  
Size:  
01h  
RO  
8 bits  
This register identifies the header layout of the configuration space. No physical  
register exists at this location.  
Default  
Value  
Bit  
Access  
Description  
Header Type Register (HDR): Returns 01h to indicate that this is a single  
function device with bridge header layout.  
7:0  
RO  
01h  
6.9  
PBUSN1—Primary Bus Number  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: 18h  
Default Value:  
Access:  
Size:  
00h  
RO  
8 bits  
This register identifies that this "virtual" Host-PCI Express bridge is connected to PCI  
bus 0.  
Default  
Value  
Bit  
Access  
Description  
Primary Bus Number (BUSN): Configuration software typically programs this  
field with the number of the bus on the primary side of the bridge. Since device  
1 is an internal device and its primary bus is always 0, these bits are read only  
and are hardwired to 0.  
7:0  
RO  
00h  
152  
Datasheet  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.10  
SBUSN1—Secondary Bus Number  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: 19h  
Default Value:  
Access:  
Size:  
00h  
RW  
8 bits  
This register identifies the bus number assigned to the second bus side of the "virtual"  
bridge. This number is programmed by the PCI configuration software to allow mapping  
of configuration cycles to PCI Express.  
Default  
Value  
Bit  
Access  
Description  
Secondary Bus Number (BUSN): This field is programmed by configuration  
software with the bus number assigned to PCI Express.  
7:0  
RW  
00h  
6.11  
SUBUSN1—Subordinate Bus Number  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: 1Ah  
Default Value:  
Access:  
Size:  
00h  
RW  
8 bits  
This register identifies the subordinate bus (if any) that resides at the level below PCI  
Express. This number is programmed by the PCI configuration software to allow  
mapping of configuration cycles to PCI Express.  
Default  
Value  
Bit  
Access  
Description  
Subordinate Bus Number (BUSN): This register is programmed by  
configuration software with the number of the highest subordinate bus that lies  
behind the device 1 bridge. When only a single PCI device resides on the PCI  
Express segment, this register will contain the same value as the SBUSN1  
register.  
7:0  
RW  
00h  
Datasheet  
153  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.12  
IOBASE1—I/O Base Address  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: 1Ch  
Default Value:  
Access:  
Size:  
F0h  
RO, RW  
8 bits  
This register controls the processor to PCI Express I/O access routing based on the  
following formula:  
IO_BASE address IO_LIMIT  
Only upper 4 bits are programmable. For the purpose of address decode address bits  
A[11:0] are treated as 0. Thus the bottom of the defined I/O address range will be  
aligned to a 4 KB boundary.  
Default  
Value  
Bit  
Access  
Description  
I/O Address Base (IOBASE): Corresponds to A[15:12] of the I/O addresses  
passed by bridge 1 to PCI Express.  
7:4  
3:0  
RW  
RO  
Fh  
0h  
Reserved  
6.13  
IOLIMIT1—I/O Limit Address  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: 1Dh  
Default Value:  
Access:  
Size:  
00h  
RW, RO  
8 bits  
This register controls the processor to PCI Express I/O access routing based on the  
following formula:  
IO_BASE address IO_LIMIT  
Only upper 4 bits are programmable. For the purpose of address decode, address bits  
A[11:0] are assumed to be FFFh. Thus, the top of the defined I/O address range will be  
at the top of a 4 KB aligned address block.  
Default  
Value  
Bit  
Access  
Description  
I/O Address Limit (IOLIMIT): Corresponds to A[15:12] of the I/O address  
limit of device #1. Devices between this upper limit and IOBASE1 will be passed  
to the PCI Express hierarchy associated with this device.  
7:4  
3:0  
RW  
RO  
0h  
0h  
Reserved  
154  
Datasheet  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.14  
SSTS1—Secondary Status  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: 1E–1Fh  
Default Value:  
Access:  
Size:  
0000h  
RO, RWC  
16 bits  
SSTS1 is a 16-bit status register that reports the occurrence of error conditions  
associated with secondary side of the "virtual" PCI-PCI bridge embedded within MCH.  
Default  
Value  
Bit  
Access  
Description  
Detected Parity Error (DPE): This bit is set by the Secondary Side for a Type 1  
Configuration Space header device whenever it receives a Poisoned Transaction  
Layer Packet, regardless of the state of the Parity Error Response Enable bit in  
the Bridge Control Register.  
15  
RWC  
RWC  
RWC  
0b  
Received System Error (RSE): This bit is set when the Secondary Side for a  
Type 1 configuration space header device receives an ERR_FATAL or  
ERR_NONFATAL.  
14  
13  
0b  
0b  
Received Master Abort (RMA): This bit is set when the Secondary Side for  
Type 1 Configuration Space Header Device (for requests initiated by the Type 1  
Header Device itself) receives a Completion with Unsupported Request  
Completion Status.  
Received Target Abort (RTA): This bit is set when the Secondary Side for  
Type 1 Configuration Space Header Device (for requests initiated by the Type 1  
Header Device itself) receives a Completion with Completer Abort Completion  
Status.  
12  
RWC  
0b  
Signaled Target Abort (STA): Not Applicable or Implemented. Hardwired to 0.  
The MCH does not generate Target Aborts (the MCH will never complete a  
request using the Completer Abort Completion status).  
11  
RO  
RO  
0b  
10:9  
00b  
DEVSELB Timing (DEVT): Not Applicable or Implemented. Hardwired to 0.  
Master Data Parity Error (SMDPE): When set indicates that the MCH received  
across the link (upstream) a Read Data Completion Poisoned Transaction Layer  
Packet (EP=1). This bit can only be set when the Parity Error Enable bit in the  
Bridge Control register is set.  
8
RWC  
0b  
7
6
RO  
RO  
0b  
0b  
Fast Back-to-Back (FB2B): Not Applicable or Implemented. Hardwired to 0.  
Reserved  
66/60 MHz capability (CAP66): Not Applicable or Implemented. Hardwired to  
0.  
5
RO  
RO  
0b  
4:0  
00h  
Reserved  
Datasheet  
155  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.15  
MBASE1—Memory Base Address  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: 20–21h  
Default Value:  
Access:  
Size:  
FFF0h  
RW, RO  
16 bits  
This register controls the processor to PCI Express non-prefetchable memory access  
routing based on the following formula:  
MEMORY_BASE address MEMORY_LIMIT  
The upper 12 bits of the register are read/write and correspond to the upper 12  
address bits A[31:20] of the 32 bit address. The bottom 4 bits of this register are read-  
only and return zeroes when read. This register must be initialized by the configuration  
software. For the purpose of address decode, address bits A[19:0] are assumed to be  
0. Thus, the bottom of the defined memory address range will be aligned to a 1 MB  
boundary.  
Default  
Value  
Bit  
Access  
Description  
Memory Address Base (MBASE): This field corresponds to A[31:20] of the  
lower limit of the memory range that will be passed to PCI Express.  
15:4  
3:0  
RW  
RO  
FFFh  
0h  
Reserved  
156  
Datasheet  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.16  
MLIMIT1—Memory Limit Address  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: 22–23h  
Default Value:  
Access:  
Size:  
0000h  
RW, RO  
16 bits  
This register controls the processor to PCI Express non-prefetchable memory access  
routing based on the following formula:  
MEMORY_BASE address MEMORY_LIMIT  
The upper 12 bits of the register are read/write and correspond to the upper 12  
address bits A[31:20] of the 32 bit address. The bottom 4 bits of this register are read-  
only and return zeroes when read. This register must be initialized by the configuration  
software. For the purpose of address decode address bits A[19:0] are assumed to be  
FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1 MB  
aligned memory block.  
Note:  
Memory range covered by MBASE and MLIMIT registers are used to map non-  
prefetchable PCI Express address ranges (typically where control/status memory-  
mapped I/O data structures of the controller will reside) and PMBASE and PMLIMIT are  
used to map prefetchable address ranges (typically device local memory). This  
segregation allows application of USWC space attribute to be performed in a true plug-  
and-play manner to the prefetchable address range for improved processor- PCI  
Express memory access performance.  
Note:  
Configuration software is responsible for programming all address range registers  
(prefetchable, non-prefetchable) with the values that provide exclusive address ranges  
(i.e., prevent overlap with each other and/or with the ranges covered with the main  
memory). There is no provision in the MCH hardware to enforce prevention of overlap  
and operations of the system in the case of overlap are not ensured.  
Default  
Value  
Bit  
Access  
Description  
Memory Address Limit (MLIMIT): This field corresponds to A[31:20] of the  
upper limit of the address range passed to PCI Express.  
15:4  
3:0  
RW  
RO  
000h  
0h  
Reserved  
Datasheet  
157  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.17  
PMBASE1—Prefetchable Memory Base Address  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: 24–25h  
Default Value:  
Access:  
Size:  
FFF1h  
RW, RO  
16 bits  
This register in conjunction with the corresponding Upper Base Address register  
controls the processor to PCI Express prefetchable memory access routing based on  
the following formula:  
PREFETCHABLE_MEMORY_BASE address PREFETCHABLE_MEMORY_LIMIT  
The upper 12 bits of this register are read/write and correspond to address bits  
A[31:20] of the 40-bit address. The lower 8 bits of the Upper Base Address register are  
read/write and correspond to address bits A[39:32] of the 40-bit address. This register  
must be initialized by the configuration software. For the purpose of address decode,  
address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory  
address range will be aligned to a 1MB boundary.  
Default  
Value  
Bit  
Access  
Description  
Prefetchable Memory Base Address (MBASE): Corresponds to A[31:20] of  
the lower limit of the memory range that will be passed to PCI Express.  
15:4  
RW  
RO  
FFFh  
64-bit Address Support: Indicates that the upper 32 bits of the prefetchable  
memory region base address are contained in the Prefetchable Memory base  
Upper Address register at 28h.  
3:0  
1h  
158  
Datasheet  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.18  
PMLIMIT1—Prefetchable Memory Limit Address  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: 26–27h  
Default Value:  
Access:  
Size:  
0001h  
RO, RW  
16 bits  
This register in conjunction with the corresponding Upper Limit Address register  
controls the processor to PCI Express prefetchable memory access routing based on  
the following formula:  
PREFETCHABLE_MEMORY_BASE address PREFETCHABLE_MEMORY_LIMIT  
The upper 12 bits of this register are read/write and correspond to address bits  
A[31:20] of the 40-bit address. The lower 8 bits of the Upper Limit Address register are  
read/write and correspond to address bits A[39:32] of the 40-bit address. This register  
must be initialized by the configuration software. For the purpose of address decode,  
address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined memory  
address range will be at the top of a 1 MB aligned memory block. Note that  
prefetchable memory range is supported to allow segregation by the configuration  
software between the memory ranges that must be defined as UC and the ones that  
can be designated as a USWC (i.e., prefetchable) from the processor perspective.  
Default  
Value  
Bit  
Access  
Description  
Prefetchable Memory Address Limit (PMLIMIT): This field corresponds to  
A[31:20] of the upper limit of the address range passed to PCI Express.  
15:4  
RW  
RO  
000h  
64-bit Address Support: This field indicates that the upper 32 bits of the  
prefetchable memory region limit address are contained in the Prefetchable  
Memory Base Limit Address register at 2Ch  
3:0  
1h  
Datasheet  
159  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.19  
PMBASEU1—Prefetchable Memory Base Address  
Upper  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: 28–2Bh  
Default Value:  
Access:  
Size:  
00000000h  
RW  
32 bits  
The functionality associated with this register is present in the PCI Express design  
implementation.  
This register in conjunction with the corresponding Upper Base Address register  
controls the processor to PCI Express prefetchable memory access routing based on  
the following formula:  
PREFETCHABLE_MEMORY_BASE address PREFETCHABLE_MEMORY_LIMIT  
The upper 12 bits of this register are read/write and correspond to address bits  
A[31:20] of the 40-bit address. The lower 8 bits of the Upper Base Address register are  
read/write and correspond to address bits A[39:32] of the 40-bit address. This register  
must be initialized by the configuration software. For the purpose of address decode,  
address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory  
address range will be aligned to a 1MB boundary.  
Default  
Value  
Bit  
Access  
Description  
Prefetchable Memory Base Address (MBASEU): This field corresponds to  
A[63:32] of the lower limit of the prefetchable memory range that will be passed  
to PCI Express.  
0000000  
0h  
31:0  
RW  
160  
Datasheet  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.20  
PMLIMITU1—Prefetchable Memory Limit Address  
Upper  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: 2C–2Fh  
Default Value:  
Access:  
Size:  
00000000h  
RW  
32 bits  
The functionality associated with this register is present in the PCI Express design  
implementation.  
This register in conjunction with the corresponding Upper Limit Address register  
controls the processor to PCI Express prefetchable memory access routing based on  
the following formula:  
PREFETCHABLE_MEMORY_BASE address PREFETCHABLE_MEMORY_LIMIT  
The upper 12 bits of this register are read/write and correspond to address bits  
A[31:20] of the 40- bit address. The lower 8 bits of the Upper Limit Address register  
are read/write and correspond to address bits A[39:32] of the 40-bit address. This  
register must be initialized by the configuration software. For the purpose of address  
decode address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined  
memory address range will be at the top of a 1MB aligned memory block.  
Note that prefetchable memory range is supported to allow segregation by the  
configuration software between the memory ranges that must be defined as UC and the  
ones that can be designated as a USWC (i.e. prefetchable) from the processor  
perspective.  
Default  
Value  
Bit  
Access  
Description  
Prefetchable Memory Address Limit (MLIMITU): This field corresponds to  
A[63:32] of the upper limit of the prefetchable Memory range that will be passed  
to PCI Express.  
0000000  
0h  
31:0  
RW  
6.21  
CAPPTR1—Capabilities Pointer  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: 34h  
Default Value:  
Access:  
Size:  
88h  
RO  
8 bits  
The capabilities pointer provides the address offset to the location of the first entry in  
this device's linked list of capabilities.  
Default  
Value  
Bit  
Access  
Description  
First Capability (CAPPTR1): The first capability in the list is the Subsystem ID  
and Subsystem Vendor ID Capability.  
7:0  
RO  
88h  
Datasheet  
161  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.22  
INTRLINE1—Interrupt Line  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: 3Ch  
Default Value:  
Access:  
Size:  
00h  
RW  
8 bits  
This register contains interrupt line routing information. The device itself does not use  
this value, rather it is used by device drivers and operating systems to determine  
priority and vector information.  
Default  
Value  
Bit  
Access  
Description  
Interrupt Connection (INTCON): This field is used to communicate interrupt  
line routing information.  
7:0  
RW  
00h  
6.23  
INTRPIN1—Interrupt Pin  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: 3Dh  
Default Value:  
Access:  
Size:  
01h  
RO  
8 bits  
This register specifies which interrupt pin this device uses.  
Default  
Value  
Bit  
Access  
Description  
Interrupt Pin (INTPIN): As a single function device, the PCI Express device  
specifies INTA as its interrupt pin. 01h=INTA.  
7:0  
RO  
01h  
6.24  
BCTRL1—Bridge Control  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: 3E–3Fh  
Default Value:  
Access:  
Size:  
0000h  
RO, RW  
16 bits  
This register provides extensions to the PCICMD1 register that are specific to PCI-PCI  
bridges. The BCTRL provides additional control for the secondary interface as well as  
some bits that affect the overall behavior of the "virtual" Host-PCI Express bridge  
embedded within MCH.  
Default  
Value  
Bit  
Access  
Description  
15:12  
11  
RO  
RO  
0h  
Reserved  
Discard Timer SERR# Enable (DTSERRE): Not Applicable or Implemented.  
Hardwired to 0.  
0b  
0b  
Discard Timer Status (DTSTS): Not Applicable or Implemented. Hardwired to  
0.  
10  
RO  
162  
Datasheet  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
Default  
Value  
Bit  
Access  
Description  
Secondary Discard Timer (SDT): Not Applicable or Implemented. Hardwired  
to 0.  
9
8
7
RO  
RO  
RO  
0b  
Primary Discard Timer (PDT): Not Applicable or Implemented. Hardwired to  
0.  
0b  
0b  
Fast Back-to-Back Enable (FB2BEN): Not Applicable or Implemented.  
Hardwired to 0.  
Secondary Bus Reset (SRESET): Setting this bit triggers a hot reset on the  
corresponding PCI Express Port. This will force the LTSSM to transition to the Hot  
Reset state (via Recovery) from L0, L0s, or L1 states.  
6
5
RW  
RO  
0b  
0b  
Master Abort Mode (MAMODE): Does not apply to PCI Express. Hardwired to  
0.  
VGA 16-bit Decode (VGA16D): Enables the PCI-to-PCI bridge to provide 16-  
bit decoding of VGA I/O address precluding the decoding of alias addresses  
every 1 KB. This bit only has meaning if bit 3 (VGA Enable) of this register is also  
set to 1, enabling VGA I/O decoding and forwarding by the bridge.  
4
3
RW  
RW  
0b  
0b  
0 = Execute 10-bit address decodes on VGA I/O accesses.  
1 = Execute 16-bit address decodes on VGA I/O accesses.  
VGA Enable (VGAEN): Controls the routing of processor initiated transactions  
targeting VGA compatible I/O and memory address ranges. See the VGAEN/  
MDAP table in device 0, offset 97h[0].  
ISA Enable (ISAEN): Needed to exclude legacy resource decode to route ISA  
resources to legacy decode path. Modifies the response by the MCH to an I/O  
access issued by the processor that target ISA I/O addresses. This applies only  
to I/O addresses that are enabled by the IOBASE and IOLIMIT registers.  
2
RW  
0b  
0 = All addresses defined by the IOBASE and IOLIMIT for processor I/O  
transactions will be mapped to PCI Express.  
1 = MCH will not forward to PCI Express any I/O transactions addressing the last  
768 bytes in each 1KB block even if the addresses are within the range  
defined by the IOBASE and IOLIMIT registers.  
SERR Enable (SERREN):  
0 = No forwarding of error messages from secondary side to primary side that  
could result in an SERR.  
1 = ERR_COR, ERR_NONFATAL, and ERR_FATAL messages result in SERR  
message when individually enabled by the Root Control register.  
1
0
RW  
RW  
0b  
0b  
Parity Error Response Enable (PEREN): Controls whether or not the Master  
Data Parity Error bit in the Secondary Status register is set when the MCH  
receives across the link (upstream) a Read Data Completion Poisoned  
Transaction Layer Packet.  
0 = Master Data Parity Error bit in Secondary Status register can NOT be set.  
1 = Master Data Parity Error bit in Secondary Status register CAN be set.  
Datasheet  
163  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.25  
PM_CAPID1—Power Management Capabilities  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: 80–83h  
Default Value:  
Access:  
Size:  
C8039001h  
RO  
32 bits  
Default  
Value  
Bit  
Access  
Description  
PME Support (PMES): This field indicates the power states in which this device  
may indicate PME wake via PCI Express messaging. D0, D3hot & D3cold. This  
device is not required to do anything to support D3hot & D3cold, it simply must  
report that those states are supported. Refer to the PCI Power Management 1.1  
specification for encoding explanation and other power management details.  
31:27  
RO  
19h  
D2 Power State Support (D2PSS): Hardwired to 0 to indicate that the D2  
power management state is NOT supported.  
26  
25  
RO  
RO  
RO  
0b  
0b  
D1 Power State Support (D1PSS): Hardwired to 0 to indicate that the D1  
power management state is NOT supported.  
Auxiliary Current (AUXC): Hardwired to 0 to indicate that there are no  
3.3Vaux auxiliary current requirements.  
24:22  
000b  
Device Specific Initialization (DSI): Hardwired to 0 to indicate that special  
initialization of this device is NOT required before generic class device driver is to  
use it.  
21  
RO  
0b  
20  
19  
RO  
RO  
0b  
0b  
Auxiliary Power Source (APS): Hardwired to 0.  
PME Clock (PMECLK): Hardwired to 0 to indicate this device does NOT support  
PMEB generation.  
PCI PM CAP Version (PCIPMCV): A value of 011b indicates that this function  
complies with revision 1.2 of the PCI Power Management Interface Specification.  
18:16  
15:8  
7:0  
RO  
RO  
RO  
011b  
90h  
Pointer to Next Capability (PNC): This contains a pointer to the next item in  
the capabilities list. If MSICH (CAPL[0] @ 7Fh) is 0, then the next item in the  
capabilities list is the Message Signaled Interrupts (MSI) capability at 90h.  
Capability ID (CID): Value of 01h identifies this linked list item (capability  
structure) as being for PCI Power Management registers.  
01h  
164  
Datasheet  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.26  
PM_CS1—Power Management Control/Status  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: 84–87h  
Default Value:  
Access:  
Size:  
00000008h  
RO, RW, RW/P  
32 bits  
Default  
Value  
Bit  
Access  
Description  
31:16  
15  
RO  
RO  
0000h Reserved  
PME Status (PMESTS): Indicates that this device does not support PMEB  
0b  
00b  
0h  
generation from D3cold.  
Data Scale (DSCALE): Indicates that this device does not support the power  
14:13  
12:9  
RO  
RO  
management data register.  
Data Select (DSEL): Indicates that this device does not support the power  
management data register.  
PME Enable (PMEE): Indicates that this device does not generate PMEB  
assertion from any D-state.  
0 = PMEB generation not possible from any D State  
1 = PMEB generation enabled from any D State  
8
RW/P  
RO  
0b  
The setting of this bit has no effect on hardware.  
See PM_CAP[15:11]  
7:2  
0000b Reserved  
Power State (PS): Indicates the current power state of this device and can be  
used to set the device into a new power state. If software attempts to write an  
unsupported state to this field, write operation must complete normally on the  
bus, but the data is discarded and no state change occurs.  
00 = D0  
11 = D3  
Support of D3cold does not require any special action.  
While in the D3hot state, this device can only act as the target of PCI  
configuration transactions (for power management control). This device also  
cannot generate interrupts or respond to MMR cycles in the D3 state. The device  
must return to the D0 state in order to be fully-functional.  
1:0  
RW  
00b  
When the Power State is other than D0, the bridge will Master Abort (i.e. not  
claim) any downstream cycles (with exception of type 0 configuration cycles).  
Consequently, these unclaimed cycles will go down DMI and come back up as  
Unsupported Requests, which the MCH logs as Master Aborts in Device 0  
PCISTS[13]  
There is no additional hardware functionality required to support these Power  
States.  
Datasheet  
165  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.27  
SS_CAPID—Subsystem ID and Vendor ID  
Capabilities  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: 88–8Bh  
Default Value:  
Access:  
Size:  
0000800Dh  
RO  
32 bits  
This capability is used to uniquely identify the subsystem where the PCI device resides.  
Because this device is an integrated part of the system and not an add-in device, it is  
anticipated that this capability will never be used. However, it is necessary because  
Microsoft will test for its presence.  
Default  
Value  
Bit  
Access  
Description  
31:16  
15:8  
RO  
RO  
0000h Reserved  
Pointer to Next Capability (PNC): This contains a pointer to the next item in  
80h  
0Dh  
the capabilities list which is the PCI Power Management capability.  
Capability ID (CID): Value of 0Dh identifies this linked list item (capability  
7:0  
RO  
structure) as being for SSID/SSVID registers in a PCI-to-PCI Bridge.  
6.28  
SS—Subsystem ID and Subsystem Vendor ID  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: 8C–8Fh  
Default Value:  
Access:  
Size:  
00008086h  
RWO  
32 bits  
System BIOS can be used as the mechanism for loading the SSID/SVID values. These  
values must be preserved through power management transitions and a hardware  
reset.  
Default  
Value  
Bit  
Access  
Description  
Subsystem ID (SSID): Identifies the particular subsystem and is assigned by  
the vendor.  
31:16  
RWO  
RWO  
0000h  
Subsystem Vendor ID (SSVID): Identifies the manufacturer of the subsystem  
8086h and is the same as the vendor ID which is assigned by the PCI Special Interest  
Group.  
15:0  
166  
Datasheet  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.29  
MSI_CAPID—Message Signaled Interrupts  
Capability ID  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: 90–91h  
Default Value:  
Access:  
Size:  
A005h  
RO  
16 bits  
When a device supports MSI, it can generate an interrupt request to the processor by  
writing a predefined data item (a message) to a predefined memory address.  
Default  
Value  
Bit  
Access  
Description  
Pointer to Next Capability (PNC): This contains a pointer to the next item in  
the capabilities list which is the PCI Express capability.  
15:8  
7:0  
RO  
RO  
A0h  
Capability ID (CID): Value of 05h identifies this linked list item (capability  
structure) as being for MSI registers.  
05h  
6.30  
MC—Message Control  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: 92–93h  
Default Value:  
Access:  
Size:  
0000h  
RW, RO  
16 bits  
System software can modify bits in this register, but the device is prohibited from doing  
so.  
If the device writes the same message multiple times, only one of those messages is  
ensured to be serviced. If all of them must be serviced, the device must not generate  
the same message again until the driver services the earlier one.  
Default  
Value  
Bit  
Access  
Description  
15:8  
RO  
RO  
00h  
Reserved  
64-bit Address Capable (64AC): Hardwired to 0 to indicate that the function  
does not implement the upper 32 bits of the Message Address register and is  
incapable of generating a 64-bit memory address.  
7
0b  
Multiple Message Enable (MME): System software programs this field to  
indicate the actual number of messages allocated to this device. This number  
will be equal to or less than the number actually requested.  
6:4  
RW  
RO  
RW  
000b  
The encoding is the same as for the MMC field below.  
Multiple Message Capable (MMC): System software reads this field to  
determine the number of messages being requested by this device. The value of  
000b equates to 1 message requested.  
3:1  
0
000b  
0b  
000 = 1 message requested  
All other encodings are reserved.  
MSI Enable (MSIEN): Controls the ability of this device to generate MSIs.  
0 = 0MSI will not be generated.  
1 = MSI will be generated when we receive PME messages. INTA will not be  
generated and INTA Status (PCISTS1[3]) will not be set.  
Datasheet  
167  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.31  
MA—Message Address  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: 94–97h  
Default Value:  
Access:  
Size:  
00000000h  
RO, RW  
32 bits  
Default  
Value  
Bit  
Access  
Description  
Message Address (MA): Used by system software to assign an MSI address to  
the device. The device handles an MSI by writing the padded contents of the MD  
register to this address.  
0000000  
0h  
31:2  
1:0  
RW  
RO  
Force DWord Align (FDWA): Hardwired to 0 so that addresses assigned by  
system software are always aligned on a dword address boundary.  
00b  
6.32  
MD—Message Data  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: 98–99h  
Default Value:  
Access:  
Size:  
0000h  
RW  
16 bits  
Default  
Value  
Bit  
Access  
Description  
Message Data (MD): Base message data pattern assigned by system software  
and used to handle an MSI from the device.  
15:0  
RW  
0000h  
When the device must generate an interrupt request, it writes a 32-bit value to  
the memory address specified in the MA register. The upper 16-bits are always  
set to 0. The lower 16-bits are supplied by this register.  
6.33  
PE_CAPL—PCI Express* Capability List  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: A0–A1h  
Default Value:  
Access:  
Size:  
0010h  
RO  
16 bits  
This register enumerates the PCI Express capability structure.  
Default  
Value  
Bit  
Access  
Description  
Pointer to Next Capability (PNC): This value terminates the capabilities list.  
The Virtual Channel capability and any other PCI Express specific capabilities  
that are reported via this mechanism are in a separate capabilities list located  
entirely within PCI Express Extended Configuration Space.  
15:8  
7:0  
RO  
RO  
00h  
Capability ID (CID): Identifies this linked list item (capability structure) as  
being for PCI Express registers.  
10h  
168  
Datasheet  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.34  
PE_CAP—PCI Express* Capabilities  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: A2–A3h  
Default Value:  
Access:  
Size:  
0142h  
RO, RWO  
16 bits  
This register indicates PCI Express device capabilities.  
Default  
Value  
Bit  
Access  
Description  
15:14  
13:9  
RO  
RO  
00b  
Reserved  
Interrupt Message Number (IMN): Not Applicable or Implemented.  
Hardwired to 0.  
00h  
Slot Implemented (SI):  
0 = The PCI Express Link associated with this port is connected to an integrated  
component or is disabled.  
8
RWO  
1b  
1 = The PCI Express Link associated with this port is connected to a slot.  
Device/Port Type (DPT): Hardwired to 4h to indicate root port of PCI Express  
Root Complex.  
7:4  
3:0  
RO  
RO  
4h  
2h  
PCI Express Capability Version (PCIECV): Hardwired to 2h to indicate  
compliance to the PCI Express Capabilities Register Expansion ECN.  
6.35  
DCAP—Device Capabilities  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: A4–A7h  
Default Value:  
Access:  
Size:  
00008000h  
RO  
32 bits  
This register indicates PCI Express device capabilities.  
Default  
Value  
Bit  
Access  
Description  
31:16  
RO  
RO  
0000h Reserved  
Role Based Error Reporting (RBER): Role Based Error Reporting (RBER):  
Indicates that this device implements the functionality defined in the Error  
Reporting ECN as required by the PCI Express 1.1 spec.  
15  
1b  
14:6  
5
RO  
RO  
000h  
0b  
Reserved  
Extended Tag Field Supported (ETFS): Hardwired to indicate support for 5-  
bit Tags as a Requestor.  
Phantom Functions Supported (PFS): Not Applicable or Implemented.  
Hardwired to 0.  
4:3  
2:0  
RO  
RO  
00b  
Max Payload Size (MPS): Hardwired to indicate 128B max supported payload  
for Transaction Layer Packets (TLP).  
000b  
Datasheet  
169  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.36  
DCTL—Device Control  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: A8–A9h  
Default Value:  
Access:  
Size:  
0000h  
RW, RO  
16 bits  
This register provides control for PCI Express device specific capabilities.  
The error reporting enable bits are in reference to errors detected by this device, not  
error messages received across the link. The reporting of error messages (ERR_CORR,  
ERR_NONFATAL, ERR_FATAL) received by Root Port is controlled exclusively by Root  
Port Command Register.  
Default  
Value  
Bit  
Access  
Description  
15:8  
RO  
0h  
Reserved  
Max Payload Size (MPS):  
000 = 128B max supported payload for Transaction Layer Packets (TLP). As a  
receiver, the Device must handle TLPs as large as the set value; as  
transmitter, the Device must not generate TLPs exceeding the set value.  
7:5  
RW  
000b  
All other encodings are reserved.  
Hardware will actually ignore this field. It is writeable only to support compliance  
testing.  
4
3
RO  
0b  
0b  
Reserved.  
Unsupported Request Reporting Enable (URRE): When set, this bit allows  
signaling ERR_NONFATAL, ERR_FATAL, or ERR_CORR to the Root Control register  
when detecting an unmasked Unsupported Request (UR). An ERR_CORR is  
signaled when an unmasked Advisory Non-Fatal UR is received. An ERR_FATAL  
or ERR_NONFATAL is sent to the Root Control register when an uncorrectable  
non-Advisory UR is received with the severity bit set in the Uncorrectable Error  
Severity register.  
RW  
Fatal Error Reporting Enable (FERE): When set, this bit enables signaling of  
ERR_FATAL to the Root Control register due to internally detected errors or error  
messages received across the link. Other bits also control the full scope of  
related error reporting.  
2
1
0
RW  
RW  
RW  
0b  
0b  
0b  
Non-Fatal Error Reporting Enable (NERE): When set, this bit enables  
signaling of ERR_NONFATAL to the Rool Control register due to internally  
detected errors or error messages received across the link. Other bits also  
control the full scope of related error reporting.  
Correctable Error Reporting Enable (CERE): When set, this bit enables  
signaling of ERR_CORR to the Root Control register due to internally detected  
errors or error messages received across the link. Other bits also control the full  
scope of related error reporting.  
170  
Datasheet  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.37  
DSTS—Device Status  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: AA–ABh  
Default Value:  
Access:  
Size:  
0000h  
RO, RWC  
16 bits  
Reflects status corresponding to controls in the Device Control register. The error  
reporting bits are in reference to errors detected by this device, not errors messages  
received across the link.  
Default  
Value  
Bit  
Access  
Description  
15:6  
RO  
RO  
RO  
000h  
Reserved  
Transactions Pending (TP):  
0 = All pending transactions (including completions for any outstanding non-  
posted requests on any used virtual channel) have been completed.  
1 = Indicates that the device has transaction(s) pending (including completions  
for any outstanding non-posted requests for all used Traffic Classes).  
5
4
0b  
0b  
Reserved  
Unsupported Request Detected (URD): When set, this bit indicates that the  
Device received an Unsupported Request. Errors are logged in this register  
regardless of whether error reporting is enabled or not in the Device Control  
Register.  
3
RWC  
0b  
Additionally, the Non-Fatal Error Detected bit or the Fatal Error Detected bit is  
set according to the setting of the Unsupported Request Error Severity bit. In  
production systems setting the Fatal Error Detected bit is not an option as  
support for AER will not be reported.  
Fatal Error Detected (FED): When set, this bit indicates that fatal error(s)  
were detected. Errors are logged in this register regardless of whether error  
reporting is enabled or not in the Device Control register. When Advanced Error  
Handling is enabled, errors are logged in this register regardless of the settings  
of the uncorrectable error mask register.  
2
1
0
RWC  
RWC  
RWC  
0b  
0b  
0b  
Non-Fatal Error Detected (NFED): When set, this bit indicates that non-fatal  
error(s) were detected. Errors are logged in this register regardless of whether  
error reporting is enabled or not in the Device Control register.  
When Advanced Error Handling is enabled, errors are logged in this register  
regardless of the settings of the uncorrectable error mask register.  
Correctable Error Detected (CED): When set, this bit indicates that  
correctable error(s) were detected. Errors are logged in this register regardless  
of whether error reporting is enabled or not in the Device Control register.  
When Advanced Error Handling is enabled, errors are logged in this register  
regardless of the settings of the correctable error mask register.  
Datasheet  
171  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.38  
LCAP—Link Capabilities  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: AC–AFh  
Default Value:  
Access:  
Size:  
02214D02h  
RO, RWO  
32 bits  
This register indicates PCI Express device specific capabilities.  
Default  
Value  
Bit  
Access  
Description  
Port Number (PN): This field indicates the PCI Express port number for the  
given PCI Express link. Matches the value in Element Self Description[31:24].  
31:24  
23:22  
RO  
RO  
02h  
000b  
Reserved  
Link Bandwidth Notification Capability: A value of 1b indicates support for  
the Link Bandwidth Notification status and interrupt mechanisms. This capability  
is required for all Root Ports and Switch downstream ports supporting Links  
wider than x1 and/or multiple Link speeds.  
21  
RO  
1b  
This field is not applicable and is reserved for Endpoint devices, PCI Express to  
PCI/PCI-X bridges, and Upstream Ports of Switches.  
Devices that do not implement the Link Bandwidth Notification capability must  
hardwire this bit to 0b.  
Data Link Layer Link Active Reporting Capable (DLLLARC): For a  
Downstream Port, this bit must be set to 1b if the component supports the  
optional capability of reporting the DL_Active state of the Data Link Control and  
Management State Machine.  
20  
19  
RO  
RO  
0b  
0b  
For Upstream Ports and components that do not support this optional capability,  
this bit must be hardwired to 0b.  
Surprise Down Error Reporting Capable (SDERC): For a Downstream Port,  
this bit must be set to 1b if the component supports the optional capability of  
detecting and reporting a Surprise Down error condition.  
For Upstream Ports and components that do not support this optional capability,  
this bit must be hardwired to 0b.  
Clock Power Management (CPM): A value of 1b in this bit indicates that the  
component tolerates the removal of any reference clock(s) when the link is in  
the L1 and L2/3 Ready link states. A value of 0b indicates the component does  
not have this capability and that reference clock(s) must not be removed in  
these link states.  
18  
RO  
0b  
This capability is applicable only in form factors that support "clock request"  
(CLKREQ#) capability.  
For a multi-function device, each function indicates its capability independently.  
Power Management configuration software must only permit reference clock  
removal if all functions of the multifunction device indicate a 1b in this bit.  
L1 Exit Latency (L1ELAT): Indicates the length of time this Port requires to  
complete the transition from L1 to L0. The value 010 b indicates the range of 2  
us to less than 4 us.  
17:15  
RWO  
010b  
Both bytes of this register that contain a portion of this field must be written  
simultaneously in order to prevent an intermediate (and undesired) value from  
ever existing.  
172  
Datasheet  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
Default  
Value  
Bit  
Access  
Description  
L0s Exit Latency (L0SELAT): Indicates the length of time this Port requires to  
complete the transition from L0s to L0.  
000 = Less than 64 ns  
001 = 64 ns to less than 128 ns  
010 = 128 ns to less than 256 ns  
011 = 256 ns to less than 512 ns  
100 = 512 ns to less than 1 us  
101 = 1 us to less than 2 us  
110 = 2 us – 4 us  
14:12  
RO  
100b  
111 = More than 4 us  
The actual value of this field depends on the common Clock Configuration bit  
(LCTL[6])  
Active State Link PM Support (ASLPMS): The MCH supports ASPM L0s and  
L1.  
11:10  
9:4  
RWO  
RO  
11b  
10h  
Max Link Width (MLW): This field indicates the maximum number of lanes  
supported for this link.  
10h = x16  
Max Link Speed (MLS): Supported Link Speed - This field indicates the  
supported Link speed(s) of the associated Port.  
0001b = 2.5GT/s Link speed supported  
0010b = 5.0GT/s and 2.5GT/s Link speeds supported  
All other encodings are reserved.  
3:0  
RWO  
2h  
Datasheet  
173  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.39  
LCTL—Link Control  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: B0–B1h  
Default Value:  
Access:  
Size:  
0000h  
RO, RW, RW/SC  
16 bits  
This register allows control of PCI Express link.  
Default  
Value  
Bit  
Access  
Description  
15:12  
RO  
0000b Reserved  
Link Autonomous Bandwidth Interrupt Enable: When set, this bit enables  
the generation of an interrupt to indicate that the Link Autonomous Bandwidth  
Status bit has been set.  
11  
RW  
0b  
This bit is not applicable and is reserved for Endpoint devices, PCI Express to  
PCI/PCI-X bridges, and Upstream Ports of Switches.  
Devices that do not implement the Link Bandwidth Notification capability must  
hardwire this bit to 0b.  
Link Bandwidth Management Interrupt Enable: When set, this bit enables  
the generation of an interrupt to indicate that the Link Bandwidth Management  
Status bit has been set.  
10  
RW  
RO  
0b  
0b  
This bit is not applicable and is reserved for Endpoint devices, PCI Express to  
PCI/PCI-X bridges, and Upstream Ports of Switches.  
Hardware Autonomous Width Disable: When set, this bit disables hardware  
from changing the Link width for reasons other than attempting to correct  
unreliable Link operation by reducing Link width.  
9
Devices that do not implement the ability autonomously to change Link width  
are permitted to hardwire this bit to 0b.  
The MCH does not support autonomous width change. So, this bit is "RO".  
Enable Clock Power Management (ECPM): Applicable only for form factors  
that support a "Clock Request" (CLKREQ#) mechanism, this enable functions as  
follows:  
0 = Clock power management is disabled and device must hold CLKREQ# signal  
low  
1 = When this bit is set to 1 the device is permitted to use CLKREQ# signal to  
power manage link clock according to protocol defined in appropriate form  
factor specification.  
8
RO  
0b  
Default value of this field is 0b.  
Components that do not support Clock Power Management (as indicated by a 0b  
value in the Clock Power Management bit of the Link Capabilities Register) must  
hardwire this bit to 0b.  
Extended Synch (ES):  
0 = Standard Fast Training Sequence (FTS).  
1 = Forces the transmission of additional ordered sets when exiting the L0s state  
and when in the Recovery state.  
7
RW  
0b  
This mode provides external devices (e.g., logic analyzers) monitoring the Link  
time to achieve bit and symbol lock before the link enters L0 and resumes  
communication.  
This is a test mode only and may cause other undesired side effects such as  
buffer overflows or underruns.  
174  
Datasheet  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
Default  
Value  
Bit  
Access  
Description  
Common Clock Configuration (CCC):  
0 = Indicates that this component and the component at the opposite end of this  
Link are operating with asynchronous reference clock.  
6
RW  
0b  
1 = Indicates that this component and the component at the opposite end of this  
Link are operating with a distributed common reference clock.  
The state of this bit affects the L0s Exit Latency reported in LCAP[14:12] and the  
N_FTS value advertised during link training.  
Retrain Link (RL):  
0 = Normal operation.  
1 = Full Link retraining is initiated by directing the Physical Layer LTSSM from  
L0, L0s, or L1 states to the Recovery state.  
This bit always returns 0 when read.  
5
RW/SC  
0b  
This bit is cleared automatically (no need to write a 0).  
It is permitted to write 1b to this bit while simultaneously writing modified values  
to other fields in this register. If the LTSSM is not already in Recovery or  
Configuration, the resulting Link training must use the modified values. If the  
LTSSM is already in Recovery or Configuration, the modified values are not  
required to affect the Link training that's already in progress.  
Link Disable (LD):  
0 = Normal operation.  
1 = Link is disabled. Forces the LTSSM to transition to the Disabled state (via  
Recovery) from L0, L0s, or L1 states. Link retraining happens automatically  
on 0 to 1 transition, just like when coming out of reset.  
4
RW  
0b  
Writes to this bit are immediately reflected in the value read from the bit,  
regardless of actual Link state.  
3
2
RO  
RO  
0b  
0b  
Read Completion Boundary (RCB): Hardwired to 0 to indicate 64 byte.  
Reserved  
Active State PM (ASPM): Controls the level of active state power management  
supported on the given link.  
00 = Disabled  
1:0  
RW  
00b  
01 = L0s Entry Supported  
10 = Reserved  
11 = L0s and L1 Entry Supported  
Datasheet  
175  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.40  
LSTS—Link Status  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: B2–B3h  
Default Value:  
Access:  
Size:  
1000h  
RWC, RO  
16 bits  
This register indicates PCI Express link status.  
Default  
Value  
Bit  
Access  
Description  
Link Autonomous Bandwidth Status (LABWS): This bit is set to 1b by  
hardware to indicate that hardware has autonomously changed link speed or  
width, without the port transitioning through DL_Down status, for reasons other  
than to attempt to correct unreliable link operation.  
15  
RWC  
0b  
This bit must be set if the Physical Layer reports a speed or width change was  
initiated by the downstream component that was indicated as an autonomous  
change.  
Link Bandwidth Management Status (LBWMS): This bit is set to 1b by  
hardware to indicate that either of the following has occurred without the port  
transitioning through DL_Down status:  
A link retraining initiated by a write of 1b to the Retrain Link bit has completed.  
NOTE: This bit is Set following any write of 1b to the Retrain Link bit, including  
14  
RWC  
0b  
when the Link is in the process of retraining for some other reason.  
Hardware has autonomously changed link speed or width to attempt to correct  
unreliable link operation, either through an LTSSM timeout or a higher level  
process  
This bit must be set if the Physical Layer reports a speed or width change was  
initiated by the downstream component that was not indicated as an  
autonomous change.  
Data Link Layer Link Active (Optional) (DLLLA): This bit indicates the  
status of the Data Link Control and Management State Machine. It returns a 1b  
to indicate the DL_Active state, 0b otherwise.  
13  
12  
RO  
RO  
0b  
1b  
This bit must be implemented if the corresponding Data Link Layer Active  
Capability bit is implemented. Otherwise, this bit must be hardwired to 0b.  
Slot Clock Configuration (SCC):  
0 = The device uses an independent clock irrespective of the presence of a  
reference on the connector.  
1 = The device uses the same physical reference clock that the platform  
provides on the connector.  
Link Training (LTRN): Indicates that the Physical Layer LTSSM is in the  
Configuration or Recovery state, or that 1b was written to the Retrain Link bit  
but Link training has not yet begun. Hardware clears this bit when the LTSSM  
exits the Configuration/Recovery state once Link training is complete.  
11  
10  
RO  
RO  
0b  
0b  
Undefined: The value read from this bit is undefined. In previous versions of  
this specification, this bit was used to indicate a Link Training Error. System  
software must ignore the value read from this bit. System software is permitted  
to write any value to this bit.  
176  
Datasheet  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
Default  
Value  
Bit  
Access  
Description  
Negotiated Link Width (NLW): Indicates negotiated link width. This field is  
valid only when the link is in the L0, L0s, or L1 states (after link width  
negotiation is successfully completed).  
01h = x1  
04h = ‘x4 — This is not a supported PCIe Gen2.0 link width. Link width x4 is only  
valid when PCIe Gen1.1 I/O card is used in the secondary port.  
9:4  
RO  
00h  
08h = x8 — This is not a supported PCIe Gen2.0 link width. Link width x8 is only  
valid when PCIe Gen1.1 I/O card is used in the secondary port.  
10h = x16  
All other encodings are reserved.  
Current Link Speed (CLS): This field indicates the negotiated Link speed of the  
given PCI Express Link.  
0001b = 2.5 GT/s PCI Express Link  
0010b = 5 GT/s PCI Express Link  
3:0  
RO  
0h  
All other encodings are reserved. The value in this field is undefined when the  
Link is not up.  
6.41  
SLOTCAP—Slot Capabilities  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: B4–B7h  
Default Value:  
Access:  
Size:  
00040000h  
RWO, RO  
32 bits  
PCI Express Slot related registers.  
Default  
Value  
Bit  
Access  
Description  
Physical Slot Number (PSN): Indicates the physical slot number attached to  
this Port.  
31:19  
18  
RWO  
RO  
0000h  
1b  
Reserved  
Electromechanical Interlock Present (EIP): When set to 1b, this bit  
indicates that an Electromechanical Interlock is implemented on the chassis for  
this slot.  
17  
RO  
0b  
Slot Power Limit Scale (SPLS): Specifies the scale used for the Slot Power  
Limit Value.  
00 = 1.0x  
01 = 0.1x  
16:15  
RWO  
00b  
10 = 0.01x  
11 = 0.001x  
If this field is written, the link sends a Set_Slot_Power_Limit message.  
Slot Power Limit Value (SPLV): In combination with the Slot Power Limit  
