BX80557E6550 [INTEL]

RISC Microprocessor, 64-Bit, 2330MHz, CMOS, PBGA775;
BX80557E6550
型号: BX80557E6550
厂家: INTEL    INTEL
描述:

RISC Microprocessor, 64-Bit, 2330MHz, CMOS, PBGA775

文件: 总118页 (文件大小:1765K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
Intel Core™2 Extreme Processor  
Δ
®
X6800 and Intel Core™2 Duo  
Δ
Desktop Processor E6000 and  
Δ
E4000 Series  
Datasheet  
—on 65 nm Process in the 775-land LGA Package and supporting Intel® 64  
±
Architecture and supporting Intel® Virtualization Technology  
March 2008  
Document Number: 313278-008  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR  
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS  
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING  
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,  
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT  
INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
Δ
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different  
processor families. See http://www.intel.com/products/processor_number for details. Over time processor numbers will increment based on changes in  
clock, speed, cache, FSB, or other features, and increments are not intended to represent proportional or quantitative increases in any particular  
feature. Current roadmap processor number progression is not necessarily representative of future roadmaps. See www.intel.com/products/  
processor_number for details.  
®
Intel 64 requires a computer system with a processor, chipset, BIOS, operating system, device drivers, and applications enabled for Intel 64. Processor  
will not operate (including 32-bit operation) without an Intel 64-enabled BIOS. Performance will vary depending on your hardware and software  
configurations. See http://www.intel.com/technology/intel64/index.htm for more information including details on which processors support Intel 64, or  
consult with your system vendor for more information.  
®
®
®
No computer system can provide absolute security under all conditions. Intel Trusted Execution Technology (Intel TXT) is a security technology under  
development by Intel and requires for operation a computer system with Intel Virtualization Technology, a Intel Trusted Execution Technology-enabled  
Intel processor, chipset, BIOS, Authenticated Code Modules, and an Intel or other Intel Trusted Execution Technology compatible measured virtual  
machine monitor. In addition, Intel Trusted Execution Technology requires the system to contain a TPMv1.2 as defined by the Trusted Computing Group  
and specific software for some uses.  
®
®
±Intel Virtualization Technology requires a computer system with an enabled Intel processor, BIOS, virtual machine monitor (VMM) and, for some  
uses, certain platform software enabled for it. Functionality, performance or other benefits will vary depending on hardware and software configurations  
and may require a BIOS update. Software applications may not be compatible with all operating systems. Please check with your application vendor.  
Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating system. Check  
with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.  
®
®
The Intel Core™2 Duo desktop processor E6000 and E4000 series and Intel Core™2 Extreme processor X6800 may contain design defects or errors  
known as errata which may cause the product to deviate from published specifications.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Intel, Pentium, Intel Core, Core Inside, Intel Inside, Intel Leap ahead, Intel SpeedStep, and the Intel logo are trademarks of Intel Corporation in the U.S.  
and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2006–2008 Intel Corporation.  
2
Datasheet  
Contents  
1
Introduction............................................................................................................ 11  
1.1  
Terminology ..................................................................................................... 12  
1.1.1 Processor Terminology............................................................................ 12  
References ....................................................................................................... 14  
1.2  
2
Electrical Specifications........................................................................................... 15  
2.1  
2.2  
Power and Ground Lands.................................................................................... 15  
Decoupling Guidelines........................................................................................ 15  
2.2.1 VCC Decoupling ..................................................................................... 15  
2.2.2 Vtt Decoupling....................................................................................... 15  
2.2.3 FSB Decoupling...................................................................................... 16  
Voltage Identification......................................................................................... 16  
Market Segment Identification (MSID) ................................................................. 18  
Reserved, Unused, and TESTHI Signals ................................................................ 18  
Voltage and Current Specification........................................................................ 19  
2.6.1 Absolute Maximum and Minimum Ratings .................................................. 19  
2.6.2 DC Voltage and Current Specification........................................................ 20  
2.6.3 VCC Overshoot ....................................................................................... 24  
2.6.4 Die Voltage Validation............................................................................. 24  
Signaling Specifications...................................................................................... 25  
2.7.1 FSB Signal Groups.................................................................................. 25  
2.7.2 CMOS and Open Drain Signals ................................................................. 27  
2.7.3 Processor DC Specifications ..................................................................... 27  
2.7.3.1 GTL+ Front Side Bus Specifications ............................................. 28  
2.7.4 Clock Specifications................................................................................ 29  
2.7.5 Front Side Bus Clock (BCLK[1:0]) and Processor Clocking............................ 29  
2.7.6 FSB Frequency Select Signals (BSEL[2:0])................................................. 29  
2.7.7 Phase Lock Loop (PLL) and Filter .............................................................. 30  
2.7.8 BCLK[1:0] Specifications (CK505 based Platforms) ..................................... 30  
2.7.9 BCLK[1:0] Specifications (CK410 based Platforms) ..................................... 32  
PECI DC Specifications....................................................................................... 33  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
Package Mechanical Specifications .......................................................................... 35  
3
3.1  
Package Mechanical Drawing............................................................................... 35  
3.1.1 Processor Component Keep-Out Zones...................................................... 39  
3.1.2 Package Loading Specifications ................................................................ 39  
3.1.3 Package Handling Guidelines.................................................................... 39  
3.1.4 Package Insertion Specifications............................................................... 40  
3.1.5 Processor Mass Specification.................................................................... 40  
3.1.6 Processor Materials................................................................................. 40  
3.1.7 Processor Markings................................................................................. 40  
3.1.8 Processor Land Coordinates..................................................................... 43  
4
5
Land Listing and Signal Descriptions ....................................................................... 45  
4.1  
4.2  
Processor Land Assignments............................................................................... 45  
Alphabetical Signals Reference............................................................................ 68  
Thermal Specifications and Design Considerations .................................................. 77  
5.1  
Processor Thermal Specifications......................................................................... 77  
5.1.1 Thermal Specifications ............................................................................ 77  
5.1.2 Thermal Metrology ................................................................................. 84  
Processor Thermal Features................................................................................ 84  
5.2.1 Thermal Monitor..................................................................................... 84  
5.2.2 Thermal Monitor 2.................................................................................. 85  
5.2.3 On-Demand Mode .................................................................................. 86  
5.2  
Datasheet  
3
5.2.4 PROCHOT# Signal ..................................................................................87  
5.2.5 THERMTRIP# Signal................................................................................87  
Thermal Diode...................................................................................................88  
Platform Environment Control Interface (PECI) ......................................................90  
5.4.1 Introduction...........................................................................................90  
5.4.1.1 Key Difference with Legacy Diode-Based Thermal  
5.3  
5.4  
Management ............................................................................90  
5.4.2 PECI Specifications .................................................................................92  
5.4.2.1 PECI Device Address..................................................................92  
5.4.2.2 PECI Command Support.............................................................92  
5.4.2.3 PECI Fault Handling Requirements...............................................92  
5.4.2.4 PECI GetTemp0() Error Code Support ..........................................92  
6
Features ..................................................................................................................93  
6.1  
6.2  
Power-On Configuration Options ..........................................................................93  
Clock Control and Low Power States.....................................................................93  
6.2.1 Normal State .........................................................................................94  
6.2.2 HALT and Extended HALT Powerdown States ..............................................94  
6.2.2.1 HALT Powerdown State ..............................................................94  
6.2.2.2 Extended HALT Powerdown State ................................................95  
6.2.3 Stop Grant and Extended Stop Grant States...............................................95  
6.2.3.1 Stop Grant State.......................................................................95  
6.2.3.2 Extended Stop Grant State.........................................................96  
6.2.4 Extended HALT State, HALT Snoop State, Extended Stop Grant Snoop  
State, and Stop Grant Snoop State ...........................................................96  
6.2.4.1 HALT Snoop State, Stop Grant Snoop State ..................................96  
6.2.4.2 Extended HALT Snoop State, Extended Stop Grant Snoop  
State.......................................................................................96  
6.3  
Enhanced Intel® SpeedStep® Technology .............................................................96  
7
Boxed Processor Specifications................................................................................99  
7.1  
Mechanical Specifications..................................................................................100  
7.1.1 Boxed Processor Cooling Solution Dimensions...........................................100  
7.1.2 Boxed Processor Fan Heatsink Weight .....................................................101  
7.1.3 Boxed Processor Retention Mechanism and Heatsink Attach Clip  
Assembly.............................................................................................101  
Electrical Requirements ....................................................................................101  
7.2.1 Fan Heatsink Power Supply ....................................................................101  
Thermal Specifications......................................................................................103  
7.3.1 Boxed Processor Cooling Requirements....................................................103  
7.3.2 Fan Speed Control Operation (Intel® Core2 Extreme Processor  
7.2  
7.3  
X6800 Only) ........................................................................................105  
7.3.3 Fan Speed Control Operation (Intel® Core2 Duo Desktop Processor  
E6000 and E4000 Series Only) ...............................................................105  
8
Balanced Technology Extended (BTX) Boxed Processor Specifications...................107  
8.1  
Mechanical Specifications..................................................................................108  
8.1.1 Balanced Technology Extended (BTX) Type I and Type II Boxed Processor  
Cooling Solution Dimensions ..................................................................108  
8.1.2 Boxed Processor Thermal Module Assembly Weight ...................................110  
8.1.3 Boxed Processor Support and Retention Module (SRM) ..............................111  
Electrical Requirements ....................................................................................112  
8.2.1 Thermal Module Assembly Power Supply..................................................112  
Thermal Specifications......................................................................................114  
8.3.1 Boxed Processor Cooling Requirements....................................................114  
8.3.2 Variable Speed Fan...............................................................................114  
8.2  
8.3  
9
Debug Tools Specifications ....................................................................................117  
9.1  
Logic Analyzer Interface (LAI) ...........................................................................117  
9.1.1 Mechanical Considerations .....................................................................117  
9.1.2 Electrical Considerations........................................................................117  
4
Datasheet  
Figures  
1
2
3
4
5
6
7
8
9
VCC Static and Transient Tolerance............................................................................. 23  
VCC Overshoot Example Waveform ............................................................................. 24  
Differential Clock Waveform ...................................................................................... 31  
Differential Clock Crosspoint Specification ................................................................... 31  
Differential Measurements......................................................................................... 31  
Differential Clock Crosspoint Specification ................................................................... 32  
Processor Package Assembly Sketch........................................................................... 35  
Processor Package Drawing Sheet 1 of 3 ..................................................................... 36  
Processor Package Drawing Sheet 2 of 3 ..................................................................... 37  
10 Processor Package Drawing Sheet 3 of 3 ..................................................................... 38  
11 Processor Top-Side Markings Example for the Intel® Core™2 Duo Desktop  
Processor E6000 Series with 4 MB L2 Cache with 1333 MHz FSB..................................... 40  
12 Processor Top-Side Markings Example for the Intel® Core™2 Duo Desktop  
Processors E6000 Series with 4 MB L2 Cache with 1066 MHz FSB................................... 41  
13 Processor Top-Side Markings Example for the Intel® Core™2 Duo Desktop  
Processors E6000 Series with 2 MB L2 Cache............................................................... 41  
14 Processor Top-Side Markings Example for the Intel® Core™2 Duo Desktop  
Processors E4000 Series with 2 MB L2 Cache............................................................... 42  
15 Processor Top-Side Markings for the Intel® Core™2 Extreme Processor X6800................. 42  
16 Processor Land Coordinates and Quadrants (Top View) ................................................. 43  
17 land-out Diagram (Top View – Left Side)..................................................................... 46  
18 land-out Diagram (Top View – Right Side)................................................................... 47  
19 Thermal Profile 1 ..................................................................................................... 79  
20 Thermal Profile 2 ..................................................................................................... 80  
21 Thermal Profile 3 ..................................................................................................... 81  
22 Thermal Profile 4 ..................................................................................................... 82  
23 Thermal Profile 5 ..................................................................................................... 83  
24 Case Temperature (TC) Measurement Location ............................................................ 84  
25 Thermal Monitor 2 Frequency and Voltage Ordering...................................................... 86  
26 Processor PECI Topology........................................................................................... 90  
27 Conceptual Fan Control on PECI-Based Platforms ......................................................... 91  
28 Conceptual Fan Control on Thermal Diode-Based Platforms............................................ 91  
29 Processor Low Power State Machine ........................................................................... 94  
30 Mechanical Representation of the Boxed Processor ....................................................... 99  
31 Space Requirements for the Boxed Processor (Side View)............................................ 100  
32 Space Requirements for the Boxed Processor (Top View)............................................. 100  
33 Space Requirements for the Boxed Processor (Overall View)........................................ 101  
34 Boxed Processor Fan Heatsink Power Cable Connector Description................................ 102  
35 Baseboard Power Header Placement Relative to Processor Socket................................. 103  
36 Boxed Processor Fan Heatsink Airspace Keepout Requirements (side 1 view) ................. 104  
37 Boxed Processor Fan Heatsink Airspace Keepout Requirements (Side 2 View)................. 104  
38 Boxed Processor Fan Heatsink Set Points................................................................... 106  
39 Mechanical Representation of the Boxed Processor with a Type I TMA ........................... 109  
40 Mechanical Representation of the Boxed Processor with a Type II TMA .......................... 110  
41 Requirements for the Balanced Technology Extended (BTX) Type I Keep-out  
Volumes ............................................................................................................... 111  
42 Requirements for the Balanced Technology Extended (BTX) Type II Keep-out  
Volume................................................................................................................. 112  
43 Assembly Stack Including the Support and Retention Module ....................................... 113  
44 Boxed Processor TMA Power Cable Connector Description............................................ 114  
45 Balanced Technology Extended (BTX) Mainboard Power Header Placement  
(hatched area) ...................................................................................................... 115  
46 Boxed Processor TMA Set Points............................................................................... 117  
Datasheet  
5
Tables  
1
2
3
4
5
6
7
8
9
Reference Documents ...............................................................................................14  
Voltage Identification Definition..................................................................................17  
Market Segment Selection Truth Table for MSID[1:0] ...................................................18  
Absolute Maximum and Minimum Ratings ....................................................................20  
Voltage and Current Specifications..............................................................................20  
VCC Static and Transient Tolerance .............................................................................22  
VCC Overshoot Specifications......................................................................................24  
FSB Signal Groups....................................................................................................25  
Signal Characteristics................................................................................................26  
10 Signal Reference Voltages .........................................................................................26  
11 GTL+ Signal Group DC Specifications ..........................................................................27  
12 Open Drain and TAP Output Signal Group DC Specifications ...........................................27  
13 CMOS Signal Group DC Specifications..........................................................................28  
14 GTL+ Bus Voltage Definitions.....................................................................................28  
15 Core Frequency to FSB Multiplier Configuration.............................................................29  
16 BSEL[2:0] Frequency Table for BCLK[1:0] ...................................................................30  
17 Front Side Bus Differential BCLK Specifications.............................................................30  
18 Front Side Bus Differential BCLK Specifications.............................................................32  
19 PECI DC Electrical Limits ...........................................................................................33  
20 Processor Loading Specifications.................................................................................39  
21 Package Handling Guidelines......................................................................................39  
22 Processor Materials...................................................................................................40  
23 Alphabetical Land Assignments...................................................................................48  
24 Numerical Land Assignment.......................................................................................58  
25 Signal Description (Sheet 1 of 9)................................................................................68  
26 Processor Thermal Specifications................................................................................78  
27 Thermal Profile 1......................................................................................................79  
28 Thermal Profile 2......................................................................................................80  
29 Thermal Profile 3......................................................................................................81  
30 Thermal Profile 4......................................................................................................82  
31 Thermal Profile 5......................................................................................................83  
32 Thermal “Diode” Parameters using Diode Model............................................................88  
33 Thermal “Diode” Parameters using Transistor Model......................................................89  
34 Thermal Diode Interface............................................................................................89  
35 GetTemp0() Error Codes ...........................................................................................92  
36 Power-On Configuration Option Signals .......................................................................93  
37 Fan Heatsink Power and Signal Specifications.............................................................102  
38 Fan Heatsink Power and Signal Specifications.............................................................106  
39 TMA Power and Signal Specifications.........................................................................113  
40 TMA Set Points for 3-wire operation of BTX Type I and Type II Boxed  
Processors.............................................................................................................115  
6
Datasheet  
Revision History  
Revision  
Number  
Description  
Date  
July 2006  
-001  
-002  
Initial release  
Corrected L1 Cache information  
®
September 2006  
Added Intel Core™2 Duo Desktop Processor E4300 information  
Updated Table 5, DC Voltage and Current Specification  
Added Section 2.3, PECI DC Specifications  
Updated Section 5.3, Platform Environment Control Interface (PECI)  
Updated Section 7.1.2, Boxed Processor Fan Heatsink Weight  
Updated Table 37, Fan Heatsink Power and Signal Specifications  
-003  
January 2007  
®
Added Section 7.3.2, Fan Speed Control Operation Intel Core2 Extreme Processor  
X6800 Only) and Section 7.3.3, Fan Speed Control Operation (Intel Core2 Duo Desktop  
®
Processor E6000 and E4000 series Only)  
®
-004  
-005  
Added Intel Core™2 Duo Desktop Processor E6420, E6320, and E4400 information  
April 2007  
July 2007  
®
Added Intel Core™2 Duo Desktop Processor E6850, E6750, E6550, E6540, and E4500  
information.  
Added specifications for 1333 MHz FSB.  
Added support for Extended Stop Grant State, Extended Stop Grant Snoop States.  
Added new thermal profile table and figure.  
®
-006  
-007  
-008  
Added Intel Core™2 Duo Desktop Processor E4400 with CPUID = 065Dh.  
August 2007  
October 2007  
March 2008  
®
Added Intel Core™2 Duo Desktop Processor E4600  
®
Added Intel Core™2 Duo Desktop Processor E4700  
Datasheet  
7
8
Datasheet  
®
Intel Core™2 Extreme Processor  
®
X6800 and Intel Core™2 Duo  
Desktop Processor E6000 and  
E4000 Series Features  
• Available at 2.93 GHz (Intel Core™2 Extreme  
• Binary compatible with applications running on  
processor X6800 only)  
previous members of the Intel microprocessor line  
• Available at 3.00 GHz, 2.66 GHz, 2.40 GHz,  
2.33 GHz, 2.13 GHz, and 1.86 GHz (Intel Core™2  
Duo desktop processor E6850, E6750, E6700,  
E6600, E6540, E6540, E6420, E6400, E6320, and  
E6300 only)  
• Advance Dynamic Execution  
• Very deep out-of-order execution  
• Enhanced branch prediction  
• Optimized for 32-bit applications running on  
advanced 32-bit operating systems  
• Available at 2.40 GHz, 2.20 GHz, 2.00 GHz, and  
1.80 GHz and (Intel Core™2 Duo desktop processor  
E4700, E4600, E4500, E4400, and E4300 only)  
Two 32-KB Level 1 data caches  
• 4 MB Intel® Advanced Smart Cache (Intel Core™2  
Extreme processor X6800 and Intel Core™2 Duo  
desktop processor E6850, E6750, E6700, E6540,  
E6540, E6600, E6420, and E6320, only)  
• Enhanced Intel SpeedStep® Technology  
• Supports Intel® 64 architecture  
• Supports Intel® Virtualization Technology (Intel  
Core™2 Extreme processor X6800 and Intel  
Core™2 Duo desktop processor E6000 series only)  
• 2 MB Intel® Advanced Smart Cache (Intel Core™2  
Duo desktop processor E6400, E6300, E4700,  
E4600, E4500, E4400, and E4300 only)  
• Supports Execute Disable Bit capability  
• Intel® Advanced Digital Media Boost  
• Supports Intel® Trusted Execution Technology  
(Intel® TXT) (Intel Core2 Duo desktop processors  
E6850, E6750, and E6550 only)  
• Enhanced floating point and multimedia unit for  
enhanced video, audio, encryption, and 3D  
performance  
• Power Management capabilities  
• System Management mode  
• Multiple low-power states  
• FSB frequency at 1333 MHz (Intel Core2 Duo  
desktop processors E6850, E6750, E6550, and  
E6540 only)  
• FSB frequency at 1066 MHz (Intel Core™2 Extreme  
processor X6800 and Intel Core™2 Duo desktop  
processor E6700, E6600, E6420, E6400, E6320,  
and E6300 only)  
• 8-way cache associativity provides improved cache  
hit rate on load/store operations  
• 775-land Package  
• FSB frequency at 800 MHz (Intel Core™2 Duo  
desktop processor E4000 series only)  
The Intel Core™2 Extreme processor X6800 and Intel® Core™2 Duo desktop processor E6000, E4000  
series deliver Intel's advanced, powerful processors for desktop PCs. The processor is designed to  
deliver performance across applications and usages where end-users can truly appreciate and  
experience the performance. These applications include Internet audio and streaming video, image  
processing, video content creation, speech, 3D, CAD, games, multimedia, and multitasking user  
environments.  
Intel® 64 architecture enables the processor to execute operating systems and applications written to  
take advantage of the Intel 64 architecture. The processor supporting Enhanced Intel SpeedStep®  
technology allows tradeoffs to be made between performance and power consumption.  
The Intel Core™2 Extreme processor X6800 and Intel® Core™2 Duo desktop processor E6000, E4000  
series also include the Execute Disable Bit capability. This feature, combined with a supported  
operating system, allows memory to be marked as executable or non-executable.  
The Intel Core™2 Extreme processor X6800 and Intel® Core™2 Duo desktop processor E6000 series  
support Intel® Virtualization Technology. Virtualization Technology provides silicon-based functionality  
that works together with compatible Virtual Machine Monitor (VMM) software to improve on software-  
only solutions.  
The Intel Core™2 Duo desktop processors E6850, E6750, and E6550 support Intel® Trusted  
Execution Technology (Intel® TXT). Intel® Trusted Execution Technology (Intel® TXT) is a security  
technology.  
§ §  
Datasheet  
9
10  
Datasheet  
Introduction  
1
Introduction  
The Intel® Core™2 Extreme processor X6800 and Intel® Core™2 Duo desktop  
processor E6000 and E4000 series combine the performance of the previous generation  
of desktop products with the power efficiencies of a low-power microarchitecture to  
enable smaller, quieter systems. These processors are 64-bit processors that maintain  
compatibility with IA-32 software.  
The Intel® Core™2 Extreme processor X6800 and Intel® Core™2 Duo desktop  
processor E6000 and E4000 series use Flip-Chip Land Grid Array (FC-LGA6) package  
technology, and plugs into a 775-land surface mount, Land Grid Array (LGA) socket,  
referred to as the LGA775 socket.  
Note:  
Note:  
In this document, unless otherwise specified, the Intel® Core™2 Duo desktop  
processor E6000 series refers to Intel® Core™2 Duo desktop processors E6850, E6750,  
