BX80574E5410P [INTEL]

Microprocessor, CMOS, PBGA771, 37.5 X 37.5 MM, LGA-771;
BX80574E5410P
型号: BX80574E5410P
厂家: INTEL    INTEL
描述:

Microprocessor, CMOS, PBGA771, 37.5 X 37.5 MM, LGA-771

文件: 总124页 (文件大小:3230K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad-Core Intel® Xeon® Processor  
5400 Series  
Datasheet  
August 2008  
318589-005  
®
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,  
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS  
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER,  
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING  
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY  
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or  
life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.Intel  
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future  
changes to them.  
The Quad-Core Intel® Xeon® Processor 5400 Series may contain design defects or errors known as errata which may cause the  
product to deviate from published specifications. Current characterized errata are available on request.  
64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device  
®
drivers and applications enabled for Intel 64 architecture. Processors will not operate (including 32-bit operation) without an  
®
Intel 64 architecture-enabled BIOS. Performance will vary depending on your hardware and software configurations. Consult  
with your system vendor for more information.  
Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor  
(VMM) and, for some uses, certain computer system software enabled for it. Functionality, performance or other benefits will vary  
depending on hardware and software configurations and may require a BIOS update. Software applications may not be compatible  
with all operating systems. Please check with your application vendor.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Intel, Pentium, Intel Xeon, Intel SpeedStep Technology, Intel Core, and the Intel logo are trademarks or registered trademarks of  
Intel Corporation or its subsidiaries in the United States and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2007-2008, Intel Corporation.  
2
Quad-Core Intel® Xeon® Processor 5400 Series Datasheet  
Contents  
1
Introduction..............................................................................................................9  
1.1  
1.2  
1.3  
Terminology ..................................................................................................... 10  
State of Data.................................................................................................... 13  
References ....................................................................................................... 13  
2
Quad-Core Intel® Xeon® Processor 5400 Series Electrical Specifications................ 15  
2.1  
2.2  
2.3  
Front Side Bus and GTLREF ................................................................................ 15  
Power and Ground Lands.................................................................................... 16  
Decoupling Guidelines........................................................................................ 16  
2.3.1 VCC Decoupling...................................................................................... 16  
2.3.2 VTT Decoupling...................................................................................... 16  
2.3.3 Front Side Bus AGTL+ Decoupling ............................................................ 16  
Front Side Bus Clock (BCLK[1:0]) and Processor Clocking....................................... 17  
2.4.1 Front Side Bus Frequency Select Signals (BSEL[2:0]).................................. 17  
2.4.2 PLL Power Supply................................................................................... 18  
Voltage Identification (VID) ................................................................................ 18  
Reserved, Unused, and Test Signals..................................................................... 21  
Front Side Bus Signal Groups.............................................................................. 22  
CMOS Asynchronous and Open Drain Asynchronous Signals.................................... 24  
Test Access Port (TAP) Connection....................................................................... 24  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
2.10 Platform Environmental Control Interface (PECI) DC Specifications........................... 24  
2.10.1 DC Characteristics.................................................................................. 24  
2.10.2 Input Device Hysteresis .......................................................................... 25  
2.11 Mixing Processors.............................................................................................. 26  
2.12 Absolute Maximum and Minimum Ratings ............................................................. 26  
2.13 Processor DC Specifications ................................................................................ 27  
2.13.1 Flexible Motherboard Guidelines (FMB)...................................................... 27  
2.13.2 VCC Overshoot Specification.................................................................... 38  
2.13.3 Die Voltage Validation............................................................................. 39  
2.14 AGTL+ FSB Specifications................................................................................... 39  
3
Mechanical Specifications........................................................................................ 43  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
Package Mechanical Drawings ............................................................................. 43  
Processor Component Keepout Zones................................................................... 47  
Package Loading Specifications ........................................................................... 47  
Package Handling Guidelines............................................................................... 48  
Package Insertion Specifications.......................................................................... 48  
Processor Mass Specifications ............................................................................. 48  
Processor Materials............................................................................................ 48  
Processor Markings............................................................................................ 48  
Processor Land Coordinates................................................................................ 49  
4
Land Listing............................................................................................................. 51  
4.1  
Quad-Core Intel® Xeon® Processor 5400 Series Pin Assignments ........................... 51  
4.1.1 Land Listing by Land Name...................................................................... 51  
4.1.2 Land Listing by Land Number................................................................... 61  
5
6
Signal Definitions .................................................................................................... 71  
5.1 Signal Definitions .............................................................................................. 71  
Thermal Specifications ............................................................................................ 79  
6.1  
Package Thermal Specifications........................................................................... 79  
6.1.1 Thermal Specifications ............................................................................ 79  
6.1.2 Thermal Metrology ................................................................................. 90  
Processor Thermal Features................................................................................ 90  
6.2  
Quad-Core Intel® Xeon® Processor 5400 Series Datasheet  
3
6.2.1 Intel® Thermal Monitor Features...............................................................90  
6.2.2 On-Demand Mode...................................................................................92  
6.2.3 PROCHOT# Signal ..................................................................................93  
6.2.4 FORCEPR# Signal ...................................................................................93  
6.2.5 THERMTRIP# Signal................................................................................94  
Platform Environment Control Interface (PECI) ......................................................94  
6.3.1 Introduction...........................................................................................94  
6.3.2 PECI Specifications .................................................................................96  
6.3  
7
Features ..................................................................................................................97  
7.1  
7.2  
Power-On Configuration Options ..........................................................................97  
Clock Control and Low Power States.....................................................................97  
7.2.1 Normal State .........................................................................................98  
7.2.2 HALT or Extended HALT State...................................................................98  
7.2.3 Stop-Grant State ..................................................................................100  
7.2.4 Extended HALT Snoop or HALT Snoop State,  
Stop Grant Snoop State.........................................................................101  
Enhanced Intel SpeedStep® Technology.............................................................101  
7.3  
8
Boxed Processor Specifications..............................................................................103  
8.1  
8.2  
Introduction....................................................................................................103  
Mechanical Specifications..................................................................................105  
8.2.1 Boxed Processor Heat Sink Dimensions (CEK)...........................................105  
8.2.2 Boxed Processor Heat Sink Weight..........................................................113  
8.2.3 Boxed Processor Retention Mechanism and Heat Sink  
Support (CEK)......................................................................................113  
Electrical Requirements ....................................................................................113  
8.3.1 Fan Power Supply (Active CEK)...............................................................113  
8.3.2 Boxed Processor Cooling Requirements....................................................114  
Boxed Processor Contents.................................................................................115  
8.3  
8.4  
9
Debug Tools Specifications ....................................................................................117  
9.1  
9.2  
Debug Port System Requirements......................................................................117  
Target System Implementation..........................................................................117  
9.2.1 System Implementation.........................................................................117  
Logic Analyzer Interface (LAI) ...........................................................................117  
9.3.1 Mechanical Considerations .....................................................................118  
9.3.2 Electrical Considerations........................................................................118  
9.3  
4
Quad-Core Intel® Xeon® Processor 5400 Series Datasheet  
Figures  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
Input Device Hysteresis ..................................................................................... 25  
Quad-Core Intel® Xeon® Processor X5482 Load Current versus Time...................... 30  
Quad-Core Intel® Xeon® Processor X5400 Series Load Current versus Time ............ 31  
Quad-Core Intel® Xeon® Processor E5400 Series Load Current versus Time............. 31  
Quad-Core Intel® Xeon® Processor L5400 Series Load Current versus Time............. 32  
VCC Static and Transient Tolerance Load Lines...................................................... 34  
Quad-Core Intel® Xeon® Processor X5482 VCC Static and  
Transient Tolerance Load Lines ........................................................................... 35  
2-8  
2-9  
Quad-Core Intel® Xeon® Processor X5400 Series VCC Static and  
Transient Tolerance Load Lines ........................................................................... 36  
Quad-Core Intel® Xeon® Processor E5400 Series VCC Static and  
Transient Tolerance Load Lines ........................................................................... 36  
2-10 Quad-Core Intel® Xeon® Processor L5400 Series VCC Static and Transient  
Tolerance Load Lines ......................................................................................... 37  
2-11 VCC Overshoot Example Waveform...................................................................... 39  
2-12 Electrical Test Circuit ......................................................................................... 41  
2-13 Differential Clock Waveform................................................................................ 41  
2-14 Differential Clock Crosspoint Specification............................................................. 42  
2-15 Differential Rising and Falling Edge Rates ............................................................. 42  
3-1  
3-2  
3-3  
3-4  
3-5  
3-6  
3-7  
6-1  
6-2  
6-3  
6-4  
6-5  
6-6  
6-7  
6-8  
6-9  
7-1  
8-1  
Processor Package Assembly Sketch .................................................................... 43  
Quad-Core Intel® Xeon® Processor 5400 Series Package Drawing (Sheet 1 of 3)...... 44  
Quad-Core Intel® Xeon® Processor 5400 Series Package Drawing (Sheet 2 of 3)...... 45  
Quad-Core Intel® Xeon® Processor 5400 Series Package Drawing (Sheet 3 of 3)...... 46  
Processor Top-side Markings (Example)................................................................ 49  
Processor Land Coordinates, Top View.................................................................. 49  
Processor Land Coordinates, Bottom View............................................................. 50  
Quad-Core Intel® Xeon® Processor X5492 and X5482 (C-step)Thermal Profile ......... 81  
Quad-Core Intel® Xeon® Processor X5400 Series Thermal Profiles A and B.............. 83  
Quad-Core Intel® Xeon® Processor E5400 Series Thermal Profile ........................... 86  
Quad-Core Intel® Xeon® Processor L5400 Series Thermal Profile............................ 87  
Quad-Core Intel® Xeon® Processor L5408 Thermal Profile ..................................... 89  
Case Temperature (TCASE) Measurement Location ................................................ 90  
Intel® Thermal Monitor 2 Frequency and Voltage Ordering ..................................... 92  
Quad-Core Intel® Xeon® Processor 5400 Series PECI Topology .............................. 94  
Conceptual Fan Control Diagram of PECI-based Platforms....................................... 95  
Stop Clock State Machine ................................................................................. 100  
Boxed Quad-Core Intel® Xeon® Processor 5400 Series  
1U Passive/3U+ Active Combination Heat Sink (With Removable Fan) .................... 104  
Boxed Quad-Core Intel® Xeon® Processor 5400 Series 2U Passive Heat Sink ......... 104  
2U Passive Quad-Core Intel® Xeon® Processor 5400 Series  
8-2  
8-3  
Thermal Solution (Exploded View) ..................................................................... 105  
Top Side Board Keepout Zones (Part 1).............................................................. 106  
Top Side Board Keepout Zones (Part 2).............................................................. 107  
Bottom Side Board Keepout Zones..................................................................... 108  
Board Mounting-Hole Keepout Zones ................................................................. 109  
Volumetric Height Keep-Ins .............................................................................. 110  
4-Pin Fan Cable Connector (For Active CEK Heat Sink) ......................................... 111  
8-4  
8-5  
8-6  
8-7  
8-8  
8-9  
8-10 4-Pin Base Board Fan Header (For Active CEK Heat Sink)...................................... 112  
8-11 Fan Cable Connector Pin Out for 4-Pin Active CEK Thermal Solution ....................... 114  
Quad-Core Intel® Xeon® Processor 5400 Series Datasheet  
5
Tables  
1-1  
Quad-Core Intel® Xeon® Processor 5400 Series ...................................................10  
Core Frequency to FSB Multiplier Configuration......................................................17  
BSEL[2:0] Frequency Table.................................................................................18  
Voltage Identification Definition ...........................................................................20  
Loadline Selection Truth Table for LL_ID[1:0]........................................................21  
Market Segment Selection Truth Table for MS_ID[1:0] ...........................................21  
FSB Signal Groups .............................................................................................22  
AGTL+ Signal Description Table...........................................................................23  
Non AGTL+ Signal Description Table.....................................................................23  
Signal Reference Voltages...................................................................................23  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-8  
2-9  
2-10 PECI DC Electrical Limits.....................................................................................25  
2-11 Processor Absolute Maximum Ratings...................................................................27  
2-12 Voltage and Current Specifications.......................................................................28  
2-13 Quad-Core Intel® Xeon® Processor X5482 VCC Static and  
Transient Tolerance............................................................................................32  
2-14 Quad-Core Intel® Xeon® Processor X5400 Series,  
Quad-Core Intel® Xeon® Processor E5400 Series,  
Quad-Core Intel® Xeon® Processor L5400 Series  
VCC Static and Transient Tolerance......................................................................33  
2-15 AGTL+ Signal Group DC Specifications..................................................................37  
2-16 CMOS Signal Input/Output Group and TAP Signal Group  
DC Specifications...............................................................................................38  
2-17 Open Drain Output Signal Group DC Specifications.................................................38  
2-18 VCC Overshoot Specifications..............................................................................38  
2-19 AGTL+ Bus Voltage Definitions ............................................................................40  
2-20 FSB Differential BCLK Specifications .....................................................................40  
3-1  
3-2  
3-3  
4-1  
4-2  
5-1  
6-1  
Package Loading Specifications............................................................................47  
Package Handling Guidelines...............................................................................48  
Processor Materials ............................................................................................48  
Land Listing by Land Name .................................................................................51  
Land Listing by Land Number ..............................................................................61  
Signal Definitions...............................................................................................71  
Quad-Core Intel® Xeon® Processor X5492 and X5482 (C-step) Thermal  
Specifications....................................................................................................81  
Quad-Core Intel® Xeon® Processor X5492 and X5482 (C-step)Thermal Profile Table .82  
Quad-Core Intel® Xeon® Processor X5400 Series Thermal Specifications .................83  
Quad-Core Intel® Xeon® Processor X5400 Series Thermal Profile A Table ................84  
Quad-Core Intel® Xeon® Processor X5400 Series Thermal Profile B Table ................85  
Quad-Core Intel® Xeon® Processor E5400 Series Thermal Specifications..................85  
Quad-Core Intel® Xeon® Processor E5400 Series Thermal Profile Table ...................86  
Quad-Core Intel® Xeon® Processor L5400 Series Thermal Specifications..................87  
Quad-Core Intel® Xeon® Processor L5400 Series Thermal Profile Table....................88  
6-2  
6-3  
6-4  
6-5  
6-6  
6-7  
6-8  
6-9  
6-10 Quad-Core Intel® Xeon® Processor L5408 Thermal Specifications ...........................88  
6-11 Quad-Core Intel® Xeon® Processor L5408 Thermal Profile Table .............................89  
6-12 GetTemp0() GetTemp1()Error Codes....................................................................96  
7-1  
7-2  
8-1  
8-2  
8-3  
Power-On Configuration Option Lands...................................................................97  
Extended HALT Maximum Power..........................................................................99  
PWM Fan Frequency Specifications for 4-Pin Active CEK Thermal Solution................114  
Fan Specifications for 4-Pin Active CEK Thermal Solution.......................................114  
Fan Cable Connector Pin Out for 4-Pin Active CEK Thermal Solution........................114  
6
Quad-Core Intel® Xeon® Processor 5400 Series Datasheet  
Revision History  
Revision  
Description  
Date  
001  
002  
Initial release  
November 2007  
Added product information for the Quad-Core Intel® Xeon®  
Processor L5408.  
March 2008  
April 2008  
Added product information for the Quad-Core Intel® Xeon®  
Processor L5400 Series.  
003  
004  
Corrected L1 cache size  
Introduced X5492  
Updated X5482 power levels on E-step  
August 2008  
August 2008  
Maintains change bars from version 004.  
Denoted in the Introduction section that E-step of the X5482 falls  
into the 120W X5400 family.  
005  
Added X5492 processor to Table 7-1 and in Introduction section.  
§
Quad-Core Intel® Xeon® Processor 5400 Series Datasheet  
7
8
Quad-Core Intel® Xeon® Processor 5400 Series Datasheet  
1 Introduction  
The Quad-Core Intel® Xeon® Processor 5400 Series is a server/workstation processor  
utilizing four 45-nm Hi-k next generation Intel® Core™ microarchitecture cores. The  
processor is manufactured on Intel’s 45 nanometer process technology combining high  
performance with the power efficiencies of a low-power microarchitecture. The Quad-  
Core Intel® Xeon® Processor 5400 Series maintains the tradition of compatibility with  
IA-32 software. Some key features include on-die, primary 32-kB instruction cache and  
32-kB write-back data cache in each core and 12 MB (2 x 6MB) Level 2 cache with  
Intel® Advanced Smart Cache architecture. The processors’ Data Prefetch Logic  
speculatively fetches data to the L2 cache before an L1 cache requests occurs, resulting  
in reduced effective bus latency and improved performance. The 1066 MHz Front Side  
Bus (FSB) is a quad-pumped bus running off a 266 MHz system clock making  
8.5 GBytes per second data transfer rates possible. The 1333 MHz Front Side Bus (FSB)  
is a quad-pumped bus running off a 333 MHz system clock making 10.66 GBytes per  
second data transfer rates possible. The 1600 MHz Front Side Bus (FSB) is a quad-  
pumped bus running off a 400 MHz system clock making 12.80 GBytes per second data  
transfer rates possible.  
Enhanced thermal and power management capabilities are implemented including  
Intel® Thermal Monitor 1, Intel® Thermal Monitor 2 and Enhanced Intel SpeedStep®  
Technology. These technologies are targeted for dual processor configurations in  
enterprise environments. Intel® Thermal Monitor 1 and Intel® Thermal Monitor  
provide efficient and effective cooling in high temperature situations. Enhanced Intel  
SpeedStep Technology provides power management capabilities to servers and  
workstations.  
Quad-Core Intel® Xeon® Processor 5400 Series features include Intel® Wide Dynamic  
Execution, enhanced floating point and multi-media units, Streaming SIMD Extensions  
2 (SSE2), Streaming SIMD Extensions 3 (SSE3), and Streaming SIMD Extensions 4.1  
(SSE4.1). Advanced Dynamic Execution improves speculative execution and branch  
prediction internal to the processor. The floating point and multi-media units include  
128-bit wide registers and a separate register for data movement. SSE3 instructions  
provide highly efficient double-precision floating point, SIMD integer, and memory  
management operations.  
The Quad-Core Intel® Xeon® Processor 5400 Series support Intel® 64 Architecture as  
an enhancement to Intel's IA-32 architecture. This enhancement allows the processor  
to execute operating systems and applications written to take advantage of the 64-bit  
extension technology. Further details on Intel® 64 Architecture and its programming  
model can be found in the Intel® 64 and IA-32 Architectures Software Developer’s  
Manual, at http://www.intel.com/products/processor/manuals/.  
In addition, the Quad-Core Intel® Xeon® Processor 5400 Series supports the Execute  
Disable Bit functionality. When used in conjunction with a supporting operating system,  
Execute Disable allows memory to be marked as executable or non executable. This  
feature can prevent some classes of viruses that exploit buffer overrun vulnerabilities  
and can thus help improve the overall security of the system. Further details on  
Execute Disable can be found at http://www.intel.com/cd/ids/developer/asmo-  
na/eng/149308.htm.  
The Quad-Core Intel® Xeon® Processor 5400 Series support Intel® Virtualization  
Technology for hardware-assisted virtualization within the processor. Intel Virtualization  
Technology is a set of hardware enhancements that can improve virtualization  
9
solutions. Intel Virtualization Technology is used in conjunction with Virtual Machine  
Monitor software enabling multiple, independent software environments inside a single  
platform. Further details on Intel Virtualization Technology can be found at  
http://developer.intel.com/technology/platform-technology/virtualization/index.htm.  
The Quad-Core Intel® Xeon® Processor 5400 Series is intended for high performance  
server and workstation systems. The Quad-Core Intel® Xeon® Processor 5400 Series  
supports a Dual Independent Bus (DIB) architecture with one processor on each bus,  
up to two processor sockets in a system. The DIB architecture provides improved  
performance by allowing increased FSB speeds and bandwidth. The Quad-Core Intel®  
Xeon® Processor 5400 Series will be packaged in an FC-LGA Land Grid Array package  
with 771 lands for improved power delivery. It utilizes a surface mount LGA771 socket  
that supports Direct Socket Loading (DSL).  
Table 1-1.  
Quad-Core Intel® Xeon® Processor 5400 Series  
# of  
Processor  
Cores  
L2 Advanced  
Cache  
Front Side Bus  
Frequency  
L1 Cache  
Package  
4
2x6 MB shared  
1600 MHz  
1333 MHz  
1066 MHz  
FC-LGA  
771 Lands  
32 KB instruction per core  
32 KB data per core  
The Quad-Core Intel® Xeon® Processor 5400 Series-based platforms implement  
independent core voltage (VCC) power planes for each processor. FSB termination  
voltage (VTT) is shared and must connect to all FSB agents. The processor core voltage  
utilizes power delivery guidelines specified by VRM/EVRD 11.0 and its associated load  
line (see Voltage Regulator Module (VRM) and Enterprise Voltage Regulator-Down  
(EVRD) 11.0 Design Guidelines for further details). VRM/EVRD 11.0 will support the  
power requirements of all frequencies of the Quad-Core Intel® Xeon® Processor 5400  
Series including Flexible Motherboard Guidelines (FMB) (see Section 2.13.1). Refer to  
the appropriate platform design guidelines for implementation details.  
The Quad-Core Intel® Xeon® Processor 5400 Series supports either 1066 MHz,  
1333 MHz, or 1600 MHz Front Side Bus operations. The FSB utilizes a split-transaction,  
deferred reply protocol and Source-Synchronous Transfer (SST) of address and data to  
improve performance. The processor transfers data four times per bus clock (4X data  
transfer rate, as in AGP 4X). Along with the 4X data bus, the address bus can deliver  
addresses two times per bus clock and is referred to as a ‘double-clocked’ or a 2X  
address bus. In addition, the Request Phase completes in one clock cycle. The FSB is  
also used to deliver interrupts.  
Signals on the FSB use Assisted Gunning Transceiver Logic (AGTL+) level voltages.  
Section 2.1 contains the electrical specifications of the FSB while implementation  
details are fully described in the appropriate platform design guidelines (refer to  
Section 1.3).  
1.1  
Terminology  
A ‘#’ symbol after a signal name refers to an active low signal, indicating a signal is in  
the asserted state when driven to a low level. For example, when RESET# is low, a  
reset has been requested. Conversely, when NMI is high, a nonmaskable interrupt has  
occurred. In the case of signals where the name does not imply an active state but  
describes part of a binary sequence (such as address or data), the ‘#’ symbol implies  
that the signal is inverted. For example, D[3:0] = ‘HLHL’ refers to a hex ‘A, and  
D[3:0]# = ‘LHLH’ also refers to a hex ‘A’ (H= High logic level, L= Low logic level).  
10  
Commonly used terms are explained here for clarification:  
Quad-Core Intel® Xeon® Processor 5400 Series - Intel 64-bit microprocessor  
intended for dual processor servers and workstations based on Intel’s 45  
nanometer process, in the PC-LGA 771 package with four processor cores. For this  
document “processors” is used as the generic term for the “Quad-Core Intel®  
Xeon® Processor 5400 Series. The term ‘processors’ and “Quad-Core Intel®  
Xeon® Processor 5400 Series” are inclusive of Quad-Core Intel® Xeon® Processor  
X5482, Quad-Core Intel® Xeon® Processor X5400 Series, Quad-Core Intel®  
Xeon® Processor E5400 Series, and Quad-Core Intel® Xeon® Processor L5400  
Series.  
Quad-Core Intel® Xeon® Processor X5492– An ultra performance version of  
the Quad-Core Intel® Xeon® Processor 5400 Series. For this document “Quad-  
Core Intel® Xeon® Processor X5492” is used to call out specifications that are  
unique to the Quad-Core Intel® Xeon® Processor X5492 SKU.  
Quad-Core Intel® Xeon® Processor X5482– An ultra performance version of  
the Quad-Core Intel® Xeon® Processor 5400 Series. For this document “Quad-  
Core Intel® Xeon® Processor X5482” is used to call out specifications that are  
unique to the Quad-Core Intel® Xeon® Processor X5482 SKU. E-step version of  
the X5482 falls into the X5400 family specifications  
Quad-Core Intel® Xeon® Processor X5400 Series - An accelerated  
performance version of the Quad-Core Intel® Xeon® Processor X5400 Series. For  
this document “Quad-Core Intel® Xeon® Processor X5400 Series” is used to call  
out specifications that are unique to the Quad-Core Intel® Xeon® Processor X5400  
Series SKU.  
Quad-Core Intel® Xeon® Processor E5400 Series – A mainstream  
performance version of the Quad-Core Intel® Xeon® Processor X5400 Series. For  
this document “Quad-Core Intel® Xeon® Processor E5400 Series” is used to call  
out specifications that are unique to the Quad-Core Intel® Xeon® Processor E5400  
Series SKU.  
Quad-Core Intel® Xeon® Processor L5400 Series - Intel 64-bit  
microprocessor intended for dual processor server blades and embedded servers.  
The Quad-Core Intel® Xeon® Processor L5400 Series is a lower voltage and lower  
power version of the Quad-Core Intel® Xeon® Processor 5400 Series. For this  
document “Quad-Core Intel® Xeon® Processor L5400 Series” is used to call out  
specifications that are unique to the Quad-Core Intel® Xeon® Processor L5400  
Series SKU.  
Quad-Core Intel® Xeon® Processor L5408 - Intel 64-bit microprocessor  
intended for dual processor server blades and embedded servers. The Quad-Core  
Intel® Xeon® Processor L5408 is a lower voltage and lower power version of the  
Quad-Core Intel® Xeon® Processor 5400 Series supporting higher case  
temperatures. It supports a Thermal Profile with nominal and short-term conditions  
designed to meet Network Equipment Building System (NEBS) level 3 compliance.  
For this document “Quad-Core Intel® Xeon® Processor L5408” is used to call out  
specifications that are unique to the Quad-Core Intel® Xeon® Processor L5408  
SKU.  
FC-LGA (Flip Chip Land Grid Array) Package – The Quad-Core Intel® Xeon®  
Processor 5400 Series package is a Land Grid Array, consisting of a processor core  
mounted on a pinless substrate with 771 lands, and includes an integrated heat  
spreader (IHS).  
LGA771 socket – The Quad-Core Intel® Xeon® Processor 5400 Series interfaces  
to the baseboard through this surface mount, 771 Land socket. See the LGA771  
Socket Design Guidelines for details regarding this socket.  
11  
Processor core – Processor core with integrated L1 cache. L2 cache and system  
bus interface are shared between the two cores on the die. All AC timing and signal  
integrity specifications are at the pads of the system bus interface.  
Front Side Bus (FSB) – The electrical interface that connects the processor to the  
chipset. Also referred to as the processor system bus or the system bus. All  
memory and I/O transactions, as well as interrupt messages, pass between the  
processor and chipset over the FSB.  
Dual Independent Bus (DIB) – A front side bus architecture with one processor  
on each of several processor buses, rather than a processor bus shared between  
two processor agents. The DIB architecture provides improved performance by  
allowing increased FSB speeds and bandwidth.  
Flexible Motherboard Guidelines (FMB) – Estimate of the maximum values the  
Quad-Core Intel® Xeon® Processor 5400 Series will have over certain time  
periods. Actual specifications for future processors may differ.  
Functional Operation – Refers to the normal operating conditions in which all  
processor specifications, including DC, AC, FSB, signal quality, mechanical and  
thermal are satisfied.  
Storage Conditions – Refers to a non-operational state. The processor may be  
installed in a platform, in a tray, or loose. Processors may be sealed in packaging or  
exposed to free air. Under these conditions, processor lands should not be  
connected to any supply voltages, have any I/Os biased or receive any clocks.  
Upon exposure to “free air” (that is, unsealed packaging or a device removed from  
packaging material) the processor must be handled in accordance with moisture  
sensitivity labeling (MSL) as indicated on the packaging material.  
Priority Agent – The priority agent is the host bridge to the processor and is  
typically known as the chipset.  
Symmetric Agent – A symmetric agent is a processor which shares the same I/O  
subsystem and memory array, and runs the same operating system as another  
processor in a system. Systems using symmetric agents are known as Symmetric  
Multiprocessing (SMP) systems.  
Integrated Heat Spreader (IHS) – A component of the processor package used  
to enhance the thermal performance of the package. Component thermal solutions  
interface with the processor at the IHS surface.  
Thermal Design Power (TDP) – Processor thermal solutions should be designed  
to meet this target. It is the highest expected sustainable power while running  
known power intensive applications. TDP is not the maximum power that the  
processor can dissipate.  
Intel®64 Architecture – An enhancement to Intel's IA-32 architecture that allows  
the processor to execute operating systems and applications written to take  
advantage of the 64-bit extension technology.  
Enhanced Intel SpeedStep® Technology Technology that provides power  
management capabilities to servers and workstations.  
Platform Environment Control Interface (PECI) – A proprietary one-wire bus  
interface that provides a communication channel between Intel processor and  
external thermal monitoring devices, for use in fan speed control. PECI  
communicates readings from the processor’s digital thermometer. PECI replaces  
the thermal diode available in previous processors.  
Intel® Virtualization Technology – Processor virtualization, which when used in  
conjunction with Virtual Machine Monitor software enables multiple, robust  
independent software environments inside a single platform.  
12  
VRM (Voltage Regulator Module) – DC-DC converter built onto a module that  
interfaces with a card edge socket and supplies the correct voltage and current to  
the processor based on the logic state of the processor VID bits.  
EVRD (Enterprise Voltage Regulator Down) – DC-DC converter integrated onto  
the system board that provides the correct voltage and current to the processor  
based on the logic state of the processor VID bits.  
VCC – The processor core power supply.  
VSS – The processor ground.  
VTT – FSB termination voltage.  
1.2  
1.3  
State of Data  
The data contained within this document is the most accurate information available by  
the publication date of this document.  
References  
Material and concepts available in the following documents may be beneficial when  
reading this document:  
Document  
Document  
Notes  
1
Number  
®
AP-485, Intel Processor Identification and the CPUID Instruction  
241618  
2
2
®
Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 1  
Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A  
Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B  
Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A  
253665  
253666  
253667  
253668  
253669  
®
®
®
®
Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B  
®
®
Intel 64 and IA-32 Intel Architectures Optimization Reference Manual  
248966  
252046  
2
2
®
®
Intel 64 and IA-32 Intel Architectures Software Developer's Manual  
Documentation Changes  
Quad-Core Intel® Xeon® Processor 5400 Series Specification Update  
318585  
315889  
2
2
Voltage Regulator Module (VRM) and Enterprise Voltage Regulator-Down (EVRD)  
11.0 Design Guidelines  
Quad-Core Intel® Xeon® Processor 5400 Series Thermal/Mechanical Design  
Guidelines (TMDG)  
318611  
1
LGA771 Socket Mechanical Design Guide  
313871  
318587  
2
2
Quad-Core Intel® Xeon® Processor 5400 Series Boundary Scan Descriptive  
Language (BSDL) Model  
Notes:  
1.  
2.  
Contact your Intel representative for the latest revision of these documents  
Document is available publicly at http://developer.intel.com.  