Scale value, specifies the upper limit on power supplied by slot. Power limit (in  
Watts) is calculated by multiplying the value in this field by the value in the Slot  
Power Limit Scale field.  
14:7  
6:5  
RWO  
RO  
00h  
00b  
If this field is written, the link sends a Set_Slot_Power_Limit message.  
Reserved  
Datasheet  
177  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
Default  
Value  
Bit  
Access  
Description  
Power Indicator Present (PIP): When set to 1b, this bit indicates that a  
Power Indicator is electrically controlled by the chassis for this slot.  
4
3
2
RO  
RO  
RO  
0b  
0b  
0b  
Attention Indicator Present (AIP): When set to 1b, this bit indicates that an  
Attention Indicator is electrically controlled by the chassis.  
MRL Sensor Present (MSP): When set to 1b, this bit indicates that an MRL  
Sensor is implemented on the chassis for this slot.  
Power Controller Present (PCP): When set to 1b, this bit indicates that a  
software programmable Power Controller is implemented for this slot/adapter  
(depending on form factor).  
1
0
RO  
RO  
0b  
0b  
Attention Button Present (ABP): When set to 1b, this bit indicates that an  
Attention Button for this slot is electrically controlled by the chassis.  
6.42  
SLOTCTL—Slot Control  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: B8–B9h  
Default Value:  
Access:  
Size:  
0000h  
RO, RW  
16 bits  
PCI Express Slot related registers.  
Default  
Value  
Bit  
Access  
Description  
15:13  
RO  
000b  
Reserved  
Data Link Layer State Changed Enable (DLLSCE): If the Data Link Layer  
Link Active capability is implemented, when set to 1b, this field enables software  
notification when Data Link Layer Link Active field is changed.  
12  
11  
RO  
0b  
0b  
If the Data Link Layer Link Active capability is not implemented, this bit is  
permitted to be read-only with a value of 0b.  
Electromechanical Interlock Control (EIC): If an Electromechanical  
Interlock is implemented, a write of 1b to this field causes the state of the  
interlock to toggle. A write of 0b to this field has no effect. A read to this register  
always returns a 0.  
RO  
Power Controller Control (PCC): If a Power Controller is implemented, this  
field when written sets the power state of the slot per the defined encodings.  
Reads of this field must reflect the value from the latest write, unless software  
issues a write without waiting for the previous command to complete in which  
case the read value is undefined.  
Depending on the form factor, the power is turned on/off either to the slot or  
within the adapter. Note that in some cases the power controller may  
autonomously remove slot power or not respond to a power-up request based on  
a detected fault condition, independent of the Power Controller Control setting.  
10  
RO  
0b  
The defined encodings are:  
0 = Power On  
1 = Power Off  
If the Power Controller Implemented field in the Slot Capabilities register is set  
to 0b, then writes to this field have no effect and the read value of this field is  
undefined.  
178  
Datasheet  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
Default  
Value  
Bit  
Access  
Description  
Power Indicator Control (PIC): If a Power Indicator is implemented, writes to  
this field set the Power Indicator to the written state. Reads of this field must  
reflect the value from the latest write, unless software issues a write without  
waiting for the previous command to complete in which case the read value is  
undefined.  
00 = Reserved  
01 = On  
9:8  
RO  
00b  
10 = Blink  
11 = Off  
If the Power Indicator Present bit in the Slot Capabilities register is 0b, this field  
is permitted to be read-only with a value of 00b.  
Attention Indicator Control (AIC): If an Attention Indicator is implemented,  
writes to this field set the Attention Indicator to the written state.  
Reads of this field must reflect the value from the latest write, unless software  
issues a write without waiting for the previous command to complete in which  
case the read value is undefined. If the indicator is electrically controlled by  
chassis, the indicator is controlled directly by the downstream port through  
implementation specific mechanisms.  
7:6  
RO  
00b  
00 = Reserved  
01 = On  
10 = Blink  
11 = Off  
If the Attention Indicator Present bit in the Slot Capabilities register is 0b, this  
field is permitted to be read only with a value of 00b.  
5:4  
3
RO  
00b  
0b  
Reserved  
Presence Detect Changed Enable (PDCE): When set to 1b, this bit enables  
software notification on a presence detect changed event.  
RW  
MRL Sensor Changed Enable (MSCE): When set to 1b, this bit enables  
software notification on a MRL sensor changed event.  
2
RO  
0b  
Default value of this field is 0b. If the MRL Sensor Present field in the Slot  
Capabilities register is set to 0b, this bit is permitted to be read-only with a value  
of 0b.  
Power Fault Detected Enable (PFDE): When set to 1b, this bit enables  
software notification on a power fault event.  
1
0
RO  
RO  
0b  
0b  
Default value of this field is 0b. If Power Fault detection is not supported, this bit  
is permitted to be read-only with a value of 0b  
Button Pressed Enable (ABPE): When set to 1b, this bit enables software  
notification on an attention button pressed event.  
Datasheet  
179  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.43  
SLOTSTS—Slot Status  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: BA–BBh  
Default Value:  
Access:  
Size:  
0000h  
RO, RWC  
16 bits  
PCI Express Slot related registers.  
Default  
Value  
Bit  
Access  
Description  
15:7  
RO  
RO  
0000000b Reserved  
Presence Detect State (PDS): This bit indicates the presence of an adapter  
in the slot, reflected by the logical "OR" of the Physical Layer in-band presence  
detect mechanism and, if present, any out-of-band presence detect  
mechanism defined for the slot's corresponding form factor. Note that the in-  
band presence detect mechanism requires that power be applied to an adapter  
for its presence to be detected.  
6
0b  
0 = Slot Empty  
1 = Card Present in Slot  
This register must be implemented on all Downstream Ports that implement  
slots. For Downstream Ports not connected to slots (where the Slot  
Implemented bit of the PCI Express Capabilities Register is 0b), this bit must  
return 1b.  
5:4  
3
RO  
00b  
0b  
Reserved  
Detect Changed (PDC): This bit is set when the value reported in Presence  
Detect State is changed.  
RWC  
MRL Sensor Changed (MSC): If an MRL sensor is implemented, this bit is set  
when a MRL Sensor state change is detected. If an MRL sensor is not  
implemented, this bit must not be set.  
2
1
0
RO  
RO  
RO  
0b  
0b  
0b  
Power Fault Detected (PFD): If a Power Controller that supports power fault  
detection is implemented, this bit is set when the Power Controller detects a  
power fault at this slot. Note that, depending on hardware capability, it is  
possible that a power fault can be detected at any time, independent of the  
Power Controller Control setting or the occupancy of the slot. If power fault  
detection is not supported, this bit must not be set.  
Attention Button Pressed (ABP): If an Attention Button is implemented,  
this bit is set when the attention button is pressed. If an Attention Button is not  
supported, this bit must not be set.  
180  
Datasheet  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.44  
RCTL—Root Control  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: BC–BDh  
Default Value:  
Access:  
Size:  
0000h  
RO, RW  
16 bits  
This register allows control of PCI Express Root Complex specific parameters. The  
system error control bits in this register determine if corresponding SERRs are  
generated when our device detects an error (reported in this device's Device Status  
register) or when an error message is received across the link. Reporting of SERR as  
controlled by these bits takes precedence over the SERR Enable in the PCI Command  
Register.  
Default  
Value  
Bit  
Access  
Description  
15:4  
RO  
000h  
Reserved  
PME Interrupt Enable (PMEIE):  
0 = No interrupts are generated as a result of receiving PME messages.  
1 = Enables interrupt generation upon receipt of a PME message as reflected in  
the PME Status bit of the Root Status Register. A PME interrupt is also  
generated if the PME Status bit of the Root Status Register is set when this  
bit is set from a cleared state.  
3
2
1
0
RW  
0b  
0b  
0b  
0b  
System Error on Fatal Error Enable (SEFEE): Controls the Root Complex's  
response to fatal errors.  
0 = No SERR generated on receipt of fatal error.  
RW  
RW  
RW  
1 = Indicates that an SERR should be generated if a fatal error is reported by  
any of the devices in the hierarchy associated with this Root Port, or by the  
Root Port itself.  
System Error on Non-Fatal Uncorrectable Error Enable (SENFUEE):  
Controls the Root Complex's response to non-fatal errors.  
0 = No SERR generated on receipt of non-fatal error.  
1 = Indicates that an SERR should be generated if a non-fatal error is reported  
by any of the devices in the hierarchy associated with this Root Port, or by  
the Root Port itself.  
System Error on Correctable Error Enable (SECEE): Controls the Root  
Complex's response to correctable errors.  
0 = No SERR generated on receipt of correctable error.  
1 = Indicates that an SERR should be generated if a correctable error is reported  
by any of the devices in the hierarchy associated with this Root Port, or by  
the Root Port itself.  
Datasheet  
181  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.45  
RSTS—Root Status  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: C0–C3h  
Default Value:  
Access:  
Size:  
00000000h  
RO, RWC  
32 bits  
This register provides information about PCI Express Root Complex specific  
parameters.  
Default  
Value  
Bit  
Access  
Description  
31:18  
RO  
0000h Reserved  
PME Pending (PMEP): Indicates that another PME is pending when the PME  
Status bit is set. When the PME Status bit is cleared by software; the PME is  
delivered by hardware by setting the PME Status bit again and updating the  
Requestor ID appropriately. The PME pending bit is cleared by hardware if no  
more PMEs are pending.  
17  
RO  
0b  
PME Status (PMES): Indicates that PME was asserted by the requestor ID  
indicated in the PME Requestor ID field. Subsequent PMEs are kept pending until  
the status register is cleared by writing a 1 to this field.  
16  
RWC  
RO  
0b  
PME Requestor ID (PMERID): Indicates the PCI requestor ID of the last PME  
requestor.  
15:0  
0000h  
6.46  
PELC—PCI Express Legacy Control  
B/D/F/Type:  
0/1/0/PCI  
Address Offset: EC–EFh  
Default Value:  
Access:  
Size:  
00000000h  
RO, RW  
32 bits  
This register controls functionality that is needed by Legacy (non-PCI Express aware)  
OSs during run time.  
Default  
Value  
Bit  
Access  
Description  
0000000  
0h  
31:3  
RO  
Reserved  
PME GPE Enable (PMEGPE):  
0 = Do not generate GPE PME message when PME is received.  
1 = Generate a GPE PME message when PME is received (Assert_PMEGPE and  
Deassert_PMEGPE messages on DMI). This enables the MCH to support  
PMEs on the PCI Express port under legacy OSs.  
2
1
RW  
RO  
0b  
0b  
Reserved  
General Message GPE Enable (GENGPE):  
0 = Do not forward received GPE assert/de-assert messages.  
1 = Forward received GPE assert/de-assert messages. These general GPE  
message can be received via the PCI Express port from an external Intel  
device and will be subsequently forwarded to the ICH (via Assert_GPE and  
Deassert_GPE messages on DMI).  
0
RW  
0b  
182  
Datasheet  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.47  
VCECH—Virtual Channel Enhanced Capability  
Header  
B/D/F/Type:  
0/1/0/MMR  
Address Offset: 100–103h  
Default Value:  
Access:  
Size:  
14010002h  
RO  
32 bits  
This register indicates PCI Express device Virtual Channel capabilities. Extended  
capability structures for PCI Express devices are located in PCI Express extended  
configuration space and have different field definitions than standard PCI capability  
structures.  
Default  
Value  
Bit  
Access  
Description  
Pointer to Next Capability (PNC): The Link Declaration Capability is the next  
in the PCI Express extended capabilities list.  
31:20  
RO  
RO  
RO  
140h  
PCI Express Virtual Channel Capability Version (PCIEVCCV): Hardwired to  
1 to indicate compliances with the 1.1 version of the PCI Express specification.  
19:16  
15:0  
1h  
Note: This version does not change for 2.0 compliance.  
Extended Capability ID (ECID): Value of 0002 h identifies this linked list item  
(capability structure) as being for PCI Express Virtual Channel registers.  
0002h  
6.48  
PVCCAP1—Port VC Capability Register 1  
B/D/F/Type:  
0/1/0/MMR  
Address Offset: 104–107h  
Default Value:  
Access:  
Size:  
00000000h  
RO  
32 bits  
This register describes the configuration of PCI Express Virtual Channels associated  
with this port.  
Default  
Value  
Bit  
Access  
Description  
31:7  
RO  
00000h Reserved  
Low Priority Extended VC Count (LPEVCC): Indicates the number of  
(extended) Virtual Channels in addition to the default VC belonging to the low-  
priority VC (LPVC) group that has the lowest priority with respect to other VC  
resources in a strict-priority VC Arbitration.  
6:4  
RO  
000b  
The value of 0 in this field implies strict VC arbitration.  
3
RO  
RO  
0b  
Reserved  
Extended VC Count (EVCC): Indicates the number of (extended) Virtual  
Channels in addition to the default VC supported by the device.  
2:0  
000b  
Datasheet  
183  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.49  
PVCCAP2—Port VC Capability Register 2  
B/D/F/Type:  
0/1/0/MMR  
Address Offset: 108–10Bh  
Default Value:  
Access:  
Size:  
00000000h  
RO  
32 bits  
This register describes the configuration of PCI Express Virtual Channels associated  
with this port.  
Default  
Value  
Bit  
Access  
Description  
VC Arbitration Table Offset (VCATO): Indicates the location of the VC  
Arbitration Table. This field contains the zero-based offset of the table in  
DQWORDS (16 bytes) from the base address of the Virtual Channel Capability  
Structure. A value of 0 indicates that the table is not present (due to fixed VC  
priority).  
31:24  
RO  
RO  
00h  
23:0  
0000h Reserved  
6.50  
PVCCTL—Port VC Control  
B/D/F/Type:  
0/1/0/MMR  
Address Offset: 10C–10Dh  
Default Value:  
Access:  
Size:  
0000h  
RO, RW  
16 bits  
Default  
Value  
Bit  
Access  
Description  
15:4  
RO  
RW  
RO  
000h  
Reserved  
VC Arbitration Select (VCAS): This field will be programmed by software to  
the only possible value as indicated in the VC Arbitration Capability field. Since  
there is no other VC supported than the default, this field is reserved.  
3:1  
0
000b  
0b  
Reserved  
184  
Datasheet  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.51  
VC0RCAP—VC0 Resource Capability  
B/D/F/Type:  
0/1/0/MMR  
Address Offset: 110–113h  
Default Value:  
Access:  
Size:  
00000001h  
RO  
32 bits  
Default  
Bit  
Access  
Description  
Value  
0000h Reserved  
Reject Snoop Transactions (RSNPT):  
31:16  
RO  
RO  
RO  
0 = Transactions with or without the No Snoop bit set within the Transaction  
Layer Packet header are allowed on this VC.  
1 = When Set, any transaction for which the No Snoop attribute is applicable but  
is not Set within the TLP Header will be rejected as an Unsupported Request.  
15  
0b  
14:8  
0000h Reserved  
Port Arbitration Capability: Indicates types of Port Arbitration supported by  
the VC resource. This field is valid for all Switch Ports, Root Ports that support  
peer-to-peer traffic, and RCRBs, but not for PCI Express Endpoint devices or  
Root Ports that do not support peer to peer traffic.  
Each bit location within this field corresponds to a Port Arbitration Capability  
defined below. When more than one bit in this field is Set, it indicates that the  
VC resource can be configured to provide different arbitration services.  
Software selects among these capabilities by writing to the Port Arbitration  
Select field (see below).  
Defined bit positions are:  
7:0  
RO  
01h  
Bit[0]  
= Default = 01b; Non-configurable hardware-fixed arbitration  
scheme, e.g., Round Robin (RR)  
Bit[1]  
Bit[2]  
Bit[3]  
Bit[4]  
Bit[5]  
= Weighted Round Robin (WRR) arbitration with 32 phases  
= WRR arbitration with 64 phases  
= WRR arbitration with 128 phases  
= Time-based WRR with 128 phases  
= WRR arbitration with 256 phases  
Bits[6:7] = Reserved  
MCH default indicates "Non-configurable hardware-fixed arbitration scheme".  
Datasheet  
185  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.52  
VC0RCTL—VC0 Resource Control  
B/D/F/Type:  
0/1/0/MMR  
Address Offset: 114–117h  
Default Value:  
Access:  
Size:  
800000FFh  
RO, RW  
32 bits  
This register controls the resources associated with PCI Express Virtual Channel 0.  
Default  
Value  
Bit  
Access  
Description  
VC0 Enable (VC0E): For VC0, this is hardwired to 1 and read only as VC0 can  
never be disabled.  
31  
RO  
RO  
RO  
RO  
1b  
0h  
30:27  
26:24  
23:20  
Reserved  
VC0 ID (VC0ID): Assigns a VC ID to the VC resource. For VC0, this is  
hardwired to 0 and read only.  
000b  
0000h Reserved  
Port Arbitration Select: This field configures the VC resource to provide a  
particular Port Arbitration service. This field is valid for RCRBs, Root Ports that  
support peer to peer traffic, and Switch Ports, but not for PCI Express Endpoint  
devices or Root Ports that do not support peer to peer traffic.  
19:17  
16:8  
RW  
RO  
000b  
00h  
The permissible value of this field is a number corresponding to one of the  
asserted bits in the Port Arbitration Capability field of the VC resource.  
Reserved  
TC/VC0 Map (TCVC0M): Indicates the TCs (Traffic Classes) that are mapped to  
the VC resource. Bit locations within this field correspond to TC values. For  
example, when bit 7 is set in this field, TC7 is mapped to this VC resource. When  
more than one bit in this field is set, it indicates that multiple TCs are mapped to  
the VC resource. In order to remove one or more TCs from the TC/VC Map of an  
enabled VC, software must ensure that no new or outstanding transactions with  
the TC labels are targeted at the given Link.  
7:1  
0
RW  
RO  
7Fh  
1b  
TC0/VC0 Map (TC0VC0M): Traffic Class 0 is always routed to VC0.  
186  
Datasheet  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.53  
VC0RSTS—VC0 Resource Status  
B/D/F/Type:  
0/1/0/MMR  
Address Offset: 11A–11Bh  
Default Value:  
Access:  
Size:  
0002h  
RO  
16 bits  
This register reports the Virtual Channel specific status.  
Default  
Value  
Bit  
Access  
Description  
15:2  
RO  
RO  
RO  
0000h Reserved  
VC0 Negotiation Pending (VC0NP):  
0 = The VC negotiation is complete.  
1 = The VC resource is still in the process of negotiation (initialization or  
disabling).  
This bit indicates the status of the process of Flow Control initialization. It is set  
by default on Reset, as well as whenever the corresponding Virtual Channel is  
Disabled or the Link is in the DL_Down state. It is cleared when the link  
successfully exits the FC_INIT2 state.  
1
1b  
0b  
Before using a Virtual Channel, software must check whether the VC Negotiation  
Pending fields for that Virtual Channel are cleared in both Components on a Link.  
0
Reserved  
6.54  
RCLDECH—Root Complex Link Declaration  
Enhanced  
B/D/F/Type:  
0/1/0/MMR  
Address Offset: 140–143h  
Default Value:  
Access:  
Size:  
00010005h  
RO  
32 bits  
This capability declares links from this element (PCI Express) to other elements of the  
root complex component to which it belongs. See PCI Express specification for link/  
topology declaration requirements.  
Default  
Value  
Bit  
Access  
Description  
Pointer to Next Capability (PNC): This is the last capability in the PCI Express  
extended capabilities list.  
31:20  
RO  
RO  
RO  
000h  
Link Declaration Capability Version (LDCV): Hardwired to 1 to indicate  
compliances with the 1.1 version of the PCI Express specification.  
19:16  
15:0  
1h  
Note: This version does not change for 2.0 compliance.  
Extended Capability ID (ECID): Value of 0005h identifies this linked list item  
(capability structure) as being for PCI Express Link Declaration Capability.  
0005h  
Datasheet  
187  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.55  
ESD—Element Self Description  
B/D/F/Type:  
0/1/0/MMR  
Address Offset: 144–147h  
Default Value:  
Access:  
Size:  
02000100h  
RO, RWO  
32 bits  
This register provides information about the root complex element containing this Link  
Declaration Capability.  
Default  
Value  
Bit  
Access  
Description  
Port Number (PN): Specifies the port number associated with this element  
with respect to the component that contains this element. This port number  
value is utilized by the egress port of the component to provide arbitration to  
this Root Complex Element.  
31:24  
RO  
02h  
Component ID (CID): Identifies the physical component that contains this  
Root Complex Element.  
23:16  
15:8  
RWO  
RO  
00h  
01h  
Number of Link Entries (NLE): Indicates the number of link entries following  
the Element Self Description. This field reports 1 (to Egress port only as we don't  
report any peer-to-peer capabilities in our topology).  
7:4  
3:0  
RO  
RO  
0h  
0h  
Reserved  
Element Type (ET): Indicates Configuration Space Element.  
6.56  
LE1D—Link Entry 1 Description  
B/D/F/Type:  
0/1/0/MMR  
Address Offset: 150–153h  
Default Value:  
Access:  
Size:  
00000000h  
RO, RWO  
32 bits  
This register provides the first part of a Link Entry which declares an internal link to  
another Root Complex Element.  
Default  
Value  
Bit  
Access  
Description  
Target Port Number (TPN): Specifies the port number associated with the  
element targeted by this link entry (Egress Port). The target port number is with  
respect to the component that contains this element as specified by the target  
component ID.  
31:24  
RO  
00h  
Target Component ID (TCID): Identifies the physical or logical component  
that is targeted by this link entry.  
23:16  
15:2  
1
RWO  
RO  
00h  
0000h Reserved  
Link Type (LTYP): Indicates that the link points to memory-mapped space (for  
RCRB). The link address specifies the 64-bit base address of the target RCRB.  
RO  
0b  
Link Valid (LV):  
0
RWO  
0b  
0 = Link Entry is not valid and will be ignored.  
1 = Link Entry specifies a valid link.  
188  
Datasheet  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
6.57  
LE1A—Link Entry 1 Address  
B/D/F/Type:  
0/1/0/MMR  
Address Offset: 158-15Fh  
Default Value:  
Access:  
Size:  
0000000000000000h  
RO, RWO  
64 bits  
This register provides the second part of a Link Entry which declares an internal link to  
another Root Complex Element.  
Default  
Value  
Bit  
Access  
Description  
0000000  
0h  
63:32  
RO  
Reserved  
Link Address (LA): Memory mapped base address of the RCRB that is the  
target element (Egress Port) for this link entry.  
31:12  
11:0  
RWO  
RO  
00000h  
000h  
Reserved  
6.58  
PESSTS—PCI Express* Sequence Status  
B/D/F/Type:  
0/1/0/MMR  
Address Offset: 218–21Fh  
Default Value:  
Access:  
Size:  
0000000000000FFFh  
RO  
64 bits  
PCI Express status reporting that is required by the PCI Express specification.  
Default  
Value  
Bit  
Access  
Description  
63:60  
RO  
RO  
0h  
Reserved  
Next Transmit Sequence Number (NTSN): Value of the NXT_TRANS_SEQ  
counter. This counter represents the transmit Sequence number to be applied to  
the next Transaction Layer Packet to be transmitted onto the Link for the first  
time.  
59:48  
000h  
47:44  
43:32  
31:28  
27:16  
RO  
RO  
RO  
RO  
0h  
000h  
0h  
Reserved  
Next Packet Sequence Number (NPSN): Packet sequence number to be  
applied to the next Transaction Layer Packet to be transmitted or re-transmitted  
onto the Link.  
Reserved  
Next Receive Sequence Number (NRSN): This is the sequence number  
associated with the Transaction Layer Packet that is expected to be received  
next.  
000h  
15:12  
11:0  
RO  
RO  
0h  
Reserved  
Last Acknowledged Sequence Number (LASN): This is the sequence  
number associated with the last acknowledged Transaction Layer Packet.  
FFFh  
Datasheet  
189  
Host-Primary PCI Express* Bridge Registers (D1:F0)  
§ §  
190  
Datasheet  
Intel Manageability Engine Subsystem PCI (D3:F0,F3)  
7
Intel Manageability Engine  
Subsystem PCI (D3:F0,F3)  
This chapter provides the register descriptions for Device 3 (D3), Functions 0 (F0) and  
3 (F3).  
7.1  
HECI Function in ME Subsystem (D3:F0)  
Device 3 contains registers for the Intel Manageability Engine. The table below lists the  
PCI configuration registers in order of ascending offset address.  
Note:  
The following sections describe Device 3 configuration registers only.  
Table 13.  
HECI Function in ME Subsystem (D3:F0) Register Address Map  
Address  
Offset  
Default  
Value  
Symbol  
Register Name  
Access  
0–3h  
4–5h  
6–7h  
ID  
Identifiers  
Command  
29E48086h  
0000h  
RO  
RO, RW  
RO  
CMD  
STS  
Device Status  
0010h  
See register  
description  
8h  
RID  
Revision ID  
RO  
9–Bh  
Ch  
CC  
CLS  
Class Code  
0C8001h  
00h  
RO  
RO  
RO  
RO  
Cache Line Size  
Master Latency Timer  
Header Type  
Dh  
MLT  
00h  
Eh  
HTYPE  
80h  
0000000000  
000004h  
10–17h  
HECI_MBAR HECI MMIO Base Address  
RO, RW  
2C–2Fh  
34h  
SS  
CAP  
INTR  
MGNT  
MLAT  
HFS  
PID  
Sub System Identifiers  
Capabilities Pointer  
00000000h  
50h  
RWO  
RO  
3C–3Dh  
3Eh  
Interrupt Information  
0100h  
00h  
RO, RW  
RO  
Minimum Grant  
3Fh  
Maximum Latency  
00h  
RO  
40–43h  
50–51h  
52–53h  
Host Firmware Status  
00000000h  
8C01h  
C803h  
RO  
PCI Power Management Capability ID  
PCI Power Management Capabilities  
RO  
PC  
RO  
PCI Power Management Control And  
Status  
RWC, RO,  
RW  
54–55h  
8C–8Dh  
8E–8Fh  
PMCS  
MID  
MC  
0008h  
0005h  
0080h  
Message Signaled Interrupt Identifiers  
RO  
Message Signaled Interrupt Message  
Control  
RO, RW  
Message Signaled Interrupt Message  
Address  
90–93h  
94–97h  
MA  
00000000h  
00000000h  
RW, RO  
RW  
Message Signaled Interrupt Upper  
Address (Optional)  
MUA  
Message Signaled Interrupt Message  
Data  
98–99h  
A0h  
MD  
0000h  
00h  
RW  
RW  
HIDM  
HECI Interrupt Delivery Mode  
Datasheet  
191  
Intel Manageability Engine Subsystem PCI (D3:F0,F3)  
7.1.1  
ID—Identifiers  
B/D/F/Type:  
0/3/0/PCI  
Address Offset: 0–3h  
Default Value:  
Access:  
Size:  
29E48086h  
RO  
32 bits  
Default  
Value  
Bit  
Access  
Description  
Device ID (DID): Device ID (DID): This field indicates what device number  
assigned by Intel.  
31:16  
15:0  
RO  
RO  
29E4h  
Vendor ID (VID): Vendor ID (VID): This field indicates Intel is the vendor,  
assigned by the PCI SIG.  
8086h  
7.1.2  
CMD—Command  
B/D/F/Type:  
0/3/0/PCI  
Address Offset: 4–5h  
Default Value:  
Access:  
Size:  
0000h  
RO, RW  
16 bits  
Default  
Value  
Bit  
Access  
Description  
15:11  
10  
RO  
RW  
RO  
00000b Reserved  
Interrupt Disable (ID): Disables this device from generating PCI line based  
interrupts. This bit does not have any effect on MSI operation.  
0b  
9:3  
00h  
Reserved  
Bus Master Enable (BME): Controls the HECI host controller's ability to act as  
a system memory master for data transfers. When this bit is cleared, HECI bus  
master activity stops and any active DMA engines return to an idle condition.  
This bit is made visible to firmware through the H_PCI_CSR register, and  
changes to this bit may be configured by the H_PCI_CSR register to generate an  
ME MSI.  
2
RW  
0b  
0 = HECI is blocked from generating MSI to the host processor.  
Note that this bit does not block HECI accesses to ME-UMA, i.e. writes or reads  
to the host and ME circular buffers through the read window and write window  
registers still cause ME backbone transactions to ME-UMA.  
Memory Space Enable (MSE): Controls access to the HECI host controller’s  
memory mapped register space.  
1
0
RW  
RO  
0b  
0b  
Reserved  
192  
Datasheet  
Intel Manageability Engine Subsystem PCI (D3:F0,F3)  
7.1.3  
STS—Device Status  
B/D/F/Type:  
0/3/0/PCI  
Address Offset: 6–7h  
Default Value:  
Access:  
Size:  
0010h  
RO  
16 bits  
Default  
Value  
Bit  
Access  
Description  
15:5  
4
RO  
RO  
0h  
Reserved  
Capabilities List (CL): Indicates the presence of a capabilities list, hardwired to  
1.  
1b  
Interrupt Status (IS): Indicates the interrupt status of the device  
1 = Asserted  
3
RO  
RO  
0b  
2:0  
000b  
Reserved  
7.1.4  
RID—Revision ID  
B/D/F/Type:  
0/3/0/PCI  
Address Offset: 8h  
Default Value:  
Access:  
Size:  
see table below  
RO  
8 bits  
Default  
Value  
Bit  
Access  
Description  
Revision ID (RID): This field indicates stepping of the HECI host controller.  
Refer to the Intel® X38 Express Chipset Specification Update for the value of  
this register.  
See  
Description  
7:0  
RO  
7.1.5  
CC—Class Code  
B/D/F/Type:  
0/3/0/PCI  
Address Offset: 9–Bh  
Default Value:  
Access:  
Size:  
0C8001h  
RO  
24 bits  
Default  
Value  
Bit  
Access  
Description  
Base Class Code (BCC): Indicates the base class code of the HECI host  
controller device.  
23:16  
15:8  
7:0  
RO  
RO  
RO  
0ch  
Sub Class Code (SCC): Indicates the sub class code of the HECI host controller  
device.  
80h  
01h  
Programming Interface (PI): Indicates the programming interface of the  
HECI host controller device.  
Datasheet  
193  
Intel Manageability Engine Subsystem PCI (D3:F0,F3)  
7.1.6  
CLS—Cache Line Size  
B/D/F/Type:  
0/3/0/PCI  
Address Offset: Ch  
Default Value:  
Access:  
Size:  
00h  
RO  
8 bits  
Default  
Value  
Bit  
Access  
RO  
Description  
7:0  
00h  
Cache Line Size (CLS): Not implemented, hardwired to 0.  
7.1.7  
MLT—Master Latency Timer  
B/D/F/Type:  
0/3/0/PCI  
Address Offset: Dh  
Default Value:  
Access:  
Size:  
00h  
RO  
8 bits  
Default  
Value  
Bit  
Access  
RO  
Description  
Master Latency Timer (MLT): Not implemented, hardwired to 0.  
7:0  
00h  
7.1.8  
HTYPE—Header Type  
B/D/F/Type:  
0/3/0/PCI  
Address Offset: Eh  
Default Value:  
Access:  
Size:  
80h  
RO  
8 bits  
Default  
Value  
Bit  
Access  
Description  
Multi-Function Device (MFD): Indicates the HECI host controller is part of a  
multi-function device.  
7
RO  
RO  
1b  
Header Layout (HL): Indicates that the HECI host controller uses a target  
device layout.  
6:0  
0000000b  
194  
Datasheet  
Intel Manageability Engine Subsystem PCI (D3:F0,F3)  
7.1.9  
HECI_MBAR—HECI MMIO Base Address  
B/D/F/Type:  
0/3/0/PCI  
Address Offset: 10–17h  
Default Value:  
Access:  
Size:  
0000000000000004h  
RO, RW  
64 bits  
Default  
Value  
Bit  
Access  
Description  
0000000  
63:4  
RW  
0000000 Base Address (BA): Base address of register memory space.  
0h  
3
RO  
RO  
0b  
Prefetchable (PF): Indicates that this range is not pre-fetchable  
Type (TP): Indicates that this range can be mapped anywhere in 64-bit address  
space.  
2:1  
10b  
Resource Type Indicator (RTE): Indicates a request for register memory  
space.  
0
RO  
0b  
7.1.10  
SS—Sub System Identifiers  
B/D/F/Type:  
0/3/0/PCI  
Address Offset: 2C–2Fh  
Default Value:  
Access:  
Size:  
00000000h  
RWO  
32 bits  
Default  
Value  
Bit  
Access  
Description  
Subsystem ID (SSID): Indicates the sub-system identifier. This field should be  
31:16  
RWO  
RWO  
0000h programmed by BIOS during boot-up. Once written, this register becomes Read  
Only. This field can only be cleared by PLTRST#.  
Subsystem Vendor ID (SSVID): Indicates the sub-system vendor identifier.  
0000h This field should be programmed by BIOS during boot-up. Once written, this  
register becomes Read Only. This field can only be cleared by PLTRST#.  
15:0  
Datasheet  
195  
Intel Manageability Engine Subsystem PCI (D3:F0,F3)  
7.1.11  
CAP—Capabilities Pointer  
B/D/F/Type:  
0/3/0/PCI  
Address Offset: 34h  
Default Value:  
Access:  
Size:  
50h  
RO  
8 bits  
Default  
Value  
Bit  
Access  
Description  
Capability Pointer (CP): Indicates the first capability pointer offset. It points  
to the PCI power management capability offset.  
7:0  
RO  
50h  
7.1.12  
INTR—Interrupt Information  
B/D/F/Type:  
0/3/0/PCI  
Address Offset: 3C–3Dh  
Default Value:  
Access:  
Size:  
0100h  
RO, RW  
16 bits  
Default  
Value  
Bit  
Access  
Description  
Interrupt Pin (IPIN): This indicates the interrupt pin the HECI host controller  
uses. The value of 01h selects INTA# interrupt pin. Note: As HECI is an internal  
device in the MCH, the INTA# pin is implemented as an INTA# message to the  
ICH.  
15:8  
RO  
01h  
Interrupt Line (ILINE): Software written value to indicate which interrupt line  
(vector) the interrupt is connected to. No hardware action is taken on this  
register.  
7:0  
RW  
00h  
7.1.13  
MGNT—Minimum Grant  
B/D/F/Type:  
0/3/0/PCI  
Address Offset: 3Eh  
Default Value:  
Access:  
Size:  
00h  
RO  
8 bits  
Default  
Value  
Bit  
Access  
RO  
Description  
Grant (GNT): Not implemented, hardwired to 0.  
7:0  
00h  
196  
Datasheet  
Intel Manageability Engine Subsystem PCI (D3:F0,F3)  
7.1.14  
MLAT—Maximum Latency  
B/D/F/Type:  
0/3/0/PCI  
Address Offset: 3Fh  
Default Value:  
Access:  
Size:  
00h  
RO  
8 bits  
Default  
Value  
Bit  
Access  
RO  
Description  
Latency (LAT): Not implemented, hardwired to 0.  
7:0  
00h  
7.1.15  
HFS—Host Firmware Status  
B/D/F/Type:  
0/3/0/PCI  
Address Offset: 40–43h  
Default Value:  
Access:  
Size:  
00000000h  
RO  
32 bits  
Default  
Value  
Bit  
Access  
Description  
Firmware Status Host Access (FS_HA): Indicates current status of the  
firmware for the HECI controller. This field is the host's read only access to the  
FS field in the ME Firmware Status AUX register.  
0000000  
0h  
31:0  
RO  
7.1.16  
PID—PCI Power Management Capability ID  
B/D/F/Type:  
0/3/0/PCI  
Address Offset: 50–51h  
Default Value:  
Access:  
Size:  
8C01h  
RO  
16 bits  
Default  
Value  
Bit  
Access  
Description  
Next Capability (NEXT): Indicates the location of the next capability item in  
the list. This is the Message Signaled Interrupts capability.  
15:8  
7:0  
RO  
RO  
8Ch  
01h  
Cap ID (CID): Indicates that this pointer is a PCI power management.  
Datasheet  
197  
Intel Manageability Engine Subsystem PCI (D3:F0,F3)  
7.1.17  
PC—PCI Power Management Capabilities  
B/D/F/Type:  
0/3/0/PCI  
Address Offset: 52–53h  
Default Value:  
Access:  
Size:  
C803h  
RO  
16 bits  
Default  
Value  
Bit  
Access  
Description  
PME_Support (PSUP): Indicates the states that can generate PME#.  
15:11  
RO  
11001b  
HECI can assert PME# from any D-state except D1 or D2 which are not  
supported by HECI.  
10  
9
RO  
RO  
0b  
0b  
D2_Support (D2S): The D2 state is not supported for the HECI host controller.  
D1_Support (D1S): The D1 state is not supported for the HECI host controller.  
Aux_Current (AUXC): Reports the maximum Suspend well current required  
when in the D3COLD state.  
8:6  
5
RO  
RO  
000b  
0b  
Device Specific Initialization (DSI): Indicates whether device-specific  
initialization is required.  
4
3
RO  
RO  
0b  
0b  
Reserved  
PME Clock (PMEC): Indicates that PCI clock is not required to generate PME#.  
Version (VS): Indicates support for Revision 1.2 of the PCI Power Management  
Specification.  
2:0  
RO  
011b  
7.1.18  
PMCS—PCI Power Management Control And Status  
B/D/F/Type:  
0/3/0/PCI  
Address Offset: 54–55h  
Default Value:  
Access:  
Size:  
0008h  
RWC, RO, RW  
16 bits  
Default  
Value  
Bit  
Access  
Description  
PME Status (PMES): The PME Status bit in HECI space can be set to '1' by ME  
FW performing a write into AUX register to set PMES.  
This bit is cleared by host processor writing a '1' to it.  
ME cannot clear this bit.  
15  
RWC  
0b  
Host processor writes with value '0' have no effect on this bit.  
This bit is reset to '0' by MRST#  
14:9  
8
RO  
RW  
RO  
000000b Reserved  
PME Enable (PMEE): This bit is read/write, under control of host SW. It does  
not directly have an effect on PME events. However, this bit is shadowed into  
AUX space so ME FW can monitor it. The ME FW is responsible for ensuring that  
FW does not cause the PME-S bit to transition to '1' while the PMEE bit is '0',  
indicating that host SW had disabled PME.  
0b  
This bit is reset to '0' by MRST#  
7:4  
0000b Reserved  
198  
Datasheet  
Intel Manageability Engine Subsystem PCI (D3:F0,F3)  
Default  
Value  
Bit  
Access  
Description  
No_Soft_Reset (NSR): This bit indicates that when the HECI host controller is  
transitioning from D3hot to D0 due to power state command, it does not perform  
an internal reset.  
3
2
RO  
RO  
1b  
0b  
Reserved  
Power State (PS): This field is used both to determine the current power state  
of the HECI host controller and to set a new power state. The values are:  
00 = D0 state  
1:0  
RW  
00b  
11 = D3HOT state  
The D1 and D2 states are not supported for this HECI host controller. When in  
the D3HOT state, the HBA’s configuration space is available, but the register  
memory spaces are not. Additionally, interrupts are blocked.  
7.1.19  
MID—Message Signaled Interrupt Identifiers  
B/D/F/Type:  
0/3/0/PCI  
Address Offset: 8C–8Dh  
Default Value:  
Access:  
Size:  
0005h  
RO  
16 bits  
Default  
Value  
Bit  
Access  
Description  
Next Pointer (NEXT): Indicates the next item in the list. This can be other  
capability pointers (such as PCI-X or PCI-Express) or it can be the last item in  
the list.  
15:8  
7:0  
RO  
RO  
00h  
05h  
Capability ID (CID): Capabilities ID indicates MSI.  
7.1.20  
MC—Message Signaled Interrupt Message Control  
B/D/F/Type:  
0/3/0/PCI  
Address Offset: 8E–8Fh  
Default Value:  
Access:  
Size:  
0080h  
RO, RW  
16 bits  
Default  
Value  
Bit  
Access  
Description  
15:8  
7
RO  
RO  
00h  
Reserved  
64 Bit Address Capable (C64): Specifies whether capable of generating 64-bit  
messages.  
1b  
6:4  
3:1  
RO  
RO  
000b  
000b  
Multiple Message Enable (MME): Not implemented, hardwired to 0.  
Multiple Message Capable (MMC): Not implemented, hardwired to 0.  
MSI Enable (MSIE): If set, MSI is enabled and traditional interrupt pins are not  
used to generate interrupts.  
0
RW  
0b  
Datasheet  
199  
Intel Manageability Engine Subsystem PCI (D3:F0,F3)  
7.1.21  
MA—Message Signaled Interrupt Message Address  
B/D/F/Type:  
0/3/0/PCI  
Address Offset: 90–93h  
Default Value:  
Access:  
Size:  
00000000h  
RW, RO  
32 bits  
Default  
Value  
Bit  
Access  
Description  
0000000 Address (ADDR): Lower 32 bits of the system specified message address,  
31:2  
1:0  
RW  
RO  
0h  
always DW aligned.  
00b  
Reserved  
7.1.22  
MUA—Message Signaled Interrupt Upper Address  
(Optional)  
B/D/F/Type:  
0/3/0/PCI  
Address Offset: 94–97h  
Default Value:  
Access:  
Size:  
00000000h  
RW  
32 bits  
Default  
Value  
Bit  
Access  
Description  
0000000 Upper Address (UADDR): Upper 32 bits of the system specified message  
31:0  
RW  
0h address. This register is optional and only implemented if MC.C64=1.  
7.1.23  
MD—Message Signaled Interrupt Message Data  
B/D/F/Type:  
0/3/0/PCI  
Address Offset: 98–99h  
Default Value:  
Access:  
Size:  
0000h  
RW  
16 bits  
Default  
Value  
Bit  
Access  
Description  
Data (Data): This 16-bit field is programmed by system software if MSI is  
15:0  
RW  
0000h enabled. Its content is driven onto the FSB during the data phase of the MSI  
memory write transaction.  
200  
Datasheet  
Intel Manageability Engine Subsystem PCI (D3:F0,F3)  
7.1.24  
HIDM—HECI Interrupt Delivery Mode  
B/D/F/Type:  
Address Offset:  
Default Value:  
Access:  
0/3/0/PCI  
A0h  
00h  
RW  
8 bits  
00h  
Size:  
BIOS Optimal Default  
This register is used to select interrupt delivery mechanism for HECI to Host processor  
interrupts.  
Default  
Value  
Bit  
Access  
Description  
7:2  
RO  
0h  
Reserved  
HECI Interrupt Delivery Mode (HIDM): These bits control what type of  
interrupt the HECI will send when ME FW writes to set the M_IG bit in AUX  
space. They are interpreted as follows:  
1:0  
RW  
00b  
00 = Generate Legacy or MSI interrupt  
01 = Generate SCI  
10 = Generate SMI  
Datasheet  
201  
Intel Manageability Engine Subsystem PCI (D3:F0,F3)  
7.2  
KT IO/ Memory Mapped Device Specific Registers  
[D3:F3]  
Table 14.  
KT IO/Memory Mapped Register Address Map  
Address  
Offset  
Register  
Symbol  
Default  
Value  
Register Name  
Access  
0h  
0h  
0h  
1h  
1h  
2h  
2h  
3h  
4h  
5h  
6h  
7h  
KTRxBR  
KTTHR  
KTDLLR  
KTIER  
KT Receive Buffer  
00h  
00h  
00h  
00h  
00h  
01h  
00h  
03h  
00h  
00h  
00h  
00h  
RO/V  
WO  
KT Transmit Holding  
KT Divisor Latch LSB  
KT Interrupt Enable  
KT Divisor Latch MSB  
KT Interrupt Identification  
KT FIFO Control  
RW/V  
RW/V,RO/V  
RW/V  
KTDLMR  
KTIIR  
RO  
KTFCR  
KTLCR  
KTMCR  
KTLSR  
KTMSR  
KTSCR  
WO  
KT Line Control  
RW  
KT Modem Control  
KT Line Status  
RO, RW  
RO, RO/CR  
RO, RO/CR  
RW  
KT Modem Status  
KT Scratch  
7.2.1  
KTRxBR—KT Receive Buffer  
B/D/F/Type:  
0/3/3/KT MM/IO  
Address Offset: 0h  
Default Value:  
Access:  
Size:  
00h  
RO/V  
8 bits  
This implements the KT Receiver Data register. Host access to this address, depends on  
the state of the DLAB bit {KTLCR[7]). It must be 0 to access the KTRxBR.  
RxBR:  
Host reads this register when FW provides it the receive data in non-FIFO mode. In  
FIFO mode, host reads to this register translate into a read from ME memory (RBR  
FIFO).  
Note:  
Reset: Host System Reset or D3->D0 transition.  
Default  
Value  
Bit  
Access  
Description  
Receiver Buffer Register (RBR): Implements the Data register of the Serial  
Interface. If the Host does a read, it reads from the Receive Data Buffer.  
7:0  
RO/V  
00h  
202  
Datasheet  
Intel Manageability Engine Subsystem PCI (D3:F0,F3)  
7.2.2  
KTTHR—KT Transmit Holding  
B/D/F/Type:  
0/3/3/KT MM/IO  
Address Offset: 0h  
Default Value:  
Access:  
Size:  
00h  
WO  
8 bits  
This implements the KT Transmit Data register. Host access to this address, depends on  
the state of the DLAB bit {KTLCR[7]). It must be 0 to access the KTTHR.  
THR:  
When host wants to transmit data in the non-FIFO mode, it writes to this register. In  
FIFO mode, writes by host to this address cause the data byte to be written by  
hardware to ME memory (THR FIFO).  
Note:  
Bit  
Reset: Host System Reset or D3->D0 transition.  
Default  
Access  
Description  
Value  
Transmit Holding Register (THR): Implements the Transmit Data register of  
the Serial Interface. If Host does a write, it writes to the Transmit Holding  
Register.  
7:0  
WO  
00h  
7.2.3  
KTDLLR—KT Divisor Latch LSB  
B/D/F/Type:  
0/3/3/KT MM/IO  
Address Offset: 0h  
Default Value:  
Access:  
Size:  
00h  
RW/V  
8 bits  
This register implements the KT DLL register. Host can Read/Write to this register only  
when the DLAB bit (KTLCR[7]) is 1. When this bit is 0, Host accesses the KTTHR or the  
KTRBR depending on Read or Write.  
This is the standard Serial Port Divisor Latch register. This register is only for software  
compatibility and does not affect performance of the hardware.  
Note:  
Reset: Host System Reset or D3->D0 transition.  
Default  
Value  
Bit  
Access  
RW/V  
Description  
7:0  
00h  
Divisor Latch LSB (DLL): Implements the DLL register of the Serial Interface.  
Datasheet  
203  
Intel Manageability Engine Subsystem PCI (D3:F0,F3)  
7.2.4  
KTIER—KT Interrupt Enable  
B/D/F/Type:  
0/3/3/KT MM/IO  
Address Offset: 1h  
Default Value:  
Access:  
Size:  
00h  
RW/V, RO/V  
8 bits  
This implements the KT Interrupt Enable register. Host access to this address, depends  
on the state of the DLAB bit {KTLCR[7]). It must be "0" to access this register. The bits  
enable specific events to interrupt the Host. See bit specific definition.  
Note:  
Reset: Host System Reset or D3 -> D0 transition.  
Default  
Value  
Bit  
Access  
Description  
7:4  
3
RO/V  
RW/V  
0h  
Reserved  
MSR (IER2): When set, this bit enables bits in Modem Status register to cause  
an interrupt to host  
0b  
0b  
0b  
0b  
LSR (IER1): When set, this bit enables bits in Receiver Line Status Register to  
cause an Interrupt to Host  
2
1
0
RW/V  
RW/V  
RW/V  
THR (IER1): When set, this bit enables interrupt to be sent to Host when the  
tranmit Holding register is empty  
DR (IER0): When set, Received Data Ready (or Receive FIFO Timeout)  
interrupts are enabled to be sent to Host.  
7.2.5  
KTDLMR—KT Divisor Latch MSB  
B/D/F/Type:  
0/3/3/KT MM/IO  
Address Offset: 1h  
Default Value:  
Access:  
Size:  
00h  
RW/V  
8 bits  
Host can Read/Write to this register only when the DLAB bit (KTLCR[7]) is 1. When this  
bit is 0, Host accesses the KTIER.  
This is the standard Serial interface's Divisor Latch register's MSB. This register is only  
for software compatibility and does not affect performance of the hardware.  
Note:  
Reset: Host System Reset or D3->D0 transition.  
Default  
Value  
Bit  
Access  
Description  
Divisor Latch MSB (DLM): Implements the Divisor Latch MSB register of the  
Serial Interface.  
7:0  
RW/V  
00h  
204  
Datasheet  
Intel Manageability Engine Subsystem PCI (D3:F0,F3)  
7.2.6  
KTIIR—KT Interrupt Identification  
B/D/F/Type:  
0/3/3/KT MM/IO  
Address Offset: 2h  
Default Value:  
Access:  
Size:  
01h  
RO  
8 bits  
The KT IIR register prioritizes the interrupts from the function into 4 levels and records  
them in the IIR_STAT field of the register. When Host accesses the IIR, hardware  
freezes all interrupts and provides the priority to the Host. Hardware continues to  
monitor the interrupts but does not change its current indication until the Host read is  
over. Table in the Host Interrupt Generation section shows the contents.  
Note:  
Bit  
Reset: See specific Bit descriptions  
Default  
Access  
Description  
Value  
FIFO Enable (FIEN1): This bit is connected by hardware to bit 0 in the FCR  
register.  
7
RO  
0b  
Reset: Host System Reset or D3->D0 transition  
FIFO Enable (FIEN0): This bit is connected by hardware to bit 0 in the FCR  
register.  
6
RO  
RO  
0b  
Reset: Host System Reset or D3->D0 transition  
5:4  
00b  
Reserved  
IIR STATUS (IIRSTS): These bits are asserted by the hardware according to  
the source of the interrupt and the priority level. Refer to the section on Host  
Interrupt Generation for a table of values.  
3:1  
0
RO  
RO  
000b  
1b  
Reset: ME system Reset  
Interrupt Status (INTSTS): When "0" indicates pending interrupt to Host  
When "1" indicates no pending interrupt to Host.  
Reset: Host system Reset or D3->D0 transition  
Datasheet  
205  
Intel Manageability Engine Subsystem PCI (D3:F0,F3)  
7.2.7  
KTFCR—KT FIFO Control  
B/D/F/Type:  
0/3/3/KT MM/IO  
Address Offset: 2h  
Default Value:  
Access:  
Size:  
00h  
WO  
8 bits  
When Host writes to this address, it writes to the KTFCR. The FIFO control Register of  
the serial interface is used to enable the FIFO's, set the receiver FIFO trigger level and  
clear FIFO's under the direction of the Host.  
When Host reads from this address, it reads the KTIIR.  
Reset: Host System Reset or D3->D0 transition.  
Note:  
Default  
Value  
Bit  
Access  
Description  
Receiver Trigger Level (RTL): Trigger level in bytes for the RCV FIFO. Once  
the trigger level number of bytes is reached, an interrupt is sent to the Host.  
00 = 01  
01 = 04  
10 = 08  
11 = 14  
7:6  
WO  
00b  
5:4  
3
WO  
WO  
00b  
0b  
Reserved  
RDY Mode (RDYM): This bit has no affect on hardware performance.  
XMT FIFO Clear (XFIC): When the Host writes one to this bit, the hardware  
will clear the XMT FIFO. This bit is self-cleared by hardware.  
2
1
WO  
WO  
0b  
0b  
RCV FIFO Clear (RFIC): When the Host writes one to this bit the hardware will  
clear the RCV FIFO. This bit is self-cleared by hardware.  
FIFO Enable (FIE): When set, this bit indicates that the KT interface is working  
in FIFO node. When this bit value is changed, the RCV and XMT FIFO are cleared  
by hardware.  
0
WO  
0b  
206  
Datasheet  
Intel Manageability Engine Subsystem PCI (D3:F0,F3)  
7.2.8  
KTLCR—KT Line Control  
B/D/F/Type:  
0/3/3/KT MM/IO  
Address Offset: 3h  
Default Value:  
Access:  
Size:  
03h  
RW  
8 bits  
The line control register specifies the format of the asynchronous data communications  
exchange and sets the DLAB bit. Most bits in this register have no affect on hardware  
and are only used by the FW.  
Note:  
Reset: Host System Reset or D3->D0 transition.  
Default  
Value  
Bit  
Access  
Description  
Divisor Latch Address Bit (DLAB): This bit is set when the Host wants to  
read/write the Divisor Latch LSB and MSB Registers. This bit is cleared when the  
Host wants to access the Receive Buffer Register or the Transmit Holding  
Register or the Interrupt Enable Register.  
7
RW  
0b  
6
5:4  
3
RW  
RW  
RW  
RW  
RW  
0b  
00b  
0b  
Break Control (BC): This bit has no affect on hardware.  
Parity Bit Mode (PBM): This bit has no affect on hardware.  
Parity Enable (PE): This bit has no affect on hardware.  
Stop Bit Select (SBS): This bit has no affect on hardware.  
Word Select Byte (WSB): This bit has no affect on hardware.  
2
0b  
1:0  
11b  
Datasheet  
207  
Intel Manageability Engine Subsystem PCI (D3:F0,F3)  
7.2.9  
KTMCR—KT Modem Control  
B/D/F/Type:  
0/3/3/KT MM/IO  
Address Offset: 4h  
Default Value:  
Access:  
Size:  
00h  
RO, RW  
8 bits  
The Modem Control Register controls the interface with the modem. Since the FW  
emulates the modem, the Host communicates to the FW via this register. Register has  
impact on hardware when the Loopback mode is on.  
Note:  
Reset: Host system Reset or D3->D0 transition.  
Default  
Value  
Bit  
Access  
Description  
7:5  
RO  
000b  
Reserved  
Loop Back Mode (LBM): When set by Host, this bit indicates that the serial  