E6550, E6540, E6700, E6600, E6420, E6400, E6320, and E6300. The Intel® Core™2  
Duo desktop processor E4000 series refers to Intel® Core™2 Duo desktop processor  
E4700, E4600, E4500, E4400, and E4300.  
In this document, unless otherwise specified, the Intel® Core™2 Extreme processor  
X6800 and Intel® Core™2 Duo desktop processor E6000 and E4000 series are referred  
to as “processor.”  
The processors support several Advanced Technologies including the Execute Disable  
Bit, Intel® 64 architecture, and Enhanced Intel SpeedStep® Technology. The Intel  
Core™2 Duo desktop processor E6000 series and Intel Core™2 Extreme processor  
X6800 support Intel® Virtualization Technology (Intel VT). In addition, the Intel  
Core™2 Duo desktop processors E6850, E6750, and E6550 support Intel® Trusted  
Execution Technology (Intel® TXT).  
The processor's front side bus (FSB) uses a split-transaction, deferred reply protocol  
like the Intel® Pentium® 4 processor. The FSB uses Source-Synchronous Transfer (SST)  
of address and data to improve performance by transferring data four times per bus  
clock (4X data transfer rate, as in AGP 4X). Along with the 4X data bus, the address  
bus can deliver addresses two times per bus clock and is referred to as a "double-  
clocked" or 2X address bus. Working together, the 4X data bus and 2X address bus  
provide a data bus bandwidth of up to 10.7 GB/s.  
Intel has enabled support components for the processor including heatsink, heatsink  
retention mechanism, and socket. Manufacturability is a high priority; hence,  
mechanical assembly may be completed from the top of the baseboard and should not  
require any special tooling.  
The processor includes an address bus power-down capability which removes power  
from the address and data signals when the FSB is not in use. This feature is always  
enabled on the processor.  
Datasheet  
11  
Introduction  
1.1  
Terminology  
A ‘#’ symbol after a signal name refers to an active low signal, indicating a signal is in  
the active state when driven to a low level. For example, when RESET# is low, a reset  
has been requested. Conversely, when NMI is high, a nonmaskable interrupt has  
occurred. In the case of signals where the name does not imply an active state but  
describes part of a binary sequence (such as address or data), the ‘#’ symbol implies  
that the signal is inverted. For example, D[3:0] = ‘HLHL’ refers to a hex ‘A, and  
D[3:0]# = ‘LHLH’ also refers to a hex ‘A’ (H= High logic level, L= Low logic level).  
The phrase “Front Side Bus” refers to the interface between the processor and system  
core logic (a.k.a. the chipset components). The FSB is a multiprocessing interface to  
processors, memory, and I/O.  
1.1.1  
Processor Terminology  
Commonly used terms are explained here for clarification:  
Intel® Core™2 Extreme processor X6800 — Dual core processor in the FC-  
LGA6 package with a 4 MB L2 cache.  
Intel® Core™2 Duo desktop processor E6850, E6750, E6550, E6540,  
E6700, E6600, E6420, and E6320, — Dual core processor in the FC-LGA6  
package with a 4 MB L2 cache.  
Intel® Core™2 Duo desktop processor E6400, E6300, E4700, E4600,  
E4500, E4400, and E4300— Dual core processor in the FC-LGA6 package with a  
2 MB L2 cache.  
Processor — For this document, the term processor is the generic form of the  
Intel® Core™2 Duo desktop processor E6000 and E4000 series and the Intel®  
Core™2 Extreme processor X6800. The processor is a single package that contains  
one or more execution units.  
Keep-out zone — The area on or near the processor that system design can not  
use.  
Processor core — Processor core die with integrated L2 cache.  
LGA775 socket — The processors mate with the system board through a surface  
mount, 775-land, LGA socket.  
Integrated heat spreader (IHS) —A component of the processor package used  
to enhance the thermal performance of the package. Component thermal solutions  
interface with the processor at the IHS surface.  
Retention mechanism (RM) — Since the LGA775 socket does not include any  
mechanical features for heatsink attach, a retention mechanism is required.  
Component thermal solutions should attach to the processor via a retention  
mechanism that is independent of the socket.  
FSB (Front Side Bus) — The electrical interface that connects the processor to  
the chipset. Also referred to as the processor system bus or the system bus. All  
memory and I/O transactions as well as interrupt messages pass between the  
processor and chipset over the FSB.  
Storage conditions — Refers to a non-operational state. The processor may be  
installed in a platform, in a tray, or loose. Processors may be sealed in packaging or  
exposed to free air. Under these conditions, processor lands should not be  
connected to any supply voltages, have any I/Os biased, or receive any clocks.  
Upon exposure to “free air”(i.e., unsealed packaging or a device removed from  
packaging material) the processor must be handled in accordance with moisture  
sensitivity labeling (MSL) as indicated on the packaging material.  
12  
Datasheet  
Introduction  
Functional operation — Refers to normal operating conditions in which all  
processor specifications, including DC, AC, system bus, signal quality, mechanical  
and thermal are satisfied.  
Execute Disable Bit — Allows memory to be marked as executable or non-  
executable, when combined with a supporting operating system. If code attempts  
to run in non-executable memory the processor raises an error to the operating  
system. This feature can prevent some classes of viruses or worms that exploit  
buffer over run vulnerabilities and can thus help improve the overall security of the  
system. See the Intel® Architecture Software Developer's Manual for more detailed  
information.  
Intel® 64 Architecture — An enhancement to Intel's IA-32 architecture, allowing  
the processor to execute operating systems and applications written to take  
advantage of Intel 64 architecture. Further details on Intel 64 architecture and  
programming model can be found in the Intel® Extended Memory 64 Technology  
Software Developer Guide at http://www.intel.com/technology/intel64/index.htm.  
Enhanced Intel SpeedStep® Technology — Enhanced Intel Speedstep®  
technology allows trade-offs to be made between performance and power  
consumptions, based on processor utilization. This may lower average power  
consumption (in conjunction with OS support).  
Intel® Virtualization Technology (Intel VT) — Intel Virtualization Technology  
provides silicon-based functionality that works together with compatible Virtual  
Machine Monitor (VMM) software to improve upon software-only solutions. Because  
this virtualization hardware provides a new architecture upon which the operating  
system can run directly, it removes the need for binary translation. Thus, it helps  
eliminate associated performance overhead and vastly simplifies the design of the  
VMM, in turn allowing VMMs to be written to common standards and to be more  
robust. See the Intel® Virtualization Technology Specification for the IA-32 Intel®  
Architecture for more details.  
Intel® Trusted Execution Technology (Intel® TXT)— Intel® Trusted Execution  
Technology (Intel® TXT) is a security technology under development by Intel and  
requires for operation a computer system with Intel® Virtualization Technology, a  
Intel Trusted Execution Technology-enabled Intel processor, chipset, BIOS,  
Authenticated Code Modules, and an Intel or other Intel Trusted Execution  
Technology compatible measured virtual machine monitor. In addition, Intel Trusted  
Execution Technology requires the system to contain a TPMv1.2 as defined by the  
Trusted Computing Group and specific software for some uses.  
Datasheet  
13  
Introduction  
1.2  
References  
Material and concepts available in the following documents may be beneficial when  
reading this document.  
Table 1.  
Reference Documents  
Document  
Location  
www.intel.com/design/  
processor/specupdt/  
313279.htm  
Intel® Core™2 Extreme Processor X6800 and Intel® Core™2 Duo  
Desktop Processor E6000 and E4000 Series Specification Update  
http://www.intel.com/  
design/processor/  
designex/317804.htm  
Intel® Core™2 Duo Processor and Intel® Pentium® Dual Core  
Processor Thermal and Mechanical Design Guidelines  
Intel® Pentium® D Processor, Intel® Pentium® Processor Extreme  
Edition, Intel® Pentium® 4 Processor, Intel® Core™2 Duo Extreme  
Processor X6800 Thermal and Mechanical Design Guidelines  
http://www.intel.com/  
design/pentiumXE/  
designex/306830.htm  
Balanced Technology Extended (BTX) System Design Guide  
www.formfactors.org  
http://www.intel.com/  
design/processor/  
applnots/313214.htm  
Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design  
Guidelines For Desktop LGA775 Socket  
http://intel.com/design/  
Pentium4/guides/  
302666.htm  
LGA775 Socket Mechanical Design Guide  
http://www.intel.com/  
technology/computing/  
vptech/index.htm  
Intel® Virtualization Technology Specification for the IA-32 Intel®  
Architecture  
Intel® Trusted Exectuion Technology (Intel® TXT) Specification for  
the IA-32 Intel® Architecture  
http://www.intel.com/  
technology/security/  
Intel® 64 and IA-32 Intel Architecture Software Developer's Manuals  
Volume 1: Basic Architecture  
Volume 2A: Instruction Set Reference, A-M  
Volume 2B: Instruction Set Reference, N-Z  
Volume 3A: System Programming Guide  
Volume 3B: System Programming Guide  
http://www.intel.com/  
products/processor/  
manuals/  
§ §  
14  
Datasheet  
Electrical Specifications  
2
Electrical Specifications  
This chapter describes the electrical characteristics of the processor interfaces and  
signals. DC electrical characteristics are provided.  
2.1  
Power and Ground Lands  
The processor has VCC (power), VTT and VSS (ground) inputs for on-chip power  
distribution. All power lands must be connected to VCC, while all VSS lands must be  
connected to a system ground plane. The processor VCC lands must be supplied the  
voltage determined by the Voltage IDentification (VID) lands.  
The signals denoted as VTT provide termination for the front side bus and power to the  
I/O buffers. A separate supply must be implemented for these lands, that meets the  
VTT specifications outlined in Table 5.  
2.2  
Decoupling Guidelines  
Due to its large number of transistors and high internal clock speeds, the processor is  
capable of generating large current swings. This may cause voltages on power planes  
to sag below their minimum specified values if bulk decoupling is not adequate. Larger  
bulk storage (CBULK), such as electrolytic or aluminum-polymer capacitors, supply  
current during longer lasting changes in current demand by the component, such as  
coming out of an idle condition. Similarly, they act as a storage well for current when  
entering an idle condition from a running condition. The motherboard must be designed  
to ensure that the voltage provided to the processor remains within the specifications  
listed in Table 5. Failure to do so can result in timing violations or reduced lifetime of  
the component.  
2.2.1  
2.2.2  
V
Decoupling  
CC  
VCC regulator solutions need to provide sufficient decoupling capacitance to satisfy the  
processor voltage specifications. This includes bulk capacitance with low effective series  
resistance (ESR) to keep the voltage rail within specifications during large swings in  
load current. In addition, ceramic decoupling capacitors are required to filter high  
frequency content generated by the front side bus and processor activity. Consult the  
Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design Guidelines For  
Desktop LGA775 Socket.  
VTT Decoupling  
Decoupling must be provided on the motherboard. Decoupling solutions must be sized  
to meet the expected load. To insure compliance with the specifications, various factors  
associated with the power delivery solution must be considered including regulator  
type, power plane and trace sizing, and component placement. A conservative  
decoupling solution would consist of a combination of low ESR bulk capacitors and high  
frequency ceramic capacitors.  
Datasheet  
15  
Electrical Specifications  
2.2.3  
FSB Decoupling  
The processor integrates signal termination on the die. In addition, some of the high  
frequency capacitance required for the FSB is included on the processor package.  
However, additional high frequency capacitance must be added to the motherboard to  
properly decouple the return currents from the front side bus. Bulk decoupling must  
also be provided by the motherboard for proper [A]GTL+ bus operation.  
2.3  
Voltage Identification  
The Voltage Identification (VID) specification for the processor is defined by the Voltage  
Regulator-Down (VRD) 11.0 Processor Power Delivery Design Guidelines For Desktop  
LGA775 Socket. The voltage set by the VID signals is the reference VR output voltage  
to be delivered to the processor VCC pins (see Chapter 2.6.3 for VCC overshoot  
specifications). Refer to Table 13 for the DC specifications for these signals. Voltages  
for each processor frequency is provided in Table 5.  
Individual processor VID values may be calibrated during manufacturing such that two  
devices at the same core speed may have different default VID settings. This is  
reflected by the VID Range values provided in Table 5. Refer to the Intel® Core™2 Duo  
Desktop Processor E6000 and E4000 Series and Intel® Core™2 Extreme Processor  
X6800 Specification Update for further details on specific valid core frequency and VID  
values of the processor. Note this differs from the VID employed by the processor  
during a power management event (Thermal Monitor 2, Enhanced Intel SpeedStep®  
Technology, or Extended HALT State).  
The processor uses six voltage identification signals, VID[6:1], to support automatic  
selection of power supply voltages. Table 2 specifies the voltage level corresponding to  
the state of VID[6:1]. A ‘1’ in this table refers to a high voltage level and a ‘0’ refers to  
a low voltage level. If the processor socket is empty (VID[6:1] = 111111), or the  
voltage regulation circuit cannot supply the voltage that is requested, it must disable  
itself. The Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design  
Guidelines For Desktop LGA775 Socket defines VID [7:0], VID7 and VID0 are not used  
on the processor; VID0 and VID7 are strapped to VSS on the processor package. VID0  
and VID7 must be connected to the VR controller for compatibility with future  
processors.  
The processor provides the ability to operate while transitioning to an adjacent VID and  
its associated processor core voltage (VCC). This will represent a DC shift in the load  
line. It should be noted that a low-to-high or high-to-low voltage state change may  
result in as many VID transitions as necessary to reach the target core voltage.  
Transitions above the specified VID are not permitted. Table 5 includes VID step sizes  
and DC shift ranges. Minimum and maximum voltages must be maintained as shown in  
Table 6 and Figure 1 as measured across the VCC_SENSE and VSS_SENSE lands.  
The VRM or VRD used must be capable of regulating its output to the value defined by  
the new VID. DC specifications for dynamic VID transitions are included in Table 5 and  
Table 6. Refer to the Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery  
Design Guidelines For Desktop LGA775 Socket for further details.  
16  
Datasheet  
Electrical Specifications  
Table 2.  
Voltage Identification Definition  
VID6 VID5 VID4 VID3 VID2 VID1 VID (V)  
VID6 VID5 VID4 VID3 VID2 VID1 VID (V)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.8500  
0.8625  
0.8750  
0.8875  
0.9000  
0.9125  
0.9250  
0.9375  
0.9500  
0.9625  
0.9750  
0.9875  
1.0000  
1.0125  
1.0250  
1.0375  
1.0500  
1.0625  
1.0750  
1.0875  
1.1000  
1.1125  
1.1250  
1.1375  
1.1500  
1.1625  
1.1750  
1.1875  
1.2000  
1.2125  
1.2250  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1.2375  
1.2500  
1.2625  
1.2750  
1.2875  
1.3000  
1.3125  
1.3250  
1.3375  
1.3500  
1.3625  
1.3750  
1.3875  
1.4000  
1.4125  
1.4250  
1.4375  
1.4500  
1.4625  
1.4750  
1.4875  
1.5000  
1.5125  
1.5250  
1.5375  
1.5500  
1.5625  
1.5750  
1.5875  
1.6000  
OFF  
Datasheet  
17  
Electrical Specifications  
2.4  
Market Segment Identification (MSID)  
The MSID[1:0] signals may be used as outputs to determine the Market Segment of  
the processor. Table 3 provides details regarding the state of MSID[1:0]. A circuit can  
be used to prevent 130 W TDP processors from booting on boards optimized for 65 W  
TDP.  
Market Segment Selection Truth Table for MSID[1:0]1 2 3 4  
,
,
,
Table 3.  
MSID1  
MSID0  
Description  
Intel® Core™2 Duo desktop processor E6000 and E4000 series and the  
Intel® Core™2 Extreme processor X6800  
0
0
0
1
0
1
Reserved  
Reserved  
Reserved  
1
1
NOTES:  
1. The MSID[1:0] signals are provided to indicate the Market Segment for the processor  
and may be used for future processor compatibility or for keying. Circuitry on the  
motherboard may use these signals to identify the processor installed.  
2. These signals are not connected to the processor die.  
3. A logic 0 is achieved by pulling the signal to ground on the package.  
4. A logic 1 is achieved by leaving the signal as a no connect on the package.  
2.5  
Reserved, Unused, and TESTHI Signals  
All RESERVED lands must remain unconnected. Connection of these lands to VCC, VSS,  
VTT, or to any other signal (including each other) can result in component malfunction  
or incompatibility with future processors. See Chapter 4 for a land listing of the  
processor and the location of all RESERVED lands.  
In a system level design, on-die termination has been included by the processor to  
allow signals to be terminated within the processor silicon. Most unused GTL+ inputs  
should be left as no connects as GTL+ termination is provided on the processor silicon.  
However, see Table 8 for details on GTL+ signals that do not include on-die termination.  
Unused active high inputs, should be connected through a resistor to ground (VSS).  
Unused outputs can be left unconnected, however this may interfere with some TAP  
functions, complicate debug probing, and prevent boundary scan testing. A resistor  
must be used when tying bidirectional signals to power or ground. When tying any  
signal to power or ground, a resistor will also allow for system testability. Resistor  
values should be within ± 20% of the impedance of the motherboard trace for front  
side bus signals. For unused GTL+ input or I/O signals, use pull-up resistors of the  
same value as the on-die termination resistors (RTT). For details, see Table 14.  
TAP and CMOS signals do not include on-die termination. Inputs and used outputs must  
be terminated on the motherboard. Unused outputs may be terminated on the  
motherboard or left unconnected. Note that leaving unused outputs unterminated may  
interfere with some TAP functions, complicate debug probing, and prevent boundary  
scan testing.  
All TESTHI[13:0] lands should be individually connected to VTT via a pull-up resistor  
that matches the nominal trace impedance.  
18  
Datasheet  
Electrical Specifications  
The TESTHI signals may use individual pull-up resistors or be grouped together as  
detailed below. A matched resistor must be used for each group:  
• TESTHI[1:0]  
• TESTHI[7:2]  
• TESTHI8/FC42 – cannot be grouped with other TESTHI signals  
• TESTHI9/FC43 – cannot be grouped with other TESTHI signals  
• TESTHI10 – cannot be grouped with other TESTHI signals  
• TESTHI11 – cannot be grouped with other TESTHI signals  
• TESTHI12/FC44 – cannot be grouped with other TESTHI signals  
• TESTHI13 – cannot be grouped with other TESTHI signals  
However, utilization of boundary scan test will not be functional if these lands are  
connected together. For optimum noise margin, all pull-up resistor values used for  
TESTHI[13:0] lands should have a resistance value within ± 20% of the impedance of  
the board transmission line traces. For example, if the nominal trace impedance is 50 Ω,  
then a value between 40 Ω and 60 Ω should be used.  
2.6  
Voltage and Current Specification  
2.6.1  
Absolute Maximum and Minimum Ratings  
Table 4 specifies absolute maximum and minimum ratings only and lie outside the  
functional limits of the processor. Within functional operation limits, functionality and  
long-term reliability can be expected.  
At conditions outside functional operation condition limits, but within absolute  
maximum and minimum ratings, neither functionality nor long-term reliability can be  
expected. If a device is returned to conditions within functional operation limits after  
having been subjected to conditions outside these limits, but within the absolute  
maximum and minimum ratings, the device may be functional, but with its lifetime  
degraded depending on exposure to conditions exceeding the functional operation  
condition limits.  
At conditions exceeding absolute maximum and minimum ratings, neither functionality  
nor long-term reliability can be expected. Moreover, if a device is subjected to these  
conditions for any length of time then, when returned to conditions within the  
functional operating condition limits, it will either not function, or its reliability will be  
severely degraded.  
Although the processor contains protective circuitry to resist damage from static  
electric discharge, precautions should always be taken to avoid high static voltages or  
electric fields.  
Datasheet  
19  
Electrical Specifications  
Table 4.  
Absolute Maximum and Minimum Ratings  
Symbol  
VCC  
Parameter  
Min  
Max  
Unit Notes1, 2  
Core voltage with respect to VSS  
–0.3  
1.55  
V
V
-
-
FSB termination voltage with  
respect to VSS  
VTT  
TC  
–0.3  
1.55  
See  
Chapter 5  
See  
Chapter 5  
Processor case temperature  
°C  
°C  
-
3, 4,  
5
TSTORAGE  
Processor storage temperature  
–40  
85  
NOTES:  
1. For functional operation, all processor electrical, signal quality, mechanical and thermal  
specifications must be satisfied.  
2. Excessive overshoot or undershoot on any signal will likely result in permanent damage to the  
processor.  
3. Storage temperature is applicable to storage conditions only. In this scenario, the processor must  
not receive a clock, and no lands can be connected to a voltage bias. Storage within these limits  
will not affect the long-term reliability of the device. For functional operation, refer to the  
processor case temperature specifications.  
4. This rating applies to the processor and does not include any tray or packaging.  
5. Failure to adhere to this specification can affect the long term reliability of the processor.  
2.6.2  
DC Voltage and Current Specification  
Table 5.  
Voltage and Current Specifications  
2
Symbol  
VID Range  
Parameter  
Min  
Typ  
Max  
Unit Notes1,  
3
VID  
Processor Number VCC for  
0.8500  
1.5  
V
(4 MB L2 Cache)  
775_VR_CONFIG_06  
E6850  
3.00 GHz  
2.66 GHz  
2.66 GHz  
2.40 GHz  
2.33 GHz  
2.33 GHz  
2.13 GHz  
1.86 GHz  
E6750  
E6700  
E6600  
E6550  
E6540  
E6420  
E6320  
Processor Number VCC for  
Refer to Table 6 and  
Figure 1  
4, 5,  
6
VCC  
V
(4 MB L2 Cache)  
775_VR_CONFIG_05B  
X6800  
2.93 GHz  
Processor Number VCC for  
(2 MB L2 Cache)  
775_VR_CONFIG_06  
E6400  
2.13 GHz  
1.86 GHz  
2.60 GHz  
2.40 GHz  
2.20 GHz  
2.00 GHz  
1.80 GHz  
E6300  
E4700  
E4600,  
E4500  
E4400  
E4300  
VCC_BOOT  
Default VCC voltage for initial power up  
1.10  
V
20  
Datasheet  
Electrical Specifications  
Table 5.  
Voltage and Current Specifications  
2
Symbol  
Parameter  
Min  
Typ  
Max  
Unit Notes1,  
VCCPLL  
PLL VCC  
Processor Number ICC for  
775_VR_CONFIG_06  
- 5%  
1.50  
+ 5%  
E6850  
E6750  
E6700  
E6600  
E6550  
3.00 GHz  
2.66 GHz  
2.66 GHz  
2.40 GHz  
2.33 GHz  
2.33 GHz  
2.13 GHz  
1.86 GHz  
2.60 GHz  
2.40 GHz  
2.20 GHz  
2.00 GHz  
1.80 GHz  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
E6540  
E6400/E6420  
E6300/E6320  
E4700  
7
ICC  
A
E4600  
E4500  
E4400  
E4300  
Processor Number ICC for  
775_VR_CONFIG_05B  
1.14  
1.20  
X6800  
2.93 GHz  
90  
FSB termination voltage  
(DC + AC specifications)  
8
VTT  
1.26  
V
DC Current that may be drawn from  
VTT_OUT_LEFT and VTT_OUT_RIGHT per  
pin  
VTT_OUT_LEFT and  
VTT_OUT_RIGHT ICC  
9
580  
mA  
ICC for VTT supply before VCC stable  
ICC for VTT supply after VCC stable  
ICC for PLL land  
4.5  
4.6  
10  
ITT  
A
ICC_VCCPLL  
ICC_GTLREF  
NOTES:  
130  
200  
mA  
ICC for GTLREF  
μA  
1. Unless otherwise noted, all specifications in this table are based on estimates and simulations or empirical data.  
These specifications will be updated with characterized data from silicon measurements at a later date.  
2. Adherence to the voltage specifications for the processor are required to ensure reliable processor operation.  
3. Each processor is programmed with a maximum valid voltage identification value (VID), which is set at  
manufacturing and can not be altered. Individual maximum VID values are calibrated during manufacturing such  
that two processors at the same frequency may have different settings within the VID range. Note this differs  
from the VID employed by the processor during a power management event (Thermal Monitor 2, Enhanced Intel  
SpeedStep® Technology, or Extended HALT State).  
4. These voltages are targets only. A variable voltage source should exist on systems in the event that a different  
voltage is required. See Section 2.3 and Table 2 for more information.  
5. The voltage specification requirements are measured across VCC_SENSE and VSS_SENSE lands at the socket  
with a 100 MHz bandwidth oscilloscope, 1.5 pF maximum probe capacitance, and 1 MΩ minimum impedance. The  
maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from the system  
is not coupled into the oscilloscope probe.  
6. Refer to Table 6 and Figure 1 for the minimum, typical, and maximum VCC allowed for a given current. The  
processor should not be subjected to any VCC and ICC combination wherein VCC exceeds VCC_MAX for a given  
current.  
7. ICC_MAX specification is based on the VCC_MAX loadline. Refer to Figure 1 for details.  
8. VTT must be provided via a separate voltage source and not be connected to VCC. This specification is measured  
at the land.  
9. Baseboard bandwidth is limited to 20 MHz.  
10.This is maximum total current drawn from VTT plane by only the processor. This specification does not include  
the current coming from RTT (through the signal line). Refer to the Voltage Regulator-Down (VRD) 11.0  
Processor Power Delivery Design Guidelines For Desktop LGA775 Socket to determine the total ITT drawn by the  
system. This parameter is based on design characterization and is not tested.  
Datasheet  
21  
Electrical Specifications  
Table 6.  
VCC Static and Transient Tolerance  
Voltage Deviation from VID Setting (V)1, 2, 3, 4  
ICC (A)  
Maximum Voltage  
Typical Voltage  
Minimum Voltage  
1.30 mΩ  
1.425 mΩ  
1.55 mΩ  
0
0.000  
-0.007  
-0.013  
-0.020  
-0.026  
-0.033  
-0.039  
-0.046  
-0.052  
-0.059  
-0.065  
-0.072  
-0.078  
-0.085  
-0.091  
-0.098  
-0.019  
-0.026  
-0.033  
-0.040  
-0.048  
-0.055  
-0.062  
-0.069  
-0.076  
-0.083  
-0.090  
-0.097  
-0.105  
-0.112  
-0.119  
-0.126  
-0.038  
-0.046  
-0.054  
-0.061  
-0.069  
-0.077  
-0.085  
-0.092  
-0.100  
-0.108  
-0.116  
-0.123  
-0.131  
-0.139  
-0.147  
-0.154  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
NOTES:  
1. The loadline specification includes both static and transient limits except for overshoot allowed  
as shown in Section 2.6.3.  
2. This table is intended to aid in reading discrete points on Figure 1.  
3. The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE  
lands. Voltage regulation feedback for voltage regulator circuits must be taken from processor  
VCC and VSS lands. Refer to the Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery  
Design Guidelines For Desktop LGA775 Socket for socket loadline guidelines and VR  
implementation details.  
4. Adherence to this loadline specification is required to ensure reliable processor operation.  
22  
Datasheet  
Electrical Specifications  
Figure 1.  
VCC Static and Transient Tolerance  
Icc [A]  
40  
0
10  
20  
30  
50  
60  
70  
VID - 0.000  
VID - 0.013  
VID - 0.025  
VID - 0.038  
VID - 0.050  
VID - 0.063  
VID - 0.075  
VID - 0.088  
VID - 0.100  
VID - 0.113  
VID - 0.125  
VID - 0.138  
VID - 0.150  
VID - 0.163  
Vcc Maximum  
Vcc Typical  
Vcc Minimum  
NOTES:  
1.  
The loadline specification includes both static and transient limits except for overshoot  
allowed as shown in Section 2.6.3.  
2.  
3.  
This loadline specification shows the deviation from the VID set point.  
The loadlines specify voltage limits at the die measured at the VCC_SENSE and  
VSS_SENSE lands. Voltage regulation feedback for voltage regulator circuits must be taken  
from processor VCC and VSS lands. Refer to the Voltage Regulator-Down (VRD) 11.0  
Processor Power Delivery Design Guidelines For Desktop LGA775 Socket for socket loadline  
guidelines and VR implementation details.  
Datasheet  
23  
Electrical Specifications  
2.6.3  
V
Overshoot  
CC  
The processor can tolerate short transient overshoot events where VCC exceeds the VID  
voltage when transitioning from a high to low current load condition. This overshoot  
cannot exceed VID + VOS_MAX (VOS_MAX is the maximum allowable overshoot voltage).  
The time duration of the overshoot event must not exceed TOS_MAX (TOS_MAX is the  
maximum allowable time duration above VID). These specifications apply to the  
processor die voltage as measured across the VCC_SENSE and VSS_SENSE lands.  
Table 7.  
VCC Overshoot Specifications  
Symbol  
Parameter  
Min  
Max  
Unit Figure Notes  
1
VOS_MAX Magnitude of VCC overshoot above VID  
TOS_MAX Time duration of VCC overshoot above VID  
NOTES:  
50  
25  
mV  
2
2
1
μs  
1.  
Adherence to these specifications is required to ensure reliable processor operation.  
Figure 2.  
VCC Overshoot Example Waveform  
Example Overshoot Waveform  
VOS  
VID + 0.050  
VID - 0.000  
TOS  
0
5
10  
15  
20  
25  
Time [us]  
TOS: Overshoot time above VID  
OS: Overshoot above VID  
V
NOTES:  
1.  
2.  
V
OS is measured overshoot voltage.  
TOS is measured time duration above VID.  
2.6.4  
Die Voltage Validation  
Overshoot events on processor must meet the specifications in Table 7 when measured  
across the VCC_SENSE and VSS_SENSE lands. Overshoot events that are < 10 ns in  
duration may be ignored. These measurements of processor die level overshoot must  
be taken with a bandwidth limited oscilloscope set to a greater than or equal to  
100 MHz bandwidth limit.  
24  
Datasheet  
Electrical Specifications  
2.7  
Signaling Specifications  
Most processor Front Side Bus signals use Gunning Transceiver Logic (GTL+) signaling  
technology. This technology provides improved noise margins and reduced ringing  
through low voltage swings and controlled edge rates. Platforms implement a  
termination voltage level for GTL+ signals defined as VTT. Because platforms implement  
separate power planes for each processor (and chipset), separate VCC and VTT supplies  
are necessary. This configuration allows for improved noise tolerance as processor  
frequency increases. Speed enhancements to data and address busses have caused  
signal integrity considerations and platform design methods to become even more  
critical than with previous processor families.  
The GTL+ inputs require a reference voltage (GTLREF) which is used by the receivers to  
determine if a signal is a logical 0 or a logical 1. GTLREF must be generated on the  