§
13  
14  
Quad-Core Intel® Xeon® Processor 5400 Series Electrical Specifications  
2 Quad-Core Intel® Xeon®  
Processor 5400 Series Electrical  
Specifications  
2.1  
Front Side Bus and GTLREF  
Most Quad-Core Intel® Xeon® Processor 5400 Series FSB signals use Assisted  
Gunning Transceiver Logic (AGTL+) signaling technology. This technology provides  
improved noise margins and reduced ringing through low voltage swings and controlled  
edge rates. AGTL+ buffers are open-drain and require pull-up resistors to provide the  
high logic level and termination. AGTL+ output buffers differ from GTL+ buffers with  
the addition of an active PMOS pull-up transistor to “assist” the pull-up resistors during  
the first clock of a low-to-high voltage transition. Platforms implement a termination  
voltage level for AGTL+ signals defined as VTT. Because platforms implement separate  
power planes for each processor (and chipset), separate VCC and VTT supplies are  
necessary. This configuration allows for improved noise tolerance as processor  
frequency increases. Speed enhancements to data and address buses have made  
signal integrity considerations and platform design methods even more critical than  
with previous processor families. Design guidelines for the processor FSB are detailed  
in the appropriate platform design guidelines (refer to Section 1.3).  
The AGTL+ inputs require reference voltages (GTLREF_DATA_MID, GTLREF_DATA_END,  
GTLREF_ADD_MID, and GTLREF_ADD_END) which are used by the receivers to  
determine if a signal is a logical 0 or a logical 1. GTLREF_DATA_MID and  
GTLREF_DATA_END is used for the 4X front side bus signaling group and  
GTLREF_ADD_MID and GTLREF_ADD_END is used for the 2X and common clock front  
side bus signaling groups. GTLREF_DATA_MID, GTLREF_DATA_END,  
GTLREF_ADD_MID, and GTLREF_ADD_END must be generated on the baseboard (See  
Table 2-19 for GTLREF_DATA_MID, GTLREF_DATA_END, GTLREF_ADD_MID, and  
GTLREF_ADD_END specifications). Refer to the applicable platform design guidelines  
for details. Termination resistors (RTT) for AGTL+ signals are provided on the processor  
silicon and are terminated to VTT. The on-die termination resistors are always enabled  
on the Quad-Core Intel® Xeon® Processor 5400 Series to control reflections on the  
transmission line. Intel chipsets also provide on-die termination, thus eliminating the  
need to terminate the bus on the baseboard for most AGTL+ signals.  
Some FSB signals do not include on-die termination (RTT) and must be terminated on  
the baseboard. See Table 2-8 for details regarding these signals.  
The AGTL+ bus depends on incident wave switching. Therefore, timing calculations for  
AGTL+ signals are based on flight time as opposed to capacitive deratings. Analog  
signal simulation of the FSB, including trace lengths, is highly recommended when  
designing a system. Contact your Intel Field Representative to obtain the Quad-Core  
Intel® Xeon® Processor 5400 Series signal integrity models, which includes buffer and  
package models.  
15  
Quad-Core Intel® Xeon® Processor 5400 Series Electrical Specifications  
2.2  
2.3  
Power and Ground Lands  
For clean on-chip processor core power distribution, the processor has 223 VCC (power)  
and 267 VSS (ground) inputs. All VCC lands must be connected to the processor power  
plane, while all VSS lands must be connected to the system ground plane. The  
processor VCC lands must be supplied with the voltage determined by the processor  
Voltage IDentification (VID) signals. See Table 2-3 for VID definitions.  
Twenty two lands are specified as VTT, which provide termination for the FSB and  
provides power to the I/O buffers. The platform must implement a separate supply for  
these lands which meets the VTT specifications outlined in Table 2-12.  
Decoupling Guidelines  
Due to its large number of transistors and high internal clock speeds, the Quad-Core  
Intel® Xeon® Processor 5400 Series is capable of generating large average current  
swings between low and full power states. This may cause voltages on power planes to  
sag below their minimum values if bulk decoupling is not adequate. Larger bulk storage  
(CBULK), such as electrolytic capacitors, supply voltage during longer lasting changes in  
current demand by the component, such as coming out of an idle condition. Similarly,  
they act as a storage well for current when entering an idle condition from a running  
condition. Care must be taken in the baseboard design to ensure that the voltage  
provided to the processor remains within the specifications listed in Table 2-12. Failure  
to do so can result in timing violations or reduced lifetime of the component. For further  
information and guidelines, refer to the appropriate platform design guidelines.  
2.3.1  
2.3.2  
2.3.3  
V Decoupling  
CC  
Vcc regulator solutions need to provide bulk capacitance with a low Effective Series  
Resistance (ESR), and the baseboard designer must assure a low interconnect  
resistance from the regulator (EVRD or VRM pins) to the LGA771 socket. Bulk  
decoupling must be provided on the baseboard to handle large voltage swings. The  
power delivery solution must insure the voltage and current specifications are met (as  
defined in Table 2-12). For further information regarding power delivery, decoupling  
and layout guidelines, refer to the appropriate platform design guidelines.  
VTT Decoupling  
Bulk decoupling must be provided on the baseboard. Decoupling solutions must be  
sized to meet the expected load. To insure optimal performance, various factors  
associated with the power delivery solution must be considered including regulator  
type, power plane and trace sizing, and component placement. A conservative  
decoupling solution consists of a combination of low ESR bulk capacitors and high  
frequency ceramic capacitors. For further information regarding power delivery,  
decoupling and layout guidelines, refer to the appropriate platform design guidelines.  
Front Side Bus AGTL+ Decoupling  
The Quad-Core Intel® Xeon® Processor 5400 Series integrates signal termination on  
the die, as well as a portion of the required high frequency decoupling capacitance on  
the processor package. However, additional high frequency capacitance must be added  
to the baseboard to properly decouple the return currents from the FSB. Bulk  
decoupling must also be provided by the baseboard for proper AGTL+ bus operation.  
Decoupling guidelines are described in the appropriate platform design guidelines.  
16  
Quad-Core Intel® Xeon® Processor 5400 Series Electrical Specifications  
2.4  
Front Side Bus Clock (BCLK[1:0]) and Processor  
Clocking  
BCLK[1:0] directly controls the FSB interface speed as well as the core frequency of the  
processor. As in previous processor generations, the Quad-Core Intel® Xeon®  
Processor 5400 Series core frequency is a multiple of the BCLK[1:0] frequency. The  
processor bus ratio multiplier is set during manufacturing. The default setting is for the  
maximum speed of the processor. It is possible to override this setting using software  
(see the Intel® 64 and IA-32 Architectures Software Developer’s Manual). This permits  
operation at lower frequencies than the processor’s tested frequency.  
The processor core frequency is configured during reset by using values stored  
internally during manufacturing. The stored value sets the highest bus fraction at which  
the particular processor can operate. If lower speeds are desired, the appropriate ratio  
can be configured via the CLOCK_FLEX_MAX MSR. For details of operation at core  
frequencies lower than the maximum rated processor speed, refer to the Intel® 64 and  
Intel® 64 and IA-32 Architectures Software Developer’s Manual.  
Clock multiplying within the processor is provided by the internal phase locked loop  
(PLL), which requires a constant frequency BCLK[1:0] input, with exceptions for spread  
spectrum clocking. Processor DC specifications for the BCLK[1:0] inputs are provided in  
Table 2-20. These specifications must be met while also meeting signal integrity  
requirements as outlined in Table 2-20. The Quad-Core Intel® Xeon® Processor 5400  
Series utilizes differential clocks. Table 2-1 contains processor core frequency to FSB  
multipliers and their corresponding core frequencies.  
Table 2-1.  
Core Frequency to FSB Multiplier Configuration  
Core Frequency  
with 400.000 MHz  
Bus Clock  
Core Frequency  
with 333.333 MHz  
Bus Clock  
Core Frequency  
with 266.666 MHz  
Bus Clock  
Core Frequency to  
FSB Multiplier  
Notes  
1/6  
1/7  
2.40 GHz  
2.80 GHz  
3 GHz  
2 GHz  
1.60 GHz  
1.87 GHz  
2 GHz  
1, 2, 3, 4  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
2.33 GHz  
2.50 GHz  
2.66 GHz  
2.83 GHz  
3 GHz  
1/7.5  
1/8  
3.20 GHz  
3.40 GHz  
3.60 GHz  
3.80 GHz  
2.13 GHz  
2.27 GHz  
2.40 GHz  
2.53 GHz  
1/8.5  
1/9  
1/9.5  
3.16 GHz  
Notes:  
1.  
2.  
3.  
Individual processors operate only at or below the frequency marked on the package.  
Listed frequencies are not necessarily committed production frequencies.  
For valid processor core frequencies, see Quad-Core Intel® Xeon® Processor 5400 Series Specification  
Update.  
4.  
The lowest bus ratio supported by the Quad-Core Intel® Xeon® Processor 5400 Series is 1/6.  
2.4.1  
Front Side Bus Frequency Select Signals (BSEL[2:0])  
Upon power up, the FSB frequency is set to the maximum supported by the individual  
processor. BSEL[2:0] are CMOS outputs which must be pulled up to VTT, and are used  
to select the FSB frequency. Please refer to Table 2-15 for DC specifications. Table 2-2  
defines the possible combinations of the signals and the frequency associated with each  
combination. The frequency is determined by the processor(s), chipset, and clock  
synthesizer. All FSB agents must operate at the same core and FSB frequency. See the  
appropriate platform design guidelines for further details.  
17  
Quad-Core Intel® Xeon® Processor 5400 Series Electrical Specifications  
Table 2-2.  
BSEL[2:0] Frequency Table  
BSEL2  
BSEL1  
BSEL0  
Bus Clock Frequency  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
266.66 MHz  
Reserved  
Reserved  
Reserved  
333.33 MHz  
Reserved  
400 MHz  
Reserved  
2.4.2  
PLL Power Supply  
An on-die PLL filter solution is implemented on the Quad-Core Intel® Xeon® Processor  
5400 Series. The VCCPLL input is used for this configuration in Quad-Core Intel® Xeon®  
Processor 5400 Series-based platforms. Please refer to Table 2-12 for DC  
specifications. Refer to the appropriate platform design guidelines for decoupling and  
routing guidelines.  
2.5  
Voltage Identification (VID)  
The Voltage Identification (VID) specification for the Quad-Core Intel® Xeon®  
Processor 5400 Series is defined by the Voltage Regulator Module (VRM) and Enterprise  
Voltage Regulator-Down (EVRD) 11.0 Design Guidelines. The voltage set by the VID  
signals is the reference VR output voltage to be delivered to the processor Vcc pins.  
VID signals are open drain outputs, which must be pulled up to VTT. Please refer to  
Table 2-16 for the DC specifications for these signals. A voltage range is provided in  
Table 2-12 and changes with frequency. The specifications have been set such that one  
voltage regulator can operate with all supported frequencies.  
Individual processor VID values may be calibrated during manufacturing such that two  
devices at the same core frequency may have different default VID settings. This is  
reflected by the VID range values provided in Table 2-3.  
The Quad-Core Intel® Xeon® Processor 5400 Series uses six voltage identification  
signals, VID[6:1], to support automatic selection of power supply voltages. Table 2-3  
specifies the voltage level corresponding to the state of VID[6:1]. A ‘1’ in this table  
refers to a high voltage level and a ‘0’ refers to a low voltage level. If the processor  
socket is empty (VID[6:1] = 111111), or the voltage regulation circuit cannot supply  
the voltage that is requested, the voltage regulator must disable itself. See the Voltage  
Regulator Module (VRM) and Enterprise Voltage Regulator-Down (EVRD) 11.0 Design  
Guidelines for further details.  
Although the Voltage Regulator Module (VRM) and Enterprise Voltage Regulator-Down  
(EVRD) 11.0 Design Guidelines defines VID[7:0], VID7 and VID0 are not used on the  
Quad-Core Intel® Xeon® Processor 5400 Series; VID7 is always hard wired low at the  
voltage regulator.  
18  
Quad-Core Intel® Xeon® Processor 5400 Series Electrical Specifications  
The Quad-Core Intel® Xeon® Processor 5400 Series provides the ability to operate  
while transitioning to an adjacent VID and its associated processor core voltage (VCC).  
This will represent a DC shift in the load line. It should be noted that a low-to-high or  
high-to-low voltage state change may result in as many VID transitions as necessary to  
reach the target core voltage. Transitions above the specified VID are not permitted.  
Table 2-12 includes VID step sizes and DC shift ranges. Minimum and maximum  
voltages must be maintained as shown in Table 2-13 and Table 2-2.  
The VRM or EVRD utilized must be capable of regulating its output to the value defined  
by the new VID. DC specifications for dynamic VID transitions are included in  
Table 2-12 and Table 2-14. Refer to the Voltage Regulator Module (VRM) and Enterprise  
Voltage Regulator-Down (EVRD) 11.0 Design Guidelines for further details.  
Power source characteristics must be guaranteed to be stable whenever the supply to  
the voltage regulator is stable.  
19  
Quad-Core Intel® Xeon® Processor 5400 Series Electrical Specifications  
Table 2-3.  
Voltage Identification Definition  
HEX VID6 VID5 VID4 VID3 VID2 VID1  
V
HEX VID6 VID5 VID4 VID3 VID2 VID1  
V
CC_MAX  
CC_MAX  
7A  
78  
76  
74  
72  
70  
6E  
6C  
6A  
68  
66  
64  
62  
60  
5E  
5C  
5A  
58  
56  
54  
52  
50  
4E  
4C  
4A  
48  
46  
44  
42  
40  
3E  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.8500  
0.8625  
0.8750  
0.8875  
0.9000  
0.9125  
0.9250  
0.9375  
0.9500  
0.9625  
0.9750  
0.9875  
1.0000  
1.0125  
1.0250  
1.0375  
1.0500  
1.0625  
1.0750  
1.0875  
1.1000  
1.1125  
1.1250  
1.1375  
1.1500  
1.1625  
1.1750  
1.1875  
1.2000  
1.2125  
1.2250  
3C  
3A  
38  
36  
34  
32  
30  
2E  
2C  
2A  
28  
26  
24  
22  
20  
1E  
1C  
1A  
18  
16  
14  
12  
10  
0E  
0C  
0A  
08  
06  
04  
02  
00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1.2375  
1.2500  
1.2625  
1.2750  
1.2875  
1.3000  
1.3125  
1.3250  
1.3375  
1.3500  
1.3625  
1.3750  
1.3875  
1.4000  
1.4125  
1.4250  
1.4375  
1.4500  
1.4625  
1.4750  
1.4875  
1.5000  
1.5125  
1.5250  
1.5375  
1.5500  
1.5625  
1.5750  
1.5875  
1.6000  
1
OFF  
Notes:  
1.  
2.  
3.  
When the “111111” VID pattern is observed, the voltage regulator output should be disabled.  
Shading denotes the expected VID range of the Quad-Core Intel® Xeon® Processor 5400 Series.  
The VID range includes VID transitions that may be initiated by thermal events, assertion of the FORCEPR# signal (see  
®
Section 6.2.4), Extended HALT state transitions (see Section 7.2.2), or Enhanced Intel SpeedStep Technology transitions  
(see Section 7.3). The Extended HALT state must be enabled for the processor to remain within its specifications  
Once the VRM/EVRD is operating after power-up, if either the Output Enable signal is de-asserted or a specific VID off code is  
received, the VRM/EVRD must turn off its output (the output should go to high impedance) within 500 ms and latch off until  
power is cycled. Refer to Voltage Regulator Module (VRM) and Enterprise Voltage Regulator-Down (EVRD) 11.0 Design  
Guidelines.  
4.  
20  
Quad-Core Intel® Xeon® Processor 5400 Series Electrical Specifications  
Table 2-4.  
Table 2-5.  
2.6  
Loadline Selection Truth Table for LL_ID[1:0]  
LL_ID1  
LL_ID0  
Description  
0
0
0
1
Reserved  
®
®
Dual-Core Intel Xeon Processor 5100 series, Dual-Core Intel®  
Xeon® Processor 5200 Series, and Quad-Core Intel® Xeon®  
Processor 5400 Series  
1
1
0
1
Reserved  
®
®
Quad-Core Intel Xeon processor 5300 series  
Note: The LL_ID[1:0] signals are used to select the correct loadline slope for the processor.  
Market Segment Selection Truth Table for MS_ID[1:0]  
MS_ID1  
MS_ID0  
Description  
0
0
1
1
0
1
0
1
Dual-Core Intel® Xeon® Processor 5200 Series  
Dual-Core Intel® Xeon® Processor 5100 series  
Quad-Core Intel® Xeon® Processor 5300 series  
Quad-Core Intel® Xeon® Processor 5400 Series  
Note: The MS_ID[1:0] signals are provided to indicate the Market Segment for the processor and may be  
used for future processor compatibility or for keying.  
Reserved, Unused, and Test Signals  
All Reserved signals must remain unconnected. Connection of these signals to VCC, VTT,  
VSS, or to any other signal (including each other) can result in component malfunction  
or incompatibility with future processors. See Chapter 4 for a land listing of the  
processor and the location of all Reserved signals.  
For reliable operation, always connect unused inputs or bidirectional signals to an  
appropriate signal level. Unused active high inputs should be connected through a  
resistor to ground (VSS). Unused outputs can be left unconnected; however, this may  
interfere with some TAP functions, complicate debug probing, and prevent boundary  
scan testing. A resistor must be used when tying bidirectional signals to power or  
ground. When tying any signal to power or ground, a resistor will also allow for system  
testability. Resistor values should be within ± 20% of the impedance of the baseboard  
trace for FSB signals, unless otherwise noted in the appropriate platform design  
guidelines. For unused AGTL+ input or I/O signals, use pull-up resistors of the same  
value as the on-die termination resistors (RTT). For details see Table 2-19.  
TAP, CMOS Asynchronous inputs, and CMOS Asynchronous outputs do not include on-  
die termination. Inputs and utilized outputs must be terminated on the baseboard.  
Unused outputs may be terminated on the baseboard or left unconnected. Note that  
leaving unused outputs unterminated may interfere with some TAP functions,  
complicate debug probing, and prevent boundary scan testing. Signal termination for  
these signal types is discussed in the appropriate platform design guidelines.  
The TESTHI signals must be tied to the processor VTT using a matched resistor, where a  
matched resistor has a resistance value within ± 20% of the impedance of the board  
transmission line traces. For example, if the trace impedance is 50Ω, then a value  
between 40Ω and 60Ω is required.  
21  
Quad-Core Intel® Xeon® Processor 5400 Series Electrical Specifications  
The TESTHI signals must use individual pull-up resistors as detailed below. A matched  
resistor must be used for each signal:  
• TESTHI10 – cannot be grouped with other TESTHI signals  
• TESTHI11 – cannot be grouped with other TESTHI signals  
• TESTHI12 - cannot be grouped with other TESTHI signals  
2.7  
Front Side Bus Signal Groups  
The FSB signals have been combined into groups by buffer type. AGTL+ input signals  
have differential input buffers, which use GTLREF_DATA and GTLREF_ADD as reference  
levels. In this document, the term “AGTL+ Input” refers to the AGTL+ input group as  
well as the AGTL+ I/O group when receiving. Similarly, “AGTL+ Output” refers to the  
AGTL+ output group as well as the AGTL+ I/O group when driving. AGTL+  
asynchronous outputs can become active anytime and include an active PMOS pull-up  
transistor to assist during the first clock of a low-to-high voltage transition.  
With the implementation of a source synchronous data bus comes the need to specify  
two sets of timing parameters. One set is for common clock signals whose timings are  
specified with respect to rising edge of BCLK0 (ADS#, HIT#, HITM#, and so forth) and  
the second set is for the source synchronous signals which are relative to their  
respective strobe lines (data and address) as well as rising edge of BCLK0.  
Asynchronous signals are still present (A20M#, IGNNE#, and so forth) and can become  
active at any time during the clock cycle. Table 2-6 identifies which signals are common  
clock, source synchronous and asynchronous.  
Table 2-6.  
FSB Signal Groups (Sheet 1 of 2)  
1
Signal Group  
Type  
Signals  
AGTL+ Common Clock Input  
Synchronous to  
BCLK[1:0]  
BPRI#, DEFER#, RESET#, RS[2:0]#, RSP#,  
TRDY#;  
AGTL+ Common Clock Output  
AGTL+ Common Clock I/O  
Synchronous to  
BCLK[1:0]  
BPM4#, BPM[2:1]#, BPMb[2:1]#  
2
2
Synchronous to  
BCLK[1:0]  
ADS#, AP[1:0]#, BINIT# , BNR# , BPM5#,  
BPM3#, BPM0#,BPMb3#, BPMb0#, BR[1:0]#,  
2
2
DBSY#, DP[3:0]#, DRDY#, HIT# , HITM# ,  
2
LOCK#, MCERR#  
AGTL+ Source Synchronous  
I/O  
Synchronous to assoc.  
strobe  
Signals  
Associated Strobe  
REQ[4:0]#,A[16:3]#, ADSTB0#  
A[37:36]#  
A[35:17]#  
ADSTB1#  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBP0#, DSTBN0#  
DSTBP1#, DSTBN1#  
DSTBP2#, DSTBN2#  
DSTBP3#, DSTBN3#  
AGTL+ Strobes I/O  
Synchronous to  
BCLK[1:0]  
ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]#  
Open Drain Output  
Asynchronous  
FERR#/PBE#, IERR#, PROCHOT#,  
THERMTRIP#, TDO  
CMOS Asynchronous Input  
Asynchronous  
A20M#, FORCEPR#, IGNNE#, INIT#,  
LINT0/INTR, LINT1/NMI, PWRGOOD, SMI#,  
STPCLK#  
22  
Quad-Core Intel® Xeon® Processor 5400 Series Electrical Specifications  
Table 2-6.  
FSB Signal Groups (Sheet 2 of 2)  
1
Signal Group  
Type  
Signals  
BSEL[2:0], VID[6:1]  
CMOS Asynchronous Output  
FSB Clock  
Asynchronous  
Clock  
BCLK[1:0]  
TAP Input  
Synchronous to TCK  
Synchronous to TCK  
Power/Other  
TCK, TDI, TMS, TRST#  
TDO  
TAP Output  
Power/Other  
COMP[3:0], GTLREF_ADD_MID,  
GTLREF_ADD_END, GTLREF_DATA_MID,  
GTLREF_DATA_END, LL_ID[1:0], MS_ID[1:0],  
PECI, RESERVED, SKTOCC#, TESTIN1,  
TESTIN2, TESTHI[12:10], V  
,
CC  
VCC_DIE_SENSE, VCC_DIE_SENSE2, VCCPLL,  
VID_SELECT, VSS_DIE_SENSE,  
VSS_DIE_SENSE2, V , V , VTT_OUT,  
SS  
TT  
VTT_SEL  
Notes:  
1.  
2.  
Refer to Chapter 5 for signal descriptions.  
These signals may be driven simultaneously by multiple agents (Wired-OR).  
Table 2-7 outlines the signals which include on-die termination (RTT). Table 2-8 outlines  
non AGTL+ signals including open drain signals. Table 2-9 provides signal reference  
voltages.  
Table 2-7.  
AGTL+ Signal Description Table  
AGTL+ signals with R  
AGTL+ signals with no R  
TT  
TT  
A[37:3]#, ADS#, ADSTB[1:0]#, AP[1:0]#, BINIT#, BPM[5:0]#,BPMb[3:0]#, RESET#, BR[1:0]#  
BNR#, BPRI#, D[63:0]#, DBI[3:0]#, DBSY#,  
DEFER#, DP[3:0]#, DRDY#, DSTBN[3:0]#,  
DSTBP[3:0]#, HIT#, HITM#, LOCK#, MCERR#,  
REQ[4:0]#, RS[2:0]#, RSP#, TRDY#  
Table 2-8.  
Non AGTL+ Signal Description Table  
Signals with R  
Signals with no R  
TT  
TT  
1
2
FORCEPR# , PROCHOT#  
A20M#, BCLK[1:0], BSEL[2:0], COMP[3:0],  
FERR#/PBE#, GTLREF_ADD_MID, GTLREF_ADD_END,  
GTLREF_DATA_MID, GTLREF_DATA_END, IERR#,  
IGNNE#, INIT#, LINT0/INTR, LINT1/NMI, LL_ID[1:0],  
MS_ID[1:0], PECI, PWRGOOD, SKTOCC#, SMI#,  
STPCLK#, TCK, TDI, TDO, TESTHI[12:8], THERMTRIP#,  
TMS, TRDY#, TRST#, VCC_DIE_SENSE,  
VCC_DIE_SENSE2, VID[6:1], VID_SELECT,  
VSS_DIE_SENSE, VSS_DIE_SENSE2, VTT_SEL  
Notes:  
1.  
2.  
These signals have RTT in the package with a 80 Ω pullup to V .  
TT  
These signals have RTT in the package with a 50 Ω pullup to V .  
TT  
Table 2-9.  
Signal Reference Voltages  
GTLREF  
CMOS  
A[37:3]#, ADS#, ADSTB[1:0]#, AP[1:0]#, BINIT#, A20M#, LINT0/INTR, LINT1/NMI, IGNNE#, INIT#,  
BNR#, BPM[5:0]#, BPMb[3:0]#, BPRI#, BR[1:0]#, PWRGOOD, SMI#, STPCLK#, TCK, TDI, TMS, TRST#  
D[63:0]#, DBI[3:0]#, DBSY#, DEFER#, DP[3:0]#,  
DRDY#, DSTBN[3:0]#, DSTBP[3:0]#, FORCEPR#,  
HIT#, HITM#, LOCK#, MCERR#, RESET#,  
REQ[4:0]#, RS[2:0]#, RSP#, TRDY#  
23  
Quad-Core Intel® Xeon® Processor 5400 Series Electrical Specifications  
2.8  
CMOS Asynchronous and Open Drain  
Asynchronous Signals  
Legacy input signals such as A20M#, IGNNE#, INIT#, SMI#, and STPCLK# utilize  
CMOS input buffers. Legacy output signals such as FERR#/PBE#, IERR#, PROCHOT#,  
and THERMTRIP# utilize open drain output buffers. All of the CMOS and Open Drain  
signals are required to be asserted/deasserted for at least eight BCLKs in order for the  
processor to recognize the proper signal state. See Section 2.13 for the DC  
specifications. See Chapter 6 for additional timing requirements for entering and  
leaving the low power states.  
2.9  
Test Access Port (TAP) Connection  
Due to the voltage levels supported by other components in the Test Access Port (TAP)  
logic, it is recommended that the processor(s) be first in the TAP chain followed by any  
other components within the system. A translation buffer should be used to connect to  
the rest of the chain unless one of the other components is capable of accepting an  
input of the appropriate voltage. Similar considerations must be made for TCK, TDO,  
TMS, and TRST#. Two copies of each signal may be required with each driving a  
different voltage level.  
2.10  
Platform Environmental Control Interface (PECI)  
DC Specifications  
PECI is an Intel proprietary one-wire interface that provides a communication channel  
between Intel processors and chipset components to external thermal monitoring  
devices. The Quad-Core Intel® Xeon® Processor 5400 Series contains Digital Thermal  
Sensor (DTS) sprinkled both inside and outside the cores in a die. These sensors are  
implemented as analog-to-digital converters calibrated at the factory for reasonable  
accuracy to provide a digital representation of relative processor temperature. PECI  
provides an interface to relay the highest DTS temperature within a die to external  
devices for thermal/fan speed control. More detailed information may be found in the  
Platform Environment Control Interface (PECI) Specification.  
2.10.1  
DC Characteristics  
The PECI interface operates at a nominal voltage set by VTT. The set of DC electrical  
specifications shown in Table 2-10 is used with devices normally operating from a VTT  
interface supply. VTT nominal levels will vary between processor families. All PECI  
devices will operate at the VTT level determined by the processor installed in the  
system. For specific nominal VTT levels, refer to the appropriate processor EMTS.  
24  
Quad-Core Intel® Xeon® Processor 5400 Series Electrical Specifications  
Table 2-10. PECI DC Electrical Limits  
1
Symbol  
Definition and Conditions  
Min  
Max  
Units  
Notes  
V
Input Voltage Range  
Hysteresis  
-0.150  
V
V
V
in  
TT  
V
0.1 * V  
N/A  
hysteresis  
TT  
Negative-edge threshold  
voltage  
V
V
0.275 * V  
0.550 * V  
-6.0  
0.500 * V  
V
V
n
TT  
TT  
TT  
Positive-edge threshold  
voltage  
0.725 * V  
N/A  
p
TT  
High level output source  
I
mA  
source  
(V  
= 0.75 * V )  
OH  
TT  
Low level output sink  
(V = 0.25 * V  
I
0.5  
1.0  
50  
mA  
µA  
sink  
)
TT  
OL  
High impedance state leakage  
to V  
I
N/A  
2
TT  
leak+  
(V  
= V  
)
OL  
leak  
High impedance leakage to  
GND  
I
N/A  
N/A  
10  
µA  
pF  
2
3
leak-  
(V  
= V  
)
leak  
OH  
C
Bus capacitance per node  
10  
bus  
Signal noise immunity above  
300 MHz  
V
0.1 * V  
N/A  
V
p-p  
noise  
TT  
Note:  
1.  
2.  
3.  
V
supplies the PECI interface. PECI behavior does not affect V min/max specifications.  
T
T
T
T
The leakage specification applies to powered devices on the PECI bus.  
One node is counted for each client and one node for the system host. Extended trace lengths might appear  
as additional nodes.  
2.10.2  
Input Device Hysteresis  
The input buffers in both client and host models must use a Schmitt-triggered input  
design for improved noise immunity. Use Figure 2-1 as a guide for input buffer design.  
Figure 2-1. Input Device Hysteresis  
VTT  
Maximum VP  
PECI High Range  
Minimum VP  
Maximum VN  
Minimum  
Hysteresis Signal Range  
Valid Input  
Minimum VN  
PECI Ground  
PECI Low Range  
25  
Quad-Core Intel® Xeon® Processor 5400 Series Electrical Specifications  
2.11  
Mixing Processors  
Intel supports and validates dual processor configurations only in which both  
processors operate with the same FSB frequency, core frequency, power segments, and  
have the same internal cache sizes. Mixing components operating at different internal  
clock frequencies is not supported and will not be validated by Intel. Combining  
processors from different power segments is also not supported.  
Note:  
Processors within a system must operate at the same frequency per bits [12:8] of the  
CLOCK_FLEX_MAX MSR; however this does not apply to frequency transitions initiated  
due to thermal events, Extended HALT, Enhanced Intel SpeedStep Technology  
transitions, or assertion of the FORCEPR# signal (See Chapter 6).  
Not all operating systems can support dual processors with mixed frequencies. Mixing  
processors of different steppings but the same model (as per CPUID instruction) is  
supported. Details regarding the CPUID instruction are provided in the AP-485 Intel®  
Processor Identification and the CPUID Instruction application note.  
2.12  
Absolute Maximum and Minimum Ratings  
Table 2-11 specifies absolute maximum and minimum ratings only, which lie outside  
the functional limits of the processor. Only within specified operation limits, can  
functionality and long-term reliability be expected.  
At conditions outside functional operation condition limits, but within absolute  
maximum and minimum ratings, neither functionality nor long-term reliability can be  
expected. If a device is returned to conditions within functional operation limits after  
having been subjected to conditions outside these limits, but within the absolute  
maximum and minimum ratings, the device may be functional, but with its lifetime  
degraded depending on exposure to conditions exceeding the functional operation  
condition limits.  
