AW80581GH0416M [INTEL]

RISC Microprocessor, 64-Bit, 2000MHz, PPGA478;
AW80581GH0416M
型号: AW80581GH0416M
厂家: INTEL    INTEL
描述:

RISC Microprocessor, 64-Bit, 2000MHz, PPGA478

外围集成电路
文件: 总72页 (文件大小:1242K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Intel® Core™2 Extreme Quad-Core  
Mobile Processor and Intel® Core™2  
Quad Mobile Processor on 45-nm  
Process  
Datasheet  
For platforms based on Mobile Intel® 4 Series Express Chipset  
Family  
January 2009  
Document Number: 320390-002  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR  
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS  
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING  
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,  
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE  
FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.  
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics  
of any features or instructions marked “reserved” or “undefined.Intel reserves these for future definition and shall have no responsibility whatsoever for  
conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with  
this information.  
The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published  
specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Φ 64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and applications  
enabled for IntelÆ 64 architecture. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for  
more information.  
Enhanced Intel SpeedStep® Technology for specified units of this processor are available. See the Processor Spec Finder at http://  
processorfinder.intel.com or contact your Intel representative for more information.  
Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating system. Check  
with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.  
Φ
Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor (VMM) and, for some  
uses, certain platform software enabled for it. Functionality, performance or other benefits will vary depending on hardware and software configurations  
and may require a BIOS update. Software applications may not be compatible with all operating systems. Please check with your application vendor.  
Intel, Pentium, Intel Core Duo, Intel SpeedStep, MMX and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2008-2009, Intel Corporation. All rights reserved.  
2
Datasheet  
Contents  
1
Introduction..............................................................................................................7  
1.1  
1.2  
Terminology .......................................................................................................7  
References .........................................................................................................9  
2
Low Power Features................................................................................................ 11  
2.1  
Clock Control and Low Power States .................................................................... 11  
2.1.1 Core Low Power State Descriptions........................................................... 13  
2.1.1.1 Core C0 State........................................................................... 13  
2.1.1.2 Core C1/AutoHALT Powerdown State........................................... 13  
2.1.1.3 Core C1/MWAIT Powerdown State............................................... 14  
2.1.1.4 Core C2 State........................................................................... 14  
2.1.1.5 Core C3 State........................................................................... 14  
2.1.1.6 Core C4 State........................................................................... 14  
2.1.2 Package Low Power State Descriptions...................................................... 14  
2.1.2.1 Normal State............................................................................ 14  
2.1.2.2 Stop-Grant State ...................................................................... 15  
2.1.2.3 Stop-Grant Snoop State............................................................. 15  
2.1.2.4 Sleep State.............................................................................. 15  
2.1.2.5 Deep Sleep State...................................................................... 16  
2.1.2.6 Deeper Sleep State................................................................... 16  
Enhanced Intel SpeedStep® Technology .............................................................. 17  
Extended Low Power States................................................................................ 17  
FSB Low Power Enhancements............................................................................ 18  
2.4.1 Dual Intel Dynamic Acceleration............................................................... 19  
Processor Power Status Indicator (PSI-2) Signal.................................................... 19  
2.2  
2.3  
2.4  
2.5  
3
Electrical Specifications........................................................................................... 21  
3.1  
3.2  
Power and Ground Pins ...................................................................................... 21  
Decoupling Guidelines........................................................................................ 21  
3.2.1 VCC Decoupling...................................................................................... 21  
3.2.2 FSB AGTL+ Decoupling ........................................................................... 21  
3.2.3 FSB Clock (BCLK[1:0]) and Processor Clocking........................................... 21  
Voltage Identification and Power Sequencing ........................................................ 22  
Catastrophic Thermal Protection.......................................................................... 26  
Reserved and Unused Pins.................................................................................. 26  
FSB Frequency Select Signals (BSEL[2:0])............................................................ 27  
FSB Signal Groups............................................................................................. 27  
CMOS Signals ................................................................................................... 29  
Maximum Ratings.............................................................................................. 29  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
3.10 Processor DC Specifications ................................................................................ 30  
4
5
Package Mechanical Specifications and Pin Information.......................................... 37  
4.1  
4.2  
Package Mechanical Specifications....................................................................... 37  
Processor Pinout and Pin List .............................................................................. 40  
Thermal Specifications and Design Considerations .................................................. 67  
5.1  
Monitoring Die Temperature ............................................................................... 68  
5.1.1 Thermal Diode ....................................................................................... 68  
5.1.2 Intel® Thermal Monitor........................................................................... 69  
5.1.3 Digital Thermal Sensor............................................................................ 71  
PROCHOT# Signal Pin........................................................................................ 72  
5.2  
Datasheet  
3
Figures  
1
2
3
4
5
6
7
8
9
Core Low Power States..............................................................................................12  
Package Low Power States.........................................................................................13  
PSI-2 Functionality Logic Diagram ..............................................................................19  
Active VCC and ICC Loadline for Quad-Core Extreme Mobile Processor.............................33  
Deeper Sleep VCC and ICC Loadline for Quad-Core Extreme Mobile Processor...................34  
Quad-Core Processor Micro-FCPGA Package Drawing (Sheet 1 of 2) ................................38  
Quad-Core Processor Micro-FCPGA Package Drawing (Sheet 2 of 2) ................................39  
Quad-Core Processor Pinout (Top Package View, Left Side) ............................................40  
Quad-Core Processor Pinout (Top Package View, Right Side) ..........................................41  
Tables  
1
2
3
4
5
6
7
8
9
References ............................................................................................................... 9  
Coordination of Core Low Power States at the Package Level..........................................13  
Voltage Identification Definition..................................................................................23  
BSEL[2:0] Encoding for BCLK Frequency......................................................................27  
FSB Pin Groups ........................................................................................................28  
Processor Absolute Maximum Ratings..........................................................................29  
Voltage and Current Specifications for the Quad-Core Extreme Mobile Processors..............30  
Voltage and Current Specifications for the Quad-Core Mobile Processors ..........................31  
AGTL+ Signal Group DC Specifications ........................................................................34  
10 CMOS Signal Group DC Specifications..........................................................................36  
11 Open Drain Signal Group DC Specifications ..................................................................36  
12 Pin Listing by Pin Name.............................................................................................42  
13 Pin Listing by Pin Number..........................................................................................49  
14 Signal Description.....................................................................................................57  
15 New Pins for the Quad-Core Mobile Processor...............................................................66  
16 Processor Power Specifications...................................................................................67  
17 Thermal Diode Interface............................................................................................69  
18 Thermal Diode Parameters Using Transistor Model ........................................................69  
4
Datasheet  
Revision History  
Document  
Number  
Revision  
Number  
Description  
Date  
August 2008  
January 2009  
320390  
320390  
Initial Release  
-001  
-002  
Updated Table 8: Added Q9000 information  
Updated Table 16: Added Q9000 information  
§
Datasheet  
5
6
Datasheet  
Introduction  
1 Introduction  
The Intel® CoreTM2 Extreme quad-core processor and Intel® CoreTM2 quad processor  
on 45-nanometer process technology for platforms based on Mobile Intel® 4 Series  
Express Chipset Family is the first low-power, mobile quad-core processor based on the  
Intel® Core™ microarchitecture.  
In this document, the Intel Core 2 Extreme quad-core processor and Intel Core 2 quad  
processor are referred to as the processor or quad-core processor and the Mobile Intel  
4 Series Express Chipset is referred to as the (G)MCH.  
Key features of the processor include:  
• Quad-core mobile processor for mobile with enhanced performance  
• Supports Intel® architecture with Intel® Wide Dynamic Execution  
• Supports L1 cache-to-cache (C2C) transfer  
• On-die, primary 32-kB instruction cache and 32-kB write-back data cache in each  
core  
• 12-MB second-level shared cache with Advanced Transfer Cache architecture  
• Streaming SIMD extensions 2 (SSE2), streaming SIMD extensions 3 (SSE3),  
supplemental streaming SIMD extensions 3 (SSSE3) and SSE4.1 instruction sets  
• Processors are offered at 1066-MHz source-synchronous front side bus (FSB)  
• Advanced power management features including Enhanced Intel SpeedStep®  
Technology  
• Digital thermal sensor (DTS)  
• Intel® 64 architecture  
• Supports Enhanced Intel® Virtualization Technology  
• Supports PSI2 functionality  
• Execute Disable Bit support for enhanced security  
• Half ratio support (N/2) for core to bus ratio  
1.1  
Terminology  
Term  
Definition  
A “#” symbol after a signal name refers to an active low signal, indicating a  
signal is in the active state when driven to a low level. For example, when  
RESET# is low, a reset has been requested. Conversely, when NMI is high,  
a nonmaskable interrupt has occurred. In the case of signals where the  
name does not imply an active state but describes part of a binary  
sequence (such as address or data), the “#” symbol implies that the signal  
is inverted. For example, D[3:0] = “HLHL” refers to a hex ‘A, and D[3:0]#  
= “LHLH” also refers to a hex “A” (H= High logic level, L= Low logic level).  
#
Front Side Bus  
(FSB)  
Refers to the interface between the processor and system core logic (also  
known as the chipset components).  
Advanced Gunning Transceiver Logic. Used to refer to Assisted GTL+  
signaling technology on some Intel processors.  
AGTL+  
Datasheet  
7
Introduction  
Term  
Definition  
Refers to a non-operational state. The processor may be installed in a  
platform, in a tray, or loose. Processors may be sealed in packaging or  
exposed to free air. Under these conditions, processor landings should not  
be connected to any supply voltages, have any I/Os biased or receive any  
clocks. Upon exposure to “free air” (i.e., unsealed packaging or a device  
removed from packaging material) the processor must be handled in  
accordance with moisture sensitivity labeling (MSL) as indicated on the  
packaging material.  
Storage  
Conditions  
Enhanced Intel  
SpeedStep®  
Technology  
Technology that provides power management capabilities to laptops.  
Processor core die with integrated L1 and L2 cache. All AC timing and signal  
integrity specifications are at the pads of the processor core.  
Processor Core  
The Execute Disable bit allows memory to be marked as executable or non-  
executable, when combined with a supporting operating system. If code  
attempts to run in non-executable memory the processor raises an error to  
the operating system. This feature can prevent some classes of viruses or  
worms that exploit buffer overrun vulnerabilities and can thus help improve  
the overall security of the system. See the Intel® 64 and IA-32  
Execute Disable  
Bit  
Architectures Software Developer's Manuals for more detailed information.  
Intel® 64  
Technology  
64-bit memory extensions to the IA-32 architecture.  
Intel®  
Virtualization  
Technology  
Processor virtualization which when used in conjunction with Virtual  
Machine Monitor software enables multiple, robust independent software  
environments inside a single platform.  
Quad-core processor supports the N/2 feature which allows having  
fractional core to bus ratios. This feature provides the flexibility of having  
more frequency options and be able to have products with smaller  
frequency steps.  
Half ratio support  
(N/2) for Core to  
Bus ratio  
TDP  
VCC  
VSS  
Thermal Design Power  
The processor core power supply  
The processor ground  
8
Datasheet  
Introduction  
1.2  
References  
Material and concepts available in the following documents may be beneficial when  
reading this document.  
Table 1.  
References  
Document  
Document  
Number1  
Intel® Core™2 Extreme Quad-Core Mobile Processor, Intel® Core™2  
Quad Mobile Processor, Intel® Core™2 Extreme Mobile Processor, Intel®  
Core™2 Duo Mobile Processor, and Intel® Core™2 Solo Mobile  
320121  
Processors on 45-nm Process Specification Update  
Mobile Intel® 4 Series Express Chipset Family Datasheet  
320122  
320123  
Mobile Intel® 4 Series Express Chipset Family Specification Update  
Intel® I/O Controller Hub 9 (ICH9)/ I/O Controller Hub 9M (ICH9M)  
Datasheet  
316972  
316973  
Intel® I/O Controller Hub 9 (ICH9)/ I/O Controller Hub 9M (ICH9M)  
Specification Update  
See http://  
www.intel.com/  
products/processor/  
manuals/index.htm  
Intel® 64 and IA-32 Architectures Software Developer's Manuals  
Volume 1: Basic Architecture  
253665  
253666  
253667  
253668  
253669  
Volume 2A: Instruction Set Reference, A-M  
Volume 2B: Instruction Set Reference, N-Z  
Volume 3A: System Programming Guide  
Volume 3B: System Programming Guide  
NOTES:Contact your Intel representative for the latest revision and document number of this  
document.  
§
Datasheet  
9
Introduction  
10  
Datasheet  
Low Power Features  
2 Low Power Features  
2.1  
Clock Control and Low Power States  
The processor supports low power states both at the individual core level and the  
package level for optimal power management.  
A core may independently enter the C1/AutoHALT, C1/MWAIT, C2, C3, and C4 low  
power states. When all cores coincide in a common core low power state, the central  
power management logic ensures the entire processor enters the respective package  
low power state by initiating a P_LVLx (P_LVL2, P_LVL3, P_LVL4) I/O read to the  
(G)MCH.  
The processor implements two software interfaces for requesting low power states:  
MWAIT instruction extensions with sub-state hints and P_LVLx reads to the ACPI P_BLK  
register block mapped in the processor’s I/O address space. The P_LVLx I/O reads are  
converted to equivalent MWAIT C-state requests inside the processor and do not  
directly result in I/O reads on the processor FSB. The P_LVLx I/O Monitor address does  
not need to be set up before using the P_LVLx I/O read interface. The sub-state hints  
used for each P_LVLx read can be configured through the IA32_MISC_ENABLES model  
specific register (MSR).  
If a core encounters a GMCH break event while STPCLK# is asserted, it asserts the  
PBE# output signal. Assertion of PBE# when STPCLK# is asserted indicates to system  
logic that individual cores should return to the C0 state and the processor should return  
to the Normal state.  
Figure 1 shows the core low power states and Figure 2 shows the package low power  
states for the processor. Table 2 maps the core low power states to package low power  
states.  
Datasheet  
11  
Low Power Features  
Figure 1.  
Core Low Power States  
Stop  
Grant  
STPCLK#  
STPCLK#  
asserted  
deasserted  
STPCLK#  
asserted  
STPCLK#  
deasserted  
STTPPCCLKL#K#  
eassertede  
C1/Auto  
Halt  
STPCLK#  
asserted  
Core State  
Break  
C1/MWAIT  
HLT instruction  
Halt break  
MWAIT(C1)  
C0  
P_LVL2 or  
MWAIT(C2)  
Core State  
Break  
Core State  
Break  
P_LVL4 or  
MWAIT(C4)  
Core State  
Break  
+
C2  
+
P_LVL3 or  
MWAIT(C3)  
C4  
+
C3  
Halt break = A20M# transition, INIT#, INTR, NMI, PREQ#, RESET#, SMI#, or APIC interrupt  
core state break = (halt break OR Monitor event) AND STPCLK# high (not asserted)  
+ __ STPCLK# assertion and de-assertion have no effect if a core is in C2, C3 or C4.  
12  
Datasheet  
Low Power Features  
Figure 2.  
Package Low Power States  
STPCLK# asserted  
SLP# asserted  
DPSLP# asserted  
DPRSTP# asserted  
DPRSTP# desserted  
Stop  
Grant  
Deep  
Sleep  
Deeper  
Sleep  
Sleep  
Normal  
SLP# desserted  
STPCLK# desserted  
DPSLP# deasserted  
Snoop  
serviced  
Snoop  
occurs  
Stop Grant  
Snoop  
Table 2.  
Coordination of Core Low Power States at the Package Level  
Package State  
Core0 State  
Core1 State  
C2  
C0  
C11  
C3  
C4  
C0  
C11  
C2  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Stop-Grant  
Stop-Grant  
Stop-Grant  
Stop-Grant  
Deep Sleep  
Deep Sleep  
Stop-Grant  
Deep Sleep  
Deeper Sleep  
C3  
C4  
NOTE:  
1.  
AutoHALT or MWAIT/C1.  
2.1.1  
Core Low Power State Descriptions  
2.1.1.1  
Core C0 State  
This is the normal operating state for cores in the processor.  
2.1.1.2  
Core C1/AutoHALT Powerdown State  
C1/AutoHALT is a low power state entered when a core executes the HALT instruction.  
The processor core will transition to the C0 state upon occurrence of SMI#, INIT#,  
LINT[1:0] (NMI, INTR), or FSB interrupt messages. RESET# will cause the processor to  
immediately initialize itself.  