motherboard (see Table 14 for GTLREF specifications). Termination resistors (RTT) for  
GTL+ signals are provided on the processor silicon and are terminated to VTT. Intel  
chipsets will also provide on-die termination, thus eliminating the need to terminate the  
bus on the motherboard for most GTL+ signals.  
2.7.1  
FSB Signal Groups  
The front side bus signals have been combined into groups by buffer type. GTL+ input  
signals have differential input buffers, which use GTLREF[1:0] as a reference level. In  
this document, the term “GTL+ Input” refers to the GTL+ input group as well as the  
GTL+ I/O group when receiving. Similarly, GTL+ Output” refers to the GTL+ output  
group as well as the GTL+ I/O group when driving.  
With the implementation of a source synchronous data bus comes the need to specify  
two sets of timing parameters. One set is for common clock signals which are  
dependent upon the rising edge of BCLK0 (ADS#, HIT#, HITM#, etc.) and the second  
set is for the source synchronous signals which are relative to their respective strobe  
lines (data and address) as well as the rising edge of BCLK0. Asychronous signals are  
still present (A20M#, IGNNE#, etc.) and can become active at any time during the  
clock cycle. Table 8 identifies which signals are common clock, source synchronous,  
and asynchronous.  
Table 8.  
FSB Signal Groups (Sheet 1 of 2)  
Signal Group  
Type  
Signals1  
GTL+ Common  
Clock Input  
Synchronous to  
BCLK[1:0]  
BPRI#, DEFER#, RESET#, RS[2:0]#, TRDY#  
GTL+ Common  
Clock I/O  
Synchronous to  
BCLK[1:0]  
ADS#, BNR#, BPM[5:0]#, BR0#, DBSY#, DRDY#,  
HIT#, HITM#, LOCK#  
Signals  
Associated Strobe  
REQ[4:0]#, A[16:3]#3  
A[35:17]#3  
ADSTB0#  
ADSTB1#  
GTL+ Source  
Synchronous I/O  
Synchronous to  
assoc. strobe  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBP0#, DSTBN0#  
DSTBP1#, DSTBN1#  
DSTBP2#, DSTBN2#  
DSTBP3#, DSTBN3#  
Synchronous to  
BCLK[1:0]  
GTL+ Strobes  
ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]#  
Datasheet  
25  
Electrical Specifications  
Table 8.  
FSB Signal Groups (Sheet 2 of 2)  
Signal Group  
Type  
Signals1  
A20M#, IGNNE#, INIT#, LINT0/INTR, LINT1/NMI,  
SMI#, STPCLK#, PWRGOOD, TCK, TDI, TMS, TRST#,  
BSEL[2:0], VID[6:1]  
CMOS  
Open Drain Output  
FERR#/PBE#, IERR#, THERMTRIP#, TDO  
PROCHOT#4  
Open Drain Input/  
Output  
FSB Clock  
Clock  
BCLK[1:0], ITP_CLK[1:0]2  
VCC, VTT, VCCA, VCCIOPLL, VCCPLL, VSS, VSSA,  
GTLREF[1:0], COMP[8,3:0], RESERVED, TESTHI[13:0],  
VCC_SENSE, VCC_MB_REGULATION, VSS_SENSE,  
VSS_MB_REGULATION, DBR#2, VTT_OUT_LEFT,  
VTT_OUT_RIGHT, VTT_SEL, FCx, PECI, MSID[1:0]  
Power/Other  
NOTES:  
1.  
2.  
Refer to Section 4.2 for signal descriptions.  
In processor systems where no debug port is implemented on the system board, these  
signals are used to support a debug port interposer. In systems with the debug port  
implemented on the system board, these signals are no connects.  
The value of these signals during the active-to-inactive edge of RESET# defines the  
processor configuration options. See Section 6.1 for details.  
3.  
4.  
PROCHOT# signal type is open drain output and CMOS input.  
.
Table 9.  
Signal Characteristics  
Signals with RTT  
Signals with No RTT  
A20M#, BCLK[1:0], BSEL[2:0],  
A[35:3]#, ADS#, ADSTB[1:0]#, BNR#, BPRI#,  
D[63:0]#, DBI[3:0]#, DBSY#, DEFER#,  
DRDY#, DSTBN[3:0]#, DSTBP[3:0]#, HIT#,  
HITM#, LOCK#, PROCHOT#, REQ[4:0]#,  
RS[2:0]#, TRDY#  
COMP[8,3:0], IGNNE#, INIT#, ITP_CLK[1:0],  
LINT0/INTR, LINT1/NMI, PWRGOOD,  
RESET#, SMI#, STPCLK#, TESTHI[13:0],  
VID[6:1], GTLREF[1:0], TCK, TDI, TMS,  
TRST#, VTT_SEL, MSID[1:0]  
Open Drain Signals1  
THERMTRIP#, FERR#/PBE#, IERR#, BPM[5:0]#,  
BR0#, TDO, FCx  
NOTES:  
1. Signals that do not have RTT, nor are actively driven to their high-voltage level.  
.
Table 10.  
Signal Reference Voltages  
GTLREF  
VTT/2  
BPM[5:0]#, RESET#, BNR#, HIT#, HITM#, BR0#,  
A[35:0]#, ADS#, ADSTB[1:0]#, BPRI#, D[63:0]#,  
DBI[3:0]#, DBSY#, DEFER#, DRDY#, DSTBN[3:0]#,  
DSTBP[3:0]#, LOCK#, REQ[4:0]#, RS[2:0]#,  
TRDY#  
A20M#, LINT0/INTR, LINT1/NMI,  
IGNNE#, INIT#, PROCHOT#,  
PWRGOOD1, SMI#, STPCLK#, TCK1,  
TDI1, TMS1, TRST#1  
NOTES:  
1. These signals also have hysteresis added to the reference voltage. See Table 12 for more  
information.  
26  
Datasheet  
Electrical Specifications  
2.7.2  
CMOS and Open Drain Signals  
Legacy input signals such as A20M#, IGNNE#, INIT#, SMI#, and STPCLK# use CMOS  
input buffers. All of the CMOS and Open Drain signals are required to be asserted/de-  
asserted for at least four BCLKs in order for the processor to recognize the proper  
signal state. See Section 2.7.3 for the DC. See Section 6.2 for additional timing  
requirements for entering and leaving the low power states.  
2.7.3  
Processor DC Specifications  
The processor DC specifications in this section are defined at the processor core (pads)  
unless otherwise stated. All specifications apply to all frequencies and cache sizes  
unless otherwise stated.  
Table 11.  
GTL+ Signal Group DC Specifications  
Symbol  
Parameter  
Min  
Max  
Unit Notes1  
2,  
3
VIL  
VIH  
VOH  
Input Low Voltage  
Input High Voltage  
Output High Voltage  
-0.10  
GTLREF – 0.10  
VTT + 0.10  
VTT  
V
V
V
4, 5,  
5, 3  
3
GTLREF + 0.10  
VTT – 0.10  
VTT_MAX  
[(RTT_MIN)+(2*RON_MIN)]  
/
IOL  
ILI  
Output Low Current  
N/A  
N/A  
N/A  
10  
A
-
6
Input Leakage Current  
± 100  
µA  
µA  
Ω
Output Leakage  
Current  
7
ILO  
± 100  
13  
RON  
Buffer On Resistance  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. VIL is defined as the voltage range at a receiving agent that will be interpreted as a logical low  
value.  
3. The VTT referred to in these specifications is the instantaneous VTT.  
4. VIH is defined as the voltage range at a receiving agent that will be interpreted as a logical high  
value.  
5. VIH and VOH may experience excursions above VTT.  
6. Leakage to VSS with land held at VTT.  
7. Leakage to VTT with land held at 300 mV.  
.
Table 12.  
Open Drain and TAP Output Signal Group DC Specifications  
Symbol  
Parameter  
Output Low Voltage  
Min  
Max  
Unit Notes1  
VOL  
VOH  
0
0.20  
V
V
-
2
Output High Voltage  
Output Low Current  
Output Leakage Current  
VTT – 0.05 VTT + 0.05  
3
4
IOL  
16  
50  
mA  
µA  
ILO  
N/A  
± 200  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. VOH is determined by the value of the external pull-up resister to VTT.  
3. Measured at VTT * 0.2.  
4. For Vin between 0 and VOH  
.
Datasheet  
27  
Electrical Specifications  
.
Table 13.  
CMOS Signal Group DC Specifications  
Symbol  
Parameter  
Input Low Voltage  
Min  
Max  
Unit Notes1  
2,  
3
VIL  
VIH  
-0.10  
VTT * 0.70  
-0.10  
VTT * 0.30  
VTT + 0.10  
VTT * 0.10  
VTT + 0.10  
4.70  
V
V
3, 4, 5  
Input High Voltage  
3
3, 6, 5  
3, 7  
3, 7  
8
VOL  
Output Low Voltage  
Output High Voltage  
Output Low Current  
Output High Current  
Input Leakage Current  
Output Leakage Current  
V
VOH  
IOL  
0.90 * VTT  
1.70  
V
mA  
mA  
µA  
µA  
IOH  
1.70  
4.70  
ILI  
N/A  
± 100  
9
ILO  
N/A  
± 100  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. VIL is defined as the voltage range at a receiving agent that will be interpreted as a logical low  
value.  
3. The VTT referred to in these specifications refers to instantaneous VTT.  
4. VIH is defined as the voltage range at a receiving agent that will be interpreted as a logical high  
value.  
5. VIH and VOH may experience excursions above VTT.  
6. All outputs are open drain.  
7. IOL is measured at 0.10 * VTT. IOH is measured at 0.90 * VTT.  
8. Leakage to VSS with land held at VTT.  
9. Leakage to VTT with land held at 300 mV.  
2.7.3.1  
GTL+ Front Side Bus Specifications  
In most cases, termination resistors are not required as these are integrated into the  
processor silicon. See Table 9 for details on which GTL+ signals do not include on-die  
termination.  
Valid high and low levels are determined by the input buffers by comparing with a  
reference voltage called GTLREF. Table 14 lists the GTLREF specifications. The GTL+  
reference voltage (GTLREF) should be generated on the system board using high  
precision voltage divider circuits.  
Table 14.  
GTL+ Bus Voltage Definitions  
Symbol  
Parameter  
Min  
Typ  
Max  
Units Notes1  
2
GTLREF_PU GTLREF pull up resistor  
GTLREF_PD GTLREF pull down resistor  
124 * 0.99  
210 * 0.99  
45  
124  
210  
124 * 1.01  
210 * 1.01  
55  
Ω
2
Ω
3
RTT  
Termination Resistance  
COMP Resistance  
50  
Ω
4
COMP[3:0]  
COMP8  
NOTES:  
49.40  
49.90  
24.90  
50.40  
Ω
4
COMP Resistance  
24.65  
25.15  
Ω
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. GTLREF is to be generated from VTT by a voltage divider of 1% resistors (one divider for each  
GTLEREF land).  
3. RTT is the on-die termination resistance measured at VTT/3 of the GTL+ output driver.  
4. COMP resistance must be provided on the system board with 1% resistors. See the applicable  
platform design guide for implementation details. COMP[3:0] and COMP8 resistors are tied to  
VSS  
.
28  
Datasheet  
Electrical Specifications  
2.7.4  
2.7.5  
Clock Specifications  
Front Side Bus Clock (BCLK[1:0]) and Processor Clocking  
BCLK[1:0] directly controls the FSB interface speed as well as the core frequency of the  
processor. As in previous generation processors, the processor’s core frequency is a  
multiple of the BCLK[1:0] frequency. The processor bus ratio multiplier will be set at its  
default ratio during manufacturing. Refer to Table 15 for the processor supported  
ratios.  
The processor uses a differential clocking implementation. For more information on the  
processor clocking, contact your Intel Field representative. Platforms using a CK505  
Clock Synthesizer/Driver should comply with the specifications in Section 2.7.8.  
Platforms using a CK410 Clock Synthesizer/Driver should comply with the specifications  
in Section 2.7.9.  
Table 15.  
Core Frequency to FSB Multiplier Configuration  
Multiplication of  
Core Frequency  
Core Frequency  
Core Frequency  
System Core  
Frequency to FSB  
Frequency  
(200 MHz BCLK/ (266 MHz BCLK/  
(333 MHz BCLK/ Notes1, 2  
1333 MHz FSB)  
800 MHz FSB)  
1066 MHz FSB)  
1/6  
1/7  
1.20 GHz  
1.40 GHz  
1.60 GHz  
1.80 GHz  
2 GHz  
1.60 GHz  
1.87 GHz  
2.13 GHz  
2.40 GHz  
2.66 GHz  
2.93 GHz  
3.20 GHz  
2.00 GHz  
2.33 GHz  
2.66 GHz  
3.00 GHz  
3.33 GHz  
3.66 GHz  
4.00 GHz  
-
-
-
-
-
-
1/8  
1/9  
1/10  
1/11  
2.2 GHz  
2.4 GHz  
1/12  
NOTES:  
1. Individual processors operate only at or below the rated frequency.  
2. Listed frequencies are not necessarily committed production frequencies.  
2.7.6  
FSB Frequency Select Signals (BSEL[2:0])  
The BSEL[2:0] signals are used to select the frequency of the processor input clock  
(BCLK[1:0]). Table 16 defines the possible combinations of the signals and the  
frequency associated with each combination. The required frequency is determined by  
the processor, chipset, and clock synthesizer. All agents must operate at the same  
frequency.  
The Intel Core2 Duo desktop processors E6850, E6750, E6550, and E6540 operate at  
1333 MHz (selected by the 333 MHz BCLK[2:0] frequency). The Intel Core2 Duo  
desktop processors E6700, E6600, E6420, E6400, E6320, and E6300 operate at  
1066 MHz (selected by the 266 MHz BCLK[2:0] frequency). The Intel Core2 Extreme  
processor X6800 operates at a 1066 MHz FSB frequency (selected by a 266 MHz  
BCLK[1:0] frequency). The Intel Core2 Duo desktop processors E4700, E4600, E4500,  
E4400 and E4300 operate at a 800 MHz FSB frequency (selected by a 200 MHz  
BCLK[1:0] frequency).  
Datasheet  
29  
Electrical Specifications  
Table 16.  
BSEL[2:0] Frequency Table for BCLK[1:0]  
BSEL2  
BSEL1  
BSEL0  
FSB Frequency  
L
L
L
L
L
H
H
L
266 MHz  
RESERVED  
RESERVED  
200 MHz  
L
H
H
H
H
L
L
H
H
H
H
L
RESERVED  
RESERVED  
RESERVED  
333 MHz  
H
H
L
L
2.7.7  
Phase Lock Loop (PLL) and Filter  
An on-die PLL filter solution will be implemented on the processor. The VCCPLL input is  
used for the PLL. Refer to Table 5 for DC specifications.  
2.7.8  
BCLK[1:0] Specifications (CK505 based Platforms)  
Table 17.  
Front Side Bus Differential BCLK Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit Figure Notes1  
2
VL  
Input Low Voltage  
Input High Voltage  
-0.30  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
1.2  
N/A  
1.15  
0.550  
0.140  
1.4  
V
V
3
3
2
VH  
3, 4,  
5
VCROSS(abs) Absolute Crossing Point  
0.300  
N/A  
V
3, 4  
3, 4  
3
4
6
6
7
ΔVCROSS  
VOS  
Range of Crossing Points  
Overshoot  
V
N/A  
V
VUS  
Undershoot  
-0.300  
0.300  
-5  
N/A  
V
3
VSWING  
ILI  
Differential Output Swing  
Input Leakage Current  
Pad Capacitance  
N/A  
V
5
5
μA  
pF  
8
Cpad  
.95  
1.45  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. "Steady state" voltage, not including overshoot or undershoot.  
3. Crossing voltage is defined as the instantaneous voltage value when the rising edge of BCLK0  
equals the falling edge of BCLK1.  
4. VHavg is the statistical average of the VH measured by the oscilloscope.  
5. The crossing point must meet the absolute and relative crossing point specifications  
simultaneously.  
6. Overshoot is defined as the absolute value of the maximum voltage. Undershoot is defined as  
the absolute value of the minimum voltage.  
7. Measurement taken from differential waveform.  
8. Cpad includes die capacitance only. No package parasitics are included.  
30  
Datasheet  
Electrical Specifications  
Figure 3.  
Differential Clock Waveform  
CLK 0  
VCROSS Max  
550 mV  
VCROSS  
Median + 75 mV  
VCROSS  
VCROSS  
median  
median  
VCROSS  
VCROSS Min  
300 mV  
Median - 75 mV  
CLK 1  
High Time  
Low Time  
Period  
Figure 4.  
Differential Clock Crosspoint Specification  
650  
600  
550  
500  
550 mV  
550 + 0.5 (VHavg - 700)  
450  
400  
300 + 0.5 (VHavg - 700)  
350  
300  
250  
200  
300 mV  
660 670 680 690 700 710 720 730 740 750 760 770 780 790 800 810 820 830 840 850  
VHavg (mV)  
Figure 5.  
Differential Measurements  
Slew_rise  
Slew _fall  
+150 mV  
0.0V  
+150mV  
0.0V  
V_swing  
-150 mV  
-150mV  
Diff  
Datasheet  
31  
Electrical Specifications  
2.7.9  
BCLK[1:0] Specifications (CK410 based Platforms)  
Table 18.  
Front Side Bus Differential BCLK Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit Figure Notes1  
VL  
Input Low Voltage  
Input High Voltage  
-0.150  
0.660  
0.000  
0.700  
N/A  
V
V
3
3
-
-
VH  
0.850  
Absolute Crossing  
Point  
2,  
3
VCROSS(abs)  
VCROSS(rel)  
ΔVCROSS  
0.250  
N/A  
N/A  
N/A  
0.550  
V
V
V
3, 4  
3, 4  
3, 4  
Relative Crossing  
Point  
0.250 +  
0.5(VHavg – 0.700)  
0.550 +  
0.5(VHavg – 0.700)  
4, 3, 5  
Range of Crossing  
Points  
N/A  
0.140  
-
6
7
8
9
VOS  
VUS  
Overshoot  
N/A  
-0.300  
N/A  
N/A  
N/A  
N/A  
VH + 0.3  
N/A  
V
V
V
V
3
3
3
3
Undershoot  
VRBM  
Ringback Margin  
Threshold Region  
0.200  
N/A  
VTM  
VCROSS – 0.100  
VCROSS + 0.100  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. Crossing voltage is defined as the instantaneous voltage value when the rising edge of BCLK0 equals the  
falling edge of BCLK1.  
3. The crossing point must meet the absolute and relative crossing point specifications simultaneously.  
4. VHavg is the statistical average of the VH measured by the oscilloscope.  
5. VHavg can be measured directly using “Vtop” on Agilent* oscilloscopes and “High” on Tektronix* oscilloscopes.  
6. Overshoot is defined as the absolute value of the maximum voltage.  
7. Undershoot is defined as the absolute value of the minimum voltage.  
8. Ringback Margin is defined as the absolute voltage difference between the maximum Rising Edge Ringback  
and the maximum Falling Edge Ringback.  
9. Threshold Region is defined as a region entered around the crossing point voltage in which the differential  
receiver switches. It includes input threshold hysteresis.  
Figure 6.  
Differential Clock Crosspoint Specification  
650  
600  
550  
500  
550 mV  
550 + 0.5 (VHavg - 700)  
450  
400  
250 + 0.5 (VHavg - 700)  
350  
300  
250  
200  
250 mV  
660 670 680 690 700 710 720 730 740 750 760 770 780 790 800 810 820 830 840 850  
VHavg (mV)  
32  
Datasheet  
Electrical Specifications  
2.8  
PECI DC Specifications  
PECI is an Intel proprietary one-wire interface that provides a communication channel  
between Intel processors (may also include chipset components in the future) and  
external thermal monitoring devices. The processor contains Digital Thermal Sensors  
(DTS) distributed throughout die. These sensors are implemented as analog-to-digital  
converters calibrated at the factory for reasonable accuracy to provide a digital  
representation of relative processor temperature. PECI provides an interface to relay  
the highest DTS temperature within a die to external management devices for thermal/  
fan speed control. More detailed information is available in the Platform Environment  
Control Interface (PECI) Specification.  
Table 19.  
PECI DC Electrical Limits  
Symbol  
Definition and Conditions  
Input Voltage Range  
Min  
Max  
Units Notes1  
Vin  
-0.15  
VTT  
V
2
Vhysteresis Hysteresis  
0.1 * VTT  
V
Vn  
Vp  
Negative-edge threshold voltage  
0.275 * VTT  
0.550 * VTT  
0.500 * VTT  
0.725 * VTT  
V
V
Positive-edge threshold voltage  
High level output source  
(VOH = 0.75 * VTT)  
Isource  
-6.0  
0.5  
N/A  
1.0  
mA  
mA  
Low level output sink  
(VOL = 0.25 * VTT)  
Isink  
3
Ileak+  
Ileak-  
High impedance state leakage to VTT  
High impedance leakage to GND  
Bus capacitance per node  
N/A  
N/A  
50  
10  
10  
µA  
3
µA  
4
Cbus  
N/A  
pF  
Vnoise  
Signal noise immunity above 300 MHz  
0.1 * VTT  
Vp-p  
NOTES:  
1. VTT supplies the PECI interface. PECI behavior does not affect VTT min/max specifications. Refer  
to Table 4 for VTT specifications.  
2. The input buffers use a Schmitt-triggered input design for improved noise immunity.  
3. The leakage specification applies to powered devices on the PECI bus.  
4. One node is counted for each client and one node for the system host. Extended trace lengths  
might appear as additional nodes.  
§ §  
Datasheet  
33  
Electrical Specifications  
34  
Datasheet  
Package Mechanical Specifications  
3
Package Mechanical  
Specifications  
The processor is packaged in a Flip-Chip Land Grid Array (FC-LGA6) package that  
interfaces with the motherboard via an LGA775 socket. The package consists of a  
processor core mounted on a substrate land-carrier. An integrated heat spreader (IHS)  
is attached to the package substrate and core and serves as the mating surface for  
processor component thermal solutions, such as a heatsink. Figure 7 shows a sketch of  
the processor package components and how they are assembled together. Refer to the  
LGA775 Socket Mechanical Design Guide for complete details on the LGA775 socket.  
The package components shown in Figure 7 include the following:  
• Integrated Heat Spreader (IHS)  
• Thermal Interface Material (TIM)  
• Processor core (die)  
• Package substrate  
• Capacitors  
Figure 7.  
Processor Package Assembly Sketch  
Core (die)  
TIM  
IHS  
Substrate  
Capacitors  
LGA775 Socket  
System Board  
NOTE:  
1.  
Socket and System Board are included for reference and are not part of processor  
package.  
3.1  
Package Mechanical Drawing  
The package mechanical drawings are shown in Figure 8 and Figure 9. The drawings  
include dimensions necessary to design a thermal solution for the processor. These  
dimensions include:  
• Package reference with tolerances (total height, length, width, etc.)  
• IHS parallelism and tilt  
• Land dimensions  
Top-side and back-side component keep-out dimensions  
• Reference datums  
• All drawing dimensions are in mm [in].  
• Guidelines on potential IHS flatness variation with socket load plate actuation and  
installation of the cooling solution is available in the processor Thermal and  
Mechanical Design Guidelines.  
Datasheet  
35  
Package Mechanical Specifications  
Figure 8.  
Processor Package Drawing Sheet 1 of 3  
36  
Datasheet  
Package Mechanical Specifications  
Figure 9.  
Processor Package Drawing Sheet 2 of 3  
Datasheet  
37  
Package Mechanical Specifications  
Figure 10.  
Processor Package Drawing Sheet 3 of 3  
38  
Datasheet  
Package Mechanical Specifications  
3.1.1  
3.1.2  
Processor Component Keep-Out Zones  
The processor may contain components on the substrate that define component keep-  
out zone requirements. A thermal and mechanical solution design must not intrude into  
the required keep-out zones. Decoupling capacitors are typically mounted to either the  
topside or land-side of the package substrate. See Figure 8 and Figure 9 for keep-out  
zones. The location and quantity of package capacitors may change due to  
manufacturing efficiencies but will remain within the component keep-in.  
Package Loading Specifications  
Table 20 provides dynamic and static load specifications for the processor package.  
These mechanical maximum load limits should not be exceeded during heatsink  
assembly, shipping conditions, or standard use condition. Also, any mechanical system  
or component testing should not exceed the maximum limits. The processor package  
substrate should not be used as a mechanical reference or load-bearing surface for  
thermal and mechanical solution. The minimum loading specification must be  
maintained by any thermal and mechanical solutions.  
.
Table 20.  
Processor Loading Specifications  
Parameter  
Minimum  
Maximum  
Notes  
1, 2,  
3
Static  
80 N [17 lbf]  
311 N [70 lbf]  
756 N [170 lbf]  
1, 3, 4  
Dynamic  
NOTES:  
1. These specifications apply to uniform compressive loading in a direction normal to the  
processor IHS.  
2. This is the maximum force that can be applied by a heatsink retention clip. The clip must also  
provide the minimum specified load on the processor package.  
3. These specifications are based on limited testing for design characterization. Loading limits are  
for the package only and do not include the limits of the processor socket.  
4. Dynamic loading is defined as an 11 ms duration average load superimposed on the static load  
requirement.  
3.1.3  
Package Handling Guidelines  
Table 21 includes a list of guidelines on package handling in terms of recommended  
maximum loading on the processor IHS relative to a fixed substrate. These package  
handling loads may be experienced during heatsink removal.  
Table 21.  
Package Handling Guidelines  
Parameter  
Maximum Recommended  
Notes  
1,  
2
Shear  
Tensile  
Torque  
311 N [70 lbf]  
111 N [25 lbf]  
2, 3  
2, 4  
3.95 N-m [35 lbf-in]  
NOTES:  
1. A shear load is defined as a load applied to the IHS in a direction parallel to the IHS top surface.  
2. These guidelines are based on limited testing for design characterization.  
3. A tensile load is defined as a pulling load applied to the IHS in a direction normal to the IHS  
surface.  
4. A torque load is defined as a twisting load applied to the IHS in an axis of rotation normal to the  
IHS top surface.  
Datasheet  
39  
Package Mechanical Specifications  
3.1.4  
3.1.5  
Package Insertion Specifications  
The processor can be inserted into and removed from a LGA775 socket 15 times. The  
socket should meet the LGA775 requirements detailed in the LGA775 Socket  
Mechanical Design Guide.  
Processor Mass Specification  
The typical mass of the processor is 21.5 g [0.76 oz]. This mass [weight] includes all  
the components that are included in the package.  
3.1.6  
Processor Materials  
Table 22 lists some of the package components and associated materials.  
Table 22.  
Processor Materials  
Component  
Material  
Integrated Heat Spreader (IHS)  
Substrate  
Nickel Plated Copper  
Fiber Reinforced Resin  
Gold Plated Copper  
Substrate Lands  
3.1.7  
Processor Markings  
Figure 11 through Figure 15show the topside markings on the processor. The diagrams  
are to aid in the identification of the processor.  
Figure 11.  
Processor Top-Side Markings Example for the Intel® Core™2 Duo Desktop  
Processor E6000 Series with 4 MB L2 Cache with 1333 MHz FSB  
M
INTEL ©'05 E6850  
INTEL® CORE™2 DUO  
SLxxx [COO]  
3.00GHZ/4M/1333/06  
e4  
[FPO]  
ATPO  
S/N  
40  
Datasheet  
Package Mechanical Specifications  
Figure 12.  
Processor Top-Side Markings Example for the Intel® Core™2 Duo Desktop  
Processors E6000 Series with 4 MB L2 Cache with 1066 MHz FSB  
M
INTEL ©'05  
INTEL® CORE™2 DUO  
6700 SLxxx [COO]  
2.66GHZ/4M/1066/06  
e4  
[FPO]  
ATPO  
S/N  
Figure 13.  
Processor Top-Side Markings Example for the Intel® Core™2 Duo Desktop  
Processors E6000 Series with 2 MB L2 Cache  
M
INTEL ©'05  
INTEL® CORE™2 DUO  
6400 SLxxx [COO]  
2.13GHZ/2M/1066/06  
e4  
[FPO]  
ATPO  
S/N  
Datasheet  
41  
Package Mechanical Specifications  
Figure 14.  
Processor Top-Side Markings Example for the Intel® Core™2 Duo Desktop  
Processors E4000 Series with 2 MB L2 Cache  
M
INTEL ©'05 E4500  
INTEL® CORE™2 DUO  
SLxxx [COO]  
2.20GHZ/2M/800/06  
e4  
[FPO]  
ATPO  
S/N  
E
E
Figure 15.  
Processor Top-Side Markings for the Intel® Core™2 Extreme Processor X6800  
M
INTEL ©'05  
INTEL® CORE™2 EXTREME  
6800 SLxxx [COO]  
2.93GHZ/4M/1066/05B  
e4  
[FPO]  
ATPO  
S/N  
42  
Datasheet  
Package Mechanical Specifications  
3.1.8  
Processor Land Coordinates  
Figure 16 shows the top view of the processor land coordinates. The coordinates are  
referred to throughout the document to identify processor lands.  
.
Figure 16.  
Processor Land Coordinates and Quadrants (Top View)  
VCC / VSS  
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9  
8 7 6 5 4 3 2 1  
AN  
AM  
AL  
AK  
AJ  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
AN  
AM  
AL  
AK  
AJ  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
Socket 775  
Quadrants  
Top View  
W
V
W
Address/  
UV Common Clock/  
U
T
T
Async  
R
R
P
N
M
L
P
N
M
L
K
K
J
J
H
H
G
F
G
F
E
E
D
C
B
A
D
C
B
A
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9  
8 7 6 5 4 3 2 1  
VTT / Clocks  
Data  
§ §  
Datasheet  
43  
Package Mechanical Specifications  
44  
Datasheet  
Land Listing and Signal Descriptions  
4
Land Listing and Signal  
Descriptions  
This chapter provides the processor land assignment and signal descriptions.  
4.1  
Processor Land Assignments  
This section contains the land listings for the processor. The land-out footprint is shown  
in Figure 17 and Figure 18. These figures represent the land-out arranged by land  
number and they show the physical location of each signal on the package land array  
(top view). Table 23 provides a listing of all processor lands ordered alphabetically by  
land (signal) name. Table 24 provides a listing of all processor lands ordered by land  
number.  
Datasheet  
45  
Land Listing and Signal Descriptions  
Figure 17.  
land-out Diagram (Top View – Left Side)  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
AN  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AM  
AL  
AK  
AJ  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
AA  
Y
W
V
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
U
T
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
R
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
P
N
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
M
L
K
J
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
FC34  
VSS  
FC31  
FC33  
VCC  
H
BSEL1  
BSEL2  
FC15  
FC32  
BSEL0  
RSVD  
FC26  
VTT  
BCLK1  
BCLK0  
VSS  
TESTHI4 TESTHI5 TESTHI3 TESTHI6 RESET#  
D47#  
VSS  
D44#  
D43#  
D42#  
VSS  
DSTBN2# DSTBP2#  
D35#  
D38#  
D39#  
VSS  
D36#  
D37#  
VSS  
D32#  
VSS  
D31#  
D30#  
D33#  
VSS  
G
F
VTT_SEL TESTHI0 TESTHI2 TESTHI7  
RSVD  
RSVD  
D41#  
VSS  
VSS  
VSS  
VTT  
VSS  
VTT  
VSS  
VTT  
FC10  
VSS  
D45#  
D46#  
D40#  
DBI2#  
D34#  
RSVD  
E
D
VTT  
VTT  
VTT  
VCCPLL  
D48#  
D49#  
VCCIO  
PLL  
VTT  
VTT  
VTT  
VTT  
VTT  
VSS  
VSS  
D58#  
DBI3#  
VSS  
D54#  
DSTBP3#  
VSS  
D51#  
C
B
A
VTT  
VTT  
30  
VTT  
VTT  
29  
VTT  
VTT  
28  
VTT  
VTT  
27  
VTT  
VTT  
26  
VTT  
VTT  
25  
VSS  
FC23  
24  
VSSA  
VCCA  
23  
D63#  
D62#  
22  
D59#  
VSS  
21  
VSS  
RSVD  
20  
D60#  
D61#  
19  
D57#  
VSS  
18  
VSS  
D56#  
17  
D55#  
DSTBN3#  
16  
D53#  
VSS  
15  
46  
Datasheet  
Land Listing and Signal Descriptions  
Figure 18.  
land-out Diagram (Top View – Right Side)  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
VID_SELE  
CT  
VSS_MB_  
REGULATION  
VCC_MB_  
REGULATION  
VSS_  
SENSE  
VCC_  
SENSE  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
AN  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VID7  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
FC40  
VID3  
FC8  
VID6  
VID1  
VSS  
VID5  
VID4  
VSS  
VID2  
VRDSEL  
ITP_CLK0  
ITP_CLK1  
VSS  
VID0  
PROCHOT#  
VSS  
VSS  
THERMDA  
THERMDC  
BPM1#  
VSS  
AM  
AL  
AK  
AJ  
VCC  
VSS  
VCC  
A35#  
VSS  
A34#  
A33#  
A31#  
A27#  
VSS  
BPM0#  
RSVD  
VCC  
A32#  
A30#  
A28#  
RSVD  
VSS  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
VCC  
A29#  
VSS  
BPM5#  
VSS  
BPM3#  
BPM4#  
VSS  
TRST#  
TDO  
VCC  
SKTOCC#  
VCC  
RSVD  
A22#  
VSS  
FC18  
TCK  
ADSTB1#  
A25#  
A24#  
FC36  
BPM2#  
DBR#  
TDI  
VCC  
RSVD  
A26#  
VSS  
TMS  
VCC  
A17#  
FC37  
IERR#  
VSS  
VTT_OUT_  
RIGHT  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
A23#  
VSS  
A21#  
A20#  
VSS  
VSS  
FC17  
FC39  
VSS  
AA  
Y
A19#  
A18#  
FC0  
TESTHI12/  
FC44  
A16#  
TESTHI1  
MSID0  
W
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
A10#  
VSS  
A14#  
A12#  
A9#  
A15#  
A13#  
A11#  
VSS  
FC30  
VSS  
RSVD  
FC29  
FC4  
MSID1  
FC28  
V
U
T
COMP1  
FERR#/  
PBE#  
VCC  
VSS  
ADSTB0#  
VSS  
A8#  
VSS  
COMP3  
R
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
A4#  
VSS  
RSVD  
RSVD  
A5#  
VSS  
RSVD  
A7#  
INIT#  
VSS  
SMI#  
TESTHI11  
PWRGOOD  
VSS  
P
N
M
L
IGNNE#  
REQ2#  
VSS  
STPCLK# THERMTRIP#  
A3#  
A6#  
VSS  
TESTHI13  
VSS  
LINT1  
REQ3#  
VSS  
REQ0#  
A20M#  
LINT0  
K
VTT_OUT_  
LEFT  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VSS  
REQ4#  
VSS  
REQ1#  
TESTHI10  
PECI  
VSS  
FC22  
VSS  
FC3  
J
H
FC35  
GTLREF1  
COMP2  
GTLREF0  
FC27  
TESTHI9/  
FC43  
TESTHI8/  
FC42  
D29#  
D27#  
DSTBN1#  
DBI1#  
FC38  
D16#  
BPRI#  
DEFER#  
RSVD  
G
D28#  
VSS  
VSS  
D24#  
DSTBP1#  
VSS  
D23#  
VSS  
VSS  
D18#  
D19#  
VSS  
D17#  
VSS  
VSS  
FC21  
RSVD  
VSS  
RS1#  
FC20  
VSS  
VSS  
HITM#  
HIT#  
BR0#  
TRDY#  
VSS  
FC5  
VSS  
F
E
D
C
D26#  
D25#  
D21#  
D22#  
RSVD  
D20#  
RSVD  
D15#  
D12#  
ADS#  
RSVD  
DRDY#  
VSS  
D52#  
VSS  
D14#  
D11#  
VSS  
FC38  
DSTBN0#  
VSS  
D3#  
D1#  
VSS  
LOCK#  
BNR#  
VSS  
D50#  
14  
COMP8  
COMP0  
13  
D13#  
VSS  
12  
VSS  
D9#  
11  
D10#  
D8#  
10  
DSTBP0#  
VSS  
VSS  
DBI0#  
8
D6#  
D7#  
7
D5#  
VSS  
6
VSS  
D4#  
5
D0#  
D2#  
4
RS0#  
RS2#  
3
DBSY#  
VSS  
2
B
A
9
1
Datasheet  
47  
Land Listing and Signal Descriptions  
Table 23.  
Alphabetical Land  
Assignments  
Table 23.  
Alphabetical Land  
Assignments  
Land Signal Buffer  
Land Signal Buffer  
Land Name  
Direction  
Land Name  
Direction  
#
Type  
#
Type  
A3#  
A4#  
L5  
P6  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
BNR#  
BPM0#  
BPM1#  
BPM2#  
BPM3#  
BPM4#  
BPM5#  
BPRI#  
BR0#  
BSEL0  
BSEL1  
BSEL2  
COMP0  
COMP1  
COMP2  
COMP3  
COMP8  
D0#  
C2  
Common Clock Input/Output  
AJ2 Common Clock Input/Output  
AJ1 Common Clock Input/Output  
AD2 Common Clock Input/Output  
AG2 Common Clock Input/Output  
AF2 Common Clock Input/Output  
AG3 Common Clock Input/Output  
A5#  
M5  
L4  
A6#  
A7#  
M4  
R4  
T5  
A8#  
A9#  
A10#  
A11#  
A12#  
A13#  
A14#  
A15#  
A16#  
A17#  
A18#  
A19#  
A20#  
A20M#  
A21#  
A22#  
A23#  
A24#  
A25#  
A26#  
A27#  
A28#  
A29#  
A30#  
A31#  
A32#  
A33#  
A34#  
A35#  
ADS#  
