BV80605002505AG/SLBPS [INTEL]

RISC Microprocessor, 64-Bit, 3060MHz, CMOS, PBGA1156;
BV80605002505AG/SLBPS
型号: BV80605002505AG/SLBPS
厂家: INTEL    INTEL
描述:

RISC Microprocessor, 64-Bit, 3060MHz, CMOS, PBGA1156

文件: 总94页 (文件大小:475K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
Intel Core™ i7-800 and i5-700  
Desktop Processor Series  
Datasheet – Volume 1  
This is volume 1 of 2  
July 2010  
Document Number: 322164-004  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR  
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS  
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING  
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,  
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE  
FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published  
specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different  
processor families. See http://www.intel.com/products/processor_number for details. Over time processor numbers will increment based on changes in  
clock, speed, cache, FSB, or other features, and increments are not intended to represent proportional or quantitative increases in any particular  
feature. Current roadmap processor number progression is not necessarily representative of future roadmaps. See www.intel.com/products/  
processor_number for details.  
®
Intel Active Management Technology requires the computer system to have an Intel(R) AMT-enabled chipset, network hardware and software, as well  
as connection with a power source and a corporate network connection. Setup requires configuration by the purchaser and may require scripting with  
the management console or further integration into existing security frameworks to enable certain functionality. It may also require modifications of  
implementation of new business processes. With regard to notebooks, Intel AMT may not be available or certain capabilities may be limited over a host  
OS-based VPN or when connecting wirelessly, on battery power, sleeping, hibernating or powered off. For more information, see www.intel.com/  
technology/platform-technology/intel-amt/  
Intel® Trusted Execution Technology (Intel® TXT) requires a computer system with Intel® Virtualization Technology (Intel® Virtualization Technology  
(Intel® VT-x) and Intel® Virtualization Technology for Directed I/O (Intel® VT-d)), a Intel TXT-enabled processor, chipset, BIOS, Authenticated Code  
Modules and an Intel TXT-compatible measured launched environment (MLE). The MLE could consist of a virtual machine monitor, an OS or an  
application. In addition, Intel TXT requires the system to contain a TPM v1.2, as defined by the Trusted Computing Group and specific software for some  
uses. For more information, see http://www.intel.com/technology/security  
®
®
Intel Virtualization Technology requires a computer system with an enabled Intel processor, BIOS, virtual machine monitor (VMM) and, for some uses,  
certain computer system software enabled for it. Functionality, performance or other benefits will vary depending on hardware and software  
configurations and may require a BIOS update. Software applications may not be compatible with all operating systems. Please check with your  
application vendor.  
Warning: Altering clock frequency and/or voltage may (i) reduce system stability and useful life of the system and processor; (ii) cause the processor  
and other system components to fail; (iii) cause reductions in system performance; (iv) cause additional heat or other damage; and (v) affect system  
data integrity. Intel has not tested, and does not warranty, the operation of the processor beyond its specifications.  
* Intel® Turbo Boost Technology requires a PC with a processor with Intel Turbo Boost Technology capability. Intel Turbo Boost Technology performance  
varies depending on hardware, software and overall system configuration. Check with your PC manufacturer on whether your system delivers Intel Turbo  
Boost Technology. For more information, see http://www.intel.com/technology/turboboost  
Hyper-threading Technology requires a computer system with a processor supporting HT Technology and an HT Technology-enabled chipset, BIOS, and  
operating system. Performance will vary depending on the specific hardware and software you use. For more information including details on which  
processors support HT Technology, see http://www.intel.com/info/hyperthreading.  
64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and applications  
®
enabled for Intel 64 architecture. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for  
more information.  
Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating system. Check  
with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.  
®
Enhanced Intel SpeedStep Technology for specified units of this processor available Q2/06. See the Processor Spec Finder at http://  
processorfinder.intel.com or contact your Intel representative for more information.  
Intel, Intel Core, Core Inside, Intel Speedstep, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2009-2010, Intel Corporation. All rights reserved.  
2
Datasheet, Volume 1  
Contents  
1
Introduction..............................................................................................................9  
1.1  
Processor Feature Details ................................................................................... 11  
1.1.1 Supported Technologies .......................................................................... 11  
Interfaces ........................................................................................................ 11  
1.2.1 System Memory Support......................................................................... 11  
1.2.2 PCI Express* ......................................................................................... 12  
1.2.3 Direct Media Interface (DMI).................................................................... 13  
1.2.4 Platform Environment Control Interface (PECI)........................................... 13  
Power Management Support ............................................................................... 14  
1.3.1 Processor Core....................................................................................... 14  
1.3.2 System................................................................................................. 14  
1.3.3 Memory Controller.................................................................................. 14  
1.3.4 PCI Express* ......................................................................................... 14  
Thermal Management Support ............................................................................ 14  
Package........................................................................................................... 14  
Terminology ..................................................................................................... 15  
Related Documents ........................................................................................... 17  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
2
Interfaces................................................................................................................ 19  
2.1  
System Memory Interface .................................................................................. 19  
2.1.1 System Memory Technology Supported..................................................... 19  
2.1.2 System Memory Timing Support............................................................... 20  
2.1.3 System Memory Organization Modes......................................................... 20  
2.1.3.1 Single-Channel Mode................................................................. 20  
2.1.3.2 Dual-Channel Mode—Intel® Flex Memory Technology Mode............ 21  
2.1.4 Rules for Populating Memory Slots............................................................ 22  
2.1.5 Technology Enhancements of Intel® Fast Memory Access (Intel® FMA).......... 23  
2.1.5.1 Just-in-Time Command Scheduling.............................................. 23  
2.1.5.2 Command Overlap .................................................................... 23  
2.1.5.3 Out-of-Order Scheduling............................................................ 23  
2.1.6 System Memory Pre-Charge Power Down Support Details............................ 23  
PCI Express* Interface....................................................................................... 24  
2.2.1 PCI Express* Architecture ....................................................................... 24  
2.2.1.1 Transaction Layer ..................................................................... 25  
2.2.1.2 Data Link Layer ........................................................................ 25  
2.2.1.3 Physical Layer .......................................................................... 25  
2.2.2 PCI Express* Configuration Mechanism ..................................................... 26  
2.2.3 PCI Express* Ports and Bifurcation ........................................................... 27  
2.2.3.1 PCI Express* Bifurcated Mode .................................................... 27  
Direct Media Interface (DMI)............................................................................... 27  
2.3.1 DMI Error Flow....................................................................................... 27  
2.3.2 Processor/PCH Compatibility Assumptions.................................................. 27  
2.3.3 DMI Link Down ...................................................................................... 27  
Platform Environment Control Interface (PECI)...................................................... 28  
Interface Clocking ............................................................................................. 28  
2.5.1 Internal Clocking Requirements................................................................ 28  
2.2  
2.3  
2.4  
2.5  
3
Technologies ........................................................................................................... 29  
3.1  
Intel® Virtualization Technology.......................................................................... 29  
3.1.1 Intel® VT-x Objectives............................................................................ 29  
3.1.2 Intel® VT-x Features .............................................................................. 29  
Datasheet, Volume 1  
3
3.1.3 Intel® VT-d Objectives ............................................................................30  
3.1.4 Intel® VT-d Features...............................................................................30  
3.1.5 Intel® VT-d Features Not Supported..........................................................31  
Intel® Trusted Execution Technology (Intel® TXT) .................................................31  
Intel® Hyper-Threading Technology .....................................................................32  
Intel® Turbo Boost Technology............................................................................32  
3.2  
3.3  
3.4  
4
Power Management .................................................................................................33  
4.1  
ACPI States Supported .......................................................................................33  
4.1.1 System States........................................................................................33  
4.1.2 Processor Core/Package Idle States...........................................................33  
4.1.3 Integrated Memory Controller States.........................................................33  
4.1.4 PCI Express* Link States .........................................................................34  
4.1.5 Interface State Combinations ...................................................................34  
Processor Core Power Management......................................................................34  
4.2.1 Enhanced Intel® SpeedStep® Technology ..................................................34  
4.2.2 Low-Power Idle States.............................................................................35  
4.2.3 Requesting Low-Power Idle States ............................................................36  
4.2.4 Core C-states.........................................................................................37  
4.2.4.1 Core C0 State...........................................................................37  
4.2.4.2 Core C1/C1E State ....................................................................37  
4.2.4.3 Core C3 State...........................................................................38  
4.2.4.4 Core C6 State...........................................................................38  
4.2.4.5 C-State Auto-Demotion..............................................................38  
4.2.5 Package C-States ...................................................................................38  
4.2.5.1 Package C0 ..............................................................................40  
4.2.5.2 Package C1/C1E........................................................................40  
4.2.5.3 Package C3 State......................................................................40  
4.2.5.4 Package C6 State......................................................................40  
Integrated Memory Controller (IMC) Power Management.........................................41  
4.3.1 Disabling Unused System Memory Outputs.................................................41  
4.3.2 DRAM Power Management and Initialization ...............................................41  
4.3.2.1 Initialization Role of CKE ............................................................41  
4.3.2.2 Conditional Self-Refresh.............................................................41  
4.3.2.3 Dynamic Power Down Operation..................................................42  
4.3.2.4 DRAM I/O Power Management ....................................................42  
PCI Express* Power Management ........................................................................42  
4.2  
4.3  
4.4  
5
6
Thermal Management ..............................................................................................43  
Signal Description....................................................................................................45  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
6.7  
6.8  
6.9  
System Memory Interface...................................................................................46  
Memory Reference and Compensation ..................................................................48  
Reset and Miscellaneous Signals ..........................................................................48  
PCI Express* Based Interface Signals...................................................................49  
DMI—Processor to PCH Serial Interface.................................................................49  
PLL Signals .......................................................................................................50  
Intel® Flexible Display Interface Signals ...............................................................50  
JTAG/ITP Signals ...............................................................................................51  
Error and Thermal Protection...............................................................................52  
6.10 Power Sequencing .............................................................................................53  
6.11 Processor Core Power Signals..............................................................................53  
6.12 Graphics and Memory Core Power Signals.............................................................55  
6.13 Ground and NCTF ..............................................................................................56  
6.14 Processor Internal Pull Up/Pull Down ....................................................................56  
4
Datasheet, Volume 1  
7
Electrical Specifications........................................................................................... 57  
7.1  
7.2  
Power and Ground Lands.................................................................................... 57  
Decoupling Guidelines........................................................................................ 57  
7.2.1 Voltage Rail Decoupling........................................................................... 57  
Processor Clocking (BCLK[0], BCLK#[0]).............................................................. 58  
7.3.1 PLL Power Supply................................................................................... 58  
VCC Voltage Identification (VID) .......................................................................... 58  
Reserved or Unused Signals................................................................................ 62  
Signal Groups................................................................................................... 62  
Test Access Port (TAP) Connection....................................................................... 65  
Absolute Maximum and Minimum Ratings ............................................................. 65  
DC Specifications .............................................................................................. 66  
7.9.1 Voltage and Current Specifications............................................................ 66  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
7.10 Platform Environmental Control Interface (PECI) DC Specifications........................... 73  
7.10.1 DC Characteristics.................................................................................. 73  
7.10.2 Input Device Hysteresis .......................................................................... 74  
8
Processor Land and Signal Information ................................................................... 75  
8.1  
Processor Land Assignments............................................................................... 75  
Datasheet, Volume 1  
5
Figures  
1-1 Intel® Core™ i7-800 and i5-700 Desktop Processor Series Platform Diagram....................10  
2-1 Intel® Flex Memory Technology Operation ...................................................................21  
2-2 Dual-Channel Symmetric (Interleaved) and Dual-Channel Asymmetric Modes...................22  
2-3 PCI Express* Layering Diagram..................................................................................24  
2-4 Packet Flow through the Layers..................................................................................25  
2-5 PCI Express* Related Register Structures in Processor...................................................26  
4-1 Idle Power Management Breakdown of the Processor Cores............................................35  
4-2 Thread and Core C-State Entry and Exit ......................................................................36  
4-3 Package C-State Entry and Exit ..................................................................................39  
7-1 VCC Static and Transient Tolerance Loadlines................................................................69  
7-2 Input Device Hysteresis.............................................................................................74  
8-1 Socket Pinmap (Top View, Upper-Left Quadrant) ..........................................................76  
8-2 Socket Pinmap (Top View, Upper-Right Quadrant) ........................................................77  
8-3 Socket Pinmap (Top View, Lower-Left Quadrant) ..........................................................78  
8-4 Socket Pinmap (Top View, Lower-Right Quadrant) ........................................................79  
Tables  
1-1 Intel® Core™ i7-800 and i5-700 Desktop Processor Series SKU  
Supported Memory Summary....................................................................................11  
1-2 Related Documents .................................................................................................17  
2-1 Supported DIMM Module Configurations .....................................................................19  
2-2 DDR3 System Memory Timing Support.......................................................................20  
2-3 System Memory Pre-Charge Power Down Support .......................................................23  
2-4 Processor Reference Clock Requirements....................................................................28  
4-1 Processor Core/Package State Support.......................................................................33  
4-2 G, S, and C State Combinations ................................................................................34  
4-3 Coordination of Thread Power States at the Core Level.................................................36  
4-4 P_LVLx to MWAIT Conversion....................................................................................37  
4-5 Coordination of Core Power States at the Package Level...............................................39  
4-6 Targeted Memory State Conditions ............................................................................42  
6-1 Signal Description Buffer Types.................................................................................45  
6-2 Memory Channel A ..................................................................................................46  
6-3 Memory Channel B ..................................................................................................47  
6-4 Memory Reference and Compensation........................................................................48  
6-5 Reset and Miscellaneous Signals................................................................................48  
6-6 PCI Express* Based Interface Signals ........................................................................49  
6-7 DMI—Processor to PCH Serial Interface......................................................................49  
6-8 PLL Signals.............................................................................................................50  
6-9 Intel® Flexible Display Interface................................................................................50  
6-10 JTAG/ITP................................................................................................................51  
6-11 Error and Thermal Protection ....................................................................................52  
6-12 Power Sequencing...................................................................................................53  
6-13 Processor Core Power Signals ...................................................................................53  
6-14 Graphics and Memory Power Signals..........................................................................55  
6-15 Ground and NCTF....................................................................................................56  