A System Management Interrupt (SMI) handler will return execution to either Normal  
state or the AutoHALT Powerdown state. See the Intel® 64 and IA-32 Architectures  
Software Developer's Manuals, Volume 3A/3B: System Programmer's Guide for more  
information.  
The system can generate a STPCLK# while the processor is in the AutoHALT  
Powerdown state. When the system deasserts the STPCLK# interrupt, the processor  
will return execution to the HALT state.  
Datasheet  
13  
Low Power Features  
While in AutoHALT Powerdown state, the due core processor will process bus snoops  
and snoops from the other core. The processor core will enter a snoopable sub-state  
(not shown in Figure 1) to process the snoop and then return to the AutoHALT  
Powerdown state.  
2.1.1.3  
2.1.1.4  
Core C1/MWAIT Powerdown State  
C1/MWAIT is a low power state entered when the processor core executes the  
MWAIT(C1) instruction. Processor behavior in the MWAIT state is identical to the  
AutoHALT state except that Monitor events can cause the processor core to return to  
the C0 state. See the Intel® 64 and IA-32 Architectures Software Developer's Manuals,  
Volume 2A: Instruction Set Reference, A-M and Volume 2B: Instruction Set Reference,  
N-Z, for more information.  
Core C2 State  
Individual cores of the quad-core processor can enter the C2 state by initiating a  
P_LVL2 I/O read to the P_BLK or an MWAIT(C2) instruction, but the processor will not  
issue a Stop-Grant Acknowledge special bus cycle unless the STPCLK# pin is also  
asserted.  
While in the C2 state, the quad-core processor will process bus snoops and snoops  
from the other core. The processor core will enter a snoopable sub-state (not shown in  
Figure 1) to process the snoop and then return to the C2 state.  
2.1.1.5  
Core C3 State  
Individual cores of the quad-core processor can enter the C3 state by initiating a  
P_LVL3 I/O read to the P_BLK or an MWAIT(C3) instruction. Before entering C3, the  
processor core flushes the contents of its L1 caches into the processor’s L2 cache.  
Except for the caches, the processor core maintains all its architectural states in the C3  
state. The Monitor remains armed if it is configured. All of the clocks in the processor  
core are stopped in the C3 state.  
Because the core’s caches are flushed the processor keeps the core in the C3 state  
when the processor detects a snoop on the FSB or when the other core of the dual-core  
die of quad-core processor accesses cacheable memory. The processor core will  
transition to the C0 state upon occurrence of a Monitor event, SMI#, INIT#, LINT[1:0]  
(NMI, INTR), or FSB interrupt message. RESET# will cause the processor core to  
immediately initialize itself.  
2.1.1.6  
Core C4 State  
Individual cores of the quad-core processor can enter the C4 state by initiating a  
P_LVL4 or P_LVL5 I/O read to the P_BLK or an MWAIT(C4) instruction. The processor  
core behavior in the C4 state is nearly identical to the behavior in the C3 state. The  
only difference is that if all processor cores are in C4, the central power management  
logic will request that the entire processor enter the Deeper Sleep package low power  
state (see Section 2.1.2.6).  
2.1.2  
Package Low Power State Descriptions  
2.1.2.1  
Normal State  
This is the normal operating state for the processor. The processor remains in the  
Normal state when at least one of its cores is in the C0, C1/AutoHALT, or C1/MWAIT  
state.  
14  
Datasheet  
Low Power Features  
2.1.2.2  
Stop-Grant State  
When the STPCLK# pin is asserted, each core of the quad-core processor enters the  
Stop-Grant state within 20 bus clocks after the response phase of the processor-issued  
Stop-Grant Acknowledge special bus cycle. Processor cores that are already in the C2,  
C3, or C4 state remain in their current low power state. When the STPCLK# pin is  
deasserted, each core returns to its previous core low power state.  
Since the AGTL+ signal pins receive power from the FSB, these pins should not be  
driven (allowing the level to return to VCCP) for minimum power drawn by the  
termination resistors in this state. In addition, all other input pins on the FSB should be  
driven to the inactive state.  
RESET# causes the processor to immediately initialize itself, but the processor will stay  
in Stop-Grant state. When RESET# is asserted by the system, the STPCLK#, SLP#,  
DPSLP#, and DPRSTP# pins must be deasserted prior to RESET# deassertion as per AC  
Specification T45. When re-entering the Stop-Grant state from the Sleep state,  
STPCLK# should be deasserted after the deassertion of SLP# as per AC Specification  
T75.  
While in Stop-Grant state, the processor will service snoops and latch interrupts  
delivered on the FSB. The processor will latch SMI#, INIT# and LINT[1:0] interrupts  
and will service only one of each upon return to the Normal state.  
The PBE# signal may be driven when the processor is in Stop-Grant state. PBE# will be  
asserted if there is any pending interrupt or Monitor event latched within the processor.  
Pending interrupts that are blocked by the EFLAGS. IF bit being clear will still cause  
assertion of PBE#. Assertion of PBE# indicates to system logic that the entire processor  
should return to the Normal state.  
A transition to the Stop-Grant Snoop state occurs when the processor detects a snoop  
on the FSB (see Section 2.1.2.3). A transition to the Sleep state (see Section 2.1.2.4)  
occurs with the assertion of the SLP# signal.  
2.1.2.3  
2.1.2.4  
Stop-Grant Snoop State  
The processor responds to snoop or interrupt transactions on the FSB while in Stop-  
Grant state by entering the Stop-Grant Snoop state. The processor will stay in this  
state until the snoop on the FSB has been serviced (whether by the processor or  
another agent on the FSB) or the interrupt has been latched. The processor returns to  
the Stop-Grant state once the snoop has been serviced or the interrupt has been  
latched.  
Sleep State  
The Sleep state is a low power state in which the processor maintains its context,  
maintains the phase-locked loop (PLL), and stops all internal clocks. The Sleep state is  
entered through assertion of the SLP# signal while in the Stop-Grant state. The SLP#  
pin should only be asserted when the processor is in the Stop-Grant state. SLP#  
assertions while the processor is not in the Stop-Grant state is out of specification and  
may result in unapproved operation.  
In the Sleep state, the processor is incapable of responding to snoop transactions or  
latching interrupt signals. No transitions or assertions of signals (with the exception of  
SLP#, DPSLP# or RESET#) are allowed on the FSB while the processor is in Sleep  
state. Snoop events that occur while in Sleep state or during a transition into or out of  
Sleep state will cause unpredictable behavior. Any transition on an input signal before  
the processor has returned to the Stop-Grant state will result in unpredictable behavior.  
Datasheet  
15  
Low Power Features  
If RESET# is driven active while the processor is in the Sleep state, and held active as  
specified in the RESET# pin specification, then the processor will reset itself, ignoring  
the transition through the Stop-Grant state. If RESET# is driven active while the  
processor is in the Sleep state, the SLP# and STPCLK# signals should be deasserted  
immediately after RESET# is asserted to ensure the processor correctly executes the  
Reset sequence.  
While in the Sleep state, the processor is capable of entering an even lower power  
state, the Deep Sleep state, by asserting the DPSLP# pin (See Section 2.1.2.5). While  
the processor is in the Sleep state, the SLP# pin must be deasserted if another  
asynchronous FSB event needs to occur.  
2.1.2.5  
Deep Sleep State  
The Deep Sleep state is entered through assertion of the DPSLP# pin while in the Sleep  
state. BCLK may be stopped during the Deep Sleep state for additional platform-level  
power savings. BCLK stop/restart timings on appropriate GMCH-based platforms with  
the CK505 clock chip are as follows:  
Deep Sleep entry: the system clock chip may stop/tristate BCLK within 2 BCLKs  
of DPSLP# assertion. It is permissible to leave BCLK running during Deep Sleep.  
Deep Sleep exit: the system clock chip must drive BCLK to differential DC levels  
within 2-3 ns of DPSLP# deassertion and start toggling BCLK within 10 BCLK  
periods.  
To re-enter the Sleep state, the DPSLP# pin must be deasserted. BCLK can be re-  
started after DPSLP# deassertion as described above. A period of 15 microseconds (to  
allow for PLL stabilization) must occur before the processor can be considered to be in  
the Sleep state. Once in the Sleep state, the SLP# pin must be deasserted to re-enter  
the Stop-Grant state.  
While in Deep Sleep state, the processor is incapable of responding to snoop  
transactions or latching interrupt signals. No transitions of signals are allowed on the  
FSB while the processor is in Deep Sleep state. When the processor is in Deep Sleep  
state, it will not respond to interrupts or snoop transactions. Any transition on an input  
signal before the processor has returned to Stop-Grant state will result in unpredictable  
behavior.  
2.1.2.6  
Deeper Sleep State  
The Deeper Sleep state is similar to the Deep Sleep state but further reduces core  
voltage levels. One of the potential lower core voltage levels is achieved by entering the  
base Deeper Sleep state. The Deeper Sleep state is entered through assertion of the  
DPRSTP# pin while in the Deep Sleep state.  
In response to entering Deeper Sleep, the processor drives the VID code corresponding  
to the Deeper Sleep core voltage on the VID[6:0] pins.  
Exit from Deeper Sleep state is initiated by DPRSTP# deassertion when either core  
requests a core state other than C4 or either core requests a processor performance  
state other than the lowest operating point.  
16  
Datasheet  
Low Power Features  
2.2  
Enhanced Intel SpeedStep® Technology  
The processor features Enhanced Intel SpeedStep Technology. Following are the key  
features of Enhanced Intel SpeedStep Technology:  
• Multiple voltage and frequency operating points provide optimal performance at the  
lowest power.  
• Voltage and frequency selection is software-controlled by writing to processor  
MSRs:  
— If the target frequency is higher than the current frequency, VCC is ramped up  
in steps by placing new values on the VID pins, and the PLL then locks to the  
new frequency.  
— If the target frequency is lower than the current frequency, the PLL locks to the  
new frequency and the VCC is changed through the VID pin mechanism.  
— Software transitions are accepted at any time. If a previous transition is in  
progress, the new transition is deferred until the previous transition completes.  
• The processor controls voltage ramp rates internally to ensure glitch-free  
transitions.  
• Low transition latency and large number of transitions possible per second:  
— Processor core (including L2 cache) is unavailable for up to 10 ms during the  
frequency transition.  
— The bus protocol (BNR# mechanism) is used to block snooping.  
• Improved Intel® Thermal Monitor mode:  
— When the on-die thermal sensor indicates that the die temperature is too high  
the processor can automatically perform a transition to a lower frequency and  
voltage specified in a software-programmable MSR.  
— The processor waits for a fixed time period. If the die temperature is down to  
acceptable levels, an up-transition to the previous frequency and voltage point  
occurs.  
— An interrupt is generated for the up and down Intel Thermal Monitor transitions  
enabling better system-level thermal management.  
• Enhanced thermal management features:  
— Digital Thermal Sensor and Out of Specification detection.  
— Intel Thermal Monitor 1 (TM1) in addition to Intel Thermal Monitor 2 (TM2) in  
case of unsuccessful TM2 transition.  
— Quad core thermal management synchronization.  
Each core in the quad-core processor implements an independent MSR for controlling  
Enhanced Intel SpeedStep Technology, but all cores must operate at the same voltage.  
The processor has performance state coordination logic to resolve frequency and  
voltage requests from the four cores into a single voltage request for the package as a  
whole. If all cores request the same frequency and voltage, then the processor will  
transition to the requested common frequency and voltage.  
2.3  
Extended Low Power States  
Extended low power states (CXE) optimize for power by forcibly reducing the  
performance state of the processor when it enters a package low power state. Instead  
of directly transitioning into the package low power low power state, the enhanced  
package low power state first reduces the performance state of the processor by  
performing an Enhanced Intel SpeedStep Technology transition down to the lowest  
Datasheet  
17  
Low Power Features  
operating point. Upon receiving a break event from the package low power state,  
control will be returned to software while an Enhanced Intel SpeedStep Technology  
transition up to the initial operating point occurs. The advantage of this feature is that it  
significantly reduces leakage while in the Stop-Grant and Deeper Sleep states.  
Note:  
Long-term reliability cannot be assured unless all the Extended Low Power States are  
enabled.  
The processor implements two software interfaces for requesting enhanced package  
low power states: MWAIT instruction extensions with sub-state hints and via BIOS by  
configuring IA32_MISC_ENABLES MSR bits to automatically promote package low  
power states to enhanced package low power states.  
Caution:  
Caution:  
Extended Stop-Grant must be enabled via the BIOS for the processor to  
remain within specification. As processor technology changes, enabling the  
extended low power states becomes increasingly crucial when building computer  
systems. Maintaining the proper BIOS configuration is key to reliable, long-term  
system operation. Not complying to this guideline may affect the long-term reliability of  
the processor.  
Enhanced Intel SpeedStep Technology transitions are multistep processes  
that require clocked control. These transitions cannot occur when the processor is in  
the Sleep or Deep Sleep package low power states since processor clocks are not active  
in these states. Extended Deeper Sleep is an exception to this rule when the Hard C4E  
configuration is enabled in the IA32_MISC_ENABLES MSR. This Extended Deeper Sleep  
state configuration will lower core voltage to the Deeper Sleep level while in Deeper  
Sleep and, upon exit, will automatically transition to the lowest operating voltage and  
frequency to reduce snoop service latency. The transition to the lowest operating point  
or back to the original software-requested point may not be instantaneous.  
Furthermore, upon very frequent transitions between active and idle states, the  
transitions may lag behind the idle state entry resulting in the processor either  
executing for a longer time at the lowest operating point or running idle at a high  
operating point. Observations and analyses show this behavior should not significantly  
impact total power savings or performance score while providing power benefits in  
most other cases.  
2.4  
FSB Low Power Enhancements  
The processor incorporates FSB low power enhancements:  
• BPRI# control for address and control input buffers  
• Dynamic Bus Parking  
• Dynamic On-Die Termination disabling  
• Low VCCP (I/O termination voltage)  
The processor incorporates the DPWR# signal that controls the data bus input buffers  
on the processor. The DPWR# signal disables the buffers when not used and activates  
them only when data bus activity occurs, resulting in significant power savings with no  
performance impact. BPRI# control also allows the processor address and control input  
buffers to be turned off when the BPRI# signal is inactive. Dynamic Bus Parking allows  
a reciprocal power reduction in GMCH address and control input buffers when the  
processor deasserts its BR0# pin. The On-Die Termination on the processor FSB buffers  
is disabled when the signals are driven low, resulting in additional power savings. The  
low I/O termination voltage is on a dedicated voltage plane independent of the core  
voltage, enabling low I/O switching power at all times.  
18  
Datasheet  
Low Power Features  
2.4.1  
Dual Intel Dynamic Acceleration  
The processor supports Dual Intel Dynamic Acceleration. For any two cores in the  
quad-core processor, the Dual Intel Dynamic Acceleration feature allows one core to  
operate at a higher frequency point while the other core is inactive and the operating  
system requests increased performance. Thus, quad-core processor could enter Dual  
Intel Dynamic Acceleration when two cores are idle and the other two are active. This  
higher frequency is called the opportunistic frequency and the maximum rated  
operating frequency is the ensured frequency.  
Dual Intel Dynamic Acceleration enabling requires exposure, via BIOS, of the  
opportunistic frequency as the highest ACPI P state  
2.5  
Processor Power Status Indicator (PSI-2) Signal  
The processor incorporates the PSI# signal that is asserted when the processor is in a  
reduced power consumption state. PSI# can be used to improve intermediate and light  
load efficiency of the voltage regulator, resulting in platform power savings and  
extended battery life. The algorithm that the processor uses for determining when to  
assert PSI# is different from the algorithm used in previous mobile processors.  
PSI-2 functionality improves overall voltage regulator efficiency over a wide power  
range based on the C-state and P-state of the four cores. The combined C-state of all  
cores are used to dynamically predict processor power. The PSI-2 functionality logic  
diagram is shown in Figure 3.  
Figure 3.  
PSI-2 Functionality Logic Diagram  
§
Datasheet  
19  
Low Power Features  
20  
Datasheet  
Electrical Specifications  
3 Electrical Specifications  
3.1  
Power and Ground Pins  
For clean, on-chip power distribution, the processor will have a large number of VCC  
(power) and VSS (ground) inputs. All power pins must be connected to VCC power  
planes while all VSS pins must be connected to system ground planes. Use of multiple  
power and ground planes is recommended to reduce I*R drop. Refer to the platform  
design guides for more details. The processor VCC pins must be supplied the voltage  
determined by the VID (Voltage ID) pins.  
3.2  
Decoupling Guidelines  
Due to its large number of transistors and high internal clock speeds, the processor is  
capable of generating large average current swings between low and full power states.  
This may cause voltages on power planes to sag below their minimum values if bulk  
decoupling is not adequate. Larger bulk storage, such as electrolytic capacitors, supply  
current during longer lasting changes in current demand by the component, such as  
coming out of an idle condition. Similarly, they act as a storage well for current when  
entering an idle condition from a running condition. Care must be taken in the board  
design to ensure that the voltage provided to the processor remains within the  
specifications listed in Table 3. Failure to do so may result in timing violations or  
reduced lifetime of the component.  
3.2.1  
V Decoupling  
CC  
VCC regulator solutions need to provide bulk capacitance with a low Effective Series  
Resistance (ESR) and keep a low interconnect resistance from the regulator to the  
socket. Bulk decoupling for the large current swings when the part is powering on, or  
entering/exiting low-power states, should be provided by the voltage regulator solution  
depending on the specific system design.  
3.2.2  
3.2.3  
FSB AGTL+ Decoupling  
The processors integrate signal termination on the die as well as incorporate high  
frequency decoupling capacitance on the processor package. Decoupling must also be  
provided by the system motherboard for proper AGTL+ bus operation.  
FSB Clock (BCLK[1:0]) and Processor Clocking  
BCLK[1:0] directly controls the FSB interface speed as well as the core frequency of the  
processor. As in previous-generation processors, the processor core frequency is a  