ADSTB0#  
ADSTB1#  
BCLK0  
BCLK1  
U6  
T4  
G8  
F3  
Common Clock  
Input  
Common Clock Input/Output  
U5  
U4  
V5  
V4  
W5  
AB6  
W6  
Y6  
G29  
H30  
G30  
A13  
T1  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
Output  
Output  
Input  
Input  
G2  
Input  
R1  
Input  
B13  
B4  
Input  
Y4  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
K3  
AA4  
Asynch CMOS  
Input  
D1#  
C5  
Source Synch Input/Output  
D2#  
A4  
AD6 Source Synch Input/Output  
D3#  
C6  
AA5  
AB5  
AC5  
AB4  
AF5  
AF4  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
D4#  
A5  
D5#  
B6  
D6#  
B7  
D7#  
A7  
D8#  
A10  
A11  
B10  
C11  
D8  
D9#  
AG6 Source Synch Input/Output  
AG4 Source Synch Input/Output  
AG5 Source Synch Input/Output  
D10#  
D11#  
D12#  
D13#  
D14#  
D15#  
D16#  
D17#  
D18#  
D19#  
D20#  
D21#  
AH4  
AH5  
AJ5  
AJ6  
D2  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Common Clock Input/Output  
Source Synch Input/Output  
B12  
C12  
D11  
G9  
F8  
R6  
F9  
AD5 Source Synch Input/Output  
E9  
F28  
Clock  
Clock  
Input  
Input  
D7  
G28  
E10  
48  
Datasheet  
Land Listing and Signal Descriptions  
Table 23.  
Alphabetical Land  
Assignments  
Table 23.  
Alphabetical Land  
Assignments  
Land Signal Buffer  
Land Signal Buffer  
Land Name  
Direction  
Land Name  
Direction  
#
Type  
#
Type  
D22#  
D23#  
D24#  
D25#  
D26#  
D27#  
D28#  
D29#  
D30#  
D31#  
D32#  
D33#  
D34#  
D35#  
D36#  
D37#  
D38#  
D39#  
D40#  
D41#  
D42#  
D43#  
D44#  
D45#  
D46#  
D47#  
D48#  
D49#  
D50#  
D51#  
D52#  
D53#  
D54#  
D55#  
D56#  
D57#  
D58#  
D59#  
D60#  
D10  
F11  
F12  
D13  
E13  
G13  
F14  
G14  
F15  
G15  
G16  
E15  
E16  
G18  
G17  
F17  
F18  
E18  
E19  
F20  
E21  
F21  
G21  
E22  
D22  
G22  
D20  
D17  
A14  
C15  
C14  
B15  
C18  
B16  
A17  
B18  
C21  
B21  
B19  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
D61#  
D62#  
A19  
A22  
B22  
A8  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
D63#  
DBI0#  
DBI1#  
DBI2#  
DBI3#  
DBR#  
DBSY#  
DEFER#  
DRDY#  
DSTBN0#  
DSTBN1#  
DSTBN2#  
DSTBN3#  
DSTBP0#  
DSTBP1#  
DSTBP2#  
DSTBP3#  
FC0  
G11  
D19  
C20  
AC2  
B2  
Power/Other  
Common Clock Input/Output  
Common Clock Input  
Output  
G7  
C1  
Common Clock Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
C8  
G12  
G20  
A16  
B9  
E12  
G19  
C17  
Y1  
FC3  
J2  
Power/Other  
FC4  
T2  
Power/Other  
FC5  
F2  
Power/Other  
FC8  
AK6  
E24  
H29  
Y3  
Power/Other  
FC10  
Power/Other  
FC15  
Power/Other  
FC17  
Power/Other  
FC18  
AE3  
E5  
Power/Other  
FC20  
Power/Other  
FC21  
F6  
Power/Other  
FC22  
J3  
Power/Other  
FC23  
A24  
E29  
G1  
Power/Other  
FC26  
Power/Other  
FC27  
Power/Other  
FC28  
U1  
Power/Other  
FC29  
U2  
Power/Other  
FC30  
U3  
Power/Other  
FC31  
J16  
H15  
Power/Other  
FC32  
Power/Other  
Datasheet  
49  
Land Listing and Signal Descriptions  
Table 23.  
Alphabetical Land  
Assignments  
Table 23.  
Alphabetical Land  
Assignments  
Land Signal Buffer  
Land Signal Buffer  
Land Name  
Direction  
Land Name  
Direction  
#
Type  
#
Type  
FC33  
FC34  
H16  
J17  
H4  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Asynch CMOS  
Power/Other  
Power/Other  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESET#  
RS0#  
D16  
E23  
E6  
FC35  
FC36  
AD3  
AB3  
G10  
C9  
E7  
FC37  
F23  
F29  
G6  
N4  
FC38  
FC38  
FC39  
AA2  
AM6  
R3  
FC40  
N5  
FERR#/PBE#  
GTLREF0  
GTLREF1  
HIT#  
Output  
Input  
Input  
P5  
H1  
V2  
H2  
G23 Common Clock  
Input  
Input  
Input  
Input  
Output  
Input  
Input  
Input  
Input  
Output  
Input  
Input  
Input  
Input  
D4  
Common Clock Input/Output  
Common Clock Input/Output  
B3  
F5  
Common Clock  
Common Clock  
Common Clock  
Power/Other  
Asynch CMOS  
Asynch CMOS  
TAP  
HITM#  
E4  
RS1#  
IERR#  
AB2  
N2  
Asynch CMOS  
Asynch CMOS  
Asynch CMOS  
TAP  
Output  
Input  
Input  
Input  
Input  
Input  
Input  
RS2#  
A3  
IGNNE#  
INIT#  
SKTOCC#  
SMI#  
AE8  
P2  
P3  
ITP_CLK0  
ITP_CLK1  
LINT0  
AK3  
AJ3  
K1  
STPCLK#  
TCK  
M3  
AE1  
AD1  
AF1  
F26  
W3  
H5  
TAP  
Asynch CMOS  
Asynch CMOS  
TDI  
TAP  
LINT1  
L1  
TDO  
TAP  
LOCK#  
C3  
Common Clock Input/Output  
TESTHI0  
TESTHI1  
TESTHI10  
TESTHI11  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
MSID0  
W1  
V1  
Power/Other  
Power/Other  
Output  
Output  
MSID1  
PECI  
G5  
Power/Other Input/Output  
Asynch CMOS Input/Output  
P1  
PROCHOT#  
PWRGOOD  
REQ0#  
REQ1#  
REQ2#  
REQ3#  
REQ4#  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
AL2  
N1  
TESTHI12/  
FC44  
W2  
Power/Other  
Input  
Power/Other  
Input  
TESTHI13  
TESTHI2  
L2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Asynch CMOS  
TAP  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
K4  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
F25  
G25  
G27  
G26  
G24  
F24  
G3  
J5  
TESTHI3  
M6  
K6  
TESTHI4  
TESTHI5  
J6  
TESTHI6  
A20  
AC4  
AE4  
AE6  
AH2  
D1  
TESTHI7  
TESTHI8/FC42  
TESTHI9/FC43  
THERMDA  
THERMDC  
THERMTRIP#  
TMS  
G4  
AL1  
AK1  
M2  
Output  
Input  
D14  
AC1  
50  
Datasheet  
Land Listing and Signal Descriptions  
Table 23.  
Alphabetical Land  
Assignments  
Table 23.  
Alphabetical Land  
Assignments  
Land Signal Buffer  
Land Signal Buffer  
Land Name  
Direction  
Land Name  
Direction  
#
Type  
#
Type  
TRDY#  
TRST#  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
E3  
Common Clock  
TAP  
Input  
Input  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AF22  
AF8  
Power/Other  
Power/Other  
Power/Other  
AG1  
AA8  
AB8  
Power/Other  
Power/Other  
AF9  
AG11 Power/Other  
AG12 Power/Other  
AG14 Power/Other  
AG15 Power/Other  
AG18 Power/Other  
AG19 Power/Other  
AG21 Power/Other  
AG22 Power/Other  
AG25 Power/Other  
AG26 Power/Other  
AG27 Power/Other  
AG28 Power/Other  
AG29 Power/Other  
AG30 Power/Other  
AC23 Power/Other  
AC24 Power/Other  
AC25 Power/Other  
AC26 Power/Other  
AC27 Power/Other  
AC28 Power/Other  
AC29 Power/Other  
AC30 Power/Other  
AC8  
Power/Other  
AD23 Power/Other  
AD24 Power/Other  
AD25 Power/Other  
AD26 Power/Other  
AD27 Power/Other  
AD28 Power/Other  
AD29 Power/Other  
AD30 Power/Other  
AG8  
AG9  
Power/Other  
Power/Other  
AH11 Power/Other  
AH12 Power/Other  
AH14 Power/Other  
AH15 Power/Other  
AH18 Power/Other  
AH19 Power/Other  
AH21 Power/Other  
AH22 Power/Other  
AH25 Power/Other  
AH26 Power/Other  
AH27 Power/Other  
AH28 Power/Other  
AH29 Power/Other  
AH30 Power/Other  
AD8  
AE11  
AE12  
AE14  
AE15  
AE18  
AE19  
AE21  
AE22  
AE23  
AE9  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AF11  
AF12  
AF14  
AF15  
AF18  
AF19  
AF21  
AH8  
AH9  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AJ11  
AJ12  
AJ14  
AJ15  
Datasheet  
51  
Land Listing and Signal Descriptions  
Table 23.  
Alphabetical Land  
Assignments  
Table 23.  
Alphabetical Land  
Assignments  
Land Signal Buffer  
Land Signal Buffer  
Land Name  
Direction  
Land Name  
Direction  
#
Type  
#
Type  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AJ18  
AJ19  
AJ21  
AJ22  
AJ25  
AJ26  
AJ8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AM19 Power/Other  
AM21 Power/Other  
AM22 Power/Other  
AM25 Power/Other  
AM26 Power/Other  
AM29 Power/Other  
AM30 Power/Other  
AJ9  
AM8  
AM9  
Power/Other  
Power/Other  
AK11  
AK12  
AK14  
AK15  
AK18  
AK19  
AK21  
AK22  
AK25  
AK26  
AK8  
AN11 Power/Other  
AN12 Power/Other  
AN14 Power/Other  
AN15 Power/Other  
AN18 Power/Other  
AN19 Power/Other  
AN21 Power/Other  
AN22 Power/Other  
AN25 Power/Other  
AN26 Power/Other  
AN29 Power/Other  
AN30 Power/Other  
AK9  
AL11  
AL12  
AL14  
AL15  
AL18  
AL19  
AL21  
AL22  
AL25  
AL26  
AL29  
AL30  
AL8  
AN8  
AN9  
J10  
J11  
J12  
J13  
J14  
J15  
J18  
J19  
J20  
J21  
J22  
J23  
J24  
J25  
J26  
J27  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AL9  
AM11 Power/Other  
AM12 Power/Other  
AM14 Power/Other  
AM15 Power/Other  
AM18 Power/Other  
52  
Datasheet  
Land Listing and Signal Descriptions  
Table 23.  
Alphabetical Land  
Assignments  
Table 23.  
Alphabetical Land  
Assignments  
Land Signal Buffer  
Land Signal Buffer  
Land Name  
Direction  
Land Name  
Direction  
#
Type  
#
Type  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
J28  
J29  
J30  
J8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
T27  
T28  
T29  
T30  
T8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
J9  
K23  
K24  
K25  
K26  
K27  
K28  
K29  
K30  
K8  
U23  
U24  
U25  
U26  
U27  
U28  
U29  
U30  
U8  
L8  
V8  
M23  
M24  
M25  
M26  
M27  
M28  
M29  
M30  
M8  
W23  
W24  
W25  
W26  
W27  
W28  
W29  
W30  
W8  
N23  
N24  
N25  
N26  
N27  
N28  
N29  
N30  
N8  
Y23  
Y24  
Y25  
Y26  
Y27  
Y28  
Y29  
Y30  
Y8  
P8  
VCC_MB_  
REGULATION  
AN5  
Power/Other  
Output  
Output  
R8  
VCC_SENSE  
VCCA  
AN3  
A23  
C23  
D23  
AN7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
T23  
T24  
T25  
T26  
VCCIOPLL  
VCCPLL  
VID_SELECT  
Output  
Datasheet  
53  
Land Listing and Signal Descriptions  
Table 23.  
Alphabetical Land  
Assignments  
Table 23.  
Alphabetical Land  
Assignments  
Land Signal Buffer  
Land Signal Buffer  
Land Name  
Direction  
Land Name  
Direction  
#
Type  
#
Type  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
VID7  
VRDSEL  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AM2  
AL5  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AC7  
AD4  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AM3  
AL6  
AD7  
AE10  
AE13  
AE16  
AE17  
AE2  
AK4  
AL4  
AM5  
AM7  
AL3  
AE20  
AE24  
AE25  
AE26  
AE27  
AE28  
AE29  
AE30  
AE5  
A12  
A15  
A18  
A2  
A21  
A6  
A9  
AA23  
AA24  
AA25  
AA26  
AA27  
AA28  
AA29  
AA3  
AE7  
AF10  
AF13  
AF16  
AF17  
AF20  
AF23  
AF24  
AF25  
AF26  
AF27  
AF28  
AF29  
AF3  
AA30  
AA6  
AA7  
AB1  
AB23  
AB24  
AB25  
AB26  
AB27  
AB28  
AB29  
AB30  
AB7  
AF30  
AF6  
AF7  
AG10 Power/Other  
AG13 Power/Other  
AG16 Power/Other  
AG17 Power/Other  
AG20 Power/Other  
AC3  
AC6  
54  
Datasheet  
Land Listing and Signal Descriptions  
Table 23.  
Alphabetical Land  
Assignments  
Table 23.  
Alphabetical Land  
Assignments  
Land Signal Buffer  
Land Signal Buffer  
Land Name  
Direction  
Land Name  
Direction  
#
Type  
#
Type  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AG23 Power/Other  
AG24 Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AK5  
AK7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AG7  
AH1  
Power/Other  
Power/Other  
AL10  
AL13  
AL16  
AL17  
AL20  
AL23  
AL24  
AL27  
AL28  
AL7  
AH10 Power/Other  
AH13 Power/Other  
AH16 Power/Other  
AH17 Power/Other  
AH20 Power/Other  
AH23 Power/Other  
AH24 Power/Other  
AH3  
AH6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AM1  
AH7  
AM10 Power/Other  
AM13 Power/Other  
AM16 Power/Other  
AM17 Power/Other  
AM20 Power/Other  
AM23 Power/Other  
AM24 Power/Other  
AM27 Power/Other  
AM28 Power/Other  
AJ10  
AJ13  
AJ16  
AJ17  
AJ20  
AJ23  
AJ24  
AJ27  
AJ28  
AJ29  
AJ30  
AJ4  
AM4  
AN1  
Power/Other  
Power/Other  
AN10 Power/Other  
AN13 Power/Other  
AN16 Power/Other  
AN17 Power/Other  
AJ7  
AK10 Power/Other  
AK13 Power/Other  
AK16 Power/Other  
AK17 Power/Other  
AN2  
Power/Other  
AN20 Power/Other  
AN23 Power/Other  
AN24 Power/Other  
AN27 Power/Other  
AN28 Power/Other  
AK2  
Power/Other  
AK20 Power/Other  
AK23 Power/Other  
AK24 Power/Other  
AK27 Power/Other  
AK28 Power/Other  
AK29 Power/Other  
AK30 Power/Other  
B1  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
B11  
B14  
B17  
B20  
Datasheet  
55  
Land Listing and Signal Descriptions  
Table 23.  
Alphabetical Land  
Assignments  
Table 23.  
Alphabetical Land  
Assignments  
Land Signal Buffer  
Land Signal Buffer  
Land Name  
Direction  
Land Name  
Direction  
#
Type  
#
Type  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
B24  
B5  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
H12  
H13  
H14  
H17  
H18  
H19  
H20  
H21  
H22  
H23  
H24  
H25  
H26  
H27  
H28  
H3  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
B8  
C10  
C13  
C16  
C19  
C22  
C24  
C4  
C7  
D12  
D15  
D18  
D21  
D24  
D3  
H6  
D5  
H7  
D6  
H8  
D9  
H9  
E11  
E14  
E17  
E2  
J4  
J7  
K2  
K5  
E20  
E25  
E26  
E27  
E28  
E8  
K7  
L23  
L24  
L25  
L26  
L27  
L28  
L29  
L3  
F10  
F13  
F16  
F19  
F22  
F4  
L30  
L6  
L7  
F7  
M1  
H10  
H11  
M7  
N3  
56  
Datasheet  
Land Listing and Signal Descriptions  
Table 23.  
Alphabetical Land  
Assignments  
Table 23.  
Alphabetical Land  
Assignments  
Land Signal Buffer  
Land Signal Buffer  
Land Name  
Direction  
Land Name  
Direction  
#
Type  
#
Type  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
N6  
N7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
VSS  
W7  
Y2  
Y5  
Y7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
P23  
P24  
P25  
P26  
P27  
P28  
P29  
P30  
P4  
VSS_MB_  
REGULATION  
AN6  
Power/Other  
Output  
Output  
VSS_SENSE  
VSSA  
VTT  
AN4  
B23  
A25  
A26  
A27  
A28  
A29  
A30  
B25  
B26  
B27  
B28  
B29  
B30  
C25  
C26  
C27  
C28  
C29  
C30  
D25  
D26  
D27  
D28  
D29  
D30  
J1  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VTT  
VTT  
VTT  
P7  
VTT  
R2  
VTT  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
R5  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
R7  
VTT  
T3  
VTT  
T6  
VTT  
T7  
VTT  
U7  
VTT  
V23  
V24  
V25  
V26  
V27  
V28  
V29  
V3  
VTT  
VTT  
VTT  
VTT  
VTT_OUT_LEFT  
Output  
Output  
Output  
VTT_OUT_RIG  
HT  
AA1  
F27  
Power/Other  
Power/Other  
VTT_SEL  
V30  
V6  
V7  
W4  
Datasheet  
57  
Land Listing and Signal Descriptions  
Table 24.  
Numerical Land  
Assignment  
Table 24.  
Numerical Land  
Assignment  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Land Name  
Direction  
Land Name  
Direction  
Type  
A2  
A3  
VSS  
Power/Other  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B30  
C1  
VSS  
D13#  
COMP8  
VSS  
Power/Other  
RS2#  
D02#  
D04#  
VSS  
Common Clock  
Input  
Source Synch Input/Output  
A4  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
Power/Other  
Power/Other  
Input  
A5  
A6  
D53#  
D55#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
A7  
D07#  
DBI0#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
A8  
A9  
D57#  
D60#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
B1  
D08#  
D09#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D59#  
D63#  
VSSA  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
COMP0  
D50#  
VSS  
Power/Other  
Input  
Source Synch Input/Output  
Power/Other  
Power/Other  
DSTBN3#  
D56#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VTT  
Power/Other  
VTT  
Power/Other  
VTT  
Power/Other  
D61#  
RESERVED  
VSS  
Source Synch Input/Output  
VTT  
Power/Other  
VTT  
Power/Other  
Power/Other  
VTT  
Power/Other  
D62#  
VCCA  
FC23  
VTT  
Source Synch Input/Output  
Power/Other  
DRDY#  
BNR#  
LOCK#  
VSS  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
Power/Other  
C2  
Power/Other  
C3  
Power/Other  
C4  
VTT  
Power/Other  
C5  
D01#  
D03#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VTT  
Power/Other  
C6  
VTT  
Power/Other  
C7  
VTT  
Power/Other  
C8  
DSTBN0#  
FC38  
VSS  
Source Synch Input/Output  
Power/Other  
VTT  
Power/Other  
C9  
VSS  
Power/Other  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
Power/Other  
B2  
DBSY#  
RS0#  
D00#  
VSS  
Common Clock Input/Output  
D11#  
D14#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
B3  
Common Clock  
Input  
B4  
Source Synch Input/Output  
Power/Other  
B5  
D52#  
D51#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
B6  
D05#  
D06#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
B7  
B8  
DSTBP3#  
D54#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
B9  
DSTBP0#  
D10#  
Source Synch Input/Output  
Source Synch Input/Output  
B10  
58  
Datasheet  
Land Listing and Signal Descriptions  
Table 24.  
Numerical Land  
Assignment  
Table 24.  
Numerical Land  
Assignment  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C30  
D1  
DBI3#  
D58#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D29  
D30  
E2  
VTT  
VTT  
VSS  
Power/Other  
Power/Other  
Power/Other  
VCCIOPLL  
VSS  
Power/Other  
E3  
TRDY#  
HITM#  
FC20  
Common Clock  
Input  
Power/Other  
E4  
Common Clock Input/Output  
Power/Other  
VTT  
Power/Other  
E5  
VTT  
Power/Other  
E6  
RESERVED  
RESERVED  
VSS  
VTT  
Power/Other  
E7  
VTT  
Power/Other  
E8  
Power/Other  
VTT  
Power/Other  
E9  
D19#  
D21#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VTT  
Power/Other  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
E24  
E25  
E26  
E27  
E28  
E29  
F2  
RESERVED  
ADS#  
VSS  
D2  
Common Clock Input/Output  
Power/Other  
DSTBP1#  
D26#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D3  
D4  
HIT#  
VSS  
Common Clock Input/Output  
Power/Other  
D5  
D33#  
D34#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D6  
VSS  
Power/Other  
D7  
D20#  
D12#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D8  
D39#  
D40#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D22#  
D15#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D42#  
D45#  
RESERVED  
FC10  
Source Synch Input/Output  
Source Synch Input/Output  
D25#  
RESERVED  
VSS  
Source Synch Input/Output  
Power/Other  
Power/Other  
Power/Other  
VSS  
RESERVED  
D49#  
VSS  
VSS  
Power/Other  
Source Synch Input/Output  
Power/Other  
VSS  
Power/Other  
VSS  
Power/Other  
DBI2#  
D48#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
FC26  
Power/Other  
FC5  
Power/Other  
F3  
BR0#  
VSS  
Common Clock Input/Output  
Power/Other  
D46#  
VCCPLL  
VSS  
Source Synch Input/Output  
Power/Other  
F4  
F5  
RS1#  
FC21  
Common Clock  
Power/Other  
Power/Other  
Input  
Power/Other  
F6  
VTT  
Power/Other  
F7  
VSS  
VTT  
Power/Other  
F8  
D17#  
D18#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VTT  
Power/Other  
F9  
VTT  
Power/Other  
F10  
Datasheet  
59  
Land Listing and Signal Descriptions  
Table 24.  
Numerical Land  
Assignment  
Table 24.  
Numerical Land  
Assignment  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Land Name  
Direction  
Land Name  
Direction  
Type  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
F23  
F24  
F25  
F26  
F27  
F28  
F29  
G1  
D23#  
D24#  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
G21  
G22  
G23  
G24  
G25  
G26  
G27  
G28  
G29  
G30  
H1  
D44#  
D47#  
RESET#  
TESTHI6  
TESTHI3  
TESTHI5  
TESTHI4  
BCLK1  
BSEL0  
BSEL2  
GTLREF0  
GTLREF1  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
VSS  
Common Clock  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Clock  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Output  
Input  
Input  
D28#  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D30#  
VSS  
D37#  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D38#  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
D41#  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D43#  
VSS  
H2  
RESERVED  
TESTHI7  
TESTHI2  
TESTHI0  
VTT_SEL  
BCLK0  
H3  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Clock  
Input  
Input  
Input  
Output  
Input  
H4  
FC35  
TESTHI10  
VSS  
H5  
Input  
H6  
H7  
VSS  
H8  
VSS  
RESERVED  
FC27  
H9  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
H21  
H22  
H23  
H24  
H25  
H26  
H27  
H28  
H29  
VSS  
G2  
COMP2  
TESTHI8/FC42  
TESTHI9/FC43  
PECI  
Input  
Input  
Input  
VSS  
G3  
VSS  
G4  
VSS  
G5  
Power/Other Input/Output  
VSS  
G6  
RESERVED  
DEFER#  
BPRI#  
FC32  
FC33  
VSS  
G7  
Common Clock  
Common Clock  
Input  
Input  
G8  
G9  
D16#  
Source Synch Input/Output  
Power/Other  
VSS  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
FC38  
VSS  
DBI1#  
DSTBN1#  
D27#  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
VSS  
VSS  
VSS  
D29#  
VSS  
D31#  
VSS  
D32#  
VSS  
D36#  
VSS  
D35#  
VSS  
DSTBP2#  
DSTBN2#  
VSS  
FC15  
60  
Datasheet  
Land Listing and Signal Descriptions  
Table 24.  
Numerical Land  
Assignment  
Table 24.  
Numerical Land  
Assignment  
Land  
#
Signal Buffer  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
Type  
H30  
J1  
BSEL1  
VTT_OUT_LEFT  
FC3  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
Output  
K23  
K24  
K25  
K26  
K27  
K28  
K29  
K30  
L1  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
J2  
J3  
FC22  
VSS  
J4  
J5  
REQ1#  
REQ4#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
J6  
J7  
J8  
VCC  
LINT1  
TESTHI13  
VSS  
Asynch CMOS  
Power/Other  
Power/Other  
Input  
Input  
J9  
VCC  
L2  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
J23  
J24  
J25  
J26  
J27  
J28  
J29  
J30  
K1  
VCC  
L3  
VCC  
L4  
A06#  
A03#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VCC  
L5  
VCC  
L6  
VCC  
L7  
VSS  
Power/Other  
VCC  
L8  
VCC  
Power/Other  
FC31  
FC34  
VCC  
L23  
L24  
L25  
L26  
L27  
L28  
L29  
L30  
M1  
VSS  
Power/Other  
VSS  
Power/Other  
VSS  
Power/Other  
VCC  
VSS  
Power/Other  
VCC  
VSS  
Power/Other  
VCC  
VSS  
Power/Other  
VCC  
VSS  
Power/Other  
VCC  
VSS  
Power/Other  
VCC  
VSS  
Power/Other  
VCC  
M2  
THERMTRIP#  
STPCLK#  
A07#  
A05#  
REQ2#  
VSS  
Asynch CMOS  
Asynch CMOS  
Output  
Input  
VCC  
M3  
VCC  
M4  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VCC  
M5  
VCC  
M6  
VCC  
M7  
LINT0  
VSS  
Asynch CMOS  
Power/Other  
Asynch CMOS  
Input  
M8  
VCC  
Power/Other  
K2  
M23  
M24  
M25  
M26  
M27  
M28  
M29  
VCC  
Power/Other  
K3  
A20M#  
REQ0#  
VSS  
Input  
VCC  
Power/Other  
K4  
Source Synch Input/Output  
Power/Other  
VCC  
Power/Other  
K5  
VCC  
Power/Other  
K6  
REQ3#  
VSS  
Source Synch Input/Output  
Power/Other  
VCC  
Power/Other  
K7  
VCC  
Power/Other  
K8  
VCC  
Power/Other  
VCC  
Power/Other  
Datasheet  
61  
Land Listing and Signal Descriptions  
Table 24.  
Numerical Land  
Assignment  
Table 24.  
Numerical Land  
Assignment  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Land Name  
Direction  
Land Name  
Direction  
Type  
M30  
N1  
VCC  
Power/Other  
R7  
R8  
VSS  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
PWRGOOD  
IGNNE#  
VSS  
Power/Other  
Asynch CMOS  
Power/Other  
Input  
Input  
N2  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
T1  
N3  
VSS  
N4  
RESERVED  
RESERVED  
VSS  
VSS  
N5  
VSS  
N6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Asynch CMOS  
Asynch CMOS  
Power/Other  
VSS  
N7  
VSS  
VSS  
N8  
VCC  
VSS  
N23  
N24  
N25  
N26  
N27  
N28  
N29  
N30  
P1  
VCC  
VSS  
VCC  
COMP1  
FC4  
Input  
VCC  
T2  
VCC  
T3  
VSS  
VCC  
T4  
A11#  
A09#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VCC  
T5  
VCC  
T6  
VCC  
T7  
VSS  
Power/Other  
TESTHI11  
SMI#  
INIT#  
VSS  
Input  
Input  
Input  
T8  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
FC28  
FC29  
FC30  
A13#  
A12#  
A10#  
VSS  
Power/Other  
P2  
T23  
T24  
T25  
T26  
T27  
T28  
T29  
T30  
U1  
Power/Other  
P3  
Power/Other  
P4  
Power/Other  
P5  
RESERVED  
A04#  
VSS  
Power/Other  
P6  
Source Synch Input/Output  
Power/Other  
Power/Other  
P7  
Power/Other  
P8  
VCC  
Power/Other  
Power/Other  
P23  
P24  
P25  
P26  
P27  
P28  
P29  
P30  
R1  
VSS  
Power/Other  
Power/Other  
VSS  
Power/Other  
Power/Other  
VSS  
Power/Other  
U2  
Power/Other  
VSS  
Power/Other  
U3  
Power/Other  
VSS  
Power/Other  
U4  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VSS  
Power/Other  
U5  
VSS  
Power/Other  
U6  
VSS  
Power/Other  
U7  
COMP3  
VSS  
Power/Other  
Power/Other  
Asynch CMOS  
Input  
U8  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
Power/Other  
R2  
U23  
U24  
U25  
U26  
U27  
Power/Other  
R3  
FERR#/PBE#  
A08#  
VSS  
Output  
Power/Other  
R4  
Source Synch Input/Output  
Power/Other  
Power/Other  
R5  
Power/Other  
R6  
ADSTB0#  
Source Synch Input/Output  
Power/Other  
62  
Datasheet  
Land Listing and Signal Descriptions  
Table 24.  
Numerical Land  
Assignment  
Table 24.  
Numerical Land  
Assignment  
Land  
#
Signal Buffer  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
Type  
U28  
U29  
U30  
V1  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Y5  
Y6  
VSS  
A19#  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
Power/Other  
Source Synch Input/Output  
Power/Other  
VCC  
Y7  
MSID1  
RESERVED  
VSS  
Output  
Y8  
Power/Other  
V2  
Y23  
Y24  
Y25  
Y26  
Y27  
Y28  
Y29  
Y30  
Power/Other  
V3  
Power/Other  
Power/Other  
V4  
A15#  
A14#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
Power/Other  
V5  
Power/Other  
V6  
Power/Other  
V7  
VSS  
Power/Other  
Power/Other  
V8  
VCC  
Power/Other  
Power/Other  
V23  
V24  
V25  
V26  
V27  
V28  
V29  
V30  
W1  
W2  
W3  
W4  
W5  
W6  
W7  
W8  
W23  
W24  
W25  
W26  
W27  
W28  
W29  
W30  
Y1  
VSS  
Power/Other  
Power/Other  
VSS  
Power/Other  
AA1 VTT_OUT_RIGHT Power/Other  
Output  
VSS  
Power/Other  
AA2  
AA3  
FC39  
VSS  
Power/Other  
Power/Other  
VSS  
Power/Other  
VSS  
Power/Other  
AA4  
A21#  
A23#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VSS  
Power/Other  
AA5  
VSS  
Power/Other  
AA6  
VSS  
Power/Other  
AA7  
VSS  
Power/Other  
MSID0  
Power/Other  
Output  
Input  
Input  
AA8  
VCC  
Power/Other  
TESTHI12/FC44 Power/Other  
AA23  
AA24  
AA25  
AA26  
AA27  
AA28  
AA29  
AA30  
AB1  
VSS  
Power/Other  
TESTHI1  
VSS  
Power/Other  
Power/Other  
VSS  
Power/Other  
VSS  
Power/Other  
A16#  
A18#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VSS  
Power/Other  
VSS  
Power/Other  
VSS  
Power/Other  
VCC  
Power/Other  
VSS  
Power/Other  
VCC  
Power/Other  
VSS  
Power/Other  
VCC  
Power/Other  
VSS  
Power/Other  
VCC  
Power/Other  
AB2  
IERR#  
FC37  
A26#  
A24#  
A17#  
VSS  
Asynch CMOS  
Power/Other  
Output  
VCC  
Power/Other  
AB3  
VCC  
Power/Other  
AB4  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VCC  
Power/Other  
AB5  
VCC  
Power/Other  
AB6  
VCC  
Power/Other  
AB7  
FC0  
Power/Other  
AB8  
VCC  
Power/Other  
Y2  
VSS  
Power/Other  
AB23  
AB24  
AB25  
VSS  
Power/Other  
Y3  
FC17  
A20#  
Power/Other  
VSS  
Power/Other  
Y4  
Source Synch Input/Output  
VSS  
Power/Other  
Datasheet  
63  
Land Listing and Signal Descriptions  
Table 24.  
Numerical Land  
Assignment  
Table 24.  
Numerical Land  
Assignment  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Land Name  
Direction  
Land Name  
Direction  
Type  
AB26  
AB27  
AB28  
AB29  
AB30  
AC1  
VSS  
VSS  
VSS  
VSS  
VSS  
TMS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
TAP  
AE3  
AE4  
FC18  
RESERVED  
VSS  
Power/Other  
AE5  
Power/Other  
AE6  
RESERVED  
VSS  
AE7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
TAP  
Input  
AE8  
SKTOCC#  
VCC  
Output  
AC2  
DBR#  
VSS  
Power/Other  
Power/Other  
Output  
AE9  
AC3  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
AE20  
AE21  
AE22  
AE23  
AE24  
AE25  
AE26  
AE27  
AE28  
AE29  
AE30  
AF1  
VSS  
AC4  
RESERVED  
A25#  
VSS  
VCC  
AC5  
Source Synch Input/Output  
Power/Other  
VCC  
AC6  
VSS  
AC7  
VSS  
Power/Other  
VCC  
AC8  
VCC  
Power/Other  
VCC  
AC23  
AC24  
AC25  
AC26  
AC27  
AC28  
AC29  
AC30  
AD1  
VCC  
Power/Other  
VSS  
VCC  
Power/Other  
VSS  
VCC  
Power/Other  
VCC  
VCC  
Power/Other  
VCC  
VCC  
Power/Other  
VSS  
VCC  
Power/Other  
VCC  
VCC  
Power/Other  
VCC  
VCC  
Power/Other  
VCC  
TDI  
TAP  
Input  
VSS  
AD2  
BPM2#  
FC36  
VSS  
Common Clock Input/Output  
Power/Other  
VSS  
AD3  
VSS  
AD4  
Power/Other  
VSS  
AD5  
ADSTB1#  
A22#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VSS  
AD6  
VSS  
AD7  
VSS  
AD8  
VCC  
Power/Other  
TDO  
Output  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
AE1  
VCC  
Power/Other  
AF2  
BPM4#  
VSS  
Common Clock Input/Output  
Power/Other  
VCC  
Power/Other  
AF3  
VCC  
Power/Other  
AF4  
A28#  
A27#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VCC  
Power/Other  
AF5  
VCC  
Power/Other  
AF6  
VCC  
Power/Other  
AF7  
VSS  
Power/Other  
VCC  
Power/Other  
AF8  
VCC  
Power/Other  
VCC  
Power/Other  
AF9  
VCC  
Power/Other  
TCK  
TAP  
Input  
AF10  
AF11  
VSS  
Power/Other  
AE2  
VSS  
Power/Other  
VCC  
Power/Other  
64  
Datasheet  
Land Listing and Signal Descriptions  
Table 24.  
Numerical Land  
Assignment  
Table 24.  
Numerical Land  
Assignment  
Land  
#
Signal Buffer  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
Type  
AF12  
AF13  
AF14  
AF15  
AF16  
AF17  
AF18  
AF19  
AF20  
AF21  
AF22  
AF23  
AF24  
AF25  
AF26  
AF27  
AF28  
AF29  
AF30  
AG1  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
TAP  
AG21  
AG22  
AG23  
AG24  
AG25  
AG26  
AG27  
AG28  
AG29  
AG30  
AH1  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
AH2  
RESERVED  
VSS  
A32#  
A33#  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
AH3  
Power/Other  
VSS  
AH4  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
AH5  
VSS  
AH6  
VSS  
AH7  
VSS  
AH8  
VSS  
AH9  
TRST#  
BPM3#  
BPM5#  
A30#  
A31#  
A29#  
VSS  
Input  
AH10  
AH11  
AH12  
AH13  
AH14  
AH15  
AH16  
AH17  
AH18  
AH19  
AH20  
AH21  
AH22  
AH23  
AH24  
AH25  
AH26  
AH27  
AH28  
AH29  
AG2  
Common Clock Input/Output  
Common Clock Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
AG3  
AG4  
AG5  
AG6  
AG7  
AG8  
VCC  
VCC  
VSS  
Power/Other  
AG9  
Power/Other  
AG10  
AG11  
AG12  
AG13  
AG14  
AG15  
AG16  
AG17  
AG18  
AG19  
AG20  
Power/Other  
VCC  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
VSS  
Power/Other  
VCC  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Datasheet  
65  
Land Listing and Signal Descriptions  
Table 24.  
Numerical Land  
Assignment  
Table 24.  
Numerical Land  
Assignment  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Land Name  
Direction  
Land Name  
Direction  
Type  
AH30  
AJ1  
VCC  
BPM1#  
BPM0#  
ITP_CLK1  
VSS  
Power/Other  
AK9  
AK10  
AK11  
AK12  
AK13  
AK14  
AK15  
AK16  
AK17  
AK18  
AK19  
AK20  
AK21  
AK22  
AK23  
AK24  
AK25  
AK26  
AK27  
AK28  
AK29  
AK30  
AL1  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clock Input/Output  
Common Clock Input/Output  
AJ2  
VCC  
AJ3  
TAP  
Input  
VCC  
AJ4  
Power/Other  
VSS  
AJ5  
A34#  
A35#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
AJ6  
VCC  
AJ7  
VSS  
AJ8  
VCC  
VSS  
AJ9  
VCC  
VCC  
AJ10  
AJ11  
AJ12  
AJ13  
AJ14  
AJ15  
AJ16  
AJ17  
AJ18  
AJ19  
AJ20  
AJ21  
AJ22  
AJ23  
AJ24  
AJ25  
AJ26  
AJ27  
AJ28  
AJ29  
AJ30  
AK1  
AK2  
AK3  
AK4  
AK5  
AK6  
AK7  
AK8  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VSS  
VSS  
VCC  
VSS  
VCC  
THERMDA  
PROCHOT#  
VRDSEL  
VID5  
VID1  
VID3  
VSS  
VSS  
AL2  
Asynch CMOS Input/Output  
Power/Other  
VSS  
AL3  
VCC  
AL4  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
Output  
Output  
VCC  
AL5  
VSS  
AL6  
VSS  
AL7  
VSS  
AL8  
VCC  
VSS  
AL9  
VCC  
THERMDC  
VSS  
AL10  
AL11  
AL12  
AL13  
AL14  
AL15  
AL16  
AL17  
VSS  
VCC  
ITP_CLK0  
VID4  
VSS  
TAP  
Input  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
VSS  
VCC  
FC8  
VCC  
VSS  
VSS  
VCC  
VSS  
66  
Datasheet  
Land Listing and Signal Descriptions  
Table 24.  
Numerical Land  
Assignment  
Table 24.  
Numerical Land  
Assignment  
Land  
#
Signal Buffer  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
Type  
AL18  
AL19  
AL20  
AL21  
AL22  
AL23  
AL24  
AL25  
AL26  
AL27  
AL28  
AL29  
AL30  
AM1  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VID0  
VID2  
VSS  
VID6  
FC40  
VID7  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AM27  