At conditions exceeding absolute maximum and minimum ratings, neither functionality  
nor long-term reliability can be expected. Moreover, if a device is subjected to these  
conditions for any length of time then, when returned to conditions within the  
functional operating condition limits, it will either not function or its reliability will be  
severely degraded.  
Although the processor contains protective circuitry to resist damage from static  
electric discharge, precautions should always be taken to avoid high static voltages or  
electric fields.  
26  
Quad-Core Intel® Xeon® Processor 5400 Series Electrical Specifications  
Table 2-11. Processor Absolute Maximum Ratings  
1, 2  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
V
V
Core voltage with respect to V  
-0.30  
-0.30  
1.35  
1.45  
V
V
CC  
SS  
FSB termination voltage with respect to V  
TT  
SS  
T
Processor case temperature  
See  
Chapter 6  
See  
Chapter 6  
°C  
CASE  
T
Storage temperature  
-40  
85  
°C  
3, 4, 5  
STORAGE  
Notes:  
1.  
2.  
3.  
For functional operation, all processor electrical, signal quality, mechanical and thermal specifications must  
be satisfied.  
Overshoot and undershoot voltage guidelines for input, output, and I/O signals are outlined in Chapter 3.  
Excessive overshoot or undershoot on any signal will likely result in permanent damage to the processor.  
Storage temperature is applicable to storage conditions only. In this scenario, the processor must not  
receive a clock, and no lands can be connected to a voltage bias. Storage within these limits will not affect  
the long-term reliability of the device. For functional operation, please refer to the processor case  
temperature specifications.  
4.  
5.  
This rating applies to the processor and does not include any tray or packaging.  
Failure to adhere to this specification can affect the long-term reliability of the processor.  
2.13  
Processor DC Specifications  
The processor DC specifications in this section are defined at the processor die  
(pads) unless noted otherwise. See Chapter 4 for the Quad-Core Intel® Xeon®  
Processor 5400 Series land listings and Chapter 5 for signal definitions. Voltage and  
current specifications are detailed in Table 2-12. For platform planning refer to  
Table 2-13 and Table 2-14, which provides VCC static and transient tolerances. This  
same information is presented graphically in Figure 2-8 and Figure 2-4.  
The FSB clock signal group is detailed in Table 2-20. BSEL[2:0] and VID[6:1] signals  
are specified in Table 2-15. The DC specifications for the AGTL+ signals are listed in  
Table 2-16. Legacy signals and Test Access Port (TAP) signals follow DC specifications  
similar to GTL+. The DC specifications for the PWRGOOD input and TAP signal group  
are listed in Table 2-16.  
Table 2-12 through Table 2-18 list the DC specifications for the processor and are valid  
only while meeting specifications for case temperature (TCASE as specified in Chapter 6,  
“Thermal Specifications”), clock frequency, and input voltages. Care should be taken to  
read all notes associated with each parameter.  
2.13.1  
Flexible Motherboard Guidelines (FMB)  
The Flexible Motherboard (FMB) guidelines are estimates of the maximum values the  
Quad-Core Intel® Xeon® Processor 5400 Series will have over certain time periods.  
The values are only estimates and actual specifications for future processors may differ.  
Processors may or may not have specifications equal to the FMB value in the  
foreseeable future. System designers should meet the FMB values to ensure their  
systems will be compatible with future Quad-Core Intel® Xeon® Processor 5400  
Series.  
27  
Quad-Core Intel® Xeon® Processor 5400 Series Electrical Specifications  
Table 2-12. Voltage and Current Specifications (Sheet 1 of 2)  
1, 11  
Symbol  
VID  
Parameter  
Min  
Typ  
Max  
Unit Notes  
VID range  
for processor core  
0.850  
1.3500  
V
V
V
See Table 2-13 and Table 2-14;  
Figure 2-7, Figure 2-8, Figure 2-9,  
Figure 2-10  
V
2, 3, 4, 6, 9  
CC  
CC  
Launch - FMB  
V
V
V
V
V
Default VCC Voltage for  
initial power up  
1.10  
± 12.5  
450  
V
mV  
mV  
V
2
cc_boot  
VID_STEP  
VID_SHIFT  
TT  
VID step size during a  
transition  
Total allowable DC load line  
shift from VID steps  
10  
8,13  
FSB termination voltage (DC  
+ AC specification)  
1.045  
1.455  
1.10  
1.155  
1.605  
150  
PLL supply voltage (DC + AC  
specification)  
1.500  
V
12  
CCPLL  
I
I
I
I
I
I
I
I
for Quad-Core Intel®  
CC  
A
4,5,6,9,18  
CC  
Xeon® Processor X5482 with  
multiple VID  
Launch - FMB  
I
for Quad-Core Intel®  
CC  
125  
102  
60  
A
A
A
A
A
A
4,5,6,9  
4, 5, 6, 9  
4,5,6,9  
4,5,6,9  
17,18  
CC  
Xeon® Processor X5400  
Series with multiple VID  
Launch - FMB  
I
for Quad-Core Intel®  
CC  
CC  
Xeon® Processor E5400  
Series with multiple VID  
Launch - FMB  
I
for Quad-Core Intel®  
CC  
CC  
Xeon® Processor L5400  
Series with multiple VID  
Launch - FMB  
I
for Quad-Core Intel®  
CC  
48  
CC  
Xeon® Processor L5408 with  
multiple VID  
Launch - FMB  
I
for Quad-Core  
CC_RESET  
150  
125  
CC_RESET  
CC_RESET  
Intel® Xeon® Processor  
X5482 with multiple VID  
Launch - FMB  
I
for Quad-Core  
17  
CC_RESET  
Intel® Xeon® Processor  
X5400 Series with multiple  
VID  
Launch - FMB  
I
I
I
I
for Quad-Core  
CC_RESET  
102  
60  
A
A
A
17  
17  
17  
CC_RESET  
CC_RESET  
CC_RESET  
Intel® Xeon® Processor  
E5400 Series with multiple  
VID Launch - FMB  
I
for Quad-Core  
CC_RESET  
Intel® Xeon® Processor  
L5400 Series with multiple  
VID Launch - FMB  
I
for Quad-Core  
48  
CC_RESET  
Intel® Xeon® Processor  
L5408 with multiple VID  
Launch - FMB  
28  
Quad-Core Intel® Xeon® Processor 5400 Series Electrical Specifications  
Table 2-12. Voltage and Current Specifications (Sheet 2 of 2)  
1, 11  
Symbol  
Parameter  
for V supply before V  
CC  
Min  
Typ  
Max  
Unit Notes  
I
I
I
I
8
A
A
A
15  
TT  
CC  
TT  
stable  
for V supply after V  
CC  
I
CC  
TT  
7
stable  
Thermal Design Current  
(TDC) Quad-Core Intel®  
Xeon® Processor X5482  
130  
6,14,18  
6,14  
CC_TDC  
CC_TDC  
Launch - FMB  
Thermal Design Current  
(TDC) Quad-Core Intel®  
Xeon® Processor X5400  
Series  
110  
80  
Launch - FMB  
I
I
I
Thermal Design Current  
(TDC) Quad-Core Intel®  
Xeon® Processor E5400  
Series  
A
A
A
6,14  
6,14  
6,14  
CC_TDC  
CC_TDC  
CC_TDC  
Launch - FMB  
Thermal Design Current  
(TDC) Quad-Core Intel®  
Xeon® Processor L5400  
Series  
50  
Launch - FMB  
Thermal Design Current  
(TDC) Quad-Core Intel®  
Xeon® Processor L5408  
40  
Launch - FMB  
I
I
DC current that may be  
580  
200  
mA  
µA  
16  
7
CC_VTT_OUT  
CC_GTLREF  
drawn from V  
per land  
TT_OUT  
I
for  
CC  
GTLREF_DATA_MID,  
GTLREF_DATA_END,  
GTLREF_ADD_MID, and  
GTLREF_ADD_END  
I
I
I
for PLL supply  
260  
150  
mA  
A
12  
18  
CC_VCCPLL  
TCC  
CC  
I
for Quad-Core Intel®  
CC  
Xeon® Processor X5482  
during active thermal control  
circuit (TCC)  
I
I
I
I
I
for Quad-Core Intel®  
CC  
125  
102  
60  
A
A
A
A
TCC  
TCC  
TCC  
TCC  
Xeon® Processor X5400  
Series during active thermal  
control circuit (TCC)  
I
for Quad-Core Intel®  
CC  
Xeon® Processor E5400  
Series during active thermal  
control circuit (TCC)  
I
for Quad-Core Intel®  
CC  
Xeon® Processor L5400  
Series during active thermal  
control circuit (TCC)  
I
for Quad-Core Intel®  
48  
CC  
Xeon® Processor L5408  
during active thermal control  
circuit (TCC)  
Notes:  
1.  
2.  
Unless otherwise noted, all specifications in this table are based on final silicon characterization data.  
These voltages are targets only. A variable voltage source should exist on systems in the event that a  
different voltage is required. See Section 2.5 for more information.  
29  
Quad-Core Intel® Xeon® Processor 5400 Series Electrical Specifications  
3.  
The voltage specification requirements are measured across the VCC_DIE_SENSE and VSS_DIE_SENSE  
lands and across the VCC_DIE_SENSE2 and VSS_DIE_SENSE2 lands with an oscilloscope set to 100 MHz  
bandwidth, 1.5 pF maximum probe capacitance, and 1 MΩ minimum impedance. The maximum length of  
ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled  
in the scope probe.  
4.  
5.  
The processor must not be subjected to any static V level that exceeds the V  
associated with any  
CC  
CC_MAX  
particular current. Failure to adhere to this specification can shorten processor lifetime.  
specification is based on maximum V loadline. Refer to Figure 2-7, Figure 2-8, Figure 2-9 and  
I
CC_MAX  
CC  
Figure 2-10 for details. The processor is capable of drawing I  
for up to 10 ms. Refer to Figure 2-1 for  
CC_MAX  
further details on the average processor current draw over various time durations.  
FMB is the flexible motherboard guideline. These guidelines are for estimation purposes only. See  
Section 2.13.1 for further details on FMB guidelines.  
This specification represents the total current for GTLREF_DATA_MID, GTLREF_DATA_END,  
GTLREF_ADD_MID, and GTLREF_ADD_END.  
6.  
7.  
8.  
9.  
V
must be provided via a separate voltage source and must not be connected to V . This specification is  
TT  
CC  
measured at the land.  
Minimum V and maximum I are specified at the maximum processor case temperature (TCASE) shown  
in Figure 6-2 and Figure 6-3.  
CC  
CC  
10. This specification refers to the total reduction of the load line due to VID transitions below the specified  
VID.  
11. Individual processor VID values may be calibrated during manufacturing such that two devices at the same  
frequency may have different VID settings.  
12. This specification applies to the VCCPLL land.  
13. Baseboard bandwidth is limited to 20 MHz.  
14.  
I
is the sustained (DC equivalent) current that the processor is capable of drawing indefinitely and  
CC_TDC  
should be used for the voltage regulator temperature assessment. The voltage regulator is responsible for  
monitoring its temperature and asserting the necessary signal to inform the processor of a thermal  
excursion. Please see the applicable design guidelines for further details. The processor is capable of  
drawing I  
indefinitely. Refer to Figure 2-1 for further details on the average processor current draw  
CC_TDC  
over various time durations. This parameter is based on design characterization and is not tested.  
15. This is the maximum total current drawn from the V plane by only one processor with R enabled. This  
TT  
TT  
specification does not include the current coming from on-board termination (R ), through the signal line.  
Refer to the appropriate platform design guide and the Voltage Regulator Design Guidelines to determine  
the total I drawn by the system. This parameter is based on design characterization and is not tested.  
TT  
TT  
16. ICC_VTT_OUT is specified at 1.1 V.  
17.  
I
is specified while PWRGOOD and RESET# are asserted.  
CC_RESET  
18. The Quad-Core Intel® Xeon® Processor X5482 is intended for dual processor workstations only.  
.
Figure 2-2. Quad-Core Intel® Xeon® Processor X5482 Load Current versus Time  
16 0  
155  
150  
14 5  
14 0  
13 5  
13 0  
12 5  
12 0  
0 .0 1  
0 .1  
1
10  
10 0  
10 0 0  
Time Duration (s)  
Notes:  
1.  
Processor or Voltage Regulator thermal protection circuitry should not trip for load currents greater than  
I
.
CC_TDC  
2.  
Not 100% tested. Specified by design characterization.  
30  
Quad-Core Intel® Xeon® Processor 5400 Series Electrical Specifications  
Figure 2-3. Quad-Core Intel® Xeon® Processor X5400 Series Load Current versus Time  
13 0  
12 5  
12 0  
115  
110  
10 5  
10 0  
0 .0 1  
0 .1  
1
10  
10 0  
10 0 0  
Time Duration (s)  
Notes:  
1.  
Processor or Voltage Regulator thermal protection circuitry should not trip for load currents greater than  
I
.
CC_TDC  
2.  
Not 100% tested. Specified by design characterization.  
Figure 2-4. Quad-Core Intel® Xeon® Processor E5400 Series Load Current versus Time  
10 5  
10 0  
9 5  
9 0  
8 5  
8 0  
75  
0 .0 1  
0 .1  
1
10  
10 0  
10 0 0  
Time Duration (s)  
Notes:  
1.  
Processor or Voltage Regulator thermal protection circuitry should not trip for load currents greater than  
I
.
CC_TDC  
2.  
Not 100% tested. Specified by design characterization.  
31  
Quad-Core Intel® Xeon® Processor 5400 Series Electrical Specifications  
Figure 2-5. Quad-Core Intel® Xeon® Processor L5400 Series Load Current versus Time  
70  
65  
60  
55  
50  
45  
40  
0.01  
0.1  
1
10  
100  
1000  
Time Duration (s)  
Notes:  
1.  
Processor or Voltage Regulator thermal protection circuitry should not trip for load currents greater than  
I
.
CC_TDC  
2.  
Not 100% tested. Specified by design characterization.  
Table 2-13. Quad-Core Intel® Xeon® Processor X5482 VCC Static and  
Transient Tolerance (Sheet 1 of 2)  
I
(A)  
V
(V)  
V
(V)  
V (V)  
CC_Min  
Notes  
CC  
CC_Max  
CC_Typ  
0
VID - 0.000  
VID - 0.006  
VID - 0.013  
VID - 0.019  
VID - 0.025  
VID - 0.031  
VID - 0.038  
VID - 0.044  
VID - 0.050  
VID - 0.056  
VID - 0.063  
VID - 0.069  
VID - 0.075  
VID - 0.081  
VID - 0.087  
VID - 0.094  
VID - 0.100  
VID - 0.106  
VID - 0.113  
VID - 0.119  
VID - 0.125  
VID - 0.131  
VID - 0.138  
VID - 0.144  
VID - 0.010  
VID - 0.016  
VID - 0.023  
VID - 0.029  
VID - 0.035  
VID - 0.041  
VID - 0.048  
VID - 0.054  
VID - 0.060  
VID - 0.066  
VID - 0.073  
VID - 0.079  
VID - 0.085  
VID - 0.091  
VID - 0.097  
VID - 0.104  
VID - 0.110  
VID - 0.116  
VID - 0.123  
VID - 0.129  
VID - 0.135  
VID - 0.141  
VID - 0.148  
VID - 0.154  
VID - 0.020  
VID - 0.026  
VID - 0.033  
VID - 0.039  
VID - 0.045  
VID - 0.051  
VID - 0.058  
VID - 0.064  
VID - 0.070  
VID - 0.076  
VID - 0.083  
VID - 0.089  
VID - 0.095  
VID - 0.101  
VID - 0.108  
VID - 0.114  
VID - 0.120  
VID - 0.126  
VID - 0.133  
VID - 0.139  
VID - 0.145  
VID - 0.151  
VID - 0.158  
VID - 0.164  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95  
100  
105  
110  
115  
32  
Quad-Core Intel® Xeon® Processor 5400 Series Electrical Specifications  
Table 2-13. Quad-Core Intel® Xeon® Processor X5482 VCC Static and  
Transient Tolerance (Sheet 2 of 2)  
I
(A)  
V
(V)  
V
(V)  
V (V)  
CC_Min  
Notes  
CC  
CC_Max  
CC_Typ  
120  
VID - 0.150  
VID - 0.156  
VID - 0.163  
VID - 0.169  
VID - 0.175  
VID - 0.181  
VID - 0.188  
VID - 0.160  
VID - 0.166  
VID - 0.173  
VID - 0.179  
VID - 0.185  
VID - 0.191  
VID - 0.198  
VID - 0.170  
VID - 0.176  
VID - 0.183  
VID - 0.189  
VID - 0.195  
VID - 0.201  
VID - 0.208  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
125  
130  
135  
140  
145  
150  
Notes:  
1.  
The V  
and V  
loadlines represent static and transient limits. Please see Section 2.13.2 for V  
CC_MAX CC  
CC_MIN  
overshoot specifications.  
This table is intended to aid in reading discrete points on Figure 2-7.  
2.  
3.  
The loadlines specify voltage limits at the die measured at the VCC_DIE_SENSE and VSS_DIE_SENSE lands  
and across the VCC_DIE_SENSE2 and VSS_DIE_SENSE2 lands. Voltage regulation feedback for voltage  
regulator circuits must also be taken from processor VCC_DIE_SENSE and VSS_DIE_SENSE lands and  
VCC_DIE_SENSE2 and VSS_DIE_SENSE2 lands. Refer to the Voltage Regulator Module (VRM) and  
Enterprise Voltage Regulator Down (EVRD) 11.0 Design Guidelines for socket load line guidelines and VR  
implementation. Please refer to the appropriate platform design guide for details on VR implementation.  
Table 2-14. Quad-Core Intel® Xeon® Processor X5400 Series,  
Quad-Core Intel® Xeon® Processor E5400 Series,  
Quad-Core Intel® Xeon® Processor L5400 Series  
VCC Static and Transient Tolerance (Sheet 1 of 2)  
I
(A)  
V
(V)  
V
(V)  
V (V)  
CC_Min  
Notes  
CC  
CC_Max  
CC_Typ  
0
VID - 0.000  
VID - 0.006  
VID - 0.013  
VID - 0.019  
VID - 0.025  
VID - 0.031  
VID - 0.038  
VID - 0.044  
VID - 0.050  
VID - 0.056  
VID - 0.063  
VID - 0.069  
VID - 0.075  
VID - 0.081  
VID - 0.087  
VID - 0.094  
VID - 0.100  
VID - 0.106  
VID - 0.113  
VID - 0.119  
VID - 0.125  
VID - 0.131  
VID - 0.015  
VID - 0.021  
VID - 0.028  
VID - 0.034  
VID - 0.040  
VID - 0.046  
VID - 0.053  
VID - 0.059  
VID - 0.065  
VID - 0.071  
VID - 0.077  
VID - 0.084  
VID - 0.090  
VID - 0.096  
VID - 0.103  
VID - 0.109  
VID - 0.115  
VID - 0.121  
VID - 0.128  
VID - 0.134  
VID - 0.140  
VID - 0.146  
VID - 0.030  
VID - 0.036  
VID - 0.043  
VID - 0.049  
VID - 0.055  
VID - 0.061  
VID - 0.068  
VID - 0.074  
VID - 0.080  
VID - 0.086  
VID - 0.093  
VID - 0.099  
VID - 0.105  
VID - 0.111  
VID - 0.118  
VID - 0.124  
VID - 0.130  
VID - 0.136  
VID - 0.143  
VID - 0.149  
VID - 0.155  
VID - 0.161  
1, 2, 3  
1, 2, 3  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95  
100  
105  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3, 6  
1, 2, 3, 6  
1, 2, 3, 6  
1, 2, 3, 5, 6  
1, 2, 3, 5, 6  
1, 2, 3, 5, 6  
1, 2, 3, 5, 6  
1, 2, 3, 5, 6  
1, 2, 3, 5, 6  
1, 2, 3, 5, 6  
1, 2, 3, 5, 6  
1, 2, 3, 4, 5, 6  
33  
Quad-Core Intel® Xeon® Processor 5400 Series Electrical Specifications  
Table 2-14. Quad-Core Intel® Xeon® Processor X5400 Series,  
Quad-Core Intel® Xeon® Processor E5400 Series,  
Quad-Core Intel® Xeon® Processor L5400 Series  
V
CC Static and Transient Tolerance (Sheet 2 of 2)  
I
(A)  
V
(V)  
V
(V)  
V (V)  
CC_Min  
Notes  
CC  
CC_Max  
CC_Typ  
110  
VID - 0.138  
VID - 0.144  
VID - 0.150  
VID - 0.156  
VID - 0.153  
VID - 0.159  
VID - 0.165  
VID - 0.171  
VID - 0.168  
VID - 0.174  
VID - 0.180  
VID - 0.186  
1, 2, 3, 4, 5, 6  
1, 2, 3, 4, 5, 6  
1, 2, 3, 4, 5, 6  
1, 2, 3, 4, 5, 6  
115  
120  
125  
Notes:  
1.  
The V  
and V  
loadlines represent static and transient limits. Please see Section 2.13.2 for V  
CC_MIN  
CC_MAX CC  
overshoot specifications.  
This table is intended to aid in reading discrete points on Figure 2-8 and Figure 2-9.  
2.  
3.  
The loadlines specify voltage limits at the die measured at the VCC_DIE_SENSE and VSS_DIE_SENSE lands  
and across the VCC_DIE_SENSE2 and VSS_DIE_SENSE2 lands. Voltage regulation feedback for voltage  
regulator circuits must also be taken from processor VCC_DIE_SENSE and VSS_DIE_SENSE lands and  
VCC_DIE_SENSE2 and VSS_DIE_SENSE2 lands. Refer to the Voltage Regulator Module (VRM) and  
Enterprise Voltage Regulator Down (EVRD) 11.0 Design Guidelines for socket load line guidelines and VR  
implementation. Please refer to the appropriate platform design guide for details on VR implementation.  
4.  
5.  
6.  
I
I
I
values greater than 102A are not applicable for the Quad-Core Intel® Xeon® Processor E5400 Series.  
values greater than 60A are not applicable for the Quad-Core Intel® Xeon® Processor L5400 Series.  
values greater than 48A are not applicable for the Quad-Core Intel® Xeon® Processor L5408.  
CC  
CC  
CC  
Figure 2-6. VCC Static and Transient Tolerance Load Lines  
Icc [A]  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
VID - 0.000  
VID - 0.010  
VID - 0.020  
VID - 0.030  
VID - 0.040  
VID - 0.050  
VID - 0.060  
VID - 0.070  
VID - 0.080  
VID - 0.090  
VID - 0.100  
Vcc  
Maximum  
VCC  
Typical  
Vcc  
Minimum  
34  
Quad-Core Intel® Xeon® Processor 5400 Series Electrical Specifications  
Figure 2-7. Quad-Core Intel® Xeon® Processor X5482 VCC Static and  
Transient Tolerance Load Lines  
Icc [A]  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150  
VID - 0.000  
VID - 0.050  
VID - 0.100  
VID - 0.150  
VID - 0.200  
VID - 0.250  
VCC  
Maximum  
VCC  
Typical  
VCC  
Minimum  
35  
Quad-Core Intel® Xeon® Processor 5400 Series Electrical Specifications  
Figure 2-8. Quad-Core Intel® Xeon® Processor X5400 Series VCC Static and  
Transient Tolerance Load Lines  
Icc [A]  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125  
VID - 0.000  
VID - 0.020  
VID - 0.040  
VID - 0.060  
VID - 0.080  
VID - 0.100  
VID - 0.120  
VID - 0.140  
VID - 0.160  
VID - 0.180  
VID - 0.200  
VCC  
Maximum  
VCC  
Minimum  
VCC  
Typical  
Figure 2-9. Quad-Core Intel® Xeon® Processor E5400 Series VCC Static and  
Transient Tolerance Load Lines  
Icc [A]  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95 100 105  
VID - 0.000  
VID - 0.020  
VID - 0.040  
VID - 0.060  
VID - 0.080  
VID - 0.100  
VID - 0.120  
VID - 0.140  
VID - 0.160  
VID - 0.180  
VCC  
Maximum  
VCC  
Typical  
VCC  
Minimum  
36  
Quad-Core Intel® Xeon® Processor 5400 Series Electrical Specifications  
Figure 2-10. Quad-Core Intel® Xeon® Processor L5400 Series VCC Static and Transient  
Tolerance Load Lines  
Icc [A]  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
VID - 0.000  
VID - 0.020  
VID - 0.040  
VID - 0.060  
VID - 0.080  
VID - 0.100  
VID - 0.120  
VCC  
Maximum  
VCC  
Typical  
VCC  
Minimum  
Notes:  
1.  
The V  
and V  
loadlines represent static and transient limits. Please see Section 2.13.2 for VCC  
CC_MAX  
CC_MIN  
overshoot specifications.  
2.  
3.  
4.  
Refer to Table 2-12 for processor VID information.  
Refer to Table 2-13 for V Static and Transient Tolerance  
CC  
The load lines specify voltage limits at the die measured at the VCC_DIE_SENSE and VSS_DIE_SENSE  
lands and the VCC_DIE_SENSE2 and VSS_DIE_SENSE2 lands. Voltage regulation feedback for voltage  
regulator circuits must also be taken from processor VCC_DIE_SENSE and VSS_DIE_SENSE lands and  
VCC_DIE_SENSE2 and VSS_DIE_SENSE2 lands. Refer to the Voltage Regulator Module (VRM) and  
Enterprise Voltage Regulator Down (EVRD) 11.0 Design Guidelines for socket load line guidelines and VR  
implementation. Please refer to the appropriate platform design guide for details on VR implementation.  
Table 2-15. AGTL+ Signal Group DC Specifications  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
V
Input Low Voltage  
Input High Voltage  
Output High Voltage  
Buffer On Resistance  
Input Leakage Current  
-0.10  
0
GTLREF-0.10  
V
V
2,4,6  
3,6  
4,6  
5
IL  
V
GTLREF+0.10  
V
V +0.10  
TT  
IH  
TT  
V
R
V
-0.10  
N/A  
10.25  
N/A  
V
TT  
V
OH  
ON  
TT  
8.25  
N/A  
12.25  
Ω
I
μA  
7
± 100  
LI  
Notes:  
1.  
2.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
is defined as the maximum voltage level at a receiving agent that will be interpreted as a logical low  
V
IL  
value.  
is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high  
3.  
4.  
5.  
6.  
7.  
V
IH  
value.  
and V  
signal quality specifications.  
This is the pull down driver resistance. Refer to processor I/O Buffer Models for I/V characteristics.  
Measured at 0.31*V . R  
GTLREF should be generated from V with a 1% tolerance resistor divider. The V referred to in these  
specifications is the instantaneous V .  
Specified when on-die R and R  
V
may experience excursions above V . However, input signal drivers must comply with the  
TT  
IH  
OH  
(min) = 0.158*R . R  
(typ) = 0.167*R . R  
(max) = 0.175*R .  
TT  
ON  
TT  
ON  
TT  
ON TT  
TT  
TT  
TT  
are turned off. V between 0 and V .  
TT  
ON  
IN TT  
37  
Quad-Core Intel® Xeon® Processor 5400 Series Electrical Specifications  
Table 2-16. CMOS Signal Input/Output Group and TAP Signal Group  
DC Specifications  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
V
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Output Low Current  
Output High Current  
Input Leakage Current  
-0.10  
0.7 * V  
-0.10  
0.9 * V  
1.70  
0.00  
0.3 * V  
V
V
2,3  
2
IL  
TT  
V
V
V
+ 0.1  
TT  
IH  
TT  
TT  
TT  
V
0
0.1 * V  
V
2
OL  
OH  
OL  
OH  
TT  
V
V
V
+ 0.1  
V
2
TT  
TT  
I
N/A  
N/A  
N/A  
4.70  
mA  
mA  
μA  
4
I
1.70  
4.70  
5
I
N/A  
± 100  
6
LI  
Notes:  
1.  
2.  
3.  
4.  
5.  
6.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
The V referred to in these specifications refers to instantaneous V .  
TT  
TT  
Refer to the processor I/O Buffer Models for I/V characteristics.  
Measured at 0.1*V .  
Measured at 0.9*V .  
For Vin between 0 V and V . Measured when the driver is tristated.  
TT  
TT  
TT  
Table 2-17. Open Drain Output Signal Group DC Specifications  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
V
Output Low Voltage  
Output High Voltage  
Output Low Current  
Leakage Current  
0
0.95 * V  
16  
N/A  
0.20 * V  
1.05 * V  
50  
V
V
OL  
OH  
OL  
LO  
TT  
V
V
3
2
4
TT  
TT  
TT  
I
I
N/A  
N/A  
mA  
μA  
N/A  
± 200  
Notes:  
1.  
2.  
3.  
4.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
Measured at 0.2*V .  
TT  
V
is determined by value of the external pullup resistor to V . Refer to platform design guide for details.  
OH  
TT  
For V between 0 V and V  
.
OH  
IN  
2.13.2  
V
Overshoot Specification  
CC  
The Quad-Core Intel® Xeon® Processor 5400 Series can tolerate short transient  
overshoot events where VCC exceeds the VID voltage when transitioning from a high-  
to-low current load condition. This overshoot cannot exceed VID + VOS_MAX (VOS_MAX is  
the maximum allowable overshoot above VID). These specifications apply to the  
processor die voltage as measured across the VCC_DIE_SENSE and VSS_DIE_SENSE  
lands and across the VCC_DIE_SENSE2 and VSS_DIE_SENSE2 lands.  
Table 2-18. VCC Overshoot Specifications  
Symbol  
Parameter  
Magnitude of V overshoot above VID  
Min  
Max  
Units  
Figure  
Notes  
V
50  
25  
mV  
µs  
2-11  
2-11  
OS_MAX  
CC  
T
Time duration of V overshoot above VID  
CC  
OS_MAX  
38  
Quad-Core Intel® Xeon® Processor 5400 Series Electrical Specifications  
Figure 2-11. VCC Overshoot Example Waveform  
Example Overshoot Waveform  
VOS  
VID + 0.050  
VID - 0.000  
TOS  
0
5
10  
15  
20  
25  
Time [us]  
TOS: Overshoot time above VID  
OS: Overshoot above VID  
V
Notes:  
1.  
2.  
VOS is the measured overshoot voltage.  
TOS is the measured time duration above VID.  
2.13.3  
Die Voltage Validation  
Core voltage (VCC) overshoot events at the processor must meet the specifications in  
Table 2-18 when measured across the VCC_DIE_SENSE and VSS_DIE_SENSE lands  
and across the VCC_DIE_SENSE2 and VSS_DIE_SENSE2 lands. Overshoot events that  
are < 10 ns in duration may be ignored. These measurements of processor die level  
overshoot should be taken with a 100 MHz bandwidth limited oscilloscope.  
2.14  
AGTL+ FSB Specifications  
Routing topologies are dependent on the processors supported and the chipset used in  
the design. Please refer to the appropriate platform design guidelines for specific  
implementation details. In most cases, termination resistors are not required as these  
are integrated into the processor silicon. See Table 2-8 for details on which signals do  
not include on-die termination. Please refer to Table 2-19 for RTT values.  
Valid high and low levels are determined by the input buffers via comparing with a  
reference voltage called GTLREF_DATA_MID, GTLREF_DATA_END, GTLREF_ADD_MID,  
and GTLREF_ADD_END. GTLREF_DATA_MID and GTLREF_DATA_END is the reference  
voltage for the FSB 4X data signals, GTLREF_ADD_MID, and GTLREF_ADD_END is the  
reference voltage for the FSB 2X address signals and common clock signals. Table 2-19  
lists the GTLREF_DATA_MID, GTLREF_DATA_END, GTLREF_ADD_MID, and  
GTLREF_ADD_END specifications.  