multiple of the BCLK[1:0] frequency. The processor bus ratio multiplier will be set at its  
default ratio at manufacturing.The processor uses a differential clocking  
implementation.  
Datasheet  
21  
Electrical Specifications  
3.3  
Voltage Identification and Power Sequencing  
The processor uses seven voltage identification pins,VID[6:0], to support automatic  
selection of power supply voltages. The VID pins for the processor are CMOS outputs  
driven by the processor VID circuitry. Table 3 specifies the voltage level corresponding  
to the state of VID[6:0]. A 1 in the table refers to a high-voltage level and a 0 refers to  
a low-voltage level.  
22  
Datasheet  
Electrical Specifications  
Table 3.  
Voltage Identification Definition (Sheet 1 of 4)  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
VCC (V)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1.5000  
1.4875  
1.4750  
1.4625  
1.4500  
1.4375  
1.4250  
1.4125  
1.4000  
1.3875  
1.3750  
1.3625  
1.3500  
1.3375  
1.3250  
1.3125  
1.3000  
1.2875  
1.2750  
1.2625  
1.2500  
1.2375  
1.2250  
1.2125  
1.2000  
1.1875  
1.1750  
1.1625  
1.1500  
1.1375  
1.1250  
1.1125  
1.1000  
1.0875  
1.0750  
1.0625  
1.0500  
Datasheet  
23  
Electrical Specifications  
Table 3.  
Voltage Identification Definition (Sheet 2 of 4)  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
VCC (V)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1.0375  
1.0250  
1.0125  
1.0000  
0.9875  
0.9750  
0.9625  
0.9500  
0.9375  
0.9250  
0.9125  
0.9000  
0.8875  
0.8750  
0.8625  
0.8500  
0.8375  
0.8250  
0.8125  
0.8000  
0.7875  
0.7750  
0.7625  
0.7500  
0.7375  
0.7250  
0.7125  
0.7000  
0.6875  
0.6750  
0.6625  
0.6500  
0.6375  
0.6250  
0.6125  
0.6000  
0.5875  
0.5750  
24  
Datasheet  
Electrical Specifications  
Table 3.  
Voltage Identification Definition (Sheet 3 of 4)  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
VCC (V)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0.5625  
0.5500  
0.5375  
0.5250  
0.5125  
0.5000  
0.4875  
0.4750  
0.4625  
0.4500  
0.4375  
0.4250  
0.4125  
0.4000  
0.3875  
0.3750  
0.3625  
0.3500  
0.3375  
0.3250  
0.3125  
0.3000  
0.2875  
0.2750  
0.2625  
0.2500  
0.2375  
0.2250  
0.2125  
0.2000  
0.1875  
0.1750  
0.1625  
0.1500  
0.1375  
0.1250  
0.1125  
0.1000  
Datasheet  
25  
Electrical Specifications  
Table 3.  
Voltage Identification Definition (Sheet 4 of 4)  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
VCC (V)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.0875  
0.0750  
0.0625  
0.0500  
0.0375  
0.0250  
0.0125  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
3.4  
3.5  
Catastrophic Thermal Protection  
The processor supports the THERMTRIP# signal for catastrophic thermal protection. An  
external thermal sensor should also be used to protect the processor and the system  
against excessive temperatures. Even with the activation of THERMTRIP#, which halts  
all processor internal clocks and activity, leakage current can be high enough that the  
processor cannot be protected in all conditions without the removal of power to the  
processor. If the external thermal sensor detects a catastrophic processor temperature  
of 125°C (maximum), or if the THERMTRIP# signal is asserted, the VCC supply to the  
processor must be turned off within 500 ms to prevent permanent silicon damage due  
to thermal runaway of the processor. THERMTRIP# functionality is not ensured if the  
PWRGOOD signal is not asserted.  
Reserved and Unused Pins  
All RESERVED (RSVD) pins must remain unconnected. Connection of these pins to VCC  
,
VSS, or to any other signal (including each other) can result in component malfunction  
or incompatibility with future processors. See Section 4.2 for a pin listing of the  
processor and the location of all RSVD pins.  
For reliable operation, always connect unused inputs or bidirectional signals to an  
appropriate signal level. Unused active low AGTL+ inputs may be left as no-connects if  
AGTL+ termination is provided on the processor silicon. Unused active high inputs  
should be connected through a resistor to ground (VSS). Unused outputs can be left  
unconnected. The TEST1,TEST2,TEST3,TEST4,TEST5,TEST6,TEST7 pins are used for  
test purposes internally and can be left as “No Connects.  
26  
Datasheet  
Electrical Specifications  
3.6  
FSB Frequency Select Signals (BSEL[2:0])  
The BSEL[2:0] signals are used to select the frequency of the processor input clock  
(BCLK[1:0]). These signals should be connected to the clock chip and the appropriate  
chipset on the platform. The BSEL encoding for BCLK[1:0] is shown in Table 4.  
Table 4.  
BSEL[2:0] Encoding for BCLK Frequency  
BSEL[2]  
BSEL[1] BSEL[0]  
BCLK Frequency  
L
L
L
L
L
H
H
L
266 MHz  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
L
H
H
H
H
L
L
H
H
H
H
L
H
H
L
L
3.7  
FSB Signal Groups  
The FSB signals have been combined into groups by buffer type in the following  
sections. AGTL+ input signals have differential input buffers that use GTLREF as a  
reference level. In this document, the term “AGTL+ Input” refers to the AGTL+ input  
group as well as the AGTL+ I/O group when receiving. Similarly, “AGTL+ Output” refers  
to the AGTL+ output group as well as the AGTL+ I/O group when driving.  
With the implementation of a source-synchronous data bus, two sets of timing  
parameters need to be specified. One set is for common clock signals, which are  
dependent upon the rising edge of BCLK0 (ADS#, HIT#, HITM#, etc.), and the second  
set is for the source-synchronous signals which are relative to their respective strobe  
lines (data and address) as well as the rising edge of BCLK0. Asychronous signals are  
still present (A20M#, IGNNE#, etc.) and can become active at any time during the  
clock cycle. Table 5 identifies which signals are common clock, source synchronous,  
and asynchronous.  
Datasheet  
27  
Electrical Specifications  
Table 5.  
FSB Pin Groups  
Signal Group  
Type  
Signals1  
AGTL+ Common Clock  
Input  
Synchronous  
to BCLK[1:0]  
BPRI#, DEFER#, PREQ#5, RESET#, RS[2:0]#,  
TRDY#  
ADS#, BNR#, BPM[3:0]#3, BPM_2[3:0]#3, BR0#,  
BR1#, DBSY#, DRDY#, HIT#, HITM#, LOCK#,  
PRDY#3, DPWR#  
Synchronous  
to BCLK[1:0]  
AGTL+ Common Clock I/O  
Signals  
Associated Strobe  
REQ[4:0]#, A[16:3]# ADSTB[0]#  
A[35:17]#  
ADSTB[1]#  
Synchronous  
to assoc.  
strobe  
AGTL+ Source  
Synchronous I/O  
D[15:0]#, DINV0#  
D[31:16]#, DINV1#  
D[47:32]#, DINV2#  
D[63:48]#, DINV3#  
DSTBP0#, DSTBN0#  
DSTBP1#, DSTBN1#  
DSTBP2#, DSTBN2#  
DSTBP3#, DSTBN3#  
Synchronous  
to BCLK[1:0]  
AGTL+ Strobes  
CMOS Input  
ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]#  
A20M#, DPRSTP#, DPSLP#, IGNNE#, INIT#,  
Asynchronous LINT0/INTR, LINT1/NMI, PWRGOOD, SMI#, SLP#,  
STPCLK#  
Open Drain Output  
Open Drain I/O  
CMOS Output  
Asynchronous FERR#, IERR#, THERMTRIP#  
Asynchronous PROCHOT#4  
Asynchronous PSI#, VID[6:0], BSEL[2:0]  
Synchronous  
CMOS Input  
TCK, TDI, TDI_M, TMS, TRST#  
to TCK  
Synchronous  
TDO, TDO_M  
to TCK  
Open Drain Output  
FSB Clock  
Clock  
BCLK[1:0]  
COMP[3:0], DBR#2, GTLREF, GTLREF_2, RSVD,  
TEST2, TEST1, THERMDA, THERMDA_2,  
THERMDC, THERMDC_2, VCC, VCCA, VCCP,  
Power/Other  
V
CC_SENSE, VSS, VSS_SENSE  
NOTES:  
1.  
2.  
Refer to Chapter 4 for signal descriptions and termination requirements.  
In processor systems where there is no debug port implemented on the system board,  
these signals are used to support a debug port interposer. In systems with the debug port  
implemented on the system board, these signals are no connects.  
BPM[2:1]#,BPM_2[1]# and PRDY# are AGTL+ output-only signals.  
PROCHOT# signal type is open drain output and CMOS input.  
3.  
4.  
5.  
On-die termination differs from other AGTL+ signals.  
28  
Datasheet  
Electrical Specifications  
3.8  
3.9  
CMOS Signals  
CMOS input signals are shown in Table 5. Legacy output FERR#, IERR# and other non-  
AGTL+ signals (THERMTRIP# and PROCHOT#) use Open Drain output buffers. These  
signals do not have setup or hold time specifications in relation to BCLK[1:0]. However,  
all of the CMOS signals are required to be asserted for more than four BCLKs for the  
processor to recognize them. See Section 3.10 for DC specifications for the CMOS  
signal groups.  
Maximum Ratings  
Table 6 specifies absolute maximum and minimum ratings only and these lie outside  
the functional limits of the processor. Only within functional operation limits,  
functionality and long-term reliability can be expected.  
At conditions outside functional operation condition limits, but within absolute  
maximum and minimum ratings, neither functionality nor long-term reliability can be  
expected. If a device is returned to conditions within functional operation limits after  
having been subjected to conditions outside these limits, but within the absolute  
maximum and minimum ratings, the device may be functional, but with its lifetime  
degraded.  
At conditions exceeding the absolute maximum and minimum ratings, neither  
functionality nor long-term reliability can be expected. Moreover, if a device is  
subjected to these conditions for any length of time then, when returned to conditions  
within the functional operating condition limits, it will either not function or its reliability  
will be severely degraded.  
Although the processor contains protective circuitry to resist damage from static  
electric discharge, precautions should always be taken to avoid high static voltages or  
electric fields.  
Table 6.  
Processor Absolute Maximum Ratings  
Symbol  
TSTORAGE  
Parameter  
Min  
Max  
Unit Notes1,5  
Processor Storage Temperature  
-40  
85  
°C  
V
2,3,4  
Any Processor Supply Voltage with Respect  
to VSS  
VCC  
-0.3  
-0.1  
-0.1  
1.45  
1.45  
1.45  
AGTL+ Buffer DC Input Voltage with  
Respect to VSS  
VinAGTL+  
VinAsynch_CMOS  
NOTES:  
V
V
CMOS Buffer DC Input Voltage with Respect  
to VSS  
1.  
For functional operation, all processor electrical, signal quality, mechanical and thermal  
specifications must be satisfied.  
2.  
Storage temperature is applicable to storage conditions only. In this scenario, the  
processor must not receive a clock, and no lands can be connected to a voltage bias.  
Storage within these limits will not affect the long-term reliability of the device. For  
functional operation, please refer to the processor case temperature specifications.  
This rating applies to the processor and does not include any tray or packaging.  
Failure to adhere to this specification can affect the long-term reliability of the processor.  
3.  
4.  
Datasheet  
29  
Electrical Specifications  
3.10  
Processor DC Specifications  
The processor DC specifications in this section are defined at the processor  
core (pads) unless noted otherwise. See Table 5 for the pin signal definitions and  
signal pin assignments.  
The table below lists the DC specifications for the processor and are valid only while  
meeting specifications for junction temperature, clock frequency, and input voltages.  
The Highest Frequency Mode (HFM) and Lowest Frequency Mode (LFM) refer to the  
highest and lowest core operating frequencies supported on the processor. Active mode  
load line specifications apply in all states except in the Deep Sleep and Deeper Sleep  
states. VCC,BOOT is the default voltage driven by the voltage regulator at power up in  
order to set the VID values. Unless specified otherwise, all specifications for the  
processor are at TJ = 100°C. Read all notes associated with each parameter.  
Table 7.  
Voltage and Current Specifications for the Quad-Core Extreme Mobile  
Processors (Sheet 1 of 2)  
Symbol  
VCCDAM  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
VCC in Intel Dynamic Acceleration  
Technology Mode  
0.90  
1.30  
V
1, 2  
VCCHFM  
VCCLFM  
VCC at Highest Frequency Mode (HFM)  
VCC at Lowest Frequency Mode (LFM)  
0.90  
0.85  
1.25  
1.10  
V
V
1, 2  
1, 2  
Default VCC Voltage for Initial Power  
Up  
VCC,BOOT  
1.20  
V
2, 5, 6  
VCCP  
AGTL+ Termination Voltage  
PLL Supply Voltage  
1.00  
1.425  
0.65  
1.05  
1.5  
1.10  
1.575  
0.85  
V
V
V
VCCA  
VCCDPRSLP  
VCC at Deeper Sleep  
1, 2  
ICC for Processors Recommended  
Design Target  
ICCDES  
64  
A
5, 10  
ICC for Processors  
Processor  
Core Frequency/Voltage  
Number  
ICC  
QX9300  
2.53 GHz & VCCHFM  
1.60 GHz & VCCLFM  
64  
47  
A
A
3, 4  
3, 4  
ICC Auto-Halt & Stop-Grant  
HFM  
LFM  
IAH,  
ISGNT  
32.4  
30.0  
ICC Sleep  
HFM  
LFM  
ISLP  
31.8  
29.7  
A
3, 4  
ICC Deep Sleep  
IDSLP  
HFM  
LFM  
30.1  
28.8  
A
A
3, 4  
3, 4  
IDPRSLP  
ICC Deeper Sleep  
20.5  
30  
Datasheet  
Electrical Specifications  
Table 7.  
Voltage and Current Specifications for the Quad-Core Extreme Mobile  
Processors (Sheet 2 of 2)  
Symbol  
dICC/DT  
ICCA  
ICCP  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
VCC Power Supply Current Slew Rate  
at Processor Package Pin  
600  
130  
A/µs  
mA  
5, 7  
ICC for VCCA Supply  
ICC for VCCP Supply before VCC Stable  
ICC for VCCP Supply after VCC Stable  
4.5  
2.5  
A
A
8, 9  
NOTES:  
1.  
Each processor is programmed with a maximum valid voltage identification value (VID),  
which is set at manufacturing and cannot be altered. Individual maximum VID values are  
calibrated during manufacturing such that two processors at the same frequency may have  
different settings within the VID range. Note that this differs from the VID employed by  
the processor during a power management event (Intel Thermal Monitor 2, Enhanced Intel  
SpeedStep Technology, or Enhanced Halt State).  
2.  
The voltage specifications are assumed to be measured across VCC_SENSE and VSS_SENSE  
pins at socket with a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe  
capacitance, and 1-MΩ minimum impedance. The maximum length of ground wire on the  
probe should be less than 5 mm. Ensure external noise from the system is not coupled in  
the scope probe.  
3.  
4.  
5.  
6.  
7.  
Specified at 100°C TJ.  
Specified at the nominal VCC  
Measured at the bulk capacitors on the motherboard.  
CC,BOOT tolerance shown in Figure 4 and Figure 5.  
.
V
Based on simulations and averaged over the duration of any change in current. Specified  
by design/characterization at nominal VCC. Not 100% tested.  
8.  
This is a power-up peak current specification, which is applicable when VCCP is high and  
V
CC_CORE is low.  
This is a steady-state ICC current specification, which is applicable when both VCCP and  
CC_CORE are high.  
9.  
V
10.  
Instantaneous current ICC_CORE_INST of 85 A has to be sustained for short time (tINST) of  
35µs. Average current will be less than maximum specified ICCDES. VR OCP threshold  
should be high enough to support current levels described herein.  
Table 8.  
Voltage and Current Specifications for the Quad-Core Mobile Processors  
(Sheet 1 of 2)  
Symbol  
VCCDAM  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
VCC in Intel Dynamic Acceleration  
Technology Mode  
0.90  
1.30  
V
1, 2  
VCCHFM  
VCCLFM  
VCC at Highest Frequency Mode (HFM)  
VCC at Lowest Frequency Mode (LFM)  
0.90  
0.85  
1.25  
1.10  
V
V
1, 2  
1, 2  
Default VCC Voltage for Initial Power  
Up  
VCC,BOOT  
1.20  
V
2, 5, 6  
VCCP  
AGTL+ Termination Voltage  
PLL Supply Voltage  
1.00  
1.425  
0.65  
1.05  
1.5  
1.10  
1.575  
0.85  
V
V
V
VCCA  
VCCDPRSLP  
VCC at Deeper Sleep  
1, 2  
ICC for Processors Recommended  
Design Target  
ICCDES  
64  
A
5, 10  
Datasheet  
31  
Electrical Specifications  
Table 8.  
Voltage and Current Specifications for the Quad-Core Mobile Processors  
(Sheet 2 of 2)  
Symbol  
Parameter  
ICC for Processors  
Min  
Typ  
Max  
Unit  
Notes  
Processor  
Number  
Core Frequency/Voltage  
ICC  
Q9100  
2.26 GHz & VCCHFM  
1.60 GHz & VCCLFM  
64  
47  
A
A
3, 4  
3, 4  
Q9000  
2.0 GHz & VCCHFM  
1.60 GHz & VCCLFM  
64  
47  
ICC Auto-Halt & Stop-Grant  
HFM  
LFM  
IAH,  
ISGNT  
32.4  
30.0  
A
A
A
3, 4  
3, 4  
3, 4  
ICC Sleep  
HFM  
LFM  
ISLP  
31.8  
29.7  
ICC Deep Sleep  
HFM  
LFM  
IDSLP  
30.1  
28.8  
IDPRSLP  
dICC/DT  
ICCA  
ICC Deeper Sleep  
20.5  
600  
130  
A
3, 4  
5, 7  
VCC Power Supply Current Slew Rate  
at Processor Package Pin  
A/µs  
mA  
ICC for VCCA Supply  
ICC for VCCP Supply before VCC Stable  
4.5  
2.5  
A
A
ICCP  
8,9  
I
CC for VCCP Supply after VCC Stable  
NOTES:  
1.  
Each processor is programmed with a maximum valid voltage identification value (VID),  
which is set at manufacturing and cannot be altered. Individual maximum VID values are  
calibrated during manufacturing such that two processors at the same frequency may have  
different settings within the VID range. Note that this differs from the VID employed by  
the processor during a power management event (Intel Thermal Monitor 2, Enhanced Intel  
SpeedStep Technology, or Enhanced Halt State).  
2.  
The voltage specifications are assumed to be measured across VCC_SENSE and VSS_SENSE  
pins at socket with a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe  
capacitance, and 1-MΩ minimum impedance. The maximum length of ground wire on the  
probe should be less than 5 mm. Ensure external noise from the system is not coupled in  
the scope probe.  
3.  
4.  
5.  
6.  
7.  
Specified at 100°C TJ.  
Specified at the nominal VCC  
Measured at the bulk capacitors on the motherboard.  
CC,BOOT tolerance shown in Figure 4 and Figure 5.  
.
V
Based on simulations and averaged over the duration of any change in current. Specified  
by design/characterization at nominal VCC. Not 100% tested.  
8.  
This is a power-up peak current specification, which is applicable when VCCP is high and  
V
CC_CORE is low.  
This is a steady-state ICC current specification, which is applicable when both VCCP and  
CC_CORE are high.  
9.  
V
10.  
Instantaneous current ICC_CORE_INST of 85 A has to be sustained for short time (tINST) of  
35µs. Average current will be less than maximum specified ICCDES. VR OCP threshold  
should be high enough to support current levels described herein.  
32  
Datasheet  
Electrical Specifications  
Figure 4.  
Active VCC and ICC Loadline for Quad-Core Extreme Mobile Processor  
VCC-CORE [V]  
Slope = -2.1 mV/A at package  
VccSense, VssSense pins.  
Differential Remote Sense required.  
VCC-CORE max {HFM|LFM}  
VCC-CORE, DC max {HFM|LFM}  
10mV= RIPPLE  
VCC-CORE nom {HFM|LFM}  
VCC-CORE, DC min {HFM|LFM}  
VCC-CORE min {HFM|LFM}  
+/-VCC-CORE Tolerance  
= VR St. Pt. Error 1/  
ICC-CORE  
[A]  
0
ICC-CORE max  
{HFM|LFM}  
Note 1/ VCC-CORE Set Point Error Tolerance is per below :  
Tolerance VCC-CORE VID Voltage Range  
--------------- --------------------------------------------------------  
+/-1.5% VCC-CORE > 0.7500V  
+/-11.5mV 0.5000V </= Vcc_core </= 0.75000V  
Datasheet  
33  
Electrical Specifications  
Figure 5.  
Deeper Sleep VCC and ICC Loadline for Quad-Core Extreme Mobile Processor  
VCC-CORE [V]  
Slope = -2.1 mV/A at package  
VccSense, VssSense pins.  
Differential Remote Sense required.  
VCC-CORE max {HFM|LFM}  
VCC-CORE, DC max {HFM|LFM}  
13mV= RIPPLE  
VCC-CORE nom {HFM|LFM}  
VCC-CORE, DC min {HFM|LFM}  
VCC-CORE min {HFM|LFM}  
+/-VCC-CORE Tolerance  
= VR St. Pt. Error 1/  
ICC-CORE  
[A]  
0
ICC-CORE max  
{HFM|LFM}  
Note 1/ VCC-CORE Set Point Error Tolerance is per below:  
Tolerance  
VCC-CORE VID Voltage Range  
--------------- --------------------------------------------------------  
+/-[(VID*1.5%)-3mV]  
+/-(11.5mV-3mV)  
VCC-CORE > 0.7500V  
0.5000V </= VCC-CORE </= 0.7500V  
0.3000V </= VCC-CORE < 0.5000V  
NOTE: Deeper Sleep mode tolerance depends on VID value.  
Table 9.  
AGTL+ Signal Group DC Specifications (Sheet 1 of 2)  
Symbol  
Parameter  
I/O Voltage  
Reference Voltage  
Min  
Typ  
Max  
Unit  
Notes1  
VCCP  
1.00  
0.65  
1.05  
0.70  
0.67  
25  
1.10  
0.72  
0.7  
V
V
V
Ω
GTLREF  
6
6
GTLREF_2 Reference Voltage_2  
0.653  
24.75  
RCOMP  
RODT/A  
Compensation Resistor  
25.25  
10  
Termination Resistor  
Address  
45  
45  
45  
50  
50  
50  
55  
55  
55  
Ω
Ω
Ω
11, 12  
11, 13  
11, 14  
Termination Resistor  
Data  
RODT/D  
Termination Resistor  
Control  
RODT/Cntrl  
VIH  
VIL  
Input High Voltage  
Input Low Voltage  
Output High Voltage  
0.82  
-0.10  
0.90  
1.05  
0
1.20  
0.55  
1.10  
V
V
V
3,6  
2,4  
6