port is in loop Back mode. This means that the data that is transmitted by the  
host should be received. Helps in debug of the interface.  
4
3
2
1
0
RW  
0b  
0b  
0b  
0b  
0b  
Output 2 (OUT2): This bit has no affect on hardware in normal mode. In loop  
back mode the value of this bit is written by hardware to Modem Status Register  
bit 7.  
RW  
RW  
RW  
RW  
Output 1 (OUT1): This bit has no affect on hardware in normal mode. In loop  
back mode the value of this bit is written by hardware to Modem Status Register  
bit 6.  
Request to Send Out (RTSO): This bit has no affect on hardware in normal  
mode. In loopback mode, the value of this bit is written by hardware to Modem  
Status Register bit 4.  
Data Terminal Ready Out (DRTO): This bit has no affect on hardware in  
normal mode. In loopback mode, the value in this bit is written by hardware to  
Modem Status Register Bit 5.  
208  
Datasheet  
Intel Manageability Engine Subsystem PCI (D3:F0,F3)  
7.2.10  
KTLSR—KT Line Status  
B/D/F/Type:  
0/3/3/KT MM/IO  
Address Offset: 5h  
Default Value:  
Access:  
Size:  
00h  
RO, RO/CR  
8 bits  
This register provides status information of the data transfer to the Host. Error  
indication, etc., are provided by the hardware(HW)/firmware(FW) to the host via this  
register.  
Note:  
Reset: Host system reset or D3->D0 transition.  
Default  
Value  
Bit  
Access  
Description  
RX FIFO Error (RXFER): This bit is cleared in non FIFO mode. Bit is connected  
to the BI bit in FIFO mode.  
7
6
RO  
RO  
0b  
Transmit Shift Register Empty (TEMT): This bit is connected by hardware to  
bit 5 (THRE) of this register  
0b  
0b  
Transmit Holding Register Empty (THRE): The bit is always set when the  
mode (FIFO/Non-FIFO) is changed by the Host. This bit is active only when the  
THR operation is enabled by the FW.  
This bit has acts differently in the different modes:  
5
RO  
Non FIFO Mode: This bit is cleared by hardware when the Host writes to the THR  
registers and set by hardware when the FW reads the THR register.  
FIFO Mode: This bit is set by hardware when the THR FIFO is empty, and cleared by  
hardware when the THR FIFO is not empty.  
This bit is reset on Host system reset or D3->D0 transition.  
Break Interrupt (BI): This bit is cleared by hardware when the LSR register is  
being read by the Host.  
This bit is set by hardware in two cases:  
4
RO/CR  
0b  
FIFO Mode: The FW sets the BI bit by setting the SBI bit in the KTRIVR register (See  
KT AUX registers)  
Non FIFO Mode: the FW sets the BI bit by setting the BIA bit in the KTRxBR register  
(see KT AUX registers)  
3:2  
1
RO  
00b  
0b  
Reserved  
Overrun Error (OE): This bit is cleared by hardware when the LSR register is  
being read by the Host. The FW typically sets this bit, but it is cleared by  
hardware when the host reads the LSR.  
RO/CR  
Data Ready (DR):  
Non-FIFO Mode: This bit is set when the FW writes to the RBR register and cleared by  
hardware when the RBR register is being Read by the Host.  
0
RO  
0b  
FIFO Mode: This bit is set by hardware when the RBR FIFO is not empty and cleared by  
hardware when the RBR FIFO is empty.  
This bit is reset on Host System Reset or D3->D0 transition  
Datasheet  
209  
Intel Manageability Engine Subsystem PCI (D3:F0,F3)  
7.2.11  
KTMSR—KT Modem Status  
B/D/F/Type:  
0/3/3/KT MM/IO  
Address Offset: 6h  
Default Value:  
Access:  
Size:  
00h  
RO, RO/CR  
8 bits  
The functionality of the Modem is emulated by the FW. This register provides the status  
of the current state of the control lines from the modem.  
Note:  
Reset: Host system Reset or D3->D0 transition.  
Default  
Value  
Bit  
Access  
Description  
Data Carrier Detect (DCD): In Loop Back mode this bit is connected by  
hardware to the value of MCR bit 3  
7
6
5
4
RO  
RO  
RO  
RO  
0b  
Ring Indicator (RI): In Loop Back mode this bit is connected by hardware to  
the value of MCR bit 2.  
0b  
0b  
0b  
Data Set Ready (DSR): In Loop Back mode this bit is connected by hardware  
to the value of MCR bit 0.  
Clear To Send (CTS): In Loop Back mode this bit is connected by hardware to  
the value of MCR bit 1.  
Delta Data Carrier Detect (DDCD): This bit is set when bit 7 is changed. This  
bit is cleared by hardware when the MSR register is being read by the HOST  
driver.  
3
2
RO/CR  
RO/CR  
0b  
0b  
Trailing Edge of Read Detector (TERI): This bit is set when bit 6 is changed  
from 1 to 0. This bit is cleared by hardware when the MSR register is being read  
by the Host driver.  
Delta Data Set Ready (DDSR): This bit is set when bit 5 is changed. This bit is  
cleared by hardware when the MSR register is being read by the Host driver.  
1
0
RO/CR  
RO/CR  
0b  
0b  
Delta Clear To Send (DCTS): This bit is set when bit 4 is changed. This bit is  
cleared by hardware when the MSR register is being read by the Host driver.  
7.2.12  
KTSCR—KT Scratch  
B/D/F/Type:  
0/3/3/KT MM/IO  
Address Offset: 7h  
Default Value:  
Access:  
Size:  
00h  
RW  
8 bits  
This register has no affect on hardware. This is for the programmer to hold data  
temporarily.  
Note:  
Reset: Host system reset or D3->D0 transition  
Default  
Value  
Bit  
Access  
RW  
Description  
7:0  
00h  
Scratch Register Data (SCRD):  
§ §  
210  
Datasheet  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8
Host-Secondary PCI Express*  
Bridge Registers (D6:F0)  
Device 6 contains the controls associated with the PCI Express root port that is the  
intended attach point for external devices. In addition, it also functions as the virtual  
PCI-to-PCI bridge. The table below provides an address map of the D1:F0 registers  
listed by address offset in ascending order. This chapter provides a detailed bit  
description of the registers.  
Warning:  
When reading the PCI Express "conceptual" registers such as this, you may not get a  
valid value unless the register value is stable.  
The PCI Express* Specification defines two types of reserved bits:  
Reserved and Preserved:  
• Reserved for future RW implementations; software must preserve value read for  
writes to bits.  
• Reserved and Zero: Reserved for future R/WC/S implementations; software must  
use 0 for writes to bits.  
Unless explicitly documented as Reserved and Zero, all bits marked as reserved are  
part of the Reserved and Preserved type, which have historically been the typical  
definition for Reserved.  
Note:  
Most (if not all) control bits in this device cannot be modified unless the link is down.  
Software is required to first disable the link, then program the registers, and then re-  
enable the link (which will cause a full-retrain with the new settings).  
Table 15.  
Host-Secondary PCI Express* Bridge Register Address Map (D6:F0) (Sheet 1  
of 3)  
Address  
Offset  
Register  
Symbol  
Default  
Value  
Register Name  
Access  
0–1h  
2–3h  
4–5h  
6–7h  
VID1  
DID1  
Vendor Identification  
8086h  
29E9h  
0000h  
0010h  
RO  
RO  
Device Identification  
PCI Command  
PCI Status  
PCICMD1  
PCISTS1  
RO, RW  
RO, RWC  
See register  
description  
8h  
RID1  
Revision Identification  
RO  
9–Bh  
Ch  
CC1  
Class Code  
060400h  
00h  
RO  
RW  
CL1  
Cache Line Size  
Eh  
HDR1  
Header Type  
01h  
RO  
18h  
19h  
1Ah  
1Ch  
1Dh  
PBUSN1  
SBUSN1  
SUBUSN1  
IOBASE1  
IOLIMIT1  
Primary Bus Number  
Secondary Bus Number  
Subordinate Bus Number  
I/O Base Address  
I/O Limit Address  
00h  
RO  
00h  
RW  
00h  
RW  
F0h  
RO, RW  
RW, RO  
00h  
Datasheet  
211  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
Table 15.  
Host-Secondary PCI Express* Bridge Register Address Map (D6:F0) (Sheet 2  
of 3)  
Address  
Offset  
Register  
Symbol  
Default  
Value  
Register Name  
Access  
1E–1Fh  
20–21h  
22–23h  
24–25h  
26–27h  
28–2Bh  
2C–2Fh  
34h  
SSTS1  
MBASE1  
MLIMIT1  
PMBASE1  
PMLIMIT1  
Secondary Status  
0000h  
FFF0h  
RO, RWC  
RW, RO  
RW, RO  
RW, RO  
RO, RW  
RW  
Memory Base Address  
Memory Limit Address  
0000h  
Prefetchable Memory Base Address  
Prefetchable Memory Limit Address  
FFF1h  
0001h  
PMBASEU1 Prefetchable Memory Base Address Upper  
PMLIMITU1 Prefetchable Memory Limit Address Upper  
00000000h  
00000000h  
88h  
RW  
CAPPTR1  
Capabilities Pointer  
RO  
3Ch  
INTRLINE1 Interrupt Line  
00h  
RW  
3Dh  
INTRPIN1  
BCTRL1  
Interrupt Pin  
01h  
RO  
3E–3Fh  
80–83h  
Bridge Control  
0000h  
RO, RW  
RO  
PM_CAPID1 Power Management Capabilities  
PM_CS1 Power Management Control/Status  
C8039001h  
RO, RW,  
RW/P  
84–87h  
00000008h  
88–8Bh  
8C–8Fh  
90–91h  
92–93h  
94–97h  
98–99h  
A0–A1h  
A2–A3h  
A4–A7h  
A8–A9h  
AA–ABh  
AC–AFh  
SS_CAPID Subsystem ID and Vendor ID Capabilities  
SS Subsystem ID and Subsystem Vendor ID  
MSI_CAPID Message Signaled Interrupts Capability ID  
0000800Dh  
00008086h  
A005h  
RO  
RWO  
RO  
MC  
MA  
Message Control  
Message Address  
Message Data  
0000h  
RW, RO  
RO, RW  
RW  
00000000h  
0000h  
MD  
PE_CAPL  
PE_CAP  
DCAP  
DCTL  
DSTS  
LCAP  
PCI Express Capability List  
PCI Express Capabilities  
Device Capabilities  
Device Control  
0010h  
RO  
0142h  
RO, RWO  
RO  
00008000h  
0000h  
RW, RO  
RO, RWC  
RO, RWO  
Device Status  
0000h  
Link Capabilities  
03214D02h  
RO, RW,  
RW/SC  
B0–B1h  
LCTL  
Link Control  
0000h  
B2–hB3  
B4–B7h  
B8–B9h  
BA–BBh  
BC–BDh  
C0–C3h  
EC–EFh  
LSTS  
SLOTCAP  
SLOTCTL  
SLOTSTS  
RCTL  
Link Status  
1000h  
00040000h  
0000h  
RWC, RO  
RWO, RO  
RO, RW  
Slot Capabilities  
Slot Control  
Slot Status  
0000h  
RO, RWC  
RO, RW  
Root Control  
0000h  
RSTS  
Root Status  
00000000h  
00000000h  
RO, RWC  
RO, RW  
PELC  
PCI Express Legacy Control  
Virtual Channel Enhanced Capability  
Header  
100–103h  
VCECH  
14010002h  
RO  
212  
Datasheet  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
Table 15.  
Host-Secondary PCI Express* Bridge Register Address Map (D6:F0) (Sheet 3  
of 3)  
Address  
Offset  
Register  
Symbol  
Default  
Value  
Register Name  
Access  
104–107h  
108–10Bh  
10C–10Dh  
110–113h  
114–117h  
11A–11Bh  
140–143h  
144–147h  
150–153h  
PVCCAP1  
PVCCAP2  
PVCCTL  
VC0RCAP  
VC0RCTL  
VC0RSTS  
RCLDECH  
ESD  
Port VC Capability Register 1  
Port VC Capability Register 2  
Port VC Control  
00000000h  
00000000h  
0000h  
RO  
RO  
RO, RW  
RO  
VC0 Resource Capability  
VC0 Resource Control  
00000000h  
800000FFh  
0002h  
RO, RW  
RO  
VC0 Resource Status  
Root Complex Link Declaration Enhanced  
Element Self Description  
Link Entry 1 Description  
00010005h  
03000100h  
00000000h  
RO  
RO, RWO  
RO, RWO  
LE1D  
0000000000  
000000h  
158–15Fh  
LE1A  
Link Entry 1 Address  
RO, RWO  
8.1  
VID1—Vendor Identification  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: 0–1h  
Default Value:  
Access:  
Size:  
8086h  
RO  
16 bits  
This register combined with the Device Identification register uniquely identify any PCI  
device.  
Default  
Value  
Bit  
Access  
RO  
Description  
15:0  
8086h Vendor Identification (VID1): PCI standard identification for Intel.  
Datasheet  
213  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.2  
DID1—Device Identification  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: 2–3h  
Default Value:  
Access:  
Size:  
29E9h  
RO  
16 bits  
This register combined with the Vendor Identification register uniquely identifies any  
PCI device.  
Default  
Value  
Bit  
Access  
Description  
Device Identification Number (DID1(UB)): Identifier assigned to the MCH  
device #6 (virtual PCI-to-PCI bridge, PCI Express port).  
15:8  
7:4  
RO  
RO  
RO  
29h  
Device Identification Number (DID1(HW)): Identifier assigned to the MCH  
device #6 (virtual PCI-to-PCI bridge, PCI Express port).  
Eh  
9h  
Device Identification Number (DID1(LB)): Identifier assigned to the MCH  
device #6 (virtual PCI-to-PCI bridge, PCI Express port).  
3:0  
8.3  
PCICMD1—PCI Command  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: 4–5h  
Default Value:  
Access:  
Size:  
0000h  
RO, RW  
16 bits  
Default  
Value  
Bit  
Access  
Description  
15:11  
RO  
00h  
Reserved  
INTA Assertion Disable (INTAAD):  
0 = This device is permitted to generate INTA interrupt messages.  
1 = This device is prevented from generating interrupt messages. Any INTA  
emulation interrupts already asserted must be de-asserted when this bit is  
set.  
10  
9
RW  
0b  
0b  
This bit only affects interrupts generated by the device (PCI INTA from a PME  
event) controlled by this command register. It does not affect upstream MSIs,  
upstream PCI INTA-INTD assert and de-assert messages.  
Fast Back-to-Back Enable (FB2B): Not Applicable or Implemented. Hardwired  
to 0.  
RO  
214  
Datasheet  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
Default  
Value  
Bit  
Access  
Description  
SERR# Message Enable (SERRE1): This bit controls Device 6 SERR#  
messaging. The MCH communicates the SERR# condition by sending a SERR  
message to the ICH. This bit, when set, enables reporting of non-fatal and fatal  
errors detected by the device to the Root Complex. Note that errors are reported  
if enabled either through this bit or through the PCI-Express specific bits in the  
Device Control Register.  
8
RW  
0b  
0 = The SERR message is generated by the MCH for Device 6 only under  
conditions enabled individually through the Device Control Register.  
1 = The MCH is enabled to generate SERR messages which will be sent to the  
ICH for specific Device 6 error conditions generated/detected on the primary  
side of the virtual PCI to PCI bridge (not those received by the secondary  
side). The status of SERRs generated is reported in the PCISTS1 register.  
7
6
RO  
RW  
RO  
0b  
0b  
0b  
Reserved  
Parity Error Response Enable (PERRE): Controls whether or not the Master  
Data Parity Error bit in the PCI Status register can bet set.  
0 = Master Data Parity Error bit in PCI Status register can NOT be set.  
1 = Master Data Parity Error bit in PCI Status register CAN be set.  
5:3  
Reserved  
Bus Master Enable (BME): Controls the ability of the PCI Express port to  
forward Memory and I/O Read/Write Requests in the upstream direction.  
0 = This device is prevented from making memory or IO requests to its primary  
bus. Note that according to PCI Specification, as MSI interrupt messages are  
in-band memory writes, disabling the bus master enable bit prevents this  
device from generating MSI interrupt messages or passing them from its  
secondary bus to its primary bus. Upstream memory writes/reads, IO  
writes/reads, peer writes/reads, and MSIs will all be treated as illegal cycles.  
Writes are forwarded to memory address C0000h with byte enables de-  
asserted. Reads will be forwarded to memory address C0000h and will  
return Unsupported Request status (or Master abort) in its completion  
packet.  
2
RW  
0b  
1 = This device is allowed to issue requests to its primary bus. Completions for  
previously issued memory read requests on the primary bus will be issued  
when the data is available.  
This bit does not affect forwarding of Completions from the primary interface to  
the secondary interface.  
Memory Access Enable (MAE):  
0 = All of device #6's memory space is disabled.  
1 = Enable the Memory and Pre-fetchable memory address ranges defined in the  
MBASE1, MLIMIT1, PMBASE1, and PMLIMIT1 registers.  
1
0
RW  
RW  
0b  
0b  
IO Access Enable (IOAE):  
0 = All of device #6's I/O space is disabled.  
1 = Enable the I/O address range defined in the IOBASE1, and IOLIMIT1  
registers.  
Datasheet  
215  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.4  
PCISTS1—PCI Status  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: 6–7h  
Default Value:  
Access:  
Size:  
0010h  
RO, RWC  
16 bits  
This register reports the occurrence of error conditions associated with primary side of  
the "virtual" Host-PCI Express bridge embedded within the MCH.  
Default  
Value  
Bit  
Access  
Description  
Detected Parity Error (DPE): Not Applicable or Implemented. Hardwired to 0.  
Parity (generating poisoned Transaction Layer Packets) is not supported on the  
primary side of this device.  
15  
RO  
0b  
Signaled System Error (SSE): This bit is set when this Device sends a SERR  
due to detecting an ERR_FATAL or ERR_NONFATAL condition and the SERR  
Enable bit in the Command register is 1. Both received (if enabled by  
BCTRL1[1]) and internally detected error messages do not affect this field).  
14  
RWC  
0b  
Received Master Abort Status (RMAS): Not Applicable or Implemented.  
Hardwired to 0. The concept of a master abort does not exist on primary side of  
this device.  
13  
12  
RO  
RO  
RO  
RO  
0b  
0b  
Received Target Abort Status (RTAS): Not Applicable or Implemented.  
Hardwired to 0. The concept of a target abort does not exist on primary side of  
this device.  
Signaled Target Abort Status (STAS): Not Applicable or Implemented.  
Hardwired to 0. The concept of a target abort does not exist on primary side of  
this device.  
11  
0b  
DEVSELB Timing (DEVT): This device is not the subtractively decoded device  
on bus 0. This bit field is therefore hardwired to 00 to indicate that the device  
uses the fastest possible decode.  
10:9  
00b  
Master Data Parity Error (PMDPE): Because the primary side of the PCI  
Express's virtual peer-to-peer bridge is integrated with the MCH functionality,  
there is no scenario where this bit will get set. Because hardware will never set  
this bit, it is impossible for software to have an opportunity to clear this bit or  
otherwise test that it is implemented. The PCI specification defines it as a R/WC,  
but for our implementation an RO definition behaves the same way and will meet  
all Microsoft testing requirements.  
8
RO  
0b  
This bit can only be set when the Parity Error Enable bit in the PCI Command  
register is set.  
7
6
RO  
RO  
0b  
0b  
Fast Back-to-Back (FB2B): Not Applicable or Implemented. Hardwired to 0.  
Reserved  
66/60MHz capability (CAP66): Not Applicable or Implemented. Hardwired to  
0.  
5
4
RO  
RO  
0b  
1b  
Capabilities List (CAPL): Indicates that a capabilities list is present. Hardwired  
to 1.  
INTA Status (INTAS): Indicates that an interrupt message is pending  
internally to the device. Only PME sources feed into this status bit (not PCI INTA-  
INTD assert and de-assert messages). The INTA Assertion Disable bit,  
PCICMD1[10], has no effect on this bit.  
3
RO  
RO  
0b  
2:0  
000b  
Reserved  
216  
Datasheet  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.5  
RID1—Revision Identification  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: 8h  
Default Value:  
Access:  
Size:  
see table below  
RO  
8 bits  
This register contains the revision number of the MCH device 6. These bits are read  
only and writes to this register have no effect.  
Default  
Value  
Bit  
Access  
Description  
Revision Identification Number (RID1): This is an 8-bit value that  
indicates the revision identification number for the MCH Device 0. Refer to the  
Intel® X38 Express Chipset Specification Update for the value of this register.  
see  
description  
7:0  
RO  
8.6  
CC1—Class Code  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: 9–Bh  
Default Value:  
Access:  
Size:  
060400h  
RO  
24 bits  
This register identifies the basic function of the device, a more specific sub-class, and a  
register-specific programming interface.  
Default  
Value  
Bit  
Access  
Description  
Base Class Code (BCC): Indicates the base class code for this device. This  
code has the value 06h, indicating a Bridge device.  
23:16  
15:8  
RO  
RO  
06h  
Sub-Class Code (SUBCC): Indicates the sub-class code for this device. The  
code is 04h indicating a PCI to PCI Bridge.  
04h  
00h  
Programming Interface (PI): Indicates the programming interface of this  
device. This value does not specify a particular register set layout and provides  
no practical use for this device.  
7:0  
RO  
Datasheet  
217  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.7  
CL1—Cache Line Size  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: Ch  
Default Value:  
Access:  
Size:  
00h  
RW  
8 bits  
Default  
Value  
Bit  
Access  
Description  
Cache Line Size (Scratch pad): Implemented by PCI Express devices as a  
read-write field for legacy compatibility purposes but has no impact on any PCI  
Express device functionality.  
7:0  
RW  
00h  
8.8  
HDR1—Header Type  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: Eh  
Default Value:  
Access:  
Size:  
01h  
RO  
8 bits  
This register identifies the header layout of the configuration space. No physical  
register exists at this location.  
Default  
Value  
Bit  
Access  
Description  
Header Type Register (HDR): Returns 01h to indicate that this is a single  
function device with bridge header layout.  
7:0  
RO  
01h  
8.9  
PBUSN1—Primary Bus Number  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: 18h  
Default Value:  
Access:  
Size:  
00h  
RO  
8 bits  
This register identifies that this "virtual" Host-PCI Express bridge is connected to PCI  
bus #0.  
Default  
Value  
Bit  
Access  
Description  
Primary Bus Number (BUSN): Configuration software typically programs this  
field with the number of the bus on the primary side of the bridge. Since device  
#6 is an internal device and its primary bus is always 0, these bits are read only  
and are hardwired to 0.  
7:0  
RO  
00h  
218  
Datasheet  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.10  
SBUSN1—Secondary Bus Number  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: 19h  
Default Value:  
Access:  
Size:  
00h  
RW  
8 bits  
This register identifies the bus number assigned to the second bus side of the "virtual"  
bridge. This number is programmed by the PCI configuration software to allow mapping  
of configuration cycles to PCI Express.  
Default  
Value  
Bit  
Access  
Description  
Secondary Bus Number (BUSN): This field is programmed by configuration  
software with the bus number assigned to PCI Express.  
7:0  
RW  
00h  
8.11  
SUBUSN1—Subordinate Bus Number  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: 1Ah  
Default Value:  
Access:  
Size:  
00h  
RW  
8 bits  
This register identifies the subordinate bus (if any) that resides at the level below PCI  
Express. This number is programmed by the PCI configuration software to allow  
mapping of configuration cycles to PCI Express.  
Default  
Value  
Bit  
Access  
Description  
Subordinate Bus Number (BUSN): This register is programmed by  
configuration software with the number of the highest subordinate bus that lies  
behind the device #6 bridge. When only a single PCI device resides on the PCI  
Express segment, this register will contain the same value as the SBUSN1  
register.  
7:0  
RW  
00h  
Datasheet  
219  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.12  
IOBASE1—I/O Base Address  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: 1Ch  
Default Value:  
Access:  
Size:  
F0h  
RO, RW  
8 bits  
This register controls the processor to PCI Express I/O access routing based on the  
following formula:  
IO_BASE address IO_LIMIT  
Only upper 4 bits are programmable. For the purpose of address decode address bits  
A[11:0] are treated as 0. Thus the bottom of the defined I/O address range will be  
aligned to a 4 KB boundary.  
Default  
Value  
Bit  
Access  
Description  
I/O Address Base (IOBASE): This field corresponds to A[15:12] of the I/O  
addresses passed by bridge 1 to PCI Express.  
7:4  
3:0  
RW  
RO  
Fh  
0h  
Reserved  
8.13  
IOLIMIT1—I/O Limit Address  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: 1Dh  
Default Value:  
Access:  
Size:  
00h  
RW, RO  
8 bits  
This register controls the processor to PCI Express I/O access routing based on the  
following formula:  
IO_BASE address IO_LIMIT  
Only upper 4 bits are programmable. For the purpose of address decode address bits  
A[11:0] are assumed to be FFFh. Thus, the top of the defined I/O address range will be  
at the top of a 4 KB aligned address block.  
Default  
Value  
Bit  
Access  
Description  
I/O Address Limit (IOLIMIT): Corresponds to A[15:12] of the I/O address  
limit of device #6. Devices between this upper limit and IOBASE1 will be passed  
to the PCI Express hierarchy associated with this device.  
7:4  
3:0  
RW  
RO  
0h  
0h  
Reserved  
220  
Datasheet  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.14  
SSTS1—Secondary Status  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: 1E–1Fh  
Default Value:  
Access:  
Size:  
0000h  
RO, RWC  
16 bits  
SSTS1 is a 16-bit status register that reports the occurrence of error conditions  
associated with secondary side of the "virtual" PCI-PCI bridge embedded within MCH.  
Default  
Value  
Bit  
Access  
Description  
Detected Parity Error (DPE): This bit is set by the Secondary Side for a Type 1  
Configuration Space header device whenever it receives a Poisoned Transaction  
Layer Packet, regardless of the state of the Parity Error Response Enable bit in  
the Bridge Control Register.  
15  
RWC  
RWC  
RWC  
0b  
Received System Error (RSE): This bit is set when the Secondary Side for a  
Type 1 configuration space header device receives an ERR_FATAL or  
ERR_NONFATAL.  
14  
13  
0b  
0b  
Received Master Abort (RMA): This bit is set when the Secondary Side for  
Type 1 Configuration Space Header Device (for requests initiated by the Type 1  
Header Device itself) receives a Completion with Unsupported Request  
Completion Status.  
Received Target Abort (RTA): This bit is set when the Secondary Side for  
Type 1 Configuration Space Header Device (for requests initiated by the Type 1  
Header Device itself) receives a Completion with Completer Abort Completion  
Status.  
12  
RWC  
0b  
Signaled Target Abort (STA): Not Applicable or Implemented. Hardwired to 0.  
The MCH does not generate Target Aborts (the MCH will never complete a  
request using the Completer Abort Completion status).  
11  
RO  
RO  
0b  
10:9  
00b  
DEVSELB Timing (DEVT): Not Applicable or Implemented. Hardwired to 0.  
Master Data Parity Error (SMDPE): When set, indicates that the MCH  
received across the link (upstream) a Read Data Completion Poisoned  
Transaction Layer Packet (EP=1). This bit can only be set when the Parity Error  
Enable bit in the Bridge Control register is set.  
8
RWC  
0b  
7
6
RO  
RO  
0b  
0b  
Fast Back-to-Back (FB2B): Not Applicable or Implemented. Hardwired to 0.  
Reserved  
66/60 MHz capability (CAP66): Not Applicable or Implemented. Hardwired to  
0.  
5
RO  
RO  
0b  
4:0  
00h  
Reserved  
Datasheet  
221  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.15  
MBASE1—Memory Base Address  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: 20–21h  
Default Value:  
Access:  
Size:  
FFF0h  
RW, RO  
16 bits  
This register controls the processor to PCI Express non-prefetchable memory access  
routing based on the following formula:  
MEMORY_BASE address MEMORY_LIMIT  
The upper 12 bits of the register are read/write and correspond to the upper 12  
address bits A[31:20] of the 32 bit address. The bottom 4 bits of this register are read-  
only and return zeroes when read. This register must be initialized by the configuration  
software. For the purpose of address decode address bits A[19:0] are assumed to be 0.  
Thus, the bottom of the defined memory address range will be aligned to a 1 MB  
boundary.  
Default  
Value  
Bit  
Access  
Description  
Memory Address Base (MBASE): Corresponds to A[31:20] of the lower limit  
of the memory range that will be passed to PCI Express.  
15:4  
3:0  
RW  
RO  
FFFh  
0h  
Reserved  
222  
Datasheet  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.16  
MLIMIT1—Memory Limit Address  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: 22–23h  
Default Value:  
Access:  
Size:  
0000h  
RW, RO  
16 bits  
This register controls the processor to PCI Express non-prefetchable memory access  
routing based on the following formula:  
MEMORY_BASE address MEMORY_LIMIT  
The upper 12 bits of the register are read/write and correspond to the upper 12  
address bits A[31:20] of the 32 bit address. The bottom 4 bits of this register are read-  
only and return zeroes when read. This register must be initialized by the configuration  
software. For the purpose of address decode, address bits A[19:0] are assumed to be  
FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1 MB  
aligned memory block.  
Note:  
Memory range covered by MBASE and MLIMIT registers are used to map non-  
prefetchable PCI Express address ranges (typically where control/status memory-  
mapped I/O data structures of the controller will reside) and PMBASE and PMLIMIT are  
used to map prefetchable address ranges (typically device local memory). This  
segregation allows application of USWC space attribute to be performed in a true plug-  
and-play manner to the prefetchable address range for improved processor- PCI  
Express memory access performance.  
Note:  
Configuration software is responsible for programming all address range registers  
(prefetchable, non-prefetchable) with the values that provide exclusive address ranges  
(i.e., prevent overlap with each other and/or with the ranges covered with the main  
memory). There is no provision in the MCH hardware to enforce prevention of overlap  
and operations of the system in the case of overlap are not ensured.  
Default  
Value  
Bit  
Access  
Description  
Memory Address Limit (MLIMIT): Corresponds to A[31:20] of the upper limit  
of the address range passed to PCI Express.  
15:4  
3:0  
RW  
RO  
000h  
0h  
Reserved  
Datasheet  
223  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.17  
PMBASE1—Prefetchable Memory Base Address  
Upper  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: 24–25h  
Default Value:  
Access:  
Size:  
FFF1h  
RW, RO  
16 bits  
This register in conjunction with the corresponding Upper Base Address register  
controls the processor to PCI Express prefetchable memory access routing based on  
the following formula:  
PREFETCHABLE_MEMORY_BASE address PREFETCHABLE_MEMORY_LIMIT  
The upper 12 bits of this register are read/write and correspond to address bits  
A[31:20] of the 40-bit address. The lower 8 bits of the Upper Base Address register are  
read/write and correspond to address bits A[39:32] of the 40-bit address. This register  
must be initialized by the configuration software. For the purpose of address decode,  
address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory  
address range will be aligned to a 1 MB boundary.  
Default  
Value  
Bit  
Access  
Description  
Prefetchable Memory Base Address (MBASE): Corresponds to A[31:20] of  
the lower limit of the memory range that will be passed to PCI Express.  
15:4  
RW  
RO  
FFFh  
64-bit Address Support: Indicates that the upper 32 bits of the prefetchable  
memory region base address are contained in the Prefetchable Memory base  
Upper Address register at 28h.  
3:0  
1h  
224  
Datasheet  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.18  
PMLIMIT1—Prefetchable Memory Limit Address  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: 26–27h  
Default Value:  
Access:  
Size:  
0001h  
RO, RW  
16 bits  
This register in conjunction with the corresponding Upper Limit Address register  
controls the processor to PCI Express prefetchable memory access routing based on  
the following formula:  
PREFETCHABLE_MEMORY_BASE address PREFETCHABLE_MEMORY_LIMIT  
The upper 12 bits of this register are read/write and correspond to address bits  
A[31:20] of the 40-bit address. The lower 8 bits of the Upper Limit Address register are  
read/write and correspond to address bits A[39:32] of the 40-bit address. This register  
must be initialized by the configuration software. For the purpose of address decode,  
address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined memory  
address range will be at the top of a 1 MB aligned memory block. Note that  
prefetchable memory range is supported to allow segregation by the configuration  
software between the memory ranges that must be defined as UC and the ones that  
can be designated as a USWC (i.e., prefetchable) from the processor perspective.  
Default  
Value  
Bit  
Access  
Description  
Prefetchable Memory Address Limit (PMLIMIT): Corresponds to A[31:20]  
of the upper limit of the address range passed to PCI Express.  
15:4  
RW  
RO  
000h  
64-bit Address Support: Indicates that the upper 32 bits of the prefetchable  
memory region limit address are contained in the Prefetchable Memory Base  
Limit Address register at 2Ch  
3:0  
1h  
Datasheet  
225  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.19  
PMBASEU1—Prefetchable Memory Base Address  
Upper  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: 28–2Bh  
Default Value:  
Access:  
Size:  
00000000h  
RW  
32 bits  
The functionality associated with this register is present in the PCI Express design  
implementation.  
This register in conjunction with the corresponding Upper Base Address register  
controls the processor to PCI Express prefetchable memory access routing based on  
the following formula:  
PREFETCHABLE_MEMORY_BASE address PREFETCHABLE_MEMORY_LIMIT  
The upper 12 bits of this register are read/write and correspond to address bits  
A[31:20] of the 40-bit address. The lower 8 bits of the Upper Base Address register are  
read/write and correspond to address bits A[39:32] of the 40-bit address. This register  
must be initialized by the configuration software. For the purpose of address decode,  
address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory  
address range will be aligned to a 1 MB boundary.  
Default  
Value  
Bit  
Access  
Description  
Prefetchable Memory Base Address (MBASEU): Corresponds to A[63:32] of  
the lower limit of the prefetchable memory range that will be passed to PCI  
Express.  
0000000  
0h  
31:0  
RW  
226  
Datasheet  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.20  
PMLIMITU1—Prefetchable Memory Limit Address  
Upper  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: 2C–2Fh  
Default Value:  
Access:  
Size:  
00000000h  
RW  
32 bits  
The functionality associated with this register is present in the PCI Express design  
implementation.  
This register in conjunction with the corresponding Upper Limit Address register  
controls the processor to PCI Express prefetchable memory access routing based on  
the following formula:  
PREFETCHABLE_MEMORY_BASE address PREFETCHABLE_MEMORY_LIMIT  
The upper 12 bits of this register are read/write and correspond to address bits  
A[31:20] of the 40- bit address. The lower 8 bits of the Upper Limit Address register  
are read/write and correspond to address bits A[39:32] of the 40-bit address. This  
register must be initialized by the configuration software. For the purpose of address  
decode, address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined  
memory address range will be at the top of a 1MB aligned memory block.  
Note that prefetchable memory range is supported to allow segregation by the  
configuration software between the memory ranges that must be defined as UC and the  
ones that can be designated as a USWC (i.e., prefetchable) from the processor  
perspective.  
Default  
Value  
Bit  
Access  
Description  
Prefetchable Memory Address Limit (MLIMITU): This field corresponds to  
A[63:32] of the upper limit of the prefetchable Memory range that will be passed  
to PCI Express.  
0000000  
0h  
31:0  
RW  
Datasheet  
227  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.21  
CAPPTR1—Capabilities Pointer  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: 34h  
Default Value:  
Access:  
Size:  
88h  
RO  
8 bits  
The capabilities pointer provides the address offset to the location of the first entry in  
this device's linked list of capabilities.  
Default  
Value  
Bit  
Access  
Description  
First Capability (CAPPTR1): The first capability in the list is the Subsystem ID  
and Subsystem Vendor ID Capability.  
7:0  
RO  
88h  
8.22  
INTRLINE1—Interrupt Line  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: 3Ch  
Default Value:  
Access:  
Size:  
00h  
RW  
8 bits  
This register contains interrupt line routing information. The device itself does not use  
this value, rather it is used by device drivers and operating systems to determine  
priority and vector information.  
Default  
Value  
Bit  
Access  
Description  
Interrupt Connection (INTCON): Used to communicate interrupt line routing  
information.  
7:0  
RW  
00h  
8.23  
INTRPIN1—Interrupt Pin  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: 3Dh  
Default Value:  
Access:  
Size:  
01h  
RO  
8 bits  
This register specifies which interrupt pin this device uses.  
Default  
Value  
Bit  
Access  
Description  
Interrupt Pin (INTPIN): As a single function device, the PCI Express device  
specifies INTA as its interrupt pin. 01h=INTA.  
7:0  
RO  
01h  
228  
Datasheet  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.24  
BCTRL1—Bridge Control  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: 3E–3Fh  
Default Value:  
Access:  
Size:  
0000h  
RO, RW  
16 bits  
This register provides extensions to the PCICMD1 register that are specific to PCI-PCI  
bridges. The BCTRL provides additional control for the secondary interface as well as  
some bits that affect the overall behavior of the "virtual" Host-PCI Express bridge  
embedded within MCH.  
Default  
Value  
Bit  
Access  
Description  
15:12  
11  
RO  
RO  
0h  
Reserved  
Discard Timer SERR# Enable (DTSERRE): Not Applicable or Implemented.  
Hardwired to 0.  
0b  
0b  
0b  
0b  
0b  
Discard Timer Status (DTSTS): Not Applicable or Implemented. Hardwired to  
0.  
10  
9
RO  
RO  
RO  
RO  
Secondary Discard Timer (SDT): Not Applicable or Implemented. Hardwired  
to 0.  
Primary Discard Timer (PDT): Not Applicable or Implemented. Hardwired to  
0.  
8
Fast Back-to-Back Enable (FB2BEN): Not Applicable or Implemented.  
Hardwired to 0.  
7
Secondary Bus Reset (SRESET): Setting this bit triggers a hot reset on the  
corresponding PCI Express Port. This will force the LTSSM to transition to the Hot  
Reset state (via Recovery) from L0, L0s, or L1 states.  
6
5
RW  
RO  
0b  
0b  
Master Abort Mode (MAMODE): Does not apply to PCI Express. Hardwired to  
0.  
VGA 16-bit Decode (VGA16D): Enables the PCI-to-PCI bridge to provide 16-  
bit decoding of VGA I/O address precluding the decoding of alias addresses  
every 1 KB. This bit only has meaning if bit 3 (VGA Enable) of this register is also  
set to 1, enabling VGA I/O decoding and forwarding by the bridge.  
4
3
RW  
RW  
0b  
0b  
0 = Execute 10-bit address decodes on VGA I/O accesses.  
1 = Execute 16-bit address decodes on VGA I/O accesses.  
VGA Enable (VGAEN): Controls the routing of processor initiated transactions  
targeting VGA compatible I/O and memory address ranges. See the VGAEN/  
MDAP table in device 0, offset 97h[0].  
ISA Enable (ISAEN): Needed to exclude legacy resource decode to route ISA  
resources to legacy decode path. Modifies the response by the MCH to an I/O  
access issued by the processor that target ISA I/O addresses. This applies only  
to I/O addresses that are enabled by the IOBASE and IOLIMIT registers.  
2
RW  
0b  
0 = All addresses defined by the IOBASE and IOLIMIT for processor I/O  
transactions will be mapped to PCI Express.  
1 = MCH will not forward to PCI Express any I/O transactions addressing the last  
768 bytes in each 1 KB block even if the addresses are within the range  
defined by the IOBASE and IOLIMIT registers.  
Datasheet  
229  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
Default  
Value  
Bit  
Access  
Description  
SERR Enable (SERREN):  
0 = No forwarding of error messages from secondary side to primary side that  
could result in an SERR.  
1 = ERR_COR, ERR_NONFATAL, and ERR_FATAL messages result in SERR  
message when individually enabled by the Root Control register.  
1
RW  
0b  
0b  
Parity Error Response Enable (PEREN): Controls whether or not the Master  
Data Parity Error bit in the Secondary Status register is set when the MCH  
receives across the link (upstream) a Read Data Completion Poisoned  
Transaction Layer Packet.  
0
RW  
0 = Master Data Parity Error bit in Secondary Status register can NOT be set.  
1 = Master Data Parity Error bit in Secondary Status register CAN be set.  
8.25  
PM_CAPID1—Power Management Capabilities  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: 80–83h  
Default Value:  
Access:  
Size:  
C8039001h  
RO  
32 bits  
Default  
Value  
Bit  
Access  
Description  
PME Support (PMES): This field indicates the power states in which this device  
may indicate PME wake via PCI Express messaging. D0, D3hot & D3cold. This  
device is not required to do anything to support D3hot and D3cold, it simply  
must report that those states are supported. Refer to the PCI Power  
Management 1.1 specification for encoding explanation and other power  
management details.  
31:27  
RO  
19h  
D2 Power State Support (D2PSS): Hardwired to 0 to indicate that the D2  
power management state is NOT supported.  
26  
25  
RO  
RO  
RO  
0b  
0b  
D1 Power State Support (D1PSS): Hardwired to 0 to indicate that the D1  
power management state is NOT supported.  
Auxiliary Current (AUXC): Hardwired to 0 to indicate that there are no  
3.3Vaux auxiliary current requirements.  
24:22  
000b  
Device Specific Initialization (DSI): Hardwired to 0 to indicate that special  
initialization of this device is NOT required before generic class device driver is to  
use it.  
21  
RO  
0b  
20  
19  
RO  
RO  
0b  
0b  
Auxiliary Power Source (APS): Hardwired to 0.  
PME Clock (PMECLK): Hardwired to 0 to indicate this device does NOT support  
PMEB generation.  
PCI PM CAP Version (PCIPMCV): A value of 011b indicates that this function  
complies with revision 1.2 of the PCI Power Management Interface Specification.  
18:16  
15:8  
7:0  
RO  
RO  
RO  
011b  
90h  
Pointer to Next Capability (PNC): This contains a pointer to the next item in  
the capabilities list. If MSICH (CAPL[0] @ 7Fh) is 0, then the next item in the  
capabilities list is the Message Signaled Interrupts (MSI) capability at 90h.  
Capability ID (CID): Value of 01h identifies this linked list item (capability  
structure) as being for PCI Power Management registers.  
01h  
230  
Datasheet  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.26  
PM_CS1—Power Management Control/Status  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: 84–87h  
Default Value:  
Access:  
Size:  
00000008h  
RO, RW, RW/P  
32 bits  
Default  
Value  
Bit  
Access  
Description  
31:16  
15  
RO  
RO  
0000h Reserved  
PME Status (PMESTS): Indicates that this device does not support PMEB  
0b  
00b  
0h  
generation from D3cold.  
Data Scale (DSCALE): Indicates that this device does not support the power  
14:13  
12:9  
RO  
RO  
management data register.  
Data Select (DSEL): Indicates that this device does not support the power  
management data register.  
PME Enable (PMEE): Indicates that this device does not generate PMEB  
assertion from any D-state.  
0 = PMEB generation not possible from any D State  
1 = PMEB generation enabled from any D State  
8
RW/P  
RO  
0b  
The setting of this bit has no effect on hardware.  
See PM_CAP[15:11]  
7:2  
0000b Reserved  
Power State (PS): Indicates the current power state of this device and can be  
used to set the device into a new power state. If software attempts to write an  
unsupported state to this field, write operation must complete normally on the  
bus, but the data is discarded and no state change occurs.  
00 = D0  
01 = D1 (Not supported in this device.)  
10 = D2 (Not supported in this device.)  
11 = D3  
Support of D3cold does not require any special action.  
While in the D3hot state, this device can only act as the target of PCI  
configuration transactions (for power management control). This device also  
cannot generate interrupts or respond to MMR cycles in the D3 state. The device  
must return to the D0 state in order to be fully-functional.  
1:0  
RW  
00b  
When the Power State is other than D0, the bridge will Master Abort (i.e. not  
claim) any downstream cycles (with exception of type 0 config cycles).  
Consequently, these unclaimed cycles will go down DMI and come back up as  
Unsupported Requests, which the MCH logs as Master Aborts in Device 0  
PCISTS[13]  
There is no additional hardware functionality required to support these Power  
States.  
Datasheet  
231  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.27  
SS_CAPID—Subsystem ID and Vendor ID  
Capabilities  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: 88–8Bh  
Default Value:  
Access:  
Size:  
0000800Dh  
RO  
32 bits  
This capability is used to uniquely identify the subsystem where the PCI device resides.  
Because this device is an integrated part of the system and not an add-in device, it is  
anticipated that this capability will never be used. However, it is necessary because  
Microsoft will test for its presence.  
Default  
Value  
Bit  
Access  
Description  
31:16  
15:8  
RO  
RO  
0000h Reserved  
Pointer to Next Capability (PNC): This contains a pointer to the next item in  
80h  
0Dh  
the capabilities list which is the PCI Power Management capability.  
Capability ID (CID): Value of 0Dh identifies this linked list item (capability  
7:0  
RO  
structure) as being for SSID/SSVID registers in a PCI-to-PCI Bridge.  
8.28  
SS—Subsystem ID and Subsystem Vendor ID  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: 8C–8Fh  
Default Value:  
Access:  
Size:  
00008086h  
RWO  
32 bits  
System BIOS can be used as the mechanism for loading the SSID/SVID values. These  
values must be preserved through power management transitions and a hardware  
reset.  
Default  
Value  
Bit  
Access  
Description  
Subsystem ID (SSID): Identifies the particular subsystem and is assigned by  
the vendor.  
31:16  
RWO  
RWO  
0000h  
Subsystem Vendor ID (SSVID): Identifies the manufacturer of the subsystem  
8086h and is the same as the vendor ID which is assigned by the PCI Special Interest  
Group.  
15:0  
232  
Datasheet  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.29  
MSI_CAPID—Message Signaled Interrupts  
Capability ID  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: 90–91h  
Default Value:  
Access:  
Size:  
A005h  
RO  
16 bits  
When a device supports MSI, it can generate an interrupt request to the processor by  
writing a predefined data item (a message) to a predefined memory address.  
Default  
Value  
Bit  
Access  
Description  
Pointer to Next Capability (PNC): This contains a pointer to the next item in  
the capabilities list which is the PCI Express capability.  
15:8  
7:0  
RO  
RO  
A0h  
Capability ID (CID): Value of 05h identifies this linked list item (capability  
structure) as being for MSI registers.  
05h  
8.30  
MC—Message Control  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: 92–93h  
Default Value:  
Access:  
Size:  
0000h  
RW, RO  
16 bits  
System software can modify bits in this register, but the device is prohibited from doing  
so.  
If the device writes the same message multiple times, only one of those messages is  
guaranteed to be serviced. If all of them must be serviced, the device must not  
generate the same message again until the driver services the earlier one.  
Default  
Value  
Bit  
Access  
Description  
15:8  
RO  
RO  
00h  
Reserved  
64-bit Address Capable (64AC): Hardwired to 0 to indicate that the function  
does not implement the upper 32 bits of the Message Address register and is  
incapable of generating a 64-bit memory address.  
7
0b  
Multiple Message Enable (MME): System software programs this field to  
indicate the actual number of messages allocated to this device. This number  
will be equal to or less than the number actually requested.  
6:4  
RW  
RO  
RW  
000b  
The encoding is the same as for the MMC field below.  
Multiple Message Capable (MMC): System software reads this field to  
determine the number of messages being requested by this device. The value of  
000b equates to 1 message requested.  
3:1  
0
000b  
0b  
000 = 1 message requested  
All other encodings are reserved.  
MSI Enable (MSIEN): Controls the ability of this device to generate MSIs.  
0 = MSI will not be generated.  
1 = MSI will be generated when we receive PME messages. INTA will not be  
generated and INTA Status (PCISTS1[3]) will not be set.  
Datasheet  
233  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.31  
MA—Message Address  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: 94–97h  
Default Value:  
Access:  
Size:  
00000000h  
RO, RW  
32 bits  
Default  
Value  
Bit  
Access  
Description  
Message Address (MA): Used by system software to assign an MSI address to  
the device. The device handles an MSI by writing the padded contents of the MD  
register to this address.  
0000000  
0h  
31:2  
1:0  
RW  
RO  
Force DWord Align (FDWA): Hardwired to 0 so that addresses assigned by  
system software are always aligned on a DWord address boundary.  
00b  
8.32  
MD—Message Data  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: 98–99h  
Default Value:  
Access:  
Size:  
0000h  
RW  
16 bits  
Default  
Value  
Bit  
Access  
Description  
Message Data (MD): Base message data pattern assigned by system software  
and used to handle an MSI from the device.  
15:0  
RW  
0000h  
When the device must generate an interrupt request, it writes a 32-bit value to  
the memory address specified in the MA register. The upper 16-bits are always  
set to 0. The lower 16-bits are supplied by this register.  
8.33  
PE_CAPL—PCI Express* Capability List  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: A0–A1h  
Default Value:  
Access:  
Size:  
0010h  
RO  
16 bits  
This register enumerates the PCI Express capability structure.  
Default  
Value  
Bit  
Access  
Description  