6-16 Processor Internal Pull Up/Pull Down..........................................................................56  
7-1 VRD 11.1/11.0 Voltage Identification Definition...........................................................59  
7-2 Market Segment Selection Truth Table for MSID[2:0]...................................................61  
7-3 Signal Groups 1 ......................................................................................................63  
7-4 Processor Absolute Minimum and Maximum Ratings.....................................................65  
7-5 Processor Core Active and Idle Mode DC Voltage and Current Specifications....................66  
7-6 Processor Uncore I/O Buffer Supply DC Voltage and Current Specifications .....................67  
7-7 VCC Static and Transient Tolerance ...........................................................................68  
7-8 DDR3 Signal Group DC Specifications.........................................................................70  
6
Datasheet, Volume 1  
7-9 Control Sideband and TAP Signal Group DC Specifications ............................................ 71  
7-10 PCI Express* DC Specifications................................................................................. 72  
7-11 PECI DC Electrical Limits.......................................................................................... 73  
8-1 Signals Not Used by the Intel® Core™ i7-800 and i5-700 Desktop Processor Series ......... 75  
8-2 Processor Pin List by Pin Name ................................................................................. 80  
Datasheet, Volume 1  
7
Revision History  
Revision  
Number  
Description  
Date  
September  
2009  
001  
002  
Initial release  
®
January  
2010  
Added Intel Core™ i7-860S and i5-750S processors  
®
003  
004  
Added Intel Core™ i7-875K and i7-880 processors  
June 2010  
July 2010  
®
Added Intel Core™ i5-760 and i7-870S processors  
§ §  
8
Datasheet, Volume 1  
Introduction  
1 Introduction  
The Intel® Core™ i7-800 and i5-700 desktop processor series are the next generation  
of 64-bit, multi-core processors built on 45-nanometer process technology. Based on  
the low-power/high-performance Intel microarchitecture, the processor is designed for  
a two-chip platform, instead of the traditional three-chip platforms (processor, (G)MCH,  
and ICH). The two-chip platform consists of a processor and Platform Controller Hub  
(PCH) and enables higher performance, easier validation, and improved x-y footprint.  
The Intel® 5 Series Chipset components for desktop are the PCH. The Intel® Core™ i7-  
800 and i5-700 desktop processor series are designed for desktop platforms.  
This document provides DC electrical specifications, signal integrity, differential  
signaling specifications, pinout and signal definitions, interface functional descriptions,  
and additional feature information pertinent to the implementation and operation of the  
processor on its respective platform.  
Note:  
Note:  
Note:  
Note:  
Note:  
Throughout this document, the Intel® Core™ i7-800 and i5-700 desktop processor  
series may be referred to as “processor.  
Throughout this document, the Intel® Core™ i7-800 desktop processor series refers to  
the Intel® Core™ i7-880, i7-875K, i7-870, i7-870S, i7-860, and i7-860S processors.  
Throughout this document, the Intel® Core™ i5-700 desktop processor series refers to  
the Intel® Core™ i5-760, i5-750, and i5-750S processor.  
Throughout this document, the Intel® 5 series Chipset Platform Controller Hub may  
also be referred to as “PCH.  
Some processor features are not available on all platforms. Refer to the processor  
specification update for details.  
Included in this family of processors is an integrated memory controller (IMC) and  
integrated I/O (IIO) (such as PCI Express* and DMI) on a single silicon die. This single  
die solution is known as a monolithic processor. For specific features supported for  
individual Intel Core™ i7-800 and i5-700 desktop processor series SKUs, refer to the  
Intel® Core™ i7-800 and i5-700 Desktop Processor Series Specification Update.  
Figure 1-1 shows an example desktop platform block diagram.  
Datasheet, Volume 1  
9
Introduction  
Figure 1-1. Intel® Core™ i7-800 and i5-700 Desktop Processor Series Platform Diagram  
Quad Core CPU with  
Integrated Memory Controller  
DDR3 DIMMs  
PCI Express* 1x16  
OR  
Discrete Graphics  
(PEG)  
2 Channels  
Processor  
(2 UDIMM/Channel)  
PCI Express* 2x 8  
DDR3 DIMMs  
DMI  
PECI  
6
Ports  
3 Gb/s  
Serial ATA  
Intel®  
Management  
Engine  
14  
Ports  
USB 2.0  
Intel® 5 Series Chipset  
Intel® HD Audio  
SMBUS 2.0  
SPI Flash  
SPI  
8 x1 PCI Express*  
2.0 Ports  
PCI Express*  
PCI  
(2.5 GT/s)  
PCI  
FWH  
Gigabit  
Network Connection  
TPM 1.2  
LPC  
Super I/O  
Some technologies may not be enabled on all processor SKUs. Refer  
to the Processor Specification Update for details.  
GPIO  
10  
Datasheet, Volume 1  
Introduction  
1.1  
Processor Feature Details  
• Four cores  
• A 32-KB instruction and 32-KB data first-level cache (L1) for each core  
• A 256-KB shared instruction/data second-level cache (L2) for each core  
• 8-MB shared instruction/data last-level cache (L3), shared among all cores  
1.1.1  
Supported Technologies  
• Intel® Virtualization Technology for Directed I/O (Intel® VT-d)  
• Intel® Virtualization Technology (Intel® VT-x)  
• Intel® Trusted Execution Technology (Intel® TXT)  
• Intel® Streaming SIMD Extensions 4.1 (Intel® SSE4.1)  
• Intel® Streaming SIMD Extensions 4.2 (Intel® SSE4.2)  
• Intel® Hyper-Threading Technology  
• Intel® 64 Architecture  
• Execute Disable Bit  
• Intel® Turbo Boost Technology  
Note:  
Some technologies may not be enabled on all processor SKUs. Refer to the processor  
specification update for details.  
1.2  
Interfaces  
1.2.1  
System Memory Support  
Table 1-1.  
Intel® Core™ i7-800 and i5-700 Desktop Processor Series SKU  
Supported Memory Summary  
Transfer  
# of  
Channels  
DIMMs/Ch  
annel  
Platform  
Memory Type  
Rate  
Notes  
(MT/s)  
DDR3:  
Desktop Intel 5 Series Chipset  
Platform  
Non-ECC  
1 or 2  
1 or 2  
1066, 1333  
1
Unbuffered  
Notes:  
1.  
ECC DIMMs and mixing of non-ECC and ECC DIMMs are not supported.  
System memory features include:  
• Data burst length of eight for all memory organization modes  
• 64-bit wide channels  
• DDR3 I/O Voltage of 1.5 V  
• Maximum memory bandwidth of 10.6 GB/s in single-channel mode or 21 GB/s in  
dual-channel mode assuming DDR3 1333 MT/s  
• 1-Gb and 2-Gb DDR3 DRAM technologies are supported.  
• Using 2-Gb device technologies, the largest memory capacity possible is 16 GB for  
UDIMMs (assuming Dual Channel Mode with a four dual rank unbuffered DIMM  
memory configuration)  
Datasheet, Volume 1  
11  
Introduction  
• Up to 64 simultaneous open pages, 32 per channel (assuming 8 ranks of 8 bank  
devices)  
• Command launch modes of 1n/2n  
• Intel® Fast Memory Access (Intel® FMA)  
— Just-in-Time Command Scheduling  
— Command Overlap  
— Out-of-Order Scheduling  
1.2.2  
PCI Express*  
• The processor PCI Express* port(s) are fully-compliant with the PCI Express Base  
Specification, Revision 2.0.  
• Intel® Core™ i7-800 and i5-700 desktop processor series with Intel 5 Series  
Chipset SKUs support:  
— One 16-lane PCI Express port configurable to two 8-lane PCI Express ports  
intended for Graphics Attach.  
• PCI Express port 0 is mapped to PCI Device 3.  
• PCI Express port 1 is mapped to PCI Device 5.  
• The port may negotiate down to narrower widths.  
— Support for x16/x8/x4/x1 widths for a single PCI Express mode.  
• 2.5 GT/s and 5.0 GT/s PCI Express frequencies are supported.  
• Either port can be configured independently as 2.5 GT/s or 5.0 GT/s.  
• Raw bit-rate on the data pins of 5.0 GB/s, resulting in a real bandwidth per pair of  
500 MB/s given the 8b/10b encoding used to transmit data across this interface.  
This also does not account for packet overhead and link maintenance.  
• Maximum theoretical bandwidth on interface of 8 GB/s in each direction  
simultaneously, for an aggregate of 16 GB/s for x16.  
• Hierarchical PCI-compliant configuration mechanism for downstream devices.  
Traditional PCI style traffic (asynchronous snooped, PCI ordering).  
• PCI Express extended configuration space. The first 256 bytes of configuration  
space aliases directly to the PCI Compatibility configuration space. The remaining  
portion of the fixed 4-KB block of memory-mapped space above that (starting at  
100h) is known as extended configuration space.  
• PCI Express Enhanced Access Mechanism. Accessing the device configuration space  
in a flat memory mapped fashion.  
• Automatic discovery, negotiation, and training of link out of reset.  
Traditional AGP style traffic (asynchronous non-snooped, PCI-X* Relaxed ordering).  
• Peer segment destination posted write traffic (no peer-to-peer read traffic) in  
Virtual Channel 0:  
— PCI Express Port 0 -> PCI Express Port 1  
— PCI Express Port 1 -> PCI Express Port 0  
— DMI -> PCI Express Port 0  
— DMI -> PCI Express Port 1  
— PCI Express Port 1 -> DMI  
— PCI Express Port 0 -> DMI  
• 64-bit downstream address format, but the processor never generates an address  
above 64 GB (Bits 63:36 will always be zeros).  
• 64-bit upstream address format, but the processor responds to upstream read  
transactions to addresses above 64 GB (addresses where any of Bits 63:36 are  
12  
Datasheet, Volume 1  
Introduction  
nonzero) with an Unsupported Request response. Upstream write transactions to  
addresses above 64 GB will be dropped.  
• Re-issues Configuration cycles that have been previously completed with the  
Configuration Retry status.  
• PCI Express reference clock is 100-MHz differential clock.  
• Power Management Event (PME) functions.  
• Dynamic lane numbering reversal as defined by the PCI Express Base Specification.  
• Dynamic frequency change capability (2.5 GT/s - 5.0 GT/s)  
• Dynamic width capability  
• Message Signaled Interrupt (MSI and MSI-X) messages  
• Polarity inversion  
1.2.3  
Direct Media Interface (DMI)  
• Four lanes in each direction.  
• 2.5 GT/s point-to-point DMI interface to PCH is supported.  
• Raw bit-rate on the data pins of 2.5 GB/s, resulting in a real bandwidth per pair of  
250 MB/s given the 8b/10b encoding used to transmit data across this interface.  
Does not account for packet overhead and link maintenance.  
• Maximum theoretical bandwidth on interface of 1 GB/s in each direction  
simultaneously, for an aggregate of 2 GB/s when DMI x4.  
• Shares 100-MHz PCI Express reference clock.  
• 64-bit downstream address format, but the processor never generates an address  
above 64 GB (Bits 63:36 will always be zeros).  
• 64-bit upstream address format, but the processor responds to upstream read  
transactions to addresses above 64 GB (addresses where any of Bits 63:36 are  
nonzero) with an Unsupported Request response. Upstream write transactions to  
addresses above 64 GB will be dropped.  
• Supports the following traffic types to or from the PCH  
— DMI -> PCI Express Port 0 write traffic  
— DMI -> PCI Express Port 1 write traffic  
— DMI -> DRAM  
— DMI -> processor core (Virtual Legacy Wires (VLWs), Resetwarn, or MSIs only)  
— Processor core -> DMI  
• APIC and MSI interrupt messaging support  
— Message Signaled Interrupt (MSI and MSI-X) messages  
• Downstream SMI, SCI, and SERR error indication  
• Legacy support for ISA regime protocol (PHOLD/PHOLDA) required for parallel port  
DMA, floppy drive, and LPC bus masters  
• DC coupling – no capacitors between the processor and the PCH  
• Polarity inversion  
• PCH end-to-end lane reversal across the link  
• Supports Half Swing “low-power/low-voltage” and Full Swing “high-power/high-  
voltage” modes  
1.2.4  
Platform Environment Control Interface (PECI)  
The PECI is a one-wire interface that provides a communication channel between  
processor and a PECI master, usually the PCH.  
Datasheet, Volume 1  
13  
Introduction  
1.3  
Power Management Support  
1.3.1  
Processor Core  
• Full support of ACPI C-states as implemented by the following processor C-states:  
— C0, C1, C1E, C3, C6  
• Enhanced Intel SpeedStep® Technology  
1.3.2  
1.3.3  
System  
• S0, S1, S3, S4, S5  
Memory Controller  
• Conditional self-refresh  
• Dynamic power-down  
1.3.4  
PCI Express*  
• L0s and L1 ASPM power management capability.  
1.4  
Thermal Management Support  
• Digital Thermal Sensor  
• Intel® Adaptive Thermal Monitor  
• THERMTRIP# and PROCHOT# support  
• On-Demand Mode  
• Memory Thermal Throttling  
• External Thermal Sensor  
• Fan Speed Control with DTS  
1.5  
Package  
• The processor socket type is noted as LGA 1156. The package is a 37.5 x 37.5 mm  
Flip Chip Land Grid Array (FCLGA 1156).  
14  
Datasheet, Volume 1  
Introduction  
1.6  
Terminology  
Term  
Description  
DDR3  
Third generation Double Data Rate SDRAM memory technology  
Display Port*  
DP  
DMA  
Direct Memory Access  
DMI  
Direct Media Interface  
DTS  
Digital Thermal Sensor  
ECC  
Error Correction Code  
Enhanced Intel  
Technology that provides power management capabilities.  
®
SpeedStep Technology  
The Execute Disable bit allows memory to be marked as executable or non-  
executable, when combined with a supporting operating system. If code attempts  
to run in non-executable memory, the processor raises an error to the operating  
system. This feature can prevent some classes of viruses or worms that exploit  
buffer overrun vulnerabilities and can, thus, help improve the overall security of the  
Execute Disable Bit  
®
system. See the Intel 64 and IA-32 Architectures Software Developer's Manuals  
for more detailed information.  
Flip Chip Land Grid Array  
FCLGA  
Legacy component – Graphics Memory Controller Hub. Platforms using LGA 1156  
processors do not use a (G)MCH component.  
(G)MCH  
The legacy I/O Controller Hub component that contains the main PCI interface, LPC  
interface, USB2, Serial ATA, and other I/O functions. It communicates with the  
legacy (G)MCH over a proprietary interconnect called DMI. Platforms using LGA  
1156 processors do not use an ICH component.  
ICH  
IMC  
Integrated Memory Controller  
®
Intel 64 Technology  
64-bit memory extensions to the IA-32 architecture.  
®
®
®
Intel Hyper-Threading The processor supports Intel Hyper-Threading Technology (Intel HT Technology)  
Technology  
that allows an execution core to function as two logical processors.  
®
Intel Turbo Boost Technology is a feature that allows the processor core to  
®
Intel Turbo Boost  
opportunistically and automatically run faster than its rated operating frequency if it  
is operating below power, temperature, and current limits.  
Technology  
®
®
Intel TXT  
Intel Trusted Execution Technology  
®
®
Intel Virtualization Technology (Intel VT) for Directed I/O. Intel VT-d is a  
hardware assist, under system software (Virtual Machine Manager or OS) control,  
for enabling I/O device virtualization. VT-d also brings robust security by providing  
protection from errant DMAs by using DMA remapping, a key feature of Intel VT-d.  
®
Intel VT-d  
Processor virtualization which when used in conjunction with Virtual Machine  
Monitor software enables multiple, robust independent software environments  
inside a single platform.  
®
Intel Virtualization  
Technology  
ITPM  
IOV  
Integrated Trusted Platform Module  
I/O Virtualization  
LCD  
Liquid Crystal Display  
Low Voltage Differential Signaling. A high speed, low power data transmission  
standard used for display connections to LCD panels.  
LVDS  
NCTF  
Non-Critical to Function: NCTF locations are typically redundant ground or non-  
critical reserved, so the loss of the solder joint continuity at end of life conditions  
will not affect the overall product functionality.  
Platform Controller Hub. The new, 2009 chipset with centralized platform  
capabilities including the main I/O interfaces along with display connectivity, audio  
features, power management, manageability, security and storage features.  
PCH  
PECI  
PEG  
Platform Environment Control Interface  
PCI Express* Graphics. External Graphics using PCI Express Architecture. A high-  
speed serial interface whose configuration is software compatible with the existing  
PCI specifications.  
Datasheet, Volume 1  
15  
Introduction  
Term  
Processor  
Description  
The 64-bit multi-core component (package)  
The term “processor core” refers to Si die itself which can contain multiple  
execution cores. Each execution core has an instruction cache, data cache, and  
256-KB L2 cache. All execution cores share the L3 cache.  
Processor Core  
A unit of DRAM corresponding to four to eight devices in parallel, ignoring ECC.  
These devices are usually, but not always, mounted on a single side of a DIMM.  
Rank  
SCI  
System Control Interrupt. Used in ACPI protocol.  
A non-operational state. The processor may be installed in a platform, in a tray, or  
loose. Processors may be sealed in packaging or exposed to free air. Under these  
conditions, processor landings should not be connected to any supply voltages,  
have any I/Os biased or receive any clocks. Upon exposure to “free air” (that is,  
unsealed packaging or a device removed from packaging material), the processor  
must be handled in accordance with moisture sensitivity labeling (MSL) as indicated  
on the packaging material.  
Storage Conditions  
TAC  
TDP  
TLP  
Thermal Averaging Constant  
Thermal Design Power  
Transaction Layer Packet  
TOM  
TTM  
Top of Memory  
Time-To-Market  
V
V
V
V
Processor core power rail  
CC  
Processor ground  
SS  
L3 shared cache, memory controller, and processor I/O power rail  
DDR3 power rail  
TT  
DDQ  
VLD  
x1  
Variable Length Decoding  
Refers to a Link or Port with one Physical Lane  
Refers to a Link or Port with four Physical Lanes  
Refers to a Link or Port with eight Physical Lanes  
Refers to a Link or Port with sixteen Physical Lanes  
x4  
x8  
x16  
16  
Datasheet, Volume 1  
Introduction  
1.7  
Related Documents  
Refer to the following documents for additional information.  
Table 1-2.  
Related Documents  
Document  
Document Number/ Location  
®
Intel Core™ i7-800 and i5-700 Desktop Processor Series Datasheet,  
http://download.intel.com/design  
/processor/datashts/322165.pdf  
Volume 2  
®
Intel Core™ i7-800 i5-700 Desktop Processor Series Specification  
www.intel.com/Assets/PDF/specu  
pdate/322166.pdf  
Update  
®
Intel Core™ i7-800 and i5-700 Desktop Processor Series and LGA1156  
http://download.intel.com/design  
/processor/designex/322167.pdf  
Socket Thermal and Mechanical Specifications and Design Guidelines  
®
®
Intel 5 Series Chipset and Intel 3400 Series Chipset Datasheet  
www.intel.com/Assets/PDF/datas  
heet/322169  
®
®
Intel 5 Series Chipset and Intel 3400 Series Chipset Thermal and  
Mechanical Specifications and Design Guidelines  
www.intel.com/Assets/PDF/desig  
nguide/322171.pdf  
Voltage Regulator-Down (VRD) 11.1 Design Guidelines  
http://download.intel.com/design  
/processor/designex/322172.pdf  
Advanced Configuration and Power Interface Specification 3.0  
PCI Local Bus Specification 3.0  
http://www.acpi.info/  
http://www.pcisig.com/specificati  
ons  
PCI Express Base Specification, Revision 2.0  
DDR3 SDRAM Specification  
http://www.pcisig.com  
http://www.jedec.org  
http://www.vesa.org  
Display Port Specification  
®
Intel 64 and IA-32 Architectures Software Developer's Manuals  
Volume 1: Basic Architecture  
Volume 2A: Instruction Set Reference, A-M  
Volume 2B: Instruction Set Reference, N-Z  
Volume 3A: System Programming Guide  
Volume 3B: System Programming Guide  
http://www.intel.com/products/pr  
ocessor/manuals/  
§ §  
Datasheet, Volume 1  
17  
Introduction  
18  
Datasheet, Volume 1  
Interfaces  
2 Interfaces  
This chapter describes the interfaces supported by the processor.  
2.1  
System Memory Interface  
2.1.1  
System Memory Technology Supported  
The Integrated Memory Controller (IMC) supports DDR3 protocols with two  
independent, 64-bit wide channels. Refer to Section 1.2.1 for details on the type of  
memory supported.  
• Supported DIMM Types  
— Unbuffered DIMMs—1066 MT/s (PC3-8500), and 1333 MT/s (PC3-10600)  
• Desktop Intel 5 Series Chipset platform DDR3 DIMM Modules  
— Raw Card A—Single Sided x8 unbuffered non-ECC  
— Raw Card B—Double Sided x8 unbuffered non-ECC  
— Raw Card C—Single Sided x16 unbuffered non-ECC  
• DDR3 DRAM Device Technology  
— Unbuffered—1-Gb and 2-Gb DDR3 DRAM Device technologies and addressing  
are supported (as detailed in Table 2-1).  
Table 2-1.  
Supported DIMM Module Configurations  
# of  
Physical  
Device  
Ranks  
# of  
Row/Col  
Address  
Bits  
# of  
Raw  
Card  
Version  
DRAM  
Device  
Technology  
# of  
DRAM  
Devices  
DIMM  
Capacity  
DRAM  
Organization  
Banks  
Inside  
DRAM  
Page  
Size  
Desktop Intel 5 Series Chipset Platforms:  
Unbuffered/Non-ECC Supported DIMM Module Configurations  
A
B
C
1 GB  
2 GB  
1 Gb  
1 Gb  
2 Gb  
1 Gb  
128 M X 8  
128 M X 8  
256 M X 8  
64 M X 16  
8
16  
16  
4
1
2
2
1
14/10  
14/10  
15/10  
13/10  
8
8
8
8
8 K  
8 K  
8 K  
8 K  
4 GB  
512 MB  
Note: DIMM module support is based on availability and is subject to change.  
Datasheet, Volume 1  
19  
Interfaces  
2.1.2  
System Memory Timing Support  
The IMC supports the following DDR3 Speed Bin, CAS Write Latency (CWL), and  
command signal mode timings on the main memory interface:  
• tCL = CAS Latency  
• tRCD = Activate Command to READ or WRITE Command delay  
• tRP = PRECHARGE Command Period  
• CWL = CAS Write Latency  
• Command Signal modes = 1N indicates a new command may be issued every clock  
and 2N indicates a new command may be issued every 2 clocks. Command launch  
mode programming depends on the transfer rate and memory configuration.  
Table 2-2.  
DDR3 System Memory Timing Support  
Transfer  
Rate  
(MT/s)  
Unbuffered  
DIMM CMD  
Mode  
Registered  
DIMM CMD  
Mode  
t
(t  
t
t
(t  
CWL  
CK  
CL  
CK  
RCD  
CK  
RP  
CK  
Notes  
)
(t  
)
)
(t  
)
7
8
8
9
7
8
8
9
7
8
8
9
1066  
1333  
6
See Note 1, 2, 3  
See Note 1, 2, 3  
1N Only  
1N Only  
4
4
4
4
7
10  
10  
10  
Note:  
1.  
2.  
3.  
Two Un-buffered DIMM Memory Configurations = 2N Command Mode at 1066/1333 MHz  
One Un-buffered DIMM Memory Configurations = 1N Command Mode at 1066/1333 MHz  
Both Channel A and B will run at same Command Mode based on the slowest mode enabled relative to the  
memory configurations populated in both channels. For example, if Channel A has both DIMM connectors  
populated (2N CMD Mode) and Channel B has only one DIMM connector populated (1N CMD Mode) then 2N  
CMD mode would be enabled for both channels.  
4.  
System Memory timing support is based on availability and is subject to change.  
2.1.3  
System Memory Organization Modes  
The IMC supports two memory organization modes, single-channel and dual-channel.  
Depending upon how the DIMM Modules are populated in each memory channel, a  