VOH  
VCCP  
34  
Datasheet  
Electrical Specifications  
Table 9.  
AGTL+ Signal Group DC Specifications (Sheet 2 of 2)  
Termination Resistance  
Address  
RTT/A  
RTT/D  
RTT/Cntrl  
RON/A  
45  
45  
50  
50  
55  
55  
Ω
Ω
Ω
Ω
Ω
Ω
7, 12  
7, 13  
7, 14  
5, 12  
5, 13  
5, 14  
Termination Resistance  
Data  
Termination Resistance  
Control  
45  
50  
55  
Buffer On Resistance  
Address  
8.25  
8.25  
8.25  
8.33  
8.33  
8.33  
12.25  
12.25  
12.25  
Buffer On Resistance  
Data  
RON/D  
Buffer On Resistance  
Control  
RON/Cntrl  
ILI  
Input Leakage Current  
Pad Capacitance  
± 100  
2.75  
µA  
pF  
8
9
Cpad  
1.80  
2.30  
NOTES:  
1.  
2.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
IL is defined as the maximum voltage level at a receiving agent that will be interpreted as  
a logical low value.  
IH is defined as the minimum voltage level at a receiving agent that will be interpreted as  
a logical high value.  
IH and VOH may experience excursions above VCCP. However, input signal drivers must  
comply with the signal quality specifications.  
This is the pulldown driver resistance. Refer to processor I/O Buffer Models for I/V  
characteristics. Measured at 0.31*VCCP. RON (min) = 0.418*RTT, RON (typ) = 0.455*RTT,  
V
3.  
4.  
5.  
V
V
RON (max) = 0.527*RTT. RTT typical value of 55 Ω is used for RON typ/min/max  
calculations.  
6.  
7.  
GTLREF/GTLREF_2 should be generated from VCCP with a 1% tolerance resistor divider.  
The VCCP referred to in these specifications is the instantaneous VCCP  
.
RTT is the on-die termination resistance measured at VOL of the AGTL+ output driver.  
Measured at 0.31*VCCP. RTT is connected to VCCP on die. Refer to processor I/O buffer  
models for I/V characteristics.  
8.  
Specified with on-die RTT and RON turned off. Vin between 0 and VCCP.  
9.  
Cpad includes die capacitance only. No package parasitics are included.  
This is the external resistor on the comp pins.  
10.  
11.  
12.  
13.  
14.  
On-die termination resistance, measured at 0.33*VCCP  
.
Applies to Signals A[35:3].  
Applies to Signals D[63:0].  
Applies to Signals BPRI#, DEFER#, PREQ#, PREST#, RS[2:0]#, TRDY#, ADS#, BNR#,  
BPM[3:0], BR0#, DBSY#, DRDY#, HIT#, HITM#, LOCK#, PRDY#, DPWR#, DSTB[1:0]#,  
DSTBP[3:0] and DSTBN[3:0]#.  
Datasheet  
35  
Electrical Specifications  
Table 10.  
CMOS Signal Group DC Specifications  
Symbol  
Parameter  
I/O Voltage  
Min  
Typ  
Max  
Unit Notes1  
VCCP  
VIL  
1.00  
-0.10  
0.7*VCCP  
-0.10  
0.9*VCCP  
1.5  
1.05  
0.00  
VCCP  
0
1.10  
0.3*VCCP  
VCCP+0.1  
0.1*VCCP  
VCCP+0.1  
4.1  
V
Input Low Voltage CMOS  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Output Low Current  
Output High Current  
Input Leakage Current  
Pad Capacitance  
V
V
2, 3  
2
VIH  
VOL  
VOH  
IOL  
V
2
VCCP  
V
2
mA  
mA  
µA  
pF  
4
IOH  
1.5  
4.1  
5
ILI  
±100  
6
Cpad1  
1.80  
2.30  
2.75  
7
Pad Capacitance for CMOS  
Input  
Cpad2  
0.95  
1.2  
1.45  
pF  
8
NOTES:  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
The VCCP referred to in these specifications refers to instantaneous VCCP  
Refer to the processor I/O Buffer Models for I/V characteristics.  
Measured at 0.1 *VCCP  
Measured at 0.9 *VCCP  
For Vin between 0 V and VCCP. Measured when the driver is tristated.  
Cpad1 includes die capacitance only for DPRSTP#, DPSLP#, PWRGOOD. No package  
parasitics are included.  
.
.
.
8.  
Cpad2 includes die capacitance for all other CMOS input signals. No package parasitics are  
included.  
Table 11.  
Open Drain Signal Group DC Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit Notes1  
VOH  
VOL  
IOL  
Output High Voltage  
Output Low Voltage  
Output Low Current  
Output Leakage Current  
Pad Capacitance  
VCCP–5%  
VCCP  
VCCP+5%  
0.20  
V
V
3
0
16  
50  
mA  
µA  
pF  
2
4
5
ILO  
±200  
2.75  
Cpad  
1.80  
2.30  
NOTES:  
1.  
2.  
3.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
Measured at 0.2 V.  
V
OH is determined by value of the external pull-up resistor to VCCP. Refer to the appropriate  
platform design guide for details.  
For Vin between 0 V and VOH  
4.  
5.  
.
Cpad includes die capacitance only. No package parasitics are included.  
§
36  
Datasheet  
Package Mechanical Specifications and Pin Information  
4 Package Mechanical  
Specifications and Pin  
Information  
4.1  
Package Mechanical Specifications  
The processor is available in a 478-pin Micro-FCPGA package. The package mechanical  
dimensions are shown in Figure 6 and Figure 7.  
The mechanical package pressure specifications are in a direction normal to the surface  
of the processor. This requirement protects the processor die from fracture risk due to  
uneven die pressure distribution under tilt, stack-up tolerances and other similar  
conditions. These specifications assume that a mechanical attach is designed  
specifically to load one type of processor.  
The processor package substrate should not be used as a mechanical reference or load-  
bearing surface for the thermal or mechanical solution.  
Datasheet  
37  
Package Mechanical Specifications and Pin Information  
Figure 6.  
Quad-Core Processor Micro-FCPGA Package Drawing (Sheet 1 of 2)  
38  
Datasheet  
Package Mechanical Specifications and Pin Information  
Figure 7.  
Quad-Core Processor Micro-FCPGA Package Drawing (Sheet 2 of 2)  
Datasheet  
39  
Package Mechanical Specifications and Pin Information  
4.2  
Processor Pinout and Pin List  
Figure 8 and Figure 9 shows the processor pinout as viewed from the top of the  
package. Table 12 provides the pin list, arranged numerically by pin name. Table 13  
provides the pin list, arranged numerically by pin number. Table 14 is the signal  
description for processor. Table 15 lists new quad-core processor pins compared to the  
Intel Core 2 Duo processor.  
Figure 8.  
Quad-Core Processor Pinout (Top Package View, Left Side)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
A
VSS  
SMI#  
VSS  
FERR#  
A20M#  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
A
B
BPM_2[  
2]#  
B
INIT#  
TEST7  
TDO_M  
VSS  
LINT1  
DPSLP#  
VSS  
VSS  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
IGNNE  
#
THERM  
TRIP#  
C
D
E
RESET#  
VSS  
VSS  
LINT0  
C
D
E
STPCLK  
#
PWRGO  
OD  
RSVD  
BNR#  
VSS  
SLP#  
VCC  
RSVD  
VSS  
DPRSTP  
#
DBSY#  
HITM#  
VSS  
GTLREF  
_CONT  
ROL  
F
BR0#  
VSS  
RS[0]#  
RS[1]#  
VSS  
TDI_M  
VCC  
VCC  
VCC  
VSS  
VCC  
VSS  
F
G
H
VSS  
TRDY#  
RS[2]#  
VSS  
VSS  
BPRI#  
HIT#  
VSS  
G
H
REQ[1]  
#
ADS#  
LOCK#  
DEFER#  
REQ[3]  
#
J
A[9]#  
VSS  
A[3]#  
VSS  
VCCP  
J
REQ[2]  
#
REQ[0]  
#
K
L
VSS  
VSS  
A[6]#  
A[4]#  
VSS  
VCCP  
VSS  
K
L
REQ[4]#  
A[13]#  
VSS  
VSS  
A[5]#  
ADSTB[0]  
#
BPM_2[  
1]#  
M
A[7]#  
VCCP  
M
BPM_2[0  
]#  
N
VSS  
A[8]#  
A[10]#  
VSS  
VCCP  
N
P
R
A[15]#  
A[16]#  
A[12]#  
VSS  
VSS  
A[14]#  
A[24]#  
A[11]#  
VSS  
VSS  
P
R
A[19]#  
VCCP  
THRMD  
A_2  
T
U
V
VSS  
A[26]#  
VSS  
VSS  
A[25]#  
A[18]#  
VSS  
VCCP  
VSS  
T
U
V
A[23]#  
A[30]#  
VSS  
A[21]#  
A[31]#  
ADSTB[1]  
#
THRMD  
C_2  
VCCP  
W
Y
VSS  
A[27]#  
A[17]#  
A[32]#  
VSS  
VSS  
A[28]#  
A[22]#  
A[20]#  
VSS  
W
Y
COMP[3]  
A[29]#  
A
A
AA  
AB  
AC  
AD  
AE  
AF  
COMP[2]  
VSS  
VSS  
A[34]#  
PRDY#  
VSS  
A[35]#  
TDO  
A[33]#  
VSS  
VSS  
TMS  
TDI  
TRST#  
VSS  
BR1#  
VCC  
VCC  
VCC  
RSVD  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
A
B
BPM[3]  
#
A
C
PREQ#  
BPM[2]#  
VSS  
VSS  
TCK  
RSVD  
VSS  
BPM[1]  
#
BPM[0]  
#
A
D
VSS  
VID[0]  
PSI#  
VSS  
SENSE  
BPM_2[  
3]#  
A
E
VID[6]  
VID[4]  
VSS  
VID[2]  
VCC  
SENSE  
A
F
TEST5  
VSS  
VID[5]  
VID[3]  
VID[1]  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
40  
Datasheet  
Package Mechanical Specifications and Pin Information  
Figure 9.  
Quad-Core Processor Pinout (Top Package View, Right Side)  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
THRMDA  
VSS  
25  
VSS  
26  
A
B
C
VSS  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
BCLK[1]  
VSS  
BCLK[0]  
BSEL[0]  
VSS  
VSS  
TEST6  
VCCA  
VCCA  
A
B
C
VCC  
BSEL[1]  
TEST1  
THRMDC  
VSS  
DBR#  
BSEL[2]  
TEST3  
PROCHOT  
#
D
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
IERR#  
GTLREF_2  
VSS  
DPWR#  
TEST2  
VSS  
D
E
F
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
DRDY#  
VCCP  
D[0]#  
VSS  
D[7]#  
D[4]#  
VSS  
VSS  
D[6]#  
VSS  
D[2]#  
D[13]#  
VSS  
E
F
D[1]#  
D[9]#  
G
D[3]#  
D[5]#  
G
DSTBP[  
0]#  
H
VSS  
D[12]#  
D[15]#  
VSS  
DINV[0]#  
H
DSTBN[  
0]#  
J
K
L
VCCP  
VCCP  
VSS  
VSS  
D[11]#  
VSS  
D[10]#  
D[8]#  
VSS  
VSS  
J
K
L
D[14]#  
D[22]#  
D[17]#  
D[29]#  
VSS  
DSTBN[  
1]#  
D[20]#  
DSTBP[  
1]#  
M
VCCP  
VSS  
D[23]#  
D[21]#  
VSS  
M
N
P
VCCP  
VSS  
D[16]#  
D[26]#  
VSS  
DINV[1]#  
VSS  
D[31]#  
D[24]#  
VSS  
N
P
D[25]#  
D[18]#  
COMP[0  
]
R
T
VCCP  
VCCP  
VSS  
VSS  
D[19]#  
VSS  
D[28]#  
D[27]#  
VSS  
VSS  
R
T
D[37]#  
DINV[2]#  
D[30]#  
D[38]#  
VSS  
COMP[1  
]
U
D[39]#  
U
V
VCCP  
VCCP  
VSS  
D[36]#  
VSS  
D[34]#  
D[43]#  
VSS  
D[35]#  
VSS  
V
W
D[41]#  
D[44]#  
W
DSTBN[  
2]#  
Y
VSS  
D[32]#  
VSS  
D[42]#  
D[45]#  
VSS  
D[40]#  
VSS  
Y
DSTBP[  
2]#  
A
A
AA  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
D[50]#  
D[46]#  
A
B
AB  
AC  
D[52]#  
VSS  
D[51]#  
D[60]#  
VSS  
VSS  
D[63]#  
D[61]#  
VSS  
D[33]#  
VSS  
D[47]#  
D[57]#  
VSS  
VSS  
D[53]#  
GTLREF  
VSS  
DINV[3  
]#  
A
C
A
D
A
D
D[54]#  
VCC  
D[59]#  
D[58]#  
D[49]#  
D[48]#  
DSTBN[3]  
#
A
E
AE  
AF  
D[55]#  
DSTBP[3]  
#
A
F
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
D[62]#  
D[56]#  
VSS  
TEST4  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
Datasheet  
41  
Package Mechanical Specifications and Pin Information  
Table 12.  
Pin Listing by Pin Name  
Table 12.  
Pin Listing by Pin Name  
Pin  
Name  
Pin  
#
Signal  
Buffer Type  
Pin  
Name  
Pin  
#
Signal  
Buffer Type  
Direction  
Direction  
A20M#  
A[10]#  
A6  
CMOS  
Input  
Input/  
Output  
A[35]#  
A[3]#  
A[4]#  
A[5]#  
A[6]#  
A[7]#  
A[8]#  
A[9]#  
ADS#  
AA3  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Common Clock  
Source Synch  
Source Synch  
Input/  
Output  
N3  
P5  
Source Synch  
Input/  
Output  
J4  
Input/  
Output  
A[11]#  
A[12]#  
A[13]#  
A[14]#  
A[15]#  
A[16]#  
A[17]#  
A[18]#  
A[19]#  
A[20]#  
A[21]#  
A[22]#  
A[23]#  
A[24]#  
A[25]#  
A[26]#  
A[27]#  
A[28]#  
A[29]#  
A[30]#  
A[31]#  
A[32]#  
A[33]#  
A[34]#  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Input/  
Output  
L5  
L4  
K5  
M3  
N2  
J1  
Input/  
Output  
P2  
Input/  
Output  
Input/  
Output  
L2  
Input/  
Output  
Input/  
Output  
P4  
Input/  
Output  
Input/  
Output  
P1  
Input/  
Output  
Input/  
Output  
R1  
Y2  
Input/  
Output  
Input/  
Output  
Input/  
Output  
H1  
Input/  
Output  
U5  
R3  
W6  
U4  
Y5  
Input/  
Output  
ADSTB[0]# M1  
ADSTB[1]# V1  
Input/  
Output  
Input/  
Output  
Input/  
Output  
BCLK[0]  
BCLK[1]  
A22  
A21  
Bus Clock  
Bus Clock  
Input  
Input  
Input/  
Output  
Input/  
Output  
BNR#  
E2  
Common Clock  
Common Clock  
Input/  
Output  
Input/  
Output  
BPM[0]#  
AD4  
Input/  
Output  
U1  
R4  
T5  
BPM[1]#  
BPM[2]#  
AD3  
AD1  
Common Clock Output  
Common Clock Output  
Input/  
Output  
Input/  
Common Clock  
Output  
Input/  
Output  
BPM[3]#  
AC4  
Input/  
Common Clock  
Output  
Input/  
Output  
BPM_2[0]# N5  
BPM_2[1]# M4  
BPM_2[2]# B2  
T3  
Common Clock Output  
Input/  
Output  
W2  
W5  
Y4  
Input/  
Common Clock  
Output  
Input/  
Output  
Input/  
Common Clock  
Output  
BPM_2[3]# AE8  
Input/  
Output  
BPRI#  
BR0#  
G5  
F1  
Common Clock Input  
Input/  
Output  
U2  
V4  
W3  
AA4  
AB2  
Input/  
Common Clock  
Output  
Input/  
Output  
Input/  
Common Clock  
Output  
BR1#  
AA7  
Input/  
Output  
BSEL[0]  
BSEL[1]  
BSEL[2]  
B22  
B23  
C21  
CMOS  
CMOS  
CMOS  
Output  
Output  
Output  
Input/  
Output  
Input/  
Output  
42  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 12.  
Pin Listing by Pin Name  
Table 12.  
Pin Listing by Pin Name  
Pin  
Name  
Pin  
#
Signal  
Buffer Type  
Pin  
Name  
Pin  
#
Signal  
Buffer Type  
Direction  
Direction  
Input/  
Output  
Input/  
Output  
COMP[0]  
COMP[1]  
COMP[2]  
COMP[3]  
D[0]#  
R26  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
D[29]#  
D[2]#  
L25  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Input/  
Output  
Input/  
Output  
U26  
AA1  
Y1  
E26  
Input/  
Output  
Input/  
Output  
D[30]#  
D[31]#  
D[32]#  
D[33]#  
D[34]#  
D[35]#  
D[36]#  
D[37]#  
D[38]#  
D[39]#  
D[3]#  
T25  
Input/  
Output  
Input/  
Output  
N25  
Y22  
Input/  
Output  
Input/  
Output  
E22  
J24  
J23  
H22  
F26  
K22  
H23  
N22  
K25  
P26  
R23  
F24  
L23  
M24  
L22  
M23  
P25  
P23  
P22  
T24  
R24  
Input/  
Output  
Input/  
Output  
D[10]#  
D[11]#  
D[12]#  
D[13]#  
D[14]#  
D[15]#  
D[16]#  
D[17]#  
D[18]#  
D[19]#  
D[1]#  
AB24  
V24  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
V26  
Input/  
Output  
Input/  
Output  
V23  
Input/  
Output  
Input/  
Output  
T22  
Input/  
Output  
Input/  
Output  
U25  
U23  
G22  
Y25  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
D[40]#  
D[41]#  
D[42]#  
D[43]#  
D[44]#  
D[45]#  
D[46]#  
D[47]#  
D[48]#  
D[49]#  
D[4]#  
Input/  
Output  
Input/  
Output  
W22  
Y23  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
D[20]#  
D[21]#  
D[22]#  
D[23]#  
D[24]#  
D[25]#  
D[26]#  
D[27]#  
D[28]#  
W24  
W25  
AA23  
AA24  
AB25  
AE24  
AD24  
F23  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
D[50]#  
AA21  
Datasheet  
43  
Package Mechanical Specifications and Pin Information  
Table 12.  
Pin Listing by Pin Name  
Table 12.  
Pin Listing by Pin Name  
Pin  
Name  
Pin  
#
Signal  
Buffer Type  
Pin  
Name  
Pin  
#
Signal  
Buffer Type  
Direction  
Direction  
Input/  
Output  
Input/  
Output  
D[51]#  
D[52]#  
D[53]#  
D[54]#  
D[55]#  
D[56]#  
D[57]#  
D[58]#  
D[59]#  
D[5]#  
AB22  
Source Synch  
Source Synch  
Source Synch  
DPWR#  
DRDY#  
D24  
Common Clock  
Common Clock  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Input/  
Output  
Input/  
Output  
AB21  
AC26  
F21  
Input/  
Output  
Input/  
Output  
DSTBN[0]# J26  
DSTBN[1]# L26  
DSTBN[2]# Y26  
DSTBN[3]# AE25  
DSTBP[0]# H26  
DSTBP[1]# M26  
DSTBP[2]# AA26  
DSTBP[3]# AF24  
Input/  
Output  
Input/  
Output  
AD20 Source Synch  
Input/  
Output  
Input/  
Output  
AE22  
AF23  
AC25  
AE21  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
AD21 Source Synch  
Input/  
Output  
Input/  
Output  
G25  
Source Synch  
Source Synch  
Input/  
Output  
FERR#  
A5  
Open Drain  
Power/Other  
Power/Other  
Output  
Input  
Input  
D[60]#  
D[61]#  
D[62]#  
D[63]#  
D[6]#  
AC22  
GTLREF  
GTLREF_2  
AD26  
D22  
Input/  
Output  
AD23 Source Synch  
GTLREF_C  
ONTROL  
Input/  
Output  
Input/  
Output  
F8  
G6  
E4  
CMOS  
AF22  
AC23  
E25  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Input/  
Output  
Input/  
Output  
HIT#  
Common Clock  
Common Clock  
Input/  
Output  
Input/  
Output  
HITM#  
IERR#  
IGNNE#  
INIT#  
LINT0  
D20  
C4  
Open Drain  
CMOS  
Output  
Input  
Input  
Input  
Input  
Input/  
Output  
D[7]#  
E23  
Input/  
Output  
D[8]#  
K24  
B3  
CMOS  
C6  
CMOS  
Input/  
Output  
D[9]#  
G24  
C20  
E1  
Source Synch  
CMOS  
LINT1  
B4  
CMOS  
DBR#  
Output  
Input/  
Output  
LOCK#  
H4  
Common Clock  
Input/  
Output  
DBSY#  
DEFER#  
DINV[0]#  
Common Clock  
PRDY#  
PREQ#  
AC2  
AC1  
Common Clock Output  
Common Clock Input  
H5  
Common Clock Input  
Input/  
Source Synch  
Output  
Input/  
Open Drain  
H25  
PROCHOT# D21  
Output  
Input/  
Source Synch  
Output  
PSI#  
AE6  
D6  
CMOS  
CMOS  
Output  
Input  
DINV[1]#  
DINV[2]#  
DINV[3]#  
N24  
PWRGOOD  
Input/  
Source Synch  
Output  
U22  
Input/  
Output  
REQ[0]#  
REQ[1]#  
REQ[2]#  
K3  
H2  
K2  
Source Synch  
Source Synch  
Source Synch  
Input/  
Source Synch  
Output  
AC20  
Input/  
Output  
DPRSTP#  
DPSLP#  
E5  
B5  
CMOS  
CMOS  
Input  
Input  
Input/  
Output  
44  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 12.  
Pin Listing by Pin Name  
Table 12.  
Pin Listing by Pin Name  
Pin  
Name  
Pin  
#
Signal  
Buffer Type  
Pin  
Name  
Pin  
#
Signal  
Buffer Type  
Direction  
Direction  
Input/  
Output  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
A15  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
REQ[3]#  
REQ[4]#  
J3  
Source Synch  
Source Synch  
A17  
Input/  
Output  
L1  
A18  
A20  
RESET#  
RS[0]#  
RS[1]#  
RS[2]#  
RSVD  
C1  
Common Clock Input  
Common Clock Input  
Common Clock Input  
Common Clock Input  
Reserved  
AA9  
F3  
AA10  
AA12  
AA13  
AA15  
AA17  
AA18  
AA20  
AB7  
F4  
G3  
D2  
RSVD  
AA8  
AC8  
D8  
Reserved  
RSVD  
Reserved  
RSVD  
Reserved  
SLP#  
D7  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
Open Drain  
Open Drain  
Test  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Output  
SMI#  
A3  
AB9  
STPCLK#  
TCK  
D5  
AB10  
AB12  
AB14  
AB15  
AB17  
AB18  
AB20  
AC7  
AC5  
AA6  
F6  
TDI  
TDI_M  
TDO  
AB3  
D3  
C23  
D25  
C24  
AF26  
AF1  
A26  
C3  
TDO_M  
TEST1  
TEST2  
TEST3  
TEST4  
TEST5  
TEST6  
TEST7  
Test  
Test  
AC9  
Test  
AC10  
AC12  
AC13  
AC15  
AC17  
AC18  
AD7  
Test  
Test  
Test  
THERMTRIP  
#
C7  
Open Drain  
Output  
THRMDA  
A24  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
CMOS  
THRMDA_2 T2  
THRMDC  
B25  
AD9  
THRMDC_2 V3  
AD10  
AD12  
AD14  
AD15  
AD17  
AD18  
AE9  
TMS  
AB5  
Input  
TRDY#  
TRST#  
VCC  
G2  
Common Clock Input  
AB6  
A7  
CMOS  
Input  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
A9  
VCC  
A10  
A12  
A13  
VCC  
AE10  
AE12  
VCC  
Datasheet  
45  
Package Mechanical Specifications and Pin Information  
Table 12.  
Pin Listing by Pin Name  
Table 12.  
Pin Listing by Pin Name  
Pin  
Name  
Pin  
#
Signal  
Buffer Type  
Pin  
Name  
Pin  
#
Signal  
Buffer Type  
Direction  
Direction  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AE13  
AE15  
AE17  
AE18  
AE20  
AF9  
AF10  
AF12  
AF14  
AF15  
AF17  
AF18  
AF20  
B7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
E13  
E15  
E17  
E18  
E20  
F7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
CMOS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
F9  
VCC  
F10  
F12  
F14  
F15  
F17  
F18  
F20  
B26  
C26  
G21  
J6  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
B9  
VCCA  
VCCA  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCSENSE  
VID[0]  
VID[1]  
VID[2]  
VID[3]  
VID[4]  
VID[5]  
VID[6]  
B10  
B12  
B14  
B15  
B17  
B18  
B20  
C9  
J21  
K6  
K21  
M6  
M21  
N6  
C10  
C12  
C13  
C15  
C17  
C18  
D9  
N21  
R6  
R21  
T6  
T21  
V6  
D10  
D12  
D14  
D15  
D17  
D18  
E7  
V21  
W21  
AF7  
AD6  
AF5  
AE5  
AF4  
AE3  
AF3  
AE2  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
CMOS  
CMOS  
CMOS  
E9  
CMOS  
E10  
E12  
CMOS  
CMOS  
46  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 12.  
Pin Listing by Pin Name  
Table 12.  
Pin Listing by Pin Name  
Pin  
Name  
Pin  
#
Signal  
Buffer Type  
Pin  
Name  
Pin  
#
Signal  
Buffer Type  
Direction  
Direction  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AD19  
AD22  
AD25  
AE1  
AE4  
AE11  
AE14  
AE16  
AE19  
AE23  
AE26  
AF2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
A4  
A8  
A11  
A14  
A16  
A19  
A23  
A25  
AA2  
AA5  
AA11  
AA14  
AA16  
AA19  
AA22  
AA25  
AB1  
AF6  
AF8  
AF11  
AF13  
AF16  
AF19  
AF21  
AF25  
B6  
AB4  
AB8  
AB11  
AB13  
AB16  
AB19  
AB23  
AB26  
AC3  
B8  
B11  
B13  
B16  
B19  
B21  
B24  
C2  
AC6  
AC11  
AC14  
AC16  
AC19  
AC21  
AC24  
AD2  
AD5  
AD8  
C5  
C8  
C11  
C14  
C16  
C19  
C22  
C25  
D1  
AD11 Power/Other  
AD13 Power/Other  
AD16 Power/Other  
D4  
D11  
Datasheet  
47  
Package Mechanical Specifications and Pin Information  
Table 12.  
Pin Listing by Pin Name  
Table 12.  
Pin Listing by Pin Name  
Pin  
Name  
Pin  
#
Signal  
Buffer Type  
Pin  
Name  
Pin  
#
Signal  
Buffer Type  
Direction  
Direction  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
D13  
D16  
D19  
D23  
D26  
E3  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSSSENSE  
L21  
L24  
M2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
M5  
M22  
M25  
N1  
E6  
E8  
N4  
E11  
E14  
E16  
E19  