Pointer to Next Capability (PNC): This value terminates the capabilities list.  
The Virtual Channel capability and any other PCI Express specific capabilities  
that are reported via this mechanism are in a separate capabilities list located  
entirely within PCI Express Extended Configuration Space.  
15:8  
7:0  
RO  
RO  
00h  
Capability ID (CID): Identifies this linked list item (capability structure) as  
being for PCI Express registers.  
10h  
234  
Datasheet  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.34  
PE_CAP—PCI Express* Capabilities  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: A2–A3h  
Default Value:  
Access:  
Size:  
0142h  
RO, RWO  
16 bits  
This register indicates PCI Express device capabilities.  
Default  
Value  
Bit  
Access  
Description  
15:14  
13:9  
RO  
RO  
00b  
Reserved  
Interrupt Message Number (IMN): Not Applicable or Implemented.  
Hardwired to 0.  
00h  
Slot Implemented (SI):  
0 = The PCI Express Link associated with this port is connected to an integrated  
component or is disabled.  
8
RWO  
1b  
1 = The PCI Express Link associated with this port is connected to a slot.  
Device/Port Type (DPT): Hardwired to 4h to indicate root port of PCI Express  
Root Complex.  
7:4  
3:0  
RO  
RO  
4h  
2h  
PCI Express Capability Version (PCIECV): Hardwired to 2h to indicate  
compliance to the PCI Express Capabilities Register Expansion ECN.  
8.35  
DCAP—Device Capabilities  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: A4–A7h  
Default Value:  
Access:  
Size:  
00008000h  
RO  
32 bits  
This register indicates PCI Express device capabilities.  
Default  
Value  
Bit  
Access  
Description  
31:16  
RO  
RO  
0000h Reserved  
Role Based Error Reporting (RBER): This bit indicates that this device  
implements the functionality defined in the Error Reporting ECN as required by  
the PCI Express 1.1 specification.  
15  
1b  
14:6  
5
RO  
RO  
000h  
0b  
Reserved  
Extended Tag Field Supported (ETFS): Hardwired to indicate support for 5-  
bit Tags as a Requestor.  
Phantom Functions Supported (PFS): Not Applicable or Implemented.  
Hardwired to 0.  
4:3  
2:0  
RO  
RO  
00b  
Max Payload Size (MPS): Hardwired to indicate 128B max supported payload  
for Transaction Layer Packets (TLP).  
000b  
Datasheet  
235  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.36  
DCTL—Device Control  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: A8–A9h  
Default Value:  
Access:  
Size:  
0000h  
RW, RO  
16 bits  
This register provides control for PCI Express device specific capabilities.  
The error reporting enable bits are in reference to errors detected by this device, not  
error messages received across the link. The reporting of error messages (ERR_CORR,  
ERR_NONFATAL, ERR_FATAL) received by Root Port is controlled exclusively by Root  
Port Command Register.  
Default  
Value  
Bit  
Access  
Description  
15:8  
RO  
0h  
Reserved  
Max Payload Size (MPS):  
000 = 128B max supported payload for Transaction Layer Packets (TLP). As a  
receiver, the Device must handle TLPs as large as the set value; as  
transmitter, the Device must not generate TLPs exceeding the set value.  
7:5  
RW  
000b  
All other encodings are reserved.  
Hardware will actually ignore this field. It is writeable only to support compliance  
testing.  
4
3
RO  
0b  
0b  
Reserved  
Unsupported Request Reporting Enable (URRE): When set, this bit allows  
signaling ERR_NONFATAL, ERR_FATAL, or ERR_CORR to the Root Control register  
when detecting an unmasked Unsupported Request (UR). An ERR_CORR is  
signaled when an unmasked Advisory Non-Fatal UR is received. An ERR_FATAL  
or ERR_NONFATAL is sent to the Root Control register when an uncorrectable  
non-Advisory UR is received with the severity bit set in the Uncorrectable Error  
Severity register.  
RW  
Fatal Error Reporting Enable (FERE): When set, this bit enables signaling of  
ERR_FATAL to the Root Control register due to internally detected errors or error  
messages received across the link. Other bits also control the full scope of  
related error reporting.  
2
1
0
RW  
RW  
RW  
0b  
0b  
0b  
Non-Fatal Error Reporting Enable (NERE): When set, this bit enables  
signaling of ERR_NONFATAL to the Rool Control register due to internally  
detected errors or error messages received across the link. Other bits also  
control the full scope of related error reporting.  
Correctable Error Reporting Enable (CERE): When set, this bit enables  
signaling of ERR_CORR to the Root Control register due to internally detected  
errors or error messages received across the link. Other bits also control the full  
scope of related error reporting.  
236  
Datasheet  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.37  
DSTS—Device Status  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: AA–ABh  
Default Value:  
Access:  
Size:  
0000h  
RO, RWC  
16 bits  
This register reflects status corresponding to controls in the Device Control register.  
The error reporting bits are in reference to errors detected by this device, not errors  
messages received across the link.  
Default  
Value  
Bit  
Access  
Description  
15:6  
RO  
RO  
RO  
000h  
Reserved  
Transactions Pending (TP):  
0 = All pending transactions (including completions for any outstanding non-  
posted requests on any used virtual channel) have been completed.  
1 = Indicates that the device has transaction(s) pending (including completions  
for any outstanding non-posted requests for all used Traffic Classes).  
5
4
0b  
0b  
Reserved  
Unsupported Request Detected (URD): When set, this bit indicates that the  
Device received an Unsupported Request. Errors are logged in this register  
regardless of whether error reporting is enabled or not in the Device Control  
Register.  
3
RWC  
0b  
Additionally, the Non-Fatal Error Detected bit or the Fatal Error Detected bit is  
set according to the setting of the Unsupported Request Error Severity bit. In  
production systems setting the Fatal Error Detected bit is not an option as  
support for AER will not be reported.  
Fatal Error Detected (FED): When set, this bit indicates that fatal error(s)  
were detected. Errors are logged in this register regardless of whether error  
reporting is enabled or not in the Device Control register. When Advanced Error  
Handling is enabled, errors are logged in this register regardless of the settings  
of the uncorrectable error mask register.  
2
1
0
RWC  
RWC  
RWC  
0b  
0b  
0b  
Non-Fatal Error Detected (NFED): When set, this bit indicates that non-fatal  
error(s) were detected. Errors are logged in this register regardless of whether  
error reporting is enabled or not in the Device Control register.  
When Advanced Error Handling is enabled, errors are logged in this register  
regardless of the settings of the uncorrectable error mask register.  
Correctable Error Detected (CED): When set, this bit indicates that  
correctable error(s) were detected. Errors are logged in this register regardless  
of whether error reporting is enabled or not in the Device Control register.  
When Advanced Error Handling is enabled, errors are logged in this register  
regardless of the settings of the correctable error mask register.  
Datasheet  
237  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.38  
LCAP—Link Capabilities  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: AC–AFh  
Default Value:  
Access:  
Size:  
03214D02h  
RO, RWO  
32 bits  
This register indicates PCI Express device specific capabilities.  
Default  
Value  
Bit  
Access  
Description  
Port Number (PN): This field indicates the PCI Express port number for the  
given PCI Express link. Matches the value in Element Self Description[31:24].  
31:24  
23:22  
RO  
RO  
03h  
000b  
Reserved  
Link Bandwidth Notification Capability: A value of 1b indicates support for  
the Link Bandwidth Notification status and interrupt mechanisms. This capability  
is required for all Root Ports and Switch downstream ports supporting Links  
wider than x1 and/or multiple Link speeds.  
21  
RO  
1b  
This field is not applicable and is reserved for Endpoint devices, PCI Express to  
PCI/PCI-X bridges, and Upstream Ports of Switches.  
Devices that do not implement the Link Bandwidth Notification capability must  
hardwire this bit to 0b.  
Data Link Layer Link Active Reporting Capable (DLLLARC): For a  
Downstream Port, this bit must be set to 1b if the component supports the  
optional capability of reporting the DL_Active state of the Data Link Control and  
Management State Machine.  
20  
19  
RO  
RO  
0b  
0b  
For Upstream Ports and components that do not support this optional capability,  
this bit must be hardwired to 0b.  
Surprise Down Error Reporting Capable (SDERC): For a Downstream Port,  
this bit must be set to 1b if the component supports the optional capability of  
detecting and reporting a Surprise Down error condition.  
For Upstream Ports and components that do not support this optional capability,  
this bit must be hardwired to 0b.  
Clock Power Management (CPM): A value of 1b in this bit indicates that the  
component tolerates the removal of any reference clock(s) when the link is in  
the L1 and L2/3 Ready link states. A value of 0b indicates the component does  
not have this capability and that reference clock(s) must not be removed in  
these link states.  
18  
RO  
0b  
This capability is applicable only in form factors that support "clock request"  
(CLKREQ#) capability.  
For a multi-function device, each function indicates its capability independently.  
Power Management configuration software must only permit reference clock  
removal if all functions of the multifunction device indicate a 1b in this bit.  
L1 Exit Latency (L1ELAT): Indicates the length of time this Port requires to  
complete the transition from L1 to L0. The value 010 b indicates the range of 2  
us to less than 4 us.  
17:15  
RWO  
010b  
Both bytes of this register that contain a portion of this field must be written  
simultaneously in order to prevent an intermediate (and undesired) value from  
ever existing.  
238  
Datasheet  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
Default  
Value  
Bit  
Access  
Description  
L0s Exit Latency (L0SELAT): Indicates the length of time this Port requires to  
complete the transition from L0s to L0.  
000 = Less than 64 ns  
001 = 64ns to less than 128ns  
010 = 128ns to less than 256 ns  
011 = 256ns to less than 512ns  
100 = 512ns to less than 1us  
101 = 1 us to less than 2 us  
110 = 2 us – 4 us  
14:12  
RO  
100b  
111 = More than 4 us  
Active State Link PM Support (ASLPMS): : The MCH supports ASPM L0s and  
L1.  
11:10  
9:4  
RWO  
RO  
11b  
10h  
Max Link Width (MLW): Indicates the maximum number of lanes supported  
for this link.  
10h = x16  
Max Link Speed (MLS): Supported Link Speed - This field indicates the  
supported Link speed(s) of the associated Port.  
0001b = 2.5GT/s Link speed supported  
0010b = 5.0GT/s and 2.5GT/s Link speeds supported  
All other encodings are reserved.  
3:0  
RO  
2h  
Datasheet  
239  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.39  
LCTL—Link Control  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: B0–B1h  
Default Value:  
Access:  
Size:  
0000h  
RO, RW, RW/SC  
16 bits  
This register allows control of PCI Express link.  
Default  
Value  
Bit  
Access  
Description  
15:12  
RO  
0000000b Reserved  
Link Autonomous Bandwidth Interrupt Enable: When Set, this bit enables  
the generation of an interrupt to indicate that the Link Autonomous Bandwidth  
Status bit has been set.  
11  
RW  
0b  
This bit is not applicable and is reserved for Endpoint devices, PCI Express to  
PCI/PCI-X bridges, and Upstream Ports of Switches.  
Devices that do not implement the Link Bandwidth Notification capability must  
hardwire this bit to 0b.  
Link Bandwidth Management Interrupt Enable: When Set, this bit enables  
the generation of an interrupt to indicate that the Link Bandwidth Management  
Status bit has been set.  
10  
RW  
R0  
0b  
0b  
This bit is not applicable and is reserved for Endpoint devices, PCI Express to  
PCI/PCI-X bridges, and Upstream Ports of Switches.  
Hardware Autonomous Width Disable: When Set, this bit disables  
hardware from changing the Link width for reasons other than attempting to  
correct unreliable Link operation by reducing Link width.  
9
Devices that do not implement the ability autonomously to change Link width  
are permitted to hardwire this bit to 0b.  
The MCH does not support autonomous width change. So, this bit is "RO".  
Enable Clock Power Management (ECPM): Applicable only for form factors  
that support a "Clock Request" (CLKREQ#) mechanism, this enable functions  
as follows:  
0 = Clock power management is disabled and device must hold CLKREQ#  
signal low  
1 = The device is permitted to use CLKREQ# signal to power manage link clock  
according to protocol defined in appropriate form factor specification.  
8
RO  
0b  
Default value of this field is 0b.  
Components that do not support Clock Power Management (as indicated by a  
0b value in the Clock Power Management bit of the Link Capabilities Register)  
must hardwire this bit to 0b.  
Extended Synch (ES):  
0 = Standard Fast Training Sequence (FTS).  
1 = Forces the transmission of additional ordered sets when exiting the L0s  
state and when in the Recovery state.  
7
RW  
0b  
This mode provides external devices (e.g., logic analyzers) monitoring the Link  
time to achieve bit and symbol lock before the link enters L0 and resumes  
communication.  
This is a test mode only and may cause other undesired side effects such as  
buffer overflows or underruns.  
240  
Datasheet  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
Default  
Value  
Bit  
Access  
Description  
Common Clock Configuration (CCC):  
0 = Indicates that this component and the component at the opposite end of  
this Link are operating with asynchronous reference clock.  
6
RW  
0b  
1 = Indicates that this component and the component at the opposite end of  
this Link are operating with a distributed common reference clock.  
The state of this bit affects the L0s Exit Latency reported in LCAP[14:12] and  
the N_FTS value advertised during link training.  
Retrain Link (RL):  
0 = Normal operation.  
1 = Full Link retraining is initiated by directing the Physical Layer LTSSM from  
L0, L0s, or L1 states to the Recovery state.  
This bit always returns 0 when read.  
5
RW/SC  
0b  
This bit is cleared automatically (no need to write a 0).  
It is permitted to write 1b to this bit while simultaneously writing modified  
values to other fields in this register. If the LTSSM is not already in Recovery or  
Configuration, the resulting Link training must use the modified values. If the  
LTSSM is already in Recovery or Configuration, the modified values are not  
required to affect the Link training that's already in progress.  
Link Disable (LD):  
0 = Normal operation.  
1 = Link is disabled. Forces the LTSSM to transition to the Disabled state (via  
Recovery) from L0, L0s, or L1 states. Link retraining happens  
automatically on 0 to 1 transition, just like when coming out of reset.  
4
RW  
0b  
Writes to this bit are immediately reflected in the value read from the bit,  
regardless of actual Link state.  
3
2
RO  
0b  
0b  
Read Completion Boundary (RCB): Hardwired to 0 to indicate 64 byte.  
RW  
Reserved  
Active State PM (ASPM): Controls the level of active state power  
management supported on the given link.  
00 = Disabled  
1:0  
RW  
00b  
01 = L0s Entry Supported  
10 = Reserved  
11 = L0s and L1 Entry Supported  
Datasheet  
241  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.40  
LSTS—Link Status  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: B2–B3h  
Default Value:  
Access:  
Size:  
1000h  
RWC, RO  
16 bits  
This register indicates PCI Express link status.  
Default  
Value  
Bit  
Access  
Description  
Link Autonomous Bandwidth Status (LABWS): This bit is set to 1b by  
hardware to indicate that hardware has autonomously changed link speed or  
width, without the port transitioning through DL_Down status, for reasons other  
than to attempt to correct unreliable link operation.  
15  
RWC  
0b  
This bit must be set if the Physical Layer reports a speed or width change was  
initiated by the downstream component that was indicated as an autonomous  
change.  
Link Bandwidth Management Status (LBWMS): This bit is set to 1b by  
hardware to indicate that either of the following has occurred without the port  
transitioning through DL_Down status:  
A link retraining initiated by a write of 1b to the Retrain Link bit has completed.  
NOTE: This bit is Set following any write of 1b to the Retrain Link bit, including  
when the Link is in the process of retraining for some other reason.  
14  
RWC  
0b  
Hardware has autonomously changed link speed or width to attempt to correct  
unreliable link operation, either through an LTSSM timeout or a higher level  
process  
This bit must be set if the Physical Layer reports a speed or width change was  
initiated by the downstream component that was not indicated as an  
autonomous change.  
Data Link Layer Link Active (Optional) (DLLLA): This bit indicates the  
status of the Data Link Control and Management State Machine. It returns a 1b  
to indicate the DL_Active state, 0b otherwise.  
13  
12  
RO  
RO  
0b  
1b  
This bit must be implemented if the corresponding Data Link Layer Active  
Capability bit is implemented. Otherwise, this bit must be hardwired to 0b.  
Slot Clock Configuration (SCC):  
0 = The device uses an independent clock irrespective of the presence of a  
reference on the connector.  
1 = The device uses the same physical reference clock that the platform  
provides on the connector.  
Link Training (LTRN): This bit indicates that the Physical Layer LTSSM is in the  
Configuration or Recovery state, or that 1b was written to the Retrain Link bit  
but Link training has not yet begun. Hardware clears this bit when the LTSSM  
exits the Configuration/Recovery state once Link training is complete.  
11  
10  
RO  
RO  
0b  
0b  
Undefined: The value read from this bit is undefined. In previous versions of  
this specification, this bit was used to indicate a Link Training Error. System  
software must ignore the value read from this bit. System software is permitted  
to write any value to this bit.  
242  
Datasheet  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
Default  
Value  
Bit  
Access  
Description  
Negotiated Link Width (NLW): Indicates negotiated link width. This field is  
valid only when the link is in the L0, L0s, or L1 states (after link width  
negotiation is successfully completed).  
01h = x1  
04h = ‘x4 — This is not a supported PCIe Gen2.0 link width. Link width x4 is only  
valid when PCIe Gen1.1 I/O card is used in the secondary port.  
9:4  
RO  
00h  
08h = x8 — This is not a supported PCIe Gen2.0 link width. Link width x8 is only  
valid when PCIe Gen1.1 I/O card is used in the secondary port.  
10h = x16  
All other encodings are reserved.  
Current Link Speed (CLS): This field indicates the negotiated Link speed of the  
given PCI Express Link.  
Defined encodings are:  
3:0  
RO  
0h  
0001b = 5.0 GT/s PCI Express Link  
0010b = 5 GT/s PCI Express Link  
All other encodings are reserved. The value in this field is undefined when the  
Link is not up.  
8.41  
SLOTCAP—Slot Capabilities  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: B4–B7h  
Default Value:  
Access:  
Size:  
00040000h  
RWO, RO  
32 bits  
PCI Express Slot related registers.  
Default  
Value  
Bit  
Access  
Description  
Physical Slot Number (PSN): Indicates the physical slot number attached to  
this Port.  
31:19  
18  
RWO  
RO  
0000h  
1b  
Reserved  
Electromechanical Interlock Present (EIP): When set to 1b, this bit  
indicates that an Electromechanical Interlock is implemented on the chassis for  
this slot.  
17  
RO  
0b  
Slot Power Limit Scale (SPLS): Specifies the scale used for the Slot Power  
Limit Value.  
00 = 1.0x  
01 = 0.1x  
16:15  
RWO  
00b  
10 = 0.01x  
11 = 0.001x  
If this field is written, the link sends a Set_Slot_Power_Limit message.  
Slot Power Limit Value (SPLV): In combination with the Slot Power Limit  
Scale value, specifies the upper limit on power supplied by slot. Power limit (in  
Watts) is calculated by multiplying the value in this field by the value in the Slot  
Power Limit Scale field.  
14:7  
RWO  
00h  
If this field is written, the link sends a Set_Slot_Power_Limit message.  
Datasheet  
243  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
Default  
Value  
Bit  
Access  
Description  
6:5  
4
RO  
RO  
00b  
0b  
Reserved  
Power Indicator Present (PIP): When set to 1b, this bit indicates that a  
Power Indicator is electrically controlled by the chassis for this slot.  
Attention Indicator Present (AIP): When set to 1b, this bit indicates that an  
Attention Indicator is electrically controlled by the chassis.  
3
2
RO  
RO  
0b  
0b  
MRL Sensor Present (MSP): When set to 1b, this bit indicates that an MRL  
Sensor is implemented on the chassis for this slot.  
Power Controller Present (PCP): When set to 1b, this bit indicates that a  
software programmable Power Controller is implemented for this slot/adapter  
(depending on form factor).  
1
0
RO  
RO  
0b  
0b  
Attention Button Present (ABP): When set to 1b, this bit indicates that an  
Attention Button for this slot is electrically controlled by the chassis.  
8.42  
SLOTCTL—Slot Control  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: B8–B9h  
Default Value:  
Access:  
Size:  
0000h  
RO, RW  
16 bits  
PCI Express Slot related registers.  
Default  
Value  
Bit  
Access  
Description  
15:13  
RO  
000b  
Reserved  
Data Link Layer State Changed Enable (DLLSCE): If the Data Link Layer  
Link Active capability is implemented, when set to 1b, this field enables software  
notification when Data Link Layer Link Active field is changed.  
12  
11  
RO  
0b  
0b  
If the Data Link Layer Link Active capability is not implemented, this bit is  
permitted to be read-only with a value of 0b.  
Electromechanical Interlock Control (EIC): If an Electromechanical  
Interlock is implemented, a write of 1b to this field causes the state of the  
interlock to toggle. A write of 0b to this field has no effect. A read to this register  
always returns a 0.  
RO  
Power Controller Control (PCC): If a Power Controller is implemented, this  
field when written sets the power state of the slot per the defined encodings.  
Reads of this field must reflect the value from the latest write, unless software  
issues a write without waiting for the previous command to complete in which  
case the read value is undefined.  
Depending on the form factor, the power is turned on/off either to the slot or  
within the adapter. Note that in some cases the power controller may  
autonomously remove slot power or not respond to a power-up request based on  
a detected fault condition, independent of the Power Controller Control setting.  
10  
RO  
0b  
0 = Power On  
1 = Power Off  
If the Power Controller Implemented field in the Slot Capabilities register is set  
to 0b, then writes to this field have no effect and the read value of this field is  
undefined.  
244  
Datasheet  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
Default  
Value  
Bit  
Access  
Description  
Power Indicator Control (PIC): If a Power Indicator is implemented, writes to  
this field set the Power Indicator to the written state. Reads of this field must  
reflect the value from the latest write, unless software issues a write without  
waiting for the previous command to complete in which case the read value is  
undefined.  
00 = Reserved  
01 = On  
9:8  
RO  
00b  
10 = Blink  
11 = Off  
If the Power Indicator Present bit in the Slot Capabilities register is 0b, this field  
is permitted to be read-only with a value of 00b.  
Attention Indicator Control (AIC): If an Attention Indicator is implemented,  
writes to this field set the Attention Indicator to the written state.  
Reads of this field must reflect the value from the latest write, unless software  
issues a write without waiting for the previous command to complete in which  
case the read value is undefined. If the indicator is electrically controlled by  
chassis, the indicator is controlled directly by the downstream port through  
implementation specific mechanisms.  
7:6  
RO  
00b  
00 = Reserved  
01 = On  
10 = Blink  
11 = Off  
If the Attention Indicator Present bit in the Slot Capabilities register is 0b, this  
field is permitted to be read only with a value of 00b.  
5:4  
3
RO  
00b  
0b  
Reserved  
Presence Detect Changed Enable (PDCE): When set to 1b, this bit enables  
software notification on a presence detect changed event.  
RW  
MRL Sensor Changed Enable (MSCE): When set to 1b, this bit enables  
software notification on a MRL sensor changed event.  
2
RO  
0b  
Default value of this field is 0b. If the MRL Sensor Present field in the Slot  
Capabilities register is set to 0b, this bit is permitted to be read-only with a value  
of 0b.  
Power Fault Detected Enable (PFDE): When set to 1b, this bit enables  
software notification on a power fault event.  
1
0
RO  
RO  
0b  
0b  
Default value of this field is 0b. If Power Fault detection is not supported, this bit  
is permitted to be read-only with a value of 0b  
Button Pressed Enable (ABPE): When set to 1b, this bit enables software  
notification on an attention button pressed event.  
Datasheet  
245  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.43  
SLOTSTS—Slot Status  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: BA–BBh  
Default Value:  
Access:  
Size:  
0000h  
RO, RWC  
16 bits  
PCI Express Slot related registers.  
Default  
Value  
Bit  
Access  
Description  
15:7  
RO  
RO  
0000000b Reserved  
Presence Detect State (PDS): This bit indicates the presence of an adapter  
in the slot, reflected by the logical "OR" of the Physical Layer in-band presence  
detect mechanism and, if present, any out-of-band presence detect  
mechanism defined for the slot's corresponding form factor. Note that the in-  
band presence detect mechanism requires that power be applied to an adapter  
for its presence to be detected.  
6
0b  
0 = Slot Empty  
1 = Card Present in Slot  
This register must be implemented on all Downstream Ports that implement  
slots. For Downstream Ports not connected to slots (where the Slot  
Implemented bit of the PCI Express Capabilities Register is 0b), this bit must  
return 1b.  
5:4  
3
RO  
00b  
0b  
Reserved  
Detect Changed (PDC): This bit is set when the value reported in Presence  
Detect State is changed.  
RWC  
MRL Sensor Changed (MSC): If an MRL sensor is implemented, this bit is set  
when a MRL Sensor state change is detected. If an MRL sensor is not  
implemented, this bit must not be set.  
2
1
0
RO  
RO  
RO  
0b  
0b  
0b  
Power Fault Detected (PFD): If a Power Controller that supports power fault  
detection is implemented, this bit is set when the Power Controller detects a  
power fault at this slot. Note that, depending on hardware capability, it is  
possible that a power fault can be detected at any time, independent of the  
Power Controller Control setting or the occupancy of the slot. If power fault  
detection is not supported, this bit must not be set.  
Attention Button Pressed (ABP): If an Attention Button is implemented,  
this bit is set when the attention button is pressed. If an Attention Button is not  
supported, this bit must not be set.  
246  
Datasheet  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.44  
RCTL—Root Control  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: BC–BDh  
Default Value:  
Access:  
Size:  
0000h  
RO, RW  
16 bits  
This register allows control of PCI Express Root Complex specific parameters. The  
system error control bits in this register determine if corresponding SERRs are  
generated when our device detects an error (reported in this device's Device Status  
register) or when an error message is received across the link. Reporting of SERR as  
controlled by these bits takes precedence over the SERR Enable in the PCI Command  
Register.  
Default  
Value  
Bit  
Access  
Description  
15:4  
RO  
000h  
Reserved  
PME Interrupt Enable (PMEIE):  
0 = No interrupts are generated as a result of receiving PME messages.  
1 = Enables interrupt generation upon receipt of a PME message as reflected in  
the PME Status bit of the Root Status Register. A PME interrupt is also  
generated if the PME Status bit of the Root Status Register is set when this  
bit is set from a cleared state.  
3
2
1
0
RW  
0b  
0b  
0b  
0b  
System Error on Fatal Error Enable (SEFEE): Controls the Root Complex's  
response to fatal errors.  
0 = No SERR generated on receipt of fatal error.  
RW  
RW  
RW  
1 = Indicates that an SERR should be generated if a fatal error is reported by  
any of the devices in the hierarchy associated with this Root Port, or by the  
Root Port itself.  
System Error on Non-Fatal Uncorrectable Error Enable (SENFUEE):  
Controls the Root Complex's response to non-fatal errors.  
0 = No SERR generated on receipt of non-fatal error.  
1 = Indicates that an SERR should be generated if a non-fatal error is reported  
by any of the devices in the hierarchy associated with this Root Port, or by  
the Root Port itself.  
System Error on Correctable Error Enable (SECEE): Controls the Root  
Complex's response to correctable errors.  
0 = No SERR generated on receipt of correctable error.  
1 = Indicates that an SERR should be generated if a correctable error is reported  
by any of the devices in the hierarchy associated with this Root Port, or by  
the Root Port itself.  
Datasheet  
247  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.45  
RSTS—Root Status  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: C0–C3h  
Default Value:  
Access:  
Size:  
00000000h  
RO, RWC  
32 bits  
This register provides information about PCI Express Root Complex specific  
parameters.  
Default  
Value  
Bit  
Access  
Description  
31:18  
RO  
0000h Reserved  
PME Pending (PMEP): Indicates that another PME is pending when the PME  
Status bit is set. When the PME Status bit is cleared by software; the PME is  
delivered by hardware by setting the PME Status bit again and updating the  
Requestor ID appropriately. The PME pending bit is cleared by hardware if no  
more PMEs are pending.  
17  
RO  
0b  
PME Status (PMES): Indicates that PME was asserted by the requestor ID  
indicated in the PME Requestor ID field. Subsequent PMEs are kept pending until  
the status register is cleared by writing a 1 to this field.  
16  
RWC  
RO  
0b  
PME Requestor ID (PMERID): Indicates the PCI requestor ID of the last PME  
requestor.  
15:0  
0000h  
8.46  
PELC—PCI Express Legacy Control  
B/D/F/Type:  
0/6/0/PCI  
Address Offset: EC–EFh  
Default Value:  
Access:  
Size:  
00000000h  
RO, RW  
32 bits  
This register controls functionality that is needed by Legacy (non-PCI Express aware)  
OSs during run time.  
Default  
Value  
Bit  
Access  
Description  
0000000  
0h  
31:3  
RO  
Reserved  
PME GPE Enable (PMEGPE):  
0 = Do not generate GPE PME message when PME is received.  
1 = Generate a GPE PME message when PME is received (Assert_PMEGPE and  
Deassert_PMEGPE messages on DMI). This enables the MCH to support  
PMEs on the PCI Express port under legacy OSs.  
2
1
RW  
RO  
0b  
0b  
Reserved  
General Message GPE Enable (GENGPE):  
0 = Do not forward received GPE assert/de-assert messages.  
1 = Forward received GPE assert/de-assert messages. These general GPE  
message can be received via the PCI Express port from an external Intel  
device and will be subsequently forwarded to the ICH (via Assert_GPE and  
Deassert_GPE messages on DMI).  
0
RW  
0b  
248  
Datasheet  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.47  
VCECH—Virtual Channel Enhanced Capability  
Header  
B/D/F/Type:  
0/6/0/MMR  
Address Offset: 100–103h  
Default Value:  
Access:  
Size:  
14010002h  
RO  
32 bits  
This register indicates PCI Express device Virtual Channel capabilities. Extended  
capability structures for PCI Express devices are located in PCI Express extended  
configuration space and have different field definitions than standard PCI capability  
structures.  
Default  
Value  
Bit  
Access  
Description  
Pointer to Next Capability (PNC): The Link Declaration Capability is the next  
in the PCI Express extended capabilities list.  
31:20  
RO  
RO  
RO  
140h  
PCI Express Virtual Channel Capability Version (PCIEVCCV): Hardwired to  
1 to indicate compliances with the 1.1 version of the PCI Express specification.  
19:16  
15:0  
1h  
Note: This version does not change for 2.0 compliance.  
Extended Capability ID (ECID): Value of 0002h identifies this linked list item  
(capability structure) as being for PCI Express Virtual Channel registers.  
0002h  
8.48  
PVCCAP1—Port VC Capability Register 1  
B/D/F/Type:  
0/6/0/MMR  
Address Offset: 104–107h  
Default Value:  
Access:  
Size:  
00000000h  
RO  
32 bits  
This register describes the configuration of PCI Express Virtual Channels associated  
with this port.  
Default  
Value  
Bit  
Access  
Description  
31:7  
RO  
00000h Reserved  
Low Priority Extended VC Count (LPEVCC): This field indicates the number  
of (extended) Virtual Channels in addition to the default VC belonging to the low-  
priority VC (LPVC) group that has the lowest priority with respect to other VC  
resources in a strict-priority VC Arbitration.  
6:4  
RO  
000b  
The value of 0 in this field implies strict VC arbitration.  
3
RO  
RO  
0b  
Reserved  
Extended VC Count (EVCC): This field indicates the number of (extended)  
Virtual Channels in addition to the default VC supported by the device.  
2:0  
000b  
Datasheet  
249  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.49  
PVCCAP2—Port VC Capability Register 2  
B/D/F/Type:  
0/6/0/MMR  
Address Offset: 108–10Bh  
Default Value:  
Access:  
Size:  
00000000h  
RO  
32 bits  
This register describes the configuration of PCI Express Virtual Channels associated  
with this port.  
Default  
Value  
Bit  
Access  
Description  
VC Arbitration Table Offset (VCATO): This field indicates the location of the  
VC Arbitration Table. This field contains the zero-based offset of the table in  
DQWORDS (16 bytes) from the base address of the Virtual Channel Capability  
Structure. A value of 0 indicates that the table is not present (due to fixed VC  
priority).  
31:24  
RO  
RO  
00h  
23:0  
0000h Reserved  
8.50  
PVCCTL—Port VC Control  
B/D/F/Type:  
0/6/0/MMR  
Address Offset: 10C–10Dh  
Default Value:  
Access:  
Size:  
0000h  
RO, RW  
16 bits  
Default  
Value  
Bit  
Access  
Description  
15:4  
RO  
RW  
RO  
000h  
Reserved  
VC Arbitration Select (VCAS): This field will be programmed by software to  
the only possible value as indicated in the VC Arbitration Capability field. Since  
there is no other VC supported than the default, this field is reserved.  
3:1  
0
000b  
0b  
Reserved  
250  
Datasheet  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.51  
VC0RCAP—VC0 Resource Capability  
B/D/F/Type:  
0/6/0/MMR  
Address Offset: 110–113h  
Default Value:  
Access:  
Size:  
00000001h  
RO  
32 bits  
Default  
Bit  
Access  
Description  
Value  
0000h Reserved  
Reject Snoop Transactions (RSNPT):  
31:16  
RO  
RO  
RO  
0 = Transactions with or without the No Snoop bit set within the Transaction  
Layer Packet header are allowed on this VC.  
1 = When Set, any transaction for which the No Snoop attribute is applicable but  
is not Set within the TLP Header will be rejected as an Unsupported Request.  
15  
0b  
14:8  
0000h Reserved  
Port Arbitration Capability: Indicates types of Port Arbitration  
supported by the VC resource. This field is valid for all Switch Ports, Root Ports  
that support peer-to-peer traffic, and RCRBs, but not for PCI Express Endpoint  
devices or Root Ports that do not support peer to peer traffic.  
Each bit location within this field corresponds to a Port Arbitration Capability  
defined below. When more than one bit in this field is Set, it indicates that the  
VC resource can be configured to provide different arbitration services.  
Software selects among these capabilities by writing to the Port Arbitration  
Select field (see below).  
7:0  
RO  
01h  
Bit[0]  
= Default = 01b; Non-configurable hardware-fixed arbitration  
scheme, e.g., Round Robin (RR)  
Bit[1]  
Bit[2]  
Bit[3]  
Bit[4]  
Bit[5]  
= Weighted Round Robin (WRR) arbitration with 32 phases  
= WRR arbitration with 64 phases  
= WRR arbitration with 128 phases  
= Time-based WRR with 128 phases  
= WRR arbitration with 256 phases  
Bits[6:7] = Reserved  
MCH default indicates "Non-configurable hardware-fixed arbitration scheme".  
Datasheet  
251  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.52  
VC0RCTL—VC0 Resource Control  
B/D/F/Type:  
0/6/0/MMR  
Address Offset: 114–117h  
Default Value:  
Access:  
Size:  
800000FFh  
RO, RW  
32 bits  
This register controls the resources associated with PCI Express Virtual Channel 0.  
Default  
Value  
Bit  
Access  
Description  
VC0 Enable (VC0E): For VC0, this is hardwired to 1 and read only as VC0 can  
never be disabled.  
31  
RO  
RO  
RO  
RO  
1b  
0h  
30:27  
26:24  
23:20  
Reserved  
VC0 ID (VC0ID): This field assigns a VC ID to the VC resource. For VC0 this is  
hardwired to 0 and read only.  
000b  
0000h Reserved  
Port Arbitration Select: This field configures the VC resource to provide a  
particular Port Arbitration service. This field is valid for RCRBs, Root Ports that  
support peer to peer traffic, and Switch Ports, but not for PCI Express Endpoint  
devices or Root Ports that do not support peer to peer traffic.  
19:17  
16:8  
RW  
RO  
000b  
00h  
The permissible value of this field is a number corresponding to one of the  
asserted bits in the Port Arbitration Capability field of the VC resource.  
Reserved  
TC/VC0 Map (TCVC0M): This field indicates the TCs (Traffic Classes) that are  
mapped to the VC resource. Bit locations within this field correspond to TC  
values. For example, when bit 7 is set in this field, TC7 is mapped to this VC  
resource. When more than one bit in this field is set, it indicates that multiple  
TCs are mapped to the VC resource. To remove one or more TCs from the TC/VC  
Map of an enabled VC, software must ensure that no new or outstanding  
transactions with the TC labels are targeted at the given Link.  
7:1  
0
RW  
RO  
7Fh  
1b  
TC0/VC0 Map (TC0VC0M): Traffic Class 0 is always routed to VC0.  
252  
Datasheet  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.53  
VC0RSTS—VC0 Resource Status  
B/D/F/Type:  
0/6/0/MMR  
Address Offset: 11A–11Bh  
Default Value:  
Access:  
Size:  
0002h  
RO  
16 bits  
This register reports the Virtual Channel specific status.  
Default  
Value  
Bit  
Access  
Description  
15:2  
RO  
RO  
RO  
0000h Reserved  
VC0 Negotiation Pending (VC0NP):  
0 = The VC negotiation is complete.  
1 = The VC resource is still in the process of negotiation (initialization or  
disabling).  
This bit indicates the status of the process of Flow Control initialization. It is set  
by default on Reset, as well as whenever the corresponding Virtual Channel is  
Disabled or the Link is in the DL_Down state. It is cleared when the link  
successfully exits the FC_INIT2 state.  
1
1b  
0b  
Before using a Virtual Channel, software must check whether the VC Negotiation  
Pending fields for that Virtual Channel are cleared in both Components on a Link.  
0
Reserved  
8.54  
RCLDECH—Root Complex Link Declaration  
Enhanced  
B/D/F/Type:  
0/6/0/MMR  
Address Offset: 140–143h  
Default Value:  
Access:  
Size:  
00010005h  
RO  
32 bits  
This capability declares links from this element (PCI Express) to other elements of the  
root complex component to which it belongs. See PCI Express specification for link/  
topology declaration requirements.  
Default  
Value  
Bit  
Access  
Description  
Pointer to Next Capability (PNC): This is the last capability in the PCI Express  
extended capabilities list.  
31:20  
RO  
RO  
RO  
000h  
Link Declaration Capability Version (LDCV): Hardwired to 1 to indicate  
compliances with the 1.1 version of the PCI Express specification.  
19:16  
15:0  
1h  
Note: This version does not change for 2.0 compliance.  
Extended Capability ID (ECID): Value of 0005h identifies this linked list item  
(capability structure) as being for PCI Express Link Declaration Capability.  
0005h  
Datasheet  
253  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.55  
ESD—Element Self Description  
B/D/F/Type:  
0/6/0/MMR  
Address Offset: 144–147h  
Default Value:  
Access:  
Size:  
03000100h  
RO, RWO  
32 bits  
This register provides information about the root complex element containing this Link  
Declaration Capability.  
Default  
Value  
Bit  
Access  
Description  
Port Number (PN): This field specifies the port number associated with this  
element with respect to the component that contains this element. This port  
number value is used by the egress port of the component to provide arbitration  
to this Root Complex Element.  
31:24  
RO  
03h  
Component ID (CID): This field indicates the physical component that contains  
this Root Complex Element.  
23:16  
15:8  
RWO  
RO  
00h  
01h  
Number of Link Entries (NLE): This field indicates the number of link entries  
following the Element Self Description. This field reports 1 (to Egress port only  
as we don't report any peer-to-peer capabilities in our topology).  
7:4  
3:0  
RO  
RO  
0h  
0h  
Reserved  
Element Type (ET): This field indicates Configuration Space Element.  
254  
Datasheet  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
8.56  
LE1D—Link Entry 1 Description  
B/D/F/Type:  
0/6/0/MMR  
Address Offset: 150–153h  
Default Value:  
Access:  
Size:  
00000000h  
RO, RWO  
32 bits  
This register provides the first part of a Link Entry that declares an internal link to  
another Root Complex Element.  
Default  
Value  
Bit  
Access  
Description  
Target Port Number (TPN): This field specifies the port number associated  
with the element targeted by this link entry (Egress Port). The target port  
number is with respect to the component that contains this element as specified  
by the target component ID.  
31:24  
RO  
00h  
Target Component ID (TCID): This field identifies the physical or logical  
component that is targeted by this link entry.  
23:16  
15:2  
RWO  
RO  
00h  
0000h Reserved  
Link Type (LTYP): This bit indicates that the link points to memory–mapped  
1
0
RO  
0b  
space (for RCRB). The link address specifies the 64-bit base address of the  
target RCRB.  
Link Valid (LV):  
RWO  
0b  
0 = Link Entry is not valid and will be ignored.  
1 = Link Entry specifies a valid link.  
8.57  
LE1A—Link Entry 1 Address  
B/D/F/Type:  
0/6/0/MMR  
Address Offset: 158–15Fh  
Default Value:  
Access:  
Size:  
0000000000000000h  
RO, RWO  
64 bits  
This register provides the second part of a Link Entry that declares an internal link to  
another Root Complex Element.  
Default  
Value  
Bit  
Access  
Description  
0000000  
0h  
63:32  
RO  
Reserved  
Link Address (LA): This field provides the memory mapped base address of  
the RCRB that is the target element (Egress Port) for this link entry.  
31:12  
11:0  
RWO  
RO  
00000h  
000h  
Reserved  
§ §  
Datasheet  
255  
Host-Secondary PCI Express* Bridge Registers (D6:F0)  
256  
Datasheet  
Direct Media Interface (DMI) RCRB  
9
Direct Media Interface (DMI)  
RCRB  
This Root Complex Register Block (RCRB) controls the MCH-ICH9 serial interconnect.  
The base address of this space is programmed in DMIBAR in D0:F0 configuration space.  
Table 16 provides an address map of the DMI registers listed by address offset in  
ascending order.  
Note:  
IMPORTANT: All RCRB register space needs to remain organized as shown here.  
Table 16.  
Direct Media Interface Register Address Map  
Address  
Offset  
Register  
Symbol  
Default  
Value  
Register Name  
Access  
DMI Virtual Channel Enhanced  
Capability  
0–3h  
DMIVCECH  
04010002h  
RO  
4–7h  
DMIPVCCAP1 DMI Port VC Capability Register 1  
DMIPVCCTL DMI Port VC Control  
00000001h  
0000h  
RWO, RO  
RO, RW  
RO  
C–Dh  
10–13h  
14–17h  
1A–1Bh  
1C–1Fh  
20–23h  
26–27h  
84–87h  
88–89h  
8A–8Bh  
DMIVC0RCAP DMI VC0 Resource Capability  
DMIVC0RCTL0 DMI VC0 Resource Control  
DMIVC0RSTS DMI VC0 Resource Status  
DMIVC1RCAP DMI VC1 Resource Capability  
DMIVC1RCTL1 DMI VC1 Resource Control  
DMIVC1RSTS DMI VC1 Resource Status  
00000001h  
800000FFh  
0002h  
RO, RW  
RO  
00008001h  
01000000h  
0002h  
RO  
RW, RO  
RO  
DMILCAP  
DMILCTL  
DMILSTS  
DMI Link Capabilities  
DMI Link Control  
DMI Link Status  
00012C41h  
0000h  
RO, RWO  
RW, RO  
RO  
0001h  
Datasheet  
257  
Direct Media Interface (DMI) RCRB  
9.1  
DMIVCECH—DMI Virtual Channel Enhanced  
Capability  
B/D/F/Type:  
0/0/0/DMIBAR  
Address Offset: 0–3h  
Default Value:  
Access:  
Size:  
04010002h  
RO  
32 bits  
This register indicates DMI Virtual Channel capabilities.  
Default  
Value  
Bit  
Access  
Description  
Pointer to Next Capability (PNC): This field contains the offset to the next  
PCI Express capability structure in the linked list of capabilities (Link Declaration  
Capability).  
31:20  
RO  
040h  
PCI Express Virtual Channel Capability Version (PCIEVCCV): Hardwired  
to 1 to indicate compliances with the 1.1 version of the PCI Express  
specification.  
19:16  
15:0  
RO  
RO  
1h  
Note: This version does not change for 2.0 compliance.  
Extended Capability ID (ECID): Value of 0002 h identifies this linked list item  
(capability structure) as being for PCI Express Virtual Channel registers.  
0002h  
9.2  
DMIPVCCAP1—DMI Port VC Capability Register 1  
B/D/F/Type:  
0/0/0/DMIBAR  
Address Offset: 4–7h  
Default Value:  
Access:  
Size:  
00000001h  
RWO, RO  
32 bits  
This register describes the configuration of PCI Express Virtual Channels associated  
with this port.  
Default  
Value  
Bit  
Access  
Description  
31:7  
RO  
0000000h Reserved  
Low Priority Extended VC Count (LPEVCC): Indicates the number of  
(extended) Virtual Channels in addition to the default VC belonging to the low-  
priority VC (LPVC) group that has the lowest priority with respect to other VC  
resources in a strict-priority VC Arbitration.  
6:4  
RO  
000b  
The value of 0 in this field implies strict VC arbitration.  
3
RO  
0b  
Reserved  
Extended VC Count (EVCC): Indicates the number of (extended) Virtual  
Channels in addition to the default VC supported by the device.  
2:0  
RWO  
001b  
The Private Virtual Channel is not included in this count.  
258  
Datasheet  
Direct Media Interface (DMI) RCRB  
9.3  
DMIPVCCTL—DMI Port VC Control  
B/D/F/Type:  
0/0/0/DMIBAR  
Address Offset: C–Dh  
Default Value:  
Access:  
Size:  
0000h  
RO, RW  
16 bits  
Default  
Value  
Bit  
Access  
Description  
15:4  
RO  
RW  
RO  
000h  
Reserved  
VC Arbitration Select (VCAS): This field will be programmed by software to  
the only possible value as indicated in the VC Arbitration Capability field.  
3:1  
0
000b  
0b  
See the PCI express specification for more details  
Reserved  
9.4  
DMIVC0RCAP—DMI VC0 Resource Capability  
B/D/F/Type:  
0/0/0/DMIBAR  
Address Offset: 10–13h  
Default Value:  
Access:  
Size:  
00000001h  
RO  
32 bits  
Default  
Value  
Bit  
Access  
Description  
31:16  
RO  
0s  
Reserved  
Reject Snoop Transactions (REJSNPT):  
0 = Transactions with or without the No Snoop bit set within the TLP header are  
allowed on this VC.  
15  
RO  
0b  
1 = When Set, any transaction for which the No Snoop attribute is applicable but  
is not Set within the TLP Header will be rejected as an Unsupported Request.  
14:8  
7:0  
RO  
RO  
00h  
01h  
Reserved  
Port Arbitration Capability (PAC): Having only bit 0 set indicates that the  
only supported arbitration scheme for this VC is non-configurable hardware-  
fixed.  
Datasheet  
259  
Direct Media Interface (DMI) RCRB  
9.5  
DMIVC0RCTL0—DMI VC0 Resource Control  
B/D/F/Type:  
0/0/0/DMIBAR  
Address Offset: 14–17h  
Default Value:  
Access:  
Size:  
800000FFh  
RO, RW  
32 bits  
This register controls the resources associated with PCI Express Virtual Channel 0.  
Default  
Value  
Bit  
Access  
Description  
Virtual Channel 0 Enable (VC0E): For VC0 this is hardwired to 1 and read  
only as VC0 can never be disabled.  
31  
RO  
RO  
RO  
RO  
1b  
0h  
30:27  
26:24  
23:20  
Reserved  
Virtual Channel 0 ID (VC0ID): Assigns a VC ID to the VC resource. For VC0  
this is hardwired to 0 and read only.  
000b  
0h  
Reserved  
Port Arbitration Select (PAS): This field configures the VC resource to provide  
a particular Port Arbitration service. Valid value for this field is a number  
corresponding to one of the asserted bits in the Port Arbitration Capability field  
of the VC resource. Because only bit 0 of that field is asserted.  
19:17  
16:8  
RW  
RO  
000b  
000h  
This field will always be programmed to 1.  
Reserved  
Traffic Class / Virtual Channel 0 Map (TCVC0M): This field indicates the TCs  
(Traffic Classes) that are mapped to the VC resource. Bit locations within this  
field correspond to TC values.  
For example, when bit 7 is set in this field, TC7 is mapped to this VC resource.  
When more than one bit in this field is set, it indicates that multiple TCs are  
mapped to the VC resource. In order to remove one or more TCs from the TC/VC  
Map of an enabled VC, software must ensure that no new or outstanding  
transactions with the TC labels are targeted at the given Link.  
7:1  
0
RW  
RO  
7Fh  
1b  
Traffic Class 0 / Virtual Channel 0 Map (TC0VC0M): Traffic Class 0 is always  