39  
Quad-Core Intel® Xeon® Processor 5400 Series Electrical Specifications  
The AGTL+ reference voltages (GTLREF_DATA_MID, GTLREF_DATA_END,  
GTLREF_ADD_MID, and GTLREF_ADD_END) must be generated on the baseboard  
using high precision voltage divider circuits. Refer to the appropriate platform design  
guidelines for implementation details.  
Table 2-19. AGTL+ Bus Voltage Definitions  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
GTLREF_DATA_MID, Data Bus Reference  
GTLREF_DATA_END Voltage  
0.98 *  
0.667 *  
1.02*0.667  
V
2, 3  
0.667 * V  
V
* V  
TT  
TT  
TT  
TT  
GTLREF_ADD_MID,  
GTLREF_ADD_END  
Address Bus Reference  
Voltage  
0.98 *  
0.667 * V  
0.667 *  
1.02*0.667  
* V  
V
2, 3  
4
V
TT  
TT  
R
Termination  
Resistance (pull up)  
45  
50  
55  
TT  
COMP  
COMP Resistance  
49.4  
49.9  
50.4  
5
Notes:  
1.  
2.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
The tolerances for this specification have been stated generically to enable system designer to calculate the  
minimum values across the range of V .  
TT  
3.  
GTLREF_DATA_MID, GTLREF_DATA_END, GTLREF_ADD_MID, and GTLREF_ADD_END is generated from V  
TT  
on the baseboard by a voltage divider of 1% resistors. The minimum and maximum specifications account  
for this resistor tolerance. Refer to the appropriate platform design guidelines for implementation details.  
TT  
TT  
4.  
5.  
Table 2-20. FSB Differential BCLK Specifications  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Figure  
Notes  
V
V
V
Input Low Voltage  
-0.150  
0.660  
0.250  
0.0  
0.150  
0.850  
0.550  
V
V
V
2-13  
2-13  
L
Input High Voltage  
Absolute Crossing Point  
0.710  
0.350  
H
2-13,  
2-14  
2,9  
CROSS(abs)  
V
Relative Crossing Point  
0.250 +  
0.5 *  
Havg  
0.700)  
N/A  
0.550+  
0.5 *  
Havg  
0.700)  
V
2-13,  
2-14  
3,8,9,11  
CROSS(rel)  
(V  
-
(V  
-
Δ
Range of Crossing  
Points  
N/A  
N/A  
0.140  
V
2-13,  
2-14  
VCROSS  
V
V
V
V
Overshoot  
N/A  
N/A  
N/A  
N/A  
N/A  
1.150  
N/A  
V
V
V
V
2-13  
2-13  
2-13  
2-13  
4
5
6
7
OS  
US  
Undershoot  
-0.300  
0.200  
Ringback Margin  
Threshold Region  
N/A  
RBM  
TR  
V
-
V
CROSS  
CROSS  
0.100  
+ 0.100  
± 100  
4
I
Input Leakage Current  
N/A  
0.6  
N/A  
μA  
10  
12  
LI  
ERRefclk-diffRrise  
ERRefclk-diff-Fall  
Differential Rising and  
falling edge rates  
V/ns  
2-15  
Notes:  
1.  
2.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
Crossing Voltage is defined as the instantaneous voltage value when the rising edge of BCLK0 is equal to  
the falling edge of BCLK1.  
Havg H  
3.  
4.  
5.  
6.  
V
is the statistical average of the V measured by the oscilloscope.  
Overshoot is defined as the absolute value of the maximum voltage.  
Undershoot is defined as the absolute value of the minimum voltage.  
Ringback Margin is defined as the absolute voltage difference between the maximum Rising Edge Ringback  
and the maximum Falling Edge Ringback.  
40  
Quad-Core Intel® Xeon® Processor 5400 Series Electrical Specifications  
7.  
Threshold Region is defined as a region entered around the crossing point voltage in which the differential  
receiver switches. It includes input threshold hysteresis.  
8.  
9.  
The crossing point must meet the absolute and relative crossing point specifications simultaneously.  
V
can be measured directly using “Vtop” on Agilent and “High” on Tektronix oscilloscopes.  
Havg  
10. For V between 0 V and V .  
IN  
CROSS  
H
11. ΔV  
is defined as the total variation of all crossing voltages as defined in note 3.  
12. Measured from -200 mV to +200 mV on the differential waveform (derived from REFCLK+ minus REFCLK-).  
The signal must be monotonic through the measurement region for rise and fall time. The 400 mV  
measurement window is centered on the differential zero crossing. See Figure 2-15.  
Figure 2-12. Electrical Test Circuit  
Vtt  
Vtt  
Rtt = 55 Ohms  
0.3nH  
0.9nH  
0.6nH  
55 Ohms, 160 ps/in, 600 mils  
1.3pF  
0.2pF  
R
Load  
Buffer  
Long Package  
AC Timings specified at this point (@Buffer pad)  
Figure 2-13. Differential Clock Waveform  
Overshoot  
VH  
BCLK1  
Rising Edge  
Ringback  
Crossing  
Voltage  
Crossing  
Voltage  
Ringback  
Margin  
Threshold  
Region  
Falling Edge  
Ringback,  
BCLK0  
VL  
Undershoot  
Tp  
Tp = T1: BCLK[1:0] period  
41  
Quad-Core Intel® Xeon® Processor 5400 Series Electrical Specifications  
Figure 2-14. Differential Clock Crosspoint Specification  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
550 mV  
550 + 0.5 (VHavg - 700)  
250 + 0.5 (VHavg - 700)  
250 mV  
660 670 680 690 700 710 720 730 740 750 760 770 780 790 800 810 820 830 840 850  
VHavg (mV)  
Figure 2-15. Differential Rising and Falling Edge Rates  
§
42  
Mechanical Specifications  
3 Mechanical Specifications  
The Quad-Core Intel® Xeon® Processor 5400 Series is packaged in a Flip Chip Land  
Grid Array (FC-LGA) package that interfaces to the baseboard via a LGA771 socket. The  
package consists of a processor core mounted on a pinless substrate with 771 lands. An  
integrated heat spreader (IHS) is attached to the package substrate and core and  
serves as the interface for processor component thermal solutions such as a heatsink.  
Figure 3-1 shows a sketch of the processor package components and how they are  
assembled together. Refer to the LGA771 Socket Design Guidelines for complete details  
on the LGA771 socket.  
The package components shown in Figure 3-1 include the following:  
• Integrated Heat Spreader (IHS)  
• Thermal Interface Material (TIM)  
• Processor Core (die)  
• Package Substrate  
• Landside capacitors  
• Package Lands  
Figure 3-1. Processor Package Assembly Sketch  
TIM  
Core (die)  
IHS  
Substrate  
Package Lands  
Capacitors  
LGA771 Socket  
System Board  
Note: This drawing is not to scale and is for reference only.  
3.1  
Package Mechanical Drawings  
The package mechanical drawings are shown in Figure 3-2 through Figure 3-4. The  
drawings include dimensions necessary to design a thermal solution for the processor  
including:  
• Package reference and tolerance dimensions (total height, length, width, and so  
forth)  
• IHS parallelism and tilt  
• Land dimensions  
Top-side and back-side component keepout dimensions  
• Reference datums  
Note:  
All drawing dimensions are in mm [in.].  
43  
Mechanical Specifications  
Figure 3-2. Quad-Core Intel® Xeon® Processor 5400 Series Package Drawing  
(Sheet 1 of 3)  
Note: Guidelines on potential IHS flatness variation with socket load plate actuation and installation of the cooling solution are  
available in the processor Thermal/Mechanical Design Guidelines.  
44  
Mechanical Specifications  
Figure 3-3. Quad-Core Intel® Xeon® Processor 5400 Series Package Drawing  
(Sheet 2 of 3)  
45  
Mechanical Specifications  
Figure 3-4. Quad-Core Intel® Xeon® Processor 5400 Series Package Drawing  
(Sheet 3 of 3)  
Note: The optional dimple packing marking highlighted by Detail F from the above drawing may only be found on initial  
processors.  
46  
Mechanical Specifications  
3.2  
3.3  
Processor Component Keepout Zones  
The processor may contain components on the substrate that define component  
keepout zone requirements. Decoupling capacitors are typically mounted to either the  
topside or landside of the package substrate. See Figure 3-4 for keepout zones.  
Package Loading Specifications  
Table 3-1 provides dynamic and static load specifications for the processor package.  
These mechanical load limits should not be exceeded during heatsink assembly,  
mechanical stress testing or standard drop and shipping conditions. The heatsink  
attach solutions must not include continuous stress onto the processor with the  
exception of a uniform load to maintain the heatsink-to-processor thermal interface.  
Also, any mechanical system or component testing should not exceed these limits. The  
processor package substrate should not be used as a mechanical reference or load-  
bearing surface for thermal or mechanical solutions.  
Table 3-1.  
Package Loading Specifications  
Board  
Thickness  
Parameter  
Min  
Max  
Unit  
Notes  
1.57 mm  
0.062”  
80  
18  
311  
70  
N
lbf  
2.16 mm  
0.085”  
111  
25  
311  
70  
N
Static Compressive  
Load  
1,2,3,9  
lbf  
2.54 mm  
0.100”  
133  
30  
311  
70  
N
lbf  
311 N (max static  
compressive load)  
+ 222 N dynamic  
loading  
N
Dynamic  
NA  
NA  
NA  
1,3,4,5,6  
1,3,7,8  
Compressive Load  
70 lbf (max static  
compressive load)  
+ 50 lbf dynamic  
loading  
lbf  
1.57 mm  
0.062”  
Transient Bend Limits  
750  
me  
Notes:  
1.  
2.  
3.  
These specifications apply to uniform compressive loading in a direction perpendicular to the IHS top  
surface.  
This is the minimum and maximum static force that can be applied by the heatsink and retention solution  
to maintain the heatsink and processor interface.  
These specifications are based on limited testing for design characterization. Loading limits are for the  
LGA771 socket.  
Dynamic compressive load applies to all board thickness.  
Dynamic loading is defined as an 11 ms duration average load superimposed on the static load  
requirement.  
4.  
5.  
6.  
Test condition used a heatsink mass of 1 lbm with 50 g acceleration measured at heatsink mass. The  
dynamic portion of this specification in the product application can have flexibility in specific values, but the  
ultimate product of mass times acceleration should not exceed this dynamic load.  
Transient bend is defined as the transient board deflection during manufacturing such as board assembly  
and system integration. It is a relatively slow bending event compared to shock and vibration tests.  
For more information on the transient bend limits, please refer to the MAS document titled Manufacturing  
7.  
8.  
®
with Intel components using 771-land LGA package that interfaces with the motherboard via a LGA771  
socket.  
9.  
Refer to the Quad-Core Intel® Xeon® Processor 5400 Series Thermal/Mechanical Design Guidelines  
(TMDG)for information on heatsink clip load metrology.  
47  
Mechanical Specifications  
3.4  
Package Handling Guidelines  
Table 3-2 includes a list of guidelines on a package handling in terms of recommended  
maximum loading on the processor IHS relative to a fixed substrate. These package  
handling loads may be experienced during heatsink removal.  
Table 3-2.  
Package Handling Guidelines  
Parameter  
Maximum Recommended  
Units  
Notes  
Shear  
311  
70  
N
lbf  
1,4,5  
Tensile  
Torque  
111  
25  
N
lbf  
2,4,5  
3,4,5  
3.95  
35  
N-m  
LBF-in  
Notes:  
1.  
2.  
3.  
A shear load is defined as a load applied to the IHS in a direction parallel to the IHS top surface.  
A tensile load is defined as a pulling load applied to the IHS in a direction normal to the IHS surface.  
A torque load is defined as a twisting load applied to the IHS in an axis of rotation normal to the IHS top  
surface.  
4.  
5.  
These guidelines are based on limited testing for design characterization and incidental applications (one  
time only).  
Handling guidelines are for the package only and do not include the limits of the processor socket.  
3.5  
3.6  
Package Insertion Specifications  
The Quad-Core Intel® Xeon® Processor 5400 Series can be inserted and removed 15  
times from an LGA771 socket, which meets the criteria outlined in the LGA771 Socket  
Design Guidelines.  
Processor Mass Specifications  
The typical mass of the Quad-Core Intel® Xeon® Processor 5400 Series is 21.5 grams  
[0.76 oz.]. This includes all components which make up the entire processor product.  
3.7  
Processor Materials  
The Quad-Core Intel® Xeon® Processor 5400 Series is assembled from several  
components. The basic material properties are described in Table 3-3.  
Table 3-3.  
Processor Materials  
Component  
Material  
Integrated Heat Spreader (IHS)  
Substrate  
Nickel over copper  
Fiber-reinforced resin  
Gold over nickel  
Substrate Lands  
3.8  
Processor Markings  
Figure 3-5 shows the topside markings on the processor. This diagram aids in the  
identification of the Quad-Core Intel® Xeon® Processor 5400 Series.  
48  
Mechanical Specifications  
Figure 3-5. Processor Top-side Markings (Example)  
Mark Text (Production Mark):  
Legend:  
GROUP1LINE1  
GROUP1LINE2  
GROUP1LINE3  
GROUP1LINE4  
GROUP1LINE5  
3200DP/12M/1600  
Intel ® Xeon ®  
Proc# SXXX COO  
i (M) © ‘07  
GROUP1LINE1  
GROUP1LINE2  
GROUP1LINE3  
GROUP1LINE4  
GROUP1LINE5  
FPO  
ATPO  
S/N  
Note: 2D matrix is required for engineering samples only (encoded with ATPO-S/N).  
3.9  
Processor Land Coordinates  
Figure 3-6 and Figure 3-7 show the top and bottom view of the processor land  
coordinates, respectively. The coordinates are referred to throughout the document to  
identify processor lands.  
Figure 3-6. Processor Land Coordinates, Top View  
VCC / VSS  
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2 1  
AN  
AM  
AL  
AK  
AJ  
AN  
AM  
AL  
AK  
AJ  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
Address /  
Common Clock /  
Async  
W
W
V
Socket 771  
Quadrants  
Top View  
V
U
U
T
T
R
R
P
N
M
L
P
N
M
L
K
J
K
J
H
G
F
H
G
F
E
D
C
B
A
E
D
C
B
A
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2 1  
Data  
VTT / Clocks  
49  
Mechanical Specifications  
Figure 3-7. Processor Land Coordinates, Bottom View  
VCC / VSS  
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  
AN  
AM  
AL  
AK  
AJ  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
AN  
AM  
AL  
AK  
AJ  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
Address /  
Common Clock /  
Async  
W
V
W
V
Socket 771  
Quadrants  
Bottom View  
U
U
T
T
R
R
P
P
N
N
M
M
L
L
K
K
J
J
H
H
G
G
F
F
E
E
D
D
C
C
B
B
A
A
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  
Data  
VTT / Clocks  
§
50  
Land Listing  
4 Land Listing  
4.1  
Quad-Core Intel® Xeon® Processor 5400 Series  
Pin Assignments  
This section provides sorted land list in Table 4-1 and Table 4-2. Table 4-1 is a  
listing of all processor lands ordered alphabetically by land name. Table 4-2 is  
a listing of all processor lands ordered by land number.  
4.1.1  
Land Listing by Land Name  
Table 4-1.  
Land Listing by Land Name  
(Sheet 2 of 20)  
Table 4-1.  
Land Listing by Land Name  
(Sheet 1 of 20)  
Pin  
No.  
Signal Buffer  
Type  
Pin  
No.  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
A31#  
AG5  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Common Clk  
Source Sync  
Source Sync  
Common Clk  
Common Clk  
Clk  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input  
A03#  
A04#  
A05#  
A06#  
A07#  
A08#  
A09#  
A10#  
A11#  
A12#  
A13#  
A14#  
A15#  
A16#  
A17#  
A18#  
A19#  
A20#  
A20M#  
A21#  
A22#  
A23#  
A24#  
A25#  
A26#  
A27#  
A28#  
A29#  
A30#  
M5  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
CMOS ASync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input  
A32#  
AH4  
AH5  
AJ5  
AJ6  
N4  
P6  
A33#  
L5  
A34#  
L4  
A35#  
M4  
R4  
A36#  
A37#  
P5  
T5  
ADS#  
D2  
U6  
ADSTB0#  
ADSTB1#  
AP0#  
R6  
T4  
AD5  
U2  
U5  
U4  
AP1#  
U3  
V5  
BCLK0  
BCLK1  
BINIT#  
BNR#  
F28  
G28  
AD3  
C2  
V4  
Clk  
Input  
W5  
AB6  
W6  
Y6  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Input/Output  
Input/Output  
Input/Output  
Output  
BPM0#  
BPM1#  
BPM2#  
BPM3#  
BPM4#  
BPM5#  
BPMb0#  
BPMb1#  
BPMb2#  
BPMb3#  
BPRI#  
BR0#  
AJ2  
AJ1  
AD2  
AG2  
AF2  
AG3  
G1  
Y4  
Output  
K3  
Input/Output  
Output  
AA4  
AD6  
AA5  
AB5  
AC5  
AB4  
AF5  
AF4  
AG6  
AG4  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Output  
C9  
G4  
Output  
G3  
Input/Output  
Input  
G8  
F3  
Input/Output  
Input  
BR1#  
H5  
51  
Land Listing  
Table 4-1.  
Land Listing by Land Name  
(Sheet 3 of 20)  
Table 4-1.  
Land Listing by Land Name  
(Sheet 4 of 20)  
Pin  
No.  
Signal Buffer  
Type  
Pin  
No.  
Signal Buffer  
Pin Name  
Direction  
Pin Name  
Direction  
Type  
BSEL0  
BSEL1  
BSEL2  
COMP0  
COMP1  
COMP2  
COMP3  
D00#  
D01#  
D02#  
D03#  
D04#  
D05#  
D06#  
D07#  
D08#  
D09#  
D10#  
D11#  
D12#  
D13#  
D14#  
D15#  
D16#  
D17#  
D18#  
D19#  
D20#  
D21#  
D22#  
D23#  
D24#  
D25#  
D26#  
D27#  
D28#  
D29#  
D30#  
D31#  
D32#  
G29  
CMOS ASync  
CMOS ASync  
CMOS Async  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Output  
D33#  
D34#  
D35#  
D36#  
D37#  
D38#  
D39#  
D40#  
D41#  
D42#  
D43#  
D44#  
D45#  
D46#  
D47#  
D48#  
D49#  
D50#  
D51#  
D52#  
D53#  
D54#  
D55#  
D56#  
D57#  
D58#  
D59#  
D60#  
D61#  
D62#  
D63#  
DBI0#  
DBI1#  
DBI2#  
DBI3#  
DBR#  
DBSY#  
DEFER#  
DP0#  
DP1#  
E15  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Power/Other  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Output  
H30  
G30  
A13  
T1  
Output  
E16  
G18  
G17  
F17  
F18  
E18  
E19  
F20  
E21  
F21  
G21  
E22  
D22  
G22  
D20  
D17  
A14  
C15  
C14  
B15  
C18  
B16  
A17  
B18  
C21  
B21  
B19  
A19  
A22  
B22  
A8  
Output  
Input  
Input  
G2  
Input  
R1  
Input  
B4  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
C5  
A4  
C6  
A5  
B6  
B7  
A7  
A10  
A11  
B10  
C11  
D8  
B12  
C12  
D11  
G9  
F8  
F9  
E9  
D7  
E10  
D10  
F11  
F12  
D13  
E13  
G13  
F14  
G14  
F15  
G15  
G16  
G11  
D19  
C20  
AC2  
B2  
Input/Output  
Input  
G7  
J16  
Input/Output  
Input/Output  
H15  
52  
Land Listing  
Table 4-1.  
Land Listing by Land Name  
(Sheet 5 of 20)  
Table 4-1.  
Land Listing by Land Name  
(Sheet 6 of 20)  
Pin  
No.  
Signal Buffer  
Type  
Pin  
No.  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
DP2#  
H16  
Common Clk  
Common Clk  
Common Clk  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Open Drain  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Output  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
A23  
DP3#  
J17  
C1  
A24  
AC4  
AE4  
AE6  
AH2  
AH7  
AJ3  
AJ7  
AK3  
AM2  
AN5  
AN6  
B13  
B23  
C23  
D1  
DRDY#  
DSTBN0#  
DSTBN1#  
DSTBN2#  
DSTBN3#  
DSTBP0#  
DSTBP1#  
DSTBP2#  
DSTBP3#  
FERR#/PBE#  
FORCEPR#  
GTLREF_ADD_END  
GTLREF_ADD_MID  
C8  
G12  
G20  
A16  
B9  
E12  
G19  
C17  
R3  
AK6  
G10  
F2  
CMOS ASync  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clk  
Common Clk  
Open Drain  
Input  
Input  
Input  
GTLREF_DATA_END H1  
Input  
GTLREF_DATA_MID  
HIT#  
H2  
D4  
E4  
Input  
Input/Output  
Input/Output  
Output  
D14  
D16  
E1  
HITM#  
IERR#  
AB2  
N2  
P3  
IGNNE#  
INIT#  
CMOS ASync  
CMOS ASync  
CMOS ASync  
CMOS ASync  
Power/Other  
Power/Other  
Common Clk  
Common Clk  
Power/Other  
Power/Other  
Power/Other  
Open Drain  
Input  
E23  
E24  
E5  
Input  
LINT0  
K1  
Input  
LINT1  
L1  
Input  
E6  
LL_ID0  
V2  
Output  
E7  
LL_ID1  
AA2  
C3  
Output  
E29  
F23  
F29  
F6  
LOCK#  
Input/Output  
Input/Output  
Output  
MCERR#  
MS_ID0  
MS_ID1  
PECI  
AB3  
W1  
V1  
Output  
G6  
G5  
AL2  
N1  
K4  
Input/Output  
Output  
J2  
PROCHOT#  
PWRGOOD  
REQ0#  
J3  
CMOS ASync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Input  
N5  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
T2  
REQ1#  
J5  
Y1  
REQ2#  
M6  
K6  
Y3  
REQ3#  
AL1  
AK1  
G27  
G26  
REQ4#  
J6  
RESERVED  
RESERVED  
AM6  
A20  
53  
Land Listing  
Table 4-1.  
Land Listing by Land Name  
(Sheet 7 of 20)  
Table 4-1.  
Land Listing by Land Name  
(Sheet 8 of 20)  
Pin  
No.  
Signal Buffer  
Type  
Pin  
No.  
Signal Buffer  
Pin Name  
Direction  
Pin Name  
Direction  
Type  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESET#  
RS0#  
G24  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
AD8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
F24  
F26  
F25  
G25  
W3  
AM2  
G23  
B3  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Power/Other  
CMOS ASync  
CMOS ASync  
TAP  
Input  
AE11  
AE12  
AE14  
AE15  
AE18  
AE19  
AE21  
AE22  
AE23  
AE9  
Input  
Input  
Input  
Input  
Output  
Input  
Input  
Input  
Input  
Output  
Input  
Input  
Input  
Input  
Input  
Output  
Input  
Input  
Input  
RS1#  
F5  
RS2#  
A3  
RSP#  
H4  
SKTOCC#  
SMI#  
AE8  
P2  
STPCLK#  
TCK  
M3  
AE1  
AD1  
AF1  
P1  
TDI  
TAP  
TDO  
TAP  
AF11  
AF12  
AF14  
AF15  
AF18  
AF19  
AF21  
AF22  
AF8  
TESTHI10  
TESTHI11  
TESTHI12  
TESTIN1  
TESTIN2  
THERMTRIP#  
TMS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Open Drain  
TAP  
L2  
AE3  
W2  
U1  
M2  
AC1  
E3  
TRDY#  
TRST#  
VCC  
Common Clk  
TAP  
AG1  
AA8  
AB8  
AC23  
AC24  
AC25  
AC26  
AC27  
AC28  
AC29  
AC30  
AC8  
AD23  
AD24  
AF9  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AG11  
AG12  
AG14  
AG15  
AG18  
AG19  
AG21  
AG22  
AG25  
AG26  
AG27  
AG28  
AG29  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
54  
Land Listing  
Table 4-1.  
Land Listing by Land Name  
(Sheet 9 of 20)  
Table 4-1.  
Land Listing by Land Name  
(Sheet 10 of 20)  
Pin  
No.  
Signal Buffer  
Type  
Pin  
No.  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AG30  
AG8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AK26  
AK8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AG9  
AK9  
AH11  
AH12  
AH14  
AH15  
AH18  
AH19  
AH21  
AH22  
AH25  
AH26  
AH27  
AH28  
AH29  
AH30  
AH8  
AL11  
AL12  
AL14  
AL15  
AL18  
AL19  
AL21  
AL22  
AL25  
AL26  
AL29  
AL30  
AL9  
AM11  
AM12  
AM14  
AM15  
AM18  
AM19  
AM21  
AM22  
AM25  
AM26  
AM29  
AM30  
AM8  
AH9  
AJ11  
AJ12  
AJ14  
AJ15  
AJ18  
AJ19  
AJ21  
AJ22  
AJ25  
AJ26  
AJ8  
AM9  
AJ9  
AN11  
AN12  
AN14  
AN15  
AN18  
AN19  
AN21  
AN22  
AN25  
AN26  
AK11  
AK12  
AK14  
AK15  
AK18  
AK19  
AK21  
AK22  
AK25  
55  
Land Listing  
Table 4-1.  
Land Listing by Land Name  
(Sheet 11 of 20)  
Table 4-1.  
Land Listing by Land Name  
(Sheet 12 of 20)  
Pin  
No.  
Signal Buffer  
Type  
Pin  
No.  
Signal Buffer  
Pin Name  
Direction  
Pin Name  
Direction  
Type  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AN8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
M30  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AN9  
J10  
J11  
J12  
J13  
J14  
J15  
J18  
J19  
J20  
J21  
J22  
J23  
J24  
J25  
J26  
J27  
J28  
J29  
J30  
J8  
M8  
N23  
N24  
N25  
N26  
N27  
N28  
N29  
N30  
N8  
P8  
R8  
T23  
T24  
T25  
T26  
T27  
T28  
T29  
T30  
T8  
J9  
U23  
U24  
U25  
U26  
U27  
U28  
U29  
U30  
U8  
K23  
K24  
K25  
K26  
K27  
K28  
K29  
K30  
K8  
V8  
L8  
W23  
W24  
W25  
W26  
W27  
W28  
W29  
W30  
M23  
M24  
M25  
M26  
M27  
M28  
M29  
56  
Land Listing  
Table 4-1.  
Land Listing by Land Name  
(Sheet 13 of 20)  
Table 4-1.  
Land Listing by Land Name  
(Sheet 14 of 20)  
Pin  
No.  
Signal Buffer  
Type  
Pin  
No.  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
VCC  
W8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
CMOS Async  
CMOS Async  
CMOS Async  
CMOS Async  
CMOS Async  
CMOS Async  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AB24  
AB25  
AB26  
AB27  
AB28  
AB29  
AB30  
AB7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
Y23  
Y24  
Y25  
Y26  
Y27  
Y28  
Y29  
Y30  
Y8  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AC3  
VCC  
AC6  
VCC_DIE_SENSE  
VCC_DIE_SENSE2  
VCCPLL  
VID_SELECT  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
VSS  
AN3  
AL8  
D23  
AN7  
AL5  
AM3  
AL6  
AK4  
AL4  
AM5  
A12  
A15  
A18  
A2  
Output  
AC7  
Output  
Input  
AD4  
AD7  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
AE10  
AE13  
AE16  
AE17  
AE2  
AE20  
AE24  
AE25  
AE26  
AE27  
AE28  
AE29  
AE30  
AE5  
VSS  
VSS  
VSS  
VSS  
A21  
A6  
VSS  
VSS  
A9  
VSS  
AA23  
AA24  
AA25  
AA26  
AA27  
AA28  
AA29  
AA3  
AA30  
AA6  
AA7  
AB1  
AB23  
AE7  
VSS  
AF7  
VSS  
AF10  
AF13  
AF16  
AF17  
AF20  
AF23  
AF24  
AF25  
AF26  
AF27  
AF28  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
57  
Land Listing  
Table 4-1.  
Land Listing by Land Name  
(Sheet 15 of 20)  
Table 4-1.  
Land Listing by Land Name  
(Sheet 16 of 20)  
Pin  
No.  
Signal Buffer  
Type  
Pin  
No.  
Signal Buffer  
Pin Name  
Direction  
Pin Name  
Direction  
Type  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AF29  
AF3  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AK23  
AK24  
AK27  
AK28  
AK29  
AK30  
AK5  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AF30  
AF6  
AG10  
AG13  
AG16  
AG17  
AG20  
AG23  
AG24  
AG7  
AK7  
AL10  
AL13  
AL16  
AL17  
AL20  
AL23  
AL24  
AL27  
AL28  
AL3  
AH1  
AH10  
AH13  
AH16  
AH17  
AH20  
AH23  
AH24  
AH3  
AM1  
AM10  
AM13  
AM16  
AM17  
AM20  
AM23  
AM24  
AM27  
AM28  
AM4  
AH6  
AJ10  
AJ13  
AJ16  
AJ17  
AJ20  
AJ23  
AJ24  
AJ27  
AJ28  
AJ29  
AJ30  
AJ4  
AM7  
AN1  
AN10  
AN13  
AN16  
AN17  
AN2  
AK10  
AK13  
AK16  
AK17  
AK2  
AN20  
AN23  
AN24  
B1  
AK20  
58  
Land Listing  
Table 4-1.  
Land Listing by Land Name  
(Sheet 17 of 20)  
Table 4-1.  
Land Listing by Land Name  
(Sheet 18 of 20)  
Pin  
No.  
Signal Buffer  
Type  
Pin  
No.  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
B11  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
F4  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
B14  
B17  
B20  
B24  
B5  
F7  
H10  
H11  
H12  
H13  
H14  
H17  
H18  
H19  
H20  
H21  
H22  
H23  
H24  
H25  
H26  
H27  
H28  
H29  
H3  
B8  
C10  
C13  
C16  
C19  
C22  
C24  
C4  
C7  
D12  
D15  
D18  
D21  
D24  
D3  
D5  
H6  
D6  
H7  
D9  
H8  
E11  
E14  
E17  
E2  
H9  
J4  
J7  
K2  
E20  
E25  
E26  
E27  
E28  
E8  
K5  
K7  
L23  
L24  
L25  
L26  
L27  
L28  
L29  
L3  
F1  
F10  
F13  
F16  
F19  
F22  
L30  
L6  
59  
Land Listing  
Table 4-1.  
Land Listing by Land Name  
(Sheet 19 of 20)  
Table 4-1.  
Land Listing by Land Name  
(Sheet 20 of 20)  
Pin  
No.  
Signal Buffer  
Type  
Pin  
No.  