AM28  
AM29  
AM30  
AN1  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AN2  
AN3  
VCC_SENSE  
VSS_SENSE  
Power/Other  
Power/Other  
Output  
Output  
AN4  
VCC_MB_  
REGULATION  
AN5  
AN6  
Power/Other  
Power/Other  
Output  
VSS_MB_  
REGULATION  
Output  
Output  
AN7  
VID_SELECT  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AN8  
AN9  
AM2  
Output  
Output  
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
AN16  
AN17  
AN18  
AN19  
AN20  
AN21  
AN22  
AN23  
AN24  
AN25  
AN26  
AN27  
AN28  
AN29  
AN30  
AM3  
AM4  
AM5  
Output  
Output  
AM6  
AM7  
AM8  
AM9  
AM10  
AM11  
AM12  
AM13  
AM14  
AM15  
AM16  
AM17  
AM18  
AM19  
AM20  
AM21  
AM22  
AM23  
AM24  
AM25  
AM26  
Datasheet  
67  
Land Listing and Signal Descriptions  
4.2  
Alphabetical Signals Reference  
Table 25.  
Signal Description (Sheet 1 of 9)  
Name  
Type  
Description  
A[35:3]# (Address) define a 236-byte physical memory address  
space. In sub-phase 1 of the address phase, these signals transmit  
the address of a transaction. In sub-phase 2, these signals transmit  
transaction type information. These signals must connect the  
appropriate pins/lands of all agents on the processor FSB. A[35:3]#  
are source synchronous signals and are latched into the receiving  
buffers by ADSTB[1:0]#.  
Input/  
Output  
A[35:3]#  
On the active-to-inactive transition of RESET#, the processor  
samples a subset of the A[35:3]# signals to determine power-on  
configuration. See Section 6.1 for more details.  
If A20M# (Address-20 Mask) is asserted, the processor masks  
physical address bit 20 (A20#) before looking up a line in any  
internal cache and before driving a read/write transaction on the  
bus. Asserting A20M# emulates the 8086 processor's address wrap-  
around at the 1-MB boundary. Assertion of A20M# is only supported  
in real mode.  
A20M#  
Input  
A20M# is an asynchronous signal. However, to ensure recognition  
of this signal following an Input/Output write instruction, it must be  
valid along with the TRDY# assertion of the corresponding Input/  
Output Write bus transaction.  
ADS# (Address Strobe) is asserted to indicate the validity of the  
transaction address on the A[35:3]# and REQ[4:0]# signals. All  
bus agents observe the ADS# activation to begin protocol checking,  
address decode, internal snoop, or deferred reply ID match  
operations associated with the new transaction.  
Input/  
Output  
ADS#  
Address strobes are used to latch A[35:3]# and REQ[4:0]# on their  
rising and falling edges. Strobes are associated with signals as  
shown below.  
Input/  
Output  
Signals  
Associated Strobe  
ADSTB[1:0]#  
REQ[4:0]#, A[16:3]#  
A[35:17]#  
ADSTB0#  
ADSTB1#  
The differential pair BCLK (Bus Clock) determines the FSB  
frequency. All processor FSB agents must receive these signals to  
drive their outputs and latch their inputs.  
BCLK[1:0]  
BNR#  
Input  
All external timing parameters are specified with respect to the  
rising edge of BCLK0 crossing VCROSS  
.
BNR# (Block Next Request) is used to assert a bus stall by any bus  
agent unable to accept new bus transactions. During a bus stall, the  
current bus owner cannot issue any new transactions.  
Input/  
Output  
68  
Datasheet  
Land Listing and Signal Descriptions  
Table 25.  
Signal Description (Sheet 1 of 9)  
Name  
Type  
Description  
BPM[5:0]# (Breakpoint Monitor) are breakpoint and performance  
monitor signals. They are outputs from the processor which indicate  
the status of breakpoints and programmable counters used for  
monitoring processor performance. BPM[5:0]# should connect the  
appropriate pins/lands of all processor FSB agents.  
BPM4# provides PRDY# (Probe Ready) functionality for the TAP  
port. PRDY# is a processor output used by debug tools to determine  
processor debug readiness.  
Input/  
Output  
BPM[5:0]#  
BPM5# provides PREQ# (Probe Request) functionality for the TAP  
port. PREQ# is used by debug tools to request debug operation of  
the processor.  
These signals do not have on-die termination.  
BPRI# (Bus Priority Request) is used to arbitrate for ownership of  
the processor FSB. It must connect the appropriate pins/lands of all  
processor FSB agents. Observing BPRI# active (as asserted by the  
priority agent) causes all other agents to stop issuing new requests,  
unless such requests are part of an ongoing locked operation. The  
priority agent keeps BPRI# asserted until all of its requests are  
completed, then releases the bus by de-asserting BPRI#.  
BPRI#  
BR0#  
Input  
BR0# drives the BREQ0# signal in the system and is used by the  
processor to request the bus. During power-on configuration this  
signal is sampled to determine the agent ID = 0.  
Input/  
Output  
This signal does not have on-die termination and must be  
terminated.  
The BCLK[1:0] frequency select signals BSEL[2:0] are used to  
select the processor input clock frequency. Table 16 defines the  
possible combinations of the signals and the frequency associated  
with each combination. The required frequency is determined by  
the processor, chipset and clock synthesizer. All agents must  
operate at the same frequency. For more information about these  
signals, including termination recommendations refer to  
Section 2.7.6.  
BSEL[2:0]  
Output  
Analog  
COMP8  
COMP[3:0] and COMP8 must be terminated to VSS on the system  
board using precision resistors.  
COMP[3:0]  
Datasheet  
69  
Land Listing and Signal Descriptions  
Table 25.  
Signal Description (Sheet 1 of 9)  
Name  
Type  
Description  
D[63:0]# (Data) are the data signals. These signals provide a 64-  
bit data path between the processor FSB agents, and must connect  
the appropriate pins/lands on all such agents. The data driver  
asserts DRDY# to indicate a valid data transfer.  
D[63:0]# are quad-pumped signals and will, thus, be driven four  
times in a common clock period. D[63:0]# are latched off the falling  
edge of both DSTBP[3:0]# and DSTBN[3:0]#. Each group of 16  
data signals correspond to a pair of one DSTBP# and one DSTBN#.  
The following table shows the grouping of data signals to data  
strobes and DBI#.  
Quad-Pumped Signal Groups  
Input/  
Output  
D[63:0]#  
DSTBN#/  
DSTBP#  
Data Group  
DBI#  
D[15:0]#  
D[31:16]#  
D[47:32]#  
D[63:48]#  
0
1
2
3
0
1
2
3
Furthermore, the DBI# signals determine the polarity of the data  
signals. Each group of 16 data signals corresponds to one DBI#  
signal. When the DBI# signal is active, the corresponding data  
group is inverted and therefore sampled active high.  
DBI[3:0]# (Data Bus Inversion) are source synchronous and  
indicate the polarity of the D[63:0]# signals.The DBI[3:0]# signals  
are activated when the data on the data bus is inverted. If more  
than half the data bits, within a 16-bit group, would have been  
asserted electrically low, the bus agent may invert the data bus  
signals for that particular sub-phase for that 16-bit group.  
DBI[3:0] Assignment To Data Bus  
Input/  
Output  
DBI[3:0]#  
Data Bus  
Bus Signal  
Signals  
DBI3#  
DBI2#  
DBI1#  
DBI0#  
D[63:48]#  
D[47:32]#  
D[31:16]#  
D[15:0]#  
DBR# (Debug Reset) is used only in processor systems where no  
debug port is implemented on the system board. DBR# is used by a  
DBR#  
Output debug port interposer so that an in-target probe can drive system  
reset. If a debug port is implemented in the system, DBR# is a no  
connect in the system. DBR# is not a processor signal.  
DBSY# (Data Bus Busy) is asserted by the agent responsible for  
driving data on the processor FSB to indicate that the data bus is in  
Input/  
DBSY#  
use. The data bus is released after DBSY# is de-asserted. This  
Output  
signal must connect the appropriate pins/lands on all processor FSB  
agents.  
70  
Datasheet  
Land Listing and Signal Descriptions  
Table 25.  
Signal Description (Sheet 1 of 9)  
Name  
Type  
Description  
DEFER# is asserted by an agent to indicate that a transaction  
cannot be ensured in-order completion. Assertion of DEFER# is  
normally the responsibility of the addressed memory or input/  
output agent. This signal must connect the appropriate pins/lands  
of all processor FSB agents.  
DEFER#  
Input  
DRDY# (Data Ready) is asserted by the data driver on each data  
transfer, indicating valid data on the data bus. In a multi-common  
clock data transfer, DRDY# may be de-asserted to insert idle clocks.  
This signal must connect the appropriate pins/lands of all processor  
FSB agents.  
Input/  
Output  
DRDY#  
DSTBN[3:0]# are the data strobes used to latch in D[63:0]#.  
Signals  
Associated Strobe  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBN0#  
DSTBN1#  
DSTBN2#  
DSTBN3#  
Input/  
Output  
DSTBN[3:0]#  
DSTBP[3:0]# are the data strobes used to latch in D[63:0]#.  
Signals  
Associated Strobe  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBP0#  
DSTBP1#  
DSTBP2#  
DSTBP3#  
Input/  
Output  
DSTBP[3:0]#  
FC signals are signals that are available for compatibility with other  
processors.  
FCx  
Other  
FERR#/PBE# (floating point error/pending break event) is a  
multiplexed signal and its meaning is qualified by STPCLK#. When  
STPCLK# is not asserted, FERR#/PBE# indicates a floating-point  
error and will be asserted when the processor detects an unmasked  
floating-point error. When STPCLK# is not asserted, FERR#/PBE# is  
similar to the ERROR# signal on the Intel 387 coprocessor, and is  
included for compatibility with systems using MS-DOS*-type  
floating-point error reporting. When STPCLK# is asserted, an  
assertion of FERR#/PBE# indicates that the processor has a  
pending break event waiting for service. The assertion of FERR#/  
PBE# indicates that the processor should be returned to the Normal  
state. For additional information on the pending break event  
functionality, including the identification of support of the feature  
and enable/disable information, refer to volume 3 of the Intel  
Architecture Software Developer's Manual and the Intel Processor  
Identification and the CPUID Instruction application note.  
FERR#/PBE#  
Output  
GTLREF[1:0] determine the signal reference level for GTL+ input  
signals. GTLREF is used by the GTL+ receivers to determine if a  
signal is a logical 0 or logical 1.  
GTLREF[1:0]  
Input  
Datasheet  
71  
Land Listing and Signal Descriptions  
Table 25.  
Signal Description (Sheet 1 of 9)  
Name  
Type  
Description  
Input/  
Output  
HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction  
snoop operation results. Any FSB agent may assert both HIT# and  
HITM# together to indicate that it requires a snoop stall, which can  
be continued by reasserting HIT# and HITM# together.  
HIT#  
HITM#  
IERR#  
Input/  
Output  
IERR# (Internal Error) is asserted by a processor as the result of an  
internal error. Assertion of IERR# is usually accompanied by a  
SHUTDOWN transaction on the processor FSB. This transaction may  
optionally be converted to an external error signal (e.g., NMI) by  
system core logic. The processor will keep IERR# asserted until the  
assertion of RESET#.  
Output  
This signal does not have on-die termination. Refer to Section 2.6.2  
for termination requirements.  
IGNNE# (Ignore Numeric Error) is asserted to the processor to  
ignore a numeric error and continue to execute noncontrol floating-  
point instructions. If IGNNE# is de-asserted, the processor  
generates an exception on a noncontrol floating-point instruction if  
a previous floating-point instruction caused an error. IGNNE# has  
no effect when the NE bit in control register 0 (CR0) is set.  
IGNNE#  
Input  
IGNNE# is an asynchronous signal. However, to ensure recognition  
of this signal following an Input/Output write instruction, it must be  
valid along with the TRDY# assertion of the corresponding Input/  
Output Write bus transaction.  
INIT# (Initialization), when asserted, resets integer registers inside  
the processor without affecting its internal caches or floating-point  
registers. The processor then begins execution at the power-on  
Reset vector configured during power-on configuration. The  
processor continues to handle snoop requests during INIT#  
assertion. INIT# is an asynchronous signal and must connect the  
appropriate pins/lands of all processor FSB agents.  
INIT#  
Input  
Input  
ITP_CLK[1:0] are copies of BCLK that are used only in processor  
systems where no debug port is implemented on the system board.  
ITP_CLK[1:0] are used as BCLK[1:0] references for a debug port  
implemented on an interposer. If a debug port is implemented in  
the system, ITP_CLK[1:0] are no connects in the system. These are  
not processor signals.  
ITP_CLK[1:0]  
LINT[1:0] (Local APIC Interrupt) must connect the appropriate  
pins/lands of all APIC Bus agents. When the APIC is disabled, the  
LINT0 signal becomes INTR, a maskable interrupt request signal,  
and LINT1 becomes NMI, a nonmaskable interrupt. INTR and NMI  
are backward compatible with the signals of those names on the  
Pentium processor. Both signals are asynchronous.  
LINT[1:0]  
Input  
Both of these signals must be software configured via BIOS  
programming of the APIC register space to be used either as NMI/  
INTR or LINT[1:0]. Because the APIC is enabled by default after  
Reset, operation of these signals as LINT[1:0] is the default  
configuration.  
72  
Datasheet  
Land Listing and Signal Descriptions  
Table 25.  
Signal Description (Sheet 1 of 9)  
Name  
Type  
Description  
LOCK# indicates to the system that a transaction must occur  
atomically. This signal must connect the appropriate pins/lands of  
all processor FSB agents. For a locked sequence of transactions,  
LOCK# is asserted from the beginning of the first transaction to the  
end of the last transaction.  
Input/  
Output  
LOCK#  
When the priority agent asserts BPRI# to arbitrate for ownership of  
the processor FSB, it will wait until it observes LOCK# de-asserted.  
This enables symmetric agents to retain ownership of the processor  
FSB throughout the bus locked operation and ensure the atomicity  
of lock.  
These signals indicate the Market Segment for the processor. Refer  
to Table 3 for additional information.  
MSID[1:0]  
PECI  
Output  
Input/ PECI is a proprietary one-wire bus interface. See Section 5.4 for  
Output details.  
As an output, PROCHOT# (Processor Hot) will go active when the  
processor temperature monitoring sensor detects that the processor  
has reached its maximum safe operating temperature. This  
Input/ indicates that the processor Thermal Control Circuit (TCC) has been  
Output activated, if enabled. As an input, assertion of PROCHOT# by the  
system will activate the TCC, if enabled. The TCC will remain active  
until the system de-asserts PROCHOT#. See Section 5.2.4 for more  
details.  
PROCHOT#  
PWRGOOD (Power Good) is a processor input. The processor  
requires this signal to be a clean indication that the clocks and  
power supplies are stable and within their specifications. ‘Clean’  
implies that the signal will remain low (capable of sinking leakage  
current), without glitches, from the time that the power supplies are  
turned on until they come within specification. The signal must then  
transition monotonically to a high state. PWRGOOD can be driven  
inactive at any time, but clocks and power must again be stable  
before a subsequent rising edge of PWRGOOD.  
PWRGOOD  
REQ[4:0]#  
RESET#  
Input  
The PWRGOOD signal must be supplied to the processor; it is used  
to protect internal circuits against voltage sequencing issues. It  
should be driven high throughout boundary scan operation.  
REQ[4:0]# (Request Command) must connect the appropriate pins/  
Input/ lands of all processor FSB agents. They are asserted by the current  
Output bus owner to define the currently active transaction type. These  
signals are source synchronous to ADSTB0#.  
Asserting the RESET# signal resets the processor to a known state  
and invalidates its internal caches without writing back any of their  
contents. For a power-on Reset, RESET# must stay active for at  
least one millisecond after VCC and BCLK have reached their proper  
specifications. On observing active RESET#, all FSB agents will de-  
assert their outputs within two clocks. RESET# must not be kept  
Input  
asserted for more than 10 ms while PWRGOOD is asserted.  
A number of bus signals are sampled at the active-to-inactive  
transition of RESET# for power-on configuration. These  
configuration options are described in the Section 6.1.  
This signal does not have on-die termination and must be  
terminated on the system board.  
Datasheet  
73  
Land Listing and Signal Descriptions  
Table 25.  
Signal Description (Sheet 1 of 9)  
Name  
Type  
Description  
All RESERVED lands must remain unconnected. Connection of these  
lands to VCC, VSS, VTT, or to any other signal (including each other)  
can result in component malfunction or incompatibility with future  
processors.  
RESERVED  
RS[2:0]# (Response Status) are driven by the response agent (the  
agent responsible for completion of the current transaction), and  
must connect the appropriate pins/lands of all processor FSB  
agents.  
RS[2:0]#  
SKTOCC#  
Input  
SKTOCC# (Socket Occupied) will be pulled to ground by the  
Output processor. System board designers may use this signal to determine  
if the processor is present.  
SMI# (System Management Interrupt) is asserted asynchronously  
by system logic. On accepting a System Management Interrupt, the  
processor saves the current state and enter System Management  
Mode (SMM). An SMI Acknowledge transaction is issued, and the  
processor begins program execution from the SMM handler.  
SMI#  
Input  
If SMI# is asserted during the de-assertion of RESET#, the  
processor will tri-state its outputs.  
STPCLK# (Stop Clock), when asserted, causes the processor to  
enter a low power Stop-Grant state. The processor issues a Stop-  
Grant Acknowledge transaction, and stops providing internal clock  
signals to all processor core units except the FSB and APIC units.  
The processor continues to snoop bus transactions and service  
interrupts while in Stop-Grant state. When STPCLK# is de-asserted,  
the processor restarts its internal clock to all units and resumes  
execution. The assertion of STPCLK# has no effect on the bus clock;  
STPCLK# is an asynchronous input.  
STPCLK#  
Input  
TCK (Test Clock) provides the clock input for the processor Test Bus  
(also known as the Test Access Port).  
TCK  
TDI  
Input  
Input  
TDI (Test Data In) transfers serial test data into the processor. TDI  
provides the serial input needed for JTAG specification support.  
TDO (Test Data Out) transfers serial test data out of the processor.  
TDO  
Output TDO provides the serial output needed for JTAG specification  
support.  
TESTHI[13:0] must be connected to the processor’s appropriate  
power source (refer to VTT_OUT_LEFT and VTT_OUT_RIGHT signal  
description) through a resistor for proper processor operation. See  
TESTHI[13:0]  
Input  
Section 2.5 for more details.  
THERMDA  
THERMDC  
Other Thermal Diode Anode. See Section 5.3.  
Other Thermal Diode Cathode. See Section 5.3.  
74  
Datasheet  
Land Listing and Signal Descriptions  
Table 25.  
Signal Description (Sheet 1 of 9)  
Name  
Type  
Description  
In the event of a catastrophic cooling failure, the processor will  
automatically shut down when the silicon has reached a  
temperature approximately 20 °C above the maximum TC.  
Assertion of THERMTRIP# (Thermal Trip) indicates the processor  
junction temperature has reached a level beyond where permanent  
silicon damage may occur. Upon assertion of THERMTRIP#, the  
processor will shut off its internal clocks (thus, halting program  
execution) in an attempt to reduce the processor junction  
temperature. To protect the processor, its core voltage (VCC) must  
THERMTRIP#  
Output be removed following the assertion of THERMTRIP#. Driving of the  
THERMTRIP# signal is enabled within 10 μs of the assertion of  
PWRGOOD (provided VTT and VCC are valid) and is disabled on de-  
assertion of PWRGOOD (if VTT or VCC are not valid, THERMTRIP#  
may also be disabled). Once activated, THERMTRIP# remains  
latched until PWRGOOD, VTT, or VCC is de-asserted. While the de-  
assertion of the PWRGOOD, VTT, or VCC will de-assert THERMTRIP#,  
if the processor’s junction temperature remains at or above the trip  
level, THERMTRIP# will again be asserted within 10 μs of the  
assertion of PWRGOOD (provided VTT and VCC are valid).  
TMS (Test Mode Select) is a JTAG specification support signal used  
by debug tools.  
TMS  
Input  
TRDY# (Target Ready) is asserted by the target to indicate that it is  
TRDY#  
TRST#  
Input  
Input  
ready to receive a write or implicit writeback data transfer. TRDY#  
must connect the appropriate pins/lands of all FSB agents.  
TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST#  
must be driven low during power on Reset.  
VCC are the power pins for the processor. The voltage supplied to  
these pins is determined by the VID[7:0] pins.  
VCC  
Input  
Input  
VCCPLL  
VCCPLL provides isolated power for internal processor FSB PLLs.  
VCC_SENSE is an isolated low impedance connection to processor  
VCC_SENSE  
Output core power (VCC). It can be used to sense or measure voltage near  
the silicon with little noise.  
This land is provided as a voltage regulator feedback sense point for  
V
CC. It is connected internally in the processor package to the sense  
VCC_MB_  
REGULATION  
Output point land U27 as described in the Voltage Regulator-Down (VRD)  
11.0 Processor Power Delivery Design Guidelines For Desktop  
LGA775 Socket.  
VID[7:0] (Voltage ID) signals are used to support automatic  
selection of power supply voltages (VCC). Refer to the Voltage  
Regulator-Down (VRD) 11.0 Processor Power Delivery Design  
Guidelines For Desktop LGA775 Socket for more information. The  
voltage supply for these signals must be valid before the VR can  
Output supply VCC to the processor. Conversely, the VR output must be  
disabled until the voltage supply for the VID signals becomes valid.  
The VID signals are needed to support the processor voltage  
specification variations. See Table 2 for definitions of these signals.  
The VR must supply the voltage that is requested by the signals, or  
disable itself.  
VID[7:0]  
This land is tied high on the processor package and is used by the  
VR to choose the proper VID table. Refer to the Voltage Regulator-  
Down (VRD) 11.0 Processor Power Delivery Design Guidelines For  
VID_SELECT  
Output  
Desktop LGA775 Socket for more information.  
Datasheet  
75  
Land Listing and Signal Descriptions  
Table 25.  
Signal Description (Sheet 1 of 9)  
Name  
Type  
Description  
This input should be left as a no connect in order for the processor  
to boot. The processor will not boot on legacy platforms where this  
VRDSEL  
Input  
land is connected to VSS  
.
VSS are the ground pins for the processor and should be connected  
to the system ground plane.  
VSS  
Input  
Input  
VSSA  
VSSA is the isolated ground for internal PLLs.  
VSS_SENSE is an isolated low impedance connection to processor  
VSS_SENSE  
Output core VSS. It can be used to sense or measure ground near the  
silicon with little noise.  
This land is provided as a voltage regulator feedback sense point for  
V
SS. It is connected internally in the processor package to the sense  
VSS_MB_  
REGULATION  
Output point land V27 as described in the Voltage Regulator-Down (VRD)  
11.0 Processor Power Delivery Design Guidelines For Desktop  
LGA775 Socket.  
VTT  
Input  
Miscellaneous voltage supply.  
VTT_OUT_LEFT  
The VTT_OUT_LEFT and VTT_OUT_RIGHT signals are included to  
Output provide a voltage supply for some signals that require termination  
to VTT on the motherboard.  
VTT_OUT_RIGHT  
VTT_SEL  
The VTT_SEL signal is used to select the correct VTT voltage level for  
Output the processor. This land is connected internally in the package to  
VTT.  
§ §  
76  
Datasheet  
Thermal Specifications and Design Considerations  
5
Thermal Specifications and  
Design Considerations  
5.1  
Processor Thermal Specifications  
The processor requires a thermal solution to maintain temperatures within the  
operating limits as described in Section 5.1.1. Any attempt to operate the processor  
outside these operating limits may result in permanent damage to the processor and  
potentially other components within the system. As processor technology changes,  
thermal management becomes increasingly crucial when building computer systems.  
Maintaining the proper thermal environment is key to reliable, long-term system  
operation.  
A complete thermal solution includes both component and system level thermal  
management features. Component level thermal solutions can include active or passive  
heatsinks attached to the processor Integrated Heat Spreader (IHS). Typical system  
level thermal solutions may consist of system fans combined with ducting and venting.  
For more information on designing a component level thermal solution, refer to the  
appropriate Thermal and Mechanical Design Guidelines (see Section 1.2).  
Note:  
The boxed processor will ship with a component thermal solution. Refer to Chapter 7  
for details on the boxed processor.  
5.1.1  
Thermal Specifications  
To allow for the optimal operation and long-term reliability of Intel processor-based  
systems, the system/processor thermal solution should be designed such that the  
processor remains within the minimum and maximum case temperature (TC)  
specifications when operating at or below the Thermal Design Power (TDP) value listed  
per frequency in Table 26. Thermal solutions not designed to provide this level of  
thermal capability may affect the long-term reliability of the processor and system. For  
more details on thermal solution design, refer to the appropriate Thermal and  
Mechanical Design Guidelines (see Section 1.2).  
The processor uses a methodology for managing processor temperatures which is  
intended to support acoustic noise reduction through fan speed control. Selection of the  
appropriate fan speed is based on the relative temperature data reported by the  
processor’s Platform Environment Control Interface (PECI) bus as described in  
Section 5.4.1.1. The temperature reported over PECI is always a negative value and  
represents a delta below the onset of thermal control circuit (TCC) activation, as  
indicated by PROCHOT# (see Section 5.2). Systems that implement fan speed control  
must be designed to take these conditions in to account. Systems that do not alter the  
fan speed only need to ensure the case temperature meets the thermal profile  
specifications.  
To determine a processor's case temperature specification based on the thermal profile,  
it is necessary to accurately measure processor power dissipation. Intel has developed  
a methodology for accurate power measurement that correlates to Intel test  
temperature and voltage conditions. Refer to the appropriate Thermal and Mechanical  
Design Guidelines (see Section 1.2) and the Processor Power Characterization  
Methodology for the details of this methodology.  
The case temperature is defined at the geometric top center of the processor. Analysis  
indicates that real applications are unlikely to cause the processor to consume  
maximum power dissipation for sustained time periods. Intel recommends that  
Datasheet  
77  
Thermal Specifications and Design Considerations  
complete thermal solution designs target the Thermal Design Power (TDP) indicated in  
Table 26 instead of the maximum processor power consumption. The Thermal Monitor  
feature is designed to protect the processor in the unlikely event that an application  
exceeds the TDP recommendation for a sustained periods of time. For more details on  
the usage of this feature, refer to Section 5.2. In all cases the Thermal Monitor and  
Thermal Monitor 2 feature must be enabled for the processor to remain within  
specification.  
Table 26.  
Processor Thermal Specifications  
Core  
Frequency  
(GHz)  
Thermal  
Design  
Extended  
HALT  
775_VR_  
Processor  
Number  
Minimum Maximum TC  
CONFIG_05B/  
Notes  
T
C (°C)  
(°C)  
Power (W)1,2 Power (W)3  
06 Guidance4  
5,6  
5,6  
E6850  
E6750  
E6550  
E6540  
E6700  
E6600  
E6420  
E6320  
E4700  
E4600  
E4500  
E4400  
E6400  
E6400  
E6300  
E6300  
E4400  
E4300  
3.00  
2.66  
2.33  
2.33  
2.66  
2.40  
2.13  
1.86  
2.40  
2.40  
2.20  
2.00  
2.13  
2.13  
1.86  
1.86  
2.00  
1.80  
65.0  
65.0  
65.0  
65.0  
65.0  
65.0  
65.0  
65.0  
65.0  
65.0  
65.0  
65.0  
65.0  
65.0  
65.0  
65.0  
65.0  
65.0  
8.0  
8.0  
5
5
5
5
5
5
5
5
5
5
5
5
Thermal  
Profile 1  
775_VR_CONFIG  
_06  
5,6  
(SeeTable 27,  
Figure 19)  
8.0  
5,6  
8.0  
7,8  
22.0/12.0  
22.0/12.0  
12.0  
12.0  
8.0  
Thermal  
Profile 2  
7,8  
775_VR_CONFIG  
_06  
7,8  
(SeeTable 28,  
Figure 20)  
7,8  
5,6  
Thermal  
Profile 3  
5,9  
8.0  
775_VR_CONFIG  
_06  
5,9  
(SeeTable 29,  
Figure 21)  
8.0  
5,9  
8.0  
7, 10  
7,8  
12.0  
22.0  
12.0  
22.0  
12.0  
12.0  
5
Thermal  
Profile 4  
7, 10  
7,8  
775_VR_CONFIG  
_06  
(SeeTable 30,  
Figure 22)  
5
5
5
7, 10  
7,10  
Thermal  
Profile 5  
775_VR_CONFIG  
_05B  
7,8  
X6800  
2.93  
75.0  
22.0  
5
(See Table 31  
Figure 23)  
NOTES:  
1. Thermal Design Power (TDP) should be used for processor thermal solution design targets. The TDP is not the maximum power  
that the processor can dissipate.  
2. This table shows the maximum TDP for a given frequency range. Individual processors may have a lower TDP.  
Therefore, the maximum TC will vary depending on the TDP of the individual processor. Refer to thermal profile  
figure and associated table for the allowed combinations of power and TC.  
®
®
3. Refer to the “Component Identification Information” section of the Intel Core™2 Extreme and Intel Core™2 Duo Desktop  
Processor Specification Update for processor specific Idle power.  
4. 775_VR_CONFIG_06/775_VR_CONFIG_05B guidelines provide a design target for meeting future thermal requirements.  
5. Specification is at 35 °C T and typical voltage loadline.  
C
6. These processors have CPUID = 06FBh.  
7. Specification is at 50 °C T and typical voltage loadline.  
C
8. These processors have CPUID = 06F6h.  
9. These processors have CPUID = 06FDh.  
10.These processors have CPUID = 06F2h.  
78  
Datasheet  
Thermal Specifications and Design Considerations  
Table 27.  
Thermal Profile 1  
Power  
(W)  
Maximum  
Tc (°C)  
Power  
(W)  
Maximum  
Tc (°C)  
Power  
(W)  
Maximum  
Tc (°C)  
0
2
44.7  
45.5  
46.4  
47.2  
48.1  
48.9  
49.7  
50.6  
51.4  
52.3  
53.1  
53.9  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
54.8  
55.6  
56.5  
57.3  
58.1  
59.0  
59.8  
60.7  
61.5  
62.3  
63.2  
64.0  
48  
50  
52  
54  
56  
58  
60  
62  
64  
65  
64.9  
65.7  
66.5  
67.4  
68.2  
69.1  
69.9  
70.7  
71.6  
72.0  
4
6
8
10  
12  
14  
16  
18  
20  
22  
NOTE: For the Intel® Core™2 Duo Desktop processor E6x50 series with 4 MB L2 Cache and  
CPUID = 06FBh, and Intel® Core™2 Duo Desktop processor E6540 with 4 MB L2 Cache  
and CPUID = 06FBh.  
Figure 19.  
Thermal Profile 1  
NOTE: For the Intel® Core™2 Duo Desktop processor E6x50 series with 4 MB L2 Cache and  
CPUID = 06FBh, and Intel® Core™2 Duo Desktop processorr E6540 with 4 MB L2 Cache  
and CPUID = 06FBh.  
Datasheet  
79  
Thermal Specifications and Design Considerations  
Table 28.  
Thermal Profile 2  
Power  
(W)  
Maximum  
Tc (°C)  
Power  
(W)  
Maximum  
Tc (°C)  
Power  
(W)  
Maximum  
Tc (°C)  
0
2
43.2  
43.7  
44.2  
44.8  
45.3  
45.8  
46.3  
46.8  
47.4  
47.9  
48.4  
48.9  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