number of different configurations can exist.  
2.1.3.1  
Single-Channel Mode  
In this mode, all memory cycles are directed to a single-channel. Single-channel mode  
is used when either Channel A or Channel B DIMM connectors are populated, but not  
both.  
20  
Datasheet, Volume 1  
Interfaces  
®
2.1.3.2  
Dual-Channel Mode—Intel Flex Memory Technology Mode  
The IMC supports Intel Flex Memory Technology mode. This mode combines the  
advantages of the Dual-Channel Symmetric (Interleaved) and Dual-Channel  
Asymmetric Modes. Memory is divided into a symmetric and a asymmetric zone. The  
symmetric zone starts at the lowest address in each channel and is contiguous until the  
asymmetric zone begins or until the top address of the channel with the smaller  
capacity is reached. In this mode, the system runs with one zone of dual-channel mode  
and one zone of single-channel mode, simultaneously, across the whole memory array.  
Figure 2-1. Intel® Flex Memory Technology Operation  
C
T op of M em ory  
N o n in terleaved  
access  
B
B
C
B
C H A  
C H B  
C
D u al ch an nel  
in terleaved access  
B
B
B
C H A  
C H B  
B – T he largest physical m em ory am ount of the sm aller size m em ory m odule  
C – T he rem aining physical m em ory am ount of the larger size m em ory m odule  
2.1.3.2.1  
Dual-Channel Symmetric Mode  
Dual-Channel Symmetric mode, also known as interleaved mode, provides maximum  
performance on real world applications. Addresses are ping-ponged between the  
channels after each cache line (64-byte boundary). If there are two requests, and the  
second request is to an address on the opposite channel from the first, that request can  
be sent before data from the first request has returned. If two consecutive cache lines  
are requested, both may be retrieved simultaneously, since they are ensured to be on  
opposite channels. Use Dual-Channel Symmetric mode when both Channel A and  
Channel B DIMM connectors are populated in any order, with the total amount of  
memory in each channel being the same.  
When both channels are populated with the same memory capacity and the boundary  
between the dual channel zone and the single channel zone is the top of memory, IMC  
operates completely in Dual-Channel Symmetric mode.  
Note:  
The DRAM device technology and width may vary from one channel to the other.  
Datasheet, Volume 1  
21  
Interfaces  
2.1.3.2.2  
Dual-Channel Asymmetric Mode  
This mode trades performance for system design flexibility. Unlike the previous mode,  
addresses start at the bottom of Channel A and stay there until the end of the highest  
rank in Channel A, and then addresses continue from the bottom of Channel B to the  
top. Real-world applications are unlikely to make requests that alternate between  
addresses that sit on opposite channels with this memory organization; thus, in most  
cases, bandwidth is limited to a single channel.  
This mode is used when Intel Flex Memory Technology is disabled and both Channel A  
and Channel B DIMM connectors are populated in any order with the total amount of  
memory in each channel being different.  
Figure 2-2. Dual-Channel Symmetric (Interleaved) and Dual-Channel Asymmetric Modes  
Dual Channel Interleaved  
(memory sizes must match)  
Dual Channel Asymmetric  
(memory sizes can differ)  
CL  
CL  
Top of  
Memory  
Top of  
Memory  
CH. B  
CH. A  
CH. B  
CH.A-top  
DRB  
CH. A  
CH. B  
CH. A  
CH. B  
CH. A  
0
0
2.1.4  
Rules for Populating Memory Slots  
In all modes, the frequency of system memory is the lowest frequency of all memory  
modules placed in the system, as determined through the SPD registers on the  
memory modules. The system memory controller supports one or two DIMM  
connectors per channel for unbuffered DIMMs For dual-channel modes, both channels  
must have at least one DIMM connector populated and for single-channel mode only a  
single-channel may have one or more DIMM connectors populated.  
Note:  
DIMM0 must always be populated within any memory configuration. DIMM0 is the  
furthest DIMM within a channel and is identified by the CS#[1:0], ODT[1:0], and  
CKE[1:0] signals.  
22  
Datasheet, Volume 1  
Interfaces  
®
2.1.5  
Technology Enhancements of Intel Fast Memory Access  
®
(Intel FMA)  
The following sections describe the Just-in-Time Scheduling, Command Overlap, and  
Out-of-Order Scheduling Intel FMA technology enhancements.  
2.1.5.1  
Just-in-Time Command Scheduling  
The memory controller has an advanced command scheduler where all pending  
requests are examined simultaneously to determine the most efficient request to be  
issued next. The most efficient request is picked from all pending requests and issued  
to system memory Just-in-Time to make optimal use of Command Overlapping. Thus,  
instead of having all memory access requests go individually through an arbitration  
mechanism forcing requests to be executed one at a time, they can be started without  
interfering with the current request allowing for concurrent issuing of requests. This  
allows for optimized bandwidth and reduced latency while maintaining appropriate  
command spacing to meet system memory protocol.  
2.1.5.2  
2.1.5.3  
Command Overlap  
Command Overlap allows the insertion of the DRAM commands between the Activate,  
Precharge, and Read/Write commands normally used, as long as the inserted  
commands do not affect the currently executing command. Multiple commands can be  
issued in an overlapping manner, increasing the efficiency of system memory protocol.  
Out-of-Order Scheduling  
While leveraging the Just-in-Time Scheduling and Command Overlap enhancements,  
the IMC continuously monitors pending requests to system memory for the best use of  
bandwidth and reduction of latency. If there are multiple requests to the same open  
page, these requests would be launched in a back to back manner to make optimum  
use of the open memory page. This ability to reorder requests on the fly allows the IMC  
to further reduce latency and increase bandwidth efficiency.  
2.1.6  
System Memory Pre-Charge Power Down Support Details  
The IMC supports and enables the following DDR3 DRAM Device pre-charge power  
down DLL controls during a pre-charge power down.  
• Slow Exit is where the DRAM device DLL is disabled after entering pre-charge  
power down  
• Fast Exit is where the DRAM device DLLs are maintained after entering pre-charge  
power down  
Table 2-3.  
System Memory Pre-Charge Power Down Support  
DIMM per Channel  
Configuration  
Precharge Power Down  
Slow/Fast Exit  
DIMM Type  
One  
Two  
Unbuffered DIMM  
Unbuffered DIMM  
Slow Exit  
Fast Exit  
Datasheet, Volume 1  
23  
Interfaces  
2.2  
PCI Express* Interface  
This section describes the PCI Express interface capabilities of the processor. See the  
PCI Express Base Specification for details of PCI Express.  
The number of PCI Express controllers available is dependent on the platform:  
• Intel Core™ i7-800 and i5-700 desktop processor series with the desktop Intel 5  
Series Chipset: 1 x16 PCI Express Graphics or 2x8 PCI Express Graphics are  
supported.  
2.2.1  
PCI Express* Architecture  
Compatibility with the PCI addressing model is maintained to ensure that all existing  
applications and drivers operate unchanged.  
The PCI Express configuration uses standard mechanisms as defined in the PCI Plug-  
and-Play specification. The initial recovered clock speed of 1.25 GHz results in  
2.5 Gb/s/direction which provides a 250-MB/s communications channel in each  
direction (500 MB/s total). That is close to twice the data rate of classic PCI. The fact  
that 8b/10b encoding is used accounts for the 250 MB/s where quick calculations would  
imply 300 MB/s. The PCI Express ports support 5.0 GT/s speed as well. Operating at  
5.0 GT/s results in twice as much bandwidth per lane as compared to 2.5 GT/s  
operation. When operating with more than one PCI Express controller, each controller  
can be operating at either 2.5 GT/s or 5.0 GT/s.  
The PCI Express architecture is specified in three layers: Transaction Layer, Data Link  
Layer, and Physical Layer. The partitioning in the component is not necessarily along  
these same boundaries. Refer to Figure 2-3 for the PCI Express Layering Diagram.  
Figure 2-3. PCI Express* Layering Diagram  
PCI Express uses packets to communicate information between components. Packets  
are formed in the Transaction and Data Link Layers to carry the information from the  
transmitting component to the receiving component. As the transmitted packets flow  
through the other layers, they are extended with additional information necessary to  
handle packets at those layers. At the receiving side the reverse process occurs and  
packets get transformed from their Physical Layer representation to the Data Link  
Layer representation and finally (for Transaction Layer Packets) to the form that can be  
processed by the Transaction Layer of the receiving device.  
24  
Datasheet, Volume 1  
Interfaces  
Figure 2-4. Packet Flow through the Layers  
2.2.1.1  
2.2.1.2  
Transaction Layer  
The upper layer of the PCI Express architecture is the Transaction Layer. The  
Transaction Layer's primary responsibility is the assembly and disassembly of  
Transaction Layer Packets (TLPs). TLPs are used to communicate transactions, such as  
read and write, as well as certain types of events. The Transaction Layer also manages  
flow control of TLPs.  
Data Link Layer  
The middle layer in the PCI Express stack, the Data Link Layer, serves as an  
intermediate stage between the Transaction Layer and the Physical Layer.  
Responsibilities of the Data Link Layer include link management, error detection, and  
error correction.  
The transmission side of the Data Link Layer accepts TLPs assembled by the  
Transaction Layer, calculates and applies data protection code and TLP sequence  
number, and submits them to the Physical Layer for transmission across the Link. The  
receiving Data Link Layer is responsible for checking the integrity of received TLPs and  
for submitting them to the Transaction Layer for further processing. On detection of TLP  
error(s), this layer is responsible for requesting retransmission of TLPs until information  
is correctly received, or the Link is determined to have failed. The Data Link Layer also  
generates and consumes packets that are used for Link management functions.  
2.2.1.3  
Physical Layer  
The Physical Layer includes all circuitry for interface operation, including driver and  
input buffers, parallel-to-serial and serial-to-parallel conversion, PLL(s), and impedance  
matching circuitry. It also includes logical functions related to interface initialization and  
maintenance. The Physical Layer exchanges data with the Data Link Layer in an  
implementation-specific format, and is responsible for converting this to an appropriate  
serialized format and transmitting it across the PCI Express Link at a frequency and  
width compatible with the remote device.  
Datasheet, Volume 1  
25  
Interfaces  
2.2.2  
PCI Express* Configuration Mechanism  
The PCI Express (external graphics) link is mapped through a PCI-to-PCI bridge  
structure.  
.
Figure 2-5. PCI Express* Related Register Structures in Processor  
PCI Express  
PCI  
Express*  
Device  
Port 0  
PCI-PCI  
Bridge  
representing  
root PCI  
Express port  
(Device 5)  
PCI-PCI  
Bridge  
representing  
root PCI  
Express port  
(Device 3)  
PCI  
Compatible  
Host Bridge  
Device  
PCI Express  
Port 1  
(Device 0)  
PCI  
Express*  
Device  
DMI  
PCI Express extends the configuration space to 4096 bytes per-device/function, as  
compared to 256 bytes allowed by the Conventional PCI Specification. PCI Express  
configuration space is divided into a PCI-compatible region (consisting of the first 256 B  
of a logical device's configuration space) and an extended PCI Express region  
(consisting of the remaining configuration space). The PCI-compatible region can be  
accessed using either the mechanisms defined in the PCI specification or using the  
enhanced PCI Express configuration access mechanism described in the PCI Express  
Enhanced Configuration Mechanism section.  
The PCI Express Host Bridge is required to translate the memory-mapped PCI Express  
configuration space accesses from the host processor to PCI Express configuration  
cycles. To maintain compatibility with PCI configuration addressing mechanisms, it is  
recommended that system software access the enhanced configuration space using 32-  
bit operations (32-bit aligned) only.  
See the PCI Express Base Specification for details of both the PCI-compatible and PCI  
Express Enhanced configuration mechanisms and transaction rules.  
26  
Datasheet, Volume 1  
Interfaces  
2.2.3  
PCI Express* Ports and Bifurcation  
The PCI Express interface on the processor is a single 16 lane (x16) port that can also  
be configured at narrower widths. It may be bifurcated (refer to Table 6-5) and each  
port may train to narrower widths. The PCI Express port is designed to be compliant  
with the PCI Express Base Specification rev 2.0  
2.2.3.1  
PCI Express* Bifurcated Mode  
When bifurcated, the signals that had previously been assigned to lanes 15:8 of the  
single x16 Primary port are reassigned to lanes 7:0 of the x8 Secondary port. This  
assignment applies whether the lane numbering is reversed or not. The controls for the  
Secondary port and the associated virtual PCI-to-PCI bridge can be found in PCI Device  
5. Refer to Table 6-5 for port bifurcation configuration settings and supported  
configurations.  
When the port is not bifurcated, Device 5 is hidden from the discovery mechanism used  
in PCI enumeration, such that configuration of the device is neither possible nor  
necessary.  
2.3  
Direct Media Interface (DMI)  
DMI connects the processor and the PCH chip-to-chip. The DMI is similar to a four-lane  
PCI Express supporting up to 1 GB/s of bandwidth in each direction.  
Note:  
Only DMI x4 configuration is supported.  
2.3.1  
DMI Error Flow  
DMI can only generate SERR in response to errors—never SCI, SMI, MSI, PCI INT, or  
GPE. Any DMI related SERR activity is associated with Device 0.  
2.3.2  
2.3.3  
Processor/PCH Compatibility Assumptions  
The processor is compatible with the PCH and is not compatible with any previous  
(G)MCH or ICH products.  
DMI Link Down  
The DMI link going down is a fatal, unrecoverable error. If the DMI data link goes to  
data link down, after the link was up, then the DMI link hangs the system by not  
allowing the link to retrain to prevent data corruption. This is controlled by the PCH.  
Downstream transactions that had been successfully transmitted across the link prior  
to the link going down may be processed as normal. No completions from downstream,  
non-posted transactions are returned upstream over the DMI link after a link down  
event.  
Datasheet, Volume 1  
27  
Interfaces  
2.4  
Platform Environment Control Interface (PECI)  
The PECI is a one-wire interface that provides a communication channel between  
processor and a PECI master, usually the PCH. The processor implements a PECI  
interface to:  
• Allow communication of processor thermal and other information to the PECI  
master.  
• Read averaged Digital Thermal Sensor (DTS) values for fan speed control.  
2.5  
Interface Clocking  
2.5.1  
Internal Clocking Requirements  
Table 2-4.  
Processor Reference Clock Requirements  
Reference Input Clocks  
BCLK[0]/BCLK#[0]  
PEG_CLK/PEG_CLK#  
Input Frequency  
Associated PLL  
Processor/Memory  
PCI Express/DMI  
133 MHz  
100 MHz  
§ §  
28  
Datasheet, Volume 1  
Technologies  
3 Technologies  
3.1  
Intel® Virtualization Technology  
Intel Virtualization Technology (Intel VT) makes a single system appear as multiple  
independent systems to software. This allows multiple, independent operating systems  
to run simultaneously on a single system. Intel VT comprises technology components  
to support virtualization of platforms based on Intel architecture microprocessors and  
chipsets. Intel Virtualization Technology (Intel VT-x) added hardware support in the  
processor to improve the virtualization performance and robustness. Intel Virtualization  
Technology for Directed I/O (Intel VT-d) adds chipset hardware implementation to  
support and improve I/O virtualization performance and robustness.  
Intel VT-x specifications and functional descriptions are included in the Intel® 64 and  
IA-32 Architectures Software Developer’s Manual, Volume 3B and is available at:  
http://www.intel.com/products/processor/manuals/index.htm.  
The Intel VT-d spec and other VT documents can be referenced at:  
http://www.intel.com/technology/virtualization/index.htm.  
®
3.1.1  
Intel VT-x Objectives  
Intel VT-x provides hardware acceleration for virtualization of IA platforms. Virtual  
Machine Monitor (VMM) can use Intel VT-x features to provide improved reliable  
virtualized platforms. By using Intel VT-x, a VMM is:  
Robust—VMMs no longer need to use paravirtualization or binary translation. This  
means that they will be able to run off-the-shelf OSs and applications without any  
special steps.  
Enhanced—Intel VT enables VMMs to run 64-bit guest operating systems on IA  
x86 processors.  
More reliable—Due to the hardware support, VMMs can now be smaller, less  
complex, and more efficient. This improves reliability and availability and reduces  
the potential for software conflicts.  
More secure—The use of hardware transitions in the VMM strengthens the  
isolation of VMs and further prevents corruption of one VM from affecting others on  
the same system.  
®
3.1.2  
Intel VT-x Features  
The processor core supports the following Intel VT-x features:  
• Extended Page Tables (EPT)  
— EPT is hardware assisted page table virtualization  
— It eliminates VM exits from guest OS to the VMM for shadow page-table  
maintenance  
• Virtual Processor IDs (VPID)  
— Ability to assign a VM ID to tag processor core hardware structures (such as  
TLBs)  
— This avoids flushes on VM transitions to give a lower-cost VM transition time  
and an overall reduction in virtualization overhead.  
Datasheet, Volume 1  
29  
Technologies  
• Guest Preemption Timer  
— Mechanism for a VMM to preempt the execution of a guest OS after an amount  
of time specified by the VMM. The VMM sets a timer value before entering a  
guest  
— The feature aids VMM developers in flexibility and Quality of Service (QoS)  
guarantees  
• Descriptor-Table Exiting  
— Descriptor-table exiting allows a VMM to protect a guest OS from internal  
(malicious software based) attack by preventing relocation of key system data  
structures like IDT (interrupt descriptor table), GDT (global descriptor table),  
LDT (local descriptor table), and TSS (task segment selector).  
— A VMM using this feature can intercept (by a VM exit) attempts to relocate  
these data structures and prevent them from being tampered by malicious  
software.  
®
3.1.3  
3.1.4  
Intel VT-d Objectives  
The key Intel VT-d objectives are domain-based isolation and hardware-based  
virtualization. A domain can be abstractly defined as an isolated environment in a  
platform to which a subset of host physical memory is allocated. Virtualization allows  
for the creation of one or more partitions on a single system. This could be multiple  
partitions in the same operating system, or there can be multiple operating system  
instances running on the same system—offering benefits such as system consolidation,  
legacy migration, activity partitioning, or security.  
®
Intel VT-d Features  
The processor supports the following Intel VT-d features:  
• 48-bit maximum guest address width and 36-bit maximum host address width for  
non-isoch traffic, in UP profiles  
• 39-bit maximum guest address width and 36-bit maximum host address width for  
isoch (Intel High Definition Audio isoch) traffic  
• Support for 4K page sizes only  
• Support for register-based fault recording only (for single entry only) and support  
for MSI interrupts for faults  
— Support for fault collapsing based on Requester ID  
• Support for both leaf and non-leaf caching  
• Support for boot protection of default page table  
• Support for non-caching of invalid page table entries  
• Support for hardware based flushing of translated but pending writes and pending  
reads, on IOTLB invalidation  
• Support for page-selective IOTLB invalidation  
• Support for queue-based invalidation interface  
• Support for Intel VT-d read prefetching/snarfing (such as, translations within a  
cacheline are stored in an internal buffer for reuse for subsequent transactions)  
• Support for ARI (Alternate Requester ID—a PCI SIG ECR for increasing the function  
number count in a PCI Express device) to support IOV devices  
30  
Datasheet, Volume 1  
Technologies  
®
3.1.5  
Intel VT-d Features Not Supported  
The following features are not supported by the processor with Intel VT-d:  
• No support for PCISIG endpoint caching (ATS)  
• No support for interrupt remapping  
• No support for advance fault reporting  
• No support for super pages  
• No support for 1 or 2 level page walks for isoch remap engine and 1, 2, or 3 level  
walks for non-isoch remap engine  
• No support for Intel VT-d translation bypass address range (such usage models  
need to be resolved with VMM help in setting up the page tables correctly)  
3.2  
Intel® Trusted Execution Technology (Intel® TXT)  
Intel Trusted Execution Technology (Intel TXT) defines platform-level enhancements  
that provide the building blocks for creating trusted platforms.  
The Intel TXT platform helps to provide the authenticity of the controlling environment  
such that those wishing to rely on the platform can make an appropriate trust decision.  
The Intel TXT platform determines the identity of the controlling environment by  
accurately measuring and verifying the controlling software.  
Another aspect of the trust decision is the ability of the platform to resist attempts to  
change the controlling environment. The Intel TXT platform will resist attempts by  
software processes to change the controlling environment or bypass the bounds set by  
the controlling environment.  
Intel TXT is a set of extensions designed to provide a measured and controlled launch  
of system software that will then establish a protected environment for itself and any  
additional software that it may execute.  
These extensions enhance two areas:  
• The launching of the Measured Launched Environment (MLE).  
• The protection of the MLE from potential corruption.  
The enhanced platform provides these launch and control interfaces using Safer Mode  
Extensions (SMX).  
The SMX interface includes the following functions:  
• Measured/Verified launch of the MLE.  
• Mechanisms to ensure the above measurement is protected and stored in a secure  
location.  
• Protection mechanisms that allow the MLE to control attempts to modify itself.  
Datasheet, Volume 1  
31  
Technologies  
3.3  
Intel® Hyper-Threading Technology  