Signal Buffer  
Pin Name  
Direction  
Pin Name  
Direction  
Type  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
L7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
V6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
M1  
VSS  
V7  
M7  
VSS  
W4  
N3  
VSS  
W7  
N6  
VSS  
Y2  
N7  
VSS  
Y5  
P23  
P24  
P25  
P26  
P27  
P28  
P29  
P30  
P4  
VSS  
Y7  
VSS_DIE_SENSE  
AN4  
AL7  
A25  
A26  
B25  
B26  
B27  
B28  
B29  
B30  
C25  
C26  
C27  
C28  
C29  
C30  
D25  
D26  
D27  
D28  
D29  
D30  
E30  
F30  
AA1  
J1  
Output  
VSS_DIE_SENSE2  
VTT  
Output  
VTT  
VTT  
VTT  
VTT  
VTT  
P7  
VTT  
R2  
VTT  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
R5  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
R7  
VTT  
T3  
VTT  
T6  
VTT  
T7  
VTT  
U7  
VTT  
V23  
V24  
V25  
V26  
V27  
V28  
V29  
V3  
VTT_OUT  
VTT_OUT  
VTT_SEL  
Output  
Output  
Output  
F27  
V30  
60  
Land Listing  
4.1.2  
Land Listing by Land Number  
Table 4-2.  
Land Listing by Land Number  
(Sheet 2 of 20)  
Table 4-2.  
Land Listing by Land Number  
(Sheet 1 of 20)  
SignalBuffer  
SignalBuffer  
Direction  
Type  
Pin No.  
Pin Name  
Direction  
Pin No.  
Pin Name  
Type  
AA7  
VSS  
Power/Other  
Power/Other  
Power/Other  
Open Drain  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clk  
Power/Other  
Source Sync  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
TAP  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A2  
D08#  
D09#  
VSS  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
Source Sync  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Source Sync  
Power/Other  
Input/Output  
Input/Output  
AA8  
VCC  
AB1  
VSS  
AB2  
IERR#  
VSS  
Output  
COMP0  
D50#  
VSS  
Input  
AB23  
AB24  
AB25  
AB26  
AB27  
AB28  
AB29  
AB3  
Input/Output  
VSS  
VSS  
DSTBN3#  
D56#  
VSS  
Input/Output  
Input/Output  
VSS  
VSS  
VSS  
D61#  
VSS  
Input/Output  
VSS  
MCERR#  
VSS  
Input/Output  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A3  
RESERVED  
VSS  
AB30  
AB4  
Power/Other  
Source Sync  
A26#  
A24#  
A17#  
VSS  
Input/Output  
Input/Output  
Input/Output  
D62#  
RESERVED  
RESERVED  
VTT  
Input/Output  
AB5  
AB6  
AB7  
Power/Other  
Power/Other  
Common Clk  
Source Sync  
Source Sync  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
AB8  
VCC  
VTT  
AC1  
TMS  
Input  
RS2#  
D02#  
D04#  
VSS  
Input  
AC2  
DBR#  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
A4  
Input/Output  
Input/Output  
AC23  
AC24  
AC25  
AC26  
AC27  
AC28  
AC29  
AC3  
A5  
VCC  
A6  
VCC  
A7  
D07#  
DBI0#  
VSS  
Input/Output  
Input/Output  
VCC  
A8  
VCC  
A9  
VCC  
AA1  
AA2  
AA23  
AA24  
AA25  
AA26  
AA27  
AA28  
AA29  
AA3  
AA30  
AA4  
AA5  
AA6  
VTT_OUT  
LL_ID1  
VSS  
Output  
Output  
VCC  
VSS  
AC30  
AC4  
VCC  
VSS  
RESERVED  
A25#  
VSS  
VSS  
AC5  
Source Sync  
Power/Other  
Power/Other  
Power/Other  
TAP  
Input/Output  
VSS  
AC6  
VSS  
AC7  
VSS  
VSS  
AC8  
VCC  
VSS  
AD1  
TDI  
Input  
VSS  
AD2  
BPM2#  
VCC  
Common Clk  
Power/Other  
Power/Other  
Power/Other  
Output  
VSS  
AD23  
AD24  
AD25  
A21#  
A23#  
VSS  
Input/Output  
Input/Output  
VCC  
VCC  
61  
Land Listing  
Table 4-2.  
Land Listing by Land Number  
(Sheet 3 of 20)  
Table 4-2.  
Land Listing by Land Number  
(Sheet 4 of 20)  
SignalBuffer  
Direction  
Type  
SignalBuffer  
Pin No.  
Pin Name  
Pin No.  
Pin Name  
Direction  
Type  
AD26  
AD27  
AD28  
AD29  
AD3  
VCC  
VCC  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AE9  
VCC  
Power/Other  
TAP  
AF1  
TDO  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
BPM4#  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A28#  
A27#  
VSS  
VSS  
VCC  
VCC  
TRST#  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
Output  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
AF16  
AF17  
AF18  
AF19  
AF2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clk  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
TAP  
BINIT#  
VCC  
Common Clk  
Power/Other  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
TAP  
Input/Output  
AD30  
AD4  
VSS  
AD5  
ADSTB1#  
A22#  
VSS  
Input/Output  
Input/Output  
AD6  
AD7  
AD8  
VCC  
AE1  
TCK  
Input  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
AE2  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
VCC  
AF20  
AF21  
AF22  
AF23  
AF24  
AF25  
AF26  
AF27  
AF28  
AF29  
AF3  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
AE20  
AE21  
AE22  
AE23  
AE24  
AE25  
AE26  
AE27  
AE28  
AE29  
AE3  
VSS  
VCC  
AF30  
AF4  
VCC  
Input/Output  
Input/Output  
VCC  
AF5  
VSS  
AF6  
VSS  
AF7  
VSS  
AF8  
VSS  
AF9  
VSS  
AG1  
Input  
VSS  
AG10  
AG11  
AG12  
AG13  
AG14  
AG15  
AG16  
AG17  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
TESTHI12  
VSS  
Input  
AE30  
AE4  
RESERVED  
VSS  
AE5  
Power/Other  
AE6  
RESERVED  
VSS  
AE7  
Power/Other  
Power/Other  
AE8  
SKTOCC#  
Output  
62  
Land Listing  
Table 4-2.  
Land Listing by Land Number  
(Sheet 5 of 20)  
Table 4-2.  
Land Listing by Land Number  
(Sheet 6 of 20)  
SignalBuffer  
Direction  
Type  
SignalBuffer  
Direction  
Type  
Pin No.  
Pin Name  
Pin No.  
Pin Name  
AG18  
AG19  
AG2  
VCC  
VCC  
BPM3#  
VSS  
Power/Other  
Power/Other  
AH27  
AH28  
AH29  
AH3  
AH30  
AH4  
AH5  
AH6  
AH7  
AH8  
AH9  
AJ1  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
Common Clk  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clk  
Power/Other  
Source Sync  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input/Output  
VCC  
AG20  
AG21  
AG22  
AG23  
AG24  
AG25  
AG26  
AG27  
AG28  
AG29  
AG3  
VSS  
VCC  
VCC  
VSS  
VCC  
A32#  
A33#  
VSS  
Source Sync  
Source Sync  
Power/Other  
Input/Output  
Input/Output  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
BPM5#  
VCC  
A30#  
A31#  
A29#  
VSS  
RESERVED  
VCC  
Power/Other  
Power/Other  
Common Clk  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clk  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
BPM1#  
VSS  
Output  
AJ10  
AJ11  
AJ12  
AJ13  
AJ14  
AJ15  
AJ16  
AJ17  
AJ18  
AJ19  
AJ2  
Input/Output  
VCC  
AG30  
AG4  
VCC  
Input/Output  
Input/Output  
Input/Output  
VSS  
AG5  
VCC  
AG6  
VCC  
AG7  
VSS  
AG8  
VCC  
VCC  
VSS  
VSS  
AG9  
VCC  
AH1  
VCC  
AH10  
AH11  
AH12  
AH13  
AH14  
AH15  
AH16  
AH17  
AH18  
AH19  
AH2  
VSS  
BPM0#  
VSS  
Input/Output  
VCC  
VCC  
VSS  
AJ20  
AJ21  
AJ22  
AJ23  
AJ24  
AJ25  
AJ26  
AJ27  
AJ28  
AJ29  
AJ3  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VSS  
VCC  
VCC  
VCC  
RESERVED  
VSS  
VSS  
VSS  
VSS  
AH20  
AH21  
AH22  
AH23  
AH24  
AH25  
AH26  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
RESERVED  
VSS  
VCC  
VCC  
VSS  
AJ30  
AJ4  
Power/Other  
Power/Other  
Source Sync  
Source Sync  
VSS  
AJ5  
A34#  
A35#  
RESERVED  
VCC  
Input/Output  
Input/Output  
VSS  
AJ6  
VCC  
VCC  
AJ7  
AJ8  
Power/Other  
63  
Land Listing  
Table 4-2.  
Land Listing by Land Number  
(Sheet 7 of 20)  
Table 4-2.  
Land Listing by Land Number  
(Sheet 8 of 20)  
SignalBuffer  
Direction  
Type  
SignalBuffer  
Pin No.  
Pin Name  
Pin No.  
Pin Name  
Direction  
Type  
AJ9  
VCC  
Power/Other  
AL18  
AL19  
AL2  
VCC  
Power/Other  
Power/Other  
Open Drain  
AK1  
RESERVED  
VSS  
VCC  
AK10  
AK11  
AK12  
AK13  
AK14  
AK15  
AK16  
AK17  
AK18  
AK19  
AK2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
PROCHOT#  
VSS  
Output  
VCC  
AL20  
AL21  
AL22  
AL23  
AL24  
AL25  
AL26  
AL27  
AL28  
AL29  
AL3  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
CMOS Async  
CMOS Async  
CMOS Async  
Power/Other  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
AK20  
AK21  
AK22  
AK23  
AK24  
AK25  
AK26  
AK27  
AK28  
AK29  
AK3  
VSS  
VSS  
VCC  
AL30  
AL4  
VCC  
VCC  
VID5  
VID1  
VID3  
Output  
Output  
Output  
VSS  
AL5  
VSS  
AL6  
VCC  
AL7  
VSS_DIE_  
SENSE2  
VCC  
AL8  
VCC_DIE_  
SENSE2  
Power/Other  
VSS  
VSS  
AL9  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
RESERVED  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
AM1  
RESERVED  
VSS  
AM10  
AM11  
AM12  
AM13  
AM14  
AM15  
AM16  
AM17  
AM18  
AM19  
AM2  
AK30  
AK4  
Power/Other  
CMOS Async  
Power/Other  
CMOS Async  
Power/Other  
Power/Other  
Power/Other  
VID4  
VSS  
Output  
Input  
AK5  
AK6  
FORCEPR#  
VSS  
AK7  
AK8  
VCC  
AK9  
VCC  
AL1  
RESERVED  
VSS  
AL10  
AL11  
AL12  
AL13  
AL14  
AL15  
AL16  
AL17  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
AM20  
AM21  
AM22  
AM23  
AM24  
AM25  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VCC  
VCC  
VSS  
VSS  
64  
Land Listing  
Table 4-2.  
Land Listing by Land Number  
(Sheet 9 of 20)  
Table 4-2.  
Land Listing by Land Number  
(Sheet 10 of 20)  
SignalBuffer  
Direction  
Type  
SignalBuffer  
Direction  
Type  
Pin No.  
Pin Name  
Pin No.  
Pin Name  
AM26  
AM27  
AM28  
AM29  
AM3  
VCC  
VSS  
VSS  
VCC  
VID2  
VCC  
VSS  
VID6  
RESERVED  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B2  
D10#  
VSS  
Source Sync  
Power/Other  
Source Sync  
Input/Output  
D13#  
RESERVED  
VSS  
Input/Output  
CMOS Async  
Power/Other  
Power/Other  
CMOS Async  
Output  
Output  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Source Sync  
Source Sync  
Common Clk  
Power/Other  
Source Sync  
Source Sync  
AM30  
AM4  
D53#  
D55#  
VSS  
Input/Output  
Input/Output  
AM5  
AM6  
D57#  
D60#  
DBSY#  
VSS  
Input/Output  
Input/Output  
Input/Output  
AM7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AM8  
AM9  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B3  
AN1  
D59#  
D63#  
RESERVED  
VSS  
Input/Output  
Input/Output  
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
AN16  
AN17  
AN18  
AN19  
AN2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clk  
Power/Other  
Source Sync  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Source Sync  
Common Clk  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
VTT  
VTT  
VTT  
VTT  
VTT  
RS0#  
VTT  
Input  
B30  
B4  
D00#  
VSS  
Input/Output  
AN20  
AN21  
AN22  
AN23  
AN24  
AN25  
AN26  
AN3  
B5  
B6  
D05#  
D06#  
VSS  
Input/Output  
Input/Output  
B7  
B8  
B9  
DSTBP0#  
DRDY#  
VSS  
Input/Output  
Input/Output  
C1  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
VCC_DIE_  
SENSE  
Output  
Output  
D11#  
D14#  
VSS  
Input/Output  
Input/Output  
AN4  
VSS_DIE_  
SENSE  
Power/Other  
D52#  
D51#  
VSS  
Input/Output  
Input/Output  
AN5  
AN6  
AN7  
AN8  
AN9  
B1  
RESERVED  
RESERVED  
VID_SELECT  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
DSTBP3#  
D54#  
VSS  
Input/Output  
Input/Output  
VCC  
VSS  
65  
Land Listing  
Table 4-2.  
Land Listing by Land Number  
(Sheet 11 of 20)  
Table 4-2.  
Land Listing by Land Number  
(Sheet 12 of 20)  
SignalBuffer  
Direction  
Type  
SignalBuffer  
Pin No.  
Pin Name  
Pin No.  
Pin Name  
Direction  
Type  
C2  
BNR#  
DBI3#  
D58#  
VSS  
Common Clk  
Source Sync  
Source Sync  
Power/Other  
Input/Output  
Input/Output  
Input/Output  
D29  
D3  
VTT  
Power/Other  
Power/Other  
Power/Other  
Common Clk  
Power/Other  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
Source Sync  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
Source Sync  
Source Sync  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C3  
VSS  
D30  
D4  
VTT  
HIT#  
Input/Output  
RESERVED  
VSS  
D5  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clk  
Power/Other  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Source Sync  
Common Clk  
D6  
VSS  
VTT  
D7  
D20#  
D12#  
VSS  
Input/Output  
Input/Output  
VTT  
D8  
VTT  
D9  
VTT  
E1  
RESERVED  
D21#  
VSS  
VTT  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E2  
Input/Output  
LOCK#  
VTT  
Input/Output  
C30  
C4  
DSTBP1#  
D26#  
VSS  
Input/Output  
Input/Output  
VSS  
C5  
D01#  
D03#  
VSS  
Input/Output  
Input/Output  
C6  
D33#  
D34#  
VSS  
Input/Output  
Input/Output  
C7  
C8  
DSTBN0#  
BPMb1#  
RESERVED  
D22#  
D15#  
VSS  
Input/Output  
Output  
C9  
D39#  
D40#  
VSS  
Input/Output  
Input/Output  
D1  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D2  
Source Sync  
Source Sync  
Power/Other  
Source Sync  
Input/Output  
Input/Output  
E20  
E21  
E22  
E23  
E24  
E25  
E26  
E27  
E28  
E29  
E3  
VSS  
D42#  
D45#  
RESERVED  
RESERVED  
VSS  
Input/Output  
Input/Output  
D25#  
RESERVED  
VSS  
Input/Output  
Power/Other  
RESERVED  
D49#  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Sync  
Power/Other  
Source Sync  
Common Clk  
Source Sync  
Power/Other  
Source Sync  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input/Output  
VSS  
VSS  
DBI2#  
ADS#  
D48#  
VSS  
Input/Output  
Input/Output  
Input/Output  
VSS  
RESERVED  
TRDY#  
VTT  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
Common Clk  
Power/Other  
Common Clk  
Input  
E30  
E4  
D46#  
VCCPLL  
VSS  
Input/Output  
Input  
HITM#  
RESERVED  
RESERVED  
RESERVED  
VSS  
Input/Output  
E5  
E6  
VTT  
E7  
VTT  
E8  
Power/Other  
Source Sync  
Power/Other  
VTT  
E9  
D19#  
VSS  
Input/Output  
VTT  
F1  
66  
Land Listing  
Table 4-2.  
Land Listing by Land Number  
(Sheet 13 of 20)  
Table 4-2.  
Land Listing by Land Number  
(Sheet 14 of 20)  
SignalBuffer  
Direction  
Type  
SignalBuffer  
Direction  
Type  
Pin No.  
Pin Name  
Pin No.  
Pin Name  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F2  
VSS  
Power/Other  
G19  
G2  
DSTBP2#  
COMP2  
Source Sync  
Power/Other  
Source Sync  
Source Sync  
Source Sync  
Common Clk  
Input/Output  
Input  
D23#  
D24#  
VSS  
Source Sync  
Source Sync  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
Input/Output  
Input/Output  
G20  
G21  
G22  
G23  
G24  
G25  
G26  
G27  
G28  
G29  
G3  
DSTBN2#  
D44#  
Input/Output  
Input/Output  
Input/Output  
Input  
D28#  
D30#  
VSS  
Input/Output  
Input/Output  
D47#  
RESET#  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
BCLK1  
D37#  
D38#  
VSS  
Input/Output  
Input/Output  
GTLREF_ADD_  
MID  
Input  
Clk  
Input  
BSEL0  
CMOS Async  
Common Clk  
CMOS Async  
Common Clk  
Power/Other  
Output  
F20  
F21  
F22  
F23  
F24  
F25  
F26  
F27  
F28  
F29  
F3  
D41#  
Source Sync  
Source Sync  
Power/Other  
Input/Output  
Input/Output  
BPMb3#  
BSEL2  
Input/Output  
Output  
D43#  
G30  
G4  
VSS  
BPMb2#  
PECI  
Output  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
VTT_SEL  
BCLK0  
G5  
Input/Output  
G6  
RESERVED  
DEFER#  
BPRI#  
G7  
Common Clk  
Common Clk  
Source Sync  
Power/Other  
Input  
G8  
Input  
Power/Other  
Clk  
Output  
Input  
G9  
D16#  
Input/Output  
Input  
H1  
GTLREF_DATA  
_END  
RESERVED  
BR0#  
Common Clk  
Power/Other  
Power/Other  
Common Clk  
Input/Output  
Input  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H2  
VSS  
VSS  
VSS  
VSS  
VSS  
DP1#  
DP2#  
VSS  
VSS  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clk  
Common Clk  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
F30  
F4  
VTT  
VSS  
F5  
RS1#  
F6  
RESERVED  
VSS  
F7  
Power/Other  
Source Sync  
Source Sync  
Common Clk  
Power/Other  
Input/Output  
Input/Output  
F8  
D17#  
Input/Output  
Input/Output  
Input/Output  
Input  
F9  
D18#  
G1  
BPMb0#  
G10  
GTLREF_ADD_  
END  
GTLREF_DATA  
_MID  
Input  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
DBI1#  
DSTBN1#  
D27#  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
H20  
H21  
H22  
H23  
H24  
H25  
H26  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
D29#  
D31#  
D32#  
D36#  
D35#  
67  
Land Listing  
Table 4-2.  
Land Listing by Land Number  
(Sheet 15 of 20)  
Table 4-2.  
Land Listing by Land Number  
(Sheet 16 of 20)  
SignalBuffer  
Direction  
Type  
SignalBuffer  
Pin No.  
Pin Name  
Pin No.  
Pin Name  
Direction  
Type  
H27  
H28  
H29  
H3  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
J9  
VCC  
Power/Other  
CMOS Async  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
CMOS Async  
Power/Other  
Source Sync  
Power/Other  
Source Sync  
Power/Other  
Power/Other  
CMOS Async  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Open Drain  
VSS  
K1  
LINT0  
VSS  
Input  
VSS  
K2  
VSS  
K23  
K24  
K25  
K26  
K27  
K28  
K29  
K3  
VCC  
H30  
H4  
BSEL1  
RSP#  
BR1#  
VSS  
CMOS Async  
Common Clk  
Common Clk  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clk  
Common Clk  
Power/Other  
Power/Other  
Output  
Input  
Input  
VCC  
VCC  
H5  
VCC  
H6  
VCC  
H7  
VSS  
VCC  
H8  
VSS  
VCC  
H9  
VSS  
A20M#  
VCC  
Input  
J1  
VTT_OUT  
VCC  
Output  
K30  
K4  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J2  
REQ0#  
VSS  
Input/Output  
Input/Output  
VCC  
K5  
VCC  
K6  
REQ3#  
VSS  
VCC  
K7  
VCC  
K8  
VCC  
VCC  
L1  
LINT1  
TESTHI11  
VSS  
Input  
Input  
DP0#  
DP3#  
VCC  
Input/Output  
Input/Output  
L2  
L23  
L24  
L25  
L26  
L27  
L28  
L29  
L3  
VSS  
VCC  
VSS  
RESERVED  
VCC  
VSS  
J20  
J21  
J22  
J23  
J24  
J25  
J26  
J27  
J28  
J29  
J3  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
L30  
L4  
VSS  
VCC  
A06#  
A05#  
VSS  
Input/Output  
Input/Output  
VCC  
L5  
VCC  
L6  
VCC  
L7  
VSS  
VCC  
L8  
VCC  
RESERVED  
VCC  
M1  
VSS  
J30  
J4  
Power/Other  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
M2  
THERMTRIP#  
VCC  
Output  
VSS  
M23  
M24  
M25  
M26  
M27  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
J5  
REQ1#  
REQ4#  
VSS  
Input/Output  
Input/Output  
VCC  
J6  
VCC  
J7  
VCC  
J8  
VCC  
VCC  
68  
Land Listing  
Table 4-2.  
Land Listing by Land Number  
(Sheet 17 of 20)  
Table 4-2.  
Land Listing by Land Number  
(Sheet 18 of 20)  
SignalBuffer  
Direction  
Type  
SignalBuffer  
Direction  
Type  
Pin No.  
Pin Name  
Pin No.  
Pin Name  
M28  
M29  
M3  
VCC  
VCC  
Power/Other  
Power/Other  
P8  
VCC  
Power/Other  
R1  
COMP3  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Open Drain  
Input  
STPCLK#  
VCC  
CMOS Async  
Power/Other  
Source Sync  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
Power/Other  
CMOS Async  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Sync  
Input  
R2  
M30  
M4  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R3  
VSS  
A07#  
A03#  
REQ2#  
VSS  
Input/Output  
Input/Output  
Input/Output  
VSS  
M5  
VSS  
M6  
VSS  
M7  
VSS  
M8  
VCC  
VSS  
N1  
PWRGOOD  
IGNNE#  
VCC  
Input  
Input  
VSS  
N2  
FERR#/PBE#  
VSS  
Output  
N23  
N24  
N25  
N26  
N27  
N28  
N29  
N3  
R30  
R4  
Power/Other  
Source Sync  
Power/Other  
Source Sync  
Power/Other  
Power/Other  
Power/Other  
VCC  
A08#  
VSS  
Input/Output  
Input/Output  
VCC  
R5  
VCC  
R6  
ADSTB0#  
VSS  
VCC  
R7  
VCC  
R8  
VCC  
VCC  
T1  
COMP1  
RESERVED  
VCC  
Input  
VSS  
T2  
N30  
N4  
VCC  
T23  
T24  
T25  
T26  
T27  
T28  
T29  
T3  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clk  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
A36#  
RESERVED  
VSS  
Input/Output  
VCC  
N5  
VCC  
N6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
CMOS Async  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
CMOS Async  
Power/Other  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
VCC  
N7  
VSS  
VCC  
N8  
VCC  
VCC  
P1  
TESTHI10  
SMI#  
VSS  
Input  
Input  
VCC  
P2  
VSS  
P23  
P24  
P25  
P26  
P27  
P28  
P29  
P3  
T30  
T4  
VCC  
VSS  
A11#  
A09#  
VSS  
Input/Output  
Input/Output  
VSS  
T5  
VSS  
T6  
VSS  
T7  
VSS  
VSS  
T8  
VCC  
VSS  
U1  
TESTIN2  
AP0#  
VCC  
Input  
INIT#  
VSS  
Input  
U2  
Input/Output  
P30  
P4  
U23  
U24  
U25  
U26  
U27  
VSS  
VCC  
P5  
A37#  
A04#  
VSS  
Input/Output  
Input/Output  
VCC  
P6  
VCC  
P7  
VCC  
69  
Land Listing  
Table 4-2.  
Land Listing by Land Number  
(Sheet 19 of 20)  
Table 4-2.  
Land Listing by Land Number  
(Sheet 20 of 20)  
SignalBuffer  
Direction  
Type  
SignalBuffer  
Pin No.  
Pin Name  
Pin No.  
Pin Name  
Direction  
Type  
U28  
U29  
U3  
VCC  
Power/Other  
Power/Other  
W8  
Y1  
VCC  
Power/Other  
VCC  
RESERVED  
VSS  
AP1#  
VCC  
Common Clk  
Power/Other  
Source Sync  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input/Output  
Y2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
U30  
U4  
Y23  
Y24  
Y25  
Y26  
Y27  
Y28  
Y29  
Y3  
VCC  
A13#  
A12#  
A10#  
VSS  
Input/Output  
Input/Output  
Input/Output  
VCC  
U5  
VCC  
U6  
VCC  
U7  
VCC  
U8  
VCC  
VCC  
V1  
MS_ID1  
LL_ID0  
VSS  
Output  
Output  
VCC  
V2  
RESERVED  
VCC  
V23  
V24  
V25  
V26  
V27  
V28  
V29  
V3  
Y30  
Y4  
Power/Other  
Source Sync  
Power/Other  
Source Sync  
Power/Other  
Power/Other  
VSS  
A20#  
VSS  
Input/Output  
Input/Output  
VSS  
Y5  
VSS  
Y6  
A19#  
VSS  
VSS  
Y7  
VSS  
Y8  
VCC  
VSS  
§
VSS  
V30  
V4  
VSS  
A15#  
A14#  
VSS  
Input/Output  
Input/Output  
V5  
V6  
V7  
VSS  
V8  
VCC  
W1  
W2  
W23  
W24  
W25  
W26  
W27  
W28  
W29  
W3  
W30  
W4  
W5  
W6  
W7  
MS_ID0  
TESTIN1  
VCC  
Output  
Input  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
RESERVED  
VCC  
Power/Other  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
VSS  
A16#  
A18#  
VSS  
Input/Output  
Input/Output  
70  
Signal Definitions  
5 Signal Definitions  
5.1  
Signal Definitions  
Table 5-1.  
Signal Definitions (Sheet 1 of 8)  
Name  
A[37:3]#  
Type  
Description  
Notes  
38  
I/O  
A[37:3]# (Address) define a 2 -byte physical memory address  
3
space. In sub-phase 1 of the address phase, these signals transmit  
the address of a transaction. In sub-phase 2, these signals transmit  
transaction type information. These signals must connect the  
appropriate pins of all agents on the FSB. A[37:3]# are protected by  
parity signals AP[1:0]#. A[37:3]# are source synchronous signals  
and are latched into the receiving buffers by ADSTB[1:0]#.  
On the active-to-inactive transition of RESET#, the processors  
sample a subset of the A[37:3]# lands to determine their power-on  
configuration. See Section 7.1.  
A20M#  
I
If A20M# (Address-20 Mask) is asserted, the processor masks  
physical address bit 20 (A20#) before looking up a line in any internal  
cache and before driving a read/write transaction on the bus.  
Asserting A20M# emulates the 8086 processor's address wrap-  
around at the 1 MB boundary. Assertion of A20M# is only supported  
in real mode.  
2
A20M# is an asynchronous signal. However, to ensure recognition of  
this signal following an I/O write instruction, it must be valid along  
with the TRDY# assertion of the corresponding I/O write bus  
transaction.  
ADS#  
I/O  
I/O  
ADS# (Address Strobe) is asserted to indicate the validity of the  
transaction address on the A[37:3]# lands. All bus agents observe  
the ADS# activation to begin parity checking, protocol checking,  
address decode, internal snoop, or deferred reply ID match  
operations associated with the new transaction. This signal must be  
connected to the appropriate pins on all Quad-Core Intel® Xeon®  
Processor 5400 Series FSB agents.  
3
3
ADSTB[1:0]#  
Address strobes are used to latch A[37:3]# and REQ[4:0]# on their  
rising and falling edge. Strobes are associated with signals as shown  
below.  
Signals  
Associated Strobes  
REQ[4:0]#, A[16:3]#,  
A[37:36]#  
ADSTB0#  
A[35:17]#  
ADSTB1#  
AP[1:0]#  
I/O  
AP[1:0]# (Address Parity) are driven by the request initiator along  
with ADS#, A[37:3]#, and the transaction type on the REQ[4:0]#  
signals. A correct parity signal is high if an even number of covered  
signals are low and low if an odd number of covered signals are low.  
This allows parity to be high when all the covered signals are high.  
AP[1:0]# must be connected to the appropriate pins of all Quad-Core  
Intel® Xeon® Processor 5400 Series FSB agents. The following table  
defines the coverage model of these signals.  
3
Request Signals  
Subphase 1  
Subphase 2  
A[37:24]#  
A[23:3]#  
AP0#  
AP1#  
AP1#  
AP1#  
AP0#  
AP0#  
REQ[4:0]#  
71  
Signal Definitions  
Table 5-1.  
Signal Definitions (Sheet 2 of 8)  
Name  
BCLK[1:0]  
Type  
Description  
Notes  
I
The differential bus clock pair BCLK[1:0] (Bus Clock) determines the  
FSB frequency. All processor FSB agents must receive these signals  
to drive their outputs and latch their inputs.  
3
All external timing parameters are specified with respect to the rising  
edge of BCLK0 crossing V  
.
CROSS  
BINIT#  
I/O  
BINIT# (Bus Initialization) may be observed and driven by all  
processor FSB agents and if used, must connect the appropriate pins  
of all such agents. If the BINIT# driver is enabled during power on  
configuration, BINIT# is asserted to signal any bus condition that  
prevents reliable future operation.  
3
If BINIT# observation is enabled during power-on configuration (see  
Section 7.1) and BINIT# is sampled asserted, symmetric agents  
reset their bus LOCK# activity and bus request arbitration state  
machines. The bus agents do not reset their I/O Queue (IOQ) and  
transaction tracking state machines upon observation of BINIT#  
assertion. Once the BINIT# assertion has been observed, the bus  
agents will re-arbitrate for the FSB and attempt completion of their  
bus queue and IOQ entries.  
If BINIT# observation is disabled during power-on configuration, a  
priority agent may handle an assertion of BINIT# as appropriate to  
the error handling architecture of the system.  
BNR#  
I/O  
BNR# (Block Next Request) is used to assert a bus stall by any bus  
agent who is unable to accept new bus transactions. During a bus  
stall, the current bus owner cannot issue any new transactions.  
3
Since multiple agents might need to request a bus stall at the same  
time, BNR# is a wired-OR signal which must connect the appropriate  
pins of all processor FSB agents. In order to avoid wired-OR glitches  
associated with simultaneous edge transitions driven by multiple  
drivers, BNR# is activated on specific clock edges and sampled on  
specific clock edges.  
BPM5#  
BPM4#  
BPM3#  
BPM[2:1]#  
BPM0#  
I/O  
O
I/O  
O
BPM[5:0]# (Breakpoint Monitor) are breakpoint and performance  
monitor signals. They are outputs from the processor which indicate  
the status of breakpoints and programmable counters used for  
monitoring processor performance. BPM[5:0]# should connect the  
appropriate pins of all FSB agents.  
BPM4# provides PRDY# (Probe Ready) functionality for the TAP port.  