E21  
E24  
F2  
N23  
N26  
P3  
P6  
P21  
P24  
R2  
F5  
R5  
F11  
F13  
F16  
F19  
F22  
F25  
G1  
R22  
R25  
T1  
T4  
T23  
T26  
U3  
G4  
U6  
G23  
G26  
H3  
U21  
U24  
V2  
H6  
V5  
H21  
H24  
J2  
V22  
V25  
W1  
W4  
W23  
W26  
Y3  
J5  
J22  
J25  
K1  
K4  
Y6  
K23  
K26  
L3  
Y21  
Y24  
AE7  
Output  
L6  
48  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 13.  
Pin Listing by Pin  
Number  
Table 13.  
Pin Listing by Pin  
Number  
Signal  
Buffer  
Type  
Signal  
Buffer  
Type  
Pin  
#
Pin  
#
Pin Name  
Direction  
Pin Name  
Direction  
A2  
VSS  
Power/Other  
CMOS  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
A3  
SMI#  
VSS  
Input  
A4  
Power/Other  
Open Drain  
CMOS  
A5  
FERR#  
A20M#  
VCC  
Output  
Input  
A6  
A7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Bus Clock  
A8  
VSS  
A9  
VCC  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
VCC  
VSS  
Input/  
Output  
AA21  
AA22  
AA23  
D[50]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
VCC  
VCC  
Input/  
Output  
D[45]#  
VSS  
VCC  
Input/  
Output  
AA24  
AA25  
AA26  
AB1  
D[46]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
VSS  
VCC  
Input/  
Output  
VCC  
DSTBP[2]#  
VSS  
VSS  
VCC  
Input/  
Output  
AB2  
A[34]#  
BCLK[1]  
BCLK[0]  
VSS  
Input  
Input  
AB3  
AB4  
AB5  
AB6  
AB7  
AB8  
AB9  
TDO  
VSS  
Open Drain  
Power/Other  
CMOS  
Output  
Bus Clock  
Power/Other  
Power/Other  
Power/Other  
Test  
TMS  
TRST#  
VCC  
VSS  
Input  
Input  
THRMDA  
VSS  
CMOS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
TEST6  
Input/  
Output  
AA1  
AA2  
AA3  
COMP[2]  
VSS  
Power/Other  
Power/Other  
Source Synch  
VCC  
AB10 VCC  
AB11 VSS  
AB12 VCC  
AB13 VSS  
AB14 VCC  
AB15 VCC  
AB16 VSS  
AB17 VCC  
AB18 VCC  
AB19 VSS  
AB20 VCC  
Input/  
Output  
A[35]#  
Input/  
Output  
AA4  
A[33]#  
Source Synch  
AA5  
AA6  
VSS  
TDI  
Power/Other  
CMOS  
Input  
Common  
Clock  
Input/  
Output  
AA7  
BR1#  
AA8  
RSVD  
VCC  
VCC  
VSS  
Reserved  
AA9  
Power/Other  
Power/Other  
Power/Other  
AA10  
AA11  
Datasheet  
49  
Package Mechanical Specifications and Pin Information  
Table 13.  
Pin Listing by Pin  
Number  
Table 13.  
Pin Listing by Pin  
Number  
Signal  
Buffer  
Type  
Signal  
Buffer  
Type  
Pin  
#
Pin  
#
Pin Name  
Direction  
Pin Name  
Direction  
Input/  
Output  
Common  
AB21 D[52]#  
Source Synch  
AD1  
AD2  
AD3  
BPM[2]#  
Output  
Clock  
Input/  
Output  
VSS  
Power/Other  
AB22 D[51]#  
AB23 VSS  
Source Synch  
Power/Other  
Source Synch  
Common  
Clock  
BPM[1]#  
Output  
Input/  
Output  
Common  
Clock  
Input/  
Output  
AB24 D[33]#  
AD4  
BPM[0]#  
Input/  
Output  
AD5  
AD6  
AD7  
AD8  
AD9  
VSS  
Power/Other  
CMOS  
AB25 D[47]#  
AB26 VSS  
Source Synch  
Power/Other  
VID[0]  
VCC  
Output  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common  
Clock  
AC1  
PREQ#  
Input  
VSS  
VCC  
Common  
Clock  
AC2  
AC3  
AC4  
PRDY#  
VSS  
Output  
AD10 VCC  
AD11 VSS  
AD12 VCC  
AD13 VSS  
AD14 VCC  
AD15 VCC  
AD16 VSS  
AD17 VCC  
AD18 VCC  
AD19 VSS  
Power/Other  
Common  
Clock  
Input/  
Output  
BPM[3]#  
AC5  
AC6  
AC7  
AC8  
AC9  
TCK  
CMOS  
Input  
VSS  
VCC  
RSVD  
VCC  
Power/Other  
Power/Other  
Reserved  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AC10 VCC  
AC11 VSS  
AC12 VCC  
AC13 VCC  
AC14 VSS  
AC15 VCC  
AC16 VSS  
AC17 VCC  
AC18 VCC  
AC19 VSS  
Input/  
Output  
AD20 D[54]#  
Source Synch  
Input/  
Output  
AD21 D[59]#  
AD22 VSS  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
AD23 D[61]#  
Input/  
Output  
AD24 D[49]#  
Source Synch  
AD25 VSS  
Power/Other  
Power/Other  
Power/Other  
CMOS  
Input/  
Output  
AD26 GTLREF  
Input  
AC20 DINV[3]#  
AC21 VSS  
Source Synch  
Power/Other  
Source Synch  
AE1  
AE2  
AE3  
AE4  
AE5  
AE6  
AE7  
VSS  
VID[6]  
VID[4]  
VSS  
Output  
Output  
Input/  
Output  
AC22 D[60]#  
CMOS  
Power/Other  
CMOS  
Input/  
Output  
AC23 D[63]#  
AC24 VSS  
Source Synch  
Power/Other  
Source Synch  
VID[2]  
PSI#  
Output  
Output  
Output  
CMOS  
Input/  
Output  
AC25 D[57]#  
VSSSENSE  
Power/Other  
Common  
Clock  
Input/  
Output  
Input/  
Output  
AE8  
BPM_2[3]#  
AC26 D[53]#  
Source Synch  
50  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 13.  
Pin Listing by Pin  
Number  
Table 13.  
Pin Listing by Pin  
Number  
Signal  
Buffer  
Type  
Signal  
Buffer  
Type  
Pin  
#
Pin  
#
Pin Name  
Direction  
Pin Name  
Direction  
AE9  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AF19  
AF20  
AF21  
VSS  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
AE20  
Input/  
Output  
AF22  
AF23  
AF24  
D[62]#  
Source Synch  
Source Synch  
Source Synch  
Input/  
Output  
D[56]#  
Input/  
Output  
DSTBP[3]#  
AF25  
AF26  
VSS  
Power/Other  
Test  
TEST4  
Common  
Clock  
Input/  
Output  
B2  
BPM_2[2]#  
B3  
INIT#  
LINT1  
DPSLP#  
VSS  
CMOS  
Input  
Input  
Input  
Input/  
Output  
AE21  
D[58]#  
Source Synch  
B4  
CMOS  
B5  
CMOS  
Input/  
Output  
AE22  
AE23  
AE24  
D[55]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
B6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
CMOS  
B7  
VCC  
Input/  
Output  
B8  
VSS  
D[48]#  
B9  
VCC  
Input/  
Output  
AE25  
DSTBN[3]#  
Source Synch  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
VCC  
AE26  
AF1  
VSS  
Power/Other  
Test  
VSS  
TEST5  
VSS  
VCC  
AF2  
Power/Other  
CMOS  
VSS  
AF3  
VID[5]  
VID[3]  
VID[1]  
VSS  
Output  
Output  
Output  
VCC  
AF4  
CMOS  
VCC  
AF5  
CMOS  
VSS  
AF6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
AF7  
VCCSENSE  
VSS  
VCC  
AF8  
VSS  
AF9  
VCC  
VCC  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
AF16  
AF17  
AF18  
VCC  
VSS  
VSS  
BSEL[0]  
BSEL[1]  
VSS  
Output  
Output  
VCC  
CMOS  
VSS  
Power/Other  
Power/Other  
Power/Other  
VCC  
THRMDC  
VCCA  
VCC  
VSS  
Common  
Clock  
C1  
C2  
RESET#  
VSS  
Input  
VCC  
Power/Other  
VCC  
Datasheet  
51  
Package Mechanical Specifications and Pin Information  
Table 13.  
Pin Listing by Pin  
Number  
Table 13.  
Pin Listing by Pin  
Number  
Signal  
Buffer  
Type  
Signal  
Buffer  
Type  
Pin  
#
Pin  
#
Pin Name  
Direction  
Pin Name  
Direction  
C3  
C4  
C5  
C6  
TEST7  
Test  
D15  
D16  
D17  
D18  
D19  
D20  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Open Drain  
IGNNE#  
VSS  
CMOS  
Input  
Power/Other  
CMOS  
VCC  
VCC  
VSS  
LINT0  
Input  
THERMTRIP  
#
C7  
Open Drain  
Output  
IERR#  
Output  
C8  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
CMOS  
Input/  
Output  
D21  
PROCHOT#  
Open Drain  
C9  
VCC  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
D1  
VCC  
D22  
D23  
GTLREF_2  
VSS  
Power/Other  
Power/Other  
Input  
VSS  
VCC  
Common  
Clock  
Input/  
Output  
D24  
DPWR#  
VCC  
D25  
D26  
TEST2  
VSS  
Test  
VSS  
Power/Other  
VCC  
Common  
Clock  
Input/  
Output  
E1  
DBSY#  
VSS  
VCC  
Common  
Clock  
Input/  
Output  
E2  
E3  
E4  
BNR#  
VSS  
VCC  
Power/Other  
VSS  
Common  
Clock  
Input/  
Output  
DBR#  
BSEL[2]  
VSS  
Output  
Output  
HITM#  
CMOS  
E5  
DPRSTP#  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
CMOS  
Input  
Power/Other  
Test  
E6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
TEST1  
TEST3  
VSS  
E7  
Test  
E8  
Power/Other  
Power/Other  
Power/Other  
Reserved  
E9  
VCCA  
VSS  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
D2  
RSVD  
TDO_M  
VSS  
D3  
Open Drain  
Power/Other  
CMOS  
Output  
D4  
D5  
STPCLK#  
PWRGOOD  
SLP#  
RSVD  
VCC  
Input  
Input  
Input  
D6  
CMOS  
D7  
CMOS  
D8  
Reserved  
D9  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
D10  
D11  
D12  
D13  
D14  
VCC  
VSS  
VCC  
Input/  
Output  
E22  
D[0]#  
Source Synch  
VSS  
VCC  
52  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 13.  
Pin Listing by Pin  
Number  
Table 13.  
Pin Listing by Pin  
Number  
Signal  
Buffer  
Type  
Signal  
Buffer  
Type  
Pin  
#
Pin  
#
Pin Name  
Direction  
Pin Name  
Direction  
Input/  
Output  
Common  
E23  
E24  
E25  
D[7]#  
Source Synch  
Power/Other  
Source Synch  
G2  
TRDY#  
Input  
Input  
Clock  
VSS  
Common  
Clock  
G3  
G4  
G5  
RS[2]#  
VSS  
Input/  
Output  
D[6]#  
Power/Other  
Input/  
Output  
Common  
Clock  
E26  
D[2]#  
Source Synch  
BPRI#  
Input  
Common  
Clock  
Input/  
Output  
Common  
Clock  
Input/  
Output  
F1  
F2  
F3  
BR0#  
VSS  
G6  
HIT#  
VCCP  
D[3]#  
VSS  
Power/Other  
G21  
G22  
G23  
G24  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Common  
Clock  
Input/  
Output  
RS[0]#  
Input  
Input  
Common  
Clock  
F4  
RS[1]#  
Input/  
Output  
D[9]#  
F5  
F6  
F7  
VSS  
Power/Other  
CMOS  
TDI_M  
VCC  
Input  
Input/  
Output  
G25  
G26  
H1  
D[5]#  
VSS  
Source Synch  
Power/Other  
Power/Other  
GTLREF_CO  
NTROL  
Input/  
Output  
F8  
CMOS  
Common  
Clock  
Input/  
Output  
ADS#  
F9  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input/  
Output  
H2  
H3  
H4  
REQ[1]#  
VSS  
Source Synch  
Power/Other  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
Common  
Clock  
Input/  
Output  
LOCK#  
Common  
Clock  
H5  
DEFER#  
Input  
H6  
VSS  
VSS  
Power/Other  
Power/Other  
H21  
Input/  
Output  
H22  
D[12]#  
Source Synch  
Input/  
Output  
H23  
H24  
H25  
D[15]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Common  
Clock  
Input/  
Output  
F21  
F22  
F23  
DRDY#  
VSS  
Input/  
Output  
DINV[0]#  
Power/Other  
Source Synch  
Input/  
Output  
H26  
DSTBP[0]#  
Source Synch  
Input/  
Output  
D[4]#  
Input/  
Output  
J1  
J2  
J3  
A[9]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
F24  
F25  
F26  
G1  
D[1]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Input/  
Output  
REQ[3]#  
Input/  
Output  
D[13]#  
VSS  
Input/  
Output  
J4  
J5  
A[3]#  
VSS  
Source Synch  
Power/Other  
Datasheet  
53  
Package Mechanical Specifications and Pin Information  
Table 13.  
Pin Listing by Pin  
Number  
Table 13.  
Pin Listing by Pin  
Number  
Signal  
Buffer  
Type  
Signal  
Buffer  
Type  
Pin  
#
Pin  
#
Pin Name  
Direction  
Pin Name  
Direction  
J6  
VCCP  
Power/Other  
Power/Other  
Power/Other  
Input/  
Output  
L25  
L26  
D[29]#  
Source Synch  
Source Synch  
J21  
J22  
VCCP  
VSS  
Input/  
Output  
DSTBN[1]#  
Input/  
Output  
Input/  
Output  
J23  
D[11]#  
Source Synch  
M1  
M2  
M3  
ADSTB[0]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
J24  
J25  
J26  
K1  
D[10]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
A[7]#  
Input/  
Output  
Common  
Clock  
DSTBN[0]#  
VSS  
M4  
BPM_2[1]#  
Output  
M5  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input/  
Output  
M6  
VCCP  
VCCP  
VSS  
K2  
REQ[2]#  
M21  
M22  
Input/  
Output  
K3  
K4  
K5  
REQ[0]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
M23  
D[23]#  
Source Synch  
Input/  
Output  
A[6]#  
Input/  
Output  
M24  
M25  
M26  
N1  
D[21]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
K6  
VCCP  
VCCP  
Power/Other  
Power/Other  
K21  
Input/  
Output  
DSTBP[1]#  
VSS  
Input/  
Output  
K22  
K23  
K24  
D[14]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
N2  
A[8]#  
Input/  
Output  
D[8]#  
Input/  
Output  
N3  
N4  
N5  
A[10]#  
VSS  
Source Synch  
Power/Other  
Input/  
Output  
K25  
K26  
L1  
D[17]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Common  
Clock  
Input/  
Output  
BPM_2[0]#  
Input/  
Output  
REQ[4]#  
N6  
VCCP  
VCCP  
Power/Other  
Power/Other  
Input/  
Output  
L2  
L3  
L4  
A[13]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
N21  
Input/  
Output  
N22  
N23  
N24  
D[16]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
A[5]#  
Input/  
Output  
Input/  
Output  
L5  
A[4]#  
Source Synch  
DINV[1]#  
L6  
VSS  
VSS  
Power/Other  
Power/Other  
Input/  
Output  
N25  
N26  
P1  
D[31]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
L21  
Input/  
Output  
L22  
D[22]#  
Source Synch  
Input/  
Output  
A[15]#  
Input/  
Output  
L23  
L24  
D[20]#  
VSS  
Source Synch  
Power/Other  
Input/  
Output  
P2  
P3  
A[12]#  
VSS  
Source Synch  
Power/Other  
54  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 13.  
Pin Listing by Pin  
Number  
Table 13.  
Pin Listing by Pin  
Number  
Signal  
Buffer  
Type  
Signal  
Buffer  
Type  
Pin  
#
Pin  
#
Pin Name  
Direction  
Pin Name  
Direction  
Input/  
Output  
Input/  
Output  
P4  
P5  
A[14]#  
Source Synch  
Source Synch  
T24  
D[27]#  
Source Synch  
Input/  
Output  
Input/  
Output  
A[11]#  
T25  
T26  
U1  
D[30]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
P6  
VSS  
VSS  
Power/Other  
Power/Other  
P21  
Input/  
Output  
A[23]#  
Input/  
Output  
P22  
D[26]#  
Source Synch  
Input/  
Output  
U2  
U3  
U4  
A[30]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
P23  
P24  
P25  
D[25]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
A[21]#  
Input/  
Output  
D[24]#  
Input/  
Output  
U5  
A[18]#  
Source Synch  
Input/  
Output  
P26  
D[18]#  
Source Synch  
U6  
VSS  
VSS  
Power/Other  
Power/Other  
Input/  
Output  
U21  
R1  
R2  
R3  
A[16]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
U22  
DINV[2]#  
Source Synch  
Input/  
Output  
Input/  
Output  
A[19]#  
U23  
U24  
U25  
D[39]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
R4  
A[24]#  
Source Synch  
Input/  
Output  
D[38]#  
R5  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
R6  
VCCP  
VCCP  
VSS  
Input/  
Output  
U26  
V1  
COMP[1]  
Power/Other  
Source Synch  
R21  
R22  
Input/  
Output  
ADSTB[1]#  
Input/  
Output  
V2  
V3  
VSS  
Power/Other  
Power/Other  
R23  
D[19]#  
Source Synch  
THRMDC_2  
Input/  
Output  
R24  
R25  
R26  
D[28]#  
VSS  
Source Synch  
Power/Other  
Power/Other  
Input/  
Output  
V4  
A[31]#  
Source Synch  
V5  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input/  
Output  
COMP[0]  
V6  
VCCP  
VCCP  
VSS  
T1  
T2  
VSS  
Power/Other  
Power/Other  
V21  
V22  
THRMDA_2  
Input/  
Output  
Input/  
Output  
T3  
T4  
T5  
A[26]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
V23  
D[36]#  
Source Synch  
Input/  
Output  
V24  
V25  
V26  
W1  
D[34]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
A[25]#  
T6  
VCCP  
VCCP  
Power/Other  
Power/Other  
Input/  
Output  
D[35]#  
VSS  
T21  
Input/  
Output  
T22  
T23  
D[37]#  
VSS  
Source Synch  
Power/Other  
Input/  
Output  
W2  
A[27]#  
Datasheet  
55  
Package Mechanical Specifications and Pin Information  
Table 13.  
Pin Listing by Pin  
Number  
Signal  
Buffer  
Type  
Pin  
#
Pin Name  
Direction  
Input/  
Output  
W3  
W4  
W5  
A[32]#  
Source Synch  
Power/Other  
Source Synch  
VSS  
Input/  
Output  
A[28]#  
Input/  
Output  
W6  
A[20]#  
VCCP  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
W21  
W22  
W23  
W24  
Input/  
Output  
D[41]#  
VSS  
Input/  
Output  
D[43]#  
Input/  
Output  
W25  
W26  
Y1  
D[44]#  
VSS  
Source Synch  
Power/Other  
Power/Other  
Input/  
Output  
COMP[3]  
Input/  
Output  
Y2  
Y3  
Y4  
A[17]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
A[29]#  
Input/  
Output  
Y5  
A[22]#  
Source Synch  
Y6  
VSS  
VSS  
Power/Other  
Power/Other  
Y21  
Input/  
Output  
Y22  
D[32]#  
Source Synch  
Input/  
Output  
Y23  
Y24  
Y25  
D[42]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
D[40]#  
Input/  
Output  
Y26  
DSTBN[2]#  
Source Synch  
56  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 14.  
Signal Description (Sheet 1 of 9)  
Name  
Type  
Description  
If A20M# (Address-20 Mask) is asserted, the processor masks  
physical address bit 20 (A20#) before looking up a line in any  
internal cache and before driving a read/write transaction on the  
bus. Asserting A20M# emulates the 8086 processor's address  
wrap-around at the 1-MB boundary. Assertion of A20M# is only  
supported in real mode.  
A20M#  
Input  
A20M# is an asynchronous signal. However, to ensure recognition  
of this signal following an input/output write instruction, it must be  
valid along with the TRDY# assertion of the corresponding input/  
output Write bus transaction.  
A[35:3]# (Address) define a 236-byte physical memory address  
space. In sub-phase 1 of the address phase, these pins transmit  
the address of a transaction. In sub-phase 2, these pins transmit  
transaction type information. These signals must connect the  
appropriate pins of both agents on the processor FSB. A[35:3]#  
are source-synchronous signals and are latched into the receiving  
buffers by ADSTB[1:0]#. Address signals are used as straps, which  
are sampled before RESET# is deasserted.  
Input/  
Output  
A[35:3]#  
ADS# (Address Strobe) is asserted to indicate the validity of the  
transaction address on the A[35:3]# and REQ[4:0]# pins. All bus  
agents observe the ADS# activation to begin parity checking,  
protocol checking, address decode, internal snoop, or deferred  
reply ID match operations associated with the new transaction.  
Input/  
Output  
ADS#  
Address strobes are used to latch A[35:3]# and REQ[4:0]# on  
their rising and falling edges. Strobes are associated with signals  
as shown below.  
Input/  
Output  
ADSTB[1:0]#  
Signals  
REQ[4:0]#, A[16:3]# ADSTB[0]#  
A[35:17]# ADSTB[1]#  
Associated Strobe  
The differential pair BCLK (Bus Clock) determines the FSB  
frequency. All FSB agents must receive these signals to drive their  
outputs and latch their inputs.  
BCLK[1:0]  
BNR#  
Input  
All external timing parameters are specified with respect to the  
rising edge of BCLK0 crossing VCROSS  
.
BNR# (Block Next Request) is used to assert a bus stall by any bus  
agent who is unable to accept new bus transactions. During a bus  
stall, the current bus owner cannot issue any new transactions.  
Input/  
Output  
BPM[3:0]# (Breakpoint Monitor) are breakpoint and performance  
monitor signals. They are outputs from the processor that indicate  
the status of breakpoints and programmable counters used for  
monitoring processor performance. BPM[3:0]# should connect the  
appropriate pins of all processor FSB agents.This includes debug or  
performance monitoring tools.  
Output  
BPM[2:1]#  
BPM[3,0]#  
Input/  
Output  
Datasheet  
57  
Package Mechanical Specifications and Pin Information  
Table 14.  
Signal Description (Sheet 2 of 9)  
Name  
Type  
Description  
BPM_2[3:0]# (Breakpoint Monitor) are breakpoint and  
performance monitor signals of the second die. They are outputs  
from the processor that indicate the status of breakpoints and  
programmable counters used for monitoring processor  
performance. BPM_2[3:0]# should connect the appropriate pins of  
all processor FSB agents.This includes debug or performance  
monitoring tools.  
BPM_2[1]#  
Output  
BPM_2[0;3:2]  
#
Input/  
Output  
BPRI# (Bus Priority Request) is used to arbitrate for ownership of  
the FSB. It must connect the appropriate pins of both FSB agents.  
Observing BPRI# active (as asserted by the priority agent) causes  
the other agent to stop issuing new requests, unless such requests  
are part of an ongoing locked operation. The priority agent keeps  
BPRI# asserted until all of its requests are completed, then  
releases the bus by deasserting BPRI#.  
BPRI#  
Input  
BR0# is used by the processor to request the bus. The arbitration  
is done between the processor (Symmetric Agent) and GMCH (High  
Priority Agent).  
Input/  
Output  
BR0#  
BR1#  
Arbitration Request signal for the second die.  
BR1# is connected to the first die within the package, allowing two  
dies within quad-core parts to artitrite for the bus. This pin is  
fundamentally provided for debug capabilities and should be left as  
NC.  
Input/  
Output  
BSEL[2:0] (Bus Select) are used to select the processor input clock  
frequency. Table 4 defines the possible combinations of the signals  
and the frequency associated with each combination. The required  
frequency is determined by the processor, chipset and clock  
synthesizer. All agents must operate at the same frequency.  
BSEL[2:0]  
COMP[3:0]  
Output  
Analog  
COMP[3:0] must be terminated on the system board using  
precision (1% tolerance) resistors.  
58  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 14.  
Signal Description (Sheet 3 of 9)  
Name  
Type  
Description  