routed to VC0.  
260  
Datasheet  
Direct Media Interface (DMI) RCRB  
9.6  
DMIVC0RSTS—DMI VC0 Resource Status  
B/D/F/Type:  
0/0/0/DMIBAR  
Address Offset: 1A–1Bh  
Default Value:  
Access:  
Size:  
0002h  
RO  
16 bits  
This register reports the Virtual Channel specific status.  
Default  
Value  
Bit  
Access  
Description  
15:2  
RO  
RO  
RO  
0000h Reserved  
Virtual Channel 0 Negotiation Pending (VC0NP):  
0 = The VC negotiation is complete.  
1 = The VC resource is still in the process of negotiation (initialization or  
disabling).  
This bit indicates the status of the process of Flow Control initialization. It is set  
by default on Reset, as well as whenever the corresponding Virtual Channel is  
Disabled or the Link is in the DL_Down state.  
1
1b  
0b  
It is cleared when the link successfully exits the FC_INIT2 state.  
BIOS Requirement: Before using a Virtual Channel, software must check  
whether the VC Negotiation Pending fields for that Virtual Channel are cleared in  
both Components on a Link.  
0
Reserved  
9.7  
DMIVC1RCAP—DMI VC1 Resource Capability  
B/D/F/Type:  
0/0/0/DMIBAR  
Address Offset: 1C–1Fh  
Default Value:  
Access:  
Size:  
00008001h  
RO  
32 bits  
Default  
Value  
Bit  
Access  
Description  
31:16  
RO  
00h  
Reserved  
Reject Snoop Transactions (REJSNPT):  
0 = Transactions with or without the No Snoop bit set within the TLP header are  
allowed on this VC.  
15  
RO  
1b  
1 = When Set, any transaction for which the No Snoop attribute is applicable but  
is not Set within the TLP Header will be rejected as an Unsupported Request.  
14:8  
7:0  
RO  
RO  
00h  
01h  
Reserved  
Port Arbitration Capability (PAC): Having only bit 0 set indicates that the  
only supported arbitration scheme for this VC is non-configurable hardware-  
fixed.  
Datasheet  
261  
Direct Media Interface (DMI) RCRB  
9.8  
DMIVC1RCTL1—DMI VC1 Resource Control  
B/D/F/Type:  
0/0/0/DMIBAR  
Address Offset: 20–23h  
Default Value:  
Access:  
Size:  
01000000h  
RW, RO  
32 bits  
This register controls the resources associated with PCI Express Virtual Channel 1.  
Default  
Value  
Bit  
Access  
Description  
Virtual Channel 1 Enable (VC1E):  
31  
RW  
RO  
RW  
RO  
0b  
0h  
0 = Virtual Channel is disabled.  
1 = Virtual Channel is enabled.  
30:27  
26:24  
23:20  
Reserved  
Virtual Channel 1 ID (VC1ID): This field assigns a VC ID to the VC resource.  
Assigned value must be non-zero. This field can not be modified when the VC is  
already enabled.  
001b  
0h  
Reserved  
Port Arbitration Select (PAS): This field configures the VC resource to  
provide a particular Port Arbitration service. Valid value for this field is a number  
corresponding to one of the asserted bits in the Port Arbitration Capability field  
of the VC resource.  
19:17  
16:8  
RW  
RO  
000b  
000h  
Reserved  
Traffic Class / Virtual Channel 1 Map (TCVC1M): This field indicates the TCs  
(Traffic Classes) that are mapped to the VC resource. Bit locations within this  
field correspond to TC values.  
For example, when bit 7 is set in this field, TC7 is mapped to this VC resource.  
When more than one bit in this field is set, it indicates that multiple TCs are  
mapped to the VC resource. To remove one or more TCs from the TC/VC Map of  
an enabled VC, software must ensure that no new or outstanding transactions  
with the TC labels are targeted at the given Link.  
7:1  
0
RW  
RO  
00h  
0b  
Traffic Class 0 / Virtual Channel 1 Map (TC0VC1M): Traffic Class 0 is  
always routed to VC0.  
262  
Datasheet  
Direct Media Interface (DMI) RCRB  
9.9  
DMIVC1RSTS—DMI VC1 Resource Status  
B/D/F/Type:  
0/0/0/DMIBAR  
Address Offset: 26–27h  
Default Value:  
Access:  
Size:  
0002h  
RO  
16 bits  
This register reports the Virtual Channel specific status.  
Default  
Value  
Bit  
Access  
Description  
15:2  
RO  
RO  
RO  
0000h Reserved  
Virtual Channel 1 Negotiation Pending (VC1NP):  
0 = The VC negotiation is complete.  
1 = The VC resource is still in the process of negotiation (initialization or  
disabling).  
1
0
1b  
0b  
Reserved  
9.10  
DMILCAP—DMI Link Capabilities  
B/D/F/Type:  
0/0/0/DMIBAR  
Address Offset: 84–87h  
Default Value:  
Access:  
Size:  
00012C41h  
RO, RWO  
32 bits  
This register indicates DMI specific capabilities.  
Default  
Value  
Bit  
Access  
Description  
31:18  
RO  
0000h Reserved  
L1 Exit Latency (L1SELAT): This field indicates the length of time this Port  
requires to complete the transition from L1 to L0.  
17:15  
RWO  
010b  
010 = 2 µs to less than 4 µs  
All other encodings are reserved.  
L0s Exit Latency (L0SELAT): This field indicates the length of time this Port  
requires to complete the transition from L0s to L0.  
14:12  
11:10  
9:4  
RWO  
RO  
010b  
11b  
04h  
1h  
010 = 128 ns to less than 256 ns  
All other encodings are reserved.  
Active State Link PM Support (ASLPMS): L0s & L1 entry supported.  
Max Link Width (MLW): This field indicates the maximum number of lanes  
supported for this link.  
RO  
04h = x4  
All other encodings are reserved.  
3:0  
RO  
Max Link Speed (MLS): Hardwired to indicate 2.5 Gb/s.  
Datasheet  
263  
Direct Media Interface (DMI) RCRB  
9.11  
DMILCTL—DMI Link Control  
B/D/F/Type:  
0/0/0/DMIBAR  
Address Offset: 88–89h  
Default Value:  
Access:  
Size:  
0000h  
RW, RO  
16 bits  
This register allows control of DMI.  
Default  
Value  
Bit  
Access  
Description  
15:8  
RO  
00h  
Reserved  
Extended Synch (EXTSYNC):  
0 = Standard Fast Training Sequence (FTS).  
1 = Forces the transmission of additional ordered sets when exiting the L0s  
state and when in the Recovery state.  
7
RW  
0b  
6:3  
2
RO  
0h  
0b  
Reserved  
RW  
Far-End Digital Loopback (FEDLB):  
Active State Power Management Support (ASPMS): This field controls the  
level of active state power management supported on the given link.  
00 = Disabled  
1:0  
RW  
00b  
01 = L0s Entry Supported  
10 = Reserved  
11 = L0s and L1 Entry Supported  
9.12  
DMILSTS—DMI Link Status  
B/D/F/Type:  
0/0/0/DMIBAR  
Address Offset: 8A–8Bh  
Default Value:  
Access:  
Size:  
0001h  
RO  
16 bits  
This register indicates DMI status.  
Default  
Value  
Bit  
Access  
Description  
15:4  
RO  
RO  
0s  
Reserved  
Negotiated Speed (NSPD): This field indicates negotiated link speed.  
1h = 2.5 Gb/s  
3:0  
1h  
All other encodings are reserved.  
§ §  
264  
Datasheet  
Functional Description  
10 Functional Description  
10.1  
Host Interface  
The MCH supports Intel® CoreTM2 Duo and Intel® Core™2 Quad processors. The cache  
line size is 64 bytes. Source synchronous transfer is used for the address and data  
signals. The address signals are double pumped and a new address can be generated  
every other bus clock. At 200/267/333MHz bus clock the address signals run at 667MT/  
s. The data is quad pumped and an entire 64B cache line can be transferred in two bus  
clocks. At 200/266/333MHz bus clock, the data signals run at 800/1066/1333MT/s for  
a maximum bandwidth of 6.4/8.5/10.6GB/s.  
10.1.1  
10.1.2  
10.1.3  
10.1.4  
FSB IOQ Depth  
The Scalable Bus supports up to 12 simultaneous outstanding transactions.  
FSB OOQ Depth  
The MCH supports only one outstanding deferred transaction on the FSB.  
FSB GTL+ Termination  
The MCH integrates GTL+ termination resistors on die.  
FSB Dynamic Bus Inversion  
The MCH supports Dynamic Bus Inversion (DBI) when driving and when receiving data  
from the processor. DBI limits the number of data signals that are driven to a low  
voltage on each quad pumped data phase. This decreases the worst-case power  
consumption of the MCH. HDINV[3:0]# indicate if the corresponding 16 bits of data are  
inverted on the bus for each quad pumped data phase:  
HDINV#[3:0]  
Data Bits  
HDINV0#  
HDINV1#  
HDINV2#  
HDINV3#  
HD[15:0]#  
HD[31:16]#  
HD[47:32]#  
HD[63:48]#  
When the processor or the MCH drives data, each 16-bit segment is analyzed. If more  
than 8 of the 16 signals would normally be driven low on the bus, the corresponding  
HDINV# signal will be asserted, and the data will be inverted prior to being driven on  
the bus. When the processor or the MCH receives data, it monitors HDINV#[3:0] to  
determine if the corresponding data segment should be inverted.  
Datasheet  
265  
Functional Description  
Table 17.  
Host Interface 4X, 2X, and 1X Signal Groups  
Signals  
Associated Clock or Strobe  
Signal Group  
ADS#, BNR#, BPRI#, DEFER#,  
DBSY#, DRDY#, HIT#, HITM#,  
LOCK#, RS[2:0]#, TRDY#,  
RESET, BR0#  
BCLK  
1X  
HA[16:3]#, REQ[4:0]#  
HA[35:17]#  
ADSTB[0]#  
2X  
4X  
ADSTB[1]#  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBP0#, DSTBN0#  
DSTBP1#, DSTBN1#  
DSTBP2#, DSTBN2#  
DSTBP3#, DSTBN3#  
10.1.5  
APIC Cluster Mode Support  
APIC Cluster mode support is required for backwards compatibility with existing  
software, including various operating systems.  
The MCH supports three types of interrupt re-direction:  
• Physical  
• Flat-Logical  
• Clustered-Logical  
266  
Datasheet  
Functional Description  
10.2  
System Memory Controller  
The system memory controller supports both DDR2 and DDR3 protocols with two  
independent 64 bit wide channels each accessing one or two DIMMs. It supports a  
maximum of two un-buffered ECC or non-ECC DDR2 DIMMs or two un-buffered non-  
ECC DDR3 DIMMs per channel thus allowing up to four device ranks per channel.  
10.2.1  
System Memory Organization Modes  
The system memory controller supports two memory organization modes, Single  
Channel and Dual Channel.  
10.2.1.1  
Single Channel Mode  
In this mode, all memory cycles are directed to a single channel.  
Single channel mode is used when either Channel A or Channel B DIMMs are populated  
in any order, but not both.  
10.2.1.2  
Dual Channel Modes  
10.2.1.2.1  
Dual Channel Symmetric Mode  
This mode provides maximum performance on real applications. Addresses are ping-  
ponged between the channels after each cache line (64 byte boundary). If there are  
two requests, and the second request is to an address on the opposite channel from the  
first, that request can be sent before data from the first request has returned. If two  
consecutive cache lines are requested, both may be retrieved simultaneously, since  
they are guaranteed to be on opposite channels.  
Dual channel symmetric mode is used when both Channel A and Channel B DIMMs are  
populated in any order with the total amount of memory in each channel being the  
same, but the DRAM device technology and width may vary from one channel to the  
other.  
Table 18 is a sample dual channel symmetric memory configuration showing the rank  
organization.  
Table 18.  
Sample System Memory Dual Channel Symmetric Organization Mode  
Cumulative Top  
Address in  
Cumulative Top  
Address in  
Channel 0  
Population  
Channel 1  
Population  
Rank  
Channel 0  
Channel 1  
Rank 3  
Rank 2  
Rank 1  
Rank 0  
0 MB  
2560 MB  
2560 MB  
2048 MB  
1024 MB  
0 MB  
2560 MB  
2560 MB  
2048 MB  
1024 MB  
256 MB  
512 MB  
512 MB  
256 MB  
512 MB  
512 MB  
Datasheet  
267  
Functional Description  
10.2.1.2.2  
Dual Channel Asymmetric Mode with Intel® Flex Memory Mode Enabled  
In this addressing mode the lowest DRAM memory is mapped to dual channel operation  
and the top most DRAM memory is mapped to single channel operation. In this mode  
the system can run at one zone of dual channel mode and one zone of single channel  
mode simultaneously across the whole memory array.  
This mode is used when Intel® Flex Memory Mode is enabled and both Channel A and  
Channel B DIMMs are populated in any order with the total amount of memory in each  
channel being different.  
Table 19 is a sample dual channel asymmetric memory configuration showing the rank  
organization with Intel® Flex Memory Mode Enabled.  
Table 19.  
Sample System Memory Dual Channel Asymmetric Organization Mode with  
Intel® Flex Memory Mode Enabled  
Cumulative top  
address in  
Cumulative top  
address in  
Channel 0  
population  
Channel 1  
population  
Rank  
Channel 0  
Channel 1  
Rank 3  
Rank 2  
Rank 1  
Rank 0  
0 MB  
0 MB  
2048 MB  
2048 MB  
2048 MB  
1024 MB  
0 MB  
2304 MB  
2304 MB  
2048 MB  
1024 MB  
256 MB  
512 MB  
512 MB  
512 MB  
512 MB  
10.2.1.2.3  
Dual Channel Asymmetric Mode with Intel® Flex Memory Mode Disabled  
In this addressing mode addresses start in channel 0 and stay there until the end of the  
highest rank in channel 0, and then addresses continue from the bottom of channel 1  
to the top.  
This mode is used when Intel® Flex Memory Mode is disabled and both Channel A and  
Channel B DIMMs are populated in any order with the total amount of memory in each  
channel being different.  
Table 20 is a sample dual channel asymmetric memory configuration showing the rank  
organization with Intel® Flex Memory Mode Disabled:  
Table 20.  
Sample System Memory Dual Channel Asymmetric Organization Mode with  
Intel® Flex Memory Mode Disabled  
Cumulative top  
address in  
Cumulative top  
address in  
Channel 0  
population  
Channel 1  
population  
Rank  
Channel 0  
Channel 1  
Rank 3  
Rank 2  
Rank 1  
Rank 0  
0 MB  
1280 MB  
1280 MB  
1024 MB  
512 MB  
0 MB  
0 MB  
2304 MB  
2304 MB  
2304 MB  
1792 MB  
256 MB  
512 MB  
512 MB  
512 MB  
512 MB  
268  
Datasheet  
Functional Description  
10.2.2  
System Memory Technology Supported  
The MCH supports the following DDR2 and DDR3 Data Transfer Rates, DIMM Modules,  
and DRAM Device Technologies:  
• DDR2 Data Transfer Rates: 667 (PC2-5300) and 800 (PC2-6400)  
• DDR3 Data Transfer Rates: 800 (PC3-6400), 1066 (PC3-8500), and 1333 (PC3-  
10600)  
• DDR2 DIMM Modules:  
— Raw Card C - Single Sided x16 un-buffered non-ECC  
— Raw Card D - Single Sided x8 un-buffered non-ECC  
— Raw Card E - Double Sided x8 un-buffered non-ECC  
— Raw Card F - Single Sided x8 un-buffered ECC  
— Raw Card G - Double Sided x8 un-buffered ECC  
• DDR3 DIMM Modules:  
— Raw Card A - Single Sided x8 un-buffered non-ECC  
— Raw Card B - Double Sided x8 un-buffered non-ECC  
— Raw Card C - Single Sided x16 un-buffered non-ECC  
— Raw Card F - Double Sided x16 un-buffered non-ECC  
• DDR2 and DDR3 DRAM Device Technology: 512-Mb and 1-Gb  
Table 21.  
Supported DIMM Module Configurations  
# of  
# of  
Physical  
Device  
Ranks  
# of  
Raw  
Card  
DRAM  
Device  
# of  
DRAM  
Devices  
Row/  
Col  
Memory  
Type  
DIMM  
Capacity  
DRAM  
Organization  
Banks Page  
Inside Size  
DRAM  
Version  
Technology  
Address  
Bits  
256MB  
512MB  
512MB  
1GB  
512Mb  
1Gb  
32M X 16  
64M X 16  
64M X 8  
128M X 8  
64M X 8  
4
4
1
1
1
1
2
13/10  
13/10  
14/10  
14/10  
14/10  
4
8
4
8
4
8K  
8K  
8K  
8K  
8K  
C
512Mb  
1Gb  
8
D
8
1GB  
512Mb  
16  
E
F
DDR2  
2GB  
512MB  
1GB  
1Gb  
512Mb  
1Gb  
128M X 8  
64M X 8  
128M X 8  
64M X 8  
128M X 8  
16  
9
2
1
1
2
2
14/10  
14/10  
14/10  
14/10  
14/10  
8
4
8
4
8
8K  
8K  
8K  
8K  
8K  
667 and  
800  
9
1GB  
512Mb  
1Gb  
18  
18  
G
2GB  
512MB  
1GB  
512Mb  
1Gb  
64M X 8  
128M X 8  
64M X 8  
8
8
1
1
2
2
1
1
2
2
13/10  
14/10  
13/10  
14/10  
12/10  
13/10  
12/10  
13/10  
8
8
8
8
8
8
8
8
8K  
8K  
8K  
8K  
8K  
8K  
8K  
8K  
A
B
C
F
1GB  
512Mb  
1Gb  
16  
16  
4
DDR3  
2GB  
128M X 8  
32M X 16  
64M X 16  
32M X 16  
64M X 16  
800 and  
1066  
256MB  
512MB  
512MB  
1GB  
512Mb  
1Gb  
4
512Mb  
1Gb  
8
8
Datasheet  
269  
Functional Description  
10.2.3  
Error Checking and Correction  
Table 22 is used to calculate the syndrome. Numbers in parentheses indicate the data  
content of that bit position. For example, bit position 36 holds the data originally in  
data bit 32.  
Table 22.  
Syndrome Bit Values  
Syndrome Bit >  
7
6
5
4
3
2
1
0
Data Bit  
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
1
X
2
X
3
X
X
X
X
X
4
X
X
X
X
X
X
X
X
X
5
X
X
X
X
X
X
6
7
X
X
X
X
X
8
X
X
X
X
9
10  
11  
12  
X
X
X
X
X
X
X
X
X
X
X
X
13  
14  
15  
16  
X
X
X
X
X
X
X
X
X
17  
18  
19  
20  
X
X
X
X
X
21  
22  
23  
X
X
X
24  
X
X
X
25  
X
X
X
26 (CB2)  
27 (CB5)  
28 (26)  
29 (27)  
30 (28)  
31 (29)  
32 (30)  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
270  
Datasheet  
Functional Description  
Table 22.  
Syndrome Bit Values  
Syndrome Bit >  
Data Bit  
7
6
5
4
3
2
1
0
33 (31)  
34 (CB3)  
35 (CB4)  
36 (32)  
37 (33)  
38 (34)  
39 (35)  
40 (36)  
41 (37)  
42 (38)  
43 (39)  
44 (40)  
45 (41)  
46 (42)  
47 (43)  
48 (44)  
49 (45)  
50 (46)  
51 (47)  
52 (48)  
53 (49)  
54 (50)  
55 (51)  
56 (52)  
57 (53)  
58 (54)  
59 (55)  
60 (56)  
61 (57)  
62 (CB6)  
63 (CB1)  
CB0 (58)  
CB1 (59)  
CB2 (60)  
CB3 (61)  
CB4 (62)  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Datasheet  
271  
Functional Description  
Table 22.  
Syndrome Bit Values  
Syndrome Bit >  
Data Bit  
7
6
5
4
3
2
1
0
CB5 (63)  
CB6 (CB7)  
CB7 (CB0)  
X
X
X
X
X
X
X
Every data bit appears in either exactly 3 or exactly 5 check bit and syndrome bit  
equations. Every check bit appears en exactly 1 syndrome bit equation. This leads to  
six cases.  
1. If the data comes back exactly as it was written, then the calculated check byte will  
match the stored check byte, and the syndrome will be all 0s.  
2. If exactly one check bit is flipped between the time it is written and the time it is  
read back, then the syndrome will contain exactly one 1. Since the check byte is  
not returned to the requesting agent, no action is necessary.  
3. If exactly one data bit is flipped between the time it is written and the time it is  
read back, then the syndrome will contain either exactly three 1s or exactly five 1s.  
The syndrome can then be decoded as a pointer to the bit that flipped using the  
same check byte generation table in reverse. If the syndrome contains 1s that  
match the locations of all three or all five Xs in a given row, then that is the bit  
which should be flipped before the QWord is returned to the requesting agent.  
4. If exactly two bits flipped, there will be a nonzero even number of 1s in the  
syndrome. It cannot be determined which bits flipped based on that syndrome, but  
a multi-bit error will be recorded along with the address at which the error  
occurred. In addition, bits 0 and 31 of each DWord are forced to 0 in the returned  
data in case this read was a TLB fetch. This ensures that the table entry is invalid,  
such that additional data corruption can be avoided.  
5. If an even number of bits greater than two flipped, there will be an even number of  
1s in the syndrome, but that even number could be zero, such that detection of this  
scenario is not ensured. If the syndrome contains a nonzero number of 1s, it  
cannot be distinguished from scenario 4 above.  
6. It is possible for an odd number of bits greater than one to flip between the time  
the data is written and the time it is read back. This scenario will always be  
detected, but the resulting syndrome could appear to be a multi-bit error treated  
similarly to scenario 4, or it could be misinterpreted as a single bit error  
indistinguishable from scenario 2. The data cannot be corrected, though if it  
appears to be a single-bit error, the algorithm will flip the bit that corresponds to  
the syndrome generated, thus an additional bit may be corrupted.  
Fortunately, soft error rates are low enough that it is extremely unlikely that there  
would be more than one soft error in the same QWord, so scenarios 5 and 6 are very  
rare.  
272  
Datasheet  
Functional Description  
10.3  
PCI Express*  
See Section 1.2 for a list of PCI Express features, and the PCI Express specification for  
further details.  
This MCH is part of a PCI Express root complex. This means it connects a host  
processor/memory subsystem to a PCI Express hierarchy. The control registers for this  
functionality are located in Device 1 and Device 6 configuration space and three Root  
Complex Register Blocks (RCRBs). The DMI RCRB contains registers for control of the  
Intel ICH9 attach ports.  
10.3.1  
PCI Express* Architecture  
The PCI Express architecture is specified in layers. Compatibility with the PCI  
addressing model (a load-store architecture with a flat address space) is maintained to  
ensure that all existing applications and drivers operate unchanged. The PCI Express  
configuration uses standard mechanisms as defined in the PCI Plug-and-Play  
specification. The initial speed of 2.5 GHz results in 5 Gb/s each direction, which  
provides a 500 MB/s communications channel in each direction (1000 MB/s total).  
10.3.1.1  
Transaction Layer  
The upper layer of the PCI Express architecture is the Transaction Layer. The  
Transaction Layer’s primary responsibility is the assembly and disassembly of  
Transaction Layer Packets (TLPs). TLPs are used to communicate transactions, such as  
read and write, as well as certain types of events. The Transaction Layer also manages  
flow control of TLPs.  
10.3.1.2  
10.3.1.3  
Data Link Layer  
The middle layer in the PCI Express stack, the Data Link Layer, serves as an  
intermediate stage between the Transaction Layer and the Physical Layer.  
Responsibilities of Data Link Layer include link management, error detection, and error  
correction.  
Physical Layer  
The Physical Layer includes all circuitry for interface operation, including driver and  
input buffers, parallel-to-serial and serial-to-parallel conversion, PLL(s), and impedance  
matching circuitry.  
Datasheet  
273  
Functional Description  
10.4  
Thermal Sensor  
There are several registers that need to be configured to support the MCH thermal  
sensor functionality and SMI# generation. Customers must enable the Catastrophic  
Trip Point as protection for the MCH. If the Catastrophic Trip Point is crossed, then the  
MCH will instantly turn off all clocks inside the device. Customers may optionally enable  
the Hot Trip Point to generate SMI #. Customers will be required to then write their own  
SMI# handler in BIOS that will speed up the MCH (or system) fan to cool the part.  
10.4.1  
PCI Device 0, Function 0  
The SMICMD register requires that a bit be set to generate an SMI# when the Hot Trip  
point is crossed. The ERRSTS register can be inspected for the SMI alert.  
Register  
Symbol  
Register  
Start  
Register  
End  
Default  
Value  
Register Name  
Access  
Error Status  
ERRSTS  
SMICMD  
C8  
CC  
C9  
0000h  
0000h  
RWC/S, RO  
RO, RW  
SMI Command  
CD  
10.4.2  
MCHBAR Thermal Sensor Registers  
The Digital Thermometer Configuration Registers reside in the MCHBAR configuration  
space.  
Register  
Symbol  
Register  
Start  
Register  
End  
Default  
Value  
Register Name  
Access  
RW/L, RW,  
RS/WC  
Thermal Sensor Control 1  
TSC1  
CD8  
CD8  
00h  
Thermal Sensor Control 2  
Thermal Sensor Status  
TSC2  
TSS  
CD9  
CDA  
CD9  
CDA  
00h  
00h  
RO, RW/L  
RO  
Thermal Sensor Temperature Trip  
Point  
TSTTP  
TCO  
CDC  
CE2  
CE4  
CDF  
CE2  
CE4  
00000000h  
00h  
RO, RW, RW/L  
RW/L/K, RW/L  
Thermal Calibration Offset  
Hardware Throttle Control  
RW/L, RO,  
RW/L/K  
THERM1  
00h  
TCO Fuses  
THERM3  
TIS  
CE6  
CEA  
CF1  
CE6  
CEB  
CF1  
00h  
0000h  
00h  
RO, RS/WC  
RO, RWC  
RO, RW  
Thermal Interrupt Status  
Thermal SMI Command  
TSMICMD  
274  
Datasheet  
Functional Description  
10.5  
10.6  
Power Management  
Power Management Feature List:  
• ACPI 1.0b support  
• ACPI S0, S1, S3 (Cold), S5, C0, C1, and C2 states  
• Enhanced power management state transitions for increasing time processor  
spends in low power states  
• PCI Express Link States: L0, L0s, L2/L3 Ready, L3  
Clocking  
The MCH has a total of 3 PLLs providing many times that many internal clocks. The  
PLLs are:  
• Host PLL – Generates the main core clocks in the host clock domain. Can also be  
used to generate memory core clocks. Uses the Host clock (H_CLKIN) as a  
reference.  
• Memory I/O PLL - Optionally generates low jitter clocks for memory I/O interface,  
as opposed to from Host PLL. Uses the Host FSB differential clock (HPL_CLKINP/  
HPL_CLKINN) as a reference. Low jitter clock source from memory I/O PLL is  
required for DDR667 and higher frequencies.  
• PCI Express PLL – Generates all PCI Express related clocks, including the Direct  
Media that connect to the ICH. This PLL uses the 100 MHz clock (EXP_CLKNP/  
EXP2_CLKNP) as a reference.  
CK505 is the clocking chip required for the platform.  
Datasheet  
275  
Functional Description  
Figure 10.  
System Clocking Diagram  
Processor Diff Pair  
CK505  
C1  
Processor  
56- Pin SSOP  
Processor Diff Pair  
C2  
Processor  
Memory  
Diff Pair  
XDP  
C3/S7  
Dual  
x16 PCI Express  
PCI Express  
DIffPair
S6  
st PCI Express  
1
PCI Express  
nd PCI Express  
DIff Pair  
2
S5
MCH  
PCI Express DIff Pair  
DMI  
S4  
LAN(Nineveh)  
PCI Express  
DIff Pair  
PCI Express Slot  
S3  
PCI Express  
DIff Pair  
PCI Express DIff Pair  
S2  
SATA Diff Pair  
S1  
D1
DOT 96MHz Diff Pair  
USB 48MHz  
U1
R1
REF 14MHz  
REF 14MHz  
SIO LPC  
PCI 33MHz  
InteICH9  
PCI 33MHz  
PCI Down Device  
P1  
PCI 33MHz  
PCI 33MHz  
TPM LPC  
OSC  
P2  
P3  
32.768kHz  
Signal Name  
Ref.  
BCLK, ITPCLK, HCLK  
C1- C3  
PCI 33MHz  
PCI 33MHz  
SATACLK, ICHCLK,  
NC  
NC  
P4  
S1-S7  
MCHCLK, LANCLK,  
PCI Slot  
P5  
P6  
PCI 33MHz  
PCIECLK  
D1  
DOTCLK  
U1  
USBCLK  
P1-P6  
PCICLK  
R1  
REFCLK  
§ §  
276  
Datasheet  
Electrical Characteristics  
11 Electrical Characteristics  
This chapter contains the DC specifications for the MCH.  
11.1  
Absolute Minimum and Maximum Ratings  
Table 23 specifies the MCH absolute maximum and minimum ratings. Within functional  
operation limits, functionality and long-term reliability can be expected.  
At conditions outside functional operation condition limits, but within absolute  
maximum and minimum ratings, neither functionality nor long-term reliability can be  
expected. If a device is returned to conditions within functional operation limits after  
having been subjected to conditions outside these limits, but within the absolute  
maximum and minimum ratings, the device may be functional, but with its lifetime  
degraded depending on exposure to conditions exceeding the functional operation  
condition limits.  
At conditions exceeding absolute maximum and minimum ratings, neither functionality  
nor long-term reliability can be expected. Moreover, if a device is subjected to these  
conditions for any length of time its reliability will be severely degraded or not function  
when returned to conditions within the functional operating condition limits.  
Although the MCH contains protective circuitry to resist damage from static electric  
discharge, precautions should always be taken to avoid high static voltages or electric  
fields.  
Table 23.  
Absolute Minimum and Maximum Ratings  
Symbol  
Tstorage  
Parameter  
Storage Temperature  
Min  
Max  
Unit Notes  
-55  
150  
°C  
1
MCH Core  
1.25 V Core Supply Voltage with respect to  
VSS  
VCC  
-0.3  
1.375  
V
Host Interface (800/1066/1333 MHz)  
System Bus Input Voltage with respect to  
VSS  
VTT_FSB  
-0.3  
-0.3  
1.32  
V
V
1.25 V Host PLL Analog Supply Voltage with  
respect to VSS  
VCCA_HPLL  
1.375  
System Memory Interface (DDR2 667/800 MHz, DDR3 800/1066/1333 MHz)  
1.8 V DDR2 / 1.5 V DDR3 System Memory  
Supply Voltage with respect to VSS  
VCC_DDR  
VCC_CKDDR  
VCCA_MPLL  
-0.3  
-0.3  
-0.3  
4.0  
4.0  
V
V
V
1.8 V DDR2 / 1.5 V DDR3 Clock System  
Memory Supply Voltage with respect to VSS  
1.25 V System Memory PLL Analog Supply  
Voltage with respect to VSS  
1.375  
Datasheet  
277  
Electrical Characteristics  
Table 23.  
Absolute Minimum and Maximum Ratings  
Symbol  
Parameter  
Min  
Max  
Unit Notes  
PCI Express* / DMI Interface  
1.25 V PCI Express* and DMI Supply  
Voltage with respect to VSS  
VCC_EXP  
VCCA_EXP  
-0.3  
-0.3  
-0.3  
-0.3  
1.375  
3.63  
V
V
V
V
3.3 V PCI Express* Analog Supply Voltage  
with respect to VSS  
1.25 V Primary PCI Express* PLL Analog  
Supply Voltage with respect to VSS  
VCCAPLL_EXP  
VCCAPLL_EXP2  
1.375  
1.375  
1.25 V Secondary PCI Express* PLL Analog  
Supply Voltage with respect to VSS  
Controller Link Interface  
VCC_CL  
1.25 V Supply Voltage with respect to VSS  
-0.3  
-0.3  
1.375  
3.63  
V
V
CMOS Interface  
3.3 V CMOS Supply Voltage with respect to  
VSS  
VCC3_3  
NOTE:  
1.  
Possible damage to the MCH may occur if the MCH temperature exceeds 150 °C. Intel does  
not ensure functionality for parts that have exceeded temperatures above 150 °C due to  
specification violation.  
278  
Datasheet  
Electrical Characteristics  
11.2  
Current Consumption  
Table 24 shows the current consumption for the MCH in the Advanced Configuration  
and Power Interface (ACPI) S0 state. Icc max values are determined on a per-interface  
basis, at the highest frequencies for each interface. Sustained current values or Max  
current values cannot occur simultaneously on all interfaces. Sustained Values are  
measured sustained RMS maximum current consumption and includes leakage  
estimates. The measurements are made with fast silicon at 96° C Tcase temperature,  
at the Max voltage listed in Table 26. The Max values are maximum theoretical pre-  
silicon calculated values. In some cases, the Sustained measured values have exceeded  
the Max theoretical values.  
Table 24.  
Symbol  
Current Consumption in S0  
Parameter  
Signal Names Sustained  
Max  
Unit  
Notes  
1.25 V Core Supply Current (Discrete  
Gfx)  
IVCC  
VCC  
6.06  
2.06  
521  
7.27  
A
1,2  
DDR2 System Memory Interface  
(1.8 V) Supply Current  
IVCC_DDR2  
IVCC_CKDDR2  
IVCC_DDR3  
IVCC_CKDDR3  
IVCC_EXP  
VCC_DDR  
VCC_CKDDR  
VCC_DDR  
VCC_CKDDR  
VCC_EXP  
2.57  
581  
A
mA  
A
1, 2, 3  
DDR2 System Memory Clock Interface  
(1.8 V) Supply Current  
DDR3 System Memory Interface  
(1.5 V) Supply Current  
1.53  
334  
1.61  
367  
1, 2, 3  
2
DDR3 System Memory Clock Interface  
(1.5 V) Supply Current  
mA  
A
1.25 V PCI Express* and DMI Supply  
Current  
5.12  
6.65  
IVCC_CL  
1.25 V Controller Supply Current  
VCC_CL  
2.20  
387  
2.80  
580  
A
2
1
IVTT_FSB  
System Bus Supply Current  
VTT_FSB  
mA  
3.3 V PCI Express* and DMI Analog  
Supply Current  
IVCCA_EXP  
IVCC3_3  
VCCA_EXP  
VCC3_3  
167  
0.5  
48  
175  
16  
mA  
mA  
mA  
mA  
mA  
3.3 V CMOS Supply Current  
1.25 V PCI Express* and DMI PLL  
Analog Supply Current  
IVCCAPLL_EXP  
IVCCA_HPLL  
IVCCA_MPLL  
VCCAPLL_EXP  
VCCA_HPLL  
VCCA_MPLL  
53  
1.25 V Host PLL Supply Current  
18  
26  
1.25 V System Memory PLL Analog  
Supply Current  
97  
146  
NOTES:  
1.  
2.  
3.  
Measurements are for current coming through chipset’s supply pins.  
Rail includes DLLs (and FSB sense amps on VCC).  
Sustained Measurements are combined because one voltage regulator on the platform  
supplies both rails on the MCH.  
Datasheet  
279  
Electrical Characteristics  
11.3  
Signal Groups  
The signal description includes the type of buffer used for the particular signal.  
Type  
Description  
PCI Express interface signals. These signals are compatible with PCI Express 2.0  
Signaling Environment AC Specifications and are AC coupled. The buffers are not  
PCI  
Express* 3.3 V tolerant. Differential voltage spec = (|D+ – D-|) * 2 = 1.2Vmax. Single-ended  
maximum = 1.25 V. Single-ended minimum = 0 V.  
Direct Media Interface signals. These signals are compatible with PCI Express 1.0  
Signaling Environment AC Specifications, but are DC coupled. The buffers are not  
3.3 V tolerant. Differential voltage spec = (|D+ – D-|) * 2 = 1.2 Vmax. Single-  
DMI  
ended maximum = 1.25 V. Single-ended minimum = 0 V.  
Open Drain GTL+ interface signal. Refer to the GTL+ I/O Specification for complete  
details.  
GTL+  
Host Clock Signal Level buffers. Current mode differential pair. Differential typical  
HCSL  
swing = (|D+ – D-|) * 2 = 1.4 V. Single ended input tolerant from -0.35 V to 1.2 V.  
Typical crossing voltage 0.35 V.  
Stub Series Termination Logic. These are 1.8 V output capable buffers. 1.8 V  
tolerant.  
SSTL-1.8  
Stub Series Termination Logic. These are 1.5 V output capable buffers. 1.5 V  
tolerant.  
SSTL-1.5  
CMOS  
CMOS buffers  
Analog reference or output. May be used as a threshold voltage or for buffer  
compensation.  
Analog  
280  
Datasheet  
Electrical Characteristics  
Table 25.  
Signal Groups  
Signal Type  
Signals  
Notes  
Host Interface Signal Groups  
FSB_ADSB, FSB_BNRB, FSB_DBSYB, FSB_DINVB_3:0,  
FSB_DRDYB, FSB_AB_35:3, FSB_ADSTBB_1:0, FSB_DB_63:0,  
FSB_DSTBPB_3:0, FSB_DSTBNB_3:0, FSB_HITB, FSB_HITMB,  
FSB_REQB_4:0  
GTL+ Input/Outputs  
GTL+ Common  
Clock Outputs  
FSB_BPRIB, FSB_BREQ0B, FSB_CPURSTB, FSB_DEFERB,  
FSB_TRDYB, FSB_RSB_2:0  
Analog Host I/F Ref  
& Comp. Signals  
FSB_RCOMP, FSB_SCOMP, FSB_SCOMPB, FSB_SWING,  
FSB_DVREF, FSB_ACCVREF  
GTL+ Input  
FSB_LOCKB, BSEL2:0  
PCI Express* Graphics Interface Signal Groups  
PCI Express* Input  
PCI Express* Interface: PEG_RXN_15:0, PEG_RXP_15:0  
PCI Express* Output PCI Express* Interface: PEG_TXN_15:0, PEG_TXP_15:0  
Analog PCI Express*  
Compensation  
Signals  
EXP_COMPO, EXP_COMPI  
Direct Media Interface Signal Groups  
DMI Input  
DMI_RXP_3:0, DMI_RXN_3:0  
DMI_TXP_3:0, DMI_TXN_3:0  
DMI Output  
System Memory Interface Signal Groups  
DDR_A_DQ_63:0, DDR_A_DQS_7:0, DDR_A_DQSB_7:0  
SSTL-1.8 / SSTL-1.5 DDR_B_DQ_63:0, DDR_B_DQS_7:0, DDR_B_DQSB_7:0  
1
Input/Output  
DDR_A_CB_7:0, DDR_A_DQS_8, DDR_A_DQSB_8  
DDR_B_CB_7:0, DDR_B_DQS_8, DDR_B_DQSB_8  
DDR_A_CK_5:0, DDR_A_CKB_5:0, DDR_A_CSB_3:0,  
DDR3_A_CSB_1, DDR_A_CKE_3:0, DDR_A_ODT_3:0,  
DDR_A_MA_14:0, DDR3_A_MA_0, DDR_A_BS_2:0,  
DDR_A_RASB, DDR_A_CASB, DDR_A_WEB, DDR3_A_WEB,  
DDR_A_DM_7:0  
SSTL-1.8 / SSTL-1.5  
Output  
DDR_B_CK_5:0, DDR_B_CKB_5:0, DDR_B_CSB_3:0,  
DDR_B_CKE_3:0, DDR_B_ODT_3:0, DDR3_B_ODT_3,  
DDR_B_MA_14:0, DDR_B_BS_2:0, DDR_B_RASB,  
DDR_B_CASB, DDR_B_WEB, DDR_B_DM_7:0  
DDR3_DRAMRST  
CMOS Input  
DDR3_DRAM_PWROK  
Reference and  
Comp. Voltages  
DDR_RCOMPXPD, DDR_RCOMPXPU, DDR_RCOMPYPD,  
DDR_RCOMPYPU, DDR_VREF  
Controller Link Signal Groups  
CMOS I/O OD  
CMOS Input  
CL_DATA, CL_CLK  
CL_RSTB, CL_PWROK  
Analog Controller  
Link Reference  
Voltage  
CL_VREF  
Datasheet  
281  
Electrical Characteristics  
Table 25.  
Signal Groups  
Signal Type  
Clocks  
Signals  
Notes  
HPL_CLKINP, HPL_CLKINN, EXP_CLKINP, EXP_CLKINN,  
DPL_REFCLKINN, DPL_REFCLKINP  
HCSL  
Reset, and Miscellaneous Signal Groups  
CMOS Input  
EXP_SLR, PWROK, RSTINB  
ICH_SYNCB  
CMOS Output  
I/O Buffer Supply Voltages  
System Bus Input  
VTT_FSB  
Supply Voltage  
1.25 V PCI Express*  
VCC_EXP  
Supply Voltages  
3.3 V PCI Express*  
Analog Supply  
Voltage  
VCCA_EXP  
VCC_DDR  
1.8 V DDR2 / 1.5 V  
DDR3 Supply  
Voltage  
1.8 V DDR2 / 1.5 V  
DDR3 Clock Supply  
Voltage  
VCC_CKDDR  
1.25 V MCH Core  
Supply Voltage  
VCC  
1.25 V Controller  
Supply Voltage  
VCC_CL  
3.3 V CMOS Supply  
Voltage  
VCC3_3  
PLL Analog Supply  
Voltages  
VCCA_HPLL, VCCAPLL_EXP, VCCA_MPLL  
NOTES:  
1.  
CB_7:0, DQS[8], and DQSB[8] ECC signals are only for DDR2  
282  
Datasheet  
Electrical Characteristics  
11.4  
Buffer Supply and DC Characteristics  
11.4.1  
I/O Buffer Supply Voltages  
The I/O buffer supply voltage is measured at the MCH package pins. The tolerances  
shown in Table 26 are inclusive of all noise from DC up to 20 MHz. In the lab, the  
voltage rails should be measured with a bandwidth limited oscilloscope with a roll off of  
3 dB/decade above 20 MHz under all operating conditions.  
Table 26 indicates which supplies are connected directly to a voltage regulator or to a  
filtered voltage rail. For voltages that are connected to a filter, they should me  
measured at the input of the filter.  
If the recommended platform decoupling guidelines cannot be met, the system  
designer will have to make tradeoffs between the voltage regulator output DC tolerance  
and the decoupling performance of the capacitor network to stay within the voltage  
tolerances listed in Table 26.  
Table 26.  
I/O Buffer Supply Voltage  
Symbol  
Parameter  
Min  
Nom  
Max  
Unit Notes  
VCC_DDR  
VCC_DDR  
DDR2 I/O Supply Voltage  
DDR3 I/O Supply Voltage  
DDR2 Clock Supply Voltage  
DDR3 Clock Supply Voltage  
PCI-Express* Supply Voltage  
1.7  
1.8  
1.5  
1.9  
V
V
1.425  
1.7  
1.575  
1.9  
VCC_CKDDR  
VCC_CKDDR  
VCC_EXP  
1.8  
V
V
V
1
1
1.425  
1.188  
1.5  
1.575  
1.313  
1.25  
PCI-Express* Analog Supply  
Voltage  
VCCA_EXP  
3.135  
1.14  
3.3  
1.2  
3.465  
1.26  
V
V
1
2
1.2 V System Bus Input Supply  
Voltage  
VTT_FSB  
VCC  
1.1 V System Bus Input Supply  
Voltage  
1.045  
1.188  
1.1  
1.155  
1.313  
V
V
MCH Core Supply Voltage  
1.25  
VCC_CL  
VCC3_3  
Controller Supply Voltage  
CMOS Supply Voltage  
1.188  
3.135  
1.25  
3.3  
1.313  
3.465  
V
V
VCCA_HPLL,  
VCCAPLL_EXP,  
VCCA_MPLL  
Various PLL Analog Supply  
Voltages  
1.188  
1.25  
1.313  
V
1
NOTES:  
1.  
These rails are filtered from other voltage rails on the platform and should be measured at  
the input of the filter.  
2.  
MCH supports both VTT =1.2 V nominal and VTT =1.1 V nominal depending on the  
identified processor.  
Datasheet  
283  
Electrical Characteristics  
11.4.2  
General DC Characteristics  
Platform Reference Voltages at the top of Table 27 are specified at DC only. VREF  
measurements should be made with respect to the supply voltage.  
Table 27.  
DC Characteristics  
Symbol  
Parameter  
Min  
Nom  
Max  
Unit  
Notes  
Reference Voltages  
Host Data, Address, and  
Common Clock Signal  
Reference Voltages  
0.666 x  
VTT_FSB  
–2%  
0.666 x  
VTT_FSB  
+2%  
FSB_DVREF  
FSB_ACCVREF  
0.666 x  
VTT_FSB  
V
V
0.25 x  
VTT_FSB  
+2%  
Host Compensation  
Reference Voltage  
0.25 x VTT_FSB  
–2%  
0.25 x  
VTT_FSB  
FSB_SWING  
CL_VREF  
Controller Link Reference  
Voltage  
0.270 x  
VCC_CL  
0.279 x  
VCC_CL  
0.287 x  
VCC_CL  
V
V
DDR2/DDR3 Reference  
Voltage  
0.49 x  
VCC_DDR  
0.50 x  
VCC_DDR  
0.51 x  
VCC_DDR  
DDR_VREF  
Host Interface  
(0.666 x  
VTT_FSB) –  
0.1  
VIL_H  
VIH_H  
VOL_H  
VOH_H  
IOL_H  
Host GTL+ Input Low Voltage  
-0.10  
0
V
V
Host GTL+ Input High  
Voltage  
(0.666 x  
VTT_FSB) + 0.1  
VTT_FSB  
VTT_FSB + 0.1  
(0.25 x  
VTT_FSB) +  
0.1  
Host GTL+ Output Low  
Voltage  
VTT_FSB – 0.1  
V
Host GTL+ Output High  
Voltage  
VTT_FSB  
V
VTT_FSBmax *  
(1–0.25) /  
Rttmin  
Host GTL+ Output Low  
Current  
Rttmin =  
47.5 Ω  
mA  
VOL  
Vpad<  
Vtt_FSB  
<
Host GTL+ Input Leakage  
Current  
ILEAK_H  
45  
μA  
CPAD  
Host GTL+ Input Capacitance  
2.0  
2.5  
2.5  
pF  
pF  
Host GTL+ Input Capacitance  
(common clock)  
CPCKG  
0.90  
DDR2 System Memory Interface  
DDR_VREF –  
0.125  
VIL(DC)  
VIH(DC)  
VIL(AC)  
VIH(AC)  
VOL  
DDR2 Input Low Voltage  
DDR2 Input High Voltage  
DDR2 Input Low Voltage  
DDR2 Input High Voltage  
DDR2 Output Low Voltage  
V
V
V
V
V
DDR_VREF +  
0.125  
DDR_VREF –  
0.20  
DDR_VREF +  
0.20  
0.2 *  
VCC_DDR  
1
VOH  
DDR2 Output High Voltage  
Input Leakage Current  
Input Leakage Current  
0.8 * VCC_DDR  
V
1
4
5
ILeak  
ILeak  
±20  
±550  
µA  
µA  
284  
Datasheet  
Electrical Characteristics  
Table 27.  
Symbol  
DC Characteristics  
Parameter  
Min  
Nom  
Max  
Unit  
Notes  
DQ/DQS/DQSB DDR2 Input/  
Output Pin Capacitance  
CI/O  
1.0  
4.0  
pF  
DDR3 System Memory Interface  
DDR_VREF –  
0.100  
VIL(DC)  
VIH(DC)  
VIL(AC)  
VIH(AC)  
VOL  
DDR3 Input Low Voltage  
DDR3 Input High Voltage  
DDR3 Input Low Voltage  
DDR3 Input High Voltage  
DDR3 Output Low Voltage  
V
V
V
V
V
DDR_VREF +  
0.100  
DDR_VREF –  
0.175  
DDR_VREF +  
0.175  
0.2 *  
VCC_DDR  
1
VOH  
DDR3 Output High Voltage  
Input Leakage Current  
Input Leakage Current  
0.8 * VCC_DDR  
V
1
4
5
ILeak  
ILeak  
±20  
±550  
µA  
µA  
DQ/DQS/DQSB DDR3 Input/  
Output Pin Capacitance  
CI/O  
1.0  
4.0  
pF  
1.25V PCI Express* Interface 2.0  
Differential Peak to Peak  
VTX-DIFF P-P  
0.800  
1.2  
V
2
3
Output Voltage  
AC Peak Common Mode  
VTX_CM-ACp  
80  
100  
20  
120  
1.2  
mV  
Output Voltage  
ZTX-DIFF-DC  
VRX-DIFF p-p  
DC Differential TX Impedance  
Differential Peak to Peak  
Input Voltage  
0.175  
V
AC Peak Common Mode Input  
Voltage  
VRX_CM-ACp  
150  
mV  
Input Clocks  
VIL  
Input Low Voltage  
-0.150  
0.660  
0.300  
N/A  
0
0.710  
N/A  
N/A  
N/A  
0.850  
0.550  
0.140  
3
V
V
VIH  
Input High Voltage  
VCROSS(ABS)  
VCROSS(REL)  
CIN  
Absolute Crossing Voltage  
Range of Crossing Points  
Input Capacitance  
V
6,7,8  
V
1
pF  
CL_DATA, CL_CLK  
VIL  
Input Low Voltage  
0.427  
0.277  
V
V
VIH  
Input High Voltage  
Input Leakage Current  
Input Capacitance  
ILEAK  
CIN  
20  
μA  
pF  
1.5  
Output Low Current (CMOS  
Outputs)  
@VOL_HI  
max  
IOL  
6.0  
1.0  
mA  
mA  
V
Output High Current (CMOS  
Outputs)  
@VOH_HI  
min  
IOH  
VOL  
VOH  
Output Low Voltage (CMOS  
Outputs)  
0.06  
Output High Voltage (CMOS  
Outputs)  
0.6  
V
Datasheet  
285  
Electrical Characteristics  
Table 27.  
Symbol  
DC Characteristics  
Parameter  
Min  
Nom  
Max  
Unit  
Notes  
PWROK, CL_PWROK, RSTIN#  
VIL  
Input Low Voltage  
Input High Voltage  
Input Leakage Current  
Input Capacitance  
2.7  
0.3  
V
V
VIH  
ILEAK  
CIN  
±1  
6.0  
mA  
pF  
CL_RST#  
VIL  
Input Low Voltage  
Input High Voltage  
Input Leakage Current  
Input Capacitance  
1.17  
0.13  
V
V
VIH  
ILEAK  
CIN  
±20  
5.0  
μA  
pF  
ICH_SYNCB  
Output Low Current (CMOS  
Outputs)  
@VOL_HI  
max  
IOL  
-2.0  
2.0  
mA  
mA  
V
Output High Current (CMOS  
Outputs)  
@VOH_HI  
min  
IOH  
VOL  
VOH  
Output Low Voltage (CMOS  
Outputs)  
0.33  
Output High Voltage (CMOS  
Outputs)  
2.97  
V
EXP_SLR, EXP_EN  
(0.63 x VTT) –  
0.1  
VIL  
Input Low Voltage  
-0.10  
0
V
V
(0.63 x  
VTT)+0.1  
VIH  
Input High Voltage  
VTT  
VTT +0.1  
VOL  
<
ILEAK  
CIN  
Input Leakage Current  
2
20  
μA  
Vpad<  
Vtt  
Input Capacitance  
2.5  
pF  
NOTES:  
1.  
2.  
Determined with 2x MCH Buffer Strength Settings into a 50 Ω to 0.5xVCC_DDR test load.  
Specified at the measurement point into a timing and voltage compliance test load as  
shown in Transmitter compliance eye diagram of PCI Express* specification and measured  
over any 250 consecutive TX Uls.  
3.  
Specified at the measurement point over any 250 consecutive Uls. The test load shown in  
Receiver compliance eye diagram of PCI Express* spec should be used as the RX device  
when taking measurements.  
4.  
5.  
6.  
Applies to pin to VCC or VSS leakage current for the DDR_A_DQ_63:0 and  
DDR_B_DQ_63:0 signals.  
Applies to pin to pin leakage current between DDR_A_DQS_7:0, DDR_A_DQSB_7:0,  
DDR_B_DQS_7:0, and DDR_B_DQSB_7:0 signals.  
Crossing voltage defined as instantaneous voltage when rising edge of BCLK0 equals  
falling edge of BCLK1.  
7.  
8.  
VHavg is the statistical average of the VH measured by the oscilloscope.  
The crossing point must meet the absolute and relative crossing point specifications  
simultaneously. Refer to the appropriate processor datasheet for further information.  
§ §  
286  
Datasheet  
Ballout and Package Information  
12 Ballout and Package  
Information  
This chapter provides the ballout and package dimensions for the MCH.  
12.1  
Ballout Information  
Figure 11, Figure 12, and Figure 13 provide the MCH ballout as viewed from the top  
side of the package. Table 28 provides a ballout list arranged alphabetically by signal  
name. Table 29 provides a ballout list arranged numerically by ball number.  
Note:  
Notes for Figure 11, Figure 12, Figure 13, Table 28 and Table 29.  
1. Balls that are listed as RSVD are reserved.  
2. Some balls marked as reserved (RSVD) are used in XOR testing. See Chapter 13  
for details.  
3. Balls that are listed as NC are No Connects.  
Datasheet  
287  
Ballout and Package Information  
Figure 11.  
MCH Ballout Diagram (Top View Left – Columns 45–31)  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
TEST0  
NC  
VCC_CKDDR VCC_CKDDR  
VCC_CKDDR VCC_CKDDR  
VCC_DDR  
VSS  
VCC_DDR  
VSS  
VCC_DDR  
BE  
BD  
BC  
BB  
BA  
AY  
AW  
AV  
AU  
AT  
AR  
AP  
AN  
AM  
AL  
AK  
AJ  
BE  
BD  
BC  
BB  
BA  
AY  
AW  
AV  
AU  
AT  
AR  
AP  
AN  
AM  
AL  
AK  
AJ  
DDR_A_  
CSB_1  
DDR_A_  
WEB  
DDR_A_  
MA_10  
DDR3_A_  
MA0  
DDR_B_  
ODT_0  
DDR_B_  
RASB  
DDR_RCOM  
PYPD  
DDR3_A_  
WEB  
DDR_A_  
BS_0  
DDR_A_  
MA_0  
DDR_B_CSB  
_2  
VCC_CKDDR VCC_CKDDR  
VSS  
VCC_DDR  
VCC_DDR  
DDR3_A_CS DDR_A_ODT DDR_RCOM DDR_A_CAS  
DDR_A_  
CSB_2  
DDR_A_  
RASB  
DDR_A_  
BS_1  
DDR_B_  
CSB_1  
DDR_B_  
ODT_1  
DDR_B_  
ODT_2  
DDR_B_  
CASB  
DDR_A_  
MA_1  
B_1  
_0  
PYPU  
B
DDR_A_  
MA_13  
DDR_A_  
ODT_2  
DDR_A_  
CSB_0  
DDR3_B_  
ODT3  
DDR_B_  
CSB_3  
DDR_B_  
MA_13  
DDR_B_CSB  
_0  
DDR_A_CSB  
_3  
DDR_A_ODT DDR_B_DM DDR_B_DQ_ DDR_B_DQ_  
DDR_B_  
ODT_3  
DDR_B_  
CKB_5  
DDR_B_  
WEB  
VCC_DDR  
VSS  
VSS  
VSS  
_1  
_4  
32  
36  
DDR_A_ODT  
_3  
DDR_A_DQ_  
36  
DDR_B_DQ DDR_B_DQ_  
DDR_B_  
DQ_37  
DDR_B_  
CK_5  
DDR_B_  
CKB_2  
VSS  
VSS  
VSS  
S_4  
33  
DDR_A_DQ_  
32  
DDR_B_  
DQ_39  
DDR_B_  
DQ_38  
DDR_B_  
DQSB_4  
DDR_B_  
DQ_44  
DDR_A_  
CKB_2  
DDR_B_  
CK_2  
DDR_A_  
CK_3  
VSS  
VSS  
DDR_A_  
DM_4  
DDR_A_  
DQ_33  
DDR_A_  
DQ_37  
DDR_A_  
DQS_4  
DDR_A_  
DQSB_4  
DDR_B_  
DQ_35  
DDR_B_  
DQ_34  
DDR_A_  
CKB_5  
DDR_A_  
CK_5  
DDR_A_  
CK_2  
DDR_A_  
CK_0  
DDR_A_  
CKB_3  
VSS  
VSS  
VSS  
DDR_A_  
DQ_34  
DDR_A_DQ_  
35  
DDR_A_  
DQ_38  
DDR_A_  
DQ_39  
DDR_B_  
DQ_40  
DDR_B_  
DQ_45  
DDR_A_  
CKB_0  
DDR_B_  
CK_3  
VSS  
VSS  
VSS  
VSS  
DDR_A_  
DQ_45  
DDR_A_  
DQ_44  
DDR_B_  
DQSB_5  
DDR_B_  
DQS_5  
DDR_B_DQ_  
41  
DDR_B_  
DQ_42  
DDR_B_  
CKB_3  
VSS  
RSVD  
VSS  
VSS  
DDR_A_  
DM_5  
DDR_A_  
DQ_41  
DDR_A_  
DQ_40  
DDR_B_  
DQ_47  
DDR_B_  
DQ_46  
DDR_B_  
DM_5  
DDR_A_  
CB_1  
DDR_B_  
DQ_43  
RSVD  
DDR_A_DQ  
S_5  
DDR_A_  
DQSB_5  
VSS  
RSVD  
VSS  
DDR_A_  
DQ_42  
DDR_A_  
DQ_43  
DDR_A_  
DQ_47  
DDR_A_DQ_  
46  
DDR_A_DQ  
S_8  
DDR_A_  
DQSB_8  
DDR_A_  
CB_5  
DDR_A_  
CB_0  
VSS  
VSS  
DDR_B_  
CB_0  
DDR_B_  
CB_5  
DDR_A_  
CB_7  
DDR_A_  
CB_2  
DDR_A_  
CB_3  
DDR_A_  
CB_6  
DDR_A_  
CB_4  
VSS  
VSS  
VSS  
VCC_CL  
DDR_B_  
CB_1  
DDR_B_  
CB_4  
VSS  
DDR_B_  
DQS_8  
DDR_B_  
DQSB_8  
DDR_B_  
DQ_53  
DDR_B_  
DQ_48  
DDR_B_  
DQ_52  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC_CL  
VCC_CL  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
DDR_B_CB_  
7
DDR_B_CB_ DDR_B_CB_ DDR_B_CB_ DDR_B_DQ  
DDR_B_DQ  
SB_6  
DDR_B_  
DM_6  
DDR_B_  
DQ_49  
VSS  
VSS  
RSVD  
2
6
3
S_6  
DDR_A_  
DQ_53  
DDR_A_DQ_  
52  
VSS  
DDR_A_  
DM_6  
DDR_A_  
DQ_49  
DDR_A_  
DQ_48  
DDR_B_  
DQ_54  
DDR_B_  
DQ_50  
DDR_B_  
DQ_51  
DDR_B_DQ_ DDR_B_DQ_ DDR_B_DQ_  
VSS  
VSS  
RSVD  
VSS  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
60  
61  
55  
DDR_A_  
DQS_6  
DDR_A_  
DQSB_6  
DDR_A_  
DQ_54  
DDR_B_  
DQ_56  
DDR_B_  
DQ_57  
DDR_B_  
DM_7  
DDR_B_  
DQSB_7  
VSS  
VSS  
VSS  
VSS  
DDR_A_  
DQ_51  
DDR_A_  
DQ_50  
DDR_A_  
DQ_60  
DDR_A_  
DQ_55  
DDR_B_  
DQ_62  
DDR_B_  
DQ_63  
DDR_B_  
DQS_7  
VSS  
VSS  
DDR_A_  
DQ_57  
DDR_A_  
DQ_56  
DDR_A_  
DM_7  
DDR_A_  
DQ_61  
DDR_B_  
DQ_59  
DDR_B_  
DQ_58  
VSS  
VSS  
VSS  
FSB_AB_34  
FSB_AB_32  
FSB_AB_29  
VSS  
VSS  
DDR_A_  
DQSB_7  
DDR_A_  
DQS_7  
DDR_A_  
DQ_62  
FSB_AB_33  
VSS  
FSB_AB_35  
FSB_AB_31  
VSS  
DDR_A_  
DQ_63  
DDR_A_  
DQ_58  
VSS  
FSB_  
DDR_A_  
DQ_59  
FSB_RSB_1 FSB_TRDYB  
VSS  
FSB_AB_22  
FSB_AB_23  
FSB_AB_30  
VSS  
VSS  
FSB_AB_25  
FSB_AB_27  
VSS  
RSVD  
RSVD  
VSS_W31  
VCC_CL  
BREQ0B  
W
W
FSB_  
ADSTBB_1  
VSS  
FSB_AB_28  
FSB_HITMB  
FSB_BNRB  
FSB_DBSYB  
VSS  
FSB_DRDYB  
FSB_AB_24  
FSB_AB_26  
V
U
V
U
FSB_ADSB  
FSB_  
DEFERB  
FSB_LOCKB  
VSS  
VSS  
FSB_AB_21  
VSS  
FSB_AB_17  
FSB_AB_20  
VSS  
FSB_AB_18  
FSB_AB_10  
VSS  
FSB_AB_19  
VSS  
RSVD  
RSVD  
VSS  
VSS  
VCCAUX  
T
R
P
N
T
R
P
N
FSB_RSB_0  
FSB_DB_2  
FSB_HITB  
FSB_DB_0  
FSB_DB_4  
FSB_RSB_2  
FSB_DB_1  
VSS  
FSB_AB_14  
FSB_AB_16  
FSB_AB_9  
FSB_AB_11  
VSS  
FSB_AB_13  
FSB_AB_4  
FSB_AB_8  
FSB_AB_5  
VSS  
VSS  
FSB_AB_12  
VSS  
FSB_DB_28  
VSS  
FSB_DB_30  
FSB_DB_31  
FSB_  
ADSTBB_0  
FSB_DB_5  
FSB_DB_3  
FSB_DB_7  
FSB_AB_15  
M
L
M
L
FSB_  
DINVB_0  
FSB_  
REQB_2  
FSB_DB_6  
FSB_AB_7  
VSS  
VSS  
FSB_DB_19  
VSS  
FSB_DB_27 FSB_DB_29  
VSS  
FSB_  
DSTBNB_0  
FSB_  
REQB_3  
VSS  
VSS  
FSB_AB_6  
FSB_DB_21 FSB_DB_24  
VSS  
FSB_DB_33  
K
J
K
J
FSB_  
DSTBPB_0  
FSB_DB_8  
VSS  
FSB_DB_10  
FSB_  
REQB_4  
FSB_  
VSS  
FSB_DB_12  
VSS  
FSB_DB_9  
VSS  
FSB_BPRIB  
FSB_DB_20  
VSS  
FSB_DB_25  
FSB_DB_34  
DSTBPB_1  
H
H
FSB_REQB_  
1
FSB_  
DSTBNB_1  
FSB_DB_13  
FSB_DB_11  
VSS  
FSB_DB_22 FSB_DB_23  
VSS  
VSS  
G
F
G
F
FSB_AB_3  
FSB_DB_14  
VSS  
FSB_DB_17 FSB_DB_16  
VSS  
FSB_DB_48  
FSB_DB_63  
VSS  
FSB_DB_26  
VTT_FSB  
FSB_DB_32  
VTT_FSB  
FSB_DINVB  
_1  
FSB_DB_15 FSB_DB_50  
FSB_DB_61  
E
D
C
E
D
C
FSB_  
VSS  
FSB_  
CPURSTB  
FSB_DB_52 FSB_DB_53  
FSB_DB_57 FSB_DB_54  
VSS  
FSB_DB_59  
VSS  
VSS  
VTT_FSB  
VTT_FSB  
VTT_FSB  
VTT_FSB  
DSTBNB_3  
FSB_  
VSS  
FSB_  
DSTBPB_3  
VSS  
NC  
FSB_DB_51  
FSB_DB_60 FSB_DB_58  
REQB_0  
FSB_  
DINVB_3  
VSS  
FSB_DB_18 FSB_DB_55  
FSB_DB_56  
FSB_DB_49  
FSB_DB_62  
VTT_FSB  
VTT_FSB  
B
A
B
A
TEST3  
NC  
VSS  
VSS  
VSS  
VSS  
VTT_FSB  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
288  
Datasheet  
Ballout and Package Information  
Figure 12.  
MCH Ballout Diagram (Top View Middle – Columns 30–16)  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
DDR_B_  
MA_8  
DDR_A_  
DQ_19  
VSS  
VCC_DDR  
VSS  
VCC_DDR  
VSS  
VCC_DDR  
VSS  
BE  
BE  
BD  
BC  
BB  
BA  
AY  
AW  
DDR_A_  
MA_6  
DDR_A  
DDR_A_  
CKE_0  
DDR_B_  
MA_4  
DDR_B_  
CKE_1  
DDR_B_  
CKE_0  
_MA_11  
BD  
DDR_A_  
MA_8  
DDR_A_  
CKE_3  
DDR_B_  
MA_1  
DDR_B_  
MA_14  
VCC_DDR  
VCC_DDR  
VCC_DDR  
VCC_DDR  
VSS  
BC  
DDR_A_  
MA_2  
DDR_A_  
MA_3  
DDR_A_  
MA_5  
DDR_A_  
MA_12  
DDR_A_  
BS_2  
DDR_A_  
CKE_2  
DDR_B_  
BS_0  
DDR3_DRA  
MRSTB  
DDR_B_  
MA_2  
DDR_B_  
MA_5  
DDR_B_  
MA_6  
DDR_B_  
MA_9  
DDR_B_  
BS_2  
DDR_B_  
CKE_2  
DDR_A_  
DQ_18  
BB  
BA  
AY  
AW  
DDR_A_  
MA_4  
DDR_A_  
MA_9  
DDR_A_MA_  
14  
DDR_B_  
MA_3  
DDR_B_  