The processor supports Intel® Hyper-Threading Technology (Intel® HT Technology)  
that allows an execution core to function as two logical processors. While some  
execution resources such as caches, execution units, and buses are shared, each  
logical processor has its own architectural state with its own set of general-purpose  
registers and control registers. This feature must be enabled using the BIOS and  
requires operating system support.  
Intel recommends enabling Hyper-Threading Technology with Microsoft Windows  
Vista*, Microsoft Windows* XP Professional/Windows* XP Home, and disabling Hyper-  
Threading Technology using the BIOS for all previous versions of Windows operating  
systems. For more information on Hyper-Threading Technology, see:  
http://www.intel.com/products/ht/hyperthreading_more.htm.  
3.4  
Intel® Turbo Boost Technology  
Intel® Turbo Boost Technology is a feature that allows the processor core to  
opportunistically and automatically run faster than its rated operating frequency if it is  
operating below power, temperature, and current limits. Maximum frequency is  
dependent on the SKU and number of active cores. No special hardware support is  
necessary for Intel Turbo Boost Technology. BIOS and the operating system can enable  
or disable Intel Turbo Boost Technology.  
Note:  
Intel Turbo Boost Technology may not be available on all SKUs. Refer to the processor  
specification update for details.  
§ §  
32  
Datasheet, Volume 1  
Power Management  
4 Power Management  
This chapter provides information on the following power management topics:  
• ACPI States  
• Processor Core  
• IMC  
• PCI Express*  
4.1  
ACPI States Supported  
The ACPI states supported by the processor are described in this section.  
4.1.1  
System States  
State  
Description  
G0/S0  
Full On  
Suspend-to-RAM (STR). Context saved to memory (S3-Hot is not supported  
by the processor).  
G1/S3-Cold  
G1/S4  
G2/S5  
G3  
Suspend-to-Disk (STD). All power lost (except wakeup on PCH).  
Soft off. All power lost (except wakeup on PCH). Total reboot.  
Mechanical off. All power removed from system.  
4.1.2  
Processor Core/Package Idle States  
Table 4-1.  
Processor Core/Package State Support  
State  
Description  
C0  
Active mode, processor executing code.  
AutoHALT state.  
C1  
C1E  
AutoHALT state with lowest frequency and voltage operating point.  
Execution cores in C3 flush their L1 instruction cache, L1 data cache, and L2  
cache to the L3 shared cache. Clocks are shut off to the core.  
C3  
C6  
Execution cores in this state save their architectural state before removing  
core voltage.  
4.1.3  
Integrated Memory Controller States  
State  
Description  
Power up  
CKE asserted. Active mode.  
Pre-charge Power down  
Active Power down  
Self-Refresh  
CKE de-asserted (not self-refresh) with all banks closed.  
CKE de-asserted (not self-refresh) with minimum one bank active.  
CKE de-asserted using device self-refresh.  
Datasheet, Volume 1  
33  
Power Management  
4.1.4  
PCI Express* Link States  
State  
Description  
L0  
Full on – Active transfer state.  
L0s  
L1  
First Active Power Management low power state – Low exit latency.  
Lowest Active Power Management - Longer exit latency.  
Lowest power state (power-off) – Longest exit latency.  
L3  
4.1.5  
Interface State Combinations  
Table 4-2.  
G, S, and C State Combinations  
Processor  
Global (G)  
State  
Sleep (S)  
State  
Processor  
State  
Core  
System Clocks  
Description  
(C) State  
G0  
G0  
G0  
S0  
S0  
S0  
C0  
C1/C1E  
C3  
Full On  
Auto-Halt  
Deep Sleep  
On  
On  
On  
Full On  
Auto-Halt  
Deep Sleep  
Deep Power  
Down  
G0  
S0  
C6  
On  
Deep Power Down  
G1  
G1  
G2  
G3  
S3  
S4  
S5  
NA  
Power off  
Power off  
Power off  
Power off  
Power off  
Power off  
Power off  
Power off  
Off, except RTC  
Off, except RTC  
Off, except RTC  
Power off  
Suspend to RAM  
Suspend to Disk  
Soft Off  
Hard off  
4.2  
Processor Core Power Management  
While executing code, Enhanced Intel SpeedStep Technology optimizes the processor’s  
frequency and core voltage based on workload. Each frequency and voltage operating  
point is defined by ACPI as a P-state. When the processor is not executing code, it is  
idle. A low-power idle state is defined by ACPI as a C-state. In general, lower power C-  
states have longer entry and exit latencies.  
®
®
4.2.1  
Enhanced Intel SpeedStep Technology  
The following are the key features of Enhanced Intel SpeedStep Technology:  
• Multiple frequency and voltage points for optimal performance and power  
efficiency. These operating points are known as P-states.  
• Frequency selection is software controlled by writing to processor MSRs. The  
voltage is optimized based on the selected frequency and the number of active  
processor cores.  
— If the target frequency is higher than the current frequency, VCC is ramped up  
in steps to an optimized voltage. This voltage is signaled by the VID[7:0] pins  
to the voltage regulator. Once the voltage is established, the PLL locks on to the  
target frequency.  
— If the target frequency is lower than the current frequency, the PLL locks to the  
target frequency, then transitions to a lower voltage by signaling the target  
voltage on the VID[7:0] pins.  
34  
Datasheet, Volume 1  
Power Management  
— All active processor cores share the same frequency and voltage. In a multi-  
core processor, the highest frequency P-state requested amongst all active  
cores is selected.  
— Software-requested transitions are accepted at any time. If a previous  
transition is in progress, the new transition is deferred until the previous  
transition is completed.  
• The processor controls voltage ramp rates internally to ensure glitch-free  
transitions.  
• Because there is low transition latency between P-states, a significant number of  
transitions per second are possible.  
4.2.2  
Low-Power Idle States  
When the processor is idle, low-power idle states (C-states) are used to save power.  
More power savings actions are taken for numerically higher C-states. However, higher  
C-states have longer exit and entry latencies. Resolution of C-states occur at the  
thread, processor core, and processor package level. Thread level C-states are  
available if Intel Hyper-Threading Technology is enabled.  
Figure 4-1. Idle Power Management Breakdown of the Processor Cores  
Thread 0 Thread 1  
Thread 0 Thread 1  
Core 0 State  
Core 1 State  
Processor Package State  
Datasheet, Volume 1  
35  
Power Management  
Entry and exit of the C-States at the thread and core level are shown in Figure 4-2.  
Figure 4-2. Thread and Core C-State Entry and Exit  
MWAIT(C6),  
P_LVL3 I/O Read  
C0  
MWAIT(C1), HLT  
MWAIT(C1), HLT  
(C1EEnabled)  
MWAIT(C3),  
P_LVL2 I/ O Read  
C1  
C1 E  
C3  
C6  
While individual threads can request low power C-states, power saving actions only  
take place once the core C-state is resolved. Core C-states are automatically resolved  
by the processor. For thread and core C-states, a transition to and from C0 is required  
before entering any other C-state.  
Table 4-3.  
Coordination of Thread Power States at the Core Level  
Thread 1  
Processor Core  
C-State  
C0  
C0  
C0  
C0  
C0  
C1  
C3  
C6  
C0  
C1  
C3  
C6  
C0  
C0  
C0  
1
1
1
C1  
C1  
C1  
C1  
C3  
C3  
C1  
C3  
C6  
Thread 0  
1
1
Note:  
1. If enabled, the core C-state will be C1E if all active cores have also resolved to a core C1 state or higher.  
4.2.3  
Requesting Low-Power Idle States  
The primary software interfaces for requesting low-power idle states are through the  
MWAIT instruction with sub-state hints and the HLT instruction (for C1 and C1E).  
However, software may make C-state requests using the legacy method of I/O reads  
from the ACPI-defined processor clock control registers, referred to as P_LVLx. This  
method of requesting C-states provides legacy support for operating systems that  
initiate C-state transitions using I/O reads.  
For legacy operating systems, P_LVLx I/O reads are converted within the processor to  
the equivalent MWAIT C-state request. Therefore, P_LVLx reads do not directly result in  
I/O reads to the system. The feature, known as I/O MWAIT redirection, must be  
enabled in the BIOS.  
36  
Datasheet, Volume 1  
Power Management  
Note:  
The P_LVLx I/O Monitor address needs to be set up before using the P_LVLx I/O read  
interface. Each P-LVLx is mapped to the supported MWAIT(Cx) instruction as follows:  
Table 4-4.  
P_LVLx to MWAIT Conversion  
P_LVLx  
MWAIT(Cx)  
Notes  
P_LVL2  
P_LVL3  
MWAIT(C3)  
MWAIT(C6)  
C6. No sub-states allowed  
The BIOS can write to the C-state range field of the PMG_IO_CAPTURE MSR to restrict  
the range of I/O addresses that are trapped and emulate MWAIT like functionality. Any  
P_LVLx reads outside of this range does not cause an I/O redirection to MWAIT(Cx) like  
request. They fall through like a normal I/O instruction.  
Note:  
When P_LVLx I/O instructions are used, MWAIT substates cannot be defined. The  
MWAIT substate is always zero if I/O MWAIT redirection is used. By default, P_LVLx I/O  
redirections enable the MWAIT 'break on EFLAGS.IF' feature that triggers a wakeup on  
an interrupt, even if interrupts are masked by EFLAGS.IF.  
4.2.4  
Core C-states  
The following are general rules for all core C-states, unless specified otherwise:  
• A core C-State is determined by the lowest numerical thread state (such that,  
Thread 0 requests C1E while thread1 requests C3, resulting in a core C1E state).  
See Table 4-3.  
• A core transitions to C0 state when:  
— an interrupt occurs.  
— there is an access to the monitored address if the state was entered using an  
MWAIT instruction.  
• For core C1/C1E, and core C3, an interrupt directed toward a single thread wakes  
only that thread. However, since both threads are no longer at the same core C-  
state, the core resolves to C0.  
• For core C6, an interrupt coming into either thread wakes both threads into C0  
state.  
• Any interrupt coming into the processor package may wake any core.  
4.2.4.1  
4.2.4.2  
Core C0 State  
The normal operating state of a core where code is being executed.  
Core C1/C1E State  
C1/C1E is a low power state entered when all threads within a core execute a HLT or  
MWAIT(C1/C1E) instruction.  
A System Management Interrupt (SMI) handler returns execution to either Normal  
state or the C1/C1E state. See the Intel® 64 and IA-32 Architecture Software  
Developer’s Manual, Volume 3A/3B: System Programmer’s Guide for more information.  
While a core is in C1/C1E state, it processes bus snoops and snoops from other  
threads. For more information on C1E, see Section 4.2.5.2.  
Datasheet, Volume 1  
37  
Power Management  
4.2.4.3  
Core C3 State  
Individual threads of a core can enter the C3 state by initiating a P_LVL2 I/O read to  
the P_BLK or an MWAIT(C3) instruction. A core in C3 state flushes the contents of its  
L1 instruction cache, L1 data cache, and L2 cache to the shared L3 cache, while  
maintaining its architectural state. All core clocks are stopped at this point. Because the  
core’s caches are flushed, the processor does not wake any core that is in the C3 state  
when either a snoop is detected or when another core accesses cacheable memory.  
4.2.4.4  
4.2.4.5  
Core C6 State  
Individual threads of a core can enter the C6 state by initiating a P_LVL3 I/O read or an  
MWAIT(C6) instruction. Before entering core C6, the core will save its architectural  
state to a dedicated SRAM. Once complete, a core will have its voltage reduced to zero  
volts. During exit, the core is powered on and its architectural state is restored.  
C-State Auto-Demotion  
In general, deeper C-states, such as C6, have long latencies and have higher energy  
entry/exit costs. The resulting performance and energy penalties become significant  
when the entry/exit frequency of a deeper C-state is high.  
Therefore, incorrect or inefficient usage of deeper C-states may have a negative impact  
on power consumption. To increase residency and improve power consumption in  
deeper C-states, the processor supports C-state auto-demotion.  
There are two C-State auto-demotion options:  
• C6 to C3  
• C6/C3 To C1  
The decision to demote a core from C6 to C3 or C3/C6 to C1 is based on each core’s  
residency history. Requests to deeper C-states are demoted to shallower C-states when  
the original request doesn't make sense from a performance or energy perspective.  
This feature is disabled by default. BIOS must enable it in the  
PMG_CST_CONFIG_CONTROL register. The auto-demotion policy is also configured by  
this register.  
4.2.5  
Package C-States  
The processor supports C0, C1/C1E, C3, and C6 power states. The following is a  
summary of the general rules for package C-state entry. These apply to all package C-  
states unless specified otherwise:  
• A package C-state request is determined by the lowest numerical core C-state  
amongst all cores.  
• A package C-state is automatically resolved by the processor depending on the  
core idle power states and the status of the platform components.  
— Each core can be at a lower idle power state than the package if the platform  
does not grant the processor permission to enter a requested package C-state.  
— The platform may allow additional power savings to be realized in the  
processor. The processor will put the DRAM into self-refresh in the package C3  
and C6 states.  
• For package C-states, the processor is not required to enter C0 before entering any  
other C-state.  
38  
Datasheet, Volume 1  
Power Management  
The processor exits a package C-state when a break event is detected. If DRAM was  
allowed to go into self-refresh in package C3 or C6 state, it will be taken out of self-  
refresh. Depending on the type of break event, the processor does the following:  
• If a core break event is received, the target core is activated and the break event  
message is forwarded to the target core.  
— If the break event is not masked, the target core enters the core C0 state and  
the processor enters package C0.  
— If the break event is masked, the processor attempts to re-enter its previous  
package state.  
• If the break event was due to a memory access or snoop request.  
— But the platform did not request to keep the processor in a higher package C-  
state, the package returns to its previous C-state.  
— And the platform requests a higher power C-state, the memory access or snoop  
request is serviced and the package remains in the higher power C-state.  
Table 4-5 shows an example package C-state resolution for a dual-core processor.  
Figure 4-3 summarizes package C-state transitions.  
Table 4-5.  
Coordination of Core Power States at the Package Level  
Core 1  
Package C-State  
1
C0  
C1  
C3  
C6  
C0  
C0  
C0  
C0  
C0  
C0  
C0  
C0  
1
1
1
1
C1  
C3  
C6  
C1  
C1  
C1  
C1  
C3  
C3  
C1  
C3  
C6  
Core 0  
1
1
Note:  
1. If enabled, the package C-state will be C1E if all actives cores have resolved a core C1 state or higher.  
Figure 4-3. Package C-State Entry and Exit  
C0  
C3  
C1  
C6  
Datasheet, Volume 1  
39  
Power Management  
4.2.5.1  
4.2.5.2  
Package C0  
The normal operating state for the processor. The processor remains in the normal  
state when at least one of its cores is in the C0 or C1 state or when the platform has  
not granted permission to the processor to go into a low power state. Individual cores  
may be in lower power idle states while the package is in C0.  
Package C1/C1E  
No additional power reduction actions are taken in the package C1 state. However, if  
the C1E sub-state is enabled, the processor automatically transitions to the lowest  
supported core clock frequency, followed by a reduction in voltage.  
The package enters the C1 low power state when:  
• At least one core is in the C1 state.  
• The other cores are in a C1 or lower power state.  
The package enters the C1E state when:  
• All cores have directly requested C1E using MWAIT(C1) with a C1E sub-state hint.  
• All cores are in a power state lower that C1/C1E but the package low power state is  
limited to C1/C1E using the PMG_CST_CONFIG_CONTROL MSR.  
• All cores have requested C1 using HLT or MWAIT(C1) and C1E auto-promotion is  
enabled in IA32_MISC_ENABLES.  
No notification to the system occurs upon entry to C1/C1E.  
4.2.5.3  
Package C3 State  
A processor enters the package C3 low power state when:  
• At least one core is in the C3 state.  
• The other cores are in a C3 or lower power state, and the processor has been  
granted permission by the platform.  
• The processor has requested the C6 state, but the platform only allowed C3.  
In package C3-state, the L3 shared cache is snoopable.  
4.2.5.4  
Package C6 State  
A processor enters the package C6 low power state when:  
• At least one core is in the C6 state.  
• The other cores are in a C6 state, and the processor has been granted permission  
by the platform.  
In package C6 state, all cores save their architectural state and have their core  
voltages reduced. The L3 shared cache is still powered and snoopable in this state.  
40  
Datasheet, Volume 1  
Power Management  
4.3  
Integrated Memory Controller (IMC) Power  
Management  
The main memory is power managed during normal operation and in low power ACPI  
Cx states.  
4.3.1  
Disabling Unused System Memory Outputs  
Any system memory (SM) interface signal that goes to a memory module connector in  
which it is not connected to any actual memory devices (such as, DIMM connector is  
unpopulated, or is single-sided) is tristated. The benefits of disabling unused SM signals  
are:  
• Reduced power consumption.  
• Reduced possible overshoot/undershoot signal quality issues seen by the processor  
I/O buffer receivers caused by reflections from potentially un-terminated  
transmission lines.  
When a given rank is not populated, the corresponding chip select and SCKE signals are  
not driven.  
At reset, all rows must be assumed to be populated, until it can be proven that they are  
not populated. This is due to the fact that when CKE is tristated with a DIMM present,  
the DIMM is not ensured to maintain data integrity.  
4.3.2  
DRAM Power Management and Initialization  
The processor implements extensive support for power management on the SDRAM  
interface. There are four SDRAM operations associated with the Clock Enable (CKE)  
signals, which the SDRAM controller supports. The processor drives four CKE pins to  
perform these operations.  
4.3.2.1  
Initialization Role of CKE  
During power-up, CKE is the only input to the SDRAM that has its level recognized  
(other than the DDR3 reset pin) once power is applied. It must be driven LOW by the  
DDR controller to make sure the SDRAM components float DQ and DQS during power-  
up. CKE signals remain LOW (while any reset is active) until the BIOS writes to a  
configuration register. Using this method, CKE is ensured to remain inactive for much  
longer than the specified 200 micro-seconds after power and clocks to SDRAM devices  
are stable.  
4.3.2.2  
Conditional Self-Refresh  
The processor conditionally places memory into self-refresh in the C3 and C6 low power  
states.  
When entering the Suspend-to-RAM (STR) state, the processor core flushes pending  
cycles and then enters all SDRAM ranks into self refresh. In STR, the CKE signals  
remain LOW so the SDRAM devices perform self refresh.  
The target behavior is to enter self-refresh for the package C3 and C6 states as long as  
there are no memory requests to service. The target usage is shown in Table 4-6.  
Datasheet, Volume 1  
41  
Power Management  
Table 4-6.  
Targeted Memory State Conditions  
Mode  
Memory State with External Graphics  
C0, C1, C1E  
C3, C6  
Dynamic memory rank power down based on idle conditions.  
Dynamic memory rank power down based on idle conditions  
If there are no memory requests, then enter self-refresh. Otherwise, use dynamic memory  
rank power down based on idle conditions.  
S3  
S4  
Self Refresh Mode  
Memory power down (contents lost)  
4.3.2.3  
Dynamic Power Down Operation  
Dynamic power-down of memory is employed during normal operation. Based on idle  
conditions, a given memory rank may be powered down. The IMC implements  
aggressive CKE control to dynamically put the DRAM devices in a power down state.  
The processor core controller can be configured to put the devices in active power down  
(CKE de-assertion with open pages) or precharge power down (CKE de-assertion with  
all pages closed). Precharge power down provides greater power savings but has a  
bigger performance impact, since all pages will first be closed before putting the  
devices in power down mode.  
If dynamic power-down is enabled, all ranks are powered up before doing a refresh  
cycle and all ranks are powered down at the end of refresh.  
4.3.2.4  
DRAM I/O Power Management  
Unused signals should be disabled to save power and reduce electromagnetic  
interference. This includes all signals associated with an unused memory channel.  
Clocks can be controlled on a per DIMM basis. Exceptions are made for per DIMM  
control signals, such as CS#, CKE, and ODT for unpopulated DIMM slots.  
The I/O buffer for an unused signal should be tristated (output driver disabled), the  
input receiver (differential sense-amp) should be disabled, and any DLL circuitry  
related ONLY to unused signals should be disabled. The input path must be gated to  
prevent spurious results due to noise on the unused signals (typically handled  
automatically when input receiver is disabled).  
4.4  
PCI Express* Power Management  
• Active power management support using L0s, and L1 states.  
• All inputs and outputs disabled in L3 Ready state.  
42  
Datasheet, Volume 1  
Thermal Management  
5 Thermal Management  
For thermal specifications and design guidelines, refer to the appropriate Thermal and  
Mechanical Specifications and Design Guidelines (see Section 1.7).  
§ §  
Datasheet, Volume 1  
43  
Thermal Management  
44  
Datasheet, Volume 1  
Signal Description  
6 Signal Description  
This chapter describes the processor signals. They are arranged in functional groups  
according to their associated interface or category. The following notations are used to  
describe the signal type.  
Notations  
Signal Type  
I
Input Pin  
Output Pin  
O
I/O  
Bi-directional Input/Output Pin  
The signal description also includes the type of buffer used for the particular signal.  
Table 6-1.  
Signal Description Buffer Types  
Signal  
Description  
PCI Express* interface signals. These signals are compatible with the PCI Express 2.0  
Signaling Environment AC Specifications and are AC Coupled. The buffers are not  
3.3 V tolerant. Refer to the PCI Express Specification.  
PCI Express*  
Intel Flexible Display Interface signals. These signals are compatible with PCI Express  
2.0 Signaling Environment AC Specifications, but are DC coupled. The buffers are not  
3.3 V tolerant.  
FDI  
Direct Media Interface signals. These signals are compatible with PCI Express 2.0  