PRDY# is a processor output used by debug tools to determine  
processor debug readiness.  
2
I/O  
BPM5# provides PREQ# (Probe Request) functionality for the TAP  
port. PREQ# is used by debug tools to request debug operation of the  
processors.  
BPM[5:4]# must be bussed to all bus agents. Please refer to the  
appropriate platform design guidelines for more detailed information.  
BPMb3#  
BPMb[2:1]#  
BPMb0#  
I/O  
O
I/O  
BPMb[3:0]# (Breakpoint Monitor) are breakpoint and performance  
monitor signals. They are outputs from the processor which indicate  
the status of breakpoints and programmable counters used for  
monitoring processor performance. BPMb[3:0]# should connect the  
appropriate pins of all FSB agents.  
BPRI#  
I
BPRI# (Bus Priority Request) is used to arbitrate for ownership of the  
processor FSB. It must connect the appropriate pins of all processor  
FSB agents. Observing BPRI# active (as asserted by the priority  
agent) causes all other agents to stop issuing new requests, unless  
such requests are part of an ongoing locked operation. The priority  
agent keeps BPRI# asserted until all of its requests are completed,  
then releases the bus by deasserting BPRI#.  
3
3
BR[1:0]#  
I/O  
The BR[1:0]# signals are sampled on the active-to-inactive transition  
of RESET#. The signal which the agent samples asserted determines  
its agent ID. BR0# drives the BREQ0# signal in the system and is  
used by the processor to request the bus.  
These signals do not have on-die termination and must be  
terminated.  
72  
Signal Definitions  
Table 5-1.  
Signal Definitions (Sheet 3 of 8)  
Name  
BSEL[2:0]  
Type  
Description  
Notes  
O
The BCLK[1:0] frequency select signals BSEL[2:0] are used to select  
the processor input clock frequency. Table 2-2 defines the possible  
combinations of the signals and the frequency associated with each  
combination. The required frequency is determined by the  
processors, chipset, and clock synthesizer. All FSB agents must  
operate at the same frequency. For more information about these  
signals, including termination recommendations, refer to the  
appropriate platform design guideline.  
COMP[3:0]  
D[63:0]#  
I
COMP[3:0] must be terminated to VSS on the baseboard using  
precision resistors. These inputs configure the AGTL+ drivers of the  
processor. Refer to the appropriate platform design guidelines for  
implementation details.  
I/O  
D[63:0]# (Data) are the data signals. These signals provide a 64-bit  
data path between the processor FSB agents, and must connect the  
appropriate pins on all such agents. The data driver asserts DRDY# to  
indicate a valid data transfer.  
3
D[63:0]# are quad-pumped signals, and will thus be driven four  
times in a common clock period. D[63:0]# are latched off the falling  
edge of both DSTBP[3:0]# and DSTBN[3:0]#. Each group of 16 data  
signals correspond to a pair of one DSTBP# and one DSTBN#. The  
following table shows the grouping of data signals to strobes and  
DBI#.  
DSTBN#/DST  
Data Group  
DBI#  
BP#  
D[15:0]#  
D[31:16]#  
D[47:32]#  
D[63:48]#  
0
1
2
3
0
1
2
3
Furthermore, the DBI# signals determine the polarity of the data  
signals. Each group of 16 data signals corresponds to one DBI#  
signal. When the DBI# signal is active, the corresponding data group  
is inverted and therefore sampled active high.  
DBI[3:0]#  
I/O  
DBI[3:0]# (Data Bus Inversion) are source synchronous and indicate  
the polarity of the D[63:0]# signals. The DBI[3:0]# signals are  
activated when the data on the data bus is inverted. If more than half  
the data bits, within, within a 16-bit group, would have been asserted  
electronically low, the bus agent may invert the data bus signals for  
that particular sub-phase for that 16-bit group.  
3
DBI[3:0] Assignment to Data Bus  
Bus Signal  
Data Bus Signals  
DBI0#  
DBI1#  
DBI2#  
DBI3#  
D[15:0]#  
D[31:16]#  
D[47:32]#  
D[63:48]#  
DBR#  
O
DBR# is used only in systems where no debug port connector is  
implemented on the system board. DBR# is used by a debug port  
interposer so that an in-target probe can drive system reset. If a  
debug port connector is implemented in the system, DBR# is a no-  
connect on the Quad-Core Intel® Xeon® Processor 5400 Series  
package. DBR# is not a processor signal.  
DBSY#  
I/O  
DBSY# (Data Bus Busy) is asserted by the agent responsible for  
driving data on the processor FSB to indicate that the data bus is in  
use. The data bus is released after DBSY# is deasserted. This signal  
must connect the appropriate pins on all processor FSB agents.  
3
73  
Signal Definitions  
Table 5-1.  
Signal Definitions (Sheet 4 of 8)  
Name  
DEFER#  
Type  
Description  
Notes  
I
DEFER# is asserted by an agent to indicate that a transaction cannot  
be guaranteed in-order completion. Assertion of DEFER# is normally  
the responsibility of the addressed memory or I/O agent. This signal  
must connect the appropriate pins of all processor FSB agents.  
3
3
3
DP[3:0]#  
DRDY#  
I/O  
I/O  
DP[3:0]# (Data Parity) provide parity protection for the D[63:0]#  
signals. They are driven by the agent responsible for driving  
D[63:0]#, and must connect the appropriate pins of all processor  
FSB agents.  
DRDY# (Data Ready) is asserted by the data driver on each data  
transfer, indicating valid data on the data bus. In a multi-common  
clock data transfer, DRDY# may be deasserted to insert idle clocks.  
This signal must connect the appropriate pins of all processor FSB  
agents.  
DSTBN[3:0]#  
I/O  
Data strobe used to latch in D[63:0]#.  
3
Signals  
Associated Strobes  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBN0#  
DSTBN1#  
DSTBN2#  
DSTBN3#  
DSTBP[3:0]#  
I/O  
Data strobe used to latch in D[63:0]#.  
3
Signals  
Associated Strobes  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBP0#  
DSTBP1#  
DSTBP2#  
DSTBP3#  
FERR#/PBE#  
O
FERR#/PBE# (floating-point error/pending break event) is a  
multiplexed signal and its meaning is qualified by STPCLK#. When  
STPCLK# is not asserted, FERR#/PBE# indicates a floating-point  
error and will be asserted when the processor detects an unmasked  
floating-point error. When STPCLK# is not asserted, FERR#/PBE# is  
similar to the ERROR# signal on the Intel387 coprocessor, and is  
included for compatibility with systems using MS-DOS*-type floating-  
point error reporting. When STPCLK# is asserted, an assertion of  
FERR#/PBE# indicates that the processor has a pending break event  
waiting for service. The assertion of FERR#/PBE# indicates that the  
processor should be returned to the Normal state. For additional  
information on the pending break event functionality, including the  
identification of support of the feature and enable/disable  
2
®
information, refer to Vol. 3 of the Intel 64 and IA-32 Architectures  
Software Developer’s Manual and the Intel Processor Identification  
and the CPUID Instruction application note.  
FORCEPR#  
I
I
The FORCEPR# (force power reduction) input can be used by the  
platform to cause the Quad-Core Intel® Xeon® Processor 5400  
Series to activate the Thermal Control Circuit (TCC).  
GTLREF_ADD_MID  
GTLREF_ADD_END  
GTLREF_ADD determines the signal reference level for AGTL+  
address and common clock input lands. GTLREF_ADD is used by the  
AGTL+ receivers to determine if a signal is a logical 0 or a logical 1.  
Please refer to Table 2-19 and the appropriate platform design  
guidelines for additional details.  
74  
Signal Definitions  
Table 5-1.  
Signal Definitions (Sheet 5 of 8)  
Name  
Type  
Description  
Notes  
GTLREF_DATA_MID  
GTLREF_DATA_END  
I
GTLREF_DATA determines the signal reference level for AGTL+ data  
input lands. GTLREF_DATA is used by the AGTL+ receivers to  
determine if a signal is a logical 0 or a logical 1. Please refer to  
Table 2-19 and the appropriate platform design guidelines for  
additional details.  
HIT#  
HITM#  
I/O  
I/O  
HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction snoop  
operation results. Any FSB agent may assert both HIT# and HITM#  
together to indicate that it requires a snoop stall, which can be  
continued by reasserting HIT# and HITM# together.  
3
IERR#  
O
IERR# (Internal Error) is asserted by a processor as the result of an  
internal error. Assertion of IERR# is usually accompanied by a  
SHUTDOWN transaction on the processor FSB. This transaction may  
optionally be converted to an external error signal (e.g., NMI) by  
system core logic. The processor will keep IERR# asserted until the  
assertion of RESET#.  
2
2
This signal does not have on-die termination.  
IGNNE#  
I
IGNNE# (Ignore Numeric Error) is asserted to force the processor to  
ignore a numeric error and continue to execute noncontrol floating-  
point instructions. If IGNNE# is deasserted, the processor generates  
an exception on a noncontrol floating-point instruction if a previous  
floating-point instruction caused an error. IGNNE# has no effect when  
the NE bit in control register 0 (CR0) is set.  
IGNNE# is an asynchronous signal. However, to ensure recognition of  
this signal following an I/O write instruction, it must be valid along  
with the TRDY# assertion of the corresponding I/O write bus  
transaction.  
INIT#  
I
I
INIT# (Initialization), when asserted, resets integer registers inside  
all processors without affecting their internal caches or floating-point  
registers. Each processor then begins execution at the power-on  
Reset vector configured during power-on configuration. The processor  
continues to handle snoop requests during INIT# assertion. INIT# is  
an asynchronous signal and must connect the appropriate pins of all  
processor FSB agents.  
2
2
LINT[1:0]  
LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins  
of all FSB agents. When the APIC functionality is disabled, the  
LINT0/INTR signal becomes INTR, a maskable interrupt request  
signal, and LINT1/NMI becomes NMI, a nonmaskable interrupt. INTR  
and NMI are backward compatible with the signals of those names on  
®
the Pentium processor. Both signals are asynchronous.  
These signals must be software configured via BIOS programming of  
the APIC register space to be used either as NMI/INTR or LINT[1:0].  
Because the APIC is enabled by default after Reset, operation of  
these pins as LINT[1:0] is the default configuration.  
LL_ID[1:0]  
LOCK#  
O
The LL_ID[1:0] signals are used to select the correct loadline slope  
for the processor. These signals are not connected to the processor  
die.  
I/O  
LOCK# indicates to the system that a transaction must occur  
atomically. This signal must connect the appropriate pins of all  
processor FSB agents. For a locked sequence of transactions, LOCK#  
is asserted from the beginning of the first transaction to the end of  
the last transaction.  
3
When the priority agent asserts BPRI# to arbitrate for ownership of  
the processor FSB, it will wait until it observes LOCK# deasserted.  
This enables symmetric agents to retain ownership of the processor  
FSB throughout the bus locked operation and ensure the atomicity of  
lock.  
75  
Signal Definitions  
Table 5-1.  
Signal Definitions (Sheet 6 of 8)  
Name  
MCERR#  
Type  
Description  
Notes  
I/O  
MCERR# (Machine Check Error) is asserted to indicate an  
unrecoverable error without a bus protocol violation. It may be driven  
by all processor FSB agents.  
MCERR# assertion conditions are configurable at a system level.  
Assertion options are defined by the following options:  
Enabled or disabled.  
Asserted, if configured, for internal errors along with IERR#.  
Asserted, if configured, by the request initiator of a bus  
transaction after it observes an error.  
Asserted by any bus agent when it observes an error in a bus  
transaction.  
For more details regarding machine check architecture, refer to the  
®
Intel 64 and IA-32 Architectures Software Developer’s Manual,  
Volume 3.  
MS_ID[1:0]  
PROCHOT#  
O
O
These signals are provided to indicate the Market Segment for the  
processor and may be used for future processor compatibility or for  
keying. These signals are not connected to the processor die. Both  
the bits 0 and 1 are logic 1 and are no connects on the package.  
PROCHOT# (Processor Hot) will go active when the processor’s  
temperature monitoring sensor detects that the processor has  
reached its maximum safe operating temperature. This indicates that  
the Thermal Control Circuit (TCC) has been activated, if enabled. The  
TCC will remain active until shortly after the processor deasserts  
PROCHOT#. See Section 6.2.3 for more details.  
PWRGOOD  
I
PWRGOOD (Power Good) is an input. The processor requires this  
signal to be a clean indication that all processor clocks and power  
supplies are stable and within their specifications. “Clean” implies  
that the signal will remain low (capable of sinking leakage current),  
without glitches, from the time that the power supplies are turned on  
until they come within specification. The signal must then transition  
monotonically to a high state. PWRGOOD can be driven inactive at  
any time, but clocks and power must again be stable before a  
subsequent rising edge of PWRGOOD. It must also meet the  
minimum pulse width specification in Table 2-18, and be followed by  
a 1-10 ms RESET# pulse.  
2
The PWRGOOD signal must be supplied to the processor; it is used to  
protect internal circuits against voltage sequencing issues. It should  
be driven high throughout boundary scan operation.  
REQ[4:0]#  
RESET#  
I/O  
REQ[4:0]# (Request Command) must connect the appropriate pins of  
all processor FSB agents. They are asserted by the current bus owner  
to define the currently active transaction type. These signals are  
source synchronous to ADSTB[1:0]#. Refer to the AP[1:0]# signal  
description for details on parity checking of these signals.  
3
3
I
Asserting the RESET# signal resets all processors to known states  
and invalidates their internal caches without writing back any of their  
contents. For a power-on Reset, RESET# must stay active for at least  
1 ms after VCC and BCLK have reached their proper specifications. On  
observing active RESET#, all FSB agents will deassert their outputs  
within two clocks. RESET# must not be kept asserted for more than  
10 ms while PWRGOOD is asserted.  
A number of bus signals are sampled at the active-to-inactive  
transition of RESET# for power-on configuration. These configuration  
options are described in the Section 7.1.  
This signal does not have on-die termination and must be terminated  
on the system board.  
RS[2:0]#  
I
RS[2:0]# (Response Status) are driven by the response agent (the  
agent responsible for completion of the current transaction), and  
must connect the appropriate pins of all processor FSB agents.  
3
76  
Signal Definitions  
Table 5-1.  
Signal Definitions (Sheet 7 of 8)  
Name  
Type  
Description  
Notes  
RSP#  
I
RSP# (Response Parity) is driven by the response agent (the agent  
responsible for completion of the current transaction) during  
assertion of RS[2:0]#, the signals for which RSP# provides parity  
protection. It must connect to the appropriate pins of all processor  
FSB agents.  
3
A correct parity signal is high if an even number of covered signals  
are low and low if an odd number of covered signals are low. While  
RS[2:0]# = 000, RSP# is also high, since this indicates it is not being  
driven by any agent guaranteeing correct parity.  
SKTOCC#  
SMI#  
O
I
SKTOCC# (Socket occupied) will be pulled to ground by the processor  
to indicate that the processor is present. There is no connection to  
the processor silicon for this signal.  
SMI# (System Management Interrupt) is asserted asynchronously by  
system logic. On accepting a System Management Interrupt,  
processors save the current state and enter System Management  
Mode (SMM). An SMI Acknowledge transaction is issued, and the  
processor begins program execution from the SMM handler.  
If SMI# is asserted during the deassertion of RESET# the processor  
will tri-state its outputs. See Section 7.1.  
2
2
STPCLK#  
I
STPCLK# (Stop Clock), when asserted, causes processors to enter a  
low power Stop-Grant state. The processor issues a Stop-Grant  
Acknowledge transaction, and stops providing internal clock signals  
to all processor core units except the FSB and APIC units. The  
processor continues to snoop bus transactions and service interrupts  
while in Stop-Grant state. When STPCLK# is deasserted, the  
processor restarts its internal clock to all units and resumes  
execution. The assertion of STPCLK# has no effect on the bus clock;  
STPCLK# is an asynchronous input.  
TCK  
I
I
TCK (Test Clock) provides the clock input for the processor Test Bus  
(also known as the Test Access Port).  
TDI  
TDI (Test Data In) transfers serial test data into the processor. TDI  
provides the serial input needed for JTAG specification support.  
TDO  
O
I
TDO (Test Data Out) transfers serial test data out of the processor.  
TDO provides the serial output needed for JTAG specification support.  
TESTHI[12:10]  
TESTHI[12:10] must be connected to a VTT power source through a  
resistor for proper processor operation. Refer to Section 2.6 for  
TESTHI grouping restrictions.  
TESTIN1  
TESTIN2  
I
I
TESTIN1 must be connected to a VTT power source through a resistor  
as well as to the TESTIN2 land of the same socket for proper  
processor operation.  
TESTIN2 must be connected to a VTT power source through a resistor  
as well as to the TESTIN1 land of the same socket for proper  
processor operation.  
THERMTRIP#  
O
Assertion of THERMTRIP# (Thermal Trip) indicates the processor  
junction temperature has reached a temperature beyond which  
permanent silicon damage may occur. Measurement of the  
1
temperature is accomplished through an internal thermal sensor.  
Upon assertion of THERMTRIP#, the processor will shut off its internal  
clocks (thus halting program execution) in an attempt to reduce the  
processor junction temperature. To protect the processor its core  
voltage (V ) must be removed following the assertion of  
CC  
THERMTRIP#. Intel also recommends the removal of V when  
TT  
THERMTRIP# is asserted.  
Driving of the THERMTRIP# signals is enabled within 10 μs of the  
assertion of PWRGOOD and is disabled on de-assertion of PWRGOOD.  
Once activated, THERMTRIP# remains latched until PWRGOOD is de-  
asserted. While the de-assertion of the PWRGOOD signal will de-  
assert THERMTRIP#, if the processor’s junction temperature remains  
at or above the trip level, THERMTRIP# will again be asserted within  
10 μs of the assertion of PWRGOOD.  
77  
Signal Definitions  
Table 5-1.  
Signal Definitions (Sheet 8 of 8)  
Name  
Type  
Description  
Notes  
TMS  
I
TMS (Test Mode Select) is a JTAG specification support signal used by  
debug tools.  
®
See the Debug Port Design Guide for Intel 5000 Series Chipset  
Memory Controller Hub (MCH) Systems (External Version) for further  
information.  
TRDY#  
TRST#  
I
TRDY# (Target Ready) is asserted by the target to indicate that it is  
ready to receive a write or implicit writeback data transfer. TRDY#  
must connect the appropriate pins of all FSB agents.  
I
I
TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST#  
must be driven low during power on Reset.  
V
The Quad-Core Intel® Xeon® Processor 5400 Series implements an  
CCPLL  
on-die PLL filter solution. The V  
voltage.  
input is used as a PLL supply  
CCPLL  
VCC_DIE_SENSE  
VCC_DIE_SENSE2  
O
VCC_DIE_SENSE and VCC_DIE_SENSE2 provides an isolated, low  
impedance connection to the processor core power and ground. This  
signal should be connected to the voltage regulator feedback signal,  
which insures the output voltage (that is, processor voltage) remains  
within specification. Please see the applicable platform design guide  
for implementation details.  
VID[6:1]  
O
VID[6:1] (Voltage ID) pins are used to support automatic selection of  
power supply voltages (V ). These are CMOS signals that are driven  
CC  
by the processor and must be pulled up through a resistor.  
Conversely, the voltage regulator output must be disabled prior to the  
voltage supply for these pins becomes invalid. The VID pins are  
needed to support processor voltage specification variations. See  
Table 2-4 for definitions of these pins. The VR must supply the  
voltage that is requested by these pins, or disable itself.  
VID_SELECT  
O
O
VID_SELECT is an output from the processor which selects the  
appropriate VID table for the Voltage Regulator. This signal is not  
connected to the processor die. This signal is a no-connect on the  
Quad-Core Intel® Xeon® Processor 5400 Series package.  
VSS_DIE_SENSE  
VSS_DIE_SENSE2  
VSS_DIE_SENSE and VSS_DIE_SENSE2 provides an isolated, low  
impedance connection to the processor core power and ground. This  
signal should be connected to the voltage regulator feedback signal,  
which insures the output voltage (that is, processor voltage) remains  
within specification. Please see the applicable platform design guide  
for implementation details.  
VTT  
P
O
O
The FSB termination voltage input pins. Refer to Table 2-12 for  
further details.  
VTT_OUT  
VTT_SEL  
The VTT_OUT signals are included in order to provide a local VTT for  
some signals that require termination to VTT on the motherboard.  
The VTT_SEL signal is used to select the correct VTT voltage level for  
the processor. VTT_SEL is connected to VSS on the Quad-Core Intel®  
Xeon® Processor 5400 Series package.  
Notes:  
1.  
2.  
3.  
For this processor land on the Quad-Core Intel® Xeon® Processor 5400 Series, the maximum number of  
symmetric agents is one. Maximum number of priority agents is zero.  
For this processor land on the Quad-Core Intel® Xeon® Processor 5400 Series, the maximum number of  
symmetric agents is two. Maximum number of priority agents is zero.  
For this processor land on the Quad-Core Intel® Xeon® Processor 5400 Series, the maximum number of  
symmetric agents is two. Maximum number of priority agents is one.  
§
78  
Thermal Specifications  
6 Thermal Specifications  
6.1  
Package Thermal Specifications  
The Quad-Core Intel® Xeon® Processor 5400 Series requires a thermal solution to  
maintain temperatures within its operating limits. Any attempt to operate the processor  
outside these operating limits may result in permanent damage to the processor and  
potentially other components within the system. As processor technology changes,  
thermal management becomes increasingly crucial when building computer systems.  
Maintaining the proper thermal environment is key to reliable, long-term system  
operation.  
A complete solution includes both component and system level thermal management  
features. Component level thermal solutions can include active or passive heatsinks  
attached to the processor integrated heat spreader (IHS). Typical system level thermal  
solutions may consist of system fans combined with ducting and venting.  
This section provides data necessary for developing a complete thermal solution. For  
more information on designing a component level thermal solution, refer to the Quad-  
Core Intel® Xeon® Processor 5400 Series Thermal/Mechanical Design Guidelines  
(TMDG).  
Note:  
The boxed processor will ship with a component thermal solution. Refer to Chapter 8  
for details on the boxed processor.  
6.1.1  
Thermal Specifications  
To allow the optimal operation and long-term reliability of Intel processor-based  
systems, the processor must remain within the minimum and maximum case  
temperature (TCASE) specifications as defined by the applicable thermal profile (see  
Table 6-1 and Figure 6-1 for the Quad-Core Intel® Xeon® Processor X5482, Table 6-3  
and Figure 6-2 for the Quad-Core Intel® Xeon® Processor X5400 Series, Table 6-6 and  
Figure 6-3 for the Quad-Core Intel® Xeon® Processor E5400 Series, Table 6-8 and  
Figure 6-4 for the Quad-Core Intel® Xeon® Processor L5400 Series and Table 6-11  
and Figure 6-5 for the Quad-Core Intel® Xeon® Processor L5408. Thermal solutions  
not designed to provide this level of thermal capability may affect the long-term  
reliability of the processor and system. For more details on thermal solution design,  
please refer to the Quad-Core Intel® Xeon® Processor 5400 Series  
Thermal/Mechanical Design Guidelines (TMDG) or Quad-Core Intel® Xeon® Processor  
L5408 Series in Embedded Applications Thermal/Mechanical Design Guidelines (TMDG).  
The Quad-Core Intel® Xeon® Processor 5400 Series implements a methodology for  
managing processor temperatures which is intended to support acoustic noise  
reduction through fan speed control and to assure processor reliability. Selection of the  
appropriate fan speed is based on the relative temperature data reported by the  
processor’s Platform Environment Control Interface (PECI) bus as described in  
Section 6.3. If the value reported via PECI is less than TCONTROL, then the case  
temperature is permitted to exceed the Thermal Profile. If the value reported via PECI  
is greater than or equal to TCONTROL, then the processor case temperature must remain  
at or below the temperature as specified by the thermal profile. The temperature  
reported over PECI is always a negative value and represents a delta below the onset of  
thermal control circuit (TCC) activation, as indicated by PROCHOT# (see Section 6.2,  
79  
Thermal Specifications  
Processor Thermal Features). Systems that implement fan speed control must be  
designed to use this data. Systems that do not alter the fan speed only need to  
guarantee the case temperature meets the thermal profile specifications.  
The Quad-Core Intel® Xeon® Processor X5482, and Quad-Core Intel® Xeon®  
Processor E5400 Series, and Quad-Core Intel® Xeon® Processor L5400 Series support  
a single Thermal Profile (see Figure 6-1, and Figure 6-3 and Figure 6-4; Table 6-1, and  
Table 6-6, and Table 6-8). With this Thermal Profile, it is expected that the Thermal  
Control Circuit (TCC) would only be activated for very brief periods of time when  
running the most power-intensive applications. Refer to the Quad-Core Intel® Xeon®  
Processor 5400 Series Thermal/Mechanical Design Guidelines (TMDG) for details on  
system thermal solution design, thermal profiles and environmental considerations.  
The Quad-Core Intel® Xeon® Processor L5408 supports a Thermal Profile with nominal  
and short-term conditions designed to meet NEBS level 3 compliance (see Figure 6-5).  
Operation at either thermal profile should result in virtually no TCC activation. Refer to  
the Quad-Core Intel® Xeon® Processor L5408 Series in Embedded Applications  
Thermal/Mechanical Design Guidelines (TMDG).  
The Quad-Core Intel® Xeon® Processor X5400 Series supports a dual Thermal Profile,  
either of which can be implemented. Both ensure adherence to the Intel reliability  
requirements. Thermal Profile A (see Figure 6-2; Table 6-3) is representative of a  
volumetrically unconstrained thermal solution (that is, industry enabled 2U heatsink).  
In this scenario, it is expected that the Thermal Control Circuit (TCC) would only be  
activated for very brief periods of time when running the most power intensive  
applications. Thermal Profile B (see Figure 6-2; Table 6-5) is indicative of a constrained  
thermal environment (that is, 1U form factor). Because of the reduced cooling  
capability represented by this thermal solution, the probability of TCC activation and  
performance loss is increased. Additionally, utilization of a thermal solution that does  
not meet Thermal Profile B will violate the thermal specifications and may result in  
permanent damage to the processor. Intel has developed these thermal profiles to  
allow customers to choose the thermal solution and environmental parameters that  
best suit their platform implementation. Refer to the Quad-Core Intel® Xeon®  
Processor 5400 Series Thermal/Mechanical Design Guidelines (TMDG) for details on  
system thermal solution design, thermal profiles and environmental considerations.  
The upper point of the thermal profile consists of the Thermal Design Power (TDP)  
defined in Table 6-1 for the Quad-Core Intel® Xeon® Processor X5482, Table 6-3 for  
the Quad-Core Intel® Xeon® Processor X5400 Series, Table 6-6 for the Quad-Core  
Intel® Xeon® Processor E5400 Series, and Table 6-8 for the Quad-Core Intel® Xeon®  
Processor L5400 Series and the associated TCASE values. The lower point of the thermal  
profile is the TCASE_MAX at 0 W power (or no power draw)  
Analysis indicates that real applications are unlikely to cause the processor to consume  
maximum power dissipation for sustained time periods. Intel recommends that  
complete thermal solution designs target the Thermal Design Power (TDP) indicated in  
Table 6-2 for the Quad-Core Intel® Xeon® Processor X5482 (C-step) and Quad-Core  
Intel® Xeon® Processor X5492, Table 6-4 and Table 6-5 for the Quad-Core Intel®  
Xeon® Processor X5400 Series, Table 6-7 for the Quad-Core Intel® Xeon® Processor  
E5400 Series and Table 6-9Quad-Core Intel® Xeon® Processor L5400 Series instead of  
the maximum processor power consumption. The Thermal Monitor feature is intended  
to help protect the processor in the event that an application exceeds the TDP  
recommendation for a sustained time period. For more details on this feature, refer to  
Section 6.2. To ensure maximum flexibility for future requirements, systems should be  
designed to the Flexible Motherboard (FMB) guidelines, even if a processor with lower  
80  
Thermal Specifications  
power dissipation is currently planned. Intel® Thermal Monitor 1 and Intel®  
Thermal Monitor 2 feature must be enabled for the processor to remain within  
its specifications.  
Table 6-1.  
Quad-Core Intel® Xeon® Processor X5492 and X5482 (C-step) Thermal  
Specifications  
Thermal Design  
Power  
Minimum  
Maximum  
Core  
Frequency  
T
T
Notes  
CASE  
CASE  
(W)  
(°C)  
(°C)  
Launch to FMB  
150 (X5492 and  
X5482 C-step)  
5
See Figure 6-1; Table 6-2  
1,2,3,4,5,6  
Notes:  
1.  
These values are specified at V  
for all processor frequencies. Systems must be designed to ensure  
CC_MAX  
the processor is not to be subjected to any static V and I combination wherein V exceeds V at  
CC  
CC  
CC  
CC_MAX  
specified I . Please refer to the loadline specifications in Section 2.13.1.  
Thermal Design Power (TDP) should be used for the processor thermal solution design targets. TDP is not  
CC  
2.  
the maximum power that the processor can dissipate. TDP is measured at maximum T  
These specifications are based on silicon characterization.  
Power specifications are defined at all VIDs found in Table 2-3. The Quad-Core Intel® Xeon® Processor  
X5482 may be shipped under multiple VIDs for each frequency.  
.
CASE  
3.  
4.  
5.  
6.  
FMB, or Flexible Motherboard, guidelines provide a design target for meeting all planned processor  
frequency requirements.  
The Quad-Core Intel® Xeon® Processor X5482 is intended for dual processor workstations only.  
Figure 6-1. Quad-Core Intel® Xeon® Processor X5492 and X5482 (C-step)Thermal Profile  
Thermal Profile (2U)  
75  
70  
65  
60  
55  
50  
Thermal Profile  
Y = 0.187*x + 35  
45  
40  
35  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
Pow er [W]  
Notes:  
1.  
2.  
Please refer to Table 6-2 for discrete points that constitute the thermal profile.  
Implementation of the Quad-Core Intel® Xeon® Processor X5482 Thermal Profile should result in virtually  
no TCC activation. Furthermore, utilization of thermal solutions that do not meet the processor Thermal  
Profile will result in increased probability of TCC activation and may incur measurable performance loss.  
Refer to the Quad-Core Intel® Xeon® Processor 5400 Series Thermal/Mechanical Design Guidelines  
(TMDG) for system and environmental implementation details.  
3.  
81  
Thermal Specifications  
Table 6-2.  
Quad-Core Intel® Xeon® Processor X5492 and X5482 (C-step)Thermal Profile  
Table  
Power (W)  
T
(°C)  
CASE_MAX  
35.0  
35.9  
36.9  
37.8  
38.7  
39.7  
40.6  
41.5  
42.5  
43.0  
44.4  
45.3  
46.2  
47.2  
48.1  
49.0  
50.0  
50.9  
51.8  
52.8  
53.7  
54.6  
55.6  
56.5  
57.4  
58.4  
59.3  
60.2  
61.2  
62.1  
63.0  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95  
100  
105  
110  
115  
120  
125  
130  
135  
140  
145  
150  
82  
Thermal Specifications  
Table 6-3.  