MA_11  
DDR_B_CKE  
_3  
DDR_B_  
CK_4  
DDR_B_  
CKB_4  
DDR_A_  
MA_7  
DDR_B_  
DM_3  
DDR_A_  
CKE_1  
DDR_B_  
MA_0  
DDR_A_  
DQ_25  
DDR_B_  
MA_7  
DDR_B_  
MA_12  
DDR_B_  
DQ_16  
VCC_DDR  
DDR_B_  
CK_0  
DDR_B_  
DQ_24  
DDR_B_  
MA_10  
DDR_B_  
BS_1  
DDR_A_  
DQ_31  
DDR_A_  
DQ_29  
DDR_B_  
DM_2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DDR_B_  
CKB_0  
DDR_B_  
DQ_27  
DDR_B_  
DQ_25  
DDR_A_  
DQSB_3  
DDR_A_  
DQ_28  
DDR_B_  
DQ_17  
VSS  
VSS  
VSS  
AV  
AU  
AV  
AU  
DDR_B_  
DQ_26  
DDR_B_  
DQ_30  
DDR_A_  
DQ_27  
DDR_A_  
DQS_3  
DDR_B_  
DQ_19  
DDR_B_  
DQ_22  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AT  
AR  
AP  
AN  
AT  
AR  
AP  
AN  
DDR_B_  
CK_1  
DDR_B_  
DQS_3  
DDR_B_  
DQSB_3  
DDR_B_  
DQ_23  
DDR_B_  
DQ_21  
VSS  
VSS  
VSS  
VSS  
VSS  
DDR_B_  
CKB_1  
DDR_B_  
DQ_31  
DDR_B_  
DQ_29  
DDR_A_  
DM_3  
DDR_B_  
DQ_18  
DDR_B_  
DQSB_2  
VSS  
VSS  
VSS  
DDR_A_  
CK_1  
DDR_A_  
CK_4  
DDR_B_  
DQ_28  
DDR_A_  
DQ_26  
DDR_A_  
DQ_30  
DDR_A_  
DQ_24  
DDR_B_  
DQS_2  
DDR_B_  
DQ_20  
RSVD  
RSVD  
DDR_A_  
CKB_1  
DDR_A_  
CKB_4  
VCC_CL  
VCC_CL  
RSVD  
VSS  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VSS  
PWROK  
VCC_CL  
RSTINB  
VCC_CL  
VSS  
AM  
AL  
AK  
AJ  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
AM  
AL  
AK  
AJ  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
RSVD  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCCAUX  
VCC_CL  
RSVD  
RSVD  
VCC  
VCC_CL  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC_CL  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VCC_CL  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC_CL  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VCC_CL  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC_CL  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VCC_CL  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC_CL  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VCC_CL  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC_CL  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC_CL  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
W
W
VCC  
V
V
VCC  
U
U
T
T
VCCAUX  
VCCAUX  
VCCAUX  
VSS  
VCCAUX  
VSS  
VCCAUX  
VSS  
VCCAUX  
VSS  
RSVD  
VSS  
VSS  
RSVD  
VCC  
VSS  
VCC  
R
R
HPL_  
CLKINN  
HPL_CLKINP  
RSVD  
RSVD_P19  
ICH_SYNCB  
P
N
M
P
N
M
FSB_DINVB  
_2  
FSB_  
DSTBPB_2  
FSB_DB_37  
FSB_DB_35  
VSS  
FSB_DB_42  
VSS  
VSS  
VSS  
VSS  
RSVD  
VSS  
RSVD  
VSS  
VSS  
FSB_  
DSTBNB_2  
VSS  
VTT_FSB  
BSEL0  
ALLZTEST  
RSVD_M19  
RSVD  
VCC3_3_  
L16  
FSB_DB_36  
VSS  
FSB_DB_41  
FSB_DB_40  
VTT_FSB  
VTT_FSB  
FSB_DB_43 FSB_DB_44  
VSS  
VSS  
XORTEST  
RSVD  
VSS  
RSVD  
RSVD  
VSS  
L
K
J
L
K
J
VTT_FSB  
FSB_DB_46  
RSVD  
EXP_SLR  
RSVD_K16  
FSB_DB_39  
FSB_DB_38  
VTT_FSB  
VTT_FSB  
VTT_FSB  
VTT_FSB  
VTT_FSB  
VTT_FSB  
VTT_FSB  
VTT_FSB  
FSB_DB_45  
FSB_DB_47  
VSS  
VSS  
VSS  
VSS  
VSS  
RSVD  
RSVD  
TCEN  
VSS  
VSS  
VSS  
RSVD_H16  
H
H
VCC3_3_  
G16  
MTYPE  
G
F
G
F
VTT_FSB  
VTT_FSB  
VCC_E25  
VSS_F22  
BSEL1  
VSS  
RSVD  
VSS  
BSEL2  
VSS  
VTT_FSB  
VSS  
FSB_DVREF  
PEG_TXN_0  
VSS  
E
E
FSB_  
ACCVREF  
EXP_CLKIN  
N
VTT_FSB  
VSS  
FSB_SCOMP  
VCCA_HPL  
VCCA_HPL  
VSS_D24  
VSS_C24  
VSS  
VSS_D22  
VSS  
VSS_D21  
VCCA_EXP  
VSS  
EXP_CLKINP  
PEG_TXP_0  
VCCR_EXP  
D
D
FSB_  
SCOMPB  
FSB_RCOMP  
VSS_C23  
VCC_C18  
C
B
C
B
VSS  
29  
VCCA_MPL  
27  
VCC_B25  
25  
VSS_B21  
21  
RSVD  
19  
VSS_B17  
17  
VCCAPLL_  
EXP  
VTT_FSB  
30  
FSB_SWING  
28  
VSS  
26  
VSS_A24  
24  
VCC3_3  
23  
VSS  
22  
VSS  
18  
PEG_RXP_0  
16  
A
A
20  
Datasheet  
289  
Ballout and Package Information  
Figure 13.  
MCH Ballout Diagram (Top View Left – Columns 15–1)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
DDR_A_  
DQ_11  
DDR_A_  
DQ_3  
VSS  
VSS  
VSS  
VSS  
NC  
TEST1  
BE  
BE  
BD  
BC  
BB  
BA  
AY  
AW  
AV  
AU  
AT  
AR  
AP  
AN  
AM  
AL  
DDR_A_  
DDR_A_  
DQ_16  
DDR_A_  
DQ_14  
DDR_A_  
DQ_8  
DDR_A_  
DQ_6  
DDR_A_  
DQ_1  
DDR_A_DQ_  
4
VSS  
RSVD  
VSS  
NC  
DQ_22  
BD  
BC  
BB  
BA  
AY  
AW  
AV  
AU  
AT  
AR  
AP  
AN  
AM  
AL  
DDR_A_  
DM_2  
DDR_A_  
DM_1  
DDR_A_  
DQ_13  
DDR_A_DQ  
SB_0  
DDR_A_  
DQ_0  
VSS  
VSS  
VSS  
VSS  
DDR_A_  
DQ_23  
DDR_A_  
DQ_17  
DDR_A_  
DQ_21  
DDR_A_  
DQ_10  
DDR_A_  
DQ_15  
DDR_A_  
DQ_9  
DDR_A_DQ_  
2
DDR_A_  
DQ_7  
DDR_A_  
DM_0  
DDR_A_  
DQ_5  
VSS_BB3  
DDR_A_  
DQS_2  
DDR_A_  
DQ_20  
DDR_A_  
DQS_1  
DDR_A_  
DQ_12  
DDR_A_DQ  
S_0  
VSS_BA5  
VSS_BA4  
DDR_A_  
DQSB_2  
DDR_B_  
DQ_9  
DDR_B_  
DQ_8  
DDR_A_  
DQSB_1  
DDR_B_  
DM_0  
DDR_B_  
DQ_1  
DDR_  
RCOMPXPD  
DDR_  
RCOMPXPU  
VSS  
VSS_AY3  
VSS_AY1  
VSS  
DDR_B_  
DQ_13  
DDR_B_  
DQ_12  
DDR_B_  
DQ_7  
DDR_B_  
DQS_0  
DDR_B_  
DQ_0  
DDR_B_  
DQ_5  
VSS  
VSS  
VSS  
VSS  
VSS_AW2  
DDR_B_  
DQ_11  
DDR_B_  
DQ_4  
VSS  
VSS  
VSS  
VSS  
DDR_VREF  
VSS  
VSS  
VSS  
PEG2_TXP_  
14  
VCCA_EXP2  
DDR_B_  
DQ_10  
DDR_B_  
DM_1  
DDR_B_  
DQ_3  
DDR_B_  
DQ_2  
DDR_B_  
DQSB_0  
DDR_  
RCOMPVOL  
DDR_RCOM  
PVOH  
PEG2_  
TXP_13  
PEG2_TXN_  
14  
VSS  
VSS  
VSS  
VSS  
DDR_B_  
DQS_1  
DDR_B_  
DQSB_1  
DDR_B_  
DQ_6  
VCCAPLL_  
EXP2  
PEG2_  
TXN_13  
PEG2_TXP_  
12  
VSS  
VSS  
VSS  
VSS  
DDR_B_  
DQ_15  
PEG2_  
RXN_15  
PEG2_  
RXP_15  
PEG2_  
TXP_15  
PEG2_  
TXN_15  
PEG2_  
TXP_11  
PEG2_TXN_  
12  
VSS  
RSVD  
RSVD  
VCCR_EXP  
DDR_B_  
DQ_14  
DDR3_DRA  
M_PWROK  
EXP2_  
COMPI  
EXP2_  
COMPO  
PEG2_  
TXN_11  
PEG2_TXP_  
10  
RSVD  
VSS  
VSS  
VSS  
PEG2_  
TXP_9  
PEG2_TXN_  
10  
RSVD  
VSS  
PEG2_  
RXP_13  
PEG2_  
RXN_13  
PEG2_  
RXN_14  
PEG2_  
RXP_14  
PEG2_  
TXN_9  
PEG2_TXP_  
8
CL_PWROK  
VSS  
VSS  
VSS  
VSS  
PEG2_  
RXN_12  
PEG2_  
RXP_12  
PEG2_  
TXP_7  
PEG2_TXN_  
8
CL_DATA  
CL_CLK  
VSS  
VSS  
VSS  
VSS  
VCCR_EXP  
AK  
AJ  
AK  
AJ  
PEG2_  
TXN_7  
PEG2_TXP_  
6
VSS  
PEG2_  
RXN_9  
PEG2_  
PEG2_  
PEG2_  
PEG2_  
PEG2_  
TXP_5  
PEG2_TXN_  
6
VCC_CL  
VCC  
VCC_CL  
VSS  
VSS  
VSS  
VSS  
RXP_10  
RXN_10  
RXP_11  
RXN_11  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
PEG2_  
RXP_9  
PEG2_  
TXN_5  
PEG2_TXP_  
4
CL_VREF  
VSS  
CL_RSTB  
VSS  
VSS  
VSS  
VSS  
PEG2_TXP_  
3
PEG2_TXN_  
4
VCCR_EXP  
EXP2_  
CLKINP  
PEG2_  
RXP_6  
PEG2_  
RXN_7  
PEG2_  
RXP_7  
PEG2_  
RXP_8  
PEG2_  
RXN_8  
PEG2_  
TXN_3  
PEG2_TXP_  
2
VCCR_EXP  
VCCR_EXP  
VCCR_EXP  
VCC  
VSS  
VSS  
VCC_EXP  
VSS  
VSS  
EXP2_  
CLKINN  
PEG2_  
RXN_6  
PEG2_  
TXP_1  
PEG2_TXN_  
2
VSS  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VSS  
VSS  
VSS  
PEG2_  
RXP_3  
PEG2_  
RXP_4  
PEG2_  
RXN_4  
PEG2_  
RXN_5  
PEG2_  
RXP_5  
PEG2_  
TXN_1  
VSS  
VSS  
VCCR_EXP  
VCC_EXT_  
PLL  
PEG2_  
RXN_3  
PEG2_TXP_  
0
PEG2_TXN_  
0
VCCR_EXP  
VCCR_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VSS  
VCC_EXP  
VCC_EXP  
VCC_EXP  
PEG2_  
RXN_0  
PEG2_  
RXN_1  
PEG2_  
RXP_1  
PEG2_RXN_ PEG2_RXP_  
VCCR_EXP  
VSS  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
2
2
AA  
Y
AA  
Y
VCC_EXP  
VCC_EXP  
PEG2_  
RXP_0  
VCCR_EXP  
VCCR_EXP  
VSS  
VSS  
VSS  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VSS  
VCC_EXP  
VSS  
VCC_EXP  
VCC_EXP  
W
V
U
T
W
V
U
T
VCCR_EXP  
RSVD  
DMI_TXN_3  
DMI_TXP_3  
DMI_RXP_3 DMI_RXN_3  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VSS  
VCC_EXP  
VCC_EXP  
VCC_EXP  
DMI_TXN_2  
VSS  
VCC_EXP  
VCCR_EXP  
VCCR_EXP  
VSS  
VSS  
VSS  
RSVD  
VSS  
VSS  
VSS  
EXP_COMPO  
EXP_COMPI  
DMI_RXN_1 DMI_RXP_1  
VSS  
DMI_TXN_0 DMI_RXN_2  
VSS  
DMI_TXP_0  
DMI_TXP_2  
R
P
R
P
DMI_RXP_2 DMI_TXN_1  
VSS  
PEG_  
RXN_15  
PEG_  
RXP_15  
VCC_N15  
VSS_M15  
VSS  
PEG_RXP_4  
PEG_RXN_4  
RSVD  
VSS  
RSVD  
VSS  
VSS  
VSS  
VSS  
VSS  
DMI_RXP_0  
DMI_TXP_1  
N
M
L
N
M
L
PEG_  
RXP_12  
PEG_  
RXN_13  
PEG_  
RXP_13  
PEG_  
TXP_15  
VSS  
DMI_RXN_0  
VSS  
VCCR_EXP  
PEG_RXN_1  
2
PEG_  
TXP_14  
PEG_  
TXN_15  
PEG_RXP_3 PEG_RXN_6  
VSS  
VSS  
VSS  
PEG_  
RXN_11  
PEG_  
RXP_11  
PEG_  
TXN_14  
PEG_  
RXP_14  
VSS  
PEG_RXN_3  
VSS  
PEG_RXP_6  
VSS  
VSS  
K
J
K
J
PEG_  
TXP_13  
PEG_RXN_1  
4
VSS  
PEG_  
PEG_  
RSVD_H15  
RSVD_G15  
VSS  
PEG_RXP_2  
PEG_RXP_5  
VSS  
VSS  
PEG_RXN_7  
PEG_RXP_7  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCCR_EXP  
TXN_13  
TXP_12  
H
G
F
H
G
F
PEG_  
PEG_RXN_2 PEG_RXN_5  
PEG_RXN_9  
VSS  
VSS  
TXN_12  
PEG_  
PEG_  
TXP_10  
VSS  
PEG_TXP_2  
VSS  
VSS  
VSS  
PEG_RXP_9  
VSS  
TXP_11  
PEG_  
TXN_11  
PEG_TXP_1  
VSS  
PEG_TXN_4  
VSS  
PEG_TXN_6  
PEG_RXP_8  
VSS  
E
D
E
D
PEG_  
TXN_10  
PEG_  
RXP_10  
PEG_TXN_1  
PEG_RXN_1  
PEG_TXN_2  
VCCR_EXP  
PEG_TXP_4  
PEG_TXN_5  
PEG_TXP_6  
VCCR_EXP  
VSS  
PEG_RXN_8  
VSS  
PEG_  
RXN_10  
VSS  
PEG_TXP_8  
PEG_TXN_8  
PEG_TXN_9  
VSS  
VSS  
NC  
C
B
A
C
B
A
PEG_RXN_0  
PEG_RXP_1  
PEG_TXP_3  
PEG_TXP_5  
PEG_TXP_7  
PEG_TXP_9  
VSS  
VSS  
VSS  
PEG_TXN_3  
VSS  
PEG_TXN_7  
VSS  
TEST2  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
290  
Datasheet  
Ballout and Package Information  
Table 28.  
MCH  
Table 28.  
MCH  
Table 28.  
MCH  
Ballout Sorted By Name  
Ballout Sorted By Name  
Ballout Sorted By Name  
Signal Name  
Ball #  
Signal Name  
Ball #  
Signal Name  
Ball #  
ALLZTEST  
M21  
DDR_A_DM_4  
DDR_A_DM_5  
DDR_A_DM_6  
DDR_A_DM_7  
DDR_A_DQ_0  
DDR_A_DQ_1  
DDR_A_DQ_2  
DDR_A_DQ_3  
DDR_A_DQ_4  
DDR_A_DQ_5  
DDR_A_DQ_6  
DDR_A_DQ_7  
DDR_A_DQ_8  
DDR_A_DQ_9  
DDR_A_DQ_10  
DDR_A_DQ_11  
DDR_A_DQ_12  
DDR_A_DQ_13  
DDR_A_DQ_14  
DDR_A_DQ_15  
DDR_A_DQ_16  
DDR_A_DQ_17  
DDR_A_DQ_18  
DDR_A_DQ_19  
DDR_A_DQ_20  
DDR_A_DQ_21  
DDR_A_DQ_22  
DDR_A_DQ_23  
DDR_A_DQ_24  
DDR_A_DQ_25  
DDR_A_DQ_26  
DDR_A_DQ_27  
DDR_A_DQ_28  
DDR_A_DQ_29  
DDR_A_DQ_30  
DDR_A_DQ_31  
DDR_A_DQ_32  
DDR_A_DQ_33  
DDR_A_DQ_34  
DDR_A_DQ_35  
DDR_A_DQ_36  
DDR_A_DQ_37  
DDR_A_DQ_38  
DDR_A_DQ_39  
DDR_A_DQ_40  
AU44  
AN44  
AE44  
AB40  
BC4  
DDR_A_DQ_41  
DDR_A_DQ_42  
DDR_A_DQ_43  
DDR_A_DQ_44  
DDR_A_DQ_45  
DDR_A_DQ_46  
DDR_A_DQ_47  
DDR_A_DQ_48  
DDR_A_DQ_49  
DDR_A_DQ_50  
DDR_A_DQ_51  
DDR_A_DQ_52  
DDR_A_DQ_53  
DDR_A_DQ_54  
DDR_A_DQ_55  
DDR_A_DQ_56  
DDR_A_DQ_57  
DDR_A_DQ_58  
DDR_A_DQ_59  
DDR_A_DQ_60  
DDR_A_DQ_61  
DDR_A_DQ_62  
DDR_A_DQ_63  
DDR_A_DQS_0  
DDR_A_DQS_1  
DDR_A_DQS_2  
DDR_A_DQS_3  
DDR_A_DQS_4  
DDR_A_DQS_5  
DDR_A_DQS_6  
DDR_A_DQS_7  
DDR_A_DQS_8  
DDR_A_DQSB_0  
DDR_A_DQSB_1  
DDR_A_DQSB_2  
DDR_A_DQSB_3  
DDR_A_DQSB_4  
DDR_A_DQSB_5  
DDR_A_DQSB_6  
DDR_A_DQSB_7  
DDR_A_DQSB_8  
DDR_A_MA_0  
AN42  
AL44  
AL42  
AP42  
AP45  
AL40  
AL41  
AE41  
AE42  
AC42  
AC45  
AF42  
AF45  
AD40  
AC39  
AB42  
AB43  
Y42  
BSEL0  
M22  
BSEL1  
F21  
BSEL2  
F18  
CL_CLK  
AK14  
AK15  
AL13  
AG11  
AG14  
BC37  
BB36  
BB26  
BB41  
AL33  
AN35  
AK38  
AK35  
AK33  
AL34  
AK34  
AK39  
AT33  
AN28  
AT34  
AV31  
AN27  
AT35  
AR33  
AM28  
AV35  
AT31  
AM27  
AT36  
BD25  
AY24  
BB25  
BC24  
BA40  
BD42  
BB39  
AY43  
BB5  
CL_DATA  
BD4  
CL_PWROK  
BB8  
CL_RSTB  
BE8  
CL_VREF  
BD3  
DDR_A_BS_0  
DDR_A_BS_1  
DDR_A_BS_2  
DDR_A_CASB  
DDR_A_CB_0  
DDR_A_CB_1  
DDR_A_CB_2  
DDR_A_CB_3  
DDR_A_CB_4  
DDR_A_CB_5  
DDR_A_CB_6  
DDR_A_CB_7  
DDR_A_CK_0  
DDR_A_CK_1  
DDR_A_CK_2  
DDR_A_CK_3  
DDR_A_CK_4  
DDR_A_CK_5  
DDR_A_CKB_0  
DDR_A_CKB_1  
DDR_A_CKB_2  
DDR_A_CKB_3  
DDR_A_CKB_4  
DDR_A_CKB_5  
DDR_A_CKE_0  
DDR_A_CKE_1  
DDR_A_CKE_2  
DDR_A_CKE_3  
DDR_A_CSB_0  
DDR_A_CSB_1  
DDR_A_CSB_2  
DDR_A_CSB_3  
DDR_A_DM_0  
DDR_A_DM_1  
DDR_A_DM_2  
DDR_A_DM_3  
BB4  
BD7  
BB7  
BD9  
BB10  
BB12  
BE12  
BA9  
BC9  
BD11  
BB11  
BD13  
BB14  
BB16  
BE16  
BA13  
BB13  
BD15  
BB15  
AN19  
AY21  
AN22  
AT22  
AV19  
AW19  
AN21  
AW22  
AV42  
AU43  
AR44  
AR42  
AW42  
AU41  
AR41  
AR40  
AN41  
W42  
AC40  
AB39  
AA41  
Y45  
BA6  
BA11  
BA15  
AT21  
AT43  
AM43  
AD43  
AA42  
AL38  
BC6  
AY11  
AY15  
AV21  
AT42  
AM42  
AD42  
AA44  
AL36  
BC36  
BB31  
BB30  
BB29  
BC10  
BC14  
AP21  
DDR_A_MA_1  
DDR_A_MA_2  
DDR_A_MA_3  
Datasheet  
291  
Ballout and Package Information  
Table 28.  
MCH  
Table 28.  
MCH  
Table 28.  
MCH  
Ballout Sorted By Name  
Ballout Sorted By Name  
Ballout Sorted By Name  
Signal Name  
Ball #  
Signal Name  
Ball #  
Signal Name  
Ball #  
DDR_A_MA_4  
DDR_A_MA_5  
DDR_A_MA_6  
DDR_A_MA_7  
DDR_A_MA_8  
DDR_A_MA_9  
DDR_A_MA_10  
DDR_A_MA_11  
DDR_A_MA_12  
DDR_A_MA_13  
DDR_A_MA_14  
DDR_A_ODT_0  
DDR_A_ODT_1  
DDR_A_ODT_2  
DDR_A_ODT_3  
DDR_A_RASB  
DDR_A_WEB  
BA29  
BB28  
BD29  
AY27  
BC28  
BA27  
BD37  
BD27  
BB27  
BA42  
BA25  
BB43  
AY41  
BA41  
AW44  
BB38  
BD39  
BB24  
AW23  
BB18  
BB32  
AK45  
AJ44  
DDR_B_CSB_0  
DDR_B_CSB_1  
DDR_B_CSB_2  
DDR_B_CSB_3  
DDR_B_DM_0  
DDR_B_DM_1  
DDR_B_DM_2  
DDR_B_DM_3  
DDR_B_DM_4  
DDR_B_DM_5  
DDR_B_DM_6  
DDR_B_DM_7  
DDR_B_DQ_0  
DDR_B_DQ_1  
DDR_B_DQ_2  
DDR_B_DQ_3  
DDR_B_DQ_4  
DDR_B_DQ_5  
DDR_B_DQ_6  
DDR_B_DQ_7  
DDR_B_DQ_8  
DDR_B_DQ_9  
DDR_B_DQ_10  
DDR_B_DQ_11  
DDR_B_DQ_12  
DDR_B_DQ_13  
DDR_B_DQ_14  
DDR_B_DQ_15  
DDR_B_DQ_16  
DDR_B_DQ_17  
DDR_B_DQ_18  
DDR_B_DQ_19  
DDR_B_DQ_20  
DDR_B_DQ_21  
DDR_B_DQ_22  
DDR_B_DQ_23  
DDR_B_DQ_24  
DDR_B_DQ_25  
DDR_B_DQ_26  
DDR_B_DQ_27  
DDR_B_DQ_28  
DDR_B_DQ_29  
DDR_B_DQ_30  
DDR_B_DQ_31  
DDR_B_DQ_32  
BA31  
BB35  
BC32  
BA35  
AY8  
DDR_B_DQ_33  
DDR_B_DQ_34  
DDR_B_DQ_35  
DDR_B_DQ_36  
DDR_B_DQ_37  
DDR_B_DQ_38  
DDR_B_DQ_39  
DDR_B_DQ_40  
DDR_B_DQ_41  
DDR_B_DQ_42  
DDR_B_DQ_43  
DDR_B_DQ_44  
DDR_B_DQ_45  
DDR_B_DQ_46  
DDR_B_DQ_47  
DDR_B_DQ_48  
DDR_B_DQ_49  
DDR_B_DQ_50  
DDR_B_DQ_51  
DDR_B_DQ_52  
DDR_B_DQ_53  
DDR_B_DQ_54  
DDR_B_DQ_55  
DDR_B_DQ_56  
DDR_B_DQ_57  
DDR_B_DQ_58  
DDR_B_DQ_59  
DDR_B_DQ_60  
DDR_B_DQ_61  
DDR_B_DQ_62  
DDR_B_DQ_63  
DDR_B_DQS_0  
DDR_B_DQS_1  
DDR_B_DQS_2  
DDR_B_DQS_3  
DDR_B_DQS_4  
DDR_B_DQS_5  
DDR_B_DQS_6  
DDR_B_DQS_7  
DDR_B_DQS_8  
DDR_B_DQSB_0  
DDR_B_DQSB_1  
DDR_B_DQSB_2  
DDR_B_DQSB_3  
DDR_B_DQSB_4  
AW38  
AT38  
AT40  
AY38  
AW36  
AV39  
AV40  
AR36  
AP36  
AP35  
AN33  
AV36  
AR34  
AN39  
AN40  
AH34  
AG33  
AE39  
AE38  
AH33  
AH36  
AE40  
AE33  
AD39  
AD36  
AB32  
AB38  
AE35  
AE34  
AC36  
AC34  
AW10  
AR13  
AN18  
AR25  
AW39  
AP39  
AG39  
AC33  
AH43  
AT10  
AR12  
AP16  
AR24  
AV38  
AT13  
AW16  
AY25  
AY40  
AN36  
AG35  
AD35  
AW8  
AY7  
AT11  
AT12  
AV8  
DDR_B_BS_0  
DDR_B_BS_1  
DDR_B_BS_2  
DDR_B_CASB  
DDR_B_CB_0  
DDR_B_CB_1  
DDR_B_CB_2  
DDR_B_CB_3  
DDR_B_CB_4  
DDR_B_CB_5  
DDR_B_CB_6  
DDR_B_CB_7  
DDR_B_CK_0  
DDR_B_CK_1  
DDR_B_CK_2  
DDR_B_CK_3  
DDR_B_CK_4  
DDR_B_CK_5  
DDR_B_CKB_0  
DDR_B_CKB_1  
DDR_B_CKB_2  
DDR_B_CKB_3  
DDR_B_CKB_4  
DDR_B_CKB_5  
DDR_B_CKE_0  
DDR_B_CKE_1  
DDR_B_CKE_2  
DDR_B_CKE_3  
AW6  
AR11  
AW11  
AY12  
AY13  
AT15  
AV15  
AW12  
AW13  
AN15  
AP15  
AY16  
AV16  
AP19  
AT19  
AN16  
AR16  
AT18  
AR18  
AW25  
AV25  
AT27  
AV27  
AN24  
AP24  
AT25  
AP27  
AY39  
AG42  
AG40  
AJ42  
AK42  
AG41  
AG44  
AW30  
AR28  
AV33  
AR31  
AY30  
AW34  
AV30  
AP28  
AW33  
AP31  
AY28  
AY34  
BD17  
BD19  
BB17  
BA17  
292  
Datasheet  
Ballout and Package Information  
Table 28.  
MCH  
Table 28.  
MCH  
Table 28.  
MCH  
Ballout Sorted By Name  
Ballout Sorted By Name  
Ballout Sorted By Name  
Signal Name  
Ball #  
Signal Name  
Ball #  
Signal Name  
Ball #  
DDR_B_DQSB_5  
DDR_B_DQSB_6  
DDR_B_DQSB_7  
DDR_B_DQSB_8  
DDR_B_MA_0  
DDR_B_MA_1  
DDR_B_MA_2  
DDR_B_MA_3  
DDR_B_MA_4  
DDR_B_MA_5  
DDR_B_MA_6  
DDR_B_MA_7  
DDR_B_MA_8  
DDR_B_MA_9  
DDR_B_MA_10  
DDR_B_MA_11  
DDR_B_MA_12  
DDR_B_MA_13  
DDR_B_MA_14  
DDR_B_ODT_0  
DDR_B_ODT_1  
DDR_B_ODT_2  
DDR_B_ODT_3  
DDR_B_RASB  
DDR_B_WEB  
AP40  
AG38  
AD33  
AH42  
AY22  
BC22  
BB22  
BA21  
BD21  
BB21  
BB20  
AY19  
BE20  
BB19  
AW24  
BA19  
AY18  
BA33  
BC18  
BD33  
BB34  
BB33  
AY35  
BD31  
AY31  
AT6  
DMI_RXP_2  
DMI_RXP_3  
DMI_TXN_0  
DMI_TXN_1  
DMI_TXN_2  
DMI_TXN_3  
DMI_TXP_0  
DMI_TXP_1  
DMI_TXP_2  
DMI_TXP_3  
EXP_CLKINN  
EXP_CLKINP  
EXP_COMPI  
EXP_COMPO  
EXP_SLR  
P4  
FSB_AB_29  
FSB_AB_30  
FSB_AB_31  
FSB_AB_32  
FSB_AB_33  
FSB_AB_34  
FSB_AB_35  
FSB_ACCVREF  
FSB_ADSB  
FSB_ADSTBB_0  
FSB_ADSTBB_1  
FSB_BNRB  
FSB_BPRIB  
FSB_BREQ0B  
FSB_CPURSTB  
FSB_DB_0  
AB34  
W36  
AA33  
AA35  
AA40  
AB35  
AA38  
D27  
U44  
M40  
V34  
U42  
H38  
W44  
D35  
P42  
V7  
R6  
P3  
T1  
V11  
R7  
N2  
R2  
V10  
D18  
D19  
R10  
T10  
K19  
AD14  
AE14  
AN10  
AN8  
F43  
M38  
M36  
K38  
L40  
N36  
N40  
R36  
N39  
N34  
N38  
R39  
K42  
R35  
T40  
T36  
T34  
T38  
P43  
W38  
V38  
V39  
W34  
V35  
W33  
V43  
EXP2_CLKINN  
EXP2_CLKINP  
EXP2_COMPI  
EXP2_COMPO  
FSB_AB_3  
FSB_DB_1  
N41  
N44  
M42  
N42  
M45  
L44  
FSB_DB_2  
FSB_DB_3  
FSB_DB_4  
FSB_AB_4  
FSB_DB_5  
FSB_AB_5  
FSB_DB_6  
FSB_AB_6  
FSB_DB_7  
L42  
FSB_AB_7  
FSB_DB_8  
J43  
FSB_AB_8  
FSB_DB_9  
H42  
J41  
DDR_RCOMPVOH  
DDR_RCOMPVOL  
DDR_RCOMPXPD  
DDR_RCOMPXPU  
DDR_RCOMPYPD  
DDR_RCOMPYPU  
DDR_VREF  
FSB_AB_9  
FSB_DB_10  
FSB_DB_11  
FSB_DB_12  
FSB_DB_13  
FSB_DB_14  
FSB_DB_15  
FSB_DB_16  
FSB_DB_17  
FSB_DB_18  
FSB_DB_19  
FSB_DB_20  
FSB_DB_21  
FSB_DB_22  
FSB_DB_23  
FSB_DB_24  
FSB_DB_25  
FSB_DB_26  
FSB_DB_27  
FSB_DB_28  
FSB_DB_29  
AT7  
FSB_AB_10  
FSB_AB_11  
FSB_AB_12  
FSB_AB_13  
FSB_AB_14  
FSB_AB_15  
FSB_AB_16  
FSB_AB_17  
FSB_AB_18  
FSB_AB_19  
FSB_AB_20  
FSB_AB_21  
FSB_AB_22  
FSB_AB_23  
FSB_AB_24  
FSB_AB_25  
FSB_AB_26  
FSB_AB_27  
FSB_AB_28  
G42  
H45  
G44  
F41  
AY6  
AY5  
BC42  
BB42  
AV7  
E42  
F38  
DDR3_A_CSB_1  
DDR3_A_MA0  
DDR3_A_WEB  
DDR3_B_ODT3  
BB44  
BD35  
BC40  
BA37  
F39  
B43  
L36  
G38  
K35  
G36  
G35  
K34  
H33  
F33  
DDR3_DRAM_PWR  
OK  
AN11  
DDR3_DRAMRSTB BB23  
DMI_RXN_0  
DMI_RXN_1  
DMI_RXN_2  
DMI_RXN_3  
DMI_RXP_0  
DMI_RXP_1  
M4  
T8  
R5  
V6  
N5  
T7  
L34  
N33  
L33  
Datasheet  
293  
Ballout and Package Information  
Table 28.  
MCH  
Table 28.  
MCH  
Table 28.  
MCH  
Ballout Sorted By Name  
Ballout Sorted By Name  
Ballout Sorted By Name  
Signal Name  
Ball #  
Signal Name  
Ball #  
Signal Name  
Ball #  
FSB_DB_30  
FSB_DB_31  
FSB_DB_32  
FSB_DB_33  
FSB_DB_34  
FSB_DB_35  
FSB_DB_36  
FSB_DB_37  
FSB_DB_38  
FSB_DB_39  
FSB_DB_40  
FSB_DB_41  
FSB_DB_42  
FSB_DB_43  
FSB_DB_44  
FSB_DB_45  
FSB_DB_46  
FSB_DB_47  
FSB_DB_48  
FSB_DB_49  
FSB_DB_50  
FSB_DB_51  
FSB_DB_52  
FSB_DB_53  
FSB_DB_54  
FSB_DB_55  
FSB_DB_56  
FSB_DB_57  
FSB_DB_58  
FSB_DB_59  
FSB_DB_60  
FSB_DB_61  
FSB_DB_62  
FSB_DB_63  
FSB_DBSYB  
FSB_DEFERB  
FSB_DINVB_0  
FSB_DINVB_1  
FSB_DINVB_2  
FSB_DINVB_3  
FSB_DRDYB  
FSB_DSTBNB_0  
FSB_DSTBNB_1  
FSB_DSTBNB_2  
FSB_DSTBNB_3  
N31  
M31  
F31  
K31  
H31  
M30  
L30  
N30  
G30  
H30  
K28  
L28  
N24  
L25  
L24  
H24  
K24  
G24  
F35  
A38  
E41  
C42  
D44  
D43  
D38  
B42  
B39  
D39  
C36  
D36  
C37  
E37  
B35  
E35  
T42  
T39  
L41  
E40  
N28  
B37  
U41  
K43  
G34  
M25  
D41  
FSB_DSTBPB_0  
FSB_DSTBPB_1  
FSB_DSTBPB_2  
FSB_DSTBPB_3  
FSB_DVREF  
FSB_HITB  
J44  
PEG_RXN_14  
PEG_RXN_15  
PEG_RXP_0  
PEG_RXP_1  
PEG_RXP_2  
PEG_RXP_3  
PEG_RXP_4  
PEG_RXP_5  
PEG_RXP_6  
PEG_RXP_7  
PEG_RXP_8  
PEG_RXP_9  
PEG_RXP_10  
PEG_RXP_11  
PEG_RXP_12  
PEG_RXP_13  
PEG_RXP_14  
PEG_RXP_15  
PEG_TXN_0  
PEG_TXN_1  
PEG_TXN_2  
PEG_TXN_3  
PEG_TXN_4  
PEG_TXN_5  
PEG_TXN_6  
PEG_TXN_7  
PEG_TXN_8  
PEG_TXN_9  
PEG_TXN_10  
PEG_TXN_11  
PEG_TXN_12  
PEG_TXN_13  
PEG_TXN_14  
PEG_TXN_15  
PEG_TXP_0  
PEG_TXP_1  
PEG_TXP_2  
PEG_TXP_3  
PEG_TXP_4  
PEG_TXP_5  
PEG_TXP_6  
PEG_TXP_7  
PEG_TXP_8  
PEG_TXP_9  
PEG_TXP_10  
J2  
H34  
N25  
C40  
E27  
R42  
V42  
T45  
C26  
C44  
G40  
L39  
K36  
H39  
R44  
W41  
R41  
D28  
C28  
A28  
W40  
P30  
P28  
P16  
G19  
BE2  
BD45  
BD1  
B45  
B1  
N10  
A16  
B13  
H13  
L13  
N13  
H12  
K11  
G10  
E6  
FSB_HITMB  
FSB_LOCKB  
FSB_RCOMP  
FSB_REQB_0  
FSB_REQB_1  
FSB_REQB_2  
FSB_REQB_3  
FSB_REQB_4  
FSB_RSB_0  
FSB_RSB_1  
FSB_RSB_2  
FSB_SCOMP  
FSB_SCOMPB  
FSB_SWING  
FSB_TRDYB  
HPL_CLKINN  
HPL_CLKINP  
ICH_SYNCB  
MTYPE  
F7  
D2  
K7  
M11  
M7  
K3  
N8  
E17  
D14  
D12  
A12  
E11  
C10  
E9  
NC  
A8  
NC  
C4  
NC  
B4  
NC  
D3  
NC  
E4  
NC  
A44  
B15  
C14  
G13  
K13  
M13  
G12  
L12  
H10  
D5  
G2  
PEG_RXN_0  
PEG_RXN_1  
PEG_RXN_2  
PEG_RXN_3  
PEG_RXN_4  
PEG_RXN_5  
PEG_RXN_6  
PEG_RXN_7  
PEG_RXN_8  
PEG_RXN_9  
PEG_RXN_10  
PEG_RXN_11  
PEG_RXN_12  
PEG_RXN_13  
H4  
K4  
L2  
D16  
E15  
E13  
B11  
D10  
B9  
G6  
D8  
C2  
B7  
K8  
C6  
L10  
M8  
B3  
F3  
294  
Datasheet  
Ballout and Package Information  
Table 28.  
MCH  
Table 28.  
MCH  
Table 28.  
MCH  
Ballout Sorted By Name  
Ballout Sorted By Name  
Ballout Sorted By Name  
Signal Name  
Ball #  
Signal Name  
Ball #  
Signal Name  
Ball #  
PEG_TXP_11  
PEG_TXP_12  
PEG_TXP_13  
PEG_TXP_14  
PEG_TXP_15  
PEG2_RXN_0  
PEG2_RXN_1  
PEG2_RXN_2  
PEG2_RXN_3  
PEG2_RXN_4  
PEG2_RXN_5  
PEG2_RXN_6  
PEG2_RXN_7  
PEG2_RXN_8  
PEG2_RXN_9  
PEG2_RXN_10  
PEG2_RXN_11  
PEG2_RXN_12  
PEG2_RXN_13  
PEG2_RXN_14  
PEG2_RXN_15  
PEG2_RXP_0  
PEG2_RXP_1  
PEG2_RXP_2  
PEG2_RXP_3  
PEG2_RXP_4  
PEG2_RXP_5  
PEG2_RXP_6  
PEG2_RXP_7  
PEG2_RXP_8  
PEG2_RXP_9  
PEG2_RXP_10  
PEG2_RXP_11  
PEG2_RXP_12  
PEG2_RXP_13  
PEG2_RXP_14  
PEG2_RXP_15  
PEG2_TXN_0  
PEG2_TXN_1  
PEG2_TXN_2  
PEG2_TXN_3  
PEG2_TXN_4  
PEG2_TXN_5  
PEG2_TXN_6  
PEG2_TXN_7  
F5  
PEG2_TXN_8  
PEG2_TXN_9  
PEG2_TXN_10  
PEG2_TXN_11  
PEG2_TXN_12  
PEG2_TXN_13  
PEG2_TXN_14  
PEG2_TXN_15  
PEG2_TXP_0  
PEG2_TXP_1  
PEG2_TXP_2  
PEG2_TXP_3  
PEG2_TXP_4  
PEG2_TXP_5  
PEG2_TXP_6  
PEG2_TXP_7  
PEG2_TXP_8  
PEG2_TXP_9  
PEG2_TXP_10  
PEG2_TXP_11  
PEG2_TXP_12  
PEG2_TXP_13  
PEG2_TXP_14  
PEG2_TXP_15  
PWROK  
AK1  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD_G15  
RSVD_H15  
RSVD_M19  
RSVD_P19  
TCEN  
TEST0  
TEST1  
TEST2  
TEST3  
VCC  
V12  
H1  
AL5  
T33  
J5  
AM3  
AN5  
AP1  
T12  
L5  
R33  
M1  
R22  
AA13  
AA11  
AA7  
AR5  
R19  
AT3  
P21  
AP6  
N21  
AB12  
AC10  
AC7  
AD12  
AE11  
AE6  
AB3  
N18  
AD4  
AE2  
N12  
N11  
AF4  
M16  
L19  
AG2  
AH4  
AJ2  
K22  
AH13  
AH10  
AH6  
AK13  
AL10  
AL7  
K21  
AK4  
H21  
AL2  
G22  
F19  
AM4  
AN2  
AP4  
B19  
G15  
H15  
AP11  
W12  
AA10  
AA6  
AR2  
AT4  
M19  
P19  
AU2  
AP7  
G21  
BE45  
BE1  
AC13  
AC11  
AC6  
AE13  
AE10  
AE7  
AM19  
AM18  
L18  
RSTINB  
RSVD  
A2  
RSVD  
BC2  
A45  
RSVD  
AP34  
AP12  
AN31  
AN30  
AN25  
AN13  
AN12  
AM32  
AM25  
AM14  
AL28  
AH28  
AG32  
AG28  
AD32  
W32  
V32  
AH26  
AH24  
AH22  
AH20  
AH19  
AH18  
AH17  
AG27  
AG25  
AG23  
AG21  
AG19  
AG18  
AG17  
AG15  
AF28  
AF26  
RSVD  
VCC  
AG12  
AH11  
AH7  
AK12  
AL11  
AL6  
RSVD  
VCC  
RSVD  
VCC  
RSVD  
VCC  
RSVD  
VCC  
RSVD  
VCC  
RSVD  
VCC  
AP10  
AB1  
RSVD  
VCC  
RSVD  
VCC  
AC4  
AD3  
AE5  
RSVD  
VCC  
RSVD  
VCC  
RSVD  
VCC  
AF1  
RSVD  
VCC  
AG5  
AH3  
AJ5  
RSVD  
VCC  
RSVD  
VCC  
RSVD  
VCC  
Datasheet  
295  
Ballout and Package Information  
Table 28.  
MCH  
Table 28.  
MCH  
Table 28.  
MCH  
Ballout Sorted By Name  
Ballout Sorted By Name  
Ballout Sorted By Name  
Signal Name  
Ball #  
Signal Name  
Ball #  
Signal Name  
Ball #  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AF24  
AF22  
AF20  
AF18  
AF17  
AE28  
AE27  
AE25  
AE23  
AE21  
AE19  
AE18  
AE17  
AD28  
AD26  
AD24  
AD22  
AD20  
AD18  
AD17  
AC28  
AC27  
AC25  
AC23  
AC21  
AC19  
AC18  
AC17  
AB28  
AB26  
AB24  
AB22  
AB20  
AB18  
AB17  
AB15  
AA28  
AA27  
AA25  
AA23  
AA21  
AA19  
AA18  
AA17  
Y28  
VCC  
Y26  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
AM23  
AM22  
AL30  
AL27  
AL25  
AL24  
AL23  
AL22  
AL21  
AL19  
AL18  
AL16  
AK31  
AJ29  
AJ28  
AJ27  
AJ26  
AJ25  
AJ24  
AJ23  
AJ22  
AJ21  
AJ20  
AJ19  
AJ18  
AJ17  
AH31  
AH29  
AH15  
AH14  
AG31  
AG29  
AF29  
AE31  
AE29  
AD31  
AD29  
AC31  
AC29  
AB31  
AB29  
AA31  
AA29  
Y29  
VCC  
Y24  
VCC  
Y22  
VCC  
Y20  
VCC  
Y18  
VCC  
Y17  
VCC  
W28  
W27  
W25  
W23  
W21  
W19  
W18  
W17  
V28  
V26  
V24  
V22  
V20  
V18  
V17  
U28  
U27  
U26  
U25  
U24  
U23  
U22  
U21  
U20  
U19  
U18  
U17  
R18  
R16  
B25  
C18  
BE44  
BE43  
BD44  
BD43  
BC45  
BC44  
V31  
AM30  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC_B25  
VCC_C18  
VCC_CKDDR  
VCC_CKDDR  
VCC_CKDDR  
VCC_CKDDR  
VCC_CKDDR  
VCC_CKDDR  
VCC_CL  
VCC_CL  
W29  
296  
Datasheet  
Ballout and Package Information  
Table 28.  
MCH  
Table 28.  
MCH  
Table 28.  
MCH  
Ballout Sorted By Name  
Ballout Sorted By Name  
Ballout Sorted By Name  
Signal Name  
Ball #  
Signal Name  
Ball #  
Signal Name  
Ball #  
VCC_CL  
V29  
BE40  
BE36  
BE32  
BE28  
BE24  
BE22  
BC38  
BC34  
BC30  
BC26  
BC23  
BC20  
AY45  
AY23  
E25  
AD11  
AD10  
AD8  
AD7  
AB11  
AB10  
AB8  
AB7  
AB6  
AB4  
AA5  
AA4  
AA2  
Y4  
VCC_EXP  
VCC_EXP  
VCC_EXT_PLL  
VCC_N15  
VCC3_3  
T4  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
BE30  
BE26  
BE23  
BE18  
BE14  
BE10  
BE6  
VCC_DDR  
VCC_DDR  
VCC_DDR  
VCC_DDR  
VCC_DDR  
VCC_DDR  
VCC_DDR  
VCC_DDR  
VCC_DDR  
VCC_DDR  
VCC_DDR  
VCC_DDR  
VCC_DDR  
VCC_DDR  
VCC_E25  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
T3  
AB13  
N15  
A23  
G16  
L16  
VCC3_3_G16  
VCC3_3_L16  
VCCA_EXP  
VCCA_EXP2  
VCCA_HPL  
VCCA_HPL  
VCCA_MPL  
VCCAPLL_EXP  
VCCAPLL_EXP2  
VCCAUX  
D20  
AU5  
D26  
D25  
B27  
A20  
AR10  
U29  
T31  
R30  
R28  
R27  
R25  
R24  
R23  
AP3  
AK3  
AF3  
AE15  
AD15  
AC15  
AC3  
AB14  
AA15  
AA14  
W15  
V15  
V14  
T15  
T14  
M3  
BE3  
BD2  
BC43  
BC16  
BC12  
BC8  
BC3  
BC1  
VCCAUX  
BB2  
VCCAUX  
AY36  
AY33  
AY10  
AW40  
AW35  
AW31  
AW28  
AW27  
AW21  
AW18  
AW15  
AW7  
AW4  
AV45  
AV43  
AV34  
AV28  
AV24  
AV23  
AV22  
AV18  
AV13  
AV12  
AV11  
AV10  
AV6  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCR_EXP  
VCCR_EXP  
VCCR_EXP  
VCCR_EXP  
VCCR_EXP  
VCCR_EXP  
VCCR_EXP  
VCCR_EXP  
VCCR_EXP  
VCCR_EXP  
VCCR_EXP  
VCCR_EXP  
VCCR_EXP  
VCCR_EXP  
VCCR_EXP  
VCCR_EXP  
VCCR_EXP  
VCCR_EXP  
VCCR_EXP  
VCCR_EXP  
VSS  
Y3  
Y1  
W11  
W10  
W8  
W7  
W5  
W4  
W2  
H3  
V4  
C16  
C12  
C8  
V3  
V1  
U5  
B2  
AV4  
U4  
VSS  
BE38  
BE34  
AV3  
U2  
VSS  
AV1  
Datasheet  
297  
Ballout and Package Information  
Table 28.  
MCH  
Table 28.  
MCH  
Table 28.  
MCH  
Ballout Sorted By Name  
Ballout Sorted By Name  
Ballout Sorted By Name  
Signal Name  
Ball #  
Signal Name  
Ball #  
Signal Name  
Ball #  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AU3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AL39  
AL35  
AL12  
AL8  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AF21  
AF19  
AE36  
AE32  
AE26  
AE24  
AE22  
AE20  
AE12  
AE8  
AT45  
AT39  
AT30  
AT28  
AT24  
AT23  
AT16  
AT8  
AL4  
AK43  
AK40  
AK36  
AK32  
AK11  
AK10  
AK8  
AT1  
AR39  
AR38  
AR35  
AR30  
AR27  
AR23  
AR22  
AR21  
AR19  
AR15  
AR8  
AE4  
AD45  
AD38  
AD34  
AD27  
AD25  
AD23  
AD21  
AD19  
AD13  
AD6  
AK7  
AK6  
AJ41  
AJ4  
AH45  
AH40  
AH39  
AH38  
AH35  
AH32  
AH27  
AH25  
AH23  
AH21  
AH12  
AH8  
AR7  
AD1  
AR6  
AC43  
AC38  
AC35  
AC32  
AC26  
AC24  
AC22  
AC20  
AC14  
AC12  
AC8  
AR4  
AP43  
AP38  
AP33  
AP30  
AP25  
AP23  
AP22  
AP18  
AP13  
AP8  
AH1  
AG36  
AG34  
AG26  
AG24  
AG22  
AG20  
AG13  
AG10  
AG8  
AC1  
AN38  
AN34  
AN23  
AN7  
AB45  
AB36  
AB33  
AB27  
AB25  
AB23  
AB21  
AB19  
AA39  
AA36  
AA34  
AN6  
AG7  
AN4  
AG6  
AM45  
AM24  
AM21  
AM16  
AM1  
AG4  
AF43  
AF27  
AF25  
AF23  
298  
Datasheet  
Ballout and Package Information  
Table 28.  
MCH  
Table 28.  
MCH  
Table 28.  
MCH  
Ballout Sorted By Name  
Ballout Sorted By Name  
Ballout Sorted By Name  
Signal Name  
Ball #  
Signal Name  
Ball #  
Signal Name  
Ball #  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AA32  
AA26  
AA24  
AA22  
AA20  
AA12  
AA8  
Y43  
Y27  
Y25  
Y23  
Y21  
Y19  
W39  
W35  
W26  
W24  
W22  
W20  
W14  
W13  
W6  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
R11  
R8  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
K45  
K40  
K39  
K33  
K30  
K23  
K18  
K15  
K12  
K10  
K6  
R4  
P45  
P32  
P27  
P25  
P24  
P23  
P22  
P18  
P14  
P1  
K1  
J3  
N35  
N27  
N23  
N22  
N19  
N16  
N7  
H43  
H40  
H36  
H35  
H23  
H22  
H19  
H18  
H11  
H8  
N6  
N4  
V45  
V40  
V36  
V33  
V27  
V25  
V23  
V21  
V19  
V13  
V8  
M43  
M39  
M35  
M34  
M33  
M28  
M24  
M23  
M18  
M12  
M10  
M6  
H7  
H6  
G39  
G33  
G31  
G23  
G18  
G11  
G8  
G7  
T43  
T35  
T32  
T13  
T11  
T6  
G4  
L38  
L35  
L31  
L23  
L21  
L15  
L11  
L8  
F45  
F40  
F36  
F34  
F24  
F23  
F16  
F15  
F13  
F12  
F11  
R40  
R38  
R34  
R21  
R13  
R12  
L7  
L6  
L4  
Datasheet  
299  
Ballout and Package Information  
Table 28.  
MCH  
Table 28.  
MCH  
Ballout Sorted By Name  
Ballout Sorted By Name  
Signal Name  
Ball #  
Signal Name  
Ball #  
VSS  
F10  
F8  
VSS_B21  
VSS_BA4  
VSS_BA5  
VSS_BB3  
VSS_C23  
VSS_C24  
VSS_D21  
VSS_D22  
VSS_D24  
VSS_F22  
VSS_H16  
VSS_K16  
VSS_M15  
VSS_W31  
VTT_FSB  
VTT_FSB  
VTT_FSB  
VTT_FSB  
VTT_FSB  
VTT_FSB  
VTT_FSB  
VTT_FSB  
VTT_FSB  
VTT_FSB  
VTT_FSB  
VTT_FSB  
VTT_FSB  
VTT_FSB  
VTT_FSB  
VTT_FSB  
VTT_FSB  
VTT_FSB  
VTT_FSB  
VTT_FSB  
VTT_FSB  
VTT_FSB  
VTT_FSB  
VTT_FSB  
VTT_FSB  
VTT_FSB  
XORTEST  
B21  
BA4  
BA5  
BB3  
C23  
C24  
D21  
D22  
D24  
F22  
H16  
K16  
M15  
W31  
M27  
L27  
K27  
K25  
H28  
H27  
H25  
G28  
G27  
G25  
F30  
F28  
F27  
F25  
E33  
E31  
E29  
D33  
D32  
D31  
D30  
C32  
B33  
B31  
A32  
A30  
L22  
VSS  
VSS  
F6  
VSS  
F1  
VSS  
E21  
E19  
E5  
VSS  
VSS  
VSS  
D42  
D34  
D29  
D23  
D17  
D15  
D13  
D11  
D7  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
D4  
VSS  
C45  
C43  
C38  
C34  
C30  
C22  
C20  
C9  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
C3  
VSS  
C1  
VSS  
B44  
B29  
A43  
A40  
A36  
A34  
A26  
A22  
A18  
A14  
A10  
A6  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A3  
VSS_A24  
VSS_AW2  
VSS_AY1  
VSS_AY3  
VSS_B17  
A24  
AW2  
AY1  
AY3  
B17  
NOTE: See list of notes at  
beginning of chapter.  
300  
Datasheet  
Ballout and Package Information  
Table 29.  
MCH  
Table 29.  
MCH  
Table 29.  
MCH  
Ballout Sorted By Ball  
Ballout Sorted By Ball  
Ballout Sorted By Ball  
Ball #  
Signal Name  
Ball #  
Signal Name  
Ball #  
Signal Name  
BE45  
BE44  
BE43  
BE40  
BE38  
BE36  
BE34  
BE32  
BE30  
BE28  
BE26  
BE24  
BE23  
BE22  
BE20  
BE18  
BE16  
BE14  
BE12  
BE10  
BE8  
TEST0  
BD7  
DDR_A_DQ_6  
DDR_A_DQ_1  
DDR_A_DQ_4  
VSS  
BB31  
BB30  
BB29  
BB28  
BB27  
BB26  
BB25  
BB24  
DDR_A_MA_1  
DDR_A_MA_2  
DDR_A_MA_3  
DDR_A_MA_5  
DDR_A_MA_12  
DDR_A_BS_2  
DDR_A_CKE_2  
DDR_B_BS_0  
VCC_CKDDR  
VCC_CKDDR  
VCC_DDR  
VSS  
BD4  
BD3  
BD2  
BD1  
NC  
VCC_DDR  
VSS  
BC45  
BC44  
BC43  
BC42  
BC40  
BC38  
BC37  
BC36  
BC34  
BC32  
BC30  
BC28  
BC26  
BC24  
BC23  
BC22  
BC20  
BC18  
BC16  
BC14  
BC12  
BC10  
BC9  
VCC_CKDDR  
VCC_CKDDR  
VSS  
VCC_DDR  
VSS  
DDR_RCOMPYPD  
DDR3_A_WEB  
VCC_DDR  
DDR3_DRAMRST  
B
BB23  
VCC_DDR  
VSS  
BB22  
BB21  
BB20  
BB19  
BB18  
BB17  
BB16  
BB15  
BB14  
BB13  
BB12  
BB11  
BB10  
BB8  
DDR_B_MA_2  
DDR_B_MA_5  
DDR_B_MA_6  
DDR_B_MA_9  
DDR_B_BS_2  
DDR_B_CKE_2  
DDR_A_DQ_18  
DDR_A_DQ_23  
DDR_A_DQ_17  
DDR_A_DQ_21  
DDR_A_DQ_10  
DDR_A_DQ_15  
DDR_A_DQ_9  
DDR_A_DQ_2  
DDR_A_DQ_7  
DDR_A_DM_0  
DDR_A_DQ_5  
VSS_BB3  
VCC_DDR  
VSS  
DDR_A_BS_0  
DDR_A_MA_0  
VCC_DDR  
VCC_DDR  
DDR_B_MA_8  
VSS  
DDR_B_CSB_2  
VCC_DDR  
DDR_A_DQ_19  
VSS  
DDR_A_MA_8  
VCC_DDR  
DDR_A_DQ_11  
VSS  
DDR_A_CKE_3  
VCC_DDR  
DDR_A_DQ_3  
VSS  
DDR_B_MA_1  
VCC_DDR  
BE6  
BE4  
4.75  
DDR_B_MA_14  
VSS  
BE3  
VSS  
BB7  
BE2  
NC  
DDR_A_DM_2  
VSS  
BB5  
BE1  
TEST1  
BB4  
BD45  
BD44  
BD43  
BD42  
BD39  
BD37  
BD35  
BD33  
BD31  
BD29  
BD27  
BD25  
BD21  
BD19  
BD17  
BD15  
BD13  
BD11  
BD9  
NC  
DDR_A_DM_1  
DDR_A_DQ_13  
VSS  
BB3  
VCC_CKDDR  
VCC_CKDDR  
DDR_A_CSB_1  
DDR_A_WEB  
DDR_A_MA_10  
DDR3_A_MA0  
DDR_B_ODT_0  
DDR_B_RASB  
DDR_A_MA_6  
DDR_A_MA_11  
DDR_A_CKE_0  
DDR_B_MA_4  
DDR_B_CKE_1  
DDR_B_CKE_0  
DDR_A_DQ_22  
DDR_A_DQ_16  
DDR_A_DQ_14  
DDR_A_DQ_8  
BB2  
VSS  
BC8  
BA42  
BA41  
BA40  
BA37  
BA35  
BA33  
BA31  
BA29  
BA27  
BA25  
BA21  
BA19  
BA17  
BA15  
BA13  
BA11  
DDR_A_MA_13  
DDR_A_ODT_2  
DDR_A_CSB_0  
DDR3_B_ODT3  
DDR_B_CSB_3  
DDR_B_MA_13  
DDR_B_CSB_0  
DDR_A_MA_4  
DDR_A_MA_9  
DDR_A_MA_14  
DDR_B_MA_3  
DDR_B_MA_11  
DDR_B_CKE_3  
DDR_A_DQS_2  
DDR_A_DQ_20  
DDR_A_DQS_1  
BC6  
DDR_A_DQSB_0  
DDR_A_DQ_0  
VSS  
BC4  
BC3  
BC2  
RSVD  
BC1  
VSS  
BB44  
BB43  
BB42  
BB41  
BB39  
BB38  
BB36  
BB35  
BB34  
BB33  
BB32  
DDR3_A_CSB1  
DDR_A_ODT_0  
DDR_RCOMPYPU  
DDR_A_CASB  
DDR_A_CSB_2  
DDR_A_RASB  
DDR_A_BS_1  
DDR_B_CSB_1  
DDR_B_ODT_1  
DDR_B_ODT_2  
DDR_B_CASB  
Datasheet  
301  
Ballout and Package Information  
Table 29.  
MCH  
Table 29.  
MCH  
Table 29.  
MCH  
Ballout Sorted By Ball  
Ballout Sorted By Ball  
Ballout Sorted By Ball  
Ball #  
Signal Name  
Ball #  
Signal Name  
Ball #  
Signal Name  
BA9  
DDR_A_DQ_12  
DDR_A_DQS_0  
VSS_BA5  
AW33  
AW31  
AW30  
AW28  
AW27  
AW25  
AW24  
AW23  
AW22  
AW21  
AW19  
AW18  
AW16  
AW15  
AW13  
AW12  
AW11  
AW10  
AW8  
DDR_B_CKB_2  
VSS  
AV15  
AV13  
AV12  
AV11  
AV10  
AV8  
DDR_B_DQ_11  
VSS  
BA6  
BA5  
DDR_B_CK_0  
VSS  
VSS  
BA4  
VSS_BA4  
VSS  
AY45  
AY43  
AY41  
AY40  
AY39  
AY38  
AY36  
AY35  
AY34  
AY33  
AY31  
AY30  
AY28  
AY27  
AY25  
AY24  
AY23  
AY22  
AY21  
AY19  
AY18  
AY16  
AY15  
AY13  
AY12  
AY11  
AY10  
AY8  
VCC_DDR  
VSS  
VSS  
DDR_A_CSB_3  
DDR_A_ODT_1  
DDR_B_DM_4  
DDR_B_DQ_32  
DDR_B_DQ_36  
VSS  
DDR_B_DQ_24  
DDR_B_MA_10  
DDR_B_BS_1  
DDR_A_DQ_31  
VSS  
DDR_B_DQ_4  
DDR_VREF  
VSS  
AV7  
AV6  
AV4  
VSS  
AV3  
VSS  
DDR_A_DQ_29  
VSS  
AV1  
VSS  
DDR_B_ODT_3  
DDR_B_CKB_5  
VSS  
AU44  
AU43  
AU41  
AU5  
DDR_A_DM_4  
DDR_A_DQ_33  
DDR_A_DQ_37  
VCCA_EXP2  
VSS  
DDR_B_DM_2  
VSS  
DDR_B_WEB  
DDR_B_CK_4  
DDR_B_CKB_4  
DDR_A_MA_7  
DDR_B_DM_3  
DDR_A_CKE_1  
VCC_DDR  
DDR_B_DQ_13  
DDR_B_DQ_12  
DDR_B_DQ_7  
DDR_B_DQS_0  
DDR_B_DQ_0  
VSS  
AU3  
AU2  
PEG2_TXP_14  
VSS  
AT45  
AT43  
AT42  
AT40  
AT39  
AT38  
AT36  
AT35  
AT34  
AT33  
AT31  
AT30  
AT28  
AT27  
AT25  
AT24  
AT23  
AT22  
AT21  
AT19  
AT18  
AT16  
AT15  
AT13  
AT12  
AT11  
AT10  
AT8  
DDR_A_DQS_4  
DDR_A_DQSB_4  
DDR_B_DQ_35  
VSS  
AW7  
AW6  
DDR_B_DQ_5  
VSS  
DDR_B_MA_0  
DDR_A_DQ_25  
DDR_B_MA_7  
DDR_B_MA_12  
DDR_B_DQ_16  
DDR_A_DQSB_2  
DDR_B_DQ_9  
DDR_B_DQ_8  
DDR_A_DQSB_1  
VSS  
AW4  
AW2  
VSS_AW2  
DDR_B_DQ_34  
DDR_A_CKB_5  
DDR_A_CK_5  
DDR_A_CK_2  
DDR_A_CK_0  
DDR_A_CKB_3  
VSS  
AV45  
AV43  
AV42  
AV40  
AV39  
AV38  
AV36  
AV35  
AV34  
AV33  
AV31  
AV30  
AV28  
AV27  
AV25  
AV24  
AV23  
AV22  
AV21  
AV19  
AV18  
AV16  
VSS  
VSS  
DDR_A_DQ_32  
DDR_B_DQ_39  
DDR_B_DQ_38  
DDR_B_DQSB_4  
DDR_B_DQ_44  
DDR_A_CKB_2  
VSS  
VSS  
DDR_B_DQ_26  
DDR_B_DQ_30  
VSS  
DDR_B_DM_0  
DDR_B_DQ_1  
DDR_RCOMPXPD  
DDR_RCOMPXPU  
VSS_AY3  
AY7  
DDR_B_CK_2  
DDR_A_CK_3  
DDR_B_CKB_0  
VSS  
AY6  
VSS  
AY5  
DDR_A_DQ_27  
DDR_A_DQS_3  
DDR_B_DQ_19  
DDR_B_DQ_22  
VSS  
AY3  
AY1  
VSS_AY1  
DDR_B_DQ_27  
DDR_B_DQ_25  
VSS  
AW44  
AW42  
AW40  
AW39  
AW38  
AW36  
AW35  
AW34  
DDR_A_ODT_3  
DDR_A_DQ_36  
VSS  
VSS  
DDR_B_DQ_10  
DDR_B_DM_1  
DDR_B_DQ_3  
DDR_B_DQ_2  
DDR_B_DQSB_0  
VSS  
DDR_B_DQS_4  
DDR_B_DQ_33  
DDR_B_DQ_37  
VSS  
VSS  
DDR_A_DQSB_3  
DDR_A_DQ_28  
VSS  
DDR_B_CK_5  
DDR_B_DQ_17  
302  
Datasheet  
Ballout and Package Information  
Table 29.  
MCH  
Table 29.  
MCH  
Table 29.  
MCH  
Ballout Sorted By Ball  
Ballout Sorted By Ball  
Ballout Sorted By Ball  
Ball #  
Signal Name  
Ball #  
Signal Name  
Ball #  
Signal Name  
AT7  
DDR_RCOMPVOL  
DDR_RCOMPVOH  
PEG2_TXP_13  
PEG2_TXN_14  
VSS  
AP35  
AP34  
AP33  
AP31  
AP30  
AP28  
AP27  
AP25  
AP24  
AP23  
AP22  
AP21  
AP19  
AP18  
AP16  
AP15  
AP13  
AP12  
AP11  
AP10  
AP8  
DDR_B_DQ_42  
RSVD  
AN19  
AN18  
AN16  
AN15  
AN13  
AN12  
DDR_A_DQ_24  
DDR_B_DQS_2  
DDR_B_DQ_20  
DDR_B_DQ_14  
RSVD  
AT6  
AT4  
VSS  
AT3  
DDR_B_CKB_3  
VSS  
AT1  
AR44  
AR42  
AR41  
AR40  
AR39  
AR38  
AR36  
AR35  
AR34  
AR33  
AR31  
AR30  
AR28  
AR27  
AR25  
AR24  
AR23  
AR22  
AR21  
AR19  
AR18  
AR16  
AR15  
AR13  
AR12  
AR11  
AR10  
AR8  
DDR_A_DQ_34  
DDR_A_DQ_35  
DDR_A_DQ_38  
DDR_A_DQ_39  
VSS  
DDR_B_CKB_1  
DDR_B_DQ_31  
VSS  
RSVD  
DDR3_DRAM_PW  
ROK  
AN11  
AN10  
AN8  
EXP2_COMPI  
EXP2_COMPO  
VSS  
DDR_B_DQ_29  
VSS  
AN7  
VSS  
VSS  
AN6  
VSS  
DDR_B_DQ_40  
VSS  
DDR_A_DM_3  
DDR_B_DQ_18  
VSS  
AN5  
PEG2_TXN_11  
VSS  
AN4  
DDR_B_DQ_45  
DDR_A_CKB_0  
DDR_B_CK_3  
VSS  
AN2  
PEG2_TXP_10  
VSS  
DDR_B_DQSB_2  
DDR_B_DQ_15  
VSS  
AM45  
AM43  
AM42  
AM32  
AM30  
AM28  
AM27  
AM25  
AM24  
AM23  
AM22  
AM21  
AM19  
AM18  
AM16  
AM14  
AM4  
DDR_A_DQS_5  
DDR_A_DQSB_5  
RSVD  
DDR_B_CK_1  
VSS  
RSVD  
PEG2_RXN_15  
PEG2_RXP_15  
VSS  
VCC_CL  
DDR_B_DQS_3  
DDR_B_DQSB_3  
VSS  
DDR_A_CKB_1  
DDR_A_CKB_4  
RSVD  
AP7  
PEG2_TXP_15  
PEG2_TXN_15  
PEG2_TXP_11  
VCCR_EXP  
PEG2_TXN_12  
DDR_A_DM_5  
DDR_A_DQ_41  
DDR_A_DQ_40  
DDR_B_DQ_47  
DDR_B_DQ_46  
VSS  
VSS  
AP6  
VSS  
VSS  
AP4  
VCC_CL  
VSS  
AP3  
VCC_CL  
DDR_B_DQ_23  
DDR_B_DQ_21  
VSS  
AP1  
VSS  
AN44  
AN42  
AN41  
AN40  
AN39  
AN38  
AN36  
AN35  
AN34  
AN33  
AN31  
AN30  
AN28  
AN27  
AN25  
AN24  
AN23  
AN22  
AN21  
PWROK  
RSTINB  
DDR_B_DQS_1  
DDR_B_DQSB_1  
DDR_B_DQ_6  
VCCAPLL_EXP2  
VSS  
VSS  
RSVD  
PEG2_TXP_9  
PEG2_TXN_10  
VSS  
AM3  
DDR_B_DM_5  
DDR_A_CB_1  
VSS  
AM1  
AR7  
VSS  
AL44  
AL42  
AL41  
AL40  
AL39  
AL38  
AL36  
AL35  
AL34  
AL33  
AL30  
DDR_A_DQ_42  
DDR_A_DQ_43  
DDR_A_DQ_47  
DDR_A_DQ_46  
VSS  
AR6  
VSS  
AR5  
PEG2_TXN_13  
VSS  
DDR_B_DQ_43  
RSVD  
AR4  
AR2  
PEG2_TXP_12  
DDR_A_DQ_45  
VSS  
RSVD  
AP45  
AP43  
AP42  
AP40  
AP39  
AP38  
AP36  
DDR_A_CK_1  
DDR_A_CK_4  
RSVD  
DDR_A_DQS_8  
DDR_A_DQSB_8  
VSS  
DDR_A_DQ_44  
DDR_B_DQSB_5  
DDR_B_DQS_5  
VSS  
DDR_B_DQ_28  
VSS  
DDR_A_CB_5  
DDR_A_CB_0  
VCC_CL  
DDR_A_DQ_26  
DDR_A_DQ_30  
DDR_B_DQ_41  
Datasheet  
303  
Ballout and Package Information  
Table 29.  
MCH  
Table 29.  
MCH  
Table 29.  
MCH  
Ballout Sorted By Ball  
Ballout Sorted By Ball  
Ballout Sorted By Ball  
Ball #  
Signal Name  
Ball #  
Signal Name  
Ball #  
Signal Name  
AL28  
AL27  
AL25  
AL24  
AL23  
AL22  
AL21  
AL19  
AL18  
AL16  
AL13  
AL12  
AL11  
AL10  
AL8  
RSVD  
AJ42  
AJ41  
AJ29  
AJ28  
AJ27  
AJ26  
AJ25  
AJ24  
AJ23  
AJ22  
AJ21  
AJ20  
AJ19  
AJ18  
AJ17  
AJ5  
DDR_B_CB_4  
VSS  
AH13  
AH12  
AH11  
AH10  
AH8  
PEG2_RXN_9  
VSS  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
VCC_CL  
PEG2_TXN_7  
VSS  
PEG2_RXP_10  
PEG2_RXN_10  
VSS  
VCC_CL  
VCC_CL  
VCC_CL  
AH7  
PEG2_RXP_11  
PEG2_RXN_11  
PEG2_TXP_5  
PEG2_TXN_6  
VSS  
VCC_CL  
AH6  
VCC_CL  
AH4  
VCC_CL  
AH3  
VCC_CL  
AH1  
CL_PWROK  
VSS  
AG44  
AG42  
AG41  
AG40  
AG39  
AG38  
AG36  
AG35  
AG34  
AG33  
AG32  
AG31  
AG29  
AG28  
AG27  
AG26  
AG25  
AG24  
AG23  
AG22  
AG21  
AG20  
AG19  
AG18  
AG17  
AG15  
AG14  
AG13  
AG12  
AG11  
AG10  
AG8  
DDR_B_CB_7  
DDR_B_CB_2  
DDR_B_CB_6  
DDR_B_CB_3  
DDR_B_DQS_6  
DDR_B_DQSB_6  
VSS  
PEG2_RXP_13  
PEG2_RXN_13  
VSS  
AL7  
PEG2_RXN_14  
PEG2_RXP_14  
PEG2_TXN_9  
VSS  
AL6  
AJ4  
AL5  
AJ2  
PEG2_TXP_6  
VSS  
DDR_B_DM_6  
VSS  
AL4  
AH45  
AH43  
AH42  
AH40  
AH39  
AH38  
AH36  
AH35  
AH34  
AH33  
AH32  
AH31  
AH29  
AH28  
AH27  
AH26  
AH25  
AH24  
AH23  
AH22  
AH21  
AH20  
AH19  
AH18  
AH17  
AH15  
AH14  
AL2  
PEG2_TXP_8  
DDR_B_CB_0  
VSS  
DDR_B_DQS_8  
DDR_B_DQSB_8  
VSS  
DDR_B_DQ_49  
RSVD  
AK45  
AK43  
AK42  
AK40  
AK39  
AK38  
AK36  
AK35  
AK34  
AK33  
AK32  
AK31  
AK15  
AK14  
AK13  
AK12  
AK11  
AK10  
AK8  
VCC_CL  
VCC_CL  
RSVD  
DDR_B_CB_5  
VSS  
VSS  
VSS  
DDR_A_CB_7  
DDR_A_CB_2  
VSS  
DDR_B_DQ_53  
VSS  
VCC  
VSS  
DDR_B_DQ_48  
DDR_B_DQ_52  
VSS  
VCC  
DDR_A_CB_3  
DDR_A_CB_6  
DDR_A_CB_4  
VSS  
VSS  
VCC  
VCC_CL  
VCC_CL  
RSVD  
VSS  
VCC  
VCC_CL  
VSS  
CL_DATA  
CL_CLK  
VSS  
VCC  
VCC  
VCC  
PEG2_RXN_12  
PEG2_RXP_12  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
CL_VREF  
VSS  
VSS  
VCC  
VSS  
VSS  
PEG2_RXP_9  
CL_RSTB  
VSS  
AK7  
VSS  
VCC  
AK6  
VSS  
VCC  
AK4  
PEG2_TXP_7  
VCCR_EXP  
PEG2_TXN_8  
DDR_B_CB_1  
VCC  
VSS  
AK3  
VCC  
AG7  
VSS  
AK1  
VCC_CL  
VCC_CL  
AG6  
VSS  
AJ44  
AG5  
PEG2_TXN_5  
304  
Datasheet  
Ballout and Package Information  
Table 29.  
MCH  
Table 29.  
MCH  
Table 29.  
MCH  
Ballout Sorted By Ball  
Ballout Sorted By Ball  
Ballout Sorted By Ball  
Ball #  
Signal Name  
Ball #  
Signal Name  
Ball #  
Signal Name  
AG4  
VSS  
AE17  
AE15  
AE14  
AE13  
AE12  
AE11  
AE10  
AE8  
VCC  
AD7  
VCC_EXP  
VSS  
AG2  
PEG2_TXP_4  
DDR_A_DQ_53  
VSS  
VCCR_EXP  
EXP2_CLKINP  
PEG2_RXP_6  
VSS  
AD6  
AF45  
AF43  
AF42  
AF29  
AF28  
AF27  
AF26  
AF25  
AF24  
AF23  
AF22  
AF21  
AF20  
AF19  
AF18  
AF17  
AF4  
AD4  
PEG2_TXP_1  
PEG2_TXN_2  
VSS  
AD3  
DDR_A_DQ_52  
VCC_CL  
VCC  
AD1  
PEG2_RXN_7  
PEG2_RXP_7  
VSS  
AC45  
AC43  
AC42  
AC40  
AC39  
AC38  
AC36  
AC35  
AC34  
AC33  
AC32  
AC31  
AC29  
AC28  
AC27  
AC26  
AC25  
AC24  
AC23  
AC22  
AC21  
AC20  
AC19  
AC18  
AC17  
AC15  
AC14  
AC13  
AC12  
AC11  
AC10  
AC8  
DDR_A_DQ_51  
VSS  
VSS  
DDR_A_DQ_50  
DDR_A_DQ_60  
DDR_A_DQ_55  
VSS  
VCC  
AE7  
PEG2_RXP_8  
PEG2_RXN_8  
PEG2_TXN_3  
VSS  
VSS  
AE6  
VCC  
AE5  
VSS  
AE4  
DDR_B_DQ_62  
VSS  
VCC  
AE2  
PEG2_TXP_2  
VSS  
VSS  
AD45  
AD43  
AD42  
AD40  
AD39  
AD38  
AD36  
AD35  
AD34  
AD33  
AD32  
AD31  
AD29  
AD28  
AD27  
AD26  
AD25  
AD24  
AD23  
AD22  
AD21  
AD20  
AD19  
AD18  
AD17  
AD15  
AD14  
AD13  
AD12  
AD11  
AD10  
AD8  
DDR_B_DQ_63  
DDR_B_DQS_7  
VSS  
VCC  
DDR_A_DQS_6  
DDR_A_DQSB_6  
DDR_A_DQ_54  
DDR_B_DQ_56  
VSS  
VSS  
VCC  
VCC_CL  
VCC_CL  
VCC  
VCC  
PEG2_TXP_3  
VCCR_EXP  
PEG2_TXN_4  
DDR_A_DM_6  
DDR_A_DQ_49  
DDR_A_DQ_48  
DDR_B_DQ_54  
DDR_B_DQ_50  
DDR_B_DQ_51  
VSS  
AF3  
DDR_B_DQ_57  
DDR_B_DM_7  
VSS  
VCC  
AF1  
VSS  
AE44  
AE42  
AE41  
AE40  
AE39  
AE38  
AE36  
AE35  
AE34  
AE33  
AE32  
AE31  
AE29  
AE28  
AE27  
AE26  
AE25  
AE24  
AE23  
AE22  
AE21  
AE20  
AE19  
AE18  
VCC  
DDR_B_DQSB_7  
RSVD  
VSS  
VCC  
VCC_CL  
VSS  
VCC_CL  
VCC  
VCC  
VSS  
VSS  
VCC  
DDR_B_DQ_60  
DDR_B_DQ_61  
DDR_B_DQ_55  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VCCR_EXP  
VSS  
VSS  
VCC_CL  
VCC_CL  
VCC  
VCC  
PEG2_RXP_3  
VSS  
VSS  
VCC  
PEG2_RXP_4  
PEG2_RXN_4  
VSS  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
AC7  
PEG2_RXN_5  
PEG2_RXP_5  
PEG2_TXN_1  
VCCR_EXP  
VSS  
VSS  
VCCR_EXP  
EXP2_CLKINN  
VSS  
AC6  
VCC  
AC4  
VSS  
AC3  
VCC  
PEG2_RXN_6  
VCC_EXP  
VCC_EXP  
VCC_EXP  
AC1  
VSS  
AB45  
AB43  
AB42  
VSS  
VCC  
DDR_A_DQ_57  
DDR_A_DQ_56  
VCC  
Datasheet  
305  
Ballout and Package Information  
Table 29.  
MCH  
Table 29.  
MCH  
Table 29.  
MCH  
Ballout Sorted By Ball  
Ballout Sorted By Ball  
Ballout Sorted By Ball  
Ball #  
Signal Name  
Ball #  
Signal Name  
Ball #  
Signal Name  
AB40  
AB39  
AB38  
AB36  
AB35  
AB34  
AB33  
AB32  
AB31  
AB29  
AB28  
AB27  
AB26  
AB25  
AB24  
AB23  
AB22  
AB21  
AB20  
AB19  
AB18  
AB17  
AB15  
AB14  
AB13  
AB12  
AB11  
AB10  
AB8  
DDR_A_DM_7  
DDR_A_DQ_61  
DDR_B_DQ_59  
VSS  
AA31  
AA29  
AA28  
AA27  
AA26  
AA25  
AA24  
AA23  
AA22  
AA21  
AA20  
AA19  
AA18  
AA17  
AA15  
AA14  
AA13  
AA12  
AA11  
AA10  
AA8  
AA7  
AA6  
AA5  
AA4  
AA2  
Y45  
VCC_CL  
VCC_CL  
VCC  
W44  
W42  
W41  
W40  
W39  
W38  
W36  
W35  
W34  
W33  
W32  
W31  
W29  
W28  
W27  
W26  
W25  
W24  
W23  
W22  
W21  
W20  
W19  
W18  
W17  
W15  
W14  
W13  
W12  
W11  
W10  
W8  
FSB_BREQ0B  
DDR_A_DQ_59  
FSB_RSB_1  
FSB_TRDYB  
VSS  
VCC  
FSB_AB_34  
FSB_AB_29  
VSS  
VSS  
VCC  
FSB_AB_22  
FSB_AB_30  
VSS  
VSS  
DDR_B_DQ_58  
VCC_CL  
VCC_CL  
VCC  
VCC  
VSS  
FSB_AB_25  
FSB_AB_27  
RSVD  
VCC  
VSS  
VSS  
VCC  
VSS_W31  
VCC_CL  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCCR_EXP  
VCCR_EXP  
PEG2_RXN_0  
VSS  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
PEG2_RXN_1  
PEG2_RXP_1  
VSS  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
PEG2_RXN_2  
PEG2_RXP_2  
VCC_EXP  
VCC_EXP  
VCC_EXP  
DDR_A_DQ_63  
VSS  
VSS  
VCC  
VCC  
VCCR_EXP  
VCC_EXT_PLL  
PEG2_RXN_3  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
PEG2_TXP_0  
PEG2_TXN_0  
DDR_A_DQSB_7  
DDR_A_DQS_7  
DDR_A_DQ_62  
FSB_AB_33  
VSS  
VCC  
VCC  
VCCR_EXP  
VSS  
Y43  
VSS  
Y42  
DDR_A_DQ_58  
VCC_CL  
VCC  
PEG2_RXP_0  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VSS  
AB7  
Y29  
AB6  
Y28  
AB4  
Y27  
VSS  
AB3  
Y26  
VCC  
W7  
AB1  
Y25  
VSS  
W6  
AA44  
AA42  
AA41  
AA40  
AA39  
AA38  
AA36  
AA35  
AA34  
AA33  
AA32  
Y24  
VCC  
W5  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VSS  
Y23  
VSS  
W4  
Y22  
VCC  
W2  
Y21  
VSS  
V45  
V43  
V42  
V40  
V39  
V38  
V36  
V35  
Y20  
VCC  
FSB_AB_28  
FSB_HITMB  
VSS  
FSB_AB_35  
VSS  
Y19  
VSS  
Y18  
VCC  
FSB_AB_32  
VSS  
Y17  
VCC  
FSB_AB_24  
FSB_AB_23  
VSS  
Y4  
VCC_EXP  
VCC_EXP  
VCC_EXP  
FSB_AB_31  
VSS  
Y3  
Y1  
FSB_AB_26  
306  
Datasheet  
Ballout and Package Information  
Table 29.  
MCH  
Table 29.  
MCH  
Table 29.  
MCH  
Ballout Sorted By Ball  
Ballout Sorted By Ball  
Ballout Sorted By Ball  
Ball #  
Signal Name  
Ball #  
Signal Name  
Ball #  
Signal Name  
V34  
V33  
V32  
V31  
V29  
V28  
V27  
V26  
V25  
V24  
V23  
V22  
V21  
V20  
V19  
V18  
V17  
V15  
V14  
V13  
V12  
V11  
V10  
V8  
FSB_ADSTBB_1  
VSS  
U5  
VCC_EXP  
VCC_EXP  
VCC_EXP  
FSB_LOCKB  
VSS  
R19  
R18  
R16  
R13  
R12  
R11  
R10  
R8  
RSVD  
U4  
VCC  
RSVD  
U2  
VCC  
VCC_CL  
VCC_CL  
VCC  
T45  
T43  
T42  
T40  
T39  
T38  
T36  
T35  
T34  
T33  
T32  
T31  
T15  
T14  
T13  
T12  
T11  
T10  
T8  
VSS  
VSS  
FSB_DBSYB  
FSB_AB_17  
FSB_DEFERB  
FSB_AB_20  
FSB_AB_18  
VSS  
VSS  
VSS  
EXP_COMPI  
VSS  
VCC  
VSS  
R7  
DMI_TXP_0  
DMI_TXN_0  
DMI_RXN_2  
VSS  
VCC  
R6  
VSS  
R5  
VCC  
FSB_AB_19  
RSVD  
R4  
VSS  
R2  
DMI_TXP_2  
VSS  
VCC  
VSS  
P45  
P43  
P42  
P32  
P30  
P28  
P27  
P25  
P24  
P23  
P22  
P21  
P19  
P18  
P16  
P14  
P4  
VSS  
VCCAUX  
VCCR_EXP  
VCCR_EXP  
VSS  
FSB_AB_21  
FSB_DB_0  
VSS  
VCC  
VCC  
VCCR_EXP  
VCCR_EXP  
VSS  
HPL_CLKINN  
HPL_CLKINP  
VSS  
RSVD  
VSS  
RSVD  
EXP_COMPO  
DMI_RXN_1  
DMI_RXP_1  
VSS  
VSS  
DMI_TXN_3  
DMI_TXP_3  
VSS  
VSS  
T7  
VSS  
T6  
VSS  
V7  
DMI_RXP_3  
DMI_RXN_3  
VCC_EXP  
VCC_EXP  
VCC_EXP  
FSB_ADSB  
FSB_BNRB  
FSB_DRDYB  
VCCAUX  
VCC  
T4  
VCC_EXP  
VCC_EXP  
DMI_TXN_2  
FSB_RSB_0  
FSB_HITB  
FSB_RSB_2  
VSS  
RSVD  
V6  
T3  
RSVD_P19  
VSS  
V4  
T1  
V3  
R44  
R42  
R41  
R40  
R39  
R38  
R36  
R35  
R34  
R33  
R30  
R28  
R27  
R25  
R24  
R23  
R22  
R21  
ICH_SYNCB  
VSS  
V1  
U44  
U42  
U41  
U29  
U28  
U27  
U26  
U25  
U24  
U23  
U22  
U21  
U20  
U19  
U18  
U17  
DMI_RXP_2  
DMI_TXN_1  
VSS  
P3  
FSB_AB_14  
VSS  
P1  
N44  
N42  
N41  
N40  
N39  
N38  
N36  
N35  
N34  
N33  
N31  
N30  
N28  
FSB_DB_2  
FSB_DB_4  
FSB_DB_1  
FSB_AB_9  
FSB_AB_11  
FSB_AB_13  
FSB_AB_8  
VSS  
FSB_AB_10  
FSB_AB_16  
VSS  
VCC  
VCC  
VCC  
RSVD  
VCC  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
RSVD  
VCC  
VCC  
VCC  
FSB_AB_12  
FSB_DB_28  
FSB_DB_30  
FSB_DB_37  
FSB_DINVB_2  
VCC  
VCC  
VCC  
VCC  
VSS  
Datasheet  
307  
Ballout and Package Information  
Table 29.  
MCH  
Table 29.  
MCH  
Table 29.  
MCH  
Ballout Sorted By Ball  
Ballout Sorted By Ball  
Ballout Sorted By Ball  
Ball #  
Signal Name  
Ball #  
Signal Name  
Ball #  
Signal Name  
N27  
N25  
N24  
N23  
N22  
N21  
N19  
N18  
N16  
N15  
N13  
N12  
N11  
N10  
N8  
VSS  
M11  
M10  
M8  
PEG_RXP_12  
VSS  
K39  
K38  
K36  
K35  
K34  
K33  
K31  
K30  
K28  
K27  
K25  
K24  
K23  
K22  
K21  
K19  
K18  
K16  
K15  
K13  
K12  
K11  
K10  
K8  
VSS  
FSB_DSTBPB_2  
FSB_DB_42  
VSS  
FSB_AB_6  
FSB_REQB_3  
FSB_DB_21  
FSB_DB_24  
VSS  
PEG_RXN_13  
PEG_RXP_13  
VSS  
M7  
VSS  
M6  
RSVD  
M4  
DMI_RXN_0  
VCCR_EXP  
PEG_TXP_15  
FSB_DB_6  
FSB_DB_7  
FSB_DINVB_0  
FSB_AB_7  
FSB_REQB_2  
VSS  
VSS  
M3  
FSB_DB_33  
VSS  
RSVD  
M1  
VSS  
L44  
L42  
L41  
L40  
L39  
L38  
L36  
L35  
L34  
L33  
L31  
L30  
L28  
L27  
L25  
L24  
L23  
L22  
L21  
L19  
L18  
L16  
L15  
L13  
L12  
L11  
L10  
L8  
FSB_DB_40  
VTT_FSB  
VTT_FSB  
FSB_DB_46  
VSS  
VCC_N15  
PEG_RXP_4  
RSVD  
RSVD  
PEG_RXN_15  
PEG_RXP_15  
VSS  
RSVD  
FSB_DB_19  
VSS  
RSVD  
N7  
EXP_SLR  
VSS  
N6  
VSS  
FSB_DB_27  
FSB_DB_29  
VSS  
N5  
DMI_RXP_0  
VSS  
VSS_K16  
VSS  
N4  
N2  
DMI_TXP_1  
FSB_DB_5  
VSS  
FSB_DB_36  
FSB_DB_41  
VTT_FSB  
FSB_DB_43  
FSB_DB_44  
VSS  
PEG_RXN_3  
VSS  
M45  
M43  
M42  
M40  
M39  
M38  
M36  
M35  
M34  
M33  
M31  
M30  
M28  
M27  
M25  
M24  
M23  
M22  
M21  
M19  
M18  
M16  
M15  
M13  
M12  
PEG_RXP_6  
VSS  
FSB_DB_3  
FSB_ADSTBB_0  
VSS  
PEG_RXN_11  
PEG_RXP_11  
VSS  
K7  
FSB_AB_4  
FSB_AB_5  
VSS  
XORTEST  
VSS  
K6  
K4  
PEG_TXN_14  
PEG_RXP_14  
VSS  
RSVD  
K3  
VSS  
RSVD  
K1  
VSS  
VCC3_3_L16  
VSS  
J44  
J43  
J41  
J5  
FSB_DSTBPB_0  
FSB_DB_8  
FSB_DB_10  
PEG_TXP_13  
VSS  
FSB_DB_31  
FSB_DB_35  
VSS  
PEG_RXP_3  
PEG_RXN_6  
VSS  
VTT_FSB  
FSB_DSTBNB_2  
VSS  
J3  
PEG_RXN_12  
VSS  
J2  
PEG_RXN_14  
FSB_DB_12  
VSS  
H45  
H43  
H42  
H40  
H39  
H38  
H36  
H35  
H34  
H33  
VSS  
L7  
VSS  
BSEL0  
L6  
VSS  
FSB_DB_9  
VSS  
ALLZTEST  
RSVD_M19  
VSS  
L5  
PEG_TXP_14  
VSS  
L4  
FSB_REQB_4  
FSB_BPRIB  
VSS  
L2  
PEG_TXN_15  
VSS  
RSVD  
K45  
K43  
K42  
K40  
VSS_M15  
PEG_RXN_4  
VSS  
FSB_DSTBNB_0  
FSB_AB_15  
VSS  
VSS  
FSB_DSTBPB_1  
FSB_DB_25  
308  
Datasheet  
Ballout and Package Information  
Table 29.  
MCH  
Table 29.  
MCH  
Table 29.  
MCH  
Ballout Sorted By Ball  
Ballout Sorted By Ball  
Ballout Sorted By Ball  
Ball #  
Signal Name  
Ball #  
Signal Name  
Ball #  
Signal Name  
H31  
H30  
H28  
H27  
H25  
H24  
H23  
H22  
H21  
H19  
H18  
H16  
H15  
H13  
H12  
H11  
H10  
H8  
FSB_DB_34  
FSB_DB_39  
VTT_FSB  
VTT_FSB  
VTT_FSB  
FSB_DB_45  
VSS  
G13  
G12  
G11  
G10  
G8  
PEG_RXN_2  
PEG_RXN_5  
VSS  
E37  
E35  
E33  
E31  
E29  
E27  
E25  
E21  
E19  
E17  
E15  
E13  
E11  
E9  
FSB_DB_61  
FSB_DB_63  