Signaling Environment AC Specifications, but are DC coupled. The buffers are not  
3.3 V tolerant.  
DMI  
CMOS  
DDR3  
GTL  
CMOS buffers. 1.1 V tolerant  
DDR3 buffers: 1.5 V tolerant  
Gunning Transceiver Logic signaling technology  
Test Access Port signal  
TAP  
Analog reference or output. May be used as a threshold voltage or for buffer  
compensation.  
Analog  
Ref  
Voltage reference signal  
Asynch  
This signal is asynchronous and has no timing relationship with any reference clock.  
Datasheet, Volume 1  
45  
Signal Description  
6.1  
System Memory Interface  
Table 6-2.  
Memory Channel A  
Signal Name  
SA_BS[2:0]  
Description  
Direction  
Type  
Bank Select: These signals define which banks are  
selected within each SDRAM rank.  
O
DDR3  
CAS Control Signal: This signal is used with SA_RAS# and  
SA_WE# (along with SA_CS#) to define the SDRAM  
Commands.  
SA_CAS#  
O
DDR3  
SDRAM Inverted Differential Clock: Channel A SDRAM  
Differential clock signal-pair complement.  
SA_CK#[1:0]  
SA_CK#[3:2]  
O
O
DDR3  
DDR3  
SDRAM Inverted Differential Clock: Channel A SDRAM  
Differential clock signal-pair complement.  
SDRAM Differential Clock: Channel A SDRAM Differential  
clock signal pair.  
SA_CK[1:0]  
SA_CK[3:2]  
O
O
DDR3  
DDR3  
The crossing of the positive edge of SA_CKx and the  
negative edge of its complement SA_CKx# are used to  
sample the command and control signals on the SDRAM.  
SDRAM Differential Clock: Channel A SDRAM Differential  
clock signal pair.  
The crossing of the positive edge of SA_CKx and the  
negative edge of its complement SA_CKx# are used to  
sample the command and control signals on the SDRAM.  
Clock Enable: (1 per rank). These signals are used to:  
Initialize the SDRAMs during power-up  
Power-down SDRAM ranks  
Place all SDRAM ranks into and out of self-refresh  
during STR  
SA_CKE[3:0]  
O
DDR3  
Chip Select: (1 per rank) These signals are used to select  
particular SDRAM components during the active state.  
There is one Chip Select for each SDRAM rank.  
SA_CS#[3:0]  
SA_CS#[7:4]  
O
O
DDR3  
DDR3  
These signals are only used for processors and platforms  
that have Registered DIMM support. These signals are  
used to select particular SDRAM components during the  
active state and SA_CS#[7:6] are used as the on die  
termination for the first DIMM.  
Data Mask: These signals are used to mask individual  
bytes of data in the case of a partial write, and to  
interrupt burst writes.  
When activated during writes, the corresponding data  
groups in the SDRAM are masked. There is one  
SA_DM[7:0] for every data byte lane.  
SA_DM[7:0]  
SA_DQ[63:0]  
Note: These signals are not used by the Intel Core™ i7-  
800 and i5-700 desktop processor series. They are  
connected to V on the package.  
SS  
Data Bus: Channel A data signal interface to the SDRAM  
data bus.  
I/O  
I/O  
DDR3  
DDR3  
Data Strobes: SA_DQS[8:0] and its complement signal  
group make up a differential strobe pair. The data is  
captured at the crossing point of SA_DQS[8:0] and its  
SA_DQS#[8:0] during read and write transactions.  
SA_DQS[8:0]  
SA_DQS#[8:0]  
SA_ECC_CB[7:0]  
SA_MA[15:0]  
SA_ODT[3:0]  
Data Lines for ECC Check Byte.  
I/O  
O
DDR3  
DDR3  
DDR3  
Memory Address: These signals are used to provide the  
multiplexed row and column address to the SDRAM.  
On Die Termination: Active Termination Control  
O
RAS Control Signal: This signal is used with SA_CAS# and  
SA_WE# (along with SA_CS#) to define the SRAM  
Commands.  
SA_RAS#  
SA_WE#  
O
O
DDR3  
DDR3  
Write Enable Control Signal: This signal is used with  
SA_RAS# and SA_CAS# (along with SA_CS#) to define  
the SDRAM Commands.  
46  
Datasheet, Volume 1  
Signal Description  
Table 6-3.  
Memory Channel B  
Signal Name  
Description  
Direction  
Type  
Bank Select: These signals define which banks are  
selected within each SDRAM rank.  
SB_BS[2:0]  
O
DDR3  
CAS Control Signal: This signal is used with SB_RAS#  
and SB_WE# (along with SB_CS#) to define the SDRAM  
Commands.  
SB_CAS#  
O
DDR3  
SDRAM Inverted Differential Clock: Channel B SDRAM  
Differential clock signal-pair complement.  
SB_CK#[1:0]  
SB_CK#[3:2]  
O
O
DDR3  
DDR3  
SDRAM Inverted Differential Clock: Channel B SDRAM  
Differential clock signal-pair complement.  
SDRAM Differential Clock: Channel B SDRAM Differential  
clock signal pair.  
SB_CK[1:0]  
SB_CK[3:2]  
O
O
DDR3  
DDR3  
The crossing of the positive edge of SB_CKx and the  
negative edge of its complement SB_CKx# are used to  
sample the command and control signals on the SDRAM.  
SDRAM Differential Clock: Channel B SDRAM Differential  
clock signal pair.  
The crossing of the positive edge of SB_CKx and the  
negative edge of its complement SB_CKx# are used to  
sample the command and control signals on the SDRAM.  
Clock Enable: (1 per rank). These signals are used to:  
Initialize the SDRAMs during power-up  
Power-down SDRAM ranks  
Place all SDRAM ranks into and out of self-refresh  
during STR  
SB_CKE[3:0]  
O
DDR3  
Chip Select: (1 per rank) These signals are used to select  
particular SDRAM components during the active state.  
There is one Chip Select for each SDRAM rank.  
SB_CS#[3:0]  
SB_CS#[7:4]  
O
O
DDR3  
DDR3  
These signals are only used for processors and platforms  
that have Registered DIMM support. These signals are  
used to select particular SDRAM components during the  
active state and SB_CS#[7:6] are used as the on die  
termination for the first DIMM.  
Data Mask: These signals are used to mask individual  
bytes of data in the case of a partial write, and to  
interrupt burst writes. When activated during writes, the  
corresponding data groups in the SDRAM are masked.  
There is one SB_DM[7:0] for every data byte lane.  
SB_DM[7:0]  
SB_DQ[63:0]  
Note: These signals are not used by the Intel Core™ i7-  
800 and i5-700 desktop processor series. They are  
connected to V on the package.  
SS  
Data Bus: Channel B data signal interface to the SDRAM  
data bus.  
I/O  
I/O  
DDR3  
DDR3  
Data Strobes: SB_DQS[8:0] and its complement signal  
group make up a differential strobe pair. The data is  
captured at the crossing point of SB_DQS[8:0] and its  
SB_DQS#[8:0] during read and write transactions.  
SB_DQS[8:0]  
SB_DQS#[8:0]  
SB_ECC_CB[7:0]  
SB_MA[15:0]  
SB_ODT[3:0]  
Data Lines for ECC Check Byte.  
I/O  
O
DDR3  
DDR3  
DDR3  
Memory Address: These signals are used to provide the  
multiplexed row and column address to the SDRAM.  
On-Die Termination: Active Termination Control.  
O
RAS Control Signal: This signal is used with SB_CAS#  
and SB_WE# (along with SB_CS#) to define the SDRAM  
Commands.  
SB_RAS#  
SB_WE#  
O
O
DDR3  
DDR3  
Write Enable Control Signal: This signal is used with  
SB_RAS# and SB_CAS# (along with SB_CS#) to define  
the SDRAM Commands.  
Datasheet, Volume 1  
47  
Signal Description  
6.2  
Memory Reference and Compensation  
Table 6-4.  
Memory Reference and Compensation  
Signal Name  
Description  
Direction  
Type  
SA_DIMM_VREFDQ  
SB_DIMM_VREFDQ  
Channel A and B Output DDR3 DIMM DQ Reference Voltage.  
O
I
Analog  
Analog  
SM_RCOMP[2:0]  
System Memory Impedance Compensation.  
6.3  
Reset and Miscellaneous Signals  
Table 6-5.  
Reset and Miscellaneous Signals (Sheet 1 of 2)  
Signal Name  
Description  
Direction  
Type  
Configuration signals:  
The CFG signals have a default value of 1 if not  
terminated on the board.  
CFG[1:0]: PCI Express Bifurcation  
Intel Core™ i7-800 and i5-700 desktop  
processor series:  
11 = 1 x16 PCI Express  
10 = 2 x8 PCI Express  
01 = Reserved  
00 = Reserved  
CFG[17:0]  
I
CMOS  
CFG[2]: Reserved configuration land. A test point  
may be placed on the board for this land.  
CFG[3]: Reserved configuration land.  
CFG[6:4]: Reserved configuration lands. A test  
point may be placed on the board for this land.  
CFG[17:7]: Reserved configuration lands. Intel  
does not recommend a test point on the board for  
this land.  
Impedance compensation must be terminated on the  
system board using a precision resistor. Refer to  
Table 7-9 for the termination requirement.  
COMP0  
COMP1  
COMP2  
COMP3  
FC_x  
I
I
I
I
Analog  
Analog  
Analog  
Analog  
Impedance compensation must be terminated on the  
system board using a precision resistor. Refer to  
Table 7-9 for the termination requirement.  
Impedance compensation must be terminated on the  
system board using a precision resistor. Refer to  
Table 7-9 for the termination requirement.  
Impedance compensation must be terminated on the  
system board using a precision resistor. Refer to  
Table 7-9 for the termination requirement.  
Future Compatibility (FC) signals are signals that are  
available for compatibility with other processors. A test  
point may be placed on the board for these lands.  
External Thermal Sensor Input: If the system  
temperature reaches a dangerously high value, this  
signal can be used to trigger the start of system  
memory throttling.  
PM_EXT_TS#[1:0]  
I
CMOS  
CMOS  
Power Management Sync: A sideband signal to  
communicate power management status from the  
platform to the processor.  
PM_SYNC  
I
This signal is an indication of the processor being reset.  
Asynch  
CMOS  
RESET_OBS#  
O
48  
Datasheet, Volume 1  
Signal Description  
Table 6-5.  
Reset and Miscellaneous Signals (Sheet 2 of 2)  
Signal Name  
Description  
Direction  
Type  
Reset In: When asserted, this signal will asynchronously  
reset the processor logic. This signal is connected to the  
PLTRST# output of the PCH.  
RSTIN#  
I
CMOS  
RESERVED. Must be left unconnected on the board.  
Intel does not recommend a test point on the board for  
this land.  
RSVD  
RESERVED/Non-Critical to Function: Pin for package  
mechanical reliability. A test point may be placed on the  
board for this land.  
RSVD_NCTF  
RESERVED-Test Point. A test point may be placed on the  
board for this land.  
RSVD_TP  
DDR3 DRAM Reset: Reset signal from processor to  
DRAM devices. One common to all channels.  
SM_DRAMRST#  
O
DDR3  
6.4  
PCI Express* Based Interface Signals  
Table 6-6.  
PCI Express* Based Interface Signals  
Signal Name  
PEG_ICOMPI  
Description  
Direction  
Type  
PCI Express Current Compensation.  
PCI Express Current Compensation.  
PCI Express Resistor Bias Control.  
PCI Express Resistance Compensation.  
PCI Express Receive Differential Pair.  
I
I
I
I
Analog  
Analog  
Analog  
Analog  
PEG_ICOMPO  
PEG_RBIAS  
PEG_RCOMPO  
PEG_RX[15:0]  
PEG_RX#[15:0]  
I
PCI Express  
PCI Express  
PEG_TX[15:0]  
PEG_TX#[15:0]  
PCI Express Transmit Differential Pair.  
O
6.5  
DMI—Processor to PCH Serial Interface  
Table 6-7.  
DMI—Processor to PCH Serial Interface  
Signal Name  
Description  
Direction  
Type  
DMI_RX[3:0]  
DMI_RX#[3:0]  
DMI input from PCH: Direct Media Interface receive  
differential pair.  
I
DMI  
DMI_TX[3:0]  
DMI_TX#[3:0]  
DMI output to PCH: Direct Media Interface transmit  
differential pair.  
O
DMI  
Datasheet, Volume 1  
49  
Signal Description  
6.6  
PLL Signals  
Table 6-8.  
PLL Signals  
Signal Name  
Description  
Direction  
Type  
BCLK[0]  
Differential bus clock input to the processor.  
I
I
Diff Clk  
BCLK#[0]  
BCLK[1]  
BCLK#[1]  
Differential bus clock input to the processor. Reserved  
for possible future use.  
Diff Clk  
Diff Clk  
BCLK_ITP  
BCLK_ITP#  
Buffered differential bus clock pair to ITP..  
O
Differential PCI Express / DMI Clock In:  
These pins receive a 100-MHz Serial Reference clock.  
This clock is used to generate the clocks necessary for  
the support of PCI Express. This also is the reference  
PEG_CLK  
PEG_CLK#  
I
Diff Clk  
®
clock for Intel Flexible Display Interface.  
6.7  
Intel® Flexible Display Interface Signals  
Note:  
The signals noted below as not being used are included for reference to define all LGA  
1156 land locations. These signals will be used by future processors that are  
compatible with LGA 1156 platforms.  
Table 6-9.  
Intel® Flexible Display Interface  
Signal Name  
Description  
Direction  
Type  
®
Intel Flexible Display Interface Frame Sync—Pipe A.  
FDI_FSYNC[0]  
Note: This signal is not used by the processor. It is  
connected to V on the package.  
SS  
®
Intel Flexible Display Interface Frame Sync—Pipe B.  
FDI_FSYNC[1]  
FDI_INT  
Note: This signal is not used by the processor. It is  
connected to V on the package.  
SS  
®
Intel Flexible Display Interface Hot Plug Interrupt.  
Note: This signal is not used by the processor. It is  
connected to V on the package.  
SS  
®
Intel Flexible Display Interface Line Sync—Pipe A.  
FDI_LSYNC[0]  
FDI_LSYNC[1]  
Note: This signal is not used by the processor. It is  
connected to V on the package.  
SS  
®
Intel Flexible Display Interface Line Sync—Pipe B.  
Note: This signal is not used by the processor. It is  
connected to V on the package.  
SS  
®
Intel Flexible Display Interface Transmit Differential  
Pair—Pipe A..  
Note: These signals are not used by the processor.  
They are connected to V on the package.  
FDI_TX[3:0]  
FDI_TX#[3:0]  
SS  
®
Intel Flexible Display Interface Transmit Differential  
Pair—Pipe B.  
FDI_TX[7:4]  
FDI_TX#[7:4]  
Note: These signals are not used by the processor.  
They are connected to V on the package.  
SS  
50  
Datasheet, Volume 1  
Signal Description  
6.8  
JTAG/ITP Signals  
Table 6-10. JTAG/ITP  
Signal Name  
Description  
Direction  
Type  
Breakpoint and Performance Monitor Signals: Outputs  
from the processor that indicate the status of  
breakpoints and programmable counters used for  
monitoring processor performance.  
BPM#[7:0]  
DBR#  
I/O  
GTL  
DBR# is used only in systems where no debug port is  
implemented on the system board. DBR# is used by a  
debug port interposer so that an in-target probe can  
drive system reset.  
O
PRDY# is a processor output used by debug tools to  
determine processor debug readiness.  
PRDY#  
PREQ#  
TCK  
O
I
Asynch GTL  
Asynch GTL  
TAP  
PREQ# is used by debug tools to request debug  
operation of the processor.  
TCK (Test Clock) provides the clock input for the  
processor Test Bus (also known as the Test Access Port).  
I
TDI (Test Data In) transfers serial test data into the  
processor. TDI provides the serial input needed for JTAG  
specification support.  
TDI  
I
I
TAP  
TAP  
TAP  
TAP  
TDI_M (Test Data In) transfers serial test data into the  
processor. TDI_M provides the serial input needed for  
JTAG specification support.  
TDI_M  
TDO  
TDO (Test Data Out) transfers serial test data out of the  
processor. TDO provides the serial output needed for  
JTAG specification support.  
O
O
TDO_M (Test Data Out) transfers serial test data out of  
the processor. TDO_M provides the serial output needed  
for JTAG specification support.  
TDO_M  
TMS (Test Mode Select) is a JTAG specification support  
signal used by debug tools.  
TMS  
I
I
TAP  
TAP  
TRST# (Test Reset) resets the Test Access Port (TAP)  
logic. TRST# must be driven low during power on Reset.  
TRST#  
Datasheet, Volume 1  
51  
Signal Description  
6.9  
Error and Thermal Protection  
Table 6-11. Error and Thermal Protection  
Signal Name  
Description  
Direction  
Type  
Catastrophic Error: This signal indicates that the system  
has experienced a catastrophic error and cannot continue  
to operate. The processor will set this for non-recoverable  
machine check errors or other unrecoverable internal  
errors. Since this is an I/O pin, external agents are allowed  
to assert this pin that will cause the processor to take a  
machine check exception.  
CATERR#  
I/O  
GTL  
CATERR# is used for signaling the following types of errors:  
Legacy MCERR: CATERR# is asserted for 16 BCLKs.  
Legacy IERR: CATERR# remains asserted until warm or  
cold reset.  
PECI (Platform Environment Control Interface) is the serial  
sideband interface to the processor and is used primarily  
for thermal, power, and error management.  
PECI  
I/O  
I/O  
Asynch  
PROCHOT# goes active when the processor temperature  
monitoring sensor(s) detects that the processor has  
reached its maximum safe operating temperature. This  
indicates that the processor Thermal Control Circuit has  
been activated, if enabled. This signal can also be driven to  
the processor to activate the Thermal Control Circuit. This  
signal does not have on-die termination and must be  
terminated on the system board.  
PROCHOT#  
Asynch GTL  
Processor Power Status Indicator: This signal is asserted  
when maximum possible processor core current  
consumption is less than 15 A. Assertion of this signal is an  
indication that the VR controller does not currently need to  
Asynch  
CMOS  
PSI#  
be able to provide I above 15 A, and the VR controller  
O
O
CC  
can use this information to move to more efficient  
operating point. This signal will de-assert at least 3.3 s  
before the current consumption will exceed 15 A. The  
minimum PSI# assertion and de-assertion time is 1 BCLK.  
Thermal Trip: The processor protects itself from  
catastrophic overheating by use of an internal thermal  
sensor. This sensor is set well above the normal operating  
temperature to ensure that there are no false trips. The  
processor will stop all execution when the junction  
temperature exceeds approximately 125 °C. This is  
signaled to the system by the THERMTRIP# pin.  
THERMTRIP#  
Asynch GTL  
52  
Datasheet, Volume 1  
Signal Description  
6.10  
Power Sequencing  
Table 6-12. Power Sequencing  
Signal Name  
Description  
Direction  
Type  
SKTOCC# (Socket Occupied): This signal will be pulled to  
ground on the processor package. There is no connection  
to the processor silicon for this signal. System board  
designers may use this signal to determine if the  
processor is present.  
SKTOCC#  
O
SM_DRAMPWROK processor input: This signal connects to  
PCH DRAMPWROK.  
Asynch  
CMOS  
SM_DRAMPWROK  
TAPPWRGOOD  
I
Power good for ITP. Indicates to the ITP when the TAP can  
be accessed.  
Asynch  
CMOS  
O
VCCPWRGOOD_0 and VCCPWRGOOD_1 (Power Good)  
Processor Input: The processor requires these signals to  
1
be a clean indication that V , V  
, V , V  
supplies  
CC  
CCPLL  
TT  
AXG  
are stable and within their specifications and that BCLK is  
stable and has been running for a minimum number of  
cycles. These signals must then transition monotonically  
to a high state. These signals can be driven inactive at  
any time, but BCLK and power must again be stable  
before a subsequent rising edge of VCCPWRGOOD_0 and  
VCCPWRGOOD_1. These signals should be tied together  
and connected to the CPUPWRGD output signal of the  
PCH.  
VCCPWRGOOD_0  
VCCPWRGOOD_1  
Asynch  
CMOS  
I
Note 1: These signals are not used by the processor.  
They are no connect on the package.  
The processor requires this input signal to be a clean  
indication that the V power supply is stable and within  
TT  
specifications. 'Clean' implies that the signal will remain  
low (capable of sinking leakage current), without glitches,  
from the time that the power supplies are turned on until  
they come within specification. The signal must then  
transition monotonically to a high state. Note that it is not  
valid for VTTPWRGOOD to be de-asserted while  
Asynch  
CMOS  
VTTPWRGOOD  
I
VCCPWRGOOD_0 and VCCPWRGOOD_1 are asserted.  
6.11  
Processor Core Power Signals  
Table 6-13. Processor Core Power Signals (Sheet 1 of 2)  
Signal Name  
ISENSE  
Description  
Direction  
Type  
Current sense from VRD11.1 Compliant Regulator to the  
processor core.  
I
Analog  
Processor core power supply. The voltage supplied to  
these pins is determined by the VID pins.  
VCC  
PWR  
PWR  
VCC/Non-Critical to Function: Pin for package  
mechanical reliability.  
VCC_NCTF  
VCC_SENSE and VSS_SENSE provide an isolated, low  
impedance connection to the processor core voltage  
and ground. They can be used to sense or measure  
voltage near the silicon.  
VCC_SENSE  
Analog  
Datasheet, Volume 1  
53  
Signal Description  
Table 6-13. Processor Core Power Signals (Sheet 2 of 2)  
Signal Name  
Description  
Direction  
Type  
VID[7:0] (Voltage ID) are used to support automatic  
selection of power supply voltages (V ). Refer to the  
CC  
Voltage Regulator-Down (VRD) 11.1 Design Guidelines  
for more information. The voltage supply for these  
signals must be valid before the VR can supply V to  
CC  
the processor. Conversely, the VR output must be  
disabled until the voltage supply for the VID signals  
become valid. The VR must supply the voltage that is  
requested by the signals, or disable itself.  
VID7 and VID6 should be tied separately to V using a  
SS  
1 kresistor (This value is latched on the rising edge of  
VTTPWRGOOD).  
VID[7:6]  
VID[5:3]/CSC[2:0]  
VID[2:0]/MSID[2:0]  
I/O  
CMOS  
CSC[2:0]—Current Sense Configuration bits, for ISENSE  
gain setting. See Voltage Regulator-Down (VRD) 11.1  
Design Guidelines for gain setting information. This  
value is latched on the rising edge of VTTPWRGOOD.  
MSID[2:0] (Market Segment Identification) are used to  
indicate the maximum platform capability to the  
processor. A processor will only boot if the MSID[2:0]  
pins are strapped to the appropriate setting (or higher)  
on the platform (see Table 7-3 for MSID encodings).  
MSID is used to help protect the platform by preventing  
a higher power processor from booting in a platform  
designed for lower power processors. MSID[2:0] are  
latched on the rising edge of VTTPWRGOOD.  
VCC_SENSE and VSS_SENSE provide an isolated, low  
impedance connection to the processor core voltage  
and ground. They can be used to sense or measure  
voltage near the silicon.  
VSS_SENSE  
Analog  
Analog  
VTT_SENSE and VSS_SENSE_VTT provide an isolated,  
low impedance connection to the processor V voltage  
TT  
VSS_SENSE_VTT  
and ground. They can be used to sense or measure  
voltage near the silicon.  
Processor power for the memory controller, shared cache  
and I/O (1.1 V).  
VTT  
PWR  
The VTT_SELECT signal is used to select the correct V  
voltage level for the processor. The processor will be  
TT  
VTT_SELECT  
O
CMOS  
configured to drive a low voltage level for VTT_SELECT.  
VTT_SENSE and VSS_SENSE_VTT provide an isolated,  
low impedance connection to the processor V voltage  
TT  
and ground. They can be used to sense or measure  
voltage near the silicon.  
VTT_SENSE  
Analog  
54  
Datasheet, Volume 1  
Signal Description  
6.12  
Graphics and Memory Core Power Signals  
Note:  
The signals noted below as not being used are included for reference to define all LGA  
1156 land locations. These signals will be used by future processors that are  
compatible with LGA 1156 platforms.  
Table 6-14. Graphics and Memory Power Signals  
Signal Name  
Description  
Direction  
Type  
Integrated graphics output signal to a VRD11.1 compliant  
VR. When asserted this signal indicates that the  
integrated graphics is in render suspend mode. This  
signal is also used to control render suspend state exit  
slew rate.  
GFX_DPRSLPVR  
Note: This signal is not used by the processor. It is  
connected to V on the package.  
SS  
Current Sense from an VRD11.1 compliant VR to the  