49.4  
50.0  
50.5  
51.0  
51.5  
52.0  
52.6  
53.1  
53.6  
54.1  
54.6  
55.2  
48  
50  
52  
54  
56  
58  
60  
62  
64  
65  
55.7  
56.2  
56.7  
57.2  
57.8  
58.3  
58.8  
59.3  
59.8  
60.1  
4
6
8
10  
12  
14  
16  
18  
20  
22  
NOTE: For the Intel® Core™2 Duo Desktop processor E6000 series with 4 MB L2 Cache and  
CPUID = 06F6h.  
Figure 20.  
Thermal Profile 2  
65.0  
60.0  
55.0  
y = 0.26x + 43.2  
50.0  
45.0  
40.0  
0
10  
20  
30  
Power (W)  
40  
50  
60  
NOTE: For the Intel® Core™2 Duo Desktop processor E6000 series with 4 MB L2 Cache and  
CPUID = 06F6h.  
80  
Datasheet  
Thermal Specifications and Design Considerations  
Table 29.  
Thermal Profile 3  
Power  
(W)  
Maximum  
Tc (°C)  
Power  
(W)  
Maximum  
Tc (°C)  
Power  
(W)  
Maximum  
Tc (°C)  
0
2
45.3  
46.2  
47.0  
47.9  
48.7  
49.6  
50.5  
51.3  
52.2  
53.0  
53.9  
54.8  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
55.6  
56.5  
57.3  
58.2  
59.1  
59.9  
60.8  
61.6  
62.5  
63.4  
64.2  
65.1  
48  
50  
52  
54  
56  
58  
60  
62  
64  
65  
65.9  
66.8  
67.7  
68.5  
69.4  
70.2  
71.1  
72.0  
72.8  
73.3  
4
6
8
10  
12  
14  
16  
18  
20  
22  
NOTE: For the Intel® Core™2 Duo Desktop processor E4000 series with 2 MB L2 Cache and  
CPUID = 06FDh, and for the Intel® Core™2 Duo Desktop processor E4700 with 2 MB L2  
Cache and CPUID = 06FBh.  
Figure 21.  
Thermal Profile 3  
NOTE: For the Intel® Core™2 Duo Desktop processor E4000 series with 2 MB L2 Cache and  
CPUID = 06FDh, and for the Intel® Core™2 Duo Desktop processor E4700 with 2 MB L2  
Cache and CPUID = 06FBh.  
Datasheet  
81  
Thermal Specifications and Design Considerations  
Table 30.  
Thermal Profile 4  
Power  
(W)  
Maximum  
Tc (°C)  
Power  
(W)  
Maximum  
Tc (°C)  
Power  
(W)  
Maximum  
Tc (°C)  
0
2
43.2  
43.8  
44.3  
44.9  
45.4  
46.0  
46.6  
47.1  
47.7  
48.2  
48.8  
49.4  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
49.9  
50.5  
51.0  
51.6  
52.2  
52.7  
53.3  
53.8  
54.4  
55.0  
55.5  
56.1  
48  
50  
52  
54  
56  
58  
60  
62  
64  
65  
56.6  
57.2  
57.8  
58.3  
58.9  
59.4  
60.0  
60.6  
61.1  
61.4  
4
6
8
10  
12  
14  
16  
18  
20  
22  
NOTE: For the Intel® Core™2 Duo Desktop processor E6000 and E4000 series with 2 MB L2  
Cache and CPUID = 06F2h, and for the Intel® Core™2 Duo Desktop processor E6000  
series with 2 MB L2 Cache and CPUID = 06F6h.  
Figure 22.  
Thermal Profile 4  
65.0  
60.0  
y = 0.28x + 43.2  
55.0  
50.0  
45.0  
40.0  
0
10  
20  
30  
Power (W)  
40  
50  
60  
NOTE: For the Intel® Core™2 Duo Desktop processor E6000 and E4000 series with 2 MB L2  
Cache and CPUID = 06F2h, and for the Intel® Core™2 Duo Desktop processor E6000  
series with 2 MB L2 Cache and CPUID = 06F6h.  
82  
Datasheet  
Thermal Specifications and Design Considerations  
Table 31.  
Thermal Profile 5  
Power  
(W)  
Maximum  
Tc (°C)  
Power  
(W)  
Maximum  
Tc (°C)  
Power  
(W)  
Maximum  
Tc (°C)  
0
2
43.2  
43.7  
44.1  
44.6  
45.0  
45.5  
46.0  
46.4  
46.9  
47.3  
47.8  
48.3  
48.7  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
49.2  
49.6  
50.1  
50.6  
51.0  
51.5  
51.9  
52.4  
52.9  
53.3  
53.8  
54.2  
54.7  
52  
54  
56  
58  
60  
62  
64  
66  
68  
70  
72  
74  
75  
55.2  
55.6  
56.1  
56.5  
57.0  
57.5  
57.9  
58.2  
58.8  
59.3  
59.8  
60.2  
60.4  
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
NOTE: For the Intel® Core™2 Extreme processor X6800.  
Figure 23.  
Thermal Profile 5  
65.0  
60.0  
55.0  
50.0  
45.0  
40.0  
y = 0.23x + 43.2  
0
10  
20  
30  
40  
50  
60  
70  
Power (W)  
NOTE: For the Intel® Core™2 Extreme processor X6800.  
Datasheet  
83  
Thermal Specifications and Design Considerations  
5.1.2  
Thermal Metrology  
The maximum and minimum case temperatures (TC) for the processor is specified in  
Table 26. This temperature specification is meant to help ensure proper operation of  
the processor. Figure 24 illustrates where Intel recommends TC thermal measurements  
should be made. For detailed guidelines on temperature measurement methodology,  
refer to the appropriate Thermal and Mechanical Design Guidelines (see Section 1.2).  
Figure 24.  
Case Temperature (TC) Measurement Location  
Measure TC atthispoint  
(geometric center of the package)  
37.5 mm  
5.2  
Processor Thermal Features  
5.2.1  
Thermal Monitor  
The Thermal Monitor feature helps control the processor temperature by activating the  
thermal control circuit (TCC) when the processor silicon reaches its maximum operating  
temperature. The TCC reduces processor power consumption by modulating (starting  
and stopping) the internal processor core clocks. The Thermal Monitor feature must  
be enabled for the processor to be operating within specifications. The  
temperature at which Thermal Monitor activates the thermal control circuit is not user  
configurable and is not software visible. Bus traffic is snooped in the normal manner,  
and interrupt requests are latched (and serviced during the time that the clocks are on)  
while the TCC is active.  
When the Thermal Monitor feature is enabled, and a high temperature situation exists  
(i.e., TCC is active), the clocks will be modulated by alternately turning the clocks off  
and on at a duty cycle specific to the processor (typically 30–50%). Clocks often will  
not be off for more than 3.0 microseconds when the TCC is active. Cycle times are  
processor speed dependent and will decrease as processor core frequencies increase. A  
small amount of hysteresis has been included to prevent rapid active/inactive  
transitions of the TCC when the processor temperature is near its maximum operating  
temperature. Once the temperature has dropped below the maximum operating  
temperature, and the hysteresis timer has expired, the TCC goes inactive and clock  
modulation ceases.  
With a properly designed and characterized thermal solution, it is anticipated that the  
TCC would only be activated for very short periods of time when running the most  
power intensive applications. The processor performance impact due to these brief  
periods of TCC activation is expected to be so minor that it would be immeasurable. An  
under-designed thermal solution that is not able to prevent excessive activation of the  
TCC in the anticipated ambient environment may cause a noticeable performance loss,  
84  
Datasheet  
Thermal Specifications and Design Considerations  
and in some cases may result in a TC that exceeds the specified maximum temperature  
and may affect the long-term reliability of the processor. In addition, a thermal solution  
that is significantly under-designed may not be capable of cooling the processor even  
when the TCC is active continuously. Refer to the appropriate Thermal and Mechanical  
Design Guidelines (see Section 1.2) for information on designing a thermal solution.  
The duty cycle for the TCC, when activated by the Thermal Monitor, is factory  
configured and cannot be modified. The Thermal Monitor does not require any  
additional hardware, software drivers, or interrupt handling routines.  
5.2.2  
Thermal Monitor 2  
The processor also supports an additional power reduction capability known as Thermal  
Monitor 2. This mechanism provides an efficient means for limiting the processor  
temperature by reducing the power consumption within the processor.  
When Thermal Monitor 2 is enabled, and a high temperature situation is detected, the  
Thermal Control Circuit (TCC) will be activated. The TCC causes the processor to adjust  
its operating frequency (via the bus multiplier) and input voltage (via the VID signals).  
This combination of reduced frequency and VID results in a reduction to the processor  
power consumption.  
A processor enabled for Thermal Monitor 2 includes two operating points, each  
consisting of a specific operating frequency and voltage. The first operating point  
represents the normal operating condition for the processor. Under this condition, the  
core-frequency-to-FSB multiple used by the processor is that contained in the  
appropriate MSR and the VID is that specified in Table 5. These parameters represent  
normal system operation.  
The second operating point consists of both a lower operating frequency and voltage.  
When the TCC is activated, the processor automatically transitions to the new  
frequency. This transition occurs very rapidly (on the order of 5 μs). During the  
frequency transition, the processor is unable to service any bus requests, and  
consequently, all bus traffic is blocked. Edge-triggered interrupts will be latched and  
kept pending until the processor resumes operation at the new frequency.  
Once the new operating frequency is engaged, the processor will transition to the new  
core operating voltage by issuing a new VID code to the voltage regulator. The voltage  
regulator must support dynamic VID steps to support Thermal Monitor 2. During the  
voltage change, it will be necessary to transition through multiple VID codes to reach  
the target operating voltage. Each step will likely be one VID table entry (see Table 5).  
The processor continues to execute instructions during the voltage transition.  
Operation at the lower voltage reduces the power consumption of the processor.  
A small amount of hysteresis has been included to prevent rapid active/inactive  
transitions of the TCC when the processor temperature is near its maximum operating  
temperature. Once the temperature has dropped below the maximum operating  
temperature, and the hysteresis timer has expired, the operating frequency and  
voltage transition back to the normal system operating point. Transition of the VID code  
will occur first, to insure proper operation once the processor reaches its normal  
operating frequency. Refer to Figure 25 for an illustration of this ordering.  
Datasheet  
85  
Thermal Specifications and Design Considerations  
Figure 25.  
Thermal Monitor 2 Frequency and Voltage Ordering  
TTM2  
Temperature  
Frequency  
fMAX  
fTM2  
VID  
VIDTM2  
VID  
PROCHOT#  
The PROCHOT# signal is asserted when a high temperature situation is detected,  
regardless of whether Thermal Monitor or Thermal Monitor 2 is enabled.  
It should be noted that the Thermal Monitor 2 TCC cannot be activated via the on  
demand mode. The Thermal Monitor TCC, however, can be activated through the use of  
the on demand mode.  
5.2.3  
On-Demand Mode  
The processor provides an auxiliary mechanism that allows system software to force  
the processor to reduce its power consumption. This mechanism is referred to as “On-  
Demand” mode and is distinct from the Thermal Monitor feature. On-Demand mode is  
intended as a means to reduce system level power consumption. Systems using the  
processor must not rely on software usage of this mechanism to limit the processor  
temperature.  
The processor provides an auxiliary mechanism that allows system software to force  
the processor to reduce its power consumption. This mechanism is referred to as “On-  
Demand” mode and is distinct from the Thermal Monitor and Thermal Monitor 2  
features. On-Demand mode is intended as a means to reduce system level power  
consumption. Systems must not rely on software usage of this mechanism to limit the  
processor temperature. If bit 4 of the IA32_CLOCK_MODULATION MSR is set to a 1, the  
processor will immediately reduce its power consumption via modulation (starting and  
stopping) of the internal core clock, independent of the processor temperature. When  
using On-Demand mode, the duty cycle of the clock modulation is programmable via  
bits 3:1 of the same IA32_CLOCK_MODULATION MSR. In On-Demand mode, the duty  
cycle can be programmed from 12.5% on/ 87.5% off to 87.5% on/ 12.5% off in 12.5%  
increments. On-Demand mode may be used in conjunction with the Thermal Monitor;  
however, if the system tries to enable On-Demand mode at the same time the TCC is  
engaged, the factory configured duty cycle of the TCC will override the duty cycle  
selected by the On-Demand mode.  
86  
Datasheet  
Thermal Specifications and Design Considerations  
5.2.4  
PROCHOT# Signal  
An external signal, PROCHOT# (processor hot), is asserted when the processor core  
temperature has reached its maximum operating temperature. If the Thermal Monitor  
is enabled (note that the Thermal Monitor must be enabled for the processor to be  
operating within specification), the TCC will be active when PROCHOT# is asserted. The  
processor can be configured to generate an interrupt upon the assertion or de-  
assertion of PROCHOT#.  
As an output, PROCHOT# (Processor Hot) will go active when the processor  
temperature monitoring sensor detects that one or both cores has reached its  
maximum safe operating temperature. This indicates that the processor Thermal  
Control Circuit (TCC) has been activated, if enabled. As an input, assertion of  
PROCHOT# by the system will activate the TCC, if enabled, for both cores. The TCC will  
remain active until the system de-asserts PROCHOT#.  
PROCHOT# allows for some protection of various components from over-temperature  
situations. The PROCHOT# signal is bi-directional in that it can either signal when the  
processor (either core) has reached its maximum operating temperature or be driven  
from an external source to activate the TCC. The ability to activate the TCC via  
PROCHOT# can provide a means for thermal protection of system components.  
PROCHOT# can allow VR thermal designs to target maximum sustained current instead  
of maximum current. Systems should still provide proper cooling for the VR, and rely  
on PROCHOT# only as a backup in case of system cooling failure. The system thermal  
design should allow the power delivery circuitry to operate within its temperature  
specification even while the processor is operating at its Thermal Design Power. With a  
properly designed and characterized thermal solution, it is anticipated that PROCHOT#  
would only be asserted for very short periods of time when running the most power  
intensive applications. An under-designed thermal solution that is not able to prevent  
excessive assertion of PROCHOT# in the anticipated ambient environment may cause a  
noticeable performance loss. Refer to the Voltage Regulator-Down (VRD) 11.0  
Processor Power Delivery Design Guidelines For Desktop LGA775 Socket for details on  
implementing the bi-directional PROCHOT# feature.  
5.2.5  
THERMTRIP# Signal  
Regardless of whether or not Thermal Monitor or Thermal Monitor 2 is enabled, in the  
event of a catastrophic cooling failure, the processor will automatically shut down when  
the silicon has reached an elevated temperature (refer to the THERMTRIP# definition in  
Table 25). At this point, the FSB signal THERMTRIP# will go active and stay active as  
described in Table 25. THERMTRIP# activation is independent of processor activity and  
does not generate any bus cycles.  
Datasheet  
87  
Thermal Specifications and Design Considerations  
5.3  
Thermal Diode  
The processor incorporates an on-die PNP transistor where the base emitter junction is  
used as a thermal "diode", with its collector shorted to ground. A thermal sensor  
located on the system board may monitor the die temperature of the processor for  
thermal management and fan speed control. Table 32,Table 33, and Table 34 provide  
the "diode" parameter and interface specifications. Two different sets of "diode"  
parameters are listed in Table 32 and Table 33. The Diode Model parameters (Table 32)  
apply to traditional thermal sensors that use the Diode Equation to determine the  
processor temperature. Transistor Model parameters (Table 33) have been added to  
support thermal sensors that use the transistor equation method. The Transistor Model  
may provide more accurate temperature measurements when the diode ideality factor  
is closer to the maximum or minimum limits. This thermal "diode" is separate from the  
Thermal Monitor's thermal sensor and cannot be used to predict the behavior of the  
Thermal Monitor.  
TCONTROL is a temperature specification based on a temperature reading from the  
thermal diode. The value for TCONTROL will be calibrated in manufacturing and  
configured for each processor. When TDIODE is above TCONTROL, then TC must be at or  
below TC_MAX as defined by the thermal profile in Table 28; otherwise, the processor  
temperature can be maintained at TCONTROL (or lower) as measured by the thermal  
diode.  
Table 32.  
Thermal “Diode” Parameters using Diode Model  
Symbol  
IFW  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
Forward Bias Current  
Diode Ideality Factor  
Series Resistance  
5
200  
1.050  
6.24  
µA  
-
1
n
1.000  
2.79  
1.009  
4.52  
2, 3, 4  
2, 3, 5  
RT  
Ω
NOTES:  
1.  
2.  
3.  
4.  
Intel does not support or recommend operation of the thermal diode under reverse bias.  
Characterized across a temperature range of 50 – 80 °C.  
Not 100% tested. Specified by design characterization.  
The ideality factor, n, represents the deviation from ideal diode behavior as exemplified by  
the diode equation:  
FW = IS * (e qV /nkT –1)  
D
I
where IS = saturation current, q = electronic charge, VD = voltage across the diode,  
k = Boltzmann Constant, and T = absolute temperature (Kelvin).  
5.  
The series resistance, RT, is provided to allow for a more accurate measurement of the  
junction temperature. RT, as defined, includes the lands of the processor but does not  
include any socket resistance or board trace resistance between the socket and the  
external remote diode thermal sensor. RT can be used by remote diode thermal sensors  
with automatic series resistance cancellation to calibrate out this error term. Another  
application is that a temperature offset can be manually calculated and programmed into  
an offset register in the remote diode thermal sensors as exemplified by the equation:  
Terror = [RT * (N–1) * IFWmin] / [nk/q * ln N]  
where Terror = sensor temperature error, N = sensor current ratio, k = Boltzmann  
Constant, q = electronic charge.  
88  
Datasheet  
Thermal Specifications and Design Considerations  
Table 33.  
Thermal “Diode” Parameters using Transistor Model  
Symbol  
IFW  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
Forward Bias Current  
Emitter Current  
5
200  
200  
µA  
µA  
-
1, 2  
IE  
5
nQ  
Transistor Ideality  
0.997  
0.391  
2.79  
1.001  
1.005  
0.760  
6.24  
3, 4, 5  
3, 4  
Beta  
RT  
Series Resistance  
4.52  
Ω
3, 6  
NOTES:  
1.  
2.  
3.  
4.  
5.  
Intel does not support or recommend operation of the thermal diode under reverse bias.  
Same as IFW in Table 32.  
Characterized across a temperature range of 50–80 °C.  
Not 100% tested. Specified by design characterization.  
The ideality factor, nQ, represents the deviation from ideal transistor model behavior as  
exemplified by the equation for the collector current:  
IC = IS * (e qV /n kT –1)  
BE  
Q
Where IS = saturation current, q = electronic charge, VBE = voltage across the transistor  
base emitter junction (same nodes as VD), k = Boltzmann Constant, and T = absolute  
temperature (Kelvin).  
The series resistance, RT, provided in the Diode Model Table (Table 32) can be used for  
more accurate readings as needed.  
6.  
The processor does not support the diode correction offset that exists on other Intel  
processors  
Table 34.  
Thermal Diode Interface  
Signal  
Signal Name  
Land Number  
Description  
THERMDA  
THERMDC  
AL1  
AK1  
diode anode  
diode cathode  
Datasheet  
89  
Thermal Specifications and Design Considerations  
5.4  
Platform Environment Control Interface (PECI)  
5.4.1  
Introduction  
PECI offers an interface for thermal monitoring of Intel processor and chipset  
components. It uses a single wire, thus alleviating routing congestion issues. Figure 26  
shows an example of the PECI topology in a system. PECI uses CRC checking on the  
host side to ensure reliable transfers between the host and client devices. Also, data  
transfer speeds across the PECI interface are negotiable within a wide range (2 Kbps to  
2 Mbps). The PECI interface on the processor is disabled by default and must be  
enabled through BIOS.  
Figure 26.  
Processor PECI Topology  
Land G5  
PECI Host  
Controller  
Domain 0  
5.4.1.1  
Key Difference with Legacy Diode-Based Thermal Management  
Fan speed control solutions based on PECI uses a TCONTROL value stored in the  
processor IA32_TEMPERATURE_TARGET MSR. The TCONTROL MSR uses the same offset  
temperature format as PECI though it contains no sign bit. Thermal management  
devices should infer the TCONTROL value as negative. Thermal management algorithms  
should use the relative temperature value delivered over PECI in conjunction with the  
TCONTROL MSR value to control or optimize fan speeds. Figure 27 shows a conceptual  
fan control diagram using PECI temperatures.  
The relative temperature value reported over PECI represents the delta below the onset  
of thermal control circuit (TCC) activation as indicated by PROCHOT# assertions. As the  
temperature approaches TCC activation, the PECI value approaches zero. TCC activates  
at a PECI count of zero.  
90  
Datasheet  
Thermal Specifications and Design Considerations  
.
Figure 27.  
Conceptual Fan Control on PECI-Based Platforms  
TCONTROL  
Setting  
TCC Activation  
Temperature  
PECI = 0  
Max  
PECI = -10  
Fan Speed  
(RPM)  
Min  
PECI = -20  
Temperature  
Note: Not intended to depict actual implementation  
.
Figure 28.  
Conceptual Fan Control on Thermal Diode-Based Platforms  
TCONTROL  
Setting  
TCC Activation  
Temperature  
TDIODE = 90 °C  
Max  
DIODE = 80 °C  
Fan Speed  
(RPM)  
T
Min  
TDIODE = 70 °C  
Temperature  
Datasheet  
91  
Thermal Specifications and Design Considerations  
5.4.2  
PECI Specifications  
5.4.2.1  
PECI Device Address  
The PECI device address for the socket is 30h. For more information on PECI domains,  
refer to the Platform Environment Control Interface Specification.  
5.4.2.2  
5.4.2.3  
PECI Command Support  
PECI command support is covered in detail in the Platform Environment Control  
Interface Specification. Refer to this document for details on supported PECI command  
function and codes.  
PECI Fault Handling Requirements  
PECI is largely a fault tolerant interface, including noise immunity and error checking  
improvements over other comparable industry standard interfaces. The PECI client is  
as reliable as the device that it is embedded in, and thus given operating conditions  
that fall under the specification, the PECI will always respond to requests and the  
protocol itself can be relied upon to detect any transmission failures. There are,  
however, certain scenarios where the PECI is know to be unresponsive.  
Prior to a power on RESET# and during RESET# assertion, PECI is not ensured to  
provide reliable thermal data. System designs should implement a default power-on  
condition that ensures proper processor operation during the time frame when reliable  
data is not available via PECI.  
To protect platforms from potential operational or safety issues due to an abnormal  
condition on PECI, the Host controller should take action to protect the system from  
possible damaging states. It is recommended that the PECI host controller take  
appropriate action to protect the client processor device if valid temperature readings  
have not been obtained in response to three consecutive gettemp()s or for a one  
second time interval. The host controller may also implement an alert to software in the  
event of a critical or continuous fault condition.  
5.4.2.4  
PECI GetTemp0() Error Code Support  
The error codes supported for the processor GetTemp() command are listed in  
Table 35.  
Table 35.  
GetTemp0() Error Codes  
Error Code  
8000h  
Description  
General sensor error  
Sensor is operational, but has detected a temperature below its operational  
range (underflow).  
8002h  
§ §  
92  
Datasheet  
Features  
6
Features  
6.1  
Power-On Configuration Options  
Several configuration options can be configured by hardware. The processor samples  
the hardware configuration at reset, on the active-to-inactive transition of RESET#. For  
specifications on these options, refer to Table 36.  
The sampled information configures the processor for subsequent operation. These  
configuration options cannot be changed except by another reset. All resets reconfigure  
the processor; for reset purposes, the processor does not distinguish between a  
"warm" reset and a "power-on" reset.  
Table 36.  
Power-On Configuration Option Signals  
Signal1 2 3  
,
,
Configuration Option  
Output tristate  
SMI#  
Execute BIST  
A3#  
Disable dynamic bus parking  
Symmetric agent arbitration ID  
RESERVED  
A25#  
BR0#  
A[8:5]#, A[24:11]#, A[35:26]#  
NOTES:  
1. Asserting this signal during RESET# will select the corresponding option.  
2. Address signals not identified in this table as configuration options should not  
be asserted during RESET#.  
3. Disabling of any of the cores within the processor must be handled by  
configuring the EXT_CONFIG Model Specific Register (MSR). This MSR will allow  
for the disabling of a single core.  
6.2  
Clock Control and Low Power States  
The processor allows the use of AutoHALT and Stop Grant states to reduce power  
consumption by stopping the clock to internal sections of the processor, depending on  
each particular state. See Figure 29 for a visual representation of the processor low  
power states.  
Datasheet  
93  
Features  
Figure 29.  
Processor Low Power State Machine  
HALT or MWAIT Instruction and  
HALT Bus Cycle Generated  
Extended HALT or HALT  
State  
- BCLK running  
- Snoops and interrupts  
allowed  
Normal State  
INIT#, INTR, NMI, SMI#, RESET#,  
FSB interrupts  
- Normal Execution  
Snoop  
Event  
Occurs  
Snoop  
Event  
Serviced  
STPCLK#  
Asserted  
STPCLK#  
De-asserted  
STPCLK#  
Asserted  
STPCLK#  
De-asserted  
Extended HALT Snoop or  
HALT Snoop State  
- BCLK running  
- Service Snoops to caches  
Extended Stop Grant  
State or Stop Grant State  
- BCLK running  
- Snoops and interrupts  
allowed  
Extended Stop Grant  
Snoop or Stop Grant  
Snoop State  
- BCLK running  
- Service Snoops to caches  
Snoop Event Occurs  
Snoop Event Serviced  
6.2.1  
6.2.2  
Normal State  
This is the normal operating state for the processor.  
HALT and Extended HALT Powerdown States  
The processor supports the HALT or Extended HALT powerdown state. The Extended  
HALT Powerdown must be enabled via the BIOS for the processor to remain within its  
specification.  
The Extended HALT state is a lower power state as compared to the Stop Grant State.  
If Extended HALT is not enabled, the default Powerdown state entered will be HALT.  
Refer to the following sections for details about the HALT and Extended HALT states.  
6.2.2.1  
HALT Powerdown State  
HALT is a low power state entered when all the processor cores have executed the HALT  
or MWAIT instructions. When one of the processor cores executes the HALT instruction,  
that processor core is halted; however, the other processor continues normal operation.  
The processor transitions to the Normal state upon the occurrence of SMI#, INIT#, or  
LINT[1:0] (NMI, INTR). RESET# causes the processor to immediately initialize itself.  
The return from a System Management Interrupt (SMI) handler can be to either  
Normal Mode or the HALT Power Down state. See the Intel Architecture Software  
Developer's Manual, Volume III: System Programmer's Guide for more information.  
94  
Datasheet  
Features  
The system can generate a STPCLK# while the processor is in the HALT powerdown  
state. When the system de-asserts the STPCLK# interrupt, the processor will return  
execution to the HALT state.  
While in HALT Power powerdown, the processor processes bus snoops.  
6.2.2.2  
Extended HALT Powerdown State  
Extended HALT is a low power state entered when all processor cores have executed  
the HALT or MWAIT instructions and Extended HALT has been enabled via the BIOS.  
When one of the processor cores executes the HALT instruction, that logical processor  
is halted; however, the other processor continues normal operation. The Extended  
HALT Powerdown state must be enabled via the BIOS for the processor to remain within  
its specification.  
The processor automatically transitions to a lower frequency and voltage operating  
point before entering the Extended HALT state. Note that the processor FSB frequency  
is not altered; only the internal core frequency is changed. When entering the low  
power state, the processor first switches to the lower bus ratio and then transitions to  
the lower VID.  
While in Extended HALT state, the processor processes bus snoops.  
The processor exits the Extended HALT state when a break event occurs. When the  
processor exits the Extended HALT state, it will resume operation at the lower  
frequency, transitions the VID to the original value and then changes the bus ratio back  
to the original value.  
6.2.3  
Stop Grant and Extended Stop Grant States  
The processor supports the Stop Grant and Extended Stop Grant states. The Extended  
Stop Grant state is a feature that must be configured and enabled via the BIOS. Refer  
to the following sections for details about the Stop Grant and Extended Stop Grant  
states.  
6.2.3.1  
Stop Grant State  
When the STPCLK# signal is asserted, the Stop Grant state of the processor is entered  
20 bus clocks after the response phase of the processor-issued Stop Grant  
Acknowledge special bus cycle.  
Since the GTL+ signals receive power from the FSB, these signals should not be driven  
(allowing the level to return to VTT) for minimum power drawn by the termination  
resistors in this state. In addition, all other input signals on the FSB should be driven to  
the inactive state.  
RESET# causes the processor to immediately initialize itself, but the processor will stay  
in Stop Grant state. A transition back to the Normal state occurs with the de-assertion  
of the STPCLK# signal.  
A transition to the Grant Snoop state occurs when the processor detects a snoop on the  
FSB (see Section 6.2.4).  
While in the Stop Grant State, SMI#, INIT#, and LINT[1:0] is latched by the processor,  
and only serviced when the processor returns to the Normal State. Only one occurrence  
of each event will be recognized upon return to the Normal state.  
While in Stop Grant state, the processor processes a FSB snoop.  
Datasheet  
95  
Features  
6.2.3.2  
Extended Stop Grant State  
Extended Stop Grant is a low power state entered when the STPCLK# signal is asserted  
and Extended Stop Grant has been enabled via the BIOS.  
The processor will automatically transition to a lower frequency and voltage operating  
point before entering the Extended Stop Grant state. When entering the low power  
state, the processor will first switch to the lower bus ratio and then transition to the  
lower VID.  
The processor exits the Extended Stop Grant state when a break event occurs. When  
the processor exits the Extended Stop Grant state, it will resume operation at the lower  
frequency, transition the VID to the original value, and then change the bus ratio back  
to the original value.  
6.2.4  
Extended HALT State, HALT Snoop State, Extended Stop  
Grant Snoop State, and Stop Grant Snoop State  
The Extended HALT Snoop State is used in conjunction with the new Extended HALT  
state. If Extended HALT state is not enabled in the BIOS, the default Snoop State  
entered will be the HALT Snoop State. Refer to the following sections for details on  
HALT Snoop State, Stop Grant Snoop State and Extended HALT Snoop State, and  
Extended Stop Grant Snoop State.  
6.2.4.1  
6.2.4.2  
HALT Snoop State, Stop Grant Snoop State  