Quad-Core Intel® Xeon® Processor X5400 Series Thermal Specifications  
Thermal  
Design Power  
(W)  
Minimum  
CASE  
(°C)  
Maximum  
Core  
Frequency  
T
T
Notes  
CASE  
(°C)  
Launch to FMB  
120  
5
See Figure 6-2; Table 6-4;  
Table 6-5  
1, 2, 3, 4, 5  
Notes:  
1.  
These values are specified at V  
for all processor frequencies. Systems must be designed to ensure  
CC_MAX  
the processor is not to be subjected to any static V and I combination wherein V exceeds V at  
CC  
CC  
CC  
CC_MAX  
specified ICC. Please refer to the loadline specifications in Section 2.13.1.  
Thermal Design Power (TDP) should be used for the processor thermal solution design targets. TDP is not  
2.  
the maximum power that the processor can dissipate. TDP is measured at maximum T  
These specifications are based on silicon characterization.  
Power specifications are defined at all VIDs found in Table 2-3. The Quad-Core Intel® Xeon® Processor  
X5400 Series may be shipped under multiple VIDs for each frequency.  
FMB, or Flexible Motherboard, guidelines provide a design target for meeting all planned processor  
frequency requirements.  
.
CASE  
3.  
4.  
5.  
Figure 6-2. Quad-Core Intel® Xeon® Processor X5400 Series Thermal Profiles A and B  
TCASE_MAX is a thermal solution design point. In actuality, units  
will not significantly exceed TCASE_MAX_A due to TCC activation.  
75  
70  
65  
60  
Thermal Profile B  
Y = 0.221*x + 43.5  
55  
Thermal Profile A  
Y = 0.168*x + 42.8  
50  
45  
40  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
Pow er [W]  
Notes:  
1.  
Thermal Profile A is representative of a volumetrically unconstrained platform. Please refer to Table 6-4 for  
discrete points that constitute the thermal profile.  
2.  
Implementation of the Quad-Core Intel® Xeon® Processor X5400 Series Thermal Profile A should result in  
virtually no TCC activation. Furthermore, utilization of thermal solutions that do not meet Thermal Profile A  
will result in increased probability of TCC activation and may incur measurable performance loss. (See  
Section 6.2 for details on TCC activation).  
3.  
4.  
Thermal Profile B is representative of a volumetrically constrained platform. Please refer to Table 6-5 for  
discrete points that constitute the thermal profile.  
Implementation of the Quad-Core Intel® Xeon® Processor X5400 Series Thermal Profile B will result in  
increased probability of TCC activation and measurable performance loss. Furthermore, utilization of  
thermal solutions that do not meet Thermal Profile B do not meet the processor’s thermal specifications  
and may result in permanent damage to the processor.  
5.  
Refer to the Quad-Core Intel® Xeon® Processor 5400 Series Thermal/Mechanical Design Guidelines  
(TMDG) for system and environmental implementation details.  
83  
Thermal Specifications  
Table 6-4.  
Quad-Core Intel® Xeon® Processor X5400 Series Thermal Profile A Table  
Power (W)  
T
(°C)  
CASE_MAX  
42.8  
43.6  
44.5  
45.3  
46.2  
47.0  
47.8  
48.7  
49.5  
50.0  
51.2  
52.0  
52.9  
53.7  
54.6  
55.4  
56.2  
57.1  
57.9  
58.8  
59.6  
60.4  
61.3  
62.1  
63.0  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95  
100  
105  
110  
115  
120  
84  
Thermal Specifications  
Table 6-5.  
Quad-Core Intel® Xeon® Processor X5400 Series Thermal Profile B Table  
Power (W)  
T
(°C)  
CASE_MAX  
43.5  
44.6  
45.7  
46.8  
47.9  
49.0  
50.1  
51.2  
52.3  
53.4  
54.6  
55.7  
56.8  
57.9  
59.0  
60.1  
61.2  
62.3  
63.4  
64.5  
65.6  
66.7  
67.8  
68.9  
70.0  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95  
100  
105  
110  
115  
120  
Table 6-6.  
Quad-Core Intel® Xeon® Processor E5400 Series Thermal Specifications  
Thermal  
Design Power  
(W)  
Minimum  
CASE  
(°C)  
Maximum  
Core  
Frequency  
T
T
Notes  
CASE  
(°C)  
Launch to FMB  
80  
5
See Figure 6-3; Table 6-7  
1, 2, 3, 4, 5  
Notes:  
1.  
These values are specified at V  
for all processor frequencies. Systems must be designed to ensure  
CC_MAX  
the processor is not to be subjected to any static VCC and ICC combination wherein VCC exceeds V  
at specified ICC. Please refer to the loadline specifications in Section 2.13.  
Thermal Design Power (TDP) should be used for the processor thermal solution design targets. TDP is not  
CC_MAX  
2.  
the maximum power that the processor can dissipate. TDP is measured at maximum T  
These specifications are based on silicon characterization.  
.
CASE  
3.  
4.  
Power specifications are defined at all VIDs found in Table 2-12. The Quad-Core Intel® Xeon® Processor  
E5400 Series may be shipped under multiple VIDs for each frequency.  
FMB, or Flexible Motherboard, guidelines provide a design target for meeting all planned processor  
frequency requirements.  
5.  
85  
Thermal Specifications  
Figure 6-3. Quad-Core Intel® Xeon® Processor E5400 Series Thermal Profile  
70  
68  
66  
64  
62  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
Thermal Profile  
Y = 0.298*x + 43.2  
0
10  
20  
30  
40  
50  
60  
70  
80  
Pow er [W]  
Notes:  
1.  
2.  
Please refer to Table 6-7 for discrete points that constitute the thermal profile.  
Implementation of the Quad-Core Intel® Xeon® Processor 5400 Series Thermal Profile should result in  
virtually no TCC activation. Furthermore, utilization of thermal solutions that do not meet the processor  
Thermal Profile will result in increased probability of TCC activation and may incur measurable performance  
loss. (See Section 6.2 for details on TCC activation).  
3.  
Refer to the Quad-Core Intel® Xeon® Processor 5400 Series Thermal/Mechanical Design Guidelines  
(TMDG) for system and environmental implementation details.  
Table 6-7.  
Quad-Core Intel® Xeon® Processor E5400 Series Thermal Profile Table  
(Sheet 1 of 2)  
Power (W)  
T
(°C)  
CASE_MAX  
43.5  
45.0  
46.4  
47.9  
49.4  
50.9  
52.3  
53.8  
55.3  
56.7  
58.2  
59.7  
61.1  
62.6  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
86  
Thermal Specifications  
Table 6-7.  
Quad-Core Intel® Xeon® Processor E5400 Series Thermal Profile Table  
(Sheet 2 of 2)  
Power (W)  
T
(°C)  
CASE_MAX  
64.1  
70  
75  
80  
65.6  
67.0  
Table 6-8.  
Quad-Core Intel® Xeon® Processor L5400 Series Thermal Specifications  
Thermal Design  
Power  
Minimum  
CASE  
(°C)  
Maximum  
Core  
Frequency  
T
T
Notes  
CASE  
(°C)  
(W)  
Launch to FMB  
50  
5
See Figure 6-4; Table 6-9  
1, 2, 3, 4, 5  
Notes:  
1.  
These values are specified at V  
for all processor frequencies. Systems must be designed to ensure  
CC_MAX  
the processor is not to be subjected to any static VCC and ICC combination wherein VCC exceeds V  
at specified ICC. Please refer to the loadline specifications in Section 2.13.  
CC_MAX  
2.  
3.  
4.  
5.  
Thermal Design Power (TDP) should be used for processor thermal solution design targets. TDP is not the  
maximum power that the processor can dissipate. TDP is measured at maximum T  
.
CASE  
These specifications are based pre-silicon estimates and simulations. These specifications will be updated  
with characterized data from silicon measurements in a future release of this document.  
Power specifications are defined at all VIDs found in Table 2-12. The Quad-Core Intel® Xeon® Processor  
L5400 Series may be shipped under multiple VIDs for each frequency.  
FMB, or Flexible Motherboard, guidelines provide a design target for meeting all planned processor  
frequency requirements.  
Figure 6-4. Quad-Core Intel® Xeon® Processor L5400 Series Thermal Profile  
60  
58  
56  
54  
52  
50  
Thermal Profile  
Y = 0.298*x + 42.1  
48  
46  
44  
42  
40  
0
10  
20  
30  
40  
50  
Power [W]  
Notes:  
1.  
2.  
Please refer to Table 6-9 for discrete points that constitute the thermal profile.  
Implementation of the Quad-Core Intel® Xeon® Processor L5400 Series Thermal Profile should result in  
virtually no TCC activation. Furthermore, utilization of thermal solutions that do not meet the processor  
Thermal Profile will result in increased probability of TCC activation and may incur measurable performance  
loss. (See Section 6.2 for details on TCC activation).  
3.  
Refer to the Quad-Core Intel® Xeon® Processor 5400 Series Thermal/Mechanical Design Guidelines  
(TMDG) for system and environmental implementation details.  
87  
Thermal Specifications  
Table 6-9.  
Quad-Core Intel® Xeon® Processor L5400 Series Thermal Profile Table  
Power (W)  
T
(°C)  
CASE_MAX  
42.1  
43.6  
45.1  
46.6  
48.1  
49.6  
51.0  
52.5  
54.0  
55.5  
57.0  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Table 6-10. Quad-Core Intel® Xeon® Processor L5408 Thermal Specifications  
Thermal Design  
Power  
Minimum  
Maximum  
Core  
Frequency  
T
T
Notes  
CASE  
CASE  
(W)  
(°C)  
(°C)  
Launch to FMB  
40  
5
See Figure 6-5; Table 6-11  
1, 2, 3, 4, 5  
Notes:  
1.  
These values are specified at V  
the processor is not to be subjected to any static VCC and ICC combination wherein VCC exceeds V  
at specified ICC. Please refer to the loadline specifications in Section 2.13.  
for all processor frequencies. Systems must be designed to ensure  
CC_MAX  
CC_MAX  
2.  
3.  
4.  
5.  
Thermal Design Power (TDP) should be used for processor thermal solution design targets. TDP is not the  
maximum power that the processor can dissipate. TDP is measured at maximum T  
These specifications are based pre-silicon estimates and simulations. These specifications will be updated  
with characterized data from silicon measurements in a future release of this document.  
Power specifications are defined at all VIDs found in Table 2-12. The Quad-Core Intel® Xeon® Processor  
L5408 may be shipped under multiple VIDs for each frequency.  
.
CASE  
FMB, or Flexible Motherboard, guidelines provide a design target for meeting all planned processor  
frequency requirements.  
88  
Thermal Specifications  
Figure 6-5. Quad-Core Intel® Xeon® Processor L5408 Thermal Profile  
Thermal Profile  
90  
Short-termThermal Profile may only be used for short term  
excursions to higher ambient temperatures, not to exceed 360  
hours per year  
80  
70  
Short-TermThermal Profile  
Tc = 0.678 * P+ 60  
60  
Nominal Ther mal Prof ile  
Tc = 0.678 * P+ 45  
50  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
Power [W]  
Notes:  
1.  
2.  
Please refer to Table 6-11 for discrete points that constitute the thermal profile.  
Implementation of the Quad-Core Intel® Xeon® Processor L5408 Thermal Profile should result in virtually  
no TCC activation. Furthermore, utilization of thermal solutions that do not meet the processor Thermal  
Profile will result in increased probability of TCC activation and may incur measurable performance loss.  
(See Section 6.2 for details on TCC activation).  
3.  
4.  
The Nominal Thermal Profile must be used for all normal operating conditions, or for products that do not  
require NEBS Level 3 compliance.  
The Short-Term Thermal Profile may only be used for short-term excursions to higher ambient operating  
temperatures, not to exceed 96 hours per instance, 360 hours per year, and a maximum of 15 instances  
per year, as compliant with NEBS Level 3.  
5.  
6.  
Utilization of a thermal solution that exceeds the Short-Term Thermal Profile, or which operates at the  
Short-Term Thermal Profile for a duration longer than the limits specified in Note 4 above, do not meet the  
processor’s thermal specifications and may result in permanent damage to the processor.  
Refer to the Quad-Core Intel® Xeon® Processor L5408 Series in Embedded Applications  
Thermal/Mechanical Design Guidelines (TMDG) for system and environmental implementation details.  
Table 6-11. Quad-Core Intel® Xeon® Processor L5408 Thermal Profile Table  
Power (W)  
Nominal T  
(°C)  
Short-term T  
(°C)  
CASE_MAX  
CASE_MAX  
0
45  
48  
52  
55  
59  
62  
65  
69  
72  
60  
5
63  
67  
70  
74  
77  
80  
84  
87  
10  
15  
20  
25  
30  
35  
40  
89  
Thermal Specifications  
6.1.2  
Thermal Metrology  
The minimum and maximum case temperatures (TCASE) are specified in Table 6-2,  
Table 6-4, Table 6-5, and Table 6-7, and Table 6-9 and Table 6-11 are measured at the  
geometric top center of the processor integrated heat spreader (IHS). Figure 6-6  
illustrates the location where TCASE temperature measurements should be made. For  
detailed guidelines on temperature measurement methodology, refer to the Quad-Core  
Intel® Xeon® Processor 5400 Series Thermal/Mechanical Design Guidelines (TMDG).  
Figure 6-6. Case Temperature (TCASE) Measurement Location  
Note: Figure is not to scale and is for reference only.  
6.2  
Processor Thermal Features  
®
6.2.1  
Intel Thermal Monitor Features  
Quad-Core Intel® Xeon® Processor 5400 Series provides two thermal monitor  
features, Intel® Thermal Monitor 1 and Intel® Thermal Monitor 2. The Intel® Thermal  
Monitor 1 and Intel® Thermal Monitor 2 must both be enabled in BIOS for the  
processor to be operating within specifications. When both are enabled, Intel® Thermal  
Monitor 2 will be activated first and Intel® Thermal Monitor 1 will be added if Intel®  
Thermal Monitor 2 is not effective.  
6.2.1.1  
Intel® Thermal Monitor 1  
The Intel® Thermal Monitor 1 feature helps control the processor temperature by  
activating the Thermal Control Circuit (TCC) when the processor silicon reaches its  
maximum operating temperature. The TCC reduces processor power consumption as  
90  
Thermal Specifications  
needed by modulating (starting and stopping) the internal processor core clocks. The  
temperature at which the Intel® Thermal Monitor 1 activates the thermal control circuit  
is not user configurable and is not software visible. Bus traffic is snooped in the normal  
manner, and interrupt requests are latched (and serviced during the time that the  
clocks are on) while the TCC is active.  
When the Intel® Thermal Monitor 1 is enabled, and a high temperature situation exists  
(that is, TCC is active), the clocks will be modulated by alternately turning the clocks  
off and on at a duty cycle specific to the processor (typically 30 - 50%). Cycle times are  
processor speed dependent and will decrease as processor core frequencies increase. A  
small amount of hysteresis has been included to prevent rapid active/inactive  
transitions of the TCC when the processor temperature is near its maximum operating  
temperature. Once the temperature has dropped below the maximum operating  
temperature, and the hysteresis timer has expired, the TCC goes inactive and clock  
modulation ceases.  
With thermal solutions designed to the Quad-Core Intel® Xeon® Processor X5482,  
Quad-Core Intel® Xeon® Processor X5400 Series, and Quad-Core Intel® Xeon®  
Processor E5400 Series, and Quad-Core Intel® Xeon® Processor L5400 Series Thermal  
Profile, it is anticipated that the TCC would only be activated for very short periods of  
time when running the most power intensive applications. The processor performance  
impact due to these brief periods of TCC activation is expected to be so minor that it  
would be immeasurable. Refer to the Quad-Core Intel® Xeon® Processor 5400 Series  
Thermal/Mechanical Design Guidelines (TMDG) for information on designing a thermal  
solution.  
The duty cycle for the TCC, when activated by the Intel® Thermal Monitor 1, is factory  
configured and cannot be modified. The Intel® Thermal Monitor 1 does not require any  
additional hardware, software drivers, or interrupt handling routines.  
6.2.1.2  
Intel® Thermal Monitor 2  
The Quad-Core Intel® Xeon® Processor 5400 Series adds supports for an Enhanced  
Thermal Monitor capability known as Intel® Thermal Monitor 2). This mechanism  
provides an efficient means for limiting the processor temperature by reducing the  
power consumption within the processor. Intel® Thermal Monitor 2 requires support for  
dynamic VID transitions in the platform.  
Note:  
Not all Quad-Core Intel® Xeon® Processor 5400 Series are capable of supporting  
Intel® Thermal Monitor 2. More detail on which processor frequencies will support  
Intel® Thermal Monitor 2 will be provided in future releases of the Quad-Core Intel®  
Xeon® Processor 5400 Series Thermal/Mechanical Design Guidelines (TMDG) when  
available. For more details also refer to the Intel® 64 and IA-32 Architectures Software  
Developer’s Manual.  
When Intel® Thermal Monitor 2 is enabled, and a high temperature situation is  
detected, the Thermal Control Circuit (TCC) will be activated for both processor cores.  
The TCC causes the processor to adjust its operating frequency (via the bus multiplier)  
and input voltage (via the VID signals). This combination of reduced frequency and VID  
results in a reduction to the processor power consumption.  
A processor enabled for Intel® Thermal Monitor 2 includes two operating points, each  
consisting of a specific operating frequency and voltage, which is identical for both  
processor cores. The first operating point represents the normal operating condition for  
the processor. Under this condition, the core-frequency-to-system-bus multiplier  
utilized by the processor is that contained in the CLOCK_FLEX_MAX MSR and the VID  
that is specified in Table 2-3.  
91  
Thermal Specifications  
The second operating point consists of both a lower operating frequency and voltage.  
The lowest operating frequency is determined by the lowest supported bus ratio (1/6  
for the Quad-Core Intel® Xeon® Processor 5400 Series). When the TCC is activated,  
the processor automatically transitions to the new frequency. This transition occurs  
rapidly, on the order of 5 µs. During the frequency transition, the processor is unable to  
service any bus requests, and consequently, all bus traffic is blocked. Edge-triggered  
interrupts will be latched and kept pending until the processor resumes operation at the  
new frequency.  
Once the new operating frequency is engaged, the processor will transition to the new  
core operating voltage by issuing a new VID code to the voltage regulator. The voltage  
regulator must support dynamic VID steps in order to support Intel® Thermal Monitor  
2. During the voltage change, it will be necessary to transition through multiple VID  
codes to reach the target operating voltage. Each step will be one VID table entry (see  
Table 2-3). The processor continues to execute instructions during the voltage  
transition. Operation at the lower voltage reduces the power consumption of the  
processor.  
A small amount of hysteresis has been included to prevent rapid active/inactive  
transitions of the TCC when the processor temperature is near its maximum operating  
temperature. Once the temperature has dropped below the maximum operating  
temperature, and the hysteresis timer has expired, the operating frequency and  
voltage transition back to the normal system operating point. Transition of the VID code  
will occur first, in order to insure proper operation once the processor reaches its  
normal operating frequency. Refer to Figure 6-7 for an illustration of this ordering.  
Figure 6-7. Intel® Thermal Monitor 2 Frequency and Voltage Ordering  
TTM2  
Temperature  
fMAX  
fTM2  
Frequency  
VNOM  
VTM2  
Vcc  
Time  
T(hysterisis)  
The PROCHOT# signal is asserted when a high temperature situation is detected,  
regardless of whether Intel® Thermal Monitor 1 or Intel® Thermal Monitor 2 is  
enabled.  
6.2.2  
On-Demand Mode  
The processor provides an auxiliary mechanism that allows system software to force  
the processor to reduce its power consumption. This mechanism is referred to as “On-  
Demand” mode and is distinct from the Intel® Thermal Monitor 1 and Intel® Thermal  
Monitor 2 features. On-Demand mode is intended as a means to reduce system level  
power consumption. Systems utilizing the Quad-Core Intel® Xeon® Processor 5400  
92  
Thermal Specifications  
Series must not rely on software usage of this mechanism to limit the processor  
temperature. If bit 4 of the IA32_CLOCK_MODULATION MSR is set to a ‘1, the  
processor will immediately reduce its power consumption via modulation (starting and  
stopping) of the internal core clock, independent of the processor temperature. When  
using On-Demand mode, the duty cycle of the clock modulation is programmable via  
bits 3:1 of the same IA32_CLOCK_MODULATION MSR. In On-Demand mode, the duty  
cycle can be programmed from 12.5% on/ 87.5% off to 87.5% on/12.5% off in 12.5%  
increments. On-Demand mode may be used in conjunction with the Thermal Monitor;  
however, if the system tries to enable On-Demand mode at the same time the TCC is  
engaged, the factory configured duty cycle of the TCC will override the duty cycle  
selected by the On-Demand mode.  
6.2.3  
PROCHOT# Signal  
An external signal, PROCHOT# (processor hot) is asserted when the processor die  
temperature of any processor cores reaches its factory configured trip point. If Thermal  
Monitor is enabled (note that Thermal Monitor must be enabled for the processor to be  
operating within specification), the TCC will be active when PROCHOT# is asserted. The  
processor can be configured to generate an interrupt upon the assertion or de-  
assertion of PROCHOT#. Refer to the Intel® 64 and IA-32 Architectures Software  
Developer’s Manual for specific register and programming details.  
PROCHOT# is designed to assert at or a few degrees higher than maximum TCASE when  
dissipating TDP power, and cannot be interpreted as an indication of processor case  
temperature. This temperature delta accounts for processor package, lifetime and  
manufacturing variations and attempts to ensure the Thermal Control Circuit is not  
activated below maximum TCASE when dissipating TDP power. There is no defined or  
fixed correlation between the PROCHOT# trip temperature, or the case temperature.  
Thermal solutions must be designed to the processor specifications and cannot be  
adjusted based on experimental measurements of TCASE, or PROCHOT#.  
6.2.4  
FORCEPR# Signal  
The FORCEPR# (force power reduction) input can be used by the platform to cause the  
Quad-Core Intel® Xeon® Processor 5400 Series to activate the TCC. If the Thermal  
Monitor is enabled, the TCC will be activated upon the assertion of the FORCEPR#  
signal. Assertion of the FORCEPR# signal will activate TCC for all processor cores. The  
TCC will remain active until the system deasserts FORCEPR#. FORCEPR# is an  
asynchronous input. FORCEPR# can be used to thermally protect other system  
components. To use the VR as an example, when FORCEPR# is asserted, the TCC  
circuit in the processor will activate, reducing the current consumption of the processor  
and the corresponding temperature of the VR.  
It should be noted that assertion of FORCEPR# does not automatically assert  
PROCHOT#. As mentioned previously, the PROCHOT# signal is asserted when a high  
temperature situation is detected. A minimum pulse width of 500 µs is recommended  
when FORCEPR# is asserted by the system. Sustained activation of the FORCEPR#  
signal may cause noticeable platform performance degradation.  
Refer to the appropriate platform design guidelines for details on implementing the  
FORCEPR# signal feature.  
93  
Thermal Specifications  
6.2.5  
THERMTRIP# Signal  
Regardless of whether or not Intel® Thermal Monitor 1 or Intel® Thermal Monitor 2 is  
enabled, in the event of a catastrophic cooling failure, the processor will automatically  
shut down when the silicon has reached an elevated temperature (refer to the  
THERMTRIP# definition in Table 5-1). At this point, the FSB signal THERMTRIP# will go  
active and stay active as described in Table 5-1. THERMTRIP# activation is independent  
of processor activity and does not generate any bus cycles. Intel also recommends the  
removal of VTT.  
6.3  
Platform Environment Control Interface (PECI)  
6.3.1  
Introduction  
PECI offers an interface for thermal monitoring of Intel processor and chipset  
components. It uses a single wire, thus alleviating routing congestion issues.  
Figure 6-8 shows an example of the PECI topology in a system with Quad-Core Intel®  
Xeon® Processor 5400 Series. PECI uses CRC checking on the host side to ensure  
reliable transfers between the host and client devices. Also, data transfer speeds across  
the PECI interface are negotiable within a wide range (2Kbps to 2Mbps). The PECI  
interface on the Quad-Core Intel® Xeon® Processor 5400 Series is disabled by default  
and must be enabled through BIOS.  
Figure 6-8. Quad-Core Intel® Xeon® Processor 5400 Series PECI Topology  
P rocessor  
(Socket 0)  
0
x
3
0
D om ain0  
G 5  
0
x
3
0
D om ain1  
P E C I H ost  
C ontroller  
P rocessor  
(Socket 1)  
0
x
3
1
D om ain0  
0
x
3
1
G 5  
D om ain1  
6.3.1.1  
T
and TCC Activation on PECI-based Systems  
CONTROL  
Fan speed control solutions based on PECI utilize a TCONTROL value stored in the  
processor IA32_TEMPERATURE_TARGET MSR. The TCONTROL MSR uses the same offset  
temperature format as PECI though it contains no sign bit. Thermal management  
devices should infer the TCONTROL value as negative. Thermal management algorithms  
94  
Thermal Specifications  
should utilize the relative temperature value delivered over PECI in conjunction with the  
CONTROL MSR value to control or optimize fan speeds. Figure 6-9 shows a conceptual  
T
fan control diagram using PECI temperatures.  
The relative temperature value reported over PECI represents the data below the onset  
of thermal control circuit (TCC) activation as needed by PROCHOT# assertions. As the  
temperature approaches TCC activation, the PECI value approaches zero. TCC activates  
at a PECI count of zero.  
Figure 6-9. Conceptual Fan Control Diagram of PECI-based Platforms  
TCONTROL  
Setting  
TCC Activation  
Temperature  
Max  
PECI = 0  
Fan Speed  
(RPM)  
PECI = -10  
Min  
PECI = -20  
Temperature  
(not intended to depict actual implementation)  
6.3.1.2  
Processor Thermal Data Sample Rate and Filtering  
The Digital Thermal Sensor (DTS) provides an improved capability to monitor device  
hot spots, which inherently leads to more varying temperature readings over short time  
intervals. The DTS sample interval range can be modified, and a data filtering algorithm  
can be activated to help moderate this. The DTS sample interval range is 82us (default)  
to 20 ms (max). This value can be set in BIOS.  
To reduce the sample rate requirements on PECI and improve thermal data stability vs.  
time the processor DTS also implements an averaging algorithm that filters the  
incoming data. This is an alpha-beta filter with coefficients of 0.5, and is expressed  
mathematically as: Current_filtered_temp = (Previous_filtered_temp / 2) +  
(new_sensor_temp / 2). This filtering algorithm is fixed and cannot be changed. It is on  
by default and can be turned off in BIOS.  
Host controllers should utilize the min/max sample times to determine the appropriate  
sample rate based on the controller's fan control algorithm and targeted response rate.  
The key items to take into account when settling on a fan control algorithm are the DTS  
sample rate, whether the temperature filter is enabled, how often the PECI host will  
poll the processor for temperature data, and the rate at which fan speed is changed.  
Depending on the designer’s specific requirements the DTS sample rate and alpha-beta  
filter may have no effect on the fan control algorithm.  
95  
Thermal Specifications  
6.3.2  
PECI Specifications  
6.3.2.1  
PECI Device Address  
The PECI device address for socket 0 is 0x30 and socket 1 is 0x31. Please note that  
each address also supports two domains (Domain0 and Domain1). For more  
information on PECI domains, please refer to the Platform Environment Control  
Interface (PECI) Specification.  
6.3.2.2  
6.3.2.3  
PECI Command Support  
PECI command support is covered in detail in Platform Environment Control Interface  
Specification. Please refer to this document for details on supported PECI command  
function and codes.  
PECI Fault Handling Requirements  
PECI is largely a fault tolerant interface, including noise immunity and error checking  
improvements over other comparable industry standard interfaces. The PECI client is  
as reliable as the device that it is embedded in, and thus given operating conditions  
that fall under the specification, the PECI will always respond to requests and the  
protocol itself can be relied upon to detect any transmission failures. There are,  
however, certain scenarios where PECI is known to be unresponsive.  
Prior to a power on RESET# and during RESET# assertion, PECI is not guaranteed to  
provide reliable thermal data. System designs should implement a default power-on  
condition that ensures proper processor operation during the time frame when reliable  
data is not available via PECI.  
To protect platforms from potential operational or safety issues due to an abnormal  
condition on PECI, the Host controller should take action to protect the system from  
possible damage. It is recommended that the PECI host controller take appropriate  
action to protect the client processor device if valid temperature readings have not  
been obtained in response to three consecutive gettemp()s or for a one second time  
interval. The host controller may also implement an alert to software in the event of a  
critical or continuous fault condition.  
6.3.2.4  
PECI GetTemp0() and GetTemp1() Error Code Support  
The error codes supported for the processor GetTemp0() and GetTemp1() commands  
are listed in Table 6-12 below:  
Table 6-12. GetTemp0() GetTemp1()Error Codes  
Error Code  
Description  
0x8000h  
0x8002h  
General sensor error  
Sensor is operational, but has detected a temperature below its operational range  
(underflow).  
§
96  
Features  
7 Features  
7.1  
Power-On Configuration Options  
Several configuration options can be configured by hardware. The Quad-Core Intel®  
Xeon® Processor 5400 Series samples its hardware configuration at reset, on the  
active-to-inactive transition of RESET#. For specifics on these options, please refer to  
Table 7-1.  
The sampled information configures the processor for subsequent operation. These  
configuration options cannot be changed except by another reset. All external resets  
reconfigure the processor, for configuration purposes, the processor does not  
distinguish between a “warm” reset (PWRGOOD signal remains asserted) and a  
“power-on” reset.  
Table 7-1.  
Power-On Configuration Option Lands  
Configuration Option  
Output tri state  
Land Name  
Notes  
SMI#  
A3#  
1,2  
1,2  
1,2  
1,2  
1,2  
Execute BIST (Built-In Self Test)  
Disable MCERR# observation  
Disable BINIT# observation  
Symmetric agent arbitration ID  
A9#  
A10#  
BR[1:0]#  
Notes:  
1.  
2.  
Asserting this signal during RESET# will select the corresponding option.  
Address lands not identified in this table as configuration options should not be asserted during RESET#.  
Disabling of any of the cores within the Quad-Core Intel® Xeon® Processor 5400  
Series must be handled by configuring the EXT_CONFIG Model Specific Register (MSR).  
This MSR will allow for the disabling of a single core per die within the package.  
7.2  
Clock Control and Low Power States  
The Quad-Core Intel® Xeon® Processor 5400 Series supports the Extended HALT state  
(also referred to as C1E) in addition to the HALT state and Stop-Grant state to reduce  
power consumption by stopping the clock to internal sections of the processor,  
depending on each particular state. See Figure 7-1 for a visual representation of the  
processor low power states. The Extended HALT state is a lower power state than the  
HALT state or Stop Grant state.  
The Extended HALT state must be enabled via the BIOS for the processor to  
remain within its specifications. For processors that are already running at the  
lowest bus to core frequency ratio for its nominal operating point, the processor will  
transition to the HALT state instead of the Extended HALT state.  
The Stop Grant state requires chipset and BIOS support on multiprocessor systems. In  
a multiprocessor system, all the STPCLK# signals are bussed together, thus all  
processors are affected in unison. When the STPCLK# signal is asserted, the processor  
enters the Stop Grant state, issuing a Stop Grant Special Bus Cycle (SBC) for each  
processor die. The chipset needs to account for a variable number of processors  
asserting the Stop Grant SBC on the bus before allowing the processor to be  
transitioned into one of the lower processor power states.  