D[63:0]# (Data) are the data signals. These signals provide a  
64-bit data path between the FSB agents, and must connect the  
appropriate pins on both agents. The data driver asserts DRDY# to  
indicate a valid data transfer.  
D[63:0]# are quad-pumped signals and will thus be driven four  
times in a common clock period. D[63:0]# are latched off the  
falling edge of both DSTBP[3:0]# and DSTBN[3:0]#. Each group  
of 16 data signals correspond to a pair of one DSTBP# and one  
DSTBN#. The following table shows the grouping of data signals to  
data strobes and DINV#.  
Quad-Pumped Signal Groups  
DSTBN#/  
Input/  
Output  
D[63:0]#  
Data Group  
DINV#  
DSTBP#  
D[15:0]#  
D[31:16]#  
D[47:32]#  
D[63:48]#  
0
1
2
3
0
1
2
3
Furthermore, the DINV# pins determine the polarity of the data  
signals. Each group of 16 data signals corresponds to one DINV#  
signal. When the DINV# signal is active, the corresponding data  
group is inverted and therefore sampled active high.  
DBR# (Data Bus Reset) is used only in processor systems where  
no debug port is implemented on the system board. DBR# is used  
by a debug port interposer so that an in-target probe can drive  
system reset. If a debug port is implemented in the system, DBR#  
is a no connect in the system. DBR# is not a processor signal.  
DBR#  
Output  
DBSY# (Data Bus Busy) is asserted by the agent responsible for  
driving data on the FSB to indicate that the data bus is in use. The  
data bus is released after DBSY# is deasserted. This signal must  
connect the appropriate pins on both FSB agents.  
Input/  
Output  
DBSY#  
DEFER#  
DEFER# is asserted by an agent to indicate that a transaction  
cannot be ensured in-order completion. Assertion of DEFER# is  
normally the responsibility of the addressed memory or input/  
output agent. This signal must connect the appropriate pins of both  
FSB agents.  
Input  
Datasheet  
59  
Package Mechanical Specifications and Pin Information  
Table 14.  
Signal Description (Sheet 4 of 9)  
Name  
Type  
Description  
DINV[3:0]# (Data Bus Inversion) are source synchronous and  
indicate the polarity of the D[63:0]# signals. The DINV[3:0]#  
signals are activated when the data on the data bus is inverted.  
The bus agent will invert the data bus signals if more than half the  
bits, within the covered group, would change level in the next  
cycle.  
DINV[3:0]# Assignment To Data Bus  
Input/  
Output  
DINV[3:0]#  
Bus Signal  
Data Bus Signals  
DINV[3]#  
DINV[2]#  
DINV[1]#  
DINV[0]#  
D[63:48]#  
D[47:32]#  
D[31:16]#  
D[15:0]#  
DPRSTP#, when asserted on the platform, causes the processor to  
transition from the Deep Sleep State to the Deeper Sleep state or  
C6 state. To return to the Deep Sleep State, DPRSTP# must be  
deasserted. DPRSTP# is driven by the ICH9M chipset.  
DPRSTP#  
Input  
Input  
DPSLP# when asserted on the platform causes the processor to  
transition from the Sleep State to the Deep Sleep state. To return  
to the Sleep State, DPSLP# must be deasserted. DPSLP# is driven  
by the ICH9M chipset.  
DPSLP#  
DPWR#  
DRDY#  
DPWR# is a control signal used by the chipset to reduce power on  
the processor data bus input buffers. The processor drives this pin  
during dynamic FSB frequency switching.  
Input/  
Output  
DRDY# (Data Ready) is asserted by the data driver on each data  
transfer, indicating valid data on the data bus. In a multi-common  
clock data transfer, DRDY# may be deasserted to insert idle clocks.  
This signal must connect the appropriate pins of both FSB agents.  
Input/  
Output  
Data strobe used to latch in D[63:0]#.  
Signals  
Associated Strobe  
D[15:0]#, DINV[0]#  
DSTBN[0]#  
Input/  
Output  
DSTBN[3:0]#  
D[31:16]#, DINV[1]# DSTBN[1]#  
D[47:32]#, DINV[2]# DSTBN[2]#  
D[63:48]#, DINV[3]# DSTBN[3]#  
Data strobe used to latch in D[63:0]#.  
Signals  
Associated Strobe  
DSTBP[0]#  
D[15:0]#, DINV[0]#  
Input/  
Output  
DSTBP[3:0]#  
D[31:16]#, DINV[1]# DSTBP[1]#  
D[47:32]#, DINV[2]# DSTBP[2]#  
D[63:48]#, DINV[3]# DSTBP[3]#  
60  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 14.  
Signal Description (Sheet 5 of 9)  
Name  
Type  
Description  
FERR# (Floating-point Error)/PBE# (Pending Break Event) is a  
multiplexed signal and its meaning is qualified with STPCLK#.  
When STPCLK# is not asserted, FERR#/PBE# indicates a floating  
point when the processor detects an unmasked floating-point error.  
FERR# is similar to the ERROR# signal on the Intel® 387  
coprocessor, and is included for compatibility with systems using  
Microsoft MS-DOS*-type floating-point error reporting. When  
STPCLK# is asserted, an assertion of FERR#/PBE# indicates that  
the processor has a pending break event waiting for service. The  
assertion of FERR#/PBE# indicates that the processor should be  
returned to the Normal state. When FERR#/PBE# is asserted,  
indicating a break event, it will remain asserted until STPCLK# is  
deasserted. Assertion of PREQ# when STPCLK# is active will also  
cause an FERR# break event.  
FERR#/PBE#  
Output  
For additional information on the pending break event functionality,  
including identification of support of the feature and enable/disable  
information, refer to Volumes 3A and 3B of the Intel® 64 and IA-  
32 Architectures Software Developer's Manuals and the Intel®  
Processor Identification and CPUID Instruction application note.  
GTLREF determines the signal reference level for AGTL+ input pins.  
GTLREF should be set at 2/3 VCCP. GTLREF is used by the AGTL+  
receivers to determine if a signal is a logical 0 or logical 1.  
GTLREF  
Input  
Input  
Refer to the appropriate platform design guide for details on  
GTLREF implementation.  
GTL reference level for AGTL+ input pins of the second die.  
GTLREF_2  
Refer to the appropriate platform design guide for details on  
GTLREF implementation.  
This pin can be used as GTLREF_2 disconnect circuit control signal.  
GTLREF_2 maps out to a reserved pin on Intel® CoreTM2 Duo  
Processor, for Dual Core and quad-core interchangeable  
motherboard, GTLREF_CONTROL can be used as a control signal  
for a circuit that will automaticlly switch between Dual Core and  
quad-core modes.  
GTLREF_CONT  
ROL  
Input/  
Output  
Input/  
Output  
HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction  
snoop operation results. Either FSB agent may assert both HIT#  
and HITM# together to indicate that it requires a snoop stall that  
can be continued by reasserting HIT# and HITM# together.  
HIT#  
Input/  
Output  
HITM#  
IERR# (Internal Error) is asserted by the processor as the result of  
an internal error. Assertion of IERR# is usually accompanied by a  
SHUTDOWN transaction on the FSB. This transaction may  
optionally be converted to an external error signal (e.g., NMI) by  
system core logic. The processor will keep IERR# asserted until the  
assertion of RESET#, BINIT#, or INIT#.  
IERR#  
Output  
Datasheet  
61  
Package Mechanical Specifications and Pin Information  
Table 14.  
Signal Description (Sheet 6 of 9)  
Name  
Type  
Description  
IGNNE# (Ignore Numeric Error) is asserted to force the processor  
to ignore a numeric error and continue to execute non-control  
floating-point instructions. If IGNNE# is deasserted, the processor  
generates an exception on a non-control floating-point instruction  
if a previous floating-point instruction caused an error. IGNNE# has  
no effect when the NE bit in control register 0 (CR0) is set.  
IGNNE#  
Input  
IGNNE# is an asynchronous signal. However, to ensure recognition  
of this signal following an input/output write instruction, it must be  
valid along with the TRDY# assertion of the corresponding input/  
output Write bus transaction.  
INIT# (Initialization), when asserted, resets integer registers  
inside the processor without affecting its internal caches or  
floating-point registers. The processor then begins execution at the  
power-on Reset vector configured during power-on configuration.  
The processor continues to handle snoop requests during INIT#  
assertion. INIT# is an asynchronous signal. However, to ensure  
recognition of this signal following an input/output write  
instruction, it must be valid along with the TRDY# assertion of the  
corresponding input/output write bus transaction. INIT# must  
connect the appropriate pins of both FSB agents.  
INIT#  
Input  
If INIT# is sampled active on the active-to-inactive transition of  
RESET#, then the processor executes its Built-in Self-Test (BIST).  
LINT[1:0] (Local APIC Interrupt) must connect the appropriate  
pins of all APIC Bus agents. When the APIC is disabled, the LINT0  
signal becomes INTR, a maskable interrupt request signal, and  
LINT1 becomes NMI, a nonmaskable interrupt. INTR and NMI are  
backward-compatible with the signals of those names on the  
Pentium processor. Both signals are asynchronous.  
LINT[1:0]  
Input  
Both of these signals must be software configured via BIOS  
programming of the APIC register space to be used either as NMI/  
INTR or LINT[1:0]. Because the APIC is enabled by default after  
Reset, operation of these pins as LINT[1:0] is the default  
configuration.  
LOCK# indicates to the system that a transaction must occur  
atomically. This signal must connect the appropriate pins of both  
FSB agents. For a locked sequence of transactions, LOCK# is  
asserted from the beginning of the first transaction to the end of  
the last transaction.  
Input/  
Output  
LOCK#  
When the priority agent asserts BPRI# to arbitrate for ownership of  
the FSB, it will wait until it observes LOCK# deasserted. This  
enables symmetric agents to retain ownership of the FSB  
throughout the bus locked operation and ensure the atomicity of  
lock.  
Probe Ready signal used by debug tools to determine processor  
debug readiness.  
PRDY#  
PREQ#  
Output  
Input  
Probe Request signal used by debug tools to request debug  
operation of the processor.  
62  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 14.  
Signal Description (Sheet 7 of 9)  
Name  
Type  
Description  
As an output, PROCHOT# (Processor Hot) will go active when the  
processor temperature monitoring sensor detects that the  
processor has reached its maximum safe operating temperature.  
This indicates that the processor Thermal Control Circuit (TCC) has  
been activated, if enabled. As an input, assertion of PROCHOT# by  
the system will activate the TCC, if enabled. The TCC will remain  
active until the system deasserts PROCHOT#.  
Input/  
Output  
PROCHOT#  
By default PROCHOT# is configured as an output. The processor  
must be enabled via the BIOS for PROCHOT# to be configured as  
bidirectional.  
Refer to the appropriate platform design guide for termination  
requirements.  
This signal may require voltage translation on the motherboard.  
Processor Power Status Indicator signal. This signal is asserted  
when the processor is both in the normal state (HFM to LFM) and in  
lower power states (Deep Sleep and Deeper Sleep).  
PSI#  
Output  
PWRGOOD (Power Good) is a processor input. The processor  
requires this signal to be a clean indication that the clocks and  
power supplies are stable and within their specifications. ‘Clean’  
implies that the signal remains low (capable of sinking leakage  
current), without glitches, from the time that the power supplies  
are turned on until they come within specification. The signal must  
then transition monotonically to a high state. Rise time and  
monotonicity requirements are shown in Table 29. Figure 21  
illustrates the relationship of PWRGOOD to the RESET# signal.  
PWRGOOD can be driven inactive at any time, but clocks and  
power must again be stable before a subsequent rising edge of  
PWRGOOD. It must also meet the minimum pulse width  
specification in Table 29, and be followed by a 2 ms (minimum)  
RESET# pulse.  
PWRGOOD  
Input  
The PWRGOOD signal must be supplied to the processor; it is used  
to protect internal circuits against voltage sequencing issues. It  
should be driven high throughout boundary scan operation.  
REQ[4:0]# (Request Command) must connect the appropriate pins  
of both FSB agents. They are asserted by the current bus owner to  
define the currently active transaction type. These signals are  
source synchronous to ADSTB[0]#.  
Input/  
Output  
REQ[4:0]#  
Asserting the RESET# signal resets the processor to a known state  
and invalidates its internal caches without writing back any of their  
contents. For a power-on Reset, RESET# must stay active for at  
least two milliseconds after VCC and BCLK have reached their  
proper specifications. On observing active RESET#, both FSB  
agents will deassert their outputs within two clocks. All processor  
straps must be valid within the specified setup time before RESET#  
is deasserted.  
RESET#  
Input  
Input  
Refer to the appropriate platform design guide for termination  
requirements and implementation details. There is a 55 Ω  
(nominal) on die pull-up resistor on this signal.  
RS[2:0]# (Response Status) are driven by the response agent (the  
agent responsible for completion of the current transaction), and  
must connect the appropriate pins of both FSB agents.  
RS[2:0]#  
Datasheet  
63  
Package Mechanical Specifications and Pin Information  
Table 14.  
Signal Description (Sheet 8 of 9)  
Name  
Type  
Description  
Reserved/ These pins are RESERVED and must be left unconnected on the  
RSVD  
No  
Connect  
board. However, it is recommended that routing channels to these  
pins on the board be kept open for possible future use.  
SLP# (Sleep), when asserted in Stop-Grant state, causes the  
processor to enter the Sleep state. During Sleep state, the  
processor stops providing internal clock signals to all units, leaving  
only the Phase-Locked Loop (PLL) still operating. Processors in this  
state will not recognize snoops or interrupts. The processor will  
recognize only assertion of the RESET# signal, deassertion of  
SLP#, and removal of the BCLK input while in Sleep state. If SLP#  
is deasserted, the processor exits Sleep state and returns to Stop-  
Grant state, restarting its internal clock signals to the bus and  
processor core units. If DPSLP# is asserted while in the Sleep  
state, the processor will exit the Sleep state and transition to the  
Deep Sleep state.  
SLP#  
Input  
SMI# (System Management Interrupt) is asserted asynchronously  
by system logic. On accepting a System Management Interrupt,  
the processor saves the current state and enters System  
Management Mode (SMM). An SMI Acknowledge transaction is  
issued and the processor begins program execution from the SMM  
handler.  
SMI#  
Input  
If an SMI# is asserted during the deassertion of RESET#, then the  
processor will tristate its outputs.  
STPCLK# (Stop Clock), when asserted, causes the processor to  
enter a low power Stop-Grant state. The processor issues a Stop-  
Grant Acknowledge transaction, and stops providing internal clock  
signals to all processor core units except the FSB and APIC units.  
The processor continues to snoop bus transactions and service  
interrupts while in Stop-Grant state. When STPCLK# is deasserted,  
the processor restarts its internal clock to all units and resumes  
execution. The assertion of STPCLK# has no effect on the bus  
clock; STPCLK# is an asynchronous input.  
STPCLK#  
Input  
TCK (Test Clock) provides the clock input for the processor Test Bus  
(also known as the Test Access Port).  
TCK  
TDI  
Input  
Input  
TDI (Test Data In) transfers serial test data into the first die. TDI  
provides the serial input needed for JTAG specification support.  
TDI_M (Test Data In) transfers serial test data into the second die.  
TDI_M provides the serial input needed for JTAG specification  
support. Connect to TDO_M on the platform.  
TDI_M  
TDO  
Input  
Output  
Output  
TDO (Test Data Out) transfers serial test data out of the second  
die. TDO provides the serial output needed for JTAG specification  
support.  
TDO_M (Test Data Out) transfers serial test data out of the first  
die. TDO_M provides the serial output needed for JTAG  
specification support. Connect to TDI_M on the platform.  
TDO_M  
64  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 14.  
Signal Description (Sheet 9 of 9)  
Name  
Type  
Description  
TEST1,  
TEST2,  
TEST3,  
TEST4,  
TEST5,  
TEST6  
TEST7  
Refer to the appropriate platform design guide for further TEST1,  
TEST2, TEST3, TEST4, TEST5, TEST6 and TEST7 termination  
requirements and implementation details.  
Input  
The processor protects itself from catastrophic overheating by use  
of an internal thermal sensor. This sensor is set well above the  
normal operating temperature to ensure that there are no false  
trips. The processor will stop all execution when the junction  
temperature exceeds approximately 125 °C. This is signalled to the  
system by the THERMTRIP# (Thermal Trip) pin.  
THERMTRIP#  
Output  
THRMDA  
Other  
Other  
Other  
Other  
Thermal Diode Anode.  
THRMDA_2  
THRMDC  
Thermal Diode Anode of the second die.  
Thermal Diode Cathode.  
THRMDC_2  
Thermal Diode Cathode of the second die.  
TMS (Test Mode Select) is a JTAG specification support signal used  
by debug tools.  
TMS  
Input  
Input  
Input  
TRDY# (Target Ready) is asserted by the target to indicate that it  
is ready to receive a write or implicit writeback data transfer.  
TRDY# must connect the appropriate pins of both FSB agents.  
TRDY#  
TRST#  
TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST#  
must be driven low during power on Reset.  
VCC  
Input  
Input  
Input  
Processor core power supply.  
VCCA  
VCCP  
VCCA provides isolated power for the internal processor core PLLs.  
Processor I/O Power Supply.  
VCCSENSE together with VSSSENSE are voltage feedback signals  
that control the 2.1 mΩ loadline at the processor die. It should be  
used to sense voltage near the silicon with little noise.  
VCCSENSE  
VID[6:0]  
Output  
VID[6:0] (Voltage ID) pins are used to support automatic selection  
of power supply voltages (VCC). Unlike some previous generations  
of processors, these are CMOS signals that are driven by the  
processor. The voltage supply for these pins must be valid before  
the VR can supply VCC to the processor. Conversely, the VR output  
must be disabled until the voltage supply for the VID pins becomes  
valid. The VID pins are needed to support the processor voltage  
specification variations. See Table 3 for definitions of these pins.  
The VR must supply the voltage that is requested by the pins, or  
disable itself.  
Output  
VSS  
Input  
Processor core ground node.  
VSSSENSE together with VCCSENSE are voltage feedback signals  
that control the 2.1-mΩ loadline at the processor die. It should be  
used to sense ground near the silicon with little noise.  
VSSSENSE  
Output  
Datasheet  
65  
Package Mechanical Specifications and Pin Information  
Table 15.  
New Pins for the Quad-Core Mobile Processor  
Pin Name  
BPM_2[0]#  
Pin#  
Description  
N5 BPM_2[3:0]# (Breakpoint Monitor) are breakpoint and performance  
monitor signals of the second die. They are outputs from the  
processor that indicate the status of breakpoints and programmable  
B2 counters used for monitoring processor performance. BPM_2[3:0]#  
should connect the appropriate pins of all processor FSB agents.This  
BPM_2[1]#  
BPM_2[2]#  
M4  
BPM_2[3]#  
AE8  
includes debug or performance monitoring tools.  
Arbitration Request signal for the second die.  
BR1# is connected to the first die within the package, allowing two  
dies within quad-core parts to artitrite for the bus. This pin is  
BR1#  
AA7  
fundamentally provided for debug capabilities and should be left as a  
NC.  
GTLREF_2  
D22 GTL reference level for AGTL+ input pins of the second die.  
This pin can be used as GTLREF_2 disconnect circuit control signal.  
GTLREF_2 maps out to a reserved pin on Intel Core 2 Duo mobile  
processor, for dual-core and quad-core interchangeable  
GTLREF_CONTROL  
F8  
motherboard,GTLREF_CONTROL can be used as a control signal for a  
circuit that will automaticlly switch between Dual Core and quad-  
core modes.  
RSVD  
RSVD  
RSVD  
AC8  
These pins are RESERVED and must be left unconnected on the  
AA8 board. However, it is recommended that routing channels to these  