VTT_FSB  
PEG_RXP_7  
VSS  
VTT_FSB  
VTT_FSB  
G7  
VSS  
FSB_DVREF  
VCC_E25  
VSS  
G6  
PEG_RXN_9  
VSS  
VSS  
G4  
RSVD  
G2  
PEG_TXN_12  
VSS  
VSS  
VSS  
F45  
F43  
F41  
F40  
F39  
F38  
F36  
F35  
F34  
F33  
F31  
F30  
F28  
F27  
F25  
F24  
F23  
F22  
F21  
F19  
F18  
F16  
F15  
F13  
F12  
F11  
F10  
F8  
PEG_TXN_0  
PEG_TXP_1  
PEG_TXP_2  
PEG_TXN_4  
PEG_TXN_6  
PEG_RXP_8  
VSS  
VSS  
FSB_AB_3  
FSB_DB_14  
VSS  
VSS_H16  
RSVD_H15  
PEG_RXP_2  
PEG_RXP_5  
VSS  
FSB_DB_17  
FSB_DB_16  
VSS  
E6  
E5  
PEG_RXN_7  
VSS  
FSB_DB_48  
VSS  
E4  
PEG_TXN_11  
FSB_DB_52  
FSB_DB_53  
VSS  
D44  
D43  
D42  
D41  
D39  
D38  
D36  
D35  
D34  
D33  
D32  
D31  
D30  
D29  
D28  
D27  
D26  
D25  
D24  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
H7  
VSS  
FSB_DB_26  
FSB_DB_32  
VTT_FSB  
VTT_FSB  
VTT_FSB  
VTT_FSB  
VSS  
H6  
VSS  
H4  
PEG_TXN_13  
VCCR_EXP  
PEG_TXP_12  
FSB_DB_13  
FSB_DB_11  
FSB_REQB_1  
VSS  
FSB_DSTBNB_3  
FSB_DB_57  
FSB_DB_54  
FSB_DB_59  
FSB_CPURSTB  
VSS  
H3  
H1  
G44  
G42  
G40  
G39  
G38  
G36  
G35  
G34  
G33  
G31  
G30  
G28  
G27  
G25  
G24  
G23  
G22  
G21  
G19  
G18  
G16  
G15  
VSS  
VSS_F22  
BSEL1  
VTT_FSB  
FSB_DB_20  
FSB_DB_22  
FSB_DB_23  
FSB_DSTBNB_1  
VSS  
VTT_FSB  
RSVD  
VTT_FSB  
BSEL2  
VTT_FSB  
VSS  
VSS  
VSS  
FSB_SCOMP  
FSB_ACCVREF  
VCCA_HPL  
VCCA_HPL  
VSS_D24  
VSS  
VSS  
VSS  
FSB_DB_38  
VTT_FSB  
VTT_FSB  
VTT_FSB  
FSB_DB_47  
VSS  
VSS  
VSS  
VSS  
VSS  
F7  
PEG_RXP_9  
VSS  
VSS_D22  
VSS_D21  
VCCA_EXP  
EXP_CLKINP  
EXP_CLKINN  
VSS  
F6  
RSVD  
F5  
PEG_TXP_11  
PEG_TXP_10  
VSS  
TCEN  
F3  
MTYPE  
F1  
VSS  
E42  
E41  
E40  
FSB_DB_15  
FSB_DB_50  
FSB_DINVB_1  
VCC3_3_G16  
RSVD_G15  
PEG_TXP_0  
VSS  
Datasheet  
309  
Ballout and Package Information  
Table 29.  
MCH  
Table 29.  
MCH  
Ballout Sorted By Ball  
Ballout Sorted By Ball  
Ball #  
Signal Name  
Ball #  
Signal Name  
D14  
D13  
D12  
D11  
D10  
D8  
PEG_TXN_1  
VSS  
B37  
B35  
B33  
B31  
B29  
B27  
B25  
B21  
B19  
B17  
B15  
B13  
B11  
B9  
FSB_DINVB_3  
FSB_DB_62  
VTT_FSB  
VTT_FSB  
VSS  
PEG_TXN_2  
VSS  
PEG_TXP_4  
PEG_TXP_6  
VSS  
VCCA_MPL  
VCC_B25  
VSS_B21  
RSVD  
D7  
D5  
PEG_RXN_8  
VSS  
D4  
D3  
PEG_TXN_10  
PEG_RXP_10  
VSS  
VSS_B17  
PEG_RXN_0  
PEG_RXP_1  
PEG_TXP_3  
PEG_TXP_5  
PEG_TXP_7  
PEG_TXN_9  
PEG_TXP_9  
VSS  
D2  
C45  
C44  
C43  
C42  
C40  
C38  
C37  
C36  
C34  
C32  
C30  
C28  
C26  
C24  
C23  
C22  
C20  
C18  
C16  
C14  
C12  
C10  
C9  
FSB_REQB_0  
VSS  
FSB_DB_51  
FSB_DSTBPB_3  
VSS  
B7  
B4  
B3  
FSB_DB_60  
FSB_DB_58  
VSS  
B2  
B1  
NC  
A45  
A44  
A43  
A40  
A38  
A36  
A34  
A32  
A30  
A28  
A26  
A24  
A23  
A22  
A20  
A18  
A16  
A14  
A12  
A10  
A8  
TEST3  
VTT_FSB  
VSS  
NC  
VSS  
FSB_SCOMPB  
FSB_RCOMP  
VSS_C24  
VSS_C23  
VSS  
VSS  
FSB_DB_49  
VSS  
VSS  
VTT_FSB  
VTT_FSB  
FSB_SWING  
VSS  
VSS  
VCC_C18  
VCCR_EXP  
PEG_RXN_1  
VCCR_EXP  
PEG_TXN_5  
VSS  
VSS_A24  
VCC3_3  
VSS  
VCCAPLL_EXP  
VSS  
C8  
VCCR_EXP  
PEG_TXP_8  
PEG_TXN_8  
VSS  
C6  
PEG_RXP_0  
VSS  
C4  
C3  
PEG_TXN_3  
VSS  
C2  
PEG_RXN_10  
VSS  
C1  
PEG_TXN_7  
VSS  
B45  
B44  
B43  
B42  
B39  
NC  
A6  
VSS  
A3  
VSS  
FSB_DB_18  
FSB_DB_55  
FSB_DB_56  
A2  
TEST2  
NOTE: See list of notes at  
beginning of chapter.  
310  
Datasheet  
Ballout and Package Information  
12.2  
Package Information  
The MCH is available in a 40 mm [1.57 in] x 40 mm [1.57 in] Flip Chip Ball Grid Array  
(FC-BGA) package with an integrated heat spreader (IHS) and 1300 solder balls.  
Figure 14 shows the package drawing.  
Figure 14.  
MCH Package Drawing  
Datasheet  
311  
Ballout and Package Information  
312  
Datasheet  
Testability  
13 Testability  
In the MCH, testability for Automated Test Equipment (ATE) board level testing has  
been implemented as an XOR chain. An XOR-tree is a chain of XOR gates each with one  
input pin connected to it which allows for pad to ball to trace connection testing.  
The XOR testing methodology is to boot the part using straps to enter XOR mode (A  
description of the boot process follows). Once in XOR mode, all of the pins of an XOR  
chain are driven to logic 1. This action will force the output of that XOR chain to either  
a 1 if the number of the pins making up the chain is even or a 0 if the number of the  
pins making up the chain is odd.  
Once a valid output is detected on the XOR chain output, a walking 0 pattern is moved  
from one end of the chain to the other. Every time the walking 0 is applied to a pin on  
the chain, the output will toggle. If the output does not toggle, there is a disconnect  
somewhere between die, package, and board and the system can be considered a  
failure.  
13.1  
XOR Test Mode Initialization  
Figure 15.  
XOR Test Mode Initialization Cycles  
CL_PWROK  
PWROK  
CL_RST#  
RSTIN#  
STRAP PINS  
HCLKP/GCLKP  
HCLKN/GCLKN  
XOR inputs  
X
XOR output  
Datasheet  
313  
Testability  
The above figure shows the wave forms to be able to boot the part into XOR mode. The  
straps that need to be controlled during this boot process are BSEL[2:0], RSVD (Ball  
L18), EXP_SLR, and XORTEST.  
On the X38 Express Chipset platforms, all strap values must be driven before PWROK  
asserts. BSEL0 must be a 1. BSEL[2:1] need to be defined values, but logic value in  
any order will do. XORTEST must be driven to 0.  
Not all of the pins will be used in all implementations. Due to the need to minimize test  
points and unnecessary routing, the XOR Chain 14 is dynamic depending on the values  
of EXP_SLR, and RSVD (Ball L18). See Figure 30 for what parts of XOR Chain 14  
become valid XOR inputs depending on the use of EXP_SLR and RSVD (Ball L18).  
13.2  
XOR Chain Definition  
The MCH has 15 XOR chains. The XOR chain outputs are driven out on the following  
output pins. During fullwidth testing, XOR chain outputs will be visible on both pins.  
Table 30.  
XOR Chain 14 Functionality  
RSVD (Ball L18)  
EXP_SLR  
XOR Chain 14  
EXP_RXP[15:0]  
EXP_RXN[15:0]  
EXP_TXP[15:0]  
EXP_TXN[15:0]  
1
0
EXP_RXP[15:0]  
EXP_RXN[15:0]  
EXP_TXP[15:0]  
EXP_TXN[15:0]  
1
0
0
1
1
1
0
1
0
1
EXP_RXP[15:8]  
EXP_RXN[15:8]  
EXP_TXP[15:8]  
EXP_TXN[15:8]  
EXP_RXP[7:0]  
EXP_RXN[7:0]  
EXP_TXP[7:0]  
EXP_TXN[7:0]  
EXP_RXP[15:0]  
EXP_RXN[15:0]  
EXP_TXP[15:0]  
EXP_TXN[15:0]  
EXP_RXP[15:0]  
EXP_RXN[15:0]  
EXP_TXP[15:0]  
EXP_TXN[15:0]  
314  
Datasheet  
Testability  
Table 31.  
XOR Chain Outputs  
XOR Chain  
Output Pins  
Coordinate Location  
xor_out0  
xor_out1  
xor_out2  
xor_out3  
xor_out4  
xor_out5  
xor_out6  
xor_out7  
xor_out8  
xor_out9  
xor_out10  
xor_out11  
xor_out12  
xor_out13  
xor_out14  
ALLZTEST  
XORTEST  
ICH_SYNCB  
RSVD  
M21  
L22  
P16  
N18  
AN12  
AM14  
F21  
RSVD  
RSVD  
BSEL1  
BSEL2  
F18  
RSVD  
AN13  
AP12  
K19  
RSVD  
EXP_SLR  
RSVD  
L18  
BSEL0  
M22  
H21  
G22  
RSVD  
RSVD  
13.3  
XOR Chains  
This section provides the XOR chains.  
Datasheet  
315  
Testability  
13.3.1  
XOR Chains for DDR2 (No ECC)  
Table 32.  
XOR Chain 0 (DDR2,  
NoECC)  
Table 32.  
XOR Chain 0 (DDR2,  
NoECC)  
Pin  
Count  
Ball  
Signal Name  
Pin  
Count  
Ball  
#
Signal Name  
#
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
K28  
K24  
F31  
L30  
G30  
N24  
H31  
H30  
L28  
M30  
N30  
K31  
L25  
E42  
F41  
G42  
G44  
H42  
J43  
FSB_DB_40  
FSB_DB_46  
FSB_DB_32  
FSB_DB_36  
FSB_DB_38  
FSB_DB_42  
FSB_DB_34  
FSB_DB_39  
FSB_DB_41  
FSB_DB_35  
FSB_DB_37  
FSB_DB_33  
FSB_DB_43  
FSB_DB_15  
FSB_DB_14  
FSB_DB_11  
FSB_DB_13  
FSB_DB_9  
FSB_DB_8  
FSB_DB_12  
FSB_DB_7  
FSB_DB_5  
FSB_DB_3  
FSB_DB_6  
FSB_DB_10  
FSB_DB_0  
FSB_DB_1  
FSB_DB_4  
FSB_DB_2  
M21  
ALLZTEST  
1
B39  
D44  
B42  
D39  
C42  
C36  
A38  
B35  
D38  
E41  
D43  
D36  
E35  
E37  
F35  
C37  
F33  
B43  
F39  
F38  
H33  
G36  
G38  
G35  
L36  
L33  
L34  
N33  
N31  
K34  
M31  
K35  
L24  
H24  
G24  
FSB_DB_56  
FSB_DB_52  
FSB_DB_55  
FSB_DB_57  
FSB_DB_51  
FSB_DB_58  
FSB_DB_49  
FSB_DB_62  
FSB_DB_54  
FSB_DB_50  
FSB_DB_53  
FSB_DB_59  
FSB_DB_63  
FSB_DB_61  
FSB_DB_48  
FSB_DB_60  
FSB_DB_26  
FSB_DB_18  
FSB_DB_17  
FSB_DB_16  
FSB_DB_25  
FSB_DB_22  
FSB_DB_20  
FSB_DB_23  
FSB_DB_19  
FSB_DB_29  
FSB_DB_27  
FSB_DB_28  
FSB_DB_30  
FSB_DB_24  
FSB_DB_31  
FSB_DB_21  
FSB_DB_44  
FSB_DB_45  
FSB_DB_47  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
H45  
L42  
M45  
M42  
L44  
J41  
P42  
N41  
N42  
N44  
Table 33.  
XOR Chain 1 (DDR2,  
NoECC)  
Pin  
Count  
Ball #  
Signal Name  
L22  
XORTEST  
1
2
H39  
K42  
FSB_REQB_4  
FSB_AB_15  
316  
Datasheet  
Testability  
Table 33.  
XOR Chain 1 (DDR2,  
NoECC)  
Table 34.  
XOR Chain 2 (DDR2,  
NoECC)  
Pin  
Count  
Ball #  
Signal Name  
Pin  
Count  
Ball  
#
Signal Name  
3
G40  
K36  
F43  
FSB_REQB_1  
FSB_REQB_3  
FSB_AB_3  
P16  
ICH_SYNCB  
4
5
1
2
G34  
H34  
W41  
R42  
W40  
V42  
M25  
N25  
K43  
J44  
FSB_DSTBNB_1  
FSB_DSTBPB_1  
FSB_RSB_1  
6
M36  
K38  
M38  
L40  
FSB_AB_5  
7
FSB_AB_6  
3
8
FSB_AB_4  
4
FSB_HITB  
9
FSB_AB_7  
5
FSB_TRDYB  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
C44  
M40  
N40  
L39  
FSB_REQB_0  
FSB_ADSTBB_0  
FSB_AB_9  
6
FSB_HITMB  
7
FSB_DSTBNB_2  
FSB_DSTBPB_2  
FSB_DSTBNB_0  
FSB_DSTBPB_0  
FSB_LOCKB  
8
FSB_REQB_2  
FSB_AB_8  
9
N36  
N39  
N38  
R35  
N34  
R39  
R36  
T34  
10  
11  
12  
13  
14  
FSB_AB_11  
FSB_AB_13  
FSB_AB_16  
FSB_AB_12  
FSB_AB_14  
FSB_AB_10  
FSB_AB_19  
FSB_AB_21  
FSB_AB_17  
FSB_AB_25  
FSB_AB_30  
FSB_AB_20  
FSB_AB_26  
FSB_AB_27  
FSB_AB_22  
FSB_ADSTBB_1  
FSB_AB_31  
FSB_AB_18  
FSB_AB_34  
FSB_AB_32  
FSB_AB_23  
FSB_AB_29  
FSB_AB_24  
FSB_AB_33  
FSB_AB_28  
FSB_AB_35  
T45  
U42  
H38  
D35  
FSB_BNRB  
FSB_BPRIB  
FSB_CPURSTB  
Table 35.  
XOR Chain 3 (DDR2,  
NoECC)  
P43  
Pin  
Count  
Ball  
#
T40  
Signal Name  
W34  
W36  
T38  
N18  
RSVD  
1
2
D41  
C40  
B37  
E40  
T39  
R44  
U41  
T42  
R41  
N28  
L41  
W44  
U44  
FSB_DSTBNB_3  
FSB_DSTBPB_3  
FSB_DINVB_3  
FSB_DINVB_1  
FSB_DEFERB  
FSB_RSB_0  
V35  
W33  
W38  
V34  
AA33  
T36  
3
4
5
6
7
FSB_DRDYB  
FSB_DBSYB  
AB35  
AA35  
V38  
AB34  
V39  
AA40  
V43  
AA38  
8
9
FSB_RSB_2  
10  
11  
12  
13  
FSB_DINVB_2  
FSB_DINVB_0  
FSB_BREQ0B  
FSB_ADSB  
Datasheet  
317  
Testability  
Table 36.  
XOR Chain 4 (DDR2,  
NoECC)  
Table 37.  
XOR Chain 5 (DDR2,  
NoECC)  
Pin  
Count  
Pin  
Count  
Ball #  
Signal Name  
Ball #  
Signal Name  
AN12  
RSVD  
AM14  
RSVD  
1
AY41  
BB39  
BD42  
BD37  
BB43  
BC36  
BA27  
BB30  
BB29  
BA29  
AV35  
AT34  
AT33  
AN28  
AR33  
AM28  
BD29  
BB31  
BB28  
BC28  
AY27  
AY24  
BB25  
AV21  
AP21  
AY15  
BC14  
AY11  
BC10  
BC6  
DDR_A_ODT_1  
DDR_A_CSB_1  
DDR_A_CSB_0  
DDR_A_MA_10  
DDR_A_ODT_0  
DDR_A_MA_0  
DDR_A_MA_9  
DDR_A_MA_2  
DDR_A_MA_3  
DDR_A_MA_4  
DDR_A_CKB_2  
DDR_A_CK_2  
DDR_A_CK_0  
DDR_A_CK_1  
DDR_A_CKB_0  
DDR_A_CKB_1  
DDR_A_MA_6  
DDR_A_MA_1  
DDR_A_MA_5  
DDR_A_MA_8  
DDR_A_MA_7  
DDR_A_CKE_0  
DDR_A_CKE_1  
DDR_A_DQSB_3  
DDR_A_DM_3  
DDR_A_DQSB_2  
DDR_A_DM_2  
DDR_A_DQSB_1  
DDR_A_DM_1  
DDR_A_DQSB_0  
DDR_A_DM_0  
1
2
AA44  
AB40  
AD42  
AE44  
AM42  
AN44  
AT42  
AU44  
BA42  
BB41  
BD39  
BB36  
BB38  
BC37  
BA25  
BD27  
BB26  
BB27  
AK15  
AK14  
DDR_A_DQSB_7  
DDR_A_DM_7  
DDR_A_DQSB_6  
DDR_A_DM_6  
DDR_A_DQSB_5  
DDR_A_DM_5  
DDR_A_DQSB_4  
DDR_A_DM_4  
DDR_A_MA_13  
DDR_A_CASB  
DDR_A_WEB  
DDR_A_BS_1  
DDR_A_RASB  
DDR_A_BS_0  
DDR_A_MA_14  
DDR_A_MA_11  
DDR_A_BS_2  
DDR_A_MA_12  
CL_DATA  
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
CL_CLK  
Table 38.  
XOR Chain 6 (DDR2,  
NoECC)  
Pin  
Count  
Ball #  
Signal Name  
F21  
BSEL1  
1
2
3
4
5
6
7
8
9
AA42  
Y42  
DDR_A_DQS_7  
DDR_A_DQ_58  
DDR_A_DQ_62  
DDR_A_DQ_56  
DDR_A_DQ_57  
DDR_A_DQ_59  
DDR_A_DQ_60  
DDR_A_DQ_63  
DDR_A_DQ_61  
AA41  
AB42  
AB43  
W42  
AC40  
Y45  
BB5  
AB39  
318  
Datasheet  
Testability  
Table 38.  
XOR Chain 6 (DDR2,  
NoECC)  
Table 38.  
XOR Chain 6 (DDR2,  
NoECC)  
Pin  
Count  
Pin  
Count  
Ball #  
Signal Name  
Ball #  
Signal Name  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
AD43  
AC42  
AC39  
AE41  
AD40  
AC45  
AF42  
AF45  
AE42  
AM43  
AL40  
AN41  
AN42  
AP42  
AL41  
AP45  
AL42  
AL44  
AT43  
AU43  
AU41  
AV42  
AR41  
AR40  
AR44  
AW42  
AR42  
AT21  
AY21  
AW19  
AN21  
AW22  
AT22  
AN22  
AN19  
AV19  
BA15  
BB16  
BD15  
DDR_A_DQS_6  
DDR_A_DQ_50  
DDR_A_DQ_55  
DDR_A_DQ_48  
DDR_A_DQ_54  
DDR_A_DQ_51  
DDR_A_DQ_52  
DDR_A_DQ_53  
DDR_A_DQ_49  
DDR_A_DQS_5  
DDR_A_DQ_46  
DDR_A_DQ_40  
DDR_A_DQ_41  
DDR_A_DQ_44  
DDR_A_DQ_47  
DDR_A_DQ_45  
DDR_A_DQ_43  
DDR_A_DQ_42  
DDR_A_DQS_4  
DDR_A_DQ_33  
DDR_A_DQ_37  
DDR_A_DQ_32  
DDR_A_DQ_38  
DDR_A_DQ_39  
DDR_A_DQ_34  
DDR_A_DQ_36  
DDR_A_DQ_35  
DDR_A_DQS_3  
DDR_A_DQ_25  
DDR_A_DQ_29  
DDR_A_DQ_30  
DDR_A_DQ_31  
DDR_A_DQ_27  
DDR_A_DQ_26  
DDR_A_DQ_24  
DDR_A_DQ_28  
DDR_A_DQS_2  
DDR_A_DQ_18  
DDR_A_DQ_22  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
BE16  
BB14  
BB15  
BA13  
BD13  
BB13  
BA11  
BC9  
DDR_A_DQ_19  
DDR_A_DQ_17  
DDR_A_DQ_23  
DDR_A_DQ_20  
DDR_A_DQ_16  
DDR_A_DQ_21  
DDR_A_DQS_1  
DDR_A_DQ_13  
DDR_A_DQ_14  
DDR_A_DQ_15  
DDR_A_DQ_11  
DDR_A_DQ_8  
DDR_A_DQ_12  
DDR_A_DQ_10  
DDR_A_DQ_9  
DDR_A_DQS_0  
DDR_A_DQ_7  
DDR_A_DQ_2  
DDR_A_DQ_3  
DDR_A_DQ_6  
DDR_A_DQ_1  
DDR_A_DQ_0  
DDR_A_DQ_5  
DDR_A_DQ_4  
BD11  
BB11  
BE12  
BD9  
BA9  
BB12  
BB10  
BA6  
BB7  
BB8  
BE8  
BD7  
BD4  
BC4  
BB4  
BD3  
Table 39.  
XOR Chain 7 (DDR2,  
NoECC)  
Pin  
Count  
Ball #  
Signal Name  
F18  
BSEL2  
1
2
3
4
5
6
7
8
AW44  
AY43  
BA41  
BB39  
AV31  
AT31  
AT36  
AT35  
DDR_A_ODT_3  
DDR_A_CSB_3  
DDR_A_ODT_2  
DDR_A_CSB_2  
DDR_A_CK_3  
DDR_A_CKB_3  
DDR_A_CKB_5  
DDR_A_CK_5  
Datasheet  
319  
Testability  
Table 39.  
XOR Chain 7 (DDR2,  
NoECC)  
Table 40.  
XOR Chain 8 (DDR2,  
NoECC)  
Pin  
Count  
Pin  
Count  
Ball #  
Signal Name  
Ball #  
Signal Name  
9
AN27  
AM27  
BC24  
BB25  
DDR_A_CK_4  
DDR_A_CKB_4  
DDR_A_CKE_3  
DDR_A_CKE_2  
29  
30  
31  
AT13  
AT10  
AY8  
DDR_B_DM_1  
DDR_B_DQSB_0  
DDR_B_DM_0  
10  
11  
12  
Table 41.  
XOR Chain 9 (DDR2,  
NoECC)  
Table 40.  
XOR Chain 8 (DDR2,  
NoECC)  
Pin  
Count  
Ball #  
Signal Name  
Pin  
Count  
Ball #  
Signal Name  
AP12  
RSVD  
AN13  
RSVD  
1
2
AD33  
AD35  
AG38  
AG35  
AP40  
AN36  
AV38  
AY40  
BA33  
BD31  
BB32  
AY31  
AY18  
BA19  
BC18  
BB18  
BB24  
AW23  
DDR_B_DQSB_7  
DDR_B_DM_7  
DDR_B_DQSB_6  
DDR_B_DM_6  
DDR_B_DQSB_5  
DDR_B_DM_5  
DDR_B_DQSB_4  
DDR_B_DM_4  
DDR_B_MA_13  
DDR_B_RASB  
DDR_B_CASB  
DDR_B_WEB  
1
BB34  
BD33  
BB35  
BA31  
AV30  
AW30  
AW33  
AR28  
AP28  
AV33  
BB21  
BB22  
BD21  
BC22  
AW24  
BB20  
BB19  
BE20  
BA21  
AY19  
BD17  
AY22  
BD19  
AR24  
AY25  
AP16  
AW16  
AR12  
DDR_B_ODT_1  
DDR_B_ODT_0  
DDR_B_CSB_1  
DDR_B_CSB_0  
DDR_B_CKB_0  
DDR_B_CK_0  
DDR_B_CKB_2  
DDR_B_CK_1  
DDR_B_CKB_1  
DDR_B_CK_2  
DDR_B_MA_5  
DDR_B_MA_2  
DDR_B_MA_4  
DDR_B_MA_1  
DDR_B_MA_10  
DDR_B_MA_6  
DDR_B_MA_9  
DDR_B_MA_8  
DDR_B_MA_3  
DDR_B_MA_7  
DDR_B_CKE_0  
DDR_B_MA_0  
DDR_B_CKE_1  
DDR_B_DQSB_3  
DDR_B_DM_3  
DDR_B_DQSB_2  
DDR_B_DM_2  
DDR_B_DQSB_1  
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
DDR_B_MA_12  
DDR_B_MA_11  
DDR_B_MA_14  
DDR_B_BS_2  
DDR_B_BS_0  
DDR_B_BS_1  
Table 42.  
XOR Chain 10 (DDR2,  
NoECC)  
Pin  
Count  
Ball #  
Signal Name  
K19  
EXP_SLR  
1
2
3
4
AC33  
AC36  
AB32  
AB38  
DDR_B_DQS_7  
DDR_B_DQ_62  
DDR_B_DQ_58  
DDR_B_DQ_59  
320  
Datasheet  
Testability  
Table 42.  
XOR Chain 10 (DDR2,  
NoECC)  
Table 42.  
XOR Chain 10 (DDR2,  
NoECC)  
Pin  
Count  
Pin  
Count  
Ball #  
Signal Name  
Ball #  
Signal Name  
5
AE34  
AD36  
AE35  
AD39  
AC34  
AG39  
AE38  
AE33  
AE39  
AH33  
AH34  
AH36  
AG33  
AE40  
AP39  
AP35  
AN39  
AP36  
AV36  
AR34  
AN40  
AR36  
AN33  
AW39  
AV39  
AT40  
AT38  
AV40  
AY39  
AW38  
AW36  
AY38  
AR25  
AV27  
AP27  
AT25  
AT27  
AW25  
AP24  
DDR_B_DQ_61  
DDR_B_DQ_57  
DDR_B_DQ_60  
DDR_B_DQ_56  
DDR_B_DQ_63  
DDR_B_DQS_6  
DDR_B_DQ_51  
DDR_B_DQ_55  
DDR_B_DQ_50  
DDR_B_DQ_52  
DDR_B_DQ_48  
DDR_B_DQ_53  
DDR_B_DQ_49  
DDR_B_DQ_54  
DDR_B_DQS_5  
DDR_B_DQ_42  
DDR_B_DQ_46  
DDR_B_DQ_41  
DDR_B_DQ_44  
DDR_B_DQ_45  
DDR_B_DQ_47  
DDR_B_DQ_40  
DDR_B_DQ_43  
DDR_B_DQS_4  
DDR_B_DQ_38  
DDR_B_DQ_35  
DDR_B_DQ_34  
DDR_B_DQ_39  
DDR_B_DQ_32  
DDR_B_DQ_33  
DDR_B_DQ_37  
DDR_B_DQ_36  
DDR_B_DQS_3  
DDR_B_DQ_27  
DDR_B_DQ_31  
DDR_B_DQ_30  
DDR_B_DQ_26  
DDR_B_DQ_24  
DDR_B_DQ_29  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
AN24  
AV25  
AN18  
AT19  
AP19  
AN16  
AT18  
AR18  
AV16  
AR16  
AY16  
AR13  
AV15  
AT15  
AW13  
AN15  
AY13  
AW12  
AP15  
AY12  
AW10  
AW8  
DDR_B_DQ_28  
DDR_B_DQ_25  
DDR_B_DQS_2  
DDR_B_DQ_19  
DDR_B_DQ_18  
DDR_B_DQ_20  
DDR_B_DQ_22  
DDR_B_DQ_23  
DDR_B_DQ_17  
DDR_B_DQ_21  
DDR_B_DQ_16  
DDR_B_DQS_1  
DDR_B_DQ_11  
DDR_B_DQ_10  
DDR_B_DQ_13  
DDR_B_DQ_14  
DDR_B_DQ_9  
DDR_B_DQ_12  
DDR_B_DQ_15  
DDR_B_DQ_8  
DDR_B_DQS_0  
DDR_B_DQ_0  
DDR_B_DQ_2  
DDR_B_DQ_7  
DDR_B_DQ_1  
DDR_B_DQ_5  
DDR_B_DQ_6  
DDR_B_DQ_3  
DDR_B_DQ_4  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
AT11  
AW11  
AY7  
AW6  
AR11  
AT12  
AV8  
Table 43.  
XOR Chain 11 (DDR2,  
NoECC)  
Pin  
Count  
Ball #  
Signal Name  
L18  
RSVD  
1
2
3
AY35  
BA35  
BB33  
DDR_B_ODT_3  
DDR_B_CSB_3  
DDR_B_ODT_2  
Datasheet  
321  
Testability  
Table 43.  
XOR Chain 11 (DDR2,  
NoECC)  
Table 45.  
XOR Chain 13 (DDR2,  
NoECC)  
Pin  
Count  
Ball #  
Signal Name  
Pin  
Count  
Ball  
#
Signal Name  
4
5
BC32  
AY34  
AW34  
AY28  
AY30  
AP31  
AR31  
BA17  
BB17  
DDR_B_CSB_2  
DDR_B_CKB_5  
DDR_B_CK_5  
DDR_B_CKB_4  
DDR_B_CK_4  
DDR_B_CKB_3  
DDR_B_CK_3  
DDR_B_CKE_3  
DDR_B_CKE_2  
H21  
RSVD  
6
1
A8  
B7  
PEG_TXN_7  
PEG_TXP_7  
PEG_RXN_7  
PEG_RXP_7  
PEG_TXN_6  
PEG_TXP_6  
PEG_RXN_6  
PEG_RXP_6  
PEG_TXN_5  
PEG_TXP_5  
PEG_RXN_5  
PEG_RXP_5  
PEG_TXN_4  
PEG_TXP_4  
PEG_RXN_4  
PEG_RXP_4  
PEG_TXN_3  
PEG_TXP_3  
PEG_RXN_3  
PEG_RXP_3  
PEG_TXN_2  
PEG_TXP_2  
PEG_RXN_2  
PEG_RXP_2  
PEG_TXN_1  
PEG_TXP_1  
PEG_RXN_1  
PEG_RXP_1  
PEG_TXN_0  
PEG_TXP_0  
PEG_RXN_0  
PEG_RXP_0  
PEG_TXN_15  
PEG_TXP_15  
PEG_RXN_15  
PEG_RXP_15  
PEG_TXN_14  
7
2
8
3
H10  
G10  
E9  
9
4
10  
11  
12  
5
6
D8  
7
L12  
K11  
C10  
B9  
8
Table 44.  
XOR Chain 12 (DDR2,  
NoECC)  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
Pin  
Count  
Ball  
#
Signal Name  
G12  
H12  
E11  
D10  
M13  
N13  
A12  
B11  
K13  
L13  
D12  
E13  
G13  
H13  
D14  
E15  
C14  
B13  
E17  
D16  
B15  
A16  
L2  
M22  
BSEL0  
1
2
V10  
V11  
V7  
V6  
R2  
T1  
DMI_TXP_3  
DMI_TXN_3  
DMI_RXP_3  
DMI_RXN_3  
DMI_TXP_2  
DMI_TXN_2  
DMI_RXP_2  
DMI_RXN_2  
DMI_TXP_1  
DMI_TXN_1  
DMI_RXP_1  
DMI_RXN_1  
DMI_TXP_0  
DMI_TXN_0  
DMI_RXP_0  
DMI_RXN_0  
3
4
5
6
7
P4  
8
R5  
N2  
P3  
9
10  
11  
12  
13  
14  
15  
16  
T7  
T8  
R7  
R6  
N5  
M4  
M1  
N10  
N8  
K4  
322  
Datasheet  
Testability  
Table 45.  
XOR Chain 13 (DDR2,  
NoECC)  
Table 46.  
XOR Chain 14 (DDR2,  
NoECC)  
Pin  
Count  
Ball  
#
Pin  
Count  
Signal Name  
Ball #  
Signal Name  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
L5  
J2  
PEG_TXP_14  
PEG_RXN_14  
PEG_RXP_14  
PEG_TXN_13  
PEG_TXP_13  
PEG_RXN_13  
PEG_RXP_13  
PEG_TXN_12  
PEG_TXP_12  
PEG_RXN_12  
PEG_RXP_12  
PEG_TXN_11  
PEG_TXP_11  
PEG_RXN_11  
PEG_RXP_11  
PEG_TXN_10  
PEG_TXP_10  
PEG_RXN_10  
PEG_RXP_10  
PEG_TXN_9  
PEG_TXP_9  
PEG_RXN_9  
PEG_RXP_9  
PEG_TXN_8  
PEG_TXP_8  
PEG_RXN_8  
PEG_RXP_8  
6
AJ2  
AD12  
AE13  
AG5  
AH4  
AC7  
AC6  
AF1  
PEG2_TXP_6  
PEG2_RXN_6  
PEG2_RXP_6  
PEG2_TXN_5  
PEG2_TXP_5  
PEG2_RXN_5  
PEG2_RXP_5  
PEG2_TXN_4  
PEG2_TXP_4  
PEG2_RXN_4  
PEG2_RXP_4  
PEG2_TXN_3  
PEG2_TXP_3  
PEG2_RXN_3  
PEG2_RXP_3  
PEG2_TXN_2  
PEG2_TXP_2  
PEG2_RXN_2  
PEG2_RXP_2  
PEG2_TXN_1  
PEG2_TXP_1  
PEG2_RXN_1  
PEG2_RXP_1  
PEG2_TXN_0  
PEG2_TXP_0  
PEG2_RXN_0  
PEG2_RXP_0  
PEG2_TXN_15  
PEG2_TXP_15  
PEG2_RXN_15  
PEG2_RXP_15  
PEG2_TXN_14  
PEG2_TXP_14  
PEG2_RXN_14  
PEG2_RXP_14  
PEG2_TXN_13  
PEG2_TXP_13  
PEG2_RXN_13  
PEG2_RXP_13  
7
K3  
H4  
J5  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
M8  
M7  
G2  
H1  
L10  
M11  
E4  
F5  
AG2  
AC10  
AC11  
AE5  
AF4  
K8  
K7  
D3  
F3  
AB12  
AC13  
AD3  
AE2  
C2  
D2  
B4  
B3  
G6  
F7  
AA7  
AA6  
AC4  
AD4  
AA11  
AA10  
AB1  
C4  
C6  
D5  
E6  
AB3  
AA13  
W12  
AP6  
AP7  
Table 46.  
XOR Chain 14 (DDR2,  
NoECC)  
AP11  
AP10  
AT3  
Pin  
Count  
Ball #  
Signal Name  
G22  
RSVD  
AU2  
AL7  
1
2
3
4
5
AJ5  
AK4  
PEG2_TXN_7  
PEG2_TXP_7  
PEG2_RXN_7  
PEG2_RXP_7  
PEG2_TXN_6  
AL6  
AR5  
AT4  
AE11  
AE10  
AH3  
AL10  
AL11  
Datasheet  
323  
Testability  
Table 46.  
XOR Chain 14 (DDR2,  
NoECC)  
Pin  
Count  
Ball #  
Signal Name  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
AP1  
AR2  
PEG2_TXN_12  
PEG2_TXP_12  
PEG2_RXN_12  
PEG2_RXP_12  
PEG2_TXN_11  
PEG2_TXP_11  
PEG2_RXN_11  
PEG2_RXP_11  
PEG2_TXN_10  
PEG2_TXP_10  
PEG2_RXN_10  
PEG2_RXP_10  
PEG2_TXN_9  
PEG2_TXP_9  
PEG2_RXN_9  
PEG2_RXP_9  
PEG2_TXN_8  
PEG2_TXP_8  
PEG2_RXN_8  
PEG2_RXP_8  
AK13  
AK12  
AN5  
AP4  
AH6  
AH7  
AM3  
AN2  
AH10  
AH11  
AL5  
AM4  
AH13  
AG12  
AK1  
AL2  
AE6  
AE7  
324  
Datasheet  
Testability  
13.3.2  
XOR Chains for DDR2 (ECC)  
Table 47.  
XOR Chain 0 (DDR2,  
ECC)  
Table 47.  
XOR Chain 0 (DDR2,  
ECC)  
Pin  
Count  
Ball  
Signal Name  
Pin  
Count  
Ball  
#
Signal Name  
#
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
K28  
K24  
F31  
L30  
G30  
N24  
H31  
H30  
L28  
M30  
N30  
K31  
L25  
E42  
F41  
G42  
G44  
H42  
J43  
FSB_DB_40  
FSB_DB_46  
FSB_DB_32  
FSB_DB_36  
FSB_DB_38  
FSB_DB_42  
FSB_DB_34  
FSB_DB_39  
FSB_DB_41  
FSB_DB_35  
FSB_DB_37  
FSB_DB_33  
FSB_DB_43  
FSB_DB_15  
FSB_DB_14  
FSB_DB_11  
FSB_DB_13  
FSB_DB_9  
FSB_DB_8  
FSB_DB_12  
FSB_DB_7  
FSB_DB_5  
FSB_DB_3  
FSB_DB_6  
FSB_DB_10  
FSB_DB_0  
FSB_DB_1  
FSB_DB_4  
FSB_DB_2  
M21  
ALLZTEST  
1
B39  
D44  
B42  
D39  
C42  
C36  
A38  
B35  
D38  
E41  
D43  
D36  
E35  
E37  
F35  
C37  
F33  
B43  
F39  
F38  
H33  
G36  
G38  
G35  
L36  
L33  
L34  
N33  
N31  
K34  
M31  
K35  
L24  
H24  
G24  
FSB_DB_56  
FSB_DB_52  
FSB_DB_55  
FSB_DB_57  
FSB_DB_51  
FSB_DB_58  
FSB_DB_49  
FSB_DB_62  
FSB_DB_54  
FSB_DB_50  
FSB_DB_53  
FSB_DB_59  
FSB_DB_63  
FSB_DB_61  
FSB_DB_48  
FSB_DB_60  
FSB_DB_26  
FSB_DB_18  
FSB_DB_17  
FSB_DB_16  
FSB_DB_25  
FSB_DB_22  
FSB_DB_20  
FSB_DB_23  
FSB_DB_19  
FSB_DB_29  
FSB_DB_27  
FSB_DB_28  
FSB_DB_30  
FSB_DB_24  
FSB_DB_31  
FSB_DB_21  
FSB_DB_44  
FSB_DB_45  
FSB_DB_47  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
H45  
L42  
M45  
M42  
L44  
J41  
P42  
N41  
N42  
N44  
Datasheet  
325  
Testability  
Table 48.  
XOR Chain 1 (DDR2,  
ECC)  
Table 49.  
XOR Chain 2 (DDR2,  
ECC)  
Pin  
Count  
Ball #  
Signal Name  
Pin  
Count  
Ball  
#
L22  
XORTEST  
Signal Name  
P16  
ICH_SYNCB  
1
H39  
K42  
G40  
K36  
F43  
FSB_REQB_4  
FSB_AB_15  
FSB_REQB_1  
FSB_REQB_3  
FSB_AB_3  
2
1
2
G34  
H34  
W41  
R42  
W40  
V42  
M25  
N25  
K43  
J44  
FSB_DSTBNB_1  
FSB_DSTBPB_1  
FSB_RSB_1  
3
4
5
3
6
M36  
K38  
M38  
L40  
FSB_AB_5  
4
FSB_HITB  
7
FSB_AB_6  
5
FSB_TRDYB  
8
FSB_AB_4  
6
FSB_HITMB  
9
FSB_AB_7  
7
FSB_DSTBNB_2  
FSB_DSTBPB_2  
FSB_DSTBNB_0  
FSB_DSTBPB_0  
FSB_LOCKB  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
C44  
M40  
N40  
L39  
FSB_REQB_0  
FSB_ADSTBB_0  
FSB_AB_9  
8
9
10  
11  
12  
13  
14  
FSB_REQB_2  
FSB_AB_8  
T45  
U42  
H38  
D35  
N36  
N39  
N38  
R35  
N34  
R39  
R36  
T34  
FSB_BNRB  
FSB_AB_11  
FSB_AB_13  
FSB_AB_16  
FSB_AB_12  
FSB_AB_14  
FSB_AB_10  
FSB_AB_19  
FSB_AB_21  
FSB_AB_17  
FSB_AB_25  
FSB_AB_30  
FSB_AB_20  
FSB_AB_26  
FSB_AB_27  
FSB_AB_22  
FSB_ADSTBB_1  
FSB_AB_31  
FSB_AB_18  
FSB_AB_34  
FSB_AB_32  
FSB_AB_23  
FSB_AB_29  
FSB_AB_24  
FSB_AB_33  
FSB_AB_28  
FSB_AB_35  
FSB_BPRIB  
FSB_CPURSTB  
Table 50.  
XOR Chain 3 (DDR2,  
ECC)  
P43  
Pin  
Count  
Ball  
#
Signal Name  
T40  
W34  
W36  
T38  
N18  
RSVD  
1
2
D41  
C40  
B37  
E40  
T39  
R44  
U41  
T42  
R41  
N28  
L41  
W44  
U44  
FSB_DSTBNB_3  
FSB_DSTBPB_3  
FSB_DINVB_3  
FSB_DINVB_1  
FSB_DEFERB  
FSB_RSB_0  
V35  
W33  
W38  
V34  
AA33  
T36  
3
4
5
6
AB35  
AA35  
V38  
AB34  
V39  
AA40  
V43  
AA38  
7
FSB_DRDYB  
FSB_DBSYB  
8
9
FSB_RSB_2  
10  
11  
12  
13  
FSB_DINVB_2  
FSB_DINVB_0  
FSB_BREQ0B  
FSB_ADSB  
326  
Datasheet  
Testability  
Table 51.  
XOR Chain 4 (DDR2,  
ECC)  
Table 51.  
XOR Chain 4 (DDR2,  
ECC)  
Pin  
Count  
Ball #  
Signal Name  
Pin  
Count  
Ball #  
Signal Name  
37  
38  
39  
BC10  
BC6  
DDR_A_DM_1  
DDR_A_DQSB_0  
DDR_A_DM_0  
AN12  
RSVD  
BB5  
1
AK35  
AL33  
AK34  
AK33  
AK39  
AN35  
AL34  
AK38  
AY41  
BB39  
BD42  
BD37  
BB43  
BC36  
BA27  
BB30  
BB29  
BA29  
AV35  
AT34  
AT33  
AN28  
AR33  
AM28  
BD29  
BB31  
BB28  
BC28  
AY27  
AY24  
BB25  
AV21  
AP21  
AY15  
BC14  
AY11  
DDR_A_CB_3  
DDR_A_CB_0  
DDR_A_CB_6  
DDR_A_CB_4  
DDR_A_CB_7  
DDR_A_CB_1  
DDR_A_CB_5  
DDR_A_CB_2  
DDR_A_ODT_1  
DDR_A_CSB_1  
DDR_A_CSB_0  
DDR_A_MA_10  
DDR_A_ODT_0  
DDR_A_MA_0  
DDR_A_MA_9  
DDR_A_MA_2  
DDR_A_MA_3  
DDR_A_MA_4  
DDR_A_CKB_2  
DDR_A_CK_2  
DDR_A_CK_0  
DDR_A_CK_1  
DDR_A_CKB_0  
DDR_A_CKB_1  
DDR_A_MA_6  
DDR_A_MA_1  
DDR_A_MA_5  
DDR_A_MA_8  
DDR_A_MA_7  
DDR_A_CKE_0  
DDR_A_CKE_1  
DDR_A_DQSB_3  
DDR_A_DM_3  
DDR_A_DQSB_2  
DDR_A_DM_2  
DDR_A_DQSB_1  
2
Table 52.  
XOR Chain 5 (DDR2,  
ECC)  
3
4
Pin  
Count  
Ball #  
Signal Name  
5
6
AM14  
RSVD  
7
8
1
2
AA44  
AB40  
AD42  
AE44  
AL36  
AM42  
AN44  
AT42  
AU44  
BA42  
BB41  
BD39  
BB36  
BB38  
BC37  
BA25  
BD27  
BB26  
BB27  
AK15  
AK14  
DDR_A_DQSB_7  
DDR_A_DM_7  
DDR_A_DQSB_6  
DDR_A_DM_6  
DDR_A_DQSB_8  
DDR_A_DQSB_5  
DDR_A_DM_5  
DDR_A_DQSB_4  
DDR_A_DM_4  
DDR_A_MA_13  
DDR_A_CASB  
DDR_A_WEB  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
DDR_A_BS_1  
DDR_A_RASB  
DDR_A_BS_0  
DDR_A_MA_14  
DDR_A_MA_11  
DDR_A_BS_2  
DDR_A_MA_12  
CL_DATA  
CL_CLK  
Datasheet  
327  
Testability  
Table 53.  
XOR Chain 6 (DDR2,  
ECC)  
Table 53.  
XOR Chain 6 (DDR2,  
ECC)  
Pin  
Count  
Ball #  
Signal Name  
Pin  
Count  
Ball #  
Signal Name  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
AR42  
AT21  
AY21  
AW19  
AN21  
AW22  
AT22  
AN22  
AN19  
AV19  
BA15  
BB16  
BD15  
BE16  
BB14  
BB15  
BA13  
BD13  
BB13  
BA11  
BC9  
DDR_A_DQ_35  
DDR_A_DQS_3  
DDR_A_DQ_25  
DDR_A_DQ_29  
DDR_A_DQ_30  
DDR_A_DQ_31  
DDR_A_DQ_27  
DDR_A_DQ_26  
DDR_A_DQ_24  
DDR_A_DQ_28  
DDR_A_DQS_2  
DDR_A_DQ_18  
DDR_A_DQ_22  
DDR_A_DQ_19  
DDR_A_DQ_17  
DDR_A_DQ_23  
DDR_A_DQ_20  
DDR_A_DQ_16  
DDR_A_DQ_21  
DDR_A_DQS_1  
DDR_A_DQ_13  
DDR_A_DQ_14  
DDR_A_DQ_15  
DDR_A_DQ_11  
DDR_A_DQ_8  
DDR_A_DQ_12  
DDR_A_DQ_10  
DDR_A_DQ_9  
DDR_A_DQS_0  
DDR_A_DQ_7  
DDR_A_DQ_2  
DDR_A_DQ_3  
DDR_A_DQ_6  
DDR_A_DQ_1  
DDR_A_DQ_0  
DDR_A_DQ_5  
DDR_A_DQ_4  
F21  
BSEL1  
1
AA42  
Y42  
DDR_A_DQS_7  
DDR_A_DQ_58  
DDR_A_DQ_62  
DDR_A_DQ_56  
DDR_A_DQ_57  
DDR_A_DQ_59  
DDR_A_DQ_60  
DDR_A_DQ_63  
DDR_A_DQ_61  
DDR_A_DQS_6  
DDR_A_DQ_50  
DDR_A_DQ_55  
DDR_A_DQ_48  
DDR_A_DQ_54  
DDR_A_DQ_51  
DDR_A_DQ_52  
DDR_A_DQ_53  
DDR_A_DQ_49  
DDR_A_DQS_8  
DDR_A_DQS_5  
DDR_A_DQ_46  
DDR_A_DQ_40  
DDR_A_DQ_41  
DDR_A_DQ_44  
DDR_A_DQ_47  
DDR_A_DQ_45  
DDR_A_DQ_43  
DDR_A_DQ_42  
DDR_A_DQS_4  
DDR_A_DQ_33  
DDR_A_DQ_37  
DDR_A_DQ_32  
DDR_A_DQ_38  
DDR_A_DQ_39  
DDR_A_DQ_34  
DDR_A_DQ_36  
2
3
AA41  
AB42  
AB43  
W42  
4
5
6
7
AC40  
Y45  
8
9
AB39  
AD43  
AC42  
AC39  
AE41  
AD40  
AC45  
AF42  
AF45  
AE42  
AL38  
AM43  
AL40  
AN41  
AN42  
AP42  
AL41  
AP45  
AL42  
AL44  
AT43  
AU43  
AU41  
AV42  
AR41  
AR40  
AR44  
AW42  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
BD11  
BB11  
BE12  
BD9  
BA9  
BB12  
BB10  
BA6  
BB7  
BB8  
BE8  
BD7  
BD4  
BC4  
BB4  
BD3  
328  
Datasheet  
Testability  
Table 55.  
XOR Chain 8 (DDR2,  
ECC)  
Table 54.  
XOR Chain 7 (DDR2,  
ECC)  
Pin  
Count  
Ball #  
Signal Name  
Pin  
Count  
Ball #  
Signal Name  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
AP28  
AV33  
BB21  
BB22  
BD21  
BC22  
AW24  
BB20  
BB19  
BE20  
BA21  
AY19  
BD17  
AY22  
BD19  
AR24  
AY25  
AP16  
AW16  
AR12  
AT13  
AT10  
AY8  
DDR_B_CKB_1  
DDR_B_CK_2  
DDR_B_MA_5  
DDR_B_MA_2  
DDR_B_MA_4  
DDR_B_MA_1  
DDR_B_MA_10  
DDR_B_MA_6  
DDR_B_MA_9  
DDR_B_MA_8  
DDR_B_MA_3  
DDR_B_MA_7  
DDR_B_CKE_0  
DDR_B_MA_0  
DDR_B_CKE_1  
DDR_B_DQSB_3  
DDR_B_DM_3  
DDR_B_DQSB_2  
DDR_B_DM_2  
DDR_B_DQSB_1  
DDR_B_DM_1  
DDR_B_DQSB_0  
DDR_B_DM_0  
F18  
BSEL2  
1
2
AW44  
AY43  
BA41  
BB39  
AV31  
AT31  
AT36  
AT35  
AN27  
AM27  
BC24  
BB25  
DDR_A_ODT_3  
DDR_A_CSB_3  
DDR_A_ODT_2  
DDR_A_CSB_2  
DDR_A_CK_3  
DDR_A_CKB_3  
DDR_A_CKB_5  
DDR_A_CK_5  
DDR_A_CK_4  
DDR_A_CKB_4  
DDR_A_CKE_3  
DDR_A_CKE_2  
3
4
5
6
7
8
9
10  
11  
12  
Table 55.  
XOR Chain 8 (DDR2,  
ECC)  
Pin  
Count  
Ball #  
Signal Name  
AN13  
RSVD  
1
2
AG42  
AG44  
AG41  
AK45  
AJ42  
DDR_B_CB_2  
DDR_B_CB_7  
DDR_B_CB_6  
DDR_B_CB_0  
DDR_B_CB_4  
DDR_B_CB_3  
DDR_B_CB_1  
DDR_B_CB_5  
DDR_B_ODT_1  
DDR_B_ODT_0  
DDR_B_CSB_1  
DDR_B_CSB_0  
DDR_B_CKB_0  
DDR_B_CK_0  
DDR_B_CKB_2  
DDR_B_CK_1  
Table 56.  
XOR Chain 9 (DDR2,  
ECC)  
3
4
Pin  
Count  
5
Ball #  
Signal Name  
6
AG40  
AJ44  
AP12  
RSVD  
7
8
AK42  
BB34  
BD33  
BB35  
BA31  
AV30  
AW30  
AW33  
AR28  
1
2
3
4
5
6
7
8
AD33  
AD35  
AG38  
AG35  
AH42  
AP40  
AN36  
AV38  
DDR_B_DQSB_7  
DDR_B_DM_7  
9
10  
11  
12  
13  
14  
15  
16  
DDR_B_DQSB_6  
DDR_B_DM_6  
DDR_B_DQSB_8  
DDR_B_DQSB_5  
DDR_B_DM_5  
DDR_B_DQSB_4  
Datasheet  
329  
Testability  
Table 56.  
XOR Chain 9 (DDR2,  
ECC)  
Table 57.  
XOR Chain 10 (DDR2,  
ECC)  
Pin  
Count  
Pin  
Count  
Ball #  
Signal Name  
Ball #  
Signal Name  
9
AY40  
BA33  
BD31  
BB32  
AY31  
AY18  
BA19  
BC18  
BB18  
BB24  
AW23  
DDR_B_DM_4  
DDR_B_MA_13  
DDR_B_RASB  
DDR_B_CASB  
DDR_B_WEB  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
AP35  
AN39  
AP36  
AV36  
AR34  
AN40  
AR36  
AN33  
AW39  
AV39  
AT40  
AT38  
AV40  
AY39  
AW38  
AW36  
AY38  
AR25  
AV27  
AP27  
AT25  
AT27  
AW25  
AP24  
AN24  
AV25  
AN18  
AT19  
AP19  
AN16  
AT18  
AR18  
AV16  
AR16  
AY16  
AR13  
AV15  
AT15  
AW13  
DDR_B_DQ_42  
DDR_B_DQ_46  
DDR_B_DQ_41  
DDR_B_DQ_44  
DDR_B_DQ_45  
DDR_B_DQ_47  
DDR_B_DQ_40  
DDR_B_DQ_43  
DDR_B_DQS_4  
DDR_B_DQ_38  
DDR_B_DQ_35  
DDR_B_DQ_34  
DDR_B_DQ_39  
DDR_B_DQ_32  
DDR_B_DQ_33  
DDR_B_DQ_37  
DDR_B_DQ_36  
DDR_B_DQS_3  
DDR_B_DQ_27  
DDR_B_DQ_31  
DDR_B_DQ_30  
DDR_B_DQ_26  
DDR_B_DQ_24  
DDR_B_DQ_29  
DDR_B_DQ_28  
DDR_B_DQ_25  
DDR_B_DQS_2  
DDR_B_DQ_19  
DDR_B_DQ_18  
DDR_B_DQ_20  
DDR_B_DQ_22  
DDR_B_DQ_23  
DDR_B_DQ_17  
DDR_B_DQ_21  
DDR_B_DQ_16  
DDR_B_DQS_1  
DDR_B_DQ_11  
DDR_B_DQ_10  
DDR_B_DQ_13  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
DDR_B_MA_12  
DDR_B_MA_11  
DDR_B_MA_14  
DDR_B_BS_2  
DDR_B_BS_0  
DDR_B_BS_1  
Table 57.  
XOR Chain 10 (DDR2,  
ECC)  
Pin  
Count  
Ball #  
Signal Name  
K19  
EXP_SLR  
1
2
AC33  
AC36  
AB32  
AB38  
AE34  
AD36  
AE35  
AD39  
AC34  
AG39  
AE38  
AE33  
AE39  
AH33  
AH34  
AH36  
AG33  
AE40  
AH43  
AP39  
DDR_B_DQS_7  
DDR_B_DQ_62  
DDR_B_DQ_58  
DDR_B_DQ_59  
DDR_B_DQ_61  
DDR_B_DQ_57  
DDR_B_DQ_60  
DDR_B_DQ_56  
DDR_B_DQ_63  
DDR_B_DQS_6  
DDR_B_DQ_51  
DDR_B_DQ_55  
DDR_B_DQ_50  
DDR_B_DQ_52  
DDR_B_DQ_48  
DDR_B_DQ_53  
DDR_B_DQ_49  
DDR_B_DQ_54  
DDR_B_DQS_8  
DDR_B_DQS_5  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
330  
Datasheet  
Testability  
Table 57.  
XOR Chain 10 (DDR2,  
ECC)  
Table 59.  
XOR Chain 12 (DDR2,  
ECC)  
Pin  
Count  
Ball #  
Signal Name  
Pin  
Count  
Ball  
#
Signal Name  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
AN15  
AY13  
AW12  
AP15  
AY12  
AW10  
AW8  
DDR_B_DQ_14  
DDR_B_DQ_9  
DDR_B_DQ_12  
DDR_B_DQ_15  
DDR_B_DQ_8  
DDR_B_DQS_0  
DDR_B_DQ_0  
DDR_B_DQ_2  
DDR_B_DQ_7  
DDR_B_DQ_1  
DDR_B_DQ_5  
DDR_B_DQ_6  
DDR_B_DQ_3  
DDR_B_DQ_4  
M22  
BSEL0  
1
2
V10  
V11  
V7  
V6  
R2  
T1  
DMI_TXP_3  
DMI_TXN_3  
DMI_RXP_3  
DMI_RXN_3  
DMI_TXP_2  
DMI_TXN_2  
DMI_RXP_2  
DMI_RXN_2  
DMI_TXP_1  
DMI_TXN_1  
DMI_RXP_1  
DMI_RXN_1  
DMI_TXP_0  
DMI_TXN_0  
DMI_RXP_0  
DMI_RXN_0  
3
4
AT11  
AW11  
AY7  
5
6
7
P4  
AW6  
8
R5  
N2  
P3  
AR11  
AT12  
AV8  
9
10  
11  
12  
13  
14  
15  
16  
T7  
T8  
R7  
R6  
N5  
M4  
Table 58.  
XOR Chain 11 (DDR2,  
ECC)  
Pin  
Count  
Ball #  
Signal Name  
L18  
RSVD  
Table 60.  
XOR Chain 13 (DDR2,  
ECC)  
1
2
AY35  
BA35  
BB33  
BC32  
AY34  
AW34  
AY28  
AY30  
AP31  
AR31  
BA17  
BB17  
DDR_B_ODT_3  
DDR_B_CSB_3  
DDR_B_ODT_2  
DDR_B_CSB_2  
DDR_B_CKB_5  
DDR_B_CK_5  
DDR_B_CKB_4  
DDR_B_CK_4  
DDR_B_CKB_3  
DDR_B_CK_3  
DDR_B_CKE_3  
DDR_B_CKE_2  
Pin  
Count  
Ball  
#
Signal Name  
3
4
H21  
RSVD  
5
6
1
2
A8  
B7  
PEG_TXN_7  
PEG_TXP_7  
PEG_RXN_7  
PEG_RXP_7  
PEG_TXN_6  
PEG_TXP_6  
PEG_RXN_6  
PEG_RXP_6  
PEG_TXN_5  
PEG_TXP_5  
PEG_RXN_5  
PEG_RXP_5  
7
8
3
H10  
G10  
E9  
9
4
10  
11  
12  
5
6
D8  
7
L12  
K11  
C10  
B9  
8
9
10  
11  
12  
G12  
H12  
Datasheet  
331  
Testability  
Table 60.  
XOR Chain 13 (DDR2,  
ECC)  
Table 60.  
XOR Chain 13 (DDR2,  
ECC)  
Pin  
Count  
Ball  
#
Pin  
Count  
Ball  
#
Signal Name  
Signal Name  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
E11  
D10  
M13  
N13  
A12  
B11  
K13  
L13  
D12  
E13  
G13  
H13  
D14  
E15  
C14  
B13  
E17  
D16  
B15  
A16  
L2  
PEG_TXN_4  
PEG_TXP_4  
PEG_RXN_4  
PEG_RXP_4  
PEG_TXN_3  
PEG_TXP_3  
PEG_RXN_3  
PEG_RXP_3  
PEG_TXN_2  
PEG_TXP_2  
PEG_RXN_2  
PEG_RXP_2  
PEG_TXN_1  
PEG_TXP_1  
PEG_RXN_1  
PEG_RXP_1  
PEG_TXN_0  
PEG_TXP_0  
PEG_RXN_0  
PEG_RXP_0  
PEG_TXN_15  
PEG_TXP_15  
PEG_RXN_15  
PEG_RXP_15  
PEG_TXN_14  
PEG_TXP_14  
PEG_RXN_14  
PEG_RXP_14  
PEG_TXN_13  
PEG_TXP_13  
PEG_RXN_13  
PEG_RXP_13  
PEG_TXN_12  
PEG_TXP_12  
PEG_RXN_12  
PEG_RXP_12  
PEG_TXN_11  
PEG_TXP_11  
PEG_RXN_11  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
K7  
D3  
F3  
PEG_RXP_11  
PEG_TXN_10  
PEG_TXP_10  
PEG_RXN_10  
PEG_RXP_10  
PEG_TXN_9  
PEG_TXP_9  
PEG_RXN_9  
PEG_RXP_9  
PEG_TXN_8  
PEG_TXP_8  
PEG_RXN_8  
PEG_RXP_8  
C2  
D2  
B4  
B3  
G6  
F7  
C4  
C6  
D5  
E6  
Table 61.  
XOR Chain 14 (DDR2,  
ECC)  
Pin  
Count  
Ball #  
Signal Name  
G22  
RSVD  
1
2
AJ5  
AK4  
PEG2_TXN_7  
PEG2_TXP_7  
PEG2_RXN_7  
PEG2_RXP_7  
PEG2_TXN_6  
PEG2_TXP_6  
PEG2_RXN_6  
PEG2_RXP_6  
PEG2_TXN_5  
PEG2_TXP_5  
PEG2_RXN_5  
PEG2_RXP_5  
PEG2_TXN_4  
PEG2_TXP_4  
PEG2_RXN_4  
PEG2_RXP_4  
PEG2_TXN_3  
PEG2_TXP_3  
M1  
N10  
N8  
3
AE11  
AE10  
AH3  
AJ2  
4
K4  
5
L5  
6
J2  
7
AD12  
AE13  
AG5  
AH4  
AC7  
AC6  
AF1  
K3  
8
H4  
9
J5  
10  
11  
12  
13  
14  
15  
16  
17  
18  
M8  
M7  
G2  
H1  
AG2  
AC10  
AC11  
AE5  
L10  
M11  
E4  
F5  
AF4  
K8  
332  
Datasheet  
Testability  
Table 61.  
XOR Chain 14 (DDR2,  
ECC)  
Table 61.  
XOR Chain 14 (DDR2,  
ECC)  
Pin  
Count  
Pin  
Count  
Ball #  
Signal Name  
Ball #  
Signal Name  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
AB12  
AC13  
AD3  
AE2  
PEG2_RXN_3  
PEG2_RXP_3  
PEG2_TXN_2  
PEG2_TXP_2  
PEG2_RXN_2  
PEG2_RXP_2  
PEG2_TXN_1  
PEG2_TXP_1  
PEG2_RXN_1  
PEG2_RXP_1  
PEG2_TXN_0  
PEG2_TXP_0  
PEG2_RXN_0  
PEG2_RXP_0  
PEG2_TXN_15  
PEG2_TXP_15  
PEG2_RXN_15  
PEG2_RXP_15  
PEG2_TXN_14  
PEG2_TXP_14  
PEG2_RXN_14  
PEG2_RXP_14  
PEG2_TXN_13  
PEG2_TXP_13  
PEG2_RXN_13  
PEG2_RXP_13  
PEG2_TXN_12  
PEG2_TXP_12  
PEG2_RXN_12  
PEG2_RXP_12  
PEG2_TXN_11  
PEG2_TXP_11  
PEG2_RXN_11  
PEG2_RXP_11  
PEG2_TXN_10  
PEG2_TXP_10  
PEG2_RXN_10  
PEG2_RXP_10  
PEG2_TXN_9  
58  
59  
60  
61  
62  
63  
64  
AM4  
AH13  
AG12  
AK1  
PEG2_TXP_9  
PEG2_RXN_9  
PEG2_RXP_9  
PEG2_TXN_8  
PEG2_TXP_8  
PEG2_RXN_8  
PEG2_RXP_8  
AA7  
AL2  
AA6  
AE6  
AC4  
AD4  
AA11  
AA10  
AB1  
AE7  
AB3  
AA13  
W12  
AP6  
AP7  
AP11  
AP10  
AT3  
AU2  
AL7  
AL6  
AR5  
AT4  
AL10  
AL11  
AP1  
AR2  
AK13  
AK12  
AN5  
AP4  
AH6  
AH7  
AM3  
AN2  
AH10  
AH11  
AL5  
Datasheet  
333  
Testability  
13.3.3  
XOR Chains for DDR3 (No ECC)  
Table 62.  
XOR Chain 0 (DDR3,  
NoECC)  
Table 62.  
XOR Chain 0 (DDR3,  
NoECC)  
Pin  
Count  
Ball  
Signal Name  
Pin  
Count  
Ball  
#
Signal Name  
#
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
K28  
K24  
F31  
L30  
G30  
N24  
H31  
H30  
L28  
M30  
N30  
K31  
L25  
E42  
F41  
G42  
G44  
H42  
J43  
FSB_DB_40  
FSB_DB_46  
FSB_DB_32  
FSB_DB_36  
FSB_DB_38  
FSB_DB_42  
FSB_DB_34  
FSB_DB_39  
FSB_DB_41  
FSB_DB_35  
FSB_DB_37  
FSB_DB_33  
FSB_DB_43  
FSB_DB_15  
FSB_DB_14  
FSB_DB_11  
FSB_DB_13  
FSB_DB_9  
FSB_DB_8  
FSB_DB_12  
FSB_DB_7  
FSB_DB_5  
FSB_DB_3  
FSB_DB_6  
FSB_DB_10  
FSB_DB_0  
FSB_DB_1  
FSB_DB_4  
FSB_DB_2  
M21  
ALLZTEST  
1
B39  
D44  
B42  
D39  
C42  
C36  
A38  
B35  
D38  
E41  
D43  
D36  
E35  
E37  
F35  
C37  
F33  
B43  
F39  
F38  
H33  
G36  
G38  
G35  
L36  
L33  
L34  
N33  
N31  
K34  
M31  
K35  
L24  
H24  
G24  
FSB_DB_56  
FSB_DB_52  
FSB_DB_55  
FSB_DB_57  
FSB_DB_51  
FSB_DB_58  
FSB_DB_49  
FSB_DB_62  
FSB_DB_54  
FSB_DB_50  
FSB_DB_53  
FSB_DB_59  
FSB_DB_63  
FSB_DB_61  
FSB_DB_48  
FSB_DB_60  
FSB_DB_26  
FSB_DB_18  
FSB_DB_17  
FSB_DB_16  
FSB_DB_25  
FSB_DB_22  
FSB_DB_20  
FSB_DB_23  
FSB_DB_19  
FSB_DB_29  
FSB_DB_27  
FSB_DB_28  
FSB_DB_30  
FSB_DB_24  
FSB_DB_31  
FSB_DB_21  
FSB_DB_44  
FSB_DB_45  
FSB_DB_47  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
H45  
L42  
M45  
M42  
L44  
J41  
P42  
N41  
N42  
N44  
Table 63.  
XOR Chain 1 (DDR3,  
NoECC)  
Pin  
Count  
Ball #  
Signal Name  
L22  
XORTEST  
1
2
H39  
K42  
FSB_REQB_4  
FSB_AB_15  
334  
Datasheet  
Testability  
Table 63.  
XOR Chain 1 (DDR3,  
NoECC)  
Table 64.  
XOR Chain 2 (DDR3,  
NoECC)  
Pin  
Count  
Ball #  
Signal Name  
Pin  
Count  
Ball  
#
Signal Name  
3
G40  
K36  
F43  
FSB_REQB_1  
FSB_REQB_3  
FSB_AB_3  
P16  
ICH_SYNCB  
4
5
1
2
G34  
H34  
W41  
R42  
W40  
V42  
M25  
N25  
K43  
J44  
FSB_DSTBNB_1  
FSB_DSTBPB_1  
FSB_RSB_1  
6
M36  
K38  
M38  
L40  
FSB_AB_5  
7
FSB_AB_6  
3
8
FSB_AB_4  
4
FSB_HITB  
9
FSB_AB_7  
5
FSB_TRDYB  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
C44  
M40  
N40  
L39  
FSB_REQB_0  
FSB_ADSTBB_0  
FSB_AB_9  
6
FSB_HITMB  
7
FSB_DSTBNB_2  
FSB_DSTBPB_2  
FSB_DSTBNB_0  
FSB_DSTBPB_0  
FSB_LOCKB  
8
FSB_REQB_2  
FSB_AB_8  
9
N36  
N39  
N38  
R35  
N34  
R39  
R36  
T34  
10  
11  
12  
13  
14  
FSB_AB_11  
FSB_AB_13  
FSB_AB_16  
FSB_AB_12  
FSB_AB_14  
FSB_AB_10  
FSB_AB_19  
FSB_AB_21  
FSB_AB_17  
FSB_AB_25  
FSB_AB_30  
FSB_AB_20  
FSB_AB_26  
FSB_AB_27  
FSB_AB_22  
FSB_ADSTBB_1  
FSB_AB_31  
FSB_AB_18  
FSB_AB_34  
FSB_AB_32  
FSB_AB_23  
FSB_AB_29  
FSB_AB_24  
FSB_AB_33  
FSB_AB_28  
FSB_AB_35  
T45  
U42  
H38  
D35  
FSB_BNRB  
FSB_BPRIB  
FSB_CPURSTB  
Table 65.  
XOR Chain 3 (DDR3,  
NoECC)  
P43  
Pin  
Count  
Ball  
#
T40  
Signal Name  
W34  
W36  
T38  
N18  
RSVD  
1
2
D41  
C40  
B37  
E40  
T39  
R44  
U41  
T42  
R41  
N28  
L41  
W44  
U44  
FSB_DSTBNB_3  
FSB_DSTBPB_3  
FSB_DINVB_3  
FSB_DINVB_1  
FSB_DEFERB  
FSB_RSB_0  
V35  
W33  
W38  
V34  
AA33  
T36  
3
4
5
6
7
FSB_DRDYB  
FSB_DBSYB  
AB35  
AA35  
V38  
AB34  
V39  
AA40  
V43  
AA38  
8
9
FSB_RSB_2  
10  
11  
12  
13  
FSB_DINVB_2  
FSB_DINVB_0  
FSB_BREQ0B  
FSB_ADSB  
Datasheet  
335  
Testability  
Table 66.  
XOR Chain 4 (DDR3,  
NoECC)  
Table 67.  
XOR Chain 5 (DDR3,  
NoECC)  
Pin  
Count  
Pin  
Count  
Ball #  
Signal Name  
Ball #  
Signal Name  
AN12  
RSVD  
AM14  
RSVD  
1
AY41  
BB39  
BD42  
BB44  
BD37  
BB43  
BD35  
BC36  
BA27  
BB30  
BB29  
BA29  
AV35  
AT34  
AT33  
AN28  
AR33  
AM28  
BD29  
BB31  
BB28  
BC28  
AY27  
AY24  
BB25  
AV21  
AP21  
AY15  
BC14  
AY11  
BC10  
BC6  
DDR_A_ODT_1  
DDR_A_CSB_1  
DDR_A_CSB_0  
DDR3_A_CSB_1  
DDR_A_MA_10  
DDR_A_ODT_0  
DDR3_A_MA0  
DDR_A_MA_0  
DDR_A_MA_9  
DDR_A_MA_2  
DDR_A_MA_3  
DDR_A_MA_4  
DDR_A_CKB_2  
DDR_A_CK_2  
DDR_A_CK_0  
DDR_A_CK_1  
DDR_A_CKB_0  
DDR_A_CKB_1  
DDR_A_MA_6  
DDR_A_MA_1  
DDR_A_MA_5  
DDR_A_MA_8  
DDR_A_MA_7  
DDR_A_CKE_0  
DDR_A_CKE_1  
DDR_A_DQSB_3  
DDR_A_DM_3  
DDR_A_DQSB_2  
DDR_A_DM_2  
DDR_A_DQSB_1  
DDR_A_DM_1  
DDR_A_DQSB_0  
DDR_A_DM_0  
1
2
AA44  
AB40  
AD42  
AE44  
AM42  
AN44  
AT42  
AU44  
BA42  
BB41  
BD39  
BB36  
BC40  
BB38  
BC37  
BA25  
BD27  
BB26  
BB27  
AK15  
AK14  
DDR_A_DQSB_7  
DDR_A_DM_7  
DDR_A_DQSB_6  
DDR_A_DM_6  
DDR_A_DQSB_5  
DDR_A_DM_5  
DDR_A_DQSB_4  
DDR_A_DM_4  
DDR_A_MA_13  
DDR_A_CASB  
DDR_A_WEB  
DDR_A_BS_1  
DDR3_A_WEB  
DDR_A_RASB  
DDR_A_BS_0  
DDR_A_MA_14  
DDR_A_MA_11  
DDR_A_BS_2  
DDR_A_MA_12  
CL_DATA  
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
CL_CLK  
Table 68.  
XOR Chain 6 (DDR3,  
NoECC)  
Pin  
Count  
Ball #  
Signal Name  
F21  
BSEL1  
1
2
AA42  
Y42  
DDR_A_DQS_7  
DDR_A_DQ_58  
DDR_A_DQ_62  
DDR_A_DQ_56  
DDR_A_DQ_57  
DDR_A_DQ_59  
DDR_A_DQ_60  
DDR_A_DQ_63  
DDR_A_DQ_61  
DDR_A_DQS_6  
3
AA41  
AB42  
AB43  
W42  
AC40  
Y45  
4
BB5  
5
6
7
8
9
AB39  
AD43  
10  
336  
Datasheet  
Testability  
Table 68.  
XOR Chain 6 (DDR3,  
NoECC)  
Table 68.  
XOR Chain 6 (DDR3,  
NoECC)  
Pin  
Count  
Pin  
Count  
Ball #  
Signal Name  
Ball #  
Signal Name  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
AC42  
AC39  
AE41  
AD40  
AC45  
AF42  
AF45  
AE42  
AM43  
AL40  
AN41  
AN42  
AP42  
AL41  
AP45  
AL42  
AL44  
AT43  
AU43  
AU41  
AV42  
AR41  
AR40  
AR44  
AW42  
AR42  
AT21  
AY21  
AW19  
AN21  
AW22  
AT22  
AN22  
AN19  
AV19  
BA15  
BB16  
BD15  
BE16  
DDR_A_DQ_50  
DDR_A_DQ_55  
DDR_A_DQ_48  
DDR_A_DQ_54  
DDR_A_DQ_51  
DDR_A_DQ_52  
DDR_A_DQ_53  
DDR_A_DQ_49  
DDR_A_DQS_5  
DDR_A_DQ_46  
DDR_A_DQ_40  
DDR_A_DQ_41  
DDR_A_DQ_44  
DDR_A_DQ_47  
DDR_A_DQ_45  
DDR_A_DQ_43  
DDR_A_DQ_42  
DDR_A_DQS_4  
DDR_A_DQ_33  
DDR_A_DQ_37  
DDR_A_DQ_32  
DDR_A_DQ_38  
DDR_A_DQ_39  
DDR_A_DQ_34  
DDR_A_DQ_36  
DDR_A_DQ_35  
DDR_A_DQS_3  
DDR_A_DQ_25  
DDR_A_DQ_29  
DDR_A_DQ_30  
DDR_A_DQ_31  
DDR_A_DQ_27  
DDR_A_DQ_26  
DDR_A_DQ_24  
DDR_A_DQ_28  
DDR_A_DQS_2  
DDR_A_DQ_18  
DDR_A_DQ_22  
DDR_A_DQ_19  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
BB14  
BB15  
BA13  
BD13  
BB13  
BA11  
BC9  
DDR_A_DQ_17  
DDR_A_DQ_23  
DDR_A_DQ_20  
DDR_A_DQ_16  
DDR_A_DQ_21  
DDR_A_DQS_1  
DDR_A_DQ_13  
DDR_A_DQ_14  
DDR_A_DQ_15  
DDR_A_DQ_11  
DDR_A_DQ_8  
DDR_A_DQ_12  
DDR_A_DQ_10  
DDR_A_DQ_9  
DDR_A_DQS_0  
DDR_A_DQ_7  
DDR_A_DQ_2  
DDR_A_DQ_3  
DDR_A_DQ_6  
DDR_A_DQ_1  
DDR_A_DQ_0  
DDR_A_DQ_5  
DDR_A_DQ_4  
BD11  
BB11  
BE12  
BD9  
BA9  
BB12  
BB10  
BA6  
BB7  
BB8  
BE8  
BD7  
BD4  
BC4  
BB4  
BD3  
Table 69.  
XOR Chain 7 (DDR3,  
NoECC)  
Pin  
Count  
Ball #  
Signal Name  
F18  
BSEL2  
1
2
3
4
5
6
7
8
9
AW44  
AY43  
BA41  
BB39  
AV31  
AT31  
AT36  
AT35  
AN27  
DDR_A_ODT_3  
DDR_A_CSB_3  
DDR_A_ODT_2  
DDR_A_CSB_2  
DDR_A_CK_3  
DDR_A_CKB_3  
DDR_A_CKB_5  
DDR_A_CK_5  
DDR_A_CK_4  
Datasheet  
337  
Testability  
Table 69.  
XOR Chain 7 (DDR3,  
NoECC)  
Table 70.  
XOR Chain 8 (DDR3,  
NoECC)  
Pin  
Count  
Pin  
Count  
Ball #  
Signal Name  
Ball #  
Signal Name  
10  
11  
12  
13  
AM27  
BC24  
BB25  
BB23  
DDR_A_CKB_4  
DDR_A_CKE_3  
DDR_A_CKE_2  
DDR3_DRAMRSTB  
29  
30  
31  
AT13  
AT10  
AY8  
DDR_B_DM_1  
DDR_B_DQSB_0  
DDR_B_DM_0  
Table 71.  
XOR Chain 9 (DDR3,  
NoECC)  
Table 70.  
XOR Chain 8 (DDR3,  
NoECC)  
Pin  
Count  
Ball #  
Signal Name  
Pin  
Count  
Ball #  
Signal Name  
AP12  
RSVD  
AN13  
RSVD  
1
2
AD33  
AD35  
AG38  
AG35  
AP40  
AN36  
AV38  
AY40  
BA33  
BD31  
BB32  
AY31  
AY18  
BA19  
BC18  
BB18  
BB24  
AW23  
DDR_B_DQSB_7  
DDR_B_DM_7  
DDR_B_DQSB_6  
DDR_B_DM_6  
DDR_B_DQSB_5  
DDR_B_DM_5  
DDR_B_DQSB_4  
DDR_B_DM_4  
DDR_B_MA_13  
DDR_B_RASB  
DDR_B_CASB  
DDR_B_WEB  
1
BB34  
BD33  
BB35  
BA31  
AV30  
AW30  
AW33  
AR28  
AP28  
AV33  
BB21  
BB22  
BD21  
BC22  
AW24  
BB20  
BB19  
BE20  
BA21  
AY19  
BD17  
AY22  
BD19  
AR24  
AY25  
AP16  
AW16  
AR12  
DDR_B_ODT_1  
DDR_B_ODT_0  
DDR_B_CSB_1  
DDR_B_CSB_0  
DDR_B_CKB_0  
DDR_B_CK_0  
DDR_B_CKB_2  
DDR_B_CK_1  
DDR_B_CKB_1  
DDR_B_CK_2  
DDR_B_MA_5  
DDR_B_MA_2  
DDR_B_MA_4  
DDR_B_MA_1  
DDR_B_MA_10  
DDR_B_MA_6  
DDR_B_MA_9  
DDR_B_MA_8  
DDR_B_MA_3  
DDR_B_MA_7  
DDR_B_CKE_0  
DDR_B_MA_0  
DDR_B_CKE_1  
DDR_B_DQSB_3  
DDR_B_DM_3  
DDR_B_DQSB_2  
DDR_B_DM_2  
DDR_B_DQSB_1  
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
DDR_B_MA_12  
DDR_B_MA_11  
DDR_B_MA_14  
DDR_B_BS_2  
DDR_B_BS_0  
DDR_B_BS_1  
Table 72.  
XOR Chain 10 (DDR3,  
NoECC)  
Pin  
Count  
Ball #  
Signal Name  
K19  
EXP_SLR  
1
2
3
4
AC33  
AC36  
AB32  
AB38  
DDR_B_DQS_7  
DDR_B_DQ_62  
DDR_B_DQ_58  
DDR_B_DQ_59  
338  
Datasheet  
Testability  
Table 72.  
XOR Chain 10 (DDR3,  
NoECC)  
Table 72.  
XOR Chain 10 (DDR3,  
NoECC)  
Pin  
Count  
Pin  
Count  
Ball #  
Signal Name  
Ball #  
Signal Name  
5
AE34  
AD36  
AE35  
AD39  
AC34  
AG39  
AE38  
AE33  
AE39  
AH33  
AH34  
AH36  
AG33  
AE40  
AP39  
AP35  
AN39  
AP36  
AV36  
AR34  
AN40  
AR36  
AN33  
AW39  
AV39  
AT40  
AT38  
AV40  
AY39  
AW38  
AW36  
AY38  
AR25  
AV27  
AP27  
AT25  
AT27  
AW25  
AP24  
DDR_B_DQ_61  
DDR_B_DQ_57  
DDR_B_DQ_60  
DDR_B_DQ_56  
DDR_B_DQ_63  
DDR_B_DQS_6  
DDR_B_DQ_51  
DDR_B_DQ_55  
DDR_B_DQ_50  
DDR_B_DQ_52  
DDR_B_DQ_48  
DDR_B_DQ_53  
DDR_B_DQ_49  
DDR_B_DQ_54  
DDR_B_DQS_5  
DDR_B_DQ_42  
DDR_B_DQ_46  
DDR_B_DQ_41  
DDR_B_DQ_44  
DDR_B_DQ_45  
DDR_B_DQ_47  
DDR_B_DQ_40  
DDR_B_DQ_43  
DDR_B_DQS_4  
DDR_B_DQ_38  
DDR_B_DQ_35  
DDR_B_DQ_34  
DDR_B_DQ_39  
DDR_B_DQ_32  
DDR_B_DQ_33  
DDR_B_DQ_37  
DDR_B_DQ_36  
DDR_B_DQS_3  
DDR_B_DQ_27  
DDR_B_DQ_31  
DDR_B_DQ_30  
DDR_B_DQ_26  
DDR_B_DQ_24  
DDR_B_DQ_29  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
AN24  
AV25  
AN18  
AT19  
AP19  
AN16  
AT18  
AR18  
AV16  
AR16  
AY16  
AR13  
AV15  
AT15  
AW13  
AN15  
AY13  
AW12  
AP15  
AY12  
AW10  
AW8  
DDR_B_DQ_28  
DDR_B_DQ_25  
DDR_B_DQS_2  
DDR_B_DQ_19  
DDR_B_DQ_18  
DDR_B_DQ_20  
DDR_B_DQ_22  
DDR_B_DQ_23  
DDR_B_DQ_17  
DDR_B_DQ_21  
DDR_B_DQ_16  
DDR_B_DQS_1  
DDR_B_DQ_11  
DDR_B_DQ_10  
DDR_B_DQ_13  
DDR_B_DQ_14  
DDR_B_DQ_9  
DDR_B_DQ_12  
DDR_B_DQ_15  
DDR_B_DQ_8  
DDR_B_DQS_0  
DDR_B_DQ_0  
DDR_B_DQ_2  
DDR_B_DQ_7  
DDR_B_DQ_1  
DDR_B_DQ_5  
DDR_B_DQ_6  
DDR_B_DQ_3  
DDR_B_DQ_4  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
AT11  
AW11  
AY7  
AW6  
AR11  
AT12  
AV8  
Table 73.  
XOR Chain 11 (DDR3,  
NoECC)  
Pin  
Count  
Ball #  
Signal Name  
L18  
RSVD  
1
2
3
AY35  
BA35  
BB33  
DDR_B_ODT_3  
DDR_B_CSB_3  
DDR_B_ODT_2  
Datasheet  
339  
Testability  
Table 73.  
XOR Chain 11 (DDR3,  
NoECC)  
Table 75.  
XOR Chain 13 (DDR3,  
NoECC)  
Pin  
Count  
Ball #  
Signal Name  
Pin  
Count  
Ball  
#
Signal Name  
4
5
BA37  
BC32  
AY34  
AW34  
AY28  
AY30  
AP31  
AR31  
BA17  
BB17  
DDR3_B_ODT3  
DDR_B_CSB_2  
DDR_B_CKB_5  
DDR_B_CK_5  
DDR_B_CKB_4  
DDR_B_CK_4  
DDR_B_CKB_3  
DDR_B_CK_3  
DDR_B_CKE_3  
DDR_B_CKE_2  
H21  
RSVD  
6
1
A8  
B7  
PEG_TXN_7  
PEG_TXP_7  
PEG_RXN_7  
PEG_RXP_7  
PEG_TXN_6  
PEG_TXP_6  
PEG_RXN_6  
PEG_RXP_6  
PEG_TXN_5  
PEG_TXP_5  
PEG_RXN_5  
PEG_RXP_5  
PEG_TXN_4  
PEG_TXP_4  
PEG_RXN_4  
PEG_RXP_4  
PEG_TXN_3  
PEG_TXP_3  
PEG_RXN_3  
PEG_RXP_3  
PEG_TXN_2  
PEG_TXP_2  
PEG_RXN_2  
PEG_RXP_2  
PEG_TXN_1  
PEG_TXP_1  
PEG_RXN_1  
PEG_RXP_1  
PEG_TXN_0  
PEG_TXP_0  
PEG_RXN_0  
PEG_RXP_0  
PEG_TXN_15  
PEG_TXP_15  
PEG_RXN_15  
PEG_RXP_15  
PEG_TXN_14  
7
2
8
3
H10  
G10  
E9  
9
4
10  
11  
12  
13  
5
6
D8  
7
L12  
K11  
C10  
B9  
8
9
Table 74.  
XOR Chain 12 (DDR3,  
NoECC)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
G12  
H12  
E11  
D10  
M13  
N13  
A12  
B11  
K13  
L13  
D12  
E13  
G13  
H13  
D14  
E15  
C14  
B13  
E17  
D16  
B15  
A16  
L2  
Pin  
Count  
Ball  
#
Signal Name  
M22  
BSEL0  
1
2
V10  
V11  
V7  
V6  
R2  
T1  
DMI_TXP_3  
DMI_TXN_3  
DMI_RXP_3  
DMI_RXN_3  
DMI_TXP_2  
DMI_TXN_2  
DMI_RXP_2  
DMI_RXN_2  
DMI_TXP_1  
DMI_TXN_1  
DMI_RXP_1  
DMI_RXN_1  
DMI_TXP_0  
DMI_TXN_0  
DMI_RXP_0  
DMI_RXN_0  
3
4
5
6
7
P4  
8
R5  
N2  
P3  
9
10  
11  
12  
13  
14  
15  
16  
T7  
T8  
R7  
R6  
N5  
M4  
M1  
N10  
N8  
K4  
340  
Datasheet  
Testability  
Table 75.  
XOR Chain 13 (DDR3,  
NoECC)  
Table 76.  
XOR Chain 14 (DDR3,  
NoECC)  
Pin  
Count  
Ball  
#
Pin  
Count  
Signal Name  
Ball #  
Signal Name  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
L5  
J2  
PEG_TXP_14  
PEG_RXN_14  
PEG_RXP_14  
PEG_TXN_13  
PEG_TXP_13  
PEG_RXN_13  
PEG_RXP_13  
PEG_TXN_12  
PEG_TXP_12  
PEG_RXN_12  
PEG_RXP_12  
PEG_TXN_11  
PEG_TXP_11  
PEG_RXN_11  
PEG_RXP_11  
PEG_TXN_10  
PEG_TXP_10  
PEG_RXN_10  
PEG_RXP_10  
PEG_TXN_9  
PEG_TXP_9  
PEG_RXN_9  
PEG_RXP_9  
PEG_TXN_8  
PEG_TXP_8  
PEG_RXN_8  
PEG_RXP_8  
6
AJ2  
AD12  
AE13  
AG5  
AH4  
AC7  
AC6  
AF1  
PEG2_TXP_6  
PEG2_RXN_6  
PEG2_RXP_6  
PEG2_TXN_5  
PEG2_TXP_5  
PEG2_RXN_5  
PEG2_RXP_5  
PEG2_TXN_4  
PEG2_TXP_4  
PEG2_RXN_4  
PEG2_RXP_4  
PEG2_TXN_3  
PEG2_TXP_3  
PEG2_RXN_3  
PEG2_RXP_3  
PEG2_TXN_2  
PEG2_TXP_2  
PEG2_RXN_2  
PEG2_RXP_2  
PEG2_TXN_1  
PEG2_TXP_1  
PEG2_RXN_1  
PEG2_RXP_1  
PEG2_TXN_0  
PEG2_TXP_0  
PEG2_RXN_0  
PEG2_RXP_0  
PEG2_TXN_15  
PEG2_TXP_15  
PEG2_RXN_15  
PEG2_RXP_15  
PEG2_TXN_14  
PEG2_TXP_14  
PEG2_RXN_14  
PEG2_RXP_14  
PEG2_TXN_13  
PEG2_TXP_13  
PEG2_RXN_13  
PEG2_RXP_13  
7
K3  
H4  
J5  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
M8  
M7  
G2  
H1  
L10  
M11  
E4  
F5  
AG2  
AC10  
AC11  
AE5  
AF4  
K8  
K7  
D3  
F3  
AB12  
AC13  
AD3  
AE2  
C2  
D2  
B4  
B3  
G6  
F7  
AA7  
AA6  
AC4  
AD4  
AA11  
AA10  
AB1  
C4  
C6  
D5  
E6  
AB3  
AA13  
W12  
AP6  
AP7  
Table 76.  
XOR Chain 14 (DDR3,  
NoECC)  
AP11  
AP10  
AT3  
Pin  
Count  
Ball #  
Signal Name  
G22  
RSVD  
AU2  
AL7  
1
2
3
4
5
AJ5  
AK4  
PEG2_TXN_7  
PEG2_TXP_7  
PEG2_RXN_7  
PEG2_RXP_7  
PEG2_TXN_6  
AL6  
AR5  
AT4  
AE11  
AE10  
AH3  
AL10  
AL11  
Datasheet  
341  
Testability  
Table 76.  
XOR Chain 14 (DDR3,  
NoECC)  
Pin  
Count  
Ball #  
Signal Name  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
AP1  
AR2  
PEG2_TXN_12  
PEG2_TXP_12  
PEG2_RXN_12  
PEG2_RXP_12  
PEG2_TXN_11  
PEG2_TXP_11  
PEG2_RXN_11  
PEG2_RXP_11  
PEG2_TXN_10  
PEG2_TXP_10  
PEG2_RXN_10  
PEG2_RXP_10  
PEG2_TXN_9  
PEG2_TXP_9  
PEG2_RXN_9  
PEG2_RXP_9  
PEG2_TXN_8  
PEG2_TXP_8  
PEG2_RXN_8  
PEG2_RXP_8  
AK13  
AK12  
AN5  
AP4  
AH6  
AH7  
AM3  
AN2  
AH10  
AH11  
AL5  
AM4  
AH13  
AG12  
AK1  
AL2  
AE6  
AE7  
§ §  
342  
Datasheet  