The processor will respond to snoop transactions on the FSB while in Stop Grant state  
or in HALT Power Down state. During a snoop transaction, the processor enters the  
HALT Snoop State:Stop Grant Snoop state. The processor will stay in this state until the  
snoop on the FSB has been serviced (whether by the processor or another agent on the  
FSB). After the snoop is serviced, the processor returns to the Stop Grant state or HALT  
Power Down state, as appropriate.  
Extended HALT Snoop State, Extended Stop Grant Snoop State  
The processor will remain in the lower bus ratio and VID operating point of the  
Extended HALT state or Extended Stop Grant state. While in the Extended HALT Snoop  
State or Extended Stop Grant Snoop State, snoops are handled the same way as in the  
HALT Snoop State or Stop Grant Snoop State. After the snoop is serviced, the  
processor will return to the Extended HALT state or Extended Stop Grant state.  
6.3  
Enhanced Intel® SpeedStep® Technology  
The processor supports Enhanced Intel SpeedStep® Technology. This technology  
enables the processor to switch between multiple frequency and voltage points, which  
results in platform power savings. Enhanced Intel SpeedStep Technology requires  
support for dynamic VID transitions in the platform. Switching between voltage/  
frequency states is software controlled.  
Note:  
Not all processors are capable of supporting Enhanced Intel SpeedStep® Technology.  
More details on which processor frequencies support this feature is provided in the  
Intel® Core™2 Duo Desktop Processor E6000 and E4000 Series and Intel® Core™2  
Extreme Processor X6800 Specification Update.  
Enhanced Intel SpeedStep® Technology creates processor performance states (P-  
states) or voltage/frequency operating points. P-states are lower power capability  
states within the Normal state as shown in Figure 29. Enhanced Intel SpeedStep®  
Technology enables real-time dynamic switching between frequency and voltage  
96  
Datasheet  
Features  
points. It alters the performance of the processor by changing the bus to core  
frequency ratio and voltage. This allows the processor to run at different core  
frequencies and voltages to best serve the performance and power requirements of the  
processor and system. The processor has hardware logic that coordinates the  
requested voltage (VID) between the processor cores. The highest voltage that is  
requested for either of the processor cores is selected for that processor package. Note  
that the front side bus is not altered; only the internal core frequency is changed. To  
run at reduced power consumption, the voltage is altered in step with the bus ratio.  
The following are key features of Enhanced Intel SpeedStep® Technology:  
• Multiple voltage/frequency operating points provide optimal performance at  
reduced power consumption.  
• Voltage/frequency selection is software controlled by writing to processor MSRs  
(Model Specific Registers), thus eliminating chipset dependency.  
— If the target frequency is higher than the current frequency, VCC is incremented  
in steps (+12.5 mV) by placing a new value on the VID signals and the  
processor shifts to the new frequency. Note that the top frequency for the  
processor can not be exceeded.  
— If the target frequency is lower than the current frequency, the processor shifts  
to the new frequency and VCC is then decremented in steps (-12.5 mV) by  
changing the target VID through the VID signals.  
§ §  
Datasheet  
97  
Features  
98  
Datasheet  
Boxed Processor Specifications  
7
Boxed Processor Specifications  
The processor is also offered as an Intel boxed processor. Intel boxed processors are  
intended for system integrators who build systems from baseboards and standard  
components. The boxed processor will be supplied with a cooling solution. This chapter  
documents baseboard and system requirements for the cooling solution that will be  
supplied with the boxed processor. This chapter is particularly important for OEMs that  
manufacture baseboards for system integrators. Figure 30 shows a mechanical  
representation of a boxed processor.  
Note:  
Note:  
Unless otherwise noted, all figures in this chapter are dimensioned in millimeters and  
inches [in brackets].  
Drawings in this section reflect only the specifications on the Intel boxed processor  
product. These dimensions should not be used as a generic keep-out zone for all  
cooling solutions. It is the system designers’ responsibility to consider their proprietary  
cooling solution when designing to the required keep-out zone on their system  
platforms and chassis. Refer to the appropriate Thermal and Mechanical Design  
Guidelines (see Section 1.2) for further guidance.  
Figure 30.  
Mechanical Representation of the Boxed Processor  
NOTE: The airflow of the fan heatsink is into the center and out of the sides of the fan heatsink.  
Datasheet  
99  
Boxed Processor Specifications  
7.1  
Mechanical Specifications  
7.1.1  
Boxed Processor Cooling Solution Dimensions  
This section documents the mechanical specifications of the boxed processor. The  
boxed processor will be shipped with an unattached fan heatsink. Figure 30 shows a  
mechanical representation of the boxed processor.  
Clearance is required around the fan heatsink to ensure unimpeded airflow for proper  
cooling. The physical space requirements and dimensions for the boxed processor with  
assembled fan heatsink are shown in Figure 31 (Side View), and Figure 32 (Top View).  
The airspace requirements for the boxed processor fan heatsink must also be  
incorporated into new baseboard and system designs. Airspace requirements are  
shown in Figure 36 and Figure 37. Note that some figures have centerlines shown  
(marked with alphabetic designations) to clarify relative dimensioning.  
Figure 31.  
Space Requirements for the Boxed Processor (Side View)  
95.0  
[3.74]  
81.3  
[3.2]  
10.0  
25.0  
[0.39]  
[0.98]  
Figure 32.  
Space Requirements for the Boxed Processor (Top View)  
NOTES:  
1.  
Diagram does not show the attached hardware for the clip design and is provided only as a  
mechanical representation.  
100  
Datasheet  
Boxed Processor Specifications  
Figure 33.  
Space Requirements for the Boxed Processor (Overall View)  
Boxed Proc OverallView  
7.1.2  
7.1.3  
Boxed Processor Fan Heatsink Weight  
The boxed processor fan heatsink will not weigh more than 550 grams. See Chapter 5  
and the appropriate Thermal and Mechanical Design Guidelines (see Section 1.2) for  
details on the processor weight and heatsink requirements.  
Boxed Processor Retention Mechanism and Heatsink  
Attach Clip Assembly  
The boxed processor thermal solution requires a heatsink attach clip assembly, to  
secure the processor and fan heatsink in the baseboard socket. The boxed processor  
will ship with the heatsink attach clip assembly.  
7.2  
Electrical Requirements  
7.2.1  
Fan Heatsink Power Supply  
The boxed processor's fan heatsink requires a +12 V power supply. A fan power cable  
will be shipped with the boxed processor to draw power from a power header on the  
baseboard. The power cable connector and pinout are shown in Figure 34. Baseboards  
must provide a matched power header to support the boxed processor. Table 37  
contains specifications for the input and output signals at the fan heatsink connector.  
The fan heatsink outputs a SENSE signal that is an open- collector output that pulses at  
a rate of 2 pulses per fan revolution. A baseboard pull-up resistor provides VOH to  
match the system board-mounted fan speed monitor requirements, if applicable. Use of  
the SENSE signal is optional. If the SENSE signal is not used, pin 3 of the connector  
should be tied to GND.  
The fan heatsink receives a PWM signal from the motherboard from the 4th pin of the  
connector labeled as CONTROL.  
Datasheet  
101  
Boxed Processor Specifications  
The boxed processor's fanheat sink requires a constant +12 V supplied to pin 2 and  
does not support variable voltage control or 3-pin PWM control.  
The power header on the baseboard must be positioned to allow the fan heatsink power  
cable to reach it. The power header identification and location should be documented in  
the platform documentation, or on the system board itself. Figure 35 shows the  
location of the fan power connector relative to the processor socket. The baseboard  
power header should be positioned within 110 mm [4.33 inches] from the center of the  
processor socket.  
Figure 34.  
Boxed Processor Fan Heatsink Power Cable Connector Description  
Signal  
Pin  
Straight square pin, 4-pin terminal housing with  
polarizing ribs and friction locking ramp.  
1
2
3
4
GND  
+12 V  
0.100" pitch, 0.025" square pin width.  
SENSE  
CONTROL  
Match with straight pin, friction lock header on  
mainboard.  
3 4  
1 2  
Table 37.  
Fan Heatsink Power and Signal Specifications  
Description  
Min  
Typ  
Max  
Unit  
Notes  
+12 V: 12 volt fan power supply  
11.4  
12  
12.6  
V
-
IC:  
- Maximum fan steady-state current draw  
- Average fan steady-state current draw  
- Max fan start-up current draw  
1.2  
0.5  
2.2  
1.0  
A
A
A
-
- Fan start-up current draw maximum  
duration  
Second  
pulses per  
fan  
1
SENSE: SENSE frequency  
2
revolution  
2,  
3
CONTROL  
21  
25  
28  
Hz  
NOTES:  
1. Baseboard should pull this pin up to 5 V with a resistor.  
2. Open drain type, pulse width modulated.  
3. Fan will have pull-up resistor for this signal to maximum of 5.25 V.  
102  
Datasheet  
Boxed Processor Specifications  
Figure 35.  
Baseboard Power Header Placement Relative to Processor Socket  
R110  
[4.33]  
B
C
7.3  
Thermal Specifications  
This section describes the cooling requirements of the fan heatsink solution used by the  
boxed processor.  
7.3.1  
Boxed Processor Cooling Requirements  
The boxed processor may be directly cooled with a fan heatsink. However, meeting the  
processor's temperature specification is also a function of the thermal design of the  
entire system, and ultimately the responsibility of the system integrator. The processor  
temperature specification is listed in Chapter 5. The boxed processor fan heatsink is  
able to keep the processor temperature within the specifications (see Table 26) in  
chassis that provide good thermal management. For the boxed processor fan heatsink  
to operate properly, it is critical that the airflow provided to the fan heatsink is  
unimpeded. Airflow of the fan heatsink is into the center and out of the sides of the fan  
heatsink. Airspace is required around the fan to ensure that the airflow through the fan  
heatsink is not blocked. Blocking the airflow to the fan heatsink reduces the cooling  
efficiency and decreases fan life. Figure 36 and Figure 37 illustrate an acceptable  
airspace clearance for the fan heatsink. The air temperature entering the fan should be  
kept below 38 ºC. Again, meeting the processor's temperature specification is the  
responsibility of the system integrator.  
Datasheet  
103  
Boxed Processor Specifications  
Figure 36.  
Boxed Processor Fan Heatsink Airspace Keepout Requirements (side 1 view)  
Figure 37.  
Boxed Processor Fan Heatsink Airspace Keepout Requirements (Side 2 View)  
104  
Datasheet  
Boxed Processor Specifications  
®
7.3.2  
Fan Speed Control Operation (Intel Core2 Extreme  
Processor X6800 Only)  
The boxed processor fan heatsink is designed to operate continuously at full speed to  
allow maximum user control over fan speed. The fan speed can be controlled by  
hardware and software from the motherboard. This is accomplished by varying the duty  
cycle of the Control signal on the 4th pin (see Table 38). The motherboard must have a  
4-pin fan header and must be designed with a fan speed controller with PWM output  
and Digital Thermometer measurement capabilities. For more information on specific  
motherboard requirements for 4-wire based fan speed control, refer to the Intel®  
Pentium® D Processor, Intel® Pentium® Processor Extreme Edition, Intel® Pentium®  
Processor, Intel® Core™2 Duo Extreme Processor X6800 Thermal and Mechanical  
Design Guidelines.  
4
The Internal chassis temperature should be kept below 39 ºC. Meeting the processor's  
temperature specification (see Chapter 5) is the responsibility of the system integrator.  
The motherboard must supply a constant +12 V to the processor's power header to  
ensure proper operation of the fan for the boxed processor. See Table 38 for specific  
requirements.  
®
7.3.3  
Fan Speed Control Operation (Intel Core2 Duo Desktop  
Processor E6000 and E4000 Series Only)  
If the boxed processor fan heatsink 4-pin connector is connected to a 3-pin  
motherboard header, it will operate as follows:  
The boxed processor fan will operate at different speeds over a short range of  
internal chassis temperatures. This allows the processor fan to operate at a lower  
speed and noise level, while internal chassis temperatures are low. If internal  
chassis temperature increases beyond a lower set point, the fan speed will rise  
linearly with the internal temperature until the higher set point is reached. At that  
point, the fan speed is at its maximum. As fan speed increases, so does fan noise  
levels. Systems should be designed to provide adequate air around the boxed  
processor fan heatsink that remains cooler than lower set point. These set points,  
represented in Figure 38 and Table 38, can vary by a few degrees from fan heatsink  
to fan heatsink. The internal chassis temperature should be kept below 38 ºC.  
Meeting the processor's temperature specification (see Chapter 5) is the  
responsibility of the system integrator.  
The motherboard must supply a constant +12 V to the processor's power header to  
ensure proper operation of the variable speed fan for the boxed processor. Refer to  
Table 38 for the specific requirements.  
Figure 38.  
Boxed Processor Fan Heatsink Set Points  
Higher Set Point  
Highest Noise Level  
Increasing Fan  
Speed & Noise  
Lower Set Point  
Lowest Noise Level  
X
Y
Z
Internal Chassis Temperature (Degrees C)  
Datasheet  
105  
Boxed Processor Specifications  
Table 38.  
Fan Heatsink Power and Signal Specifications  
Boxed Processor Fan  
Heatsink Set Point (°C)  
Boxed Processor Fan Speed  
When the internal chassis temperature is below or equal to  
Notes  
this set point, the fan operates at its lowest speed.  
Recommended maximum internal chassis temperature for  
nominal operating environment.  
X 30  
1
When the internal chassis temperature is at this point, the  
fan operates between its lowest and highest speeds.  
Recommended maximum internal chassis temperature for  
worst-case operating environment.  
Y = 35  
-
-
When the internal chassis temperature is above or equal to  
this set point, the fan operates at its highest speed.  
Z 38  
NOTES:  
1. Set point variance is approximately ± 1 °C from fan heatsink to fan heatsink.  
If the boxed processor fan heatsink 4-pin connector is connected to a 4-pin  
motherboard header and the motherboard is designed with a fan speed controller with  
PWM output (CONTROL see Table 37) and remote thermal diode measurement  
capability the boxed processor will operate as follows:  
As processor power has increased the required thermal solutions have generated  
increasingly more noise. Intel has added an option to the boxed processor that allows  
system integrators to have a quieter system in the most common usage.  
The 4th wire PWM solution provides better control over chassis acoustics. This is  
achieved by more accurate measurement of processor die temperature through the  
processor's temperature diode (T-diode). Fan RPM is modulated through the use of an  
ASIC located on the motherboard that sends out a PWM control signal to the 4th pin  
of the connector labeled as CONTROL. The fan speed is based on actual processor  
temperature instead of internal ambient chassis temperatures.  
If the new 4-pin active fan heat sink solution is connected to an older 3-pin  
baseboard processor fan header it will default back to a thermistor controlled mode,  
allowing compatibility with existing 3-pin baseboard designs. Under thermistor  
controlled mode, the fan RPM is automatically varied based on the Tinlet temperature  
measured by a thermistor located at the fan inlet.  
For more details on specific motherboard requirements for 4-wire based fan speed  
control, refer to the appropriate Thermal and Mechanical Design Guidelines (see  
Section 1.2).  
§ §  
106  
Datasheet  
Balanced Technology Extended (BTX) Boxed Processor Specifications  
8
Balanced Technology Extended  
(BTX) Boxed Processor  
Specifications  
The processor is offered as an Intel boxed processor. Intel boxed processors are  
intended for system integrators who build systems from largely standard components.  
The boxed processor will be supplied with a cooling solution known as the Thermal  
Module Assembly (TMA). Each processor will be supplied with one of the two available  
types of TMAs – Type I or Type II. This chapter documents motherboard and system  
requirements for both the TMAs that will be supplied with the boxed processor in the  
775-land LGA package. This chapter is particularly important for OEMs that  
manufacture motherboards for system integrators. Figure 39 shows a mechanical  
representation of a boxed processor in the 775-land LGA package with a Type I TMA.  
Figure 40 illustrates a mechanical representation of a boxed processor in the 775-land  
LGA package with Type II TMA.  
Note:  
Note:  
Unless otherwise noted, all figures in this chapter are dimensioned in millimeters and  
inches [in brackets].  
Drawings in this section reflect only the specifications on the Intel boxed processor  
product. These dimensions should not be used as a generic keep-out zone for all  
cooling solutions. It is the system designers’ responsibility to consider their proprietary  
cooling solution when designing to the required keep-out zone on their system  
platforms and chassis. Refer to the appropriate Thermal and Mechanical Design  
Guidelines (see Section 1.2) for further guidance.  
Figure 39.  
Mechanical Representation of the Boxed Processor with a Type I TMA  
NOTE: The duct, clip, heatsink and fan can differ from this drawing representation but  
the basic shape and size will remain the same.  
Datasheet  
107  
Balanced Technology Extended (BTX) Boxed Processor Specifications  
Figure 40.  
Mechanical Representation of the Boxed Processor with a Type II TMA  
NOTE: The duct, clip, heatsink and fan can differ from this drawing representation but  
the basic shape and size will remain the same.  
8.1  
Mechanical Specifications  
8.1.1  
Balanced Technology Extended (BTX) Type I and Type II  
Boxed Processor Cooling Solution Dimensions  
This section documents the mechanical specifications of the boxed processor TMA. The  
boxed processor will be shipped with an unattached TMA. Figure 41 shows a  
mechanical representation of the boxed processor in the 775-land LGA package for  
Type I TMA. Figure 42 shows a mechanical representation of the boxed processor in the  
775-land LGA package for Type II TMA. The physical space requirements and  
dimensions for the boxed processor with assembled fan thermal module are shown.  
108  
Datasheet  
Balanced Technology Extended (BTX) Boxed Processor Specifications  
Figure 41.  
Requirements for the Balanced Technology Extended (BTX) Type I Keep-out  
Volumes  
NOTE: Diagram does not show the attached hardware for the clip design and is provided only as a  
mechanical representation.  
Datasheet  
109  
Balanced Technology Extended (BTX) Boxed Processor Specifications  
Figure 42.  
Requirements for the Balanced Technology Extended (BTX) Type II Keep-out  
Volume  
NOTE: Diagram does not show the attached hardware for the clip design and is provided only as a  
mechanical representation.  
8.1.2  
Boxed Processor Thermal Module Assembly Weight  
The boxed processor thermal module assembly for Type I BTX will not weigh more than  
1200 grams. The boxed processor thermal module assembly for Type II BTX will not  
weigh more than 1200 grams. See Chapter 3 and the appropriate Thermal and  
Mechanical Design Guidelines (see Section 1.2) for details on the processor weight and  
thermal module assembly requirements.  
110  
Datasheet  
Balanced Technology Extended (BTX) Boxed Processor Specifications  
8.1.3  
Boxed Processor Support and Retention Module (SRM)  
The boxed processor TMA requires an SRM assembly provided by the chassis  
manufacturer. The SRM provides the attach points for the TMA and provides structural  
support for the board by distributing the shock and vibration loads to the chassis base  
pan. The boxed processor TMA will ship with the heatsink attach clip assembly, duct  
and screws for attachment. The SRM must be supplied by the chassis hardware vendor.  
See the Support and Retention Module(SRM) External Design Requirements Document,  
Balanced Technology Extended (BTX) System Design Guide, and the appropriate  
Thermal and Mechanical Design Guidelines (see Section 1.2) for more detailed  
information regarding the support and retention module and chassis interface and  
keepout zones. Figure 43 illustrates the assembly stack including the SRM.  
Figure 43.  
Assembly Stack Including the Support and Retention Module  
Thermal Module Assembly  
Heatsink & Fan  
Clip  
Structural Duct  
Motherboard  
SRM  
Chassis Pan  
Datasheet  
111  
Balanced Technology Extended (BTX) Boxed Processor Specifications  
8.2  
Electrical Requirements  
8.2.1  
Thermal Module Assembly Power Supply  
The boxed processor's Thermal Module Assembly (TMA) requires a +12 V power supply.  
The TMA will include power cable to power the integrated fan and will plug into the 4-  
wire fan header on the baseboard. The power cable connector and pinout are shown in  
Figure 44. Baseboards must provide a compatible power header to support the boxed  
processor. Table 39contains specifications for the input and output signals at the TMA.  
The TMA outputs a SENSE signal, which is an open-collector output that pulses at a rate  
of 2 pulses per fan revolution. A baseboard pull-up resistor provides VOH to match the  
system board-mounted fan speed monitor requirements, if applicable. Use of the  
SENSE signal is optional. If the SENSE signal is not used, pin 3 of the connector should  
be tied to GND.  
The TMA receives a Pulse Width Modulation (PWM) signal from the motherboard from  
the 4th pin of the connector labeled as CONTROL.  
Note:  
The boxed processor’s TMA requires a constant +12 V supplied to pin 2 and does not  
support variable voltage control or 3-pin PWM control.  
The power header on the baseboard must be positioned to allow the TMA power cable  
to reach it. The power header identification and location should be documented in the  
platform documentation, or on the system board itself. Figure 45 shows the location of  
the fan power connector relative to the processor socket. The baseboard power header  
should be positioned within 4.33 inches from the center of the processor socket.  
Figure 44.  
Boxed Processor TMA Power Cable Connector Description  
Signal  
Pin  
Straight square pin, 4-pin terminal housing with  
polarizing ribs and friction locking ramp.  
1
2
3
4
GND  
+12 V  
0.100" pitch, 0.025" square pin width.  
SENSE  
CONTROL  
Match with straight pin, friction lock header on  
mainboard.  
3 4  
1 2  
112  
Datasheet  
Balanced Technology Extended (BTX) Boxed Processor Specifications  
Table 39.  
TMA Power and Signal Specifications  
Description  
Min  
Typ  
Max  
Unit  
Notes  
+12V: 12 volt fan power supply  
10.2  
12  
13.8  
V
IC:  
- Peak Fan current draw  
- Fan start-up current draw  
1.0  
1.5  
2.0  
1.0  
A
A
- Fan start-up current draw maximum  
duration  
Second  
pulses per  
fan  
1
SENSE: SENSE frequency  
2
revolution  
2,  
3
CONTROL  
21  
25  
28  
kHz  
NOTES:  
1. Baseboard should pull this pin up to 5V with a resistor.  
2. Open Drain Type, Pulse Width Modulated.  
3. Fan will have a pull-up resistor for this signal to maximum 5.25 V.  
Figure 45.  
Balanced Technology Extended (BTX) Mainboard Power Header Placement  
(hatched area)  
Datasheet  
113  
Balanced Technology Extended (BTX) Boxed Processor Specifications  
8.3  
Thermal Specifications  
This section describes the cooling requirements of the thermal module assembly  
solution used by the boxed processor.  
8.3.1  
Boxed Processor Cooling Requirements  
The boxed processor may be directly cooled with a TMA. However, meeting the  
processor's temperature specification is also a function of the thermal design of the  
entire system, and ultimately the responsibility of the system integrator. The processor  
case temperature specification is listed in Chapter 5. The boxed processor TMA is able  
to keep the processor temperature within the specifications (see Table 26) for chassis  
that provide good thermal management. For the boxed processor TMA to operate  
properly, it is critical that the airflow provided to the TMA is unimpeded. Airflow of the  
TMA is into the duct and out of the rear of the duct in a linear flow. Blocking the airflow  
to the TMA inlet reduces the cooling efficiency and decreases fan life. Filters will reduce  
or impede airflow which will result in a reduced performance of the TMA. The air  
temperature entering the fan should be kept below 35.5 °C. Meeting the processor's  
temperature specification is the responsibility of the system integrator.  
In addition, Type I TMA must be used with Type I chassis only and Type II TMA with  
Type II chassis only. Type I TMA will not fit in a Type II chassis due to the height  
difference. In the event a Type II TMA is installed in a Type I chassis, the gasket on the  
chassis will not seal against the Type II TMA and poor acoustic performance will occur  
as a result.  
8.3.2  
Variable Speed Fan  
The boxed processor fan operates at different speeds over a short range of  
temperatures based on a thermistor located in the fan hub area. This allows the boxed  
processor fan to operate at a lower speed and noise level while thermistor  
temperatures are low. If the thermistor senses a temperatures increase beyond a lower  
set point, the fan speed will rise linearly with the temperature until the higher set point  
is reached. At that point, the fan speed is at its maximum. As fan speed increases, so  
do fan noise levels. These set points are represented in Figure 46 and Table 40. The  
internal chassis temperature should be kept below 35.5 ºC. Meeting the processor’s  
temperature specification (see Chapter 5) is the responsibility of the system integrator.  
Note:  
The motherboard must supply a constant +12 V to the processor’s power header to  
ensure proper operation of the variable speed fan for the boxed processor (refer to  
Table 40) for the specific requirements).  
114  
Datasheet  
Balanced Technology Extended (BTX) Boxed Processor Specifications  
Figure 46.  
Boxed Processor TMA Set Points  
Higher Set Point  
Highest Noise Level  
Increasing Fan  
Speed & Noise  
Lower Set Point  
Lowest Noise Level  
X
Y
Z
Internal Chassis Temperature (Degrees C)  
Table 40.  
TMA Set Points for 3-wire operation of BTX Type I and Type II Boxed  
Processors  
Boxed Processor  
TMA Set Point  
(ºC)  
Boxed Processor Fan Speed  
Notes  
When the internal chassis temperature is below or equal to this  
set point, the fan operates at its lowest speed. Recommended  
maximum internal chassis temperature for nominal operating  
environment.  
X 23  
1
When the internal chassis temperature is at this point, the fan  
operates between its lowest and highest speeds.  
Recommended maximum internal chassis temperature for  
worst-case operating environment.  
Y = 29  
When the internal chassis temperature is above or equal to this  
set point, the fan operates at its highest speed.  
Z 35.5  
1
NOTES:  
1.  
Set point variance is approximately ±1°C from Thermal Module Assembly to Thermal  
Module Assembly.  
If the boxed processor TMA 4-pin connector is connected to a 4-pin motherboard  
header and the motherboard is designed with a fan speed controller with PWM output  
(see CONTROL in Table 39) and remote thermal diode measurement capability, the  
boxed processor will operate as described in the following paragraphs.  
As processor power has increased, the required thermal solutions have generated  
increasingly more noise. Intel has added an option to the boxed processor that allows  
system integrators to have a quieter system in the most common usage.  
The 4-wire PWM controlled fan in the TMA solution provides better control over chassis  
acoustics. It allows better granularity of fan speed and lowers overall fan speed than a  
voltage-controlled fan. Fan RPM is modulated through the use of an ASIC located on  
Datasheet  
115  
Balanced Technology Extended (BTX) Boxed Processor Specifications  
the motherboard that sends out a PWM control signal to the 4th pin of the connector  
labeled as CONTROL. The fan speed is based on a combination of actual processor  
temperature and thermistor temperature.  
If the 4-wire PWM controlled fan in the TMA solution is connected to a 3-pin baseboard  
processor fan header it will default back to a thermistor controlled mode, allowing  
compatibility with existing 3-pin baseboard designs. Under thermistor controlled mode,  
the fan RPM is automatically varied based on the Tinlet temperature measured by a  
thermistor located at the fan inlet.  
For more details on specific motherboard requirements for 4-wire based fan speed  
control, refer to the appropriate Thermal and Mechanical Design Guidelines (see  
Section 1.2).  
§ §  
116  
Datasheet  
Debug Tools Specifications  
9
Debug Tools Specifications  
9.1  
Logic Analyzer Interface (LAI)  
Intel is working with two logic analyzer vendors to provide logic analyzer interfaces  
(LAIs) for use in debugging systems. Tektronix and Agilent should be contacted to get  
specific information about their logic analyzer interfaces. The following information is  
general in nature. Specific information must be obtained from the logic analyzer  
vendor.  
Due to the complexity of systems, the LAI is critical in providing the ability to probe and  
capture FSB signals. There are two sets of considerations to keep in mind when  
designing a system that can make use of an LAI: mechanical and electrical.  
9.1.1  
Mechanical Considerations  
The LAI is installed between the processor socket and the processor. The LAI lands plug  
into the processor socket, while the processor lands plug into a socket on the LAI.  
Cabling that is part of the LAI egresses the system to allow an electrical connection  
between the processor and a logic analyzer. The maximum volume occupied by the LAI,  
known as the keepout volume, as well as the cable egress restrictions, should be  
obtained from the logic analyzer vendor. System designers must make sure that the  
keepout volume remains unobstructed inside the system. Note that it is possible that  
the keepout volume reserved for the LAI may differ from the space normally occupied  
by the processor’s heatsink. If this is the case, the logic analyzer vendor will provide a  
cooling solution as part of the LAI.  
9.1.2  
Electrical Considerations  
The LAI will also affect the electrical performance of the FSB; therefore, it is critical to  
obtain electrical load models from each of the logic analyzers to be able to run system  
level simulations to prove that their tool will work in the system. Contact the logic  
analyzer vendor for electrical specifications and load models for the LAI solution it  
provides.  
§ §  
Datasheet  
117  
Debug Tools Specifications  
118  
Datasheet  