pins on the board be kept open for possible future use.  
D8  
TDI_M (Test Data In) transfers serial test data into the second die.  
TDI_M  
F6  
TDI_M provides the serial input needed for JTAG specification  
support. Connect to TDO_M on the platform.  
TDO_M (Test Data Out) transfers serial test data out of the first die.  
TDO_M  
D3 TDO_M provides the serial output needed for JTAG specification  
support. Connect to TDI_M on the platform.  
THRMDA_2  
THRMDC_2  
T2  
V3  
Thermal Diode Anode of the second die.  
Thermal Diode Cathode of the second die.  
§
66  
Datasheet  
Thermal Specifications and Design Considerations  
5 Thermal Specifications and  
Design Considerations  
The processor requires a thermal solution to maintain temperatures within operating  
limits.  
Caution:  
Operating the processor outside these operating limits may result in permanent  
damage to the processor and potentially other components in the system.  
Maintaining the proper thermal environment is key to reliable, long-term system  
operation. A complete thermal solution includes both component and system-level  
thermal management features. To allow for the optimal operation and long-term  
reliability of Intel processor-based systems, the system/processor thermal solution  
should be designed so the processor remains within the minimum and maximum  
junction temperature (TJ) specifications at the corresponding thermal design power  
(TDP) value listed in Table 16. Analysis indicates that real applications are unlikely to  
cause the processor to consume the theoretical maximum power dissipation for  
sustained time periods.  
Table 16.  
Processor Power Specifications  
Processor  
Number  
Thermal Design  
Power  
Symbol  
Core Frequency & Voltage  
Unit Notes  
QX9300  
45  
45  
45  
35  
2.53 GHz & VCCHFM  
2.26 GHz & VCCHFM  
2.0 GHz & VCCHFM  
1.60 GHz & VCCLFM  
Q9100  
Q9000  
1, 4,  
5, 6  
TDP  
W
Symbol  
Parameter  
Min Typ Max  
Unit Notes  
Auto Halt, Stop Grant Power  
at HFM VCC  
PAH,  
19.4  
14.5  
W
W
W
2, 5, 7  
2, 5, 7  
2, 5, 8  
PSGNT  
at LFM VCC  
Sleep Power  
at HFM VCC  
at LFM VCC  
PSLP  
18.6  
14.1  
Deep Sleep Power  
at HFM VCC  
PDSLP  
7.9  
7.1  
at LFM VCC  
PDPRSLP Deeper Sleep Power  
0
4.0  
W
2, 8  
3, 4  
TJ  
Junction Temperature  
100  
°C  
NOTES:  
1.  
The TDP specification should be used to design the processor thermal solution. The TDP is  
not the maximum theoretical power the processor can generate.  
Not 100% tested. These power specifications are determined by characterization of the  
processor currents at higher temperatures and extrapolating the values for the  
temperature indicated.  
2.  
3.  
4.  
As measured by the activation of the on-die Intel Thermal Monitor. The Intel Thermal  
Monitor’s automatic mode is used to indicate that the maximum TJ has been reached.  
Refer to Section 5.1 for details.  
The Intel Thermal Monitor automatic mode must be enabled for the processor to operate  
within specifications.  
Datasheet  
67  
Thermal Specifications and Design Considerations  
5.  
Processor TDP requirements in Intel Dynamic Acceleration mode are lesser than TDP in  
HFM.  
6.  
7.  
8.  
At Tj of 100oC  
At Tj of 50oC  
At Tj of 35oC  
5.1  
Monitoring Die Temperature  
The processor incorporates three methods of monitoring die temperature:  
• Thermal Diode  
• Intel® Thermal Monitor  
• Digital Thermal Sensor  
Note:  
The Intel Thermal Monitor (detailed in Section 5.1.2) must be used to determine when  
the maximum specified processor junction temperature has been reached.  
5.1.1  
Thermal Diode  
Intel’s processors utilize an SMBus thermal sensor to read back the voltage/current  
characteristics of a substrate PNP transistor. Since these characteristics are a function  
of temperature, in principle one can use these parameters to calculate silicon  
temperature values. For older silicon process technologies (i.e., Intel® Core™2 Duo  
mobile processors on 65nm process), it is possible to simplify the voltage/current and  
temperature relationships by treating the substrate transistor as though it were a  
simple diffusion diode. In this case, the assumption is that the beta of the transistor  
does not impact the calculated temperature values. The resultant “diode” model  
essentially predicts a quasi linear relationship between the base/emitter voltage  
differential of the PNP transistor and the applied temperature (one of the  
proportionality constants in this relationship is processor specific, and is known as the  
diode ideality factor). Realization of this relationship is accomplished with the SMBus  
thermal sensor that is connected to the transistor.  
The quad-core processor, however, is built on Intel’s advanced 45-nm processor  
technology. Due to this new highly advanced processor technology, it is no longer  
possible to model the substrate transistor as a simple diode. To accurately calculate  
silicon temperature one must use a full bi-polar junction transistor-type model. In this  
model, the voltage/current and temperature characteristics include an additional  
process dependant parameter which is known as the transistor “beta. System  
designers should be aware that the current thermal sensors on Santa Rosa platforms  
may not be configured to account for “beta” and should work with their SMB thermal  
sensor vendors to ensure they have a part capable of reading the thermal diode in BJT  
model.  
Offset between the thermal diode-based temperature reading and the Intel Thermal  
Monitor reading may be characterized using the Intel Thermal Monitor’s automatic  
mode activation of the thermal control circuit. This temperature offset must be taken  
into account when using the processor thermal diode to implement power management  
events. This offset is different than the diode Toffset value programmed into the  
processor Model-Specific Register (MSR).  
Table 17 to Table 18 provide the diode interface and transistor model specifications.  
68  
Datasheet  
Thermal Specifications and Design Considerations  
Table 17.  
Thermal Diode Interface  
Signal Name  
Pin/Ball Number  
Signal Description  
THERMDA  
THERMDC  
A24  
B25  
T2  
Thermal diode anode  
Thermal diode cathode  
THERMDA_2  
THERMDC_2  
Thermal diode anode of the second die  
Thermal diode cathode of the second die  
V3  
Table 18.  
Thermal Diode Parameters Using Transistor Model  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
IFW  
IE  
Forward Bias Current  
Emitter Current  
5
5
200  
200  
μA  
μA  
1
1
nQ  
Transistor Ideality  
0.997  
0.1  
3.0  
1.001  
0.4  
1.008  
0.5  
2, 3, 4  
2, 3  
2
Beta  
RT  
Series Resistance  
4.5  
7.0  
Ω
NOTES:  
1.  
2.  
3.  
4.  
Intel does not support or recommend operation of the thermal diode under reverse bias.  
Characterized across a temperature range of 50-100°C.  
Not 100% tested. Specified by design characterization.  
The ideality factor, nQ, represents the deviation from ideal transistor model behavior as  
exemplified by the equation for the collector current:  
/n  
I
C = IS * (e qVBE kT –1)  
Q
where IS = saturation current, q = electronic charge, VBE = voltage across the transistor  
base emitter junction (same nodes as VD), k = Boltzmann Constant, and T = absolute  
temperature (Kelvin).  
5.1.2  
Intel® Thermal Monitor  
The Intel® Thermal Monitor helps control the processor temperature by activating the  
TCC (Thermal Control Circuit) when the processor silicon reaches its maximum  
operating temperature. The temperature at which the Intel Thermal Monitor activates  
the TCC is not user configurable. Bus traffic is snooped in the normal manner and  
interrupt requests are latched (and serviced during the time that the clocks are on)  
while the TCC is active.  
With a properly designed and characterized thermal solution, it is anticipated that the  
TCC would only be activated for very short periods of time when running the most  
power-intensive applications. The processor performance impact due to these brief  
periods of TCC activation is expected to be minor and hence not detectable. An under-  
designed thermal solution that is not able to prevent excessive activation of the TCC in  
the anticipated ambient environment may cause a noticeable performance loss and  
may affect the long-term reliability of the processor. In addition, a thermal solution that  
is significantly under designed may not be capable of cooling the processor even when  
the TCC is active continuously.  
The Intel Thermal Monitor controls the processor temperature by modulating (starting  
and stopping) the processor core clocks or by initiating an Enhanced Intel SpeedStep  
Technology transition when the processor silicon reaches its maximum operating  
Datasheet  
69  
Thermal Specifications and Design Considerations  
temperature. The Intel Thermal Monitor uses two modes to activate the TCC: automatic  
mode and on-demand mode. If both modes are activated, automatic mode takes  
precedence.  
There are two automatic modes called Intel Thermal Monitor 1 (TM1) and Intel Thermal  
Monitor 2 (TM2). These modes are selected by writing values to the MSRs of the  
processor. After automatic mode is enabled, the TCC will activate only when the  
internal die temperature reaches the maximum allowed value for operation.  
When TM1 is enabled and a high temperature situation exists, the clocks will be  
modulated by alternately turning the clocks off and on at a 50% duty cycle. Cycle times  
are processor speed-dependent and will decrease linearly as processor core frequencies  
increase. Once the temperature has returned to a non-critical level, modulation ceases  
and TCC goes inactive. A small amount of hysteresis has been included to prevent rapid  
active/inactive transitions of the TCC when the processor temperature is near the trip  
point. The duty cycle is factory configured and cannot be modified. Also, automatic  
mode does not require any additional hardware, software drivers, or interrupt handling  
routines. Processor performance will be decreased by the same amount as the duty  
cycle when the TCC is active.  
When TM2 is enabled and a high temperature situation exists, the processor will  
perform an Enhanced Intel SpeedStep Technology transition to the LFM. When the  
processor temperature drops below the critical level, the processor will make an  
Enhanced Intel SpeedStep Technology transition to the last requested operating point.  
Intel recommends TM1 and TM2 be enabled on the processors.  
TM1 and TM2 can co-exist within the processor. If both TM1 and TM2 bits are enabled in  
the auto-throttle MSR, TM2 takes precedence over TM1. However, if Force TM1 over  
TM2 is enabled in MSRs via BIOS and TM2 is not sufficient to cool the processor below  
the maximum operating temperature, then TM1 will also activate to help cool down the  
processor.  
If a processor load-based Enhanced Intel SpeedStep Technology transition (through  
MSR write) is initiated when a TM2 period is active, there are two possible results:  
1. If the processor load-based Enhanced Intel SpeedStep Technology transition target  
frequency is higher than the TM2 transition-based target frequency, the processor  
load-based transition will be deferred until the TM2 event has been completed.  
2. If the processor load-based Enhanced Intel SpeedStep Technology transition target  
frequency is lower than the TM2 transition-based target frequency, the processor  
will transition to the processor load-based Enhanced Intel SpeedStep Technology  
target frequency point.  
The TCC may also be activated via on-demand mode. If bit 4 of the ACPI Intel Thermal  
Monitor control register is written to a 1, the TCC will be activated immediately  
independent of the processor temperature. When using on-demand mode to activate  
the TCC, the duty cycle of the clock modulation is programmable via bits 3:1 of the  
same ACPI Intel Thermal Monitor control register. In automatic mode, the duty cycle is  
fixed at 50% on, 50% off, however in on-demand mode, the duty cycle can be  
programmed from 12.5% on/ 87.5% off, to 87.5% on/12.5% off in 12.5% increments.  
On-demand mode may be used at the same time automatic mode is enabled, however,  
if the system tries to enable the TCC via on-demand mode at the same time automatic  
mode is enabled and a high temperature condition exists, automatic mode will take  
precedence.  
An external signal, PROCHOT# (processor hot) is asserted when the processor detects  
that its temperature is above the thermal trip point. Bus snooping and interrupt  
latching are also active while the TCC is active.  
70  
Datasheet  
Thermal Specifications and Design Considerations  
Besides the thermal sensor and thermal control circuit, the Intel Thermal Monitor also  
includes one ACPI register, one performance counter register, three MSR, and one I/O  
pin (PROCHOT#). All are available to monitor and control the state of the Intel Thermal  
Monitor feature. The Intel Thermal Monitor can be configured to generate an interrupt  
upon the assertion or deassertion of PROCHOT#.  
PROCHOT# will not be asserted when the processor is in the Stop Grant,  
Sleep, and Deep Sleep low power states, hence the thermal diode reading  
must be used as a safeguard to maintain the processor junction temperature  
within maximum specification. If the platform thermal solution is not able to  
maintain the processor junction temperature within the maximum specification, the  
system must initiate an orderly shutdown to prevent damage. If the processor enters  
one of the above low power states with PROCHOT# already asserted, PROCHOT# will  
remain asserted until the processor exits the low power state and the processor  
junction temperature drops below the thermal trip point.  
If Thermal Monitor automatic mode is disabled, the processor will be operating out of  
specification. Regardless of enabling the automatic or on-demand modes, in the event  
of a catastrophic cooling failure, the processor will automatically shut down when the  
silicon has reached a temperature of approximately 125 °C. At this point the  
THERMTRIP# signal will go active. THERMTRIP# activation is independent of processor  
activity and does not generate any bus cycles. When THERMTRIP# is asserted, the  
processor core voltage must be shut down within the time specified in Chapter 3.  
In all cases the Intel Thermal Monitor feature must be enabled for the processor to  
remain within specification.  
5.1.3  
Digital Thermal Sensor  
The processor also contains an on-die Digital Thermal Sensor (DTS) that can be read  
via an MSR (no I/O interface). Each core of the processor will have a unique digital  
thermal sensor whose temperature is accessible via the processor MSRs. The DTS is the  
preferred method of reading the processor die temperature since it can be located  
much closer to the hottest portions of the die and can thus more accurately track the  
die temperature and potential activation of processor core clock modulation via the  
Thermal Monitor. The DTS is only valid while the processor is in the normal operating  
state (the Normal package level low power state).  
Unlike traditional thermal devices, the DTS outputs a temperature relative to the  
maximum supported operating temperature of the processor (TJ,max). It is the  
responsibility of software to convert the relative temperature to an absolute  
temperature. The temperature returned by the DTS will always be at or below TJ,max  
.
Catastrophic temperature conditions are detectable via an Out Of Specification status  
bit. This bit is also part of the DTS MSR. When this bit is set, the processor is operating  
out of specification and immediate shutdown of the system should occur. The processor  
operation and code execution is not ensured once the activation of the Out of  
Specification status bit is set.  
The DTS-relative temperature readout corresponds to the Thermal Monitor (TM1/TM2)  
trigger point. When the DTS indicates maximum processor core temperature has been  
reached, the TM1 or TM2 hardware thermal control mechanism will activate. The DTS  
and TM1/TM2 temperature may not correspond to the thermal diode reading since the  
thermal diode is located in a separate portion of the die and there is a thermal gradient  
between the individual core DTS. Additionally, the thermal gradient from DTS to  
thermal diode can vary substantially due to changes in processor power, mechanical  
and thermal attach, and software application. The system designer is required to use  
the DTS to ensure proper operation of the processor within its temperature operating  
specifications.  
Datasheet  
71  
Thermal Specifications and Design Considerations  
Changes to the temperature can be detected via two programmable thresholds located  
in the processor MSRs. These thresholds have the capability of generating interrupts  
via the core's local APIC. Refer to the Intel® 64 and IA-32 Architectures Software  
Developer's Manuals for specific register and programming details.  
5.2  
PROCHOT# Signal Pin  
An external signal, PROCHOT# (processor hot), is asserted when the processor die  
temperature has reached its maximum operating temperature. If TM1 or TM2 is  
enabled, then the TCC will be active when PROCHOT# is asserted. The processor can  
be configured to generate an interrupt upon the assertion or deassertion of  
PROCHOT#. Refer to the an interrupt upon the assertion or deassertion of PROCHOT#.  
Refer to the Intel® 64 and IA-32 Architectures Software Developer's Manuals for  
specific register and programming details.  
The processor implements a bi-directional PROCHOT# capability to allow system  
designs to protect various components from overheating situations. The PROCHOT#  
signal is bi-directional in that it can either signal when the processor has reached its  
maximum operating temperature or be driven from an external source to activate the  
TCC. The ability to activate the TCC via PROCHOT# can provide a means for thermal  
protection of system components.  
Only a single PROCHOT# pin exists at a package level of the processor. When any  
core's thermal sensor trips, PROCHOT# signal will be driven by the processor package.  
If only TM1 is enabled, PROCHOT# will be asserted regardless of which core is above its  
TCC temperature trip point, and all cores will have their core clocks modulated. If TM2  
is enabled then, regardless of which core(s) are above the TCC temperature trip point,  
all cores will enter the lowest programmed TM2 performance state. It is important to  
note that Intel recommends both TM1 and TM2 to be enabled.  
When PROCHOT# is driven by an external agent, if only TM1 is enabled on all cores,  
then all processor cores will have their core clocks modulated. If TM2 is enabled on all  
cores, then all processor cores will enter the lowest programmed TM2 performance  
state. It should be noted that Force TM1 on TM2, enabled via BIOS, does not have any  
effect on external PROCHOT#. If PROCHOT# is driven by an external agent when TM1,  
TM2, and Force TM1 on TM2 are all enabled, then the processor will still apply only  
TM2.  
PROCHOT# may be used for thermal protection of voltage regulators (VR). System  
designers can create a circuit to monitor the VR temperature and activate the TCC  
when the temperature limit of the VR is reached. By asserting PROCHOT# (pulled-low)  
and activating the TCC, the VR will cool down as a result of reduced processor power  
consumption. Bi-directional PROCHOT# can allow VR thermal designs to target  
maximum sustained current instead of maximum current. Systems should still provide  
proper cooling for the VR and rely on bi-directional PROCHOT# only as a backup in case  
of system cooling failure. The system thermal design should allow the power delivery  
circuitry to operate within its temperature specification even while the processor is  
operating at its TDP. With a properly designed and characterized thermal solution, it is  
anticipated that bi-directional PROCHOT# would only be asserted for very short periods  
of time when running the most power-intensive applications. An under-designed  
thermal solution that is not able to prevent excessive assertion of PROCHOT# in the  
anticipated ambient environment may cause a noticeable performance loss.  
§
72  
Datasheet  