integrated graphics.  
GFX_IMON  
Note: This signal is not used by the processor. It is  
connected to V on the package.  
SS  
GFX_VID[6:0] (Voltage ID) pins are used to support  
automatic selection of nominal voltages (V  
). These are  
AXG  
CMOS signals that are driven by the processor. The VID  
code output by VID[6:0] and associated voltages are  
given in Chapter 7.  
GFX_VID[6:0]  
Note: These signals are not used by the processor. They  
are connected to V on the package.  
TT  
Integrated graphics output signal to integrated graphics  
VR. This signal is used as an on/off control to  
enable/disable the integrated graphics VR.  
GFX_VR_EN  
VAXG  
Note: This signal is not used by the processor. It is  
connected to V on the package.  
SS  
Graphics core power supply.  
Note: These signals are not used by the processor. They  
are no connect on the package.  
VAXG_SENSE and VSSAXG_SENSE provide an isolated,  
low impedance connection to the VAXG voltage and  
ground. They can be used to sense or measure voltage  
near the silicon.  
VAXG_SENSE  
Note: This signal is not used by the processor. It is a no  
connect on the package.  
VCCPLL provides isolated power for internal processor  
PLLs.  
VCCPLL  
VDDQ  
PWR  
PWR  
Processor I/O supply voltage for DDR3.  
VAXG_SENSE and VSSAXG_SENSE provide an isolated,  
low impedance connection to the VAXG voltage and  
ground. They can be used to sense or measure voltage  
near the silicon.  
VSSAXG_SENSE  
Note: This signal is not used by the processor. It is  
connected to V on the package.  
SS  
Datasheet, Volume 1  
55  
Signal Description  
6.13  
Ground and NCTF  
Table 6-15. Ground and NCTF  
Signal Name  
Description  
Direction  
Type  
VSS are the ground pins for the processor and should be  
connected to the system ground plane.  
VSS  
GND  
Corner Ground Connection: This land may be used to test  
for connection to ground. A test point may be placed on  
the board for this land. This land is considered Non-  
Critical to Function.  
CGC_TP_NCTF  
6.14  
Processor Internal Pull Up/Pull Down  
Table 6-16. Processor Internal Pull Up/Pull Down  
Pull Up/Pull  
Signal Name  
Down  
Rail  
Value  
SM_DRAMPWROK  
Pull Down  
Pull Down  
VSS  
VSS  
10–20 k  
10–20 k  
VCCPWRGOOD_0  
VCCPWRGOOD_1  
VTTPWRGOOD  
BPM#[7:0]  
TCK  
Pull Down  
Pull Up  
Pull Up  
Pull Up  
Pull Up  
Pull Up  
Pull Up  
Pull Up  
Pull Up  
VSS  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
10–20 k  
44–55   
44–55   
44–55   
44–55   
1–5 k  
TDI  
TMS  
TRST#  
TDI_M  
44–55   
44–55   
5–14 k  
PREQ#  
CFG[17:0]  
§ §  
56  
Datasheet, Volume 1  
Electrical Specifications  
7 Electrical Specifications  
7.1  
Power and Ground Lands  
The processor has VCC, VTT, VDDQ, VCCPLL, VAXG1, and VSS (ground) inputs for on-  
chip power distribution. All power lands must be connected to their respective  
processor power planes, while all VSS lands must be connected to the system ground  
plane. Use of multiple power and ground planes is recommended to reduce I*R drop.  
The VCC lands must be supplied with the voltage determined by the processor Voltage  
IDentification (VID) signals. Table 7-1 specifies the voltage level for the various VIDs.  
7.2  
Decoupling Guidelines  
Due to its large number of transistors and high internal clock speeds, the processor is  
capable of generating large current swings between low- and full-power states. This  
may cause voltages on power planes to sag below their minimum values, if bulk  
decoupling is not adequate. Larger bulk storage (CBULK), such as electrolytic capacitors,  
supply current during longer lasting changes in current demand (for example, coming  
out of an idle condition). Similarly, capacitors act as a storage well for current when  
entering an idle condition from a running condition. To keep voltages within  
specification, output decoupling must be properly designed.  
Caution:  
Design the board to ensure that the voltage provided to the processor remains within  
the specifications listed in Table 7-5. Failure to do so can result in timing violations or  
reduced lifetime of the processor. For further information and design guidelines, refer  
to the Voltage Regulator Down (VRD) 11.1 Design Guidelines.  
7.2.1  
Voltage Rail Decoupling  
The voltage regulator solution needs to provide:  
• bulk capacitance with low effective series resistance (ESR).  
• a low interconnect resistance from the regulator to the socket.  
• bulk decoupling to compensate for large current swings generated during power-  
on, or low-power idle state entry/exit.  
The power delivery solution must ensure that the voltage and current specifications are  
met, as defined in Table 7-5.  
1. These signals are not used by the processor. They are no connect on the package.  
Datasheet, Volume 1  
57  
Electrical Specifications  
7.3  
Processor Clocking (BCLK[0], BCLK#[0])  
The processor uses a differential clock to generate the processor core(s) operating  
frequency, memory controller frequency, and other internal clocks. The processor core  
frequency is determined by multiplying the processor core ratio by 133 MHz. Clock  
multiplying within the processor is provided by an internal phase locked loop (PLL) that  
requires a constant frequency input, with exceptions for Spread Spectrum Clocking  
(SSC).  
The processor maximum core frequency is configured during power-on reset by using  
its manufacturing default value. This value is the highest core multiplier at which the  
processor can operate. If lower maximum speeds are desired, the appropriate ratio can  
be configured using the FLEX_RATIO MSR.  
7.3.1  
PLL Power Supply  
An on-die PLL filter solution is implemented on the processor. Refer to Table 7-6 for DC  
specifications.  
7.4  
VCC Voltage Identification (VID)  
The VID specification for the processor is defined by the Voltage Regulator Down (VRD)  
11.1 Design Guidelines. The processor uses eight voltage identification signals,  
VID[7:0], to support automatic selection of voltages. Table 7-1 specifies the voltage  
level corresponding to the state of VID[7:0]. A ‘1’ in this table refers to a high voltage  
level and a ‘0’ refers to a low voltage level. If the processor socket is empty (VID[7:0]  
= 11111111), or the voltage regulation circuit cannot supply the voltage that is  
requested, the voltage regulator must disable itself. See the Voltage Regulator Down  
(VRD) 11.1 Design Guidelines for further details. VID signals are CMOS push/pull  
drivers. Refer to Table 7-9 for the DC specifications for these signals. The VID codes will  
change due to temperature and/or current load changes to minimize the power of the  
part. A voltage range is provided in Table 7-5. The specifications are set so that one  
voltage regulator can operate with all supported frequencies.  
Individual processor VID values may be set during manufacturing so that two devices  
at the same core frequency may have different default VID settings. This is shown in  
the VID range values in Table 7-5. The processor provides the ability to operate while  
transitioning to an adjacent VID and its associated processor core voltage (VCC). This  
will represent a DC shift in the loadline.  
Note:  
A low-to-high or high-to-low voltage state change will result in as many VID transitions  
as necessary to reach the target core voltage. Transitions above the maximum  
specified VID are not permitted. One VID transition occurs in 1.25 us. Table 7-1  
includes VID step sizes and DC shift ranges. Minimum and maximum voltages must be  
maintained.  
The VR used must be capable of regulating its output to the value defined by the new  
VID values issued. DC specifications for dynamic VID transitions are included in  
Table 7-5 and Table 7-7. See the Voltage Regulator Down (VRD) 11.1 Design Guidelines  
for further details.  
Several of the VID signals (VID[5:3]/CSC[2:0] and VID[2:0]/MSID[2:0]) serve a dual  
purpose and are sampled during reset. Refer to the signal description table in  
Chapter 6 and Table 7-3 for further information.  
58  
Datasheet, Volume 1  
Electrical Specifications  
Table 7-1.  
VRD 11.1/11.0 Voltage Identification Definition (Sheet 1 of 3)  
VID VID VID VID VID VID VID VID  
VID VID VID VID VID VID VID VID  
V
V
CC_MAX  
CC_MAX  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
OFF  
OFF  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.04375  
1.03750  
1.03125  
1.02500  
1.01875  
1.01250  
1.00625  
1.00000  
0.99375  
0.98750  
0.98125  
0.97500  
0.96875  
0.96250  
0.95626  
0.95000  
0.94375  
0.93750  
0.93125  
0.92500  
0.91875  
0.91250  
0.90625  
0.90000  
0.89375  
0.88750  
0.88125  
0.87500  
0.86875  
0.86250  
0.85625  
0.85000  
0.84374  
0.83750  
0.83125  
0.82500  
0.81875  
0.81250  
0.80625  
1.60000  
1.59375  
1.58750  
1.58125  
1.57500  
1.56875  
1.56250  
1.55625  
1.55000  
1.54375  
1.53750  
1.53125  
1.52500  
1.51875  
1.51250  
1.50625  
1.50000  
1.49375  
1.48750  
1.48125  
1.47500  
1.46875  
1.46250  
1.45625  
1.45000  
1.44375  
1.43750  
1.43125  
1.42500  
1.41875  
1.41250  
1.40625  
1.40000  
1.39375  
1.38750  
1.38125  
1.37500  
Datasheet, Volume 1  
59  
Electrical Specifications  
Table 7-1.  
VRD 11.1/11.0 Voltage Identification Definition (Sheet 2 of 3)  
VID VID VID VID VID VID VID VID  
VID VID VID VID VID VID VID VID  
V
V
CC_MAX  
CC_MAX  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1.36875  
1.36250  
1.35625  
1.35000  
1.34375  
1.33750  
1.33125  
1.32500  
1.31875  
1.31250  
1.30625  
1.30000  
1.29375  
1.28750  
1.28125  
1.27500  
1.26875  
1.26250  
1.25625  
1.25000  
1.24375  
1.23750  
1.23125  
1.22500  
1.21875  
1.21250  
1.20625  
1.20000  
1.19375  
1.18750  
1.18125  
1.17500  
1.16875  
1.16250  
1.15625  
1.15000  
1.14375  
1.13750  
1.13125  
1.12500  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.80000  
0.79375  
0.78750  
0.78125  
0.77500  
0.76875  
0.76250  
0.75625  
0.75000  
0.74375  
0.73750  
0.73125  
0.72500  
0.71875  
0.71250  
0.70625  
0.70000  
0.69375  
0.68750  
0.68125  
0.67500  
0.66875  
0.66250  
0.65625  
0.65000  
0.64375  
0.63750  
0.63125  
0.62500  
0.61875  
0.61250  
0.60625  
0.60000  
0.59375  
0.58750  
0.58125  
0.57500  
0.56875  
0.56250  
0.55625  
60  
Datasheet, Volume 1  
Electrical Specifications  
Table 7-1.  
VRD 11.1/11.0 Voltage Identification Definition (Sheet 3 of 3)  
VID VID VID VID VID VID VID VID  
VID VID VID VID VID VID VID VID  
V
V
CC_MAX  
CC_MAX  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1.11875  
1.11250  
1.10625  
1.10000  
1.09375  
1.08750  
1.08125  
1.07500  
1.06875  
1.06250  
1.05625  
1.05000  
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
1
0
0
1
1
1
1
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
0
1
0.55000  
0.54375  
0.53750  
0.53125  
0.52500  
0.51875  
0.51250  
0.50625  
0.50000  
OFF  
OFF  
Table 7-2.  
Market Segment Selection Truth Table for MSID[2:0]  
1
MSID2  
MSID1  
MSID0  
Description  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
2
3
2009A processors supported  
2009B processors supported  
Reserved  
Notes:  
1.  
2.  
The MSID[2:0] signals are provided to indicate the maximum platform capability to the processor.  
®
2009A processors have thermal requirements that are equivalent to those of the Intel Core™2 Duo E8000  
processor series. Refer to the appropriate processor Thermal and Mechanical Specifications and Design  
Guidelines for additional information (see Section 1.7).  
®
3.  
2009B processors have thermal requirements that are equivalent to those of the Intel Core™2 Quad  
Q9000 processor series. Refer to the appropriate processor Thermal and Mechanical Specifications and  
Design Guidelines for additional information (see Section 1.7).  
Datasheet, Volume 1  
61  
Electrical Specifications  
7.5  
Reserved or Unused Signals  
The following are the general types of reserved (RSVD) signals and connection  
guidelines:  
• RSVD – these signals should not be connected  
• RSVD_TP – these signals should be routed to a test point  
• RSVD_NCTF – these signals are non-critical to function and may be left un-  
connected  
Arbitrary connection of these signals to VCC, VTT, VDDQ, VCCPLL, VSS, or to any other  
signal (including each other) may result in component malfunction or incompatibility  
with future processors. See Chapter 8 for a land listing of the processor and the  
location of all reserved signals.  
For reliable operation, always connect unused inputs or bi-directional signals to an  
appropriate signal level. Unused active high inputs should be connected through a  
resistor to ground (VSS). Unused outputs may be left unconnected; however, this may  
interfere with some Test Access Port (TAP) functions, complicate debug probing, and  
prevent boundary scan testing. A resistor must be used when tying bi-directional  
signals to power or ground. When tying any signal to power or ground, a resistor will  
also allow for system testability. For details, see Table 7-9.  
7.6  
Signal Groups  
Signals are grouped by buffer type and similar characteristics as listed in Table 7-3. The  
buffer type indicates which signaling technology and specifications apply to the signals.  
All the differential signals, and selected DDR3 and Control Sideband signals, have On-  
Die Termination (ODT) resistors. There are some signals that do not have ODT and  
need to be terminated on the board.  
62  
Datasheet, Volume 1  
Electrical Specifications  
Table 7-3.  
Signal Groups (Sheet 1 of 2)1  
Alpha  
Group  
Signal Group  
Type  
Signals  
System Reference Clock  
BCLK[0], BCLK#[0],  
BCLK[1], BCLK#[1],  
PEG_CLK, PEG_CLK#  
Differential  
(a)  
(b)  
CMOS Input  
Differential  
CMOS Output  
BCLK_ITP, BCLK_ITP#  
2
DDR3 Reference Clocks  
Differential  
SA_CK[3:0], SA_CK#[3:0]  
SB_CK[3:0], SB_CK#[3:0]  
(c)  
DDR3 Output  
2
DDR3 Command Signals  
SA_RAS#, SB_RAS#,  
SA_CAS#, SB_CAS#  
SA_WE#, SB_WE#  
SA_MA[15:0], SB_MA[15:0]  
SA_BS[2:0], SB_BS[2:0]  
4
4
SA_DM[7:0] , SB_DM[7:0]  
Single Ended  
(d)  
DDR3 Output  
SM_DRAMRST#  
SA_CS#[3:0], SB_CS#[3:0]  
SA_CS#[7:4], SB_CS#[7:4]  
SA_ODT[3:0], SB_ODT[3:0]  
SA_CKE[3:0], SB_CKE[3:0]  
2
DDR3 Data Signals  
Single ended  
(e)  
(f)  
DDR3 Bi-directional  
DDR3 Bi-directional  
SA_DQ[63:0], SB_DQ[63:0]  
SA_DQS[8:0], SA_DQS#[8:0]  
3
SA_ECC_CB[7:0]  
Differential  
SB_DQS[8:0], SB_DQS#[8:0]  
3
SB_ECC_CB[7:0]  
TAP (ITP/XDP)  
Single Ended  
(g)  
(h)  
CMOS Input  
TCK, TDI, TMS, TRST#, TDI_M  
TDO, TDO_M  
CMOS Open-Drain  
Output  
Single Ended  
Asynchronous CMOS  
Output  
TAPPWRGOOD  
Single Ended  
Control Sideband  
Single Ended  
(i)  
VCCPWRGOOD_0,  
VCCPWRGOOD_1, VTTPWRGOOD  
Asynchronous CMOS  
Input  
(ja)  
Asynchronous CMOS  
Input  
SM_DRAMPWROK  
Single Ended  
Single Ended  
Single Ended  
(jb)  
(k)  
(l)  
Asynchronous Output  
RESET_OBS#  
Asynchronous GTL  
Output  
PRDY#, THERMTRIP#  
Single Ended  
Single Ended  
(m)  
(n)  
Asynchronous GTL Input PREQ#  
GTL Bi-directional  
CATERR#, BPM#[7:0]  
Asynchronous Bi-  
directional  
PECI  
Single Ended  
Single Ended  
Single Ended  
(o)  
(p)  
Asynchronous GTL Bi-  
directional  
PROCHOT#  
CFG[17:0], PM_SYNC,  
PM_EXT_TS#[1:0]  
(qa)  
CMOS Input  
Datasheet, Volume 1  
63  
Electrical Specifications  
Table 7-3.  
Signal Groups (Sheet 2 of 2)1  
Alpha  
Group  
Signal Group  
Type  
Signals  
Single Ended  
Single Ended  
(qb)  
(r)  
CMOS Input  
RSTIN#  
CMOS Output  
VTT_SELECT  
VID[7:6]  
Single Ended  
Single Ended  
(s)  
CMOS Bi-directional  
VID[5:3]/CSC[2:0]  
VID[2:0]/MSID[2:0]  
COMP0, COMP1, COMP2, COMP3,  
SM_RCOMP[2:0], ISENSE  
(t)  
Analog Input  
SA_DIMM_VREFDQ  
SB_DIMM_VREFDQ  
Single Ended  
(ta)  
Analog Output  
Power/Ground/Other  
VCC, VCC_NCTF, VTT, VCCPLL,  
(u)  
(v)  
(w)  
Power  
Ground  
5
VDDQ, VAXG  
VSS, CGC_TP_NCTF  
RSVD, RSVD_NCTF, RSVD_TP,  
FC_x  
No Connect  
Asynchronous CMOS  
Output  
PSI#  
Single Ended  
(x)  
VCC_SENSE, VSS_SENSE,  
(y)  
(z)  
Sense Points  
VTT_SENSE, VSS_SENSE_VTT,  
5
5
VAXG_SENSE , VSSAXG_SENSE  
Other  
SKTOCC#, DBR#  
PCI Express*  
Differential  
(ac)  
(ad)  
PCI Express Input  
PCI Express Output  
PEG_RX[15:0], PEG_RX#[15:0]  
PEG_TX[15:0], PEG_TX#[15:0]  
Differential  
PEG_ICOMP0, PEG_ICOMPI,  
PEG_RCOMP0, PEG_RBIAS  
Single Ended  
(ae)  
Analog Input  
DMI  
Differential  
Differential  
(af)  
DMI Input  
DMI_RX[3:0], DMI_RX#[3:0]  
DMI_TX[3:0], DMI_TX#[3:0]  
(ag)  
DMI Output  
®
Intel FDI  
4
4
FDI_FSYNC[1:0] ,  
Single Ended  
Differential  
(ah)  
(ai)  
FDI Input  
4
FDI_LSYNC[1:0] , FDI_INT  
4
4
FDI Output  
FDI_TX[7:0] , FDI_TX#[7:0]  
Notes:  
1.  
2.  
3.  
4.  
5.  
Refer to Chapter 6 for signal description details.  
SA and SB refer to DDR3 Channel A and DDR3 Channel B.  
These signals are only used on processors and platforms that support ECC DIMMs.  
These signals will not be actively used on the Intel Core™ i7-800 and i5-700 desktop processor series.  
These signals are not used by the processor. They are no connect on the package.  
All Control Sideband Asynchronous signals are required to be asserted/de-asserted for  
at least eight BCLKs for the processor to recognize the proper signal state. See  
Section 7.9 for the DC specifications.  
64  
Datasheet, Volume 1  
Electrical Specifications  
7.7  
7.8  
Test Access Port (TAP) Connection  
Due to the voltage levels supported by other components in the Test Access Port (TAP)  
logic, Intel recommends the processor be first in the TAP chain, followed by any other  
components within the system. A translation buffer should be used to connect to the  
rest of the chain unless one of the other components is capable of accepting an input of  
the appropriate voltage. Two copies of each signal may be required with each driving a  
different voltage level.  
Absolute Maximum and Minimum Ratings  
Table 7-4 specifies absolute maximum and minimum ratings. At conditions outside  
functional operation condition limits, but within absolute maximum and minimum  
ratings, neither functionality nor long-term reliability can be expected. If a device is  
returned to conditions within functional operation limits after having been subjected to  
conditions outside these limits (but within the absolute maximum and minimum  
ratings) the device may be functional, but with its lifetime degraded depending on  
exposure to conditions exceeding the functional operation condition limits.  
At conditions exceeding absolute maximum and minimum ratings, neither functionality  
nor long-term reliability can be expected. Moreover, if a device is subjected to these  
conditions for any length of time, it will either not function or its reliability will be  
severely degraded when returned to conditions within the functional operating  
condition limits.  
Although the processor contains protective circuitry to resist damage from Electro-  
Static Discharge (ESD), precautions should always be taken to avoid high static  
voltages or electric fields.  
Table 7-4.  
Processor Absolute Minimum and Maximum Ratings  
1, 2  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
Processor Core voltage with respect  
V
-0.3  
1.40  
V
6
CC  
to V  
SS  
Voltage for the memory controller  
and Shared Cache with respect to V  
V
-0.3  
-0.3  
1.40  
1.80  
V
V
TT  
SS  
Processor I/O supply voltage for  
V
DDQ  
DDR3 with respect to V  
SS  
Processor PLL voltage with respect to  
SS  
V
-0.3  
-40  
1.98  
85  
V
CCPLL  
V
T
Storage temperature  
C  
3, 4, 5  
STORAGE  
Notes:  
1.  
For functional operation, all processor electrical, signal quality, mechanical and thermal specifications must  
be satisfied.  
2.  
3.  
Excessive overshoot or undershoot on any signal will likely result in permanent damage to the processor.  
Storage temperature is applicable to storage conditions only. In this scenario, the processor must not  
receive a clock, and no lands can be connected to a voltage bias. Storage within these limits will not affect  
the long-term reliability of the device. For functional operation, refer to the processor case temperature  
specifications.  
4.  
5.  
6.  
This rating applies to the processor and does not include any tray or packaging.  
Failure to adhere to this specification can affect the long-term reliability of the processor.  
CC  
V
is a VID based rail.  
Datasheet, Volume 1  
65  
Electrical Specifications  
7.9  
DC Specifications  
The processor DC specifications in this section are defined at the processor  
pads, unless noted otherwise. See Chapter 8 for the processor land listings and  
Chapter 6 for signal definitions. Voltage and current specifications are detailed in  
Table 7-5 and Table 7-6. For platform planning, refer to Table 7-7 that provides VCC  
static and transient tolerances. This same information is presented graphically in  
Figure 7-1.  
The DC specifications for the DDR3 signals are listed in Table 7-8 Control Sideband and  
Test Access Port (TAP) are listed in Table 7-9.  
Table 7-5 through Table 7-6 list the DC specifications for the processor and are valid  
only while meeting the thermal specifications (as specified in the processor Thermal  
and Mechanical Specifications and Guidelines), clock frequency, and input voltages.  
Care should be taken to read all notes associated with each parameter.  
7.9.1  
Voltage and Current Specifications  
Table 7-5.  
Processor Core Active and Idle Mode DC Voltage and Current Specifications  
Symbol  
VID  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
VID Range  
for processor core  
0.6500  
1.4000  
V
V
V
V
V
See Table 7-7 and Figure 7-1  
1, 2, 3  
CC  
CC,BOOT  
CC  
V
Default V voltage for initial power up  
1.10  
CC  
Processor  
Number  
2009B I ; for Intel Core™ i7-  
CC  
800 and i5-700 processor  
series with 95 W TDP  
i7-880  
i7-875K  
i7-870  
i7-860  
i5-760  
i5-750  
3.06 GHz  
2.93 GHz  
2.93 GHz  
2.80 GHz  
2.80 GHz  
2.66 GHz  
110  
110  
110  
110  
110  
110  
I
I
A
A
4
4
CC  
Processor  
Number  
2009A I ; for Intel Core™ i7-  
CC  
800 and i5-700 processor  
series with 82 W TDP  
CC  
i7-870S  
i7-860S  
i5-750S  
2.66 GHz  
2.53 GHz  
2.40 GHz  
75  
75  
75  
2009B Sustained I ; recommended design  
CC  
target for Intel Core™ i7-800 and i5-700  
processor series with 95 W TDP  
I
I
90  
60  
A
A
CC_TDC  
CC_TDC  
2009A Sustained I ; recommended design  
CC  
target for Intel Core™ i7-800 and i5-700  
processor series with 82 W TDP  
Notes:  
1.  
Each processor is programmed with a maximum valid voltage identification value (VID) that is set at  
manufacturing and cannot be altered. Individual maximum VID values are calibrated during manufacturing  
such that two processors at the same frequency may have different settings within the VID range. Note  
that this differs from the VID employed by the processor during a power management event (Adaptive  
Thermal Monitor, Enhanced Intel SpeedStep Technology, or Low Power States).  
The voltage specification requirements are measured across VCC_SENSE and VSS_SENSE lands at the  
socket with a 100-MHz bandwidth oscilloscope, 1.5 pF maximum probe capacitance, and 1-Mminimum  
impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external  
noise from the system is not coupled into the oscilloscope probe.  
2.  
3.  
4.  
Refer to Table 7-7 and Figure 7-1 for the minimum, typical, and maximum V allowed for a given current.  
The processor should not be subjected to any V and I combination wherein V exceeds V for a  
CC_MAX  
CC  
CC  
CC  
CC  
given current.  
specification is based on the V  
I
loadline. Refer to Figure 7-1 for details.  
CC_MAX  
CC_MAX  
66  
Datasheet, Volume 1  
Electrical Specifications  
Table 7-6.  
Processor Uncore I/O Buffer Supply DC Voltage and Current Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
Voltage for the memory controller  
and shared cache defined at the  
socket motherboard VTT pinfield  
via.  
1.045  
1.10  
1.155  
V
1
V
TT  
Voltage for the memory controller  
and shared cache defined across  
VTT_SENSE and VSS_SENSE_VTT.  
1.023  
1.10  
1.117  
V
2
Processor I/O supply voltage for  
DDR3  
V
1.425  
1.71  
1.5  
1.8  
1.575  
1.89  
V
V
DDQ  
PLL supply voltage (DC + AC  
specification)  
V
CCPLL  
2009B (Intel Core™ i7-800 and i5-  
700 series processor with 95 W  
TDP): Current for the memory  
controller and Shared Cache  
I
I
35  
35  
A
A
TT  
TT  
2009A (Intel Core™ i7-800 and i5-  
700 series processor with 82 W  
TDP): Current for the memory  
controller and Shared Cache  
2009B (Intel Core™ i7-800 and i5-  
700 series processor with 95 W  
TDP): Sustained current for the  
memory controller and Shared  
Cache  
I
I
30  
30  
A
A
TT_TDC  
TT_TDC  
2009A (Intel Core™ i7-800 and i5-  
700 series processor with 82 W  
TDP): Sustained current for the  
memory controller and Shared  
Cache  
Processor I/O supply current for  
DDR3  
I
6
6
A
A
A
DDQ  
Processor I/O supply sustained  
current for DDR3  
I
DDQ_TDC  
Processor I/O supply standby  
current for DDR3  
I
0.650  
DDQ_STANDBY  
I
PLL supply current  
1.1  
0.7  
A
A
CC_VCCPLL  
I
PLL sustained supply current  
CC_VCCPLL_TDC  
Notes:  
1.  
V
must be provided using a separate voltage source and not be connected to V . The voltage  
T
T
C
C
specification requirements are defined in the middle of the VTT pinfield at the processor socket vias on the  
bottom side of the baseboard. The voltage specifications are measured with a 20-MHz bandwidth  
oscilloscope, 1.5 pF maximum probe capacitance, and 1 Mminimum impedance. The maximum length of  
ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled  
into the oscilloscope probe.  
2.  
V
must be provided using a separate voltage source and not be connected to V . The voltage  
TT  
CC  
specification requirements are defined across VTT_SENSE and VSS_SENSE_VTT lands at the processor  
socket vias on the bottom side of the baseboard. The requirements across the SENSE signals account for  
voltage drops and impedances across the baseboard vias, socket, and processor package up to the  
processor Si. The voltage specifications are measured with a 20-MHz bandwidth oscilloscope, 1.5 pF  
maximum probe capacitance, and 1 Mminimum impedance. The maximum length of ground wire on the  
probe should be less than 5 mm. Ensure external noise from the system is not coupled into the oscilloscope  
probe.  
Datasheet, Volume 1  
67  
Electrical Specifications  
Table 7-7.  
VCC Static and Transient Tolerance  
1, 2, 3  
Voltage Deviation from VID Setting  
I
(A)  
CC  
V
(V)  
V
(V)  
V
(V)  
CC_Min  
1.40 m  
CC_Max  
CC_Typ  
1.40 m  
1.40 m  
0
0.000  
-0.007  
-0.014  
-0.021  
-0.028  
-0.035  
-0.042  
-0.049  
-0.056  
-0.063  
-0.070  
-0.077  
-0.084  
-0.091  
-0.098  
-0.105  
-0.112  
-0.119  
-0.126  
-0.133  
-0.140  
-0.147  
-0.019  
-0.026  
-0.033  
-0.040  
-0.047  
-0.054  
-0.061  
-0.068  
-0.075  
-0.082  
-0.089  
-0.096  
-0.103  
-0.110  
-0.117  
-0.124  
-0.131  
-0.138  
-0.145  
-0.152  
-0.159  
-0.166  
-0.038  
-0.045  
-0.052  
-0.059  
-0.066  
-0.073  
-0.080  
-0.087  
-0.094  
-0.101  
-0.108  
-0.115  
-0.122  
-0.129  
-0.136  
-0.143  
-0.150  
-0.157  
-0.164  
-0.171  
-0.178  
-0.185  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95  
100  
110  
Notes:  
1.  
2.  
3.  
The V  
and V  
loadlines represent static and transient limits.  
CC_MAX  
CC_MIN  
This table is intended to aid in reading discrete points on Figure 7-1.  
The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE lands. Voltage  
regulation feedback for voltage regulator circuits must also be taken from processor VCC_SENSE and  
VSS_SENSE lands. Refer to the Voltage Regulator Down (VRD) 11.1 Design Guidelines for socket load line  
guidelines and VR implementation.  
68  
Datasheet, Volume 1  
Electrical Specifications  
Figure 7-1. VCC Static and Transient Tolerance Loadlines  
Icc [A]  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
VID - 0.000  
VID - 0.013  
VID - 0.025  
VID - 0.038  
VID - 0.050  
VID - 0.063  
VID - 0.075  
VID - 0.088  
VID - 0.100  
VID - 0.113  
VID - 0.125  
VID - 0.138  
VID - 0.150  
VID - 0.163  
VID - 0.175  
VID - 0.188  
Vcc Maximum  
Vcc Minimum  
Vcc Typical  
Datasheet, Volume 1  
69  
Electrical Specifications  
Table 7-8.  
DDR3 Signal Group DC Specifications  
Alpha  
Group  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
V
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
(e,f)  
(e,f)  
0.43*V  
V
V
2,4  
3
IL  
DDQ  
V
0.57*V  
IH  
DDQ  
(V  
/ 2)* (R  
))  
VTT_TERM  
/
ON  
DDQ  
ON  
V
(c,d,e,f)  
6
4,6  
5
OL  
(R +R  
Output High Voltage  
V
– ((V  
/ 2)*  
DDQ  
DDQ  
V
R
(c,d,e,f)  
V
OH  
ON  
(R /(R +R ))  
VTT_TERM  
ON  
ON  
DDR3 Clock Buffer On  
Resistance  
21  
20  
20  
21  
36  
31  
31  
36  
R
R
R
DDR3 Command Buffer On  
Resistance  
ON  
ON  
ON  
5
DDR3 Control Buffer On  
Resistance  
5
DDR3 Data Buffer On  
Resistance  
5
On-Die Termination for  
Data Signals  
Data ODT  
(d)  
93.5  
126.5  
I
Input Leakage Current  
COMP Resistance  
COMP Resistance  
COMP Resistance  
(t)  
(t)  
(t)  
99  
± 1  
101  
mA  
LI  
100  
24.9  
130  
7
7
7
SM_RCOMP0  
SM_RCOMP1  
SM_RCOMP2  
24.7  
128.7  
25.1  
131.3  
Notes:  
1.  
2.  
3.  
4.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
V
V
V
is defined as the maximum voltage level at a receiving agent that will be interpreted as a logical low value.  
is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high value.  
IL  
IH  
IH  
and V  
may experience excursions above V  
. However, input signal drivers must comply with the signal quality  
OH  
DDQ  
specifications.  
This is the pull down driver resistance.  
5.  
6.  
7.  
R
is the termination on the DIMM and is not controlled by the processor.  
VTT_TERM  
COMP resistance must be provided on the system board with 1% resistors. COMP resistors are to V  
.
SS  
70  
Datasheet, Volume 1  
Electrical Specifications  
Table 7-9.  
Control Sideband and TAP Signal Group DC Specifications  
1
Symbol  
Alpha Group  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
V
(m),(n),(p),(qa),(qb),(s)  
Input Low Voltage  
Input High Voltage  
Input Low Voltage  
Input High Voltage  
Input Low Voltage  
Input High Voltage  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
0.64  
V
V
V
V
V
V
V
V
V
2
2,4  
2
IL  
*
TT  
TT  
TT  
V
(m),(n),(p),(qa),(qb),(s)  
0.76  
V
IH  
*
TT  
TT  
TT  
V
(g)  
0.40  
V
V
IL  
*
V
(g)  
0.75  
V
V
2,4  
2
IH  
*
V
(ja)  
(ja)  
(jb)  
(jb)  
0.25  
IL  
*
V
0.75  
2,4  
2
IH  
*
V
0.29  
IL  
IH  
OL  
V
0.87  
2,4  
V
(k),(l),(n),(p),(r),  
(s),(h),(i)  
V
* R  
/
ON  
+
TT  
(R  
V
2,6  
2,4  
ON  
R
)
SYS_TERM  
V
R
(k),(l),(n),(p),  
(r),(s),(i)  
Output High Voltage  
OH  
V
V
TT  
(ab)  
Buffer on Resistance  
20  
45  
ON  
I
(ja),(jb),(m),(n),  
(p),(qa),(s),(t),(g)  
Input Leakage Current  
LI  
LI  
±200  
A  
3
I
(qb)  
(t)  
Input Leakage Current  
COMP Resistance  
COMP Resistance  
COMP Resistance  
COMP Resistance  
49.9  
49.9  
20  
±100  
50.4  
50.4  
20.2  
20.2  
A  
3
5
5
5
5
COMP0  
COMP1  
COMP2  
COMP3  
49.4  
49.4  
19.8  
19.8  
(t)  
(t)  
(t)  
20  
Notes:  
1.  
2.  
3.  
4.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
The V referred to in these specifications refers to instantaneous V  
.
TT  
TT  
IN  
and V  
For V between 0 V and V . Measured when the driver is tristated.  
TT  
V
may experience excursions above V . However, input signal drivers must comply with the signal quality  
IH  
O
H
T
T
specifications.  
5.  
6.  
COMP resistance must be provided on the system board with 1% resistors. COMP resistors are to V  
SYS_TERM  
.
SS  
R
is the system termination on the signal.  
Datasheet, Volume 1  
71  
Electrical Specifications  
Table 7-10. PCI Express* DC Specifications  
Alpha  
Group  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
(ad)  
Differential peak to peak Tx  
voltage swing  
V
0.8  
1.2  
20  
V
3
TX-DIFF-p-p  
(ad)  
(ad)  
Tx AC Peak Common Mode  
Output Voltage (Gen1 only)  
V
mV  
1,2,6  
TX_CM-AC-p  
Tx AC Peak-to-Peak Common  
Mode Output Voltage (Gen2  
only)  
V
100  
mV  
1,2  
TX_CM-AC-p-p  
(ad)  
(ad)  
(ac)  
(ac)  
(ac)  
(ac)  
(ac)  
DC Differential Tx Impedance  
(Gen1 only)  
Z
Z
80  
120  
120  
60  
1,10  
1,10  
1,8,9  
1
TX-DIFF-DC  
TX-DIFF-DC  
DC Differential Tx Impedance  
(Gen2 only)  
DC Common Mode Rx  
Impedance  
Z
40  
RX-DC  
DC Differential Rx Impedance  
(Gen1 only)  
Z
80  
120  
1.2  
1.2  
150  
RX-DIFF-DC  
Differential Rx input Peak to  
Peak Voltage (Gen1 only)  
V
V
0.175  
0.120  
V
1
RX-DIFFp-p  
RX-DIFFp-p  
Differential Rx Input Peak to  
Peak Voltage (Gen2 only)  
V
1,1  
1,7  
Rx AC peak Common Mode  
Input Voltage  
V
mV  
RX_CM-AC-p  
PEG_ICOMPO  
PEG_ICOMPI  
(ae)  
(ae)  
Comp Resistance  
Comp Resistance  
Comp Resistance  
Comp Resistance  
49.5  
49.5  
50  
50  
50.5  
50.5  
4,5  
4,5  
4,5  
4,5  
PEG_RCOMPO (ae)  
PEG_RBIAS (ae)  
49.5  
50  
50.5  
742.5  
750  
757.5  
Notes:  
1.  
2.  
Refer to the PCI Express Base Specification for more details.  
and V are defined in the PCI Express Base Specification. Measurement is made over  
at least 10^ UI.  
As measured with compliance test load. Defined as 2*|V  
V
TX-AC-CM-PP  
TX-AC-CM-P  
6
3.  
4.  
5.  
6.  
7.  
– V  
|.  
TXD-  
TXD+  
COMP resistance must be provided on the system board with 1% resistors. COMP resistors are to V  
PEG_ICOMPO, PEG_ICOMPI, PEG_RCOMPO are the same resistor  
RMS value.  
.
SS  
Measured at Rx pins into a pair of 50-terminations into ground. Common mode peak voltage is defined by  
the expression: max{|(Vd+ - Vd-) – V-CMDC|}.  
8.  
9.  
DC impedance limits are needed to guarantee Receiver detect.  
The Rx DC Common Mode Impedance must be present when the Receiver terminations are first enabled to  
ensure that the Receiver Detect occurs properly. Compensation of this impedance can start immediately  
and the 15 Rx Common Mode Impedance (constrained by RLRX-CM to 50 ±20%) must be within the  
specified range by the time Detect is entered.  
10. Low impedance defined during signaling. Parameter is captured for 5.0 GHz by RLTX-DIFF.  
72  
Datasheet, Volume 1  
Electrical Specifications  
7.10  
Platform Environmental Control Interface (PECI)  
DC Specifications  
PECI is an Intel proprietary interface that provides a communication channel between  
Intel processors and chipset components to external thermal monitoring devices. The  
processor contains a Digital Thermal Sensor (DTS) that reports a relative die  
temperature as an offset from Thermal Control Circuit (TCC) activation temperature.  
Temperature sensors located throughout the die are implemented as analog-to-digital  
converters calibrated at the factory. PECI provides an interface for external devices to  
read the DTS temperature for thermal management and fan speed control. For the  
PECI command set supported by the processor, refer to the appropriate processor  
Thermal and Mechanical Specifications and Design Guidelines for additional information  
(see Section 1.7).  
7.10.1  
DC Characteristics  
The PECI interface operates at a nominal voltage set by VTT. The set of DC electrical  
specifications shown in Table 7-11 is used with devices normally operating from a VTT  
interface supply. VTT nominal levels will vary between processor families. All PECI  
devices will operate at the VTT level determined by the processor installed in the  
system. For specific nominal VTT levels, refer to Table 7-6.  
Table 7-11. PECI DC Electrical Limits  
1
Symbol  
Definition and Conditions  
Min  
Max  
Units  
Notes  
V
Input Voltage Range  
-0.150  
V
V
V
V
V
in  
TT  
V
Hysteresis  
0.1 * V  
N/A  
hysteresis  
TT  
V
V
Negative-Edge Threshold Voltage  
Positive-Edge Threshold Voltage  
High-Level Output Source  
0.275 * V  
0.550 * V  
0.500 * V  
0.725 * V  
n
TT  
TT  
p
TT  
TT  
I
-6.0  
N/A  
mA  
source  
(V  
= 0.75 * V )  
TT  
OH  
Low-Level Output Sink  
(V = 0.25 * V  
I
0.5  
1.0  
mA  
µA  
sink  
)
TT  
OL  
High Impedance State Leakage to  
(V = V  
I
N/A  
100  
2
2
leak+  
V
)
OL  
TT  
leak  
High Impedance Leakage to GND  
(V = V  
I
N/A  
N/A  
100  
10  
µA  
pF  
leak-  
)
OH  
leak  
C
Bus Capacitance per Node  
bus  
Signal Noise Immunity above  
300 MHz  
V
0.1 * V  
N/A  
V
p-p  
noise  
TT  
Notes:  
1.  
2.  
V
supplies the PECI interface. PECI behavior does not affect V min/max specifications.  
TT TT  
The leakage specification applies to powered devices on the PECI bus.  
Datasheet, Volume 1  
73  
Electrical Specifications  
7.10.2  
Input Device Hysteresis  
The input buffers in both client and host models must use a Schmitt-triggered input  
design for improved noise immunity. Use Figure 7-2 as a guide for input buffer design.  
Figure 7-2. Input Device Hysteresis  
VTTD  
Maximum VP  
PECI High Range  
Minimum VP  
Maximum VN  
Minimum  
Hysteresis Signal Range  
Valid Input  
Minimum VN  
PECI Ground  
PECI Low Range  
.
§ §  
74  
Datasheet, Volume 1  
Processor Land and Signal Information  
8 Processor Land and Signal  
Information  
8.1  
Processor Land Assignments  
The processor land-map quadrants are shown in Figure 8-1 through Figure 8-4.  
Table 8-2 provides a listing of all processor lands ordered alphabetically by pin name.  
Not all signals listed in this chapter are used by the processor. Table 8-1 lists the signals  
that are not used by the Intel Core™ i7-800 and i5-700 desktop processor series. The  
signals are included for reference to define all LGA 1156 land locations. These signals  
will be used by future processors that are compatible with LGA 1156 platforms.  
Table 8-1.  
Signals Not Used by the Intel® Core™ i7-800 and i5-700 Desktop Processor  
Series  
Interface  
Signals Not Used  
FDI_FSYNC[1:0]  
FDI_LSYNC[1:0]  
FDI_INT  
Intel Flexible Display Interface  
FDI_TX[7:0]  
FDI_TX#[7:0]  
GFX_DPRSLPVR  
GFX_IMON  
GFX_VID[6:0]  
GFX_VR_EN  
Integrated Graphics Core Power  
VAXG  
SA_DM[7:0]  
Memory  
SB_DM[7:0]  
SA_ECC_CB[7:0]  
SB_ECC_CB[7:0]  
SA_DQS[8]/SA_DQS#[8]  
SB_DQS[8]/SB_DQS#[8]  
SA_CS#[7:4]  
SB_CS#[7:4]  
Memory Interface:, ECC Related  
Memory Interface: RDIMM Related  
Datasheet, Volume 1  
75  
Processor Land and Signal Information  
Figure 8-1. Socket Pinmap (Top View, Upper-Left Quadrant)  
40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21  
RSVD_NCTF  
SA_DQ[49] SA_DQ[52]  
SB_CS#[0]  
SB_MA[10] SA_ODT[3]  
VDDQ  
VDDQ  
VSS  
VSS  
AY  
AW  
AV  
AU  
AT  
AR  
AP  
AN  
AM  
AL  
RSVD_NCTF  
SA_DQS#[5]  
SA_DQ[55] SA_DQS[6] SA_DQ[48] SA_DQ[53] SA_DQ[47]  
SA_DM[5] SA_DQ[45] SB_CS#[1] SB_MA[13]  
SA_CS#[1] SA_ODT[2]  
SA_ODT[1] SA_ODT[0]  
SA_MA[13] SA_CS#[3]  
SB_CAS# SB_RAS# SB_BS[1]  
RSVD_NCTF  
SA_DQS#[6]  
SA_DQ[50] SA_DQ[54]  
SA_DQ[42] SA_DQS[5]  
SA_DQ[44] SB_CS#[3]  
VDDQ  
SB_ODT[2] SB_CS#[2]  
SA_CS#[0]  
SA_CS#[2]  
VDDQ  
VDDQ  
VSS  
VSS  
VSS  
RSVD_NCTF  
SA_DQ[40]  
SA_DQ[61] SA_DQ[60] SA_DQ[51]  
SA_DM[6] SA_DQ[43] SA_DQ[46]  
SA_DQ[41]  
SB_ODT[1] SB_ODT[3] SB_ODT[0]  
SB_WE# SB_BS[0]  
SB_DQ[39] SB_DQS[4]  
SA_CAS#  
VSS  
VSS  
SB_DQ[47]  
SA_DQS#[4]  
SA_DQ[38]  
SA_DQ[57] SA_DQ[56]  
SB_DQ[49] SB_DQ[53]  
SB_DQ[40] SB_DQ[44]  
SA_DQ[33]  
SB_DQ[36]  
SA_DM[7]  
SA_DQS#[7]  
SA_WE#  
VDDQ  
VSS  
VSS  
VSS  
VSS  
VSS  
SB_DQS#[6]  
SB_DQ[46]  
SB_DQS#[5]  
SB_DQ[45]  
SB_DQS#[4]  
SA_DQS[7]  
SB_DQS[6] SB_DQ[48]  
SB_DQ[42]  
SA_DQS[4] SA_DQ[37] SB_DQ[35] SB_DQ[34]  
SA_CK[0] SA_CK#[0]  
VSS  
VSS  
VSS  
SA_DQ[63] SA_DQ[62]  
SB_DQ[55] SB_DQ[51]  
SB_DQ[52]  
SB_DQS[5] SB_DQ[41] SA_DQ[35]  
SA_DQ[34]  
SB_DQ[38]  
SB_DQ[33] SB_DQ[37] SA_CK#[2]  
VSS  
VSS  
VSS  
VSS  
VSS VSS  
VSS  
SB_DQ[60]  
SA_DQ[59] SA_DQ[58]  
SB_DQ[54] SB_DQ[50] SB_DM[5]  
SA_DQ[39] SA_DM[4]  
SA_DQ[32] SA_DQ[36]  
SB_DM[4] SB_DQ[32]  
SA_CK[2]  
RSVD  
VTT  
VTT  
VTT  
TMS  
VSS  
VSS  
VSS  
VSS  
VSS  
TCK  
TDI  
SB_DQS#[7]  
SB_DQ[57] SB_DQ[61]  
SB_DQ[43]  
SB_CS#[5] SB_CS#[4] SA_CS#[5]  
SB_DM[6]  
BPM#[4]  
TRST#  
RSVD RSVD RSVD RSVD RSVD RSVD  
VSS  
DBR#  
BCLK_ITP#  
TDO  
RESET_OBS#  
SB_DQS[7] SB_DQ[63] SB_DQ[56]  
SB_CS#[6] SA_CS#[6]  
BPM#[0] BPM#[1]  
BPM#[5]  
RSVD  
RSVD RSVD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
TAPPWRGOOD  
SKTOCC#  
SB_DM[7]  
SB_CS#[7] SA_CS#[7] SA_CS#[4]  
BCLK_ITP  
BPM#[2] BPM#[3] BPM#[7] BPM#[6]  
PREQ#  
RSVD RSVD RSVD RSVD RSVD  
VSS  
AK  
AJ  
SB_DQ[59] SB_DQ[58] SB_DQ[62]  
PRDY#  
RSVD  
VSS  
VSS VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VTT  
VTT VTT  
VTT  
VTT  
VTT  
SM_DRAMPWROK  
VTTPWRGOOD  
VCCPWRGOOD_1  
VCCPWRGOOD_0  
PROCHOT#  
PM_SYNC  
RSVD  
VSS  
VSS  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
FC_AG40 CATERR#  
PSI#  
PECI  
VSS  
VSS  
VTT  
VTT  
VTT_SELECT  
THERMTRIP#  
RSTIN#  
TDO_M TDI_M COMP0  
VSS  
VSS_SENSE_VTT  
VTT_SENSE  
FC_AE38  
VSS  
VTT VTT  
VTT VTT  
VTT VTT VTT VTT VTT VTT VTT VTT  
VTT VTT VTT VTT VTT VTT VTT VTT  
VSS VSS VSS VSS VSS VSS VSS VSS  
VTT VTT VTT VTT VTT VTT  
76  
Datasheet, Volume 1  
Processor Land and Signal Information  
Figure 8-2. Socket Pinmap (Top View, Upper-Right Quadrant)  
20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
RSVD_NCTF  
SB_MA[4]  
SB_MA[9] SA_MA[1]  
SA_MA[5] SB_MA[14]  
SA_CKE[3] SB_CKE[1] SA_DQ[27]  
SA_DQS[3] SA_DQ[25]  
VDDQ  
VDDQ  
VDDQ  
VSS  
VSS  
AY  
AW  
AV  
AU  
AT  
AR  
AP  
AN  
AM  
AL  
SA_DQS#[3]  
RSVD_NCTF  
SA_DQ[22]  
SA_MA[0] SB_MA[6] SB_MA[11] SB_MA[12] SA_MA[4] SA_MA[7] SA_MA[9] SA_MA[12] SA_CKE[1]  
SB_CKE[0] SA_DQ[31]  
SA_DQ[24] SA_DQ[19] SA_DQ[18]  
VDDQ  
SM_DRAMRST#  
RSVD_NCTF  
SB_MA[15] SA_CKE[2] SB_CKE[3]  
SA_DQ[30] SA_DM[3] SA_DQ[29] SA_DQ[23]  
SA_BS[0]  
SB_MA[2] SB_MA[5]  
SA_MA[2] SA_MA[6]  
SB_BS[2]  
VDDQ  
VDDQ  
VDDQ  
VSS  
SA_DQS#[2]  
SB_MA[0] SA_BS[1] SB_MA[1] SB_MA[3] SB_MA[7] SA_MA[3] SA_MA[8] SA_MA[11] SA_BS[2]  
SA_CKE[0] SB_CKE[2] SA_DQ[26]  
SA_DQ[28] SA_DQS[2]  
SA_DQ[17] SA_DM[2]  
VDDQ  
VSS VSS  
SB_ECC_CB[1]  
SA_MA[10]  
SB_MA[8]  
SB_CK[1]  
SA_MA[14]  
SB_DQ[31]  
SB_DM[3] SB_DQ[24]  
SA_DQ[16] SA_DQ[20]  
SA_DQ[21]  
SA_RAS#  
VDDQ  
VDDQ  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SB_ECC_CB[0]  
SA_ECC_CB[2]  
SA_ECC_CB[3]  
SB_DQS#[8]  
SB_ECC_CB[7]  
SB_CK[3] SB_CK#[3] SB_CK[0] SB_CK#[0] SB_CK#[1] SB_DQS[8]  
SA_MA[15] SB_DQ[26] SB_DQS[3] SB_DQ[25] SB_DQ[29] SB_DQ[19] SA_DQ[15] SA_DQ[10] SA_DQ[11]  
VSS  
VSS  
VSS  
VSS  
SB_ECC_CB[3]  
SA_ECC_CB[0]  
SA_ECC_CB[1]  
SA_DQS#[8]  
SA_DQS[8]  
SB_DQS#[3]  
SA_DQS#[1]  
SA_CK[3] SA_CK[1]  
SB_DQ[18] SB_DQ[23]  
SA_DQS[1] SA_DQ[14]  
VSS VSS VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SB_ECC_CB[2]  
SB_ECC_CB[6]  
SB_ECC_CB[5]  
SA_CK#[3] SA_CK#[1] SB_CK[2] SB_CK#[2]  
SB_DQ[28] SB_DQ[22] SB_DQS[2] SB_DQ[17]  
SA_DQ[8] SA_DQ[9] SA_DM[1]  
RSVD_TP  
SA_ECC_CB[7]  
VSS  
SB_ECC_CB[4]  
SB_DQS#[2]  
SB_DQ[27] SB_DM[2]  
SB_DQ[21] SA_DQ[12] SA_DQ[13]  
RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD  
VSS  
VSS  
VSS  
SA_ECC_CB[5]  
SB_DQ[30]  
SB_DQ[16] SB_DQ[20] SB_DQ[11]  
SA_DQ[2] SA_DQ[3]  
RSVD RSVD  
RSVD RSVD  
RSVD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VTT  
VTT VTT  
VSS  
SA_ECC_CB[6]  
SA_ECC_CB[4]  
SB_DQ[15] SB_DQ[10]  
SA_DQS[0] SA_DQ[7] SA_DQ[6]  
RSVD  
RSVD RSVD RSVD RSVD RSVD  
VSS  
VSS  
VSS  
VSS VSS  
AK  
AJ  
SB_DQS#[1]  
SA_DQ[1]  
SA_DQS#[0]  
SA_DM[0]  
SB_DQ[3] SB_DQ[14]  
VDDQ  
VDDQ  
VDDQ  
VSS  
VSS  
VTT  
VSS  
VSS  
VSS  
VSS  
VSS  
VTT  
SB_DQ[2] SB_DQ[9] SB_DQS[1]  
SB_DM[1]  
SA_DQ[5] SA_DQ[0]  
VSS  
VSS  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
SB_DIMM_VREFDQ  
SM_RCOMP[0]  
SA_DQ[4]  
SB_DQ[12] SB_DQ[8] SB_DQ[13]  
VCCPLL  
VSS  
SA_DIMM_VREFDQ  
COMP1  
VSS  
SB_DQ[6] SB_DQS[0]  
VCCPLL VCCPLL  
VSS  
SB_DQS#[0]  
SM_RCOMP[2]  
RSVD  
SB_DQ[7]  
SB_DM[0]  
FDI_LSYNC[0]  
FDI_FSYNC[0]  
PM_EXT_TS#[1]  
VSS  
VSS  
VTT  
VSS  
VTT  
VSS  
FDI_LSYNC[1]  
SM_RCOMP[1]  
SB_DQ[0] SB_DQ[1]  
SB_DQ[4] SB_DQ[5]  
RSVD  
VSS  
FDI_FSYNC[1]  
FDI_INT  
VSS  
VTT  
PM_EXT_TS#[0]  
VSS  
VSS  
VTT  
BCLK#[0]  
PEG_CLK#  
BCLK[1] BCLK[0]  
PEG_CLK  
VSS  
Datasheet, Volume 1  
77  
Processor Land and Signal Information  
Figure 8-3. Socket Pinmap (Top View, Lower-Left Quadrant)  
VTT VTT VTT VTT VTT VTT  
VSS VSS VSS VSS VSS VSS  
Y
W
V
U
T
VTT VTT VTT VTT VTT VTT VTT VTT  
VID[0]/MSID[0]  
VID[1]/MSID[1]  
VID[2]/MSID[2]  
VID[3]/CSC[0]  
VID[4]/CSC[1]  
VID[5]/CSC[2]  
VID[6] VID[7]  
VCC_SENSE  
VSS_SENSE  
ISENSE  
VSS VSS VSS VSS  
VSS  
VCC VCC VCC VCC VCC VCC VCC VCC  
VCC VCC VCC VCC VCC VCC VCC VCC  
VSS VCC VCC VSS VCC VCC VSS VCC  
VCC VCC VSS VCC VCC VSS VCC VCC VSS  
R
P
N
M
L
VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC  
VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC VSS  
VSS VCC VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC VSS VCC  
VCC VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC  
VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC VSS  
VSS VCC VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC VSS VCC  
VCC VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC  
VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC VSS  
K
J
H
G
F
E
VAXG  
VSS VCC VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC VSS  
D
C
B
A
VCC_NCTF  
VAXG  
VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC VCC VSS  
CGC_TP_NCTF  
VCC VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC VSS VCC VCC VSS VCC  
VCC_NCTF  
VSS VCC VCC VSS VCC  
VSS VCC VCC VSS VCC VCC  
40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21  
78  
Datasheet, Volume 1  
Processor Land and Signal Information  
Figure 8-4. Socket Pinmap (Top View, Lower-Right Quadrant)  
FDI_TX#[7]  
FDI_TX[4]  
FDI_TX#[6]  
BCLK#[1]  
FDI_TX[3]  
FDI_TX[7]  
FDI_TX[6]  
FDI_TX#[4]  
FDI_TX[1]  
VSS  
Y
W
V
U
T
FDI_TX#[3]  
DMI_RX#[3]  
DMI_RX[3]  
FDI_TX#[1]  
VTT  
VTT  
DMI_RX#[2]  
VSS  
VTT VTT VTT  
VTT  
FDI_TX#[2]  
FDI_TX[0]  
FDI_TX#[0]  
DMI_RX#[1]  
FDI_TX[2]  
DMI_RX[1]  
PEG_RX[15]  
DMI_TX#[3]  
PEG_RX[14]  
DMI_RX[2]  
DMI_RX#[0]  
VSS  
PEG_RX#[15]  
VSS  
VTT VTT VTT  
VTT  
FDI_TX[5]  
FDI_TX#[5]  
PEG_TX#[15] PEG_TX[15]  
DMI_TX[3] DMI_RX[0]  
VSS  
R
P
N
M
L
PEG_RX#[14]  
DMI_TX#[2]  
VSS  
VSS  
VTT VTT VTT  
PEG_TX#[14]  
PEG_TX[13] PEG_TX#[13]  
DMI_TX#[1]  
DMI_TX[1]  
DMI_TX[2]  
DMI_TX#[0]  
VSS  
VTT  
PEG_TX[14]  
PEG_TX[11] PEG_TX#[11]  
VAXG VAXG VAXG  
VAXG VAXG VAXG  
VAXG VAXG VAXG  