相关型号:

BX80557E6550/SLA9X

RISC Microprocessor, 64-Bit, 2330MHz, CMOS, PBGA775
INTEL

BX80557E6550R

RISC Microprocessor, 64-Bit, 2330MHz, CMOS, PBGA775
INTEL

BX80557E6550R/SLA9X

RISC Microprocessor, 64-Bit, 2330MHz, CMOS, PBGA775
INTEL

BX80557E6600

RISC Microprocessor, 64-Bit, 2400MHz, CMOS, PBGA775
INTEL

BX80557E6600/SL9S8

RISC Microprocessor, 64-Bit, 2400MHz, CMOS, PBGA775
INTEL

BX80557E6600/SL9ZL

RISC Microprocessor, 64-Bit, 2400MHz, CMOS, PBGA775
INTEL

BX80557E6700

RISC Microprocessor, 64-Bit, 2660MHz, CMOS, PBGA775
INTEL

BX80557E6700/SL9ZF

RISC Microprocessor, 64-Bit, 2660MHz, CMOS, PBGA775
INTEL

BX80557E6750/SLA9V

RISC Microprocessor, 64-Bit, 2660MHz, CMOS, PBGA775
INTEL

BX80557E6850

RISC Microprocessor, 64-Bit, 3000MHz, CMOS, PBGA775
INTEL

BX80557E6850/SLA9U

RISC Microprocessor, 64-Bit, 3000MHz, CMOS, PBGA775
INTEL

BX80562X3210

RISC Microprocessor, 64-Bit, 2130MHz, CMOS, PBGA775
INTEL