相关型号:

AW80581GH0416M/SLGEJ

RISC Microprocessor, 64-Bit, 2000MHz, PPGA478
INTEL

AW80581GH051003

RISC Microprocessor, 64-Bit, 2260MHz, CMOS, PPGA478
INTEL

AW80581GH051003/SLB5G

RISC Microprocessor, 64-Bit, 2260MHz, CMOS, PPGA478
INTEL

AW80581ZH061003

RISC Microprocessor, 64-Bit, 2530MHz, CMOS, PPGA478
INTEL

AW80581ZH061003/SLB5J

RISC Microprocessor, 64-Bit, 2530MHz, CMOS, PPGA478
INTEL

AW80585NG0491MA/SLGLQ

RISC Microprocessor, 64-Bit, 2200MHz, CMOS, PPGA478
INTEL

AW8090A

1.25 W Class-AB Audio Power Amplifier with RF Noise Suppression
AWINIC

AW8090ACOR

1.25 W Class-AB Audio Power Amplifier with RF Noise Suppression
AWINIC

AW8110

Non-Crack-Noise, Ultra-Low-EMI, 3W, Mono, Filter-Free, Class-D Audio Amplifier
AWINIC

AW8110CSR

Non-Crack-Noise, Ultra-Low-EMI, 3W, Mono, Filter-Free, Class-D Audio Amplifier
AWINIC

AW8155A

Non-Crack-Noise, Ultra-Low-THDN,Ultra-Low-EMI, Second Generation Class-D Audio Amplifier
AWINIC

AW8155AFCR

Non-Crack-Noise, Ultra-Low-THDN,Ultra-Low-EMI, Second Generation Class-D Audio Amplifier
AWINIC