相关型号:

82XX

MONOLITHIC IC 82XX SERIES
UTC

82XXG-X-AF5-R

MONOLITHIC IC 82XX SERIES
UTC

82XXL-X-AF5-R

MONOLITHIC IC 82XX SERIES
UTC

82XX_11

MONOLITHIC IC 82XX SERIES
UTC

82XX_15

LINEAR INTEGRATED CIRCUIT
UTC

82Z1D-Z33-BA0

Model 82 Vintage Premium Guitar Potentiometer
BOURNS

82Z1D-Z33-BA0/753L

Potentiometer, Conductive Plastic, 0.25W, 250000ohm, 10% +/-Tol, -1000,1000ppm/Cel, 1 Turn(s), 6363, ROHS COMPLIANT
BOURNS

82Z1D-Z33-BA0/754L

Potentiometer, Conductive Plastic, 0.25W, 500000ohm, 10% +/-Tol, -1000,1000ppm/Cel, 1 Turn(s), 6363, ROHS COMPLIANT
BOURNS

82_MMBX-S50-0-1/111_NE

RF Connector, 1 Contact(s), Female, Board Mount, Surface Mount Terminal, Jack
AMPHENOL
AMPHENOL

83-1000-A

Signal Conditioner
ETC

83-1000-S

Signal Conditioner
ETC