VAXG VAXG VAXG  
RSVD  
VSS VCC VSS VCC  
VCC VCC VSS VCC  
VCC VSS VCC VCC  
VSS VCC VCC VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS VSS VSS  
VSS  
VTT VTT VTT  
PEG_TX#[12] PEG_TX[10] PEG_TX#[10]  
PEG_RX#[13]  
PEG_RX[13]  
DMI_TX[0]  
PEG_RX#[12]  
PEG_RX[12]  
PEG_RX#[10]  
PEG_RX[10]  
PEG_RX#[8]  
CFG[17]  
CFG[13]  
RSVD  
VSS  
VSS  
VTT  
PEG_TX[12]  
PEG_TX#[8]  
PEG_TX[8]  
PEG_RX[11]  
PEG_TX#[5]  
CFG[15]  
CFG[10] CFG[14] CFG[11]  
VSS  
VSS VSS  
VSS  
K
J
GFX_DPRSLPVR  
PEG_TX#[9]  
GFX_VID[6]  
PEG_TX#[7]  
PEG_RX#[11]  
PEG_TX[7]  
CFG[12]  
CFG[9]  
VSS  
VSS  
VSS  
PEG_TX[9]  
PEG_TX[5]  
CFG[16]  
CFG[4] CFG[5]  
VAXG  
VAXG VAXG  
VCC VCC VSS  
VSS  
VSS  
VSS VSS  
VSS  
H
G
F
GFX_VID[5]  
GFX_VID[0]  
CFG[1]  
VSS  
PEG_TX#[6]  
PEG_TX#[4]  
PEG_TX#[2]  
PEG_TX[2]  
PEG_RX#[9]  
PEG_TX[4]  
PEG_RX[9]  
PEG_TX[3]  
CFG[8]  
VAXG VAXG  
VAXG VAXG  
VCC VSS  
VSS  
VSS  
GFX_VR_EN  
PEG_TX#[3]  
PEG_TX[6] GFX_IMON  
CFG[3] CFG[7]  
VAXG VAXG VAXG  
VAXG VAXG  
VSS  
VSS  
VSS  
VSS  
VSS  
GFX_VID[2]  
GFX_VID[3]  
PEG_TX#[1]  
PEG_RX#[7]  
PEG_TX[1]  
PEG_TX#[0]  
PEG_RX[8]  
RSVD_NCTF  
CFG[2] CFG[6] CFG[0]  
VAXG  
VAXG  
VAXG  
VAXG VAXG  
VAXG VAXG  
VAXG VAXG  
VAXG VAXG  
VAXG VAXG  
VSS  
VSS  
VSS  
VSS  
VSS VSS  
E
PEG_ICOMPI  
PEG_RX#[0]  
PEG_RX#[6]  
PEG_RX[7]  
RSVD_NCTF  
VAXG VAXG  
VSS  
VSS VSS  
VSS  
VSS  
VSS VSS VSS  
D
C
B
A
GFX_VID[4]  
PEG_ICOMPO  
PEG_RX#[1]  
PEG_RX#[3]  
PEG_RX#[5]  
PEG_RX[5]  
PEG_RX[0]  
PEG_TX[0]  
PEG_RX[6]  
RSVD_NCTF  
COMP3  
VAXG VAXG  
VSS  
VSS  
VSS  
VSSAXG_SENSE  
GFX_VID[1]  
PEG_RCOMPO  
PEG_RX#[4]  
PEG_RX[1]  
PEG_RX[3]  
COMP2  
VAXG VAXG  
VSS  
VSS  
VSS  
PEG_RX[2]  
7
VAXG_SENSE  
PEG_RX#[2]  
RSVD_NCTF  
PEG_RBIAS  
PEG_RX[4]  
VAXG  
VAXG  
VAXG  
VAXG  
RSVD  
VSS  
20 19 18 17 16 15 14 13 12 11 10  
9
8
6
5
4
3
2
1
Datasheet, Volume 1  
79  
Processor Land and Signal Information  
Table 8-2.  
Processor Pin List by Pin  
Name  
Table 8-2.  
Processor Pin List by Pin  
Name  
Pin Name  
Pin # Buffer Type  
Dir.  
Pin Name  
DMI_RX[3]  
Pin # Buffer Type  
Dir.  
BCLK_ITP  
BCLK_ITP#  
BCLK[0]  
BCLK[1]  
BCLK#[0]  
BCLK#[1]  
BPM#[0]  
BPM#[1]  
BPM#[2]  
BPM#[3]  
BPM#[4]  
BPM#[5]  
BPM#[6]  
BPM#[7]  
CATERR#  
CFG[0]  
AK39  
AK40  
AA7  
AA8  
AA6  
Y8  
CMOS  
CMOS  
CMOS  
Diff Clk  
CMOS  
Diff Clk  
GTL  
O
W3  
T1  
DMI  
DMI  
DMI  
DMI  
DMI  
DMI  
DMI  
DMI  
DMI  
DMI  
DMI  
DMI  
DMI  
I
I
O
DMI_RX#[0]  
DMI_RX#[1]  
DMI_RX#[2]  
DMI_RX#[3]  
DMI_TX[0]  
DMI_TX[1]  
DMI_TX[2]  
DMI_TX[3]  
DMI_TX#[0]  
DMI_TX#[1]  
DMI_TX#[2]  
DMI_TX#[3]  
FC_AE38  
I
U2  
I
I
V1  
I
I
W2  
L1  
I
I
O
O
O
O
O
O
O
O
AL33  
AL32  
AK33  
AK32  
AM31  
AL30  
AK30  
AK31  
AG39  
E8  
I/O  
N3  
GTL  
I/O  
N1  
GTL  
I/O  
R2  
GTL  
I/O  
M1  
N2  
GTL  
I/O  
GTL  
I/O  
P1  
GTL  
I/O  
R3  
GTL  
I/O  
AE38  
AG40  
AC4  
AC3  
AC2  
AD4  
AD3  
U6  
GTL  
I/O  
I
FC_AG40  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
FDI_FSYNC[0]  
FDI_FSYNC[1]  
FDI_INT  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
FDI  
I
CFG[1]  
G8  
I
I
CFG[10]  
CFG[11]  
CFG[12]  
CFG[13]  
CFG[14]  
CFG[15]  
CFG[16]  
CFG[17]  
CFG[2]  
K10  
K8  
I
I
I
FDI_LSYNC[0]  
FDI_LSYNC[1]  
FDI_TX[0]  
I
J12  
I
I
L8  
I
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
K9  
I
FDI_TX[1]  
V4  
FDI  
K12  
H7  
I
FDI_TX[2]  
U8  
FDI  
I
FDI_TX[3]  
W8  
W5  
R8  
FDI  
L11  
E10  
F10  
H10  
H9  
I
FDI_TX[4]  
FDI  
I
FDI_TX[5]  
FDI  
CFG[3]  
I
FDI_TX[6]  
Y4  
FDI  
CFG[4]  
I
FDI_TX[7]  
Y6  
FDI  
CFG[5]  
I
FDI_TX#[0]  
FDI_TX#[1]  
FDI_TX#[2]  
FDI_TX#[3]  
FDI_TX#[4]  
FDI_TX#[5]  
FDI_TX#[6]  
FDI_TX#[7]  
GFX_DPRSLPVR  
GFX_IMON  
GFX_VID[0]  
GFX_VID[1]  
GFX_VID[2]  
GFX_VID[3]  
GFX_VID[4]  
GFX_VID[5]  
U5  
FDI  
CFG[6]  
E9  
I
V3  
FDI  
CFG[7]  
F9  
I
U7  
FDI  
CFG[8]  
G12  
H12  
B39  
AF36  
AF2  
B11  
C11  
AL40  
AF3  
AG3  
R1  
I
W7  
W4  
R7  
FDI  
CFG[9]  
I
FDI  
CGC_TP_NCTF  
COMP0  
FDI  
Analog  
Analog  
Analog  
Analog  
I
I
Y3  
FDI  
COMP1  
Y5  
FDI  
COMP2  
I
J10  
F6  
CMOS  
Analog  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
COMP3  
I
DBR#  
O
O
O
I
G10  
B12  
E12  
E11  
C12  
G11  
O
O
O
O
O
O
SA_DIMM_VREFDQ  
SB_DIMM_VREFDQ  
DMI_RX[0]  
DMI_RX[1]  
DMI_RX[2]  
Analog  
Analog  
DMI  
U3  
DMI  
I
U1  
DMI  
I
80  
Datasheet, Volume 1  
Processor Land and Signal Information  
Table 8-2.  
Processor Pin List by Pin  
Name  
Table 8-2.  
Processor Pin List by Pin  
Name  
Pin Name  
Pin # Buffer Type  
Dir.  
Pin Name  
Pin # Buffer Type  
Dir.  
GFX_VID[6]  
GFX_VR_EN  
ISENSE  
J11  
F12  
T40  
AG35  
AA3  
AA4  
D11  
C10  
A11  
B10  
C9  
B8  
CMOS  
O
O
I
PEG_TX[10]  
PEG_TX[11]  
PEG_TX[12]  
PEG_TX[13]  
PEG_TX[14]  
PEG_TX[15]  
PEG_TX[2]  
PEG_TX[3]  
PEG_TX[4]  
PEG_TX[5]  
PEG_TX[6]  
PEG_TX[7]  
PEG_TX[8]  
PEG_TX[9]  
PEG_TX#[0]  
PEG_TX#[1]  
PEG_TX#[10]  
PEG_TX#[11]  
PEG_TX#[12]  
PEG_TX#[13]  
PEG_TX#[14]  
PEG_TX#[15]  
PEG_TX#[2]  
PEG_TX#[3]  
PEG_TX#[4]  
PEG_TX#[5]  
PEG_TX#[6]  
PEG_TX#[7]  
PEG_TX#[8]  
PEG_TX#[9]  
PM_EXT_TS#[0]  
PM_EXT_TS#[1]  
PM_SYNC  
L6  
M4  
K7  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
CMOS  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
CMOS  
Analog  
PECI  
Asynch  
I/O  
I
N6  
M8  
R5  
PEG_CLK  
Diff Clk  
PEG_CLK#  
Diff Clk  
I
PEG_ICOMPI  
PEG_ICOMPO  
PEG_RBIAS  
PEG_RCOMPO  
PEG_RX[0]  
PEG_RX[1]  
PEG_RX[10]  
PEG_RX[11]  
PEG_RX[12]  
PEG_RX[13]  
PEG_RX[14]  
PEG_RX[15]  
PEG_RX[2]  
PEG_RX[3]  
PEG_RX[4]  
PEG_RX[5]  
PEG_RX[6]  
PEG_RX[7]  
PEG_RX[8]  
PEG_RX[9]  
PEG_RX#[0]  
PEG_RX#[1]  
PEG_RX#[10]  
PEG_RX#[11]  
PEG_RX#[12]  
PEG_RX#[13]  
PEG_RX#[14]  
PEG_RX#[15]  
PEG_RX#[2]  
PEG_RX#[3]  
PEG_RX#[4]  
PEG_RX#[5]  
PEG_RX#[6]  
PEG_RX#[7]  
PEG_RX#[8]  
PEG_RX#[9]  
PEG_TX[0]  
PEG_TX[1]  
Analog  
I
E5  
Analog  
I
F3  
Analog  
I
G6  
H4  
F7  
Analog  
I
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
PCI Express  
I
I
J6  
G1  
J3  
I
K3  
I
H8  
D7  
E6  
J1  
I
L2  
I
P3  
I
L5  
T3  
I
M3  
L7  
A7  
I
B6  
I
N5  
N8  
R6  
A5  
I
B4  
I
C3  
D2  
E1  
I
F5  
I
F4  
I
G5  
H3  
G7  
J5  
G3  
D9  
C8  
H1  
J2  
I
I
I
I
K4  
I
J8  
K1  
I
AB5  
AB4  
AH39  
AJ38  
AK37  
AH34  
L3  
I
CMOS  
I
P4  
I
CMOS  
I
T4  
I
PRDY#  
Asynch GTL  
Asynch GTL  
Asynch GTL  
O
I
A6  
I
PREQ#  
C6  
B5  
I
PROCHOT#  
PSI#  
I/O  
O
O
I
I
AG38 Asynch CMOS  
AL39 Asynch CMOS  
C4  
D3  
E2  
I
RESET_OBS#  
RSTIN#  
I
AF34  
A12  
CMOS  
I
RSVD  
F1  
I
RSVD  
AD2  
AE2  
G2  
C7  
E7  
I
RSVD  
O
O
RSVD  
AH40  
AJ39  
RSVD  
Datasheet, Volume 1  
81  
Processor Land and Signal Information  
Table 8-2.  
Processor Pin List by Pin  
Name  
Table 8-2.  
Processor Pin List by Pin  
Name  
Pin Name  
Pin # Buffer Type  
Dir.  
Pin Name  
RSVD_NCTF  
Pin # Buffer Type  
Dir.  
RSVD  
AK12  
AK13  
AK14  
AK15  
AK16  
AK18  
AK25  
AK26  
AK27  
AK28  
AK29  
AL12  
AL14  
AL15  
AL17  
AL18  
AL26  
AL27  
AL29  
AM13  
AM14  
AM15  
AM16  
AM17  
AM18  
AM19  
AM20  
AM21  
AM25  
AM26  
AM27  
AM28  
AM29  
AM30  
L12  
B3  
C2  
RSVD  
RSVD_NCTF  
RSVD_NCTF  
RSVD_TP  
RSVD  
D1  
RSVD  
AN11  
RSVD  
SA_BS[0]  
AV20  
AU19  
AU12  
AU22  
AR22  
AP18  
AN21  
AP19  
AR21  
AN18  
AP21  
AN19  
AU10  
AW10  
AV10  
AY10  
AV21  
AW24  
AU21  
AU23  
AK22  
AM22  
AL23  
AK23  
AJ2  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
O
O
RSVD  
SA_BS[1]  
RSVD  
SA_BS[2]  
O
RSVD  
SA_CAS#  
O
RSVD  
SA_CK[0]  
SA_CK[1]  
O
RSVD  
O
RSVD  
SA_CK[2]  
SA_CK[3]  
O
RSVD  
O
RSVD  
SA_CK#[0]  
SA_CK#[1]  
SA_CK#[2]  
SA_CK#[3]  
SA_CKE[0]  
SA_CKE[1]  
SA_CKE[2]  
SA_CKE[3]  
SA_CS#[0]  
SA_CS#[1]  
SA_CS#[2]  
SA_CS#[3]  
SA_CS#[4]  
SA_CS#[5]  
SA_CS#[6]  
SA_CS#[7]  
SA_DM[0]  
SA_DM[1]  
SA_DM[2]  
SA_DM[3]  
SA_DM[4]  
SA_DM[5]  
SA_DM[6]  
SA_DM[7]  
SA_DQ[0]  
SA_DQ[1]  
SA_DQ[10]  
SA_DQ[11]  
SA_DQ[12]  
SA_DQ[13]  
SA_DQ[14]  
SA_DQ[15]  
O
RSVD  
O
RSVD  
O
RSVD  
O
RSVD  
O
RSVD  
O
RSVD  
O
RSVD  
O
RSVD  
O
RSVD  
O
RSVD  
O
RSVD  
O
RSVD  
O
RSVD  
O
RSVD  
O
RSVD  
O
RSVD  
O
RSVD  
AN1  
O
RSVD  
AU1  
O
RSVD  
AV6  
I/O  
O
RSVD  
AN29  
AW31  
AU35  
AT38  
AH1  
RSVD  
O
RSVD  
O
RSVD  
M12  
O
RSVD_NCTF  
RSVD_NCTF  
RSVD_NCTF  
RSVD_NCTF  
RSVD_NCTF  
RSVD_NCTF  
RSVD_NCTF  
RSVD_NCTF  
A4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
AU40  
AV1  
AJ4  
AR3  
AV39  
AW2  
AR2  
AM3  
AW38  
AY3  
AM2  
AP1  
AY37  
AR4  
82  
Datasheet, Volume 1  
Processor Land and Signal Information  
Table 8-2.  
Processor Pin List by Pin  
Name  
Table 8-2.  
Processor Pin List by Pin  
Name  
Pin Name  
Pin # Buffer Type  
Dir.  
Pin Name  
Pin # Buffer Type  
Dir.  
SA_DQ[16]  
SA_DQ[17]  
SA_DQ[18]  
SA_DQ[19]  
SA_DQ[2]  
AT4  
AU2  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
SA_DQ[56]  
SA_DQ[57]  
SA_DQ[58]  
SA_DQ[59]  
SA_DQ[6]  
AT39  
AT40  
AN38  
AN39  
AK1  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
AW3  
AW4  
AL2  
SA_DQ[20]  
SA_DQ[21]  
SA_DQ[22]  
SA_DQ[23]  
SA_DQ[24]  
SA_DQ[25]  
SA_DQ[26]  
SA_DQ[27]  
SA_DQ[28]  
SA_DQ[29]  
SA_DQ[3]  
AT3  
SA_DQ[60]  
SA_DQ[61]  
SA_DQ[62]  
SA_DQ[63]  
SA_DQ[7]  
AU38  
AU39  
AP39  
AP40  
AK2  
AT1  
AV2  
AV4  
AW5  
AY5  
SA_DQ[8]  
AN3  
AU8  
SA_DQ[9]  
AN2  
AY8  
SA_DQS[0]  
SA_DQS[1]  
SA_DQS[2]  
SA_DQS[3]  
SA_DQS[4]  
SA_DQS[5]  
SA_DQS[6]  
SA_DQS[7]  
SA_DQS[8]  
SA_DQS#[0]  
SA_DQS#[1]  
SA_DQS#[2]  
SA_DQS#[3]  
SA_DQS#[4]  
SA_DQS#[5]  
SA_DQS#[6]  
SA_DQS#[7]  
SA_DQS#[8]  
SA_ECC_CB[0]  
SA_ECC_CB[1]  
SA_ECC_CB[2]  
SA_ECC_CB[3]  
SA_ECC_CB[4]  
SA_ECC_CB[5]  
SA_ECC_CB[6]  
SA_ECC_CB[7]  
SA_MA[0]  
AK3  
AU5  
AP2  
AV5  
AU4  
AL1  
AY6  
SA_DQ[30]  
SA_DQ[31]  
SA_DQ[32]  
SA_DQ[33]  
SA_DQ[34]  
SA_DQ[35]  
SA_DQ[36]  
SA_DQ[37]  
SA_DQ[38]  
SA_DQ[39]  
SA_DQ[4]  
AV7  
AR28  
AV32  
AW36  
AR39  
AL10  
AJ3  
AW7  
AN27  
AT28  
AP28  
AP30  
AN26  
AR27  
AR29  
AN30  
AG2  
AP3  
AU3  
AW6  
AT29  
AW32  
AV35  
AR38  
AM10  
AP10  
AN10  
AR11  
AP11  
AK9  
SA_DQ[40]  
SA_DQ[41]  
SA_DQ[42]  
SA_DQ[43]  
SA_DQ[44]  
SA_DQ[45]  
SA_DQ[46]  
SA_DQ[47]  
SA_DQ[48]  
SA_DQ[49]  
SA_DQ[5]  
AU30  
AU31  
AV33  
AU34  
AV30  
AW30  
AU33  
AW33  
AW35  
AY35  
AH2  
AL9  
AK11  
AM11  
AW18  
AY15  
AT19  
AU13  
AW11  
AU24  
SA_DQ[50]  
SA_DQ[51]  
SA_DQ[52]  
SA_DQ[53]  
SA_DQ[54]  
SA_DQ[55]  
AV37  
AU37  
AY34  
AW34  
AV36  
AW37  
SA_MA[1]  
O
SA_MA[10]  
SA_MA[11]  
SA_MA[12]  
SA_MA[13]  
O
O
O
O
Datasheet, Volume 1  
83  
Processor Land and Signal Information  
Table 8-2.  
Processor Pin List by Pin  
Name  
Table 8-2.  
Processor Pin List by Pin  
Name  
Pin Name  
Pin # Buffer Type  
Dir.  
Pin Name  
SB_DM[4]  
Pin # Buffer Type  
Dir.  
SA_MA[14]  
SA_MA[15]  
SA_MA[2]  
SA_MA[3]  
SA_MA[4]  
SA_MA[5]  
SA_MA[6]  
SA_MA[7]  
SA_MA[8]  
SA_MA[9]  
SA_ODT[0]  
SA_ODT[1]  
SA_ODT[2]  
SA_ODT[3]  
SA_RAS#  
SA_WE#  
AT11  
AR10  
AV15  
AU15  
AW14  
AY13  
AV14  
AW13  
AU14  
AW12  
AV23  
AV24  
AW23  
AY24  
AT20  
AT22  
AU25  
AW25  
AV12  
AW27  
AR17  
AT15  
AN17  
AR19  
AR16  
AR15  
AN16  
AR18  
AW8  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
AN24  
AN32  
AM33  
AK35  
AD7  
AD6  
AK6  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
O
SB_DM[5]  
SB_DM[6]  
SB_DM[7]  
SB_DQ[0]  
O
O
O
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
SB_DQ[1]  
SB_DQ[10]  
SB_DQ[11]  
SB_DQ[12]  
SB_DQ[13]  
SB_DQ[14]  
SB_DQ[15]  
SB_DQ[16]  
SB_DQ[17]  
SB_DQ[18]  
SB_DQ[19]  
SB_DQ[2]  
AL4  
AG6  
AG4  
AJ7  
AK7  
AL6  
AN5  
AP6  
AR5  
SB_BS[0]  
SB_BS[1]  
SB_BS[2]  
SB_CAS#  
SB_CK[0]  
SB_CK[1]  
SB_CK[2]  
SB_CK[3]  
SB_CK#[0]  
SB_CK#[1]  
SB_CK#[2]  
SB_CK#[3]  
SB_CKE[0]  
SB_CKE[1]  
SB_CKE[2]  
SB_CKE[3]  
SB_CS#[0]  
SB_CS#[1]  
SB_CS#[2]  
SB_CS#[3]  
SB_CS#[4]  
SB_CS#[5]  
SB_CS#[6]  
SB_CS#[7]  
SB_DM[0]  
SB_DM[1]  
SB_DM[2]  
SB_DM[3]  
AH8  
AL5  
SB_DQ[20]  
SB_DQ[21]  
SB_DQ[22]  
SB_DQ[23]  
SB_DQ[24]  
SB_DQ[25]  
SB_DQ[26]  
SB_DQ[27]  
SB_DQ[28]  
SB_DQ[29]  
SB_DQ[3]  
AM4  
AN7  
AP5  
AT6  
AR7  
AR9  
AM8  
AN8  
AR6  
AJ8  
SB_DQ[30]  
SB_DQ[31]  
SB_DQ[32]  
SB_DQ[33]  
SB_DQ[34]  
SB_DQ[35]  
SB_DQ[36]  
SB_DQ[37]  
SB_DQ[38]  
SB_DQ[39]  
SB_DQ[4]  
AL8  
AY9  
AT9  
AU9  
AN23  
AP23  
AR25  
AR26  
AT23  
AP22  
AP25  
AT26  
AC7  
AV9  
AY27  
AW29  
AV26  
AV29  
AM23  
AM24  
AL24  
AK24  
AE4  
SB_DQ[40]  
SB_DQ[41]  
SB_DQ[42]  
SB_DQ[43]  
SB_DQ[44]  
AT32  
AP31  
AR33  
AM32  
AT31  
AH4  
AM7  
AT7  
84  
Datasheet, Volume 1  
Processor Land and Signal Information  
Table 8-2.  
Processor Pin List by Pin  
Name  
Table 8-2.  
Processor Pin List by Pin  
Name  
Pin Name  
Pin # Buffer Type  
Dir.  
Pin Name  
Pin # Buffer Type  
Dir.  
SB_DQ[45]  
SB_DQ[46]  
SB_DQ[47]  
SB_DQ[48]  
SB_DQ[49]  
SB_DQ[5]  
AR31  
AR34  
AT33  
AR35  
AT36  
AC6  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
SB_ECC_CB[2]  
SB_ECC_CB[3]  
SB_ECC_CB[4]  
SB_ECC_CB[5]  
SB_ECC_CB[6]  
SB_ECC_CB[7]  
SB_MA[0]  
SB_MA[1]  
SB_MA[10]  
SB_MA[11]  
SB_MA[12]  
SB_MA[13]  
SB_MA[14]  
SB_MA[15]  
SB_MA[2]  
SB_MA[3]  
SB_MA[4]  
SB_MA[5]  
SB_MA[6]  
SB_MA[7]  
SB_MA[8]  
SB_MA[9]  
SB_ODT[0]  
SB_ODT[1]  
SB_ODT[2]  
SB_ODT[3]  
SB_RAS#  
AN15  
AP14  
AM12  
AN12  
AN14  
AP13  
AU20  
AU18  
AY25  
AW16  
AW15  
AW28  
AY12  
AV11  
AV18  
AU17  
AY18  
AV17  
AW17  
AU16  
AT17  
AY16  
AU27  
AU29  
AV27  
AU28  
AW26  
AU26  
AK38  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
SB_DQ[50]  
SB_DQ[51]  
SB_DQ[52]  
SB_DQ[53]  
SB_DQ[54]  
SB_DQ[55]  
SB_DQ[56]  
SB_DQ[57]  
SB_DQ[58]  
SB_DQ[59]  
SB_DQ[6]  
AN33  
AP36  
AP34  
AT35  
AN34  
AP37  
AL35  
AM35  
AJ36  
AJ37  
AF5  
SB_DQ[60]  
SB_DQ[61]  
SB_DQ[62]  
SB_DQ[63]  
SB_DQ[7]  
AN35  
AM34  
AJ35  
AL36  
AE6  
SB_DQ[8]  
AG5  
SB_DQ[9]  
AH7  
SB_DQS[0]  
SB_DQS[1]  
SB_DQS[2]  
SB_DQS[3]  
SB_DQS[4]  
SB_DQS[5]  
SB_DQS[6]  
SB_DQS[7]  
SB_DQS[8]  
SB_DQS#[0]  
SB_DQS#[1]  
SB_DQS#[2]  
SB_DQS#[3]  
SB_DQS#[4]  
SB_DQS#[5]  
SB_DQS#[6]  
SB_DQS#[7]  
SB_DQS#[8]  
SB_ECC_CB[0]  
SB_ECC_CB[1]  
AF4  
AH6  
AN6  
AR8  
SB_WE#  
AT25  
AP32  
AR36  
AL37  
AR14  
AE5  
SKTOCC#  
SM_DRAMPWROK  
SM_DRAMRST#  
SM_RCOMP[0]  
SM_RCOMP[1]  
SM_RCOMP[2]  
TAPPWRGOOD  
TCK  
AH37 Asynch CMOS  
AV8  
AG1  
AD1  
AE1  
DDR3  
Analog  
Analog  
Analog  
O
I
I
I
AJ5  
AK34 Asynch CMOS  
O
I
AM6  
AN37  
AM37  
AF37  
AM38  
AF38  
AF35  
AN40  
AM39  
A14  
TAP  
TAP  
AP8  
TDI  
I
AR24  
AR32  
AR37  
AM36  
AR13  
AR12  
AT13  
TDI_M  
TAP  
I
TDO  
TAP  
O
O
O
I
TDO_M  
TAP  
THERMTRIP#  
TMS  
Asynch GTL  
TAP  
TRST#  
TAP  
I
VAXG  
PWR  
Datasheet, Volume 1  
85  
Processor Land and Signal Information  
Table 8-2.  
Processor Pin List by Pin  
Name  
Table 8-2.  
Processor Pin List by Pin  
Name  
Pin Name  
Pin # Buffer Type  
Dir.  
Pin Name  
VAXG  
Pin # Buffer Type  
Dir.  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
A15  
A17  
A18  
B14  
B15  
B17  
B18  
C14  
C15  
C17  
C18  
C20  
C21  
D14  
D15  
D17  
D18  
D20  
D21  
E14  
E15  
E17  
E18  
E20  
F14  
F15  
F17  
F18  
F19  
G14  
G15  
G17  
G18  
H14  
H15  
H17  
J14  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
L16  
M14  
M15  
M16  
A13  
A23  
A24  
A26  
A27  
A33  
A35  
A36  
B23  
B25  
B26  
B28  
B29  
B31  
B32  
B34  
B35  
B37  
B38  
C23  
C24  
C25  
C27  
C28  
C30  
C31  
C33  
C34  
C36  
C37  
C39  
D23  
D24  
D26  
D27  
D29  
D30  
D32  
D33  
D35  
PWR  
PWR  
PWR  
PWR  
Analog  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VAXG  
VAXG  
VAXG  
VAXG_SENSE  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
J15  
J16  
K14  
K15  
K16  
L14  
L15  
86  
Datasheet, Volume 1  
Processor Land and Signal Information  
Table 8-2.  
Processor Pin List by Pin  
Name  
Table 8-2.  
Processor Pin List by Pin  
Name  
Pin Name  
Pin # Buffer Type  
Dir.  
Pin Name  
Pin # Buffer Type  
Dir.  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
D36  
D38  
D39  
E22  
E23  
E25  
E26  
E28  
E29  
E31  
E32  
E34  
E35  
E37  
E38  
E40  
F21  
F22  
F24  
F25  
F27  
F28  
F30  
F31  
F33  
F34  
F36  
F37  
F39  
F40  
G20  
G21  
G23  
G24  
G26  
G27  
G29  
G30  
G32  
G33  
G35  
G36  
G38  
G39  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
H19  
H20  
H22  
H23  
H25  
H26  
H28  
H29  
H31  
H32  
H34  
H35  
H37  
H38  
H40  
J18  
J19  
J21  
J22  
J24  
J25  
J27  
J28  
J30  
J31  
J33  
J34  
J36  
J37  
J39  
J40  
K17  
K18  
K20  
K21  
K23  
K24  
K26  
K27  
K29  
K30  
K32  
K33  
K35  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
Datasheet, Volume 1  
87  
Processor Land and Signal Information  
Table 8-2.  
Processor Pin List by Pin  
Name  
Table 8-2.  
Processor Pin List by Pin  
Name  
Pin Name  
Pin # Buffer Type  
Dir.  
Pin Name  
Pin # Buffer Type  
Dir.  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
K36  
K38  
K39  
L17  
L19  
L20  
L22  
L23  
L25  
L26  
L28  
L29  
L31  
L32  
L34  
L35  
L37  
L38  
L40  
M17  
M19  
M21  
M22  
M24  
M25  
M27  
M28  
M30  
M33  
M34  
M36  
M37  
M39  
M40  
N33  
N35  
N36  
N38  
N39  
P33  
P34  
P35  
P36  
P37  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
P38  
P39  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
Analog  
PWR  
PWR  
PWR  
Asynch  
Asynch  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
P40  
R33  
R34  
R35  
R36  
R37  
R38  
R39  
R40  
VCC_NCTF  
VCC_NCTF  
VCC_SENSE  
VCCPLL  
A38  
C40  
T35  
AF7  
VCCPLL  
AF8  
VCCPLL  
AG8  
AH35  
AH36  
AJ11  
AJ13  
AJ15  
AT10  
AT18  
AT21  
AU11  
AV13  
AV16  
AV19  
AV22  
AV25  
AV28  
AW9  
AY11  
AY14  
AY17  
AY23  
AY26  
U40  
VCCPWRGOOD_0  
VCCPWRGOOD_1  
VDDQ  
I
I
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VID[0]/MSID[0]  
VID[1]/MSID[1]  
VID[2]/MSID[2]  
VID[3]/CSC[0]  
VID[4]/CSC[1]  
VID[5]/CSC[2]  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
U39  
U38  
U37  
U36  
U35  
88  
Datasheet, Volume 1  
Processor Land and Signal Information  
Table 8-2.  
Processor Pin List by Pin  
Name  
Table 8-2.  
Processor Pin List by Pin  
Name  
Pin Name  
Pin # Buffer Type  
Dir.  
Pin Name  
Pin # Buffer Type  
Dir.  
VID[6]  
VID[7]  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
U34  
U33  
CMOS  
CMOS  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
I/O  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AJ28  
AJ30  
AJ33  
AJ34  
AJ40  
AJ6  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
A16  
A25  
A28  
A34  
A37  
AJ9  
AA5  
AK10  
AK17  
AK36  
AK4  
AB3  
AB33  
AB34  
AB35  
AB36  
AB37  
AB38  
AB39  
AB40  
AB6  
AK5  
AK8  
AL11  
AL13  
AL16  
AL19  
AL22  
AL25  
AL28  
AL3  
AB8  
AC1  
AD5  
AD8  
AE3  
AL31  
AL34  
AL38  
AL7  
AE37  
AE7  
AF1  
AM1  
AF40  
AF6  
AM40  
AM5  
AG34  
AG36  
AG7  
AH3  
AM9  
AN13  
AN20  
AN22  
AN25  
AN28  
AN31  
AN36  
AN4  
AH33  
AH38  
AH5  
AJ1  
AJ12  
AJ14  
AJ16  
AJ18  
AJ20  
AJ22  
AJ24  
AJ26  
AN9  
AP12  
AP15  
AP16  
AP17  
AP20  
AP24  
Datasheet, Volume 1  
89  
Processor Land and Signal Information  
Table 8-2.  
Processor Pin List by Pin  
Name  
Table 8-2.  
Processor Pin List by Pin  
Name  
Pin Name  
Pin # Buffer Type  
Dir.  
Pin Name  
Pin # Buffer Type  
Dir.  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AP26  
AP27  
AP29  
AP33  
AP35  
AP38  
AP4  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
B9  
C13  
C16  
C19  
C22  
C26  
C29  
C32  
C35  
C38  
C5  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
AP7  
AP9  
AR1  
AR20  
AR23  
AR30  
AR40  
AT12  
AT14  
AT16  
AT2  
D10  
D12  
D13  
D16  
D19  
D22  
D25  
D28  
D31  
D34  
D37  
D4  
AT24  
AT27  
AT30  
AT34  
AT37  
AT5  
D40  
D5  
AT8  
AU32  
AU36  
AU6  
D6  
D8  
E13  
E16  
E19  
E21  
E24  
E27  
E3  
AU7  
AV3  
AV31  
AV34  
AV38  
AY33  
AY36  
AY4  
E30  
E33  
E36  
E39  
E4  
AY7  
B16  
B24  
B27  
F11  
F13  
F16  
F2  
B30  
B33  
B36  
B7  
F20  
90  
Datasheet, Volume 1  
Processor Land and Signal Information  
Table 8-2.  
Processor Pin List by Pin  
Name  
Table 8-2.  
Processor Pin List by Pin  
Name  
Pin Name  
Pin # Buffer Type  
Dir.  
Pin Name  
Pin # Buffer Type  
Dir.  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
F23  
F26  
F29  
F32  
F35  
F38  
F8  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
J9  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
K11  
K13  
K19  
K2  
K22  
K25  
K28  
K31  
K34  
K37  
K40  
K5  
G13  
G16  
G19  
G22  
G25  
G28  
G31  
G34  
G37  
G4  
K6  
L13  
L18  
L21  
L24  
L27  
L30  
L33  
L36  
L39  
L4  
G40  
G9  
H11  
H13  
H16  
H18  
H2  
H21  
H24  
H27  
H30  
H33  
H36  
H39  
H5  
L9  
M13  
M18  
M2  
M20  
M23  
M26  
M29  
M32  
M35  
M38  
M5  
H6  
J13  
J17  
J20  
J23  
J26  
J29  
J32  
J35  
J38  
J4  
M6  
M7  
N34  
N37  
N4  
N40  
P2  
J7  
P5  
Datasheet, Volume 1  
91  
Processor Land and Signal Information  
Table 8-2.  
Processor Pin List by Pin  
Name  
Table 8-2.  
Processor Pin List by Pin  
Name  
Pin Name  
Pin # Buffer Type  
Dir.  
Pin Name  
Pin # Buffer Type  
Dir.  
VSS  
R4  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Analog  
Analog  
Analog  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
AE33  
AE34  
AE39  
AE40  
AE8  
AF33  
AG33  
AJ17  
AJ19  
AJ21  
AJ23  
AJ25  
AJ27  
AJ29  
AJ31  
AJ32  
AK19  
AK20  
AK21  
AL20  
AL21  
L10  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VSS  
T33  
VSS  
T36  
VSS  
T37  
VSS  
T38  
VSS  
T39  
VSS  
T5  
VSS  
U4  
VSS  
V5  
VSS  
W33  
W34  
W35  
W36  
W37  
W38  
Y7  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS_SENSE  
VSS_SENSE_VTT  
VSSAXG_SENSE  
VTT  
T34  
AE36  
B13  
AA33  
AA34  
AA35  
AA36  
AA37  
AA38  
AB7  
VTT  
VTT  
VTT  
M10  
M11  
M9  
VTT  
VTT  
VTT  
N7  
VTT  
AC33  
AC34  
AC35  
AC36  
AC37  
AC38  
AC39  
AC40  
AC5  
P6  
VTT  
P7  
VTT  
P8  
VTT  
T2  
VTT  
T6  
VTT  
T7  
VTT  
T8  
VTT  
V2  
VTT  
V33  
V34  
V35  
V36  
V37  
V38  
V39  
V40  
V6  
VTT  
AC8  
VTT  
AD33  
AD34  
AD35  
AD36  
AD37  
AD38  
AD39  
AD40  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
V7  
92  
Datasheet, Volume 1  
Processor Land and Signal Information  
Table 8-2.  
Processor Pin List by Pin  
Name  
Pin Name  
Pin # Buffer Type  
Dir.  
VTT  
V8  
W1  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
CMOS  
Analog  
VTT  
VTT  
W6  
VTT  
Y33  
Y34  
Y35  
Y36  
Y37  
Y38  
AF39  
AE35  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT_SELECT  
VTT_SENSE  
VTTPWRGOOD  
O
I
AG37 Asynch CMOS  
§ §  
Datasheet, Volume 1  
93  
Processor Land and Signal Information  
94  
Datasheet, Volume 1  

相关型号:

BV80605003210AD/SLBLG

RISC Microprocessor, 64-Bit, 2530MHz, CMOS, PBGA1156
INTEL

BV80605003213AH/SLBLH

RISC Microprocessor, 64-Bit, 2400MHz, CMOS, PBGA1156
INTEL

BV80605004494AB/SLBQ7

RISC Microprocessor, 64-Bit, 2660MHz, CMOS, PBGA1156
INTEL

BV8_06

High voltage silicon rectifier diodes
SEMIKRON

BVA-10AS1.7

Single Ouput, Linear
POWERVOLT

BVA-10BS3.4

Single Ouput, Linear
POWERVOLT

BVA-10CS5.1

Single Ouput, Linear
POWERVOLT

BVA-10DS6.8

Single Ouput, Linear
POWERVOLT

BVA-10ES10.2

Single Ouput, Linear
POWERVOLT

BVA-10FS16

Single Ouput, Linear
POWERVOLT

BVA-12AA0.4

Dual Output, Linear
POWERVOLT

BVA-12AD1.0

Dual Output, Linear
POWERVOLT