97  
Features  
7.2.1  
7.2.2  
Normal State  
This is the normal operating state for the processor.  
HALT or Extended HALT State  
The Extended HALT state (C1E) is enabled via the BIOS. The Extended HALT state  
must be enabled for the processor to remain within its specifications. The  
Extended HALT state requires support for dynamic VID transitions in the platform.  
7.2.2.1  
HALT State  
HALT is a low power state entered when the processor have executed the HALT or  
MWAIT instruction. When one of the processor cores execute the HALT or MWAIT  
instruction, that processor core is halted; however, the other processor continues  
normal operation. The processor will transition to the Normal state upon the occurrence  
of SMI#, BINIT#, INIT#, LINT[1:0] (NMI, INTR), or an interrupt delivered over the  
front side bus. RESET# will cause the processor to immediately initialize itself.  
The return from a System Management Interrupt (SMI) handler can be to either  
Normal Mode or the HALT state. See the Intel® 64 and IA-32 Architecture Software  
Developer's Manual.  
The system can generate a STPCLK# while the processor is in the HALT state. When the  
system deasserts STPCLK#, the processor will return execution to the HALT state.  
While in HALT state, the processor will process front side bus snoops and interrupts.  
7.2.2.2  
Extended HALT State  
Extended HALT state is a low power state entered when all processor cores have  
executed the HALT or MWAIT instructions and Extended HALT state has been enabled  
via the BIOS. When one of the processor cores executes the HALT instruction, that  
processor core is halted; however, the other processor core continues normal  
operation. The Extended HALT state is a lower power state than the HALT state or Stop  
Grant state. The Extended HALT state must be enabled for the processor to remain  
within its specifications.  
The processor will automatically transition to a lower core frequency and voltage  
operating point before entering the Extended HALT state. Note that the processor FSB  
frequency is not altered; only the internal core frequency is changed. When entering  
the low power state, the processor will first switch to the lower bus to core frequency  
ratio and then transition to the lower voltage (VID).  
While in the Extended HALT state, the processor will process bus snoops.  
98  
Features  
Table 7-2.  
Extended HALT Maximum Power  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes 1  
P
Extended HALT State  
Power  
16  
W
2
EXTENDED_HALT  
Quad-Core Intel®  
Xeon® Processor  
X5482  
P
Extended HALT State  
Power  
16  
16/20  
12  
W
W
W
W
2
2,3  
2
EXTENDED_HALT  
Quad-Core Intel® Xeon®  
Processor X5400 Series  
P
Extended HALT State  
Power  
EXTENDED_HALT  
Quad-Core Intel® Xeon®  
Processor E5400 Series  
P
Extended HALT State  
Power  
EXTENDED_HALT  
Quad-Core Intel® Xeon®  
Processor L5400 Series  
P
Extended HALT State  
Power  
12  
4
EXTENDED_HALT  
Quad-Core Intel® Xeon®  
Processor L5408  
Notes:  
1.  
Processors running in the lowest bus ratio supported as shown in Table 2-1, will enter the HALT State when  
the processor has executed the HALT or MWAIT instruction since the processor is already operating in the  
lowest core frequency and voltage operating point.  
o
2.  
The specification is at Tcase = 40 C and nominal Vcc. The VID setting represents the maximum expected  
VID when running in HALT state.  
3.  
4.  
SKUs with Extended HALT state (16W) and without Extended HALT state (20W).  
o
The specification is at Tcase = 46 C and nominal Vcc. The VID setting represents the maximum expected  
VID when running in HALT state.  
The processor exits the Extended HALT state when a break event occurs. When the  
processor exits the Extended HALT state, it will first transition the VID to the original  
value and then change the bus to core frequency ratio back to the original value.  
99  
Features  
Figure 7-1. Stop Clock State Machine  
HALT or MWAIT Instruction and  
HALT Bus Cycle Generated  
Extended HALT or HALT State  
Normal State  
INIT#, BINIT#, INTR, NMI, SMI#,  
RESET#, FSB interrupts  
BCLK running  
Snoops and interrupts allowed  
Normal execution  
Snoop  
Event  
Occurs Serviced  
Snoop  
Event  
STPCLK#  
Asserted  
STPCLK#  
De-asserted  
Extended HALT Snoop or HALT  
Snoop State  
BCLK running  
Service snoops to caches  
Snoop Event Occurs  
Snoop Event Serviced  
Stop Grant State  
Stop Grant Snoop State  
BCLK running  
BCLK running  
Snoops and interrupts allowed  
Service snoops to caches  
7.2.3  
Stop-Grant State  
When the STPCLK# pin is asserted, the Stop-Grant state of the processor is entered no  
later than 20 bus clocks after the response phase of the processor issued Stop Grant  
Acknowledge special bus cycle. By default, the Quad-Core Intel® Xeon® Processor  
5400 Series will issue two Stop Grant Acknowledge special bus cycles, one for each die.  
Once the STPCLK# pin has been asserted, it may only be deasserted once the  
processor is in the Stop Grant state. All processor cores will enter the Stop-Grant state  
once the STPCLK# pin is asserted. Additionally, all processor cores must be in the Stop  
Grant state before the deassertion of STPCLK#.  
Since the AGTL+ signal pins receive power from the front side bus, these pins should  
not be driven (allowing the level to return to VTT) for minimum power drawn by the  
termination resistors in this state. In addition, all other input pins on the front side bus  
should be driven to the inactive state.  
BINIT# will not be serviced while the processor is in Stop-Grant state. The event will be  
latched and can be serviced by software upon exit from the Stop Grant state.  
RESET# will cause the processor to immediately initialize itself, but the processor will  
stay in Stop-Grant state. A transition back to the Normal state will occur with the de-  
assertion of the STPCLK# signal.  
A transition to the Grant Snoop state will occur when the processor detects a snoop on  
the front side bus (see Section 7.2.4.1).  
100  
Features  
While in the Stop-Grant state, SMI#, INIT#, BINIT# and LINT[1:0] will be latched by  
the processor, and only serviced when the processor returns to the Normal state. Only  
one occurrence of each event will be recognized upon return to the Normal state.  
While in Stop-Grant state, the processor will process snoops on the front side bus and it  
will latch interrupts delivered on the front side bus.  
The PBE# signal can be driven when the processor is in Stop-Grant state. PBE# will be  
asserted if there is any pending interrupt latched within the processor. Pending  
interrupts that are blocked by the EFLAGS.IF bit being clear will still cause assertion of  
PBE#. Assertion of PBE# indicates to system logic that it should return the processor to  
the Normal state.  
7.2.4  
Extended HALT Snoop or HALT Snoop State,  
Stop Grant Snoop State  
The Extended HALT Snoop state is used in conjunction with the Extended HALT state. If  
the Extended HALT state is not enabled in the BIOS, the default Snoop state entered  
will be the HALT Snoop state. Refer to the sections below for details on HALT Snoop  
state, Stop Grant Snoop state and Extended HALT Snoop state.  
7.2.4.1  
HALT Snoop State, Stop Grant Snoop State  
The processor will respond to snoop or interrupt transactions on the front side bus  
while in Stop-Grant state or in HALT state. During a snoop or interrupt transaction, the  
processor enters the HALT/Grant Snoop state. The processor will stay in this state until  
the snoop on the front side bus has been serviced (whether by the processor or another  
agent on the front side bus) or the interrupt has been latched. After the snoop is  
serviced or the interrupt is latched, the processor will return to the Stop-Grant state or  
HALT state, as appropriate.  
7.2.4.2  
Extended HALT Snoop State  
The Extended HALT Snoop state is the default Snoop state when the Extended HALT  
state is enabled via the BIOS. The processor will remain in the lower bus to core  
frequency ratio and VID operating point of the Extended HALT state.  
While in the Extended HALT Snoop state, snoops and interrupt transactions are handled  
the same way as in the HALT Snoop state. After the snoop is serviced or the interrupt is  
latched, the processor will return to the Extended HALT state.  
7.3  
Enhanced Intel SpeedStep® Technology  
Quad-Core Intel® Xeon® Processor 5400 Series supports Enhanced Intel SpeedStep®  
Technology. This technology enables the processor to switch between multiple  
frequency and voltage points, which results in platform power savings. Enhanced Intel  
SpeedStep Technology requires support for dynamic VID transitions in the platform.  
Switching between voltage/frequency states is software controlled. For more  
configuration details also refer to the Intel® 64 and IA-32 Architectures Software  
Developer’s Manual.  
Note:  
Not all Quad-Core Intel® Xeon® Processor 5400 Series are capable of supporting  
Enhanced Intel SpeedStep Technology. More details on which processor frequencies will  
support this feature will be provided in the Quad-Core Intel® Xeon® Processor 5400  
Series Specification Update.  
101  
Features  
Enhanced Intel SpeedStep Technology creates processor performance states (P-states)  
or voltage/frequency operating points which are lower power capability states within  
the Normal state (see Figure 7-1 for the Stop Clock State Machine for supported P-  
states). Enhanced Intel SpeedStep Technology enables real-time dynamic switching  
between frequency and voltage points. It alters the performance of the processor by  
changing the bus to core frequency ratio and voltage. This allows the processor to run  
at different core frequencies and voltages to best serve the performance and power  
requirements of the processor and system. The Quad-Core Intel® Xeon® Processor  
5400 Series has hardware logic that coordinates the requested voltage (VID) between  
the processor cores. The highest voltage that is requested for either of the processor  
cores is selected for that processor package. Note that the front side bus is not altered;  
only the internal core frequency is changed. In order to run at reduced power  
consumption, the voltage is altered in step with the bus ratio.  
The following are key features of Enhanced Intel SpeedStep Technology:  
• Multiple voltage/frequency operating points provide optimal performance at  
reduced power consumption.  
• Voltage/frequency selection is software controlled by writing to processor MSR’s  
(Model Specific Registers), thus eliminating chipset dependency.  
— If the target frequency is higher than the current frequency, VCC is incremented  
in steps (+12.5 mV) by placing a new value on the VID signals and the  
processor shifts to the new frequency. Note that the top frequency for the  
processor can not be exceeded.  
— If the target frequency is lower than the current frequency, the processor shifts  
to the new frequency and VCC is then decremented in steps (-12.5 mV) by  
changing the target VID through the VID signals.  
§
102  
Boxed Processor Specifications  
8 Boxed Processor Specifications  
8.1  
Introduction  
Intel boxed processors are intended for system integrators who build systems from  
components available through distribution channels. The Quad-Core Intel® Xeon®  
Processor 5400 Series will be offered as an Intel boxed processor.  
Intel will offer the Quad-Core Intel® Xeon® Processor 5400 Series with two heat sink  
configurations available for each processor frequency: 1U passive/3U+ active  
combination solution and a 2U passive only solution. The 1U passive/3U+ active  
combination solution is based on a 1U passive heat sink with a removable fan that will  
be pre-attached at shipping. This heat sink solution is intended to be used as either a  
1U passive heat sink, or a 3U+ active heat sink. Although the active combination  
solution with removable fan mechanically fits into a 2U keepout, its use is not  
recommended in that configuration.  
Quad-Core Intel® Xeon® Processor X5400 Series will include a copper 1U passive/3U+  
active combination solution or a copper 2U passive heatsink. Quad-Core Intel® Xeon®  
Processor E5400 Series and Quad-Core Intel® Xeon® Processor L5400 Series with  
80W and lower TDPs will include an aluminum extruded 1U passive/3U+ active  
combination solution or an aluminum extruded 2U passive heatsink.  
The 1U passive/3U+ active combination solution in the active fan configuration is  
primarily designed to be used in a pedestal chassis where sufficient air inlet space is  
present and strong side directional airflow is not an issue. The 1U passive/3U+ active  
combination solution with the fan removed and the 2U passive thermal solution require  
the use of chassis ducting and are targeted for use in rack mount or pedestal servers.  
The retention solution used for these products is called the Common Enabling Kit, or  
CEK. The CEK base is compatible with both thermal solutions and uses the same hole  
locations as the Intel® Xeon® processor with 800 MHz system bus.  
The 1U passive/3U+ active combination solution will utilize a removable fan capable of  
4-pin pulse width modulated (PWM) control. Use of a 4-pin PWM controlled active  
thermal solution helps customers meet acoustic targets in pedestal platforms through  
the motherboards’s ability to directly control the RPM of the processor heat sink fan.  
See Section 8.3 for more details on fan speed control, and see Section 6.3 for more on  
the PWM and PECI interface along with Digital Thermal Sensors (DTS). Figure 8-1  
through Figure 8-3 are representations of the two heat sink solutions.  
103  
Boxed Processor Specifications  
Figure 8-1. Boxed Quad-Core Intel® Xeon® Processor 5400 Series  
1U Passive/3U+ Active Combination Heat Sink (With Removable Fan)  
Figure 8-2. Boxed Quad-Core Intel® Xeon® Processor 5400 Series 2U Passive Heat Sink  
104  
Boxed Processor Specifications  
Figure 8-3. 2U Passive Quad-Core Intel® Xeon® Processor 5400 Series  
Thermal Solution (Exploded View)  
Notes:  
1.  
2.  
3.  
The heat sinks represented in these images are for reference only, and may not represent the final boxed  
processor heat sinks.  
The screws, springs, and standoffs will be captive to the heat sink. This image shows all of the components  
in an exploded view.  
It is intended that the CEK spring will ship with the base board and be pre-attached prior to shipping.  
8.2  
Mechanical Specifications  
This section documents the mechanical specifications of the boxed processor.  
8.2.1  
Boxed Processor Heat Sink Dimensions (CEK)  
The boxed processor will be shipped with an unattached thermal solution. Clearance is  
required around the thermal solution to ensure unimpeded airflow for proper cooling.  
The physical space requirements and dimensions for the boxed processor and  
assembled heat sink are shown in Figure 8-4 through Figure 8-8. Figure 8-9 through  
Figure 8-10 are the mechanical drawings for the 4-pin board fan header and 4-pin  
connector used for the active CEK fan heat sink solution.  
105  
Boxed Processor Specifications  
Figure 8-4. Top Side Board Keepout Zones (Part 1)  
106  
Boxed Processor Specifications  
Figure 8-5. Top Side Board Keepout Zones (Part 2)  
107  
Boxed Processor Specifications  
Figure 8-6. Bottom Side Board Keepout Zones  
108  
Boxed Processor Specifications  
Figure 8-7. Board Mounting-Hole Keepout Zones  
109  
Boxed Processor Specifications  
Figure 8-8. Volumetric Height Keep-Ins  
110  
Boxed Processor Specifications  
Figure 8-9. 4-Pin Fan Cable Connector (For Active CEK Heat Sink)  
111  
Boxed Processor Specifications  
Figure 8-10. 4-Pin Base Board Fan Header (For Active CEK Heat Sink)  
112  
Boxed Processor Specifications  
8.2.2  
Boxed Processor Heat Sink Weight  
8.2.2.1  
Thermal Solution Weight  
The 1U passive/3U+ active combination heat sink solution and the 2U passive heat sink  
solution will not exceed a mass of 1050 grams. Note that this is per processor, a dual  
processor system will have up to 2010 grams total mass in the heat sinks. This large  
mass will require a minimum chassis stiffness to be met in order to withstand force  
during shock and vibration.  
See Chapter 3 for details on the processor weight.  
8.2.3  
Boxed Processor Retention Mechanism and Heat Sink  
Support (CEK)  
Baseboards and chassis designed for use by a system integrator should include holes  
that are in proper alignment with each other to support the boxed processor. Refer to  
the Server System Infrastructure Specification (SSI-EEB 3.6, TEB 2.1 or CEB 1.1).  
These specification can be found at: http://www.ssiforum.org.  
Figure 8-3 illustrates the Common Enabling Kit (CEK) retention solution. The CEK is  
designed to extend air-cooling capability through the use of larger heat sinks with  
minimal airflow blockage and bypass. CEK retention mechanisms can allow the use of  
much heavier heat sink masses compared to legacy limits by using a load path directly  
attached to the chassis pan. The CEK spring on the secondary side of the baseboard  
provides the necessary compressive load for the thermal interface material. The  
baseboard is intended to be isolated such that the dynamic loads from the heat sink are  
transferred to the chassis pan via the stiff screws and standoffs. The retention scheme  
reduces the risk of package pullout and solder joint failures.  
All components of the CEK heat sink solution will be captive to the heat sink and will  
only require a Phillips screwdriver to attach to the chassis pan. When installing the  
CEK, the CEK screws should be tightened until they will no longer turn easily. This  
should represent approximately 6-8 inch-pounds of torque. More than that may  
damage the retention mechanism components.  
8.3  
Electrical Requirements  
8.3.1  
Fan Power Supply (Active CEK)  
The 4-pin PWM controlled thermal solution is being offered to help provide better  
control over pedestal chassis acoustics. This is achieved though more accurate  
measurement of processor die temperature through the processor’s Digital Thermal  
Sensors. Fan RPM is modulated through the use of an ASIC located on the baseboard,  
that sends out a PWM control signal to the 4th pin of the connector labeled as Control.  
This thermal solution requires a constant +12 V supplied to pin 2 of the active thermal  
solution and does not support variable voltage control or 3-pin PWM control. See  
Table 8-2 for details on the 4-pin active heat sink solution connectors.  
If the 4-pin active fan heat sink solution is connected to an older 3-pin baseboard CPU  
fan header it will default back to a thermistor controlled mode, allowing compatibility  
with legacy 3-wire designs. When operating in thermistor controlled mode, fan RPM is  
automatically varied based on the TINLET temperature measured by a thermistor  
located at the fan inlet of the heat sink solution.  
113  
Boxed Processor Specifications  
The fan power header on the baseboard must be positioned to allow the fan heat sink  
power cable to reach it. The fan power header identification and location must be  
documented in the suppliers platform documentation, or on the baseboard itself. The  
baseboard fan power header should be positioned within 177.8 mm [7 in.] from the  
center of the processor socket.  
Table 8-1.  
Table 8-2.  
PWM Fan Frequency Specifications for 4-Pin Active CEK Thermal Solution  
Description  
Min Frequency  
Nominal Frequency  
Max Frequency  
Unit  
PWM Control  
Frequency Range  
21,000  
25,000  
28,000  
Hz  
Fan Specifications for 4-Pin Active CEK Thermal Solution  
Typ  
Steady  
Max  
Steady  
Max  
Startup  
Description  
Min  
Unit  
+12 V: 12 volt fan power supply  
IC: Fan Current Draw  
10.8  
N/A  
12  
1
12  
13.2  
1.5  
V
A
1.25  
Pulses per fan  
revolution  
SENSE: SENSE frequency  
2
2
2
2
Figure 8-11. Fan Cable Connector Pin Out for 4-Pin Active CEK Thermal Solution  
Table 8-3.  
Fan Cable Connector Pin Out for 4-Pin Active CEK Thermal Solution  
Pin Number  
Signal  
Color  
1
2
3
4
Ground  
Black  
Yellow  
Green  
Blue  
Power: (+12 V)  
Sense: 2 pulses per revolution  
Control: 21 KHz-28 KHz  
8.3.2  
Boxed Processor Cooling Requirements  
As previously stated the boxed processor will be available in two product  
configurations. Each configuration will require unique design considerations. Meeting  
the processor’s temperature specifications is also the function of the thermal design of  
the entire system, and ultimately the responsibility of the system integrator. The  
processor temperature specifications are found in Chapter 6 of this document.  
8.3.2.1  
1U Passive/3U+ Active Combination Heat Sink Solution (1U Rack  
Passive)  
In the 1U configuration it is assumed that a chassis duct will be implemented to provide  
a minimum airflow of 15 cfm at 0.38 in. H2O (25.5 m3/hr at 94.6 Pa) of flow  
impedance. The duct should be carefully designed to minimize the airflow bypass  
114  
Boxed Processor Specifications  
around the heatsink. It is assumed that a 40°C TLA is met. This requires a superior  
chassis design to limit the TRISE at or below 5°C with an external ambient temperature  
of 35°C. These specifications apply to both copper and aluminum heatsink solutions.  
Following these guidelines allows the designer to meet Quad-Core Intel® Xeon®  
Processor 5400 Series Thermal Profile and conform to the thermal requirements of the  
processor.  
8.3.2.2  
1U Passive/3U+ Active Combination Heat Sink Solution (Pedestal  
Active)  
The active configuration of the combination solution is designed to help pedestal  
chassis users to meet the thermal processor requirements without the use of chassis  
ducting. It may be still be necessary to implement some form of chassis air guide or air  
duct to meet the TLA temperature of 40°C depending on the pedestal chassis layout.  
Also, while the active thermal solution design will mechanically fit into a 2U volumetric,  
it may not provide adequate airflow. This is due to the requirement of additional space  
at the top of the thermal solution to allow sufficient airflow into the heat sink fan. Use  
of the active configuration in a 2U rackmount chassis is not recommended.  
It is recommended that the ambient air temperature outside of the chassis be kept at  
or below 35°C. The air passing directly over the processor thermal solution should not  
be preheated by other system components. Meeting the processor’s temperature  
specification is the responsibility of the system integrator.  
8.3.2.3  
2U Passive Heat Sink Solution (2U+ Rack or Pedestal)  
In the 2U+ passive configuration, it is assumed that a chassis duct will be implemented  
to provide a minimum airflow of 27 cfm at 0.182 in. H2O (45.9 m3/hr at 45.3 Pa) of  
flow impedance. The duct should be carefully designed to minimize the airflow bypass  
around the heatsink. These specifications apply to both copper and aluminum heatsink  
solutions. The TLA temperature of 40°C should be met. This may require the use of  
superior design techniques to keep TRISE at or below 5°C based on an ambient external  
temperature of 35°C.  
8.4  
Boxed Processor Contents  
A direct chassis attach method must be used to avoid problems related to shock and  
vibration. The board must not bend beyond specification in order to avoid damage. The  
boxed processor contains the components necessary to solve both issues. The boxed  
processor will include the following items:  
• Quad-Core Intel® Xeon® Processor 5400 Series  
• Unattached heat sink solution  
• Four screws, four springs, and four heat sink standoffs (all captive to the heat sink)  
• Foam air bypass pad and skirt (included with 1U passive/3U+ active solution)  
• Thermal interface material (pre-applied on heat sink)  
• Installation and warranty manual  
• Intel Inside Logo  
Other items listed in Figure 8-3 that are required to complete this solution will be  
shipped with either the chassis or boards. They are as follows:  
• CEK Spring (supplied by baseboard vendors)  
• Chassis standoffs (supplied by chassis vendors)  
115  
Boxed Processor Specifications  
§
116  
Debug Tools Specifications  
9 Debug Tools Specifications  
Please refer to the appropriate platform design guidelines for information regarding  
debug tool specifications. Section 1.3 provides collateral details.  
9.1  
Debug Port System Requirements  
The Quad-Core Intel® Xeon® Processor 5400 Series debug port is the command and  
control interface for the In-Target Probe (ITP) debugger. The ITP enables run-time  
control of the processors for system debug. The debug port, which is connected to the  
FSB, is a combination of the system, JTAG and execution signals. There are several  
mechanical, electrical and functional constraints on the debug port that must be  
followed. The mechanical constraint requires the debug port connector to be installed in  
the system with adequate physical clearance. Electrical constraints exist due to the  
mixed high and low speed signals of the debug port for the processor. While the JTAG  
signals operate at a maximum of 75 MHz, the execution signals operate at the common  
clock FSB frequency. The functional constraint requires the debug port to use the JTAG  
system via a handshake and multiplexing scheme.  
In general, the information in this chapter may be used as a basis for including all run-  
control tools in Quad-Core Intel® Xeon® Processor 5400 Series-based system designs  
including tools from vendors other than Intel.  
Note:  
The debug port and JTAG signal chain must be designed into the processor board to  
utilize the XDP for debug purposes except for interposer solutions.  
9.2  
Target System Implementation  
9.2.1  
System Implementation  
Specific connectivity and layout guidelines for the Debug Port are provided in the  
appropriate platform design guidelines.  
9.3  
Logic Analyzer Interface (LAI)  
Intel is working with two logic analyzer vendors to provide logic analyzer interfaces  
(LAIs) for use in debugging Quad-Core Intel® Xeon® Processor 5400 Series systems.  
Tektronix and Agilent should be contacted to obtain specific information about their  
logic analyzer interfaces. The following information is general in nature. Specific  
information must be obtained from the logic analyzer vendor.  
Due to the complexity of Quad-Core Intel® Xeon® Processor 5400 Series-based  
multiprocessor systems, the LAI is critical in providing the ability to probe and capture  
FSB signals. There are two sets of considerations to keep in mind when designing a  
Quad-Core Intel® Xeon® Processor 5400 Series-based system that can make use of  
an LAI: mechanical and electrical.  
117  
Debug Tools Specifications  
9.3.1  
Mechanical Considerations  
The LAI is installed between the processor socket and the processor. The LAI plugs into  
the socket, while the processor plugs into a socket on the LAI. Cabling that is part of  
the LAI egresses the system to allow an electrical connection between the processor  
and a logic analyzer. The maximum volume occupied by the LAI, known as the keepout  
volume, as well as the cable egress restrictions, should be obtained from the logic  
analyzer vendor. System designers must make sure that the keepout volume remains  
unobstructed inside the system. Note that it is possible that the keepout volume  
reserved for the LAI may include differerent requirements from the space normally  
occupied by the heatsink. If this is the case, the logic analyzer vendor will provide a  
cooling solution as part of the LAI.  
9.3.2  
Electrical Considerations  
The LAI will also affect the electrical performance of the FSB, therefore it is critical to  
obtain electrical load models from each of the logic analyzer vendors to be able to run  
system level simulations to prove that their tool will work in the system. Contact the  
logic analyzer vendor for electrical specifications and load models for the LAI solution  
they provide.  
§
118  
Intel® Xeon® Processor 5400 Series, Features  
United States  
Worldwide  
About Intel  
Press Room  
Contact Us  
Intel® Reseller Center  
Products & Platforms  
Desktop  
Notebook  
Server  
Services  
Purchasing Information  
Member Promotions  
Sales & Marketing  
Training & Events  
Support & Downloads  
Program Membership  
My Account  
Select a Language  
http://www.intel.com/cd/channel/reseller/asmo-na/e...products/server/processors/q5400/feature/index.htm (1 of 6) [17-Feb-2009 6:38:13 AM]  
Intel® Xeon® Processor 5400 Series, Features  
Intel® Reseller Center › Products & Platforms › Server › Server processor › Intel® Xeon® Processor 5400 Series › Features  
Intel® Xeon® Processor 5400 Series  
Log On  
Log on automatically  
Login ID:  
Password:  
Forgot your login id?  
Forgot your password?  
More innovation - Improved value  
Now featuring Intel's second-generation quad-core processor, existing mainstream server platforms, new high-performance computing  
(HPC) systems, new workstations, and new business servers each delivers a unique combination of technology targeted at specific IT use  
environments. By selecting a platform that is best tuned for the most common IT usages, Intel® servers are able to better optimize  
return on investment while extending the leading performance and performance-per-watt advantages enjoyed when using Intel's proven  
multi-core technology. Intel® Xeon® processor 54001 series help provide your data center or business with the performance headroom  
needed to confidently consolidate applications onto fewer systems using proven virtualization solutions or the compute power necessary  
for high-performance computing applications and workstation solutions.  
Product matrix  
Features and benefits  
Thermal solution guide  
Intel Xeon processor 5400 series:  
Build success into your business performance  
Performance:  
Up to 25 percent better performance than previous generation quad-core2  
Up to 2x better performance than dual-core3  
Up to 5x increased performance over single-core4  
Energy efficiency:  
Up to 38 percent improvement in performance per watt vs. previous generation5  
3 GHz quad-core at 80W  
Lower idle power reduces system power  
Reliability:  
Intel-based servers have been a foundation of business technology for nearly 30 years and are built with more reliability features than c  
For competitive application benchmarks please visit  
http://www.intel.com/performance/server/xeon/server.htm?iid=perf_serv_dp_sum+server  
The Intel Xeon processor 5400 series is compatible with Intel® 5400, 5100, 5000P, 5000V and 5000X series of chipsets. Server boards ba  
optimized for quad core with advanced platform features of dual independent bus and fully buffered DIMM memory technology offering up  
of current generation platforms. Improved I/O performance is possible with PCI Express* and the option of Intel® I/O Acceleration Techn  
The Intel® Xeon® processor 52001 series is also available for those applications which are not able to take advantage of more than two p  
compelling performance and power efficiency at an entry price point for two-socket servers and workstations.  
Product briefs  
Intel® Xeon® Processor 5400 Series product brief (PDF 989KB)  
http://www.intel.com/cd/channel/reseller/asmo-na/e...products/server/processors/q5400/feature/index.htm (2 of 6) [17-Feb-2009 6:38:13 AM]  
Intel® Xeon® Processor 5400 Series, Features  
Intel Xeon processor 5400 series animated product brief (PDF 5.84MB)  
Server video demos  
Intel Xeon processor 5000 sequence  
Boxed Intel® Xeon Processor 5400 Series Product Matrix  
Processor  
Number  
FSB  
(MHz)  
Number of  
Cores  
Boxed Product Code  
Heatsink  
Process  
Frequency (TDP)  
CACHE  
D
AT80574KL096N (tray only) not included 45nm  
EU80574KL088N (tray only) not included 45nm  
X5492  
X5482  
3.40 GHz (150W)  
3.20 GHz (150W)  
1600  
1600  
12M total 4  
12M total 4  
Y
Y
AT80574KL088NT (tray  
not included 45nm  
only)  
X5482  
X5472  
3.20 GHz (120W)  
3.00 GHz (120W)  
1600  
1600  
12M total 4  
12M total 4  
Y
Y
EU80574KL080NT (tray  
not included 45nm  
only)  
EU80574KL080N (tray only) not included 45nm  
E5472  
X5470  
X5470  
E5462  
X5460  
X5460  
X5450  
X5450  
E5450  
E5450  
E5440  
E5440  
E5430  
E5430  
L5420  
L5420  
E5420  
E5420  
L5410  
L5410  
E5410  
E5410  
E5405  
E5405  
X5272  
3.00 GHz (80W)  
3.33 GHz (120W)  
3.33 GHz (120W)  
2.80 GHz (80W)  
3.16 GHz (120W)  
3.16 GHz (120W)  
3.00 GHz (120W)  
3.00 GHz (120W)  
3.00 GHz (80W)  
3.00 GHz (80W)  
2.83 GHz (80W)  
2.83 GHz (80W)  
2.66 GHz (80W)  
2.66 GHz (80W)  
2.50 GHz (50W)  
2.50 GHz (50W)  
2.50 GHz (80W)  
2.50 GHz (80W)  
2.33 GHz (50W)  
2.33 GHz (50W)  
2.33 GHz (80W)  
2.33 GHz (80W)  
2.00 GHz (80W)  
2.00 GHz (80W)  
3.40 GHz (80W)  
1600  
1333  
1333  
1600  
1333  
1333  
1333  
1333  
1333  
1333  
1333  
1333  
1333  
1333  
1333  
1333  
1333  
1333  
1333  
1333  
1333  
1333  
1333  
1333  
1600  
12M total 4  
12M total 4  
12M total 4  
12M total 4  
12M total 4  
12M total 4  
12M total 4  
12M total 4  
12M total 4  
12M total 4  
12M total 4  
12M total 4  
12M total 4  
12M total 4  
12M total 4  
12M total 4  
12M total 4  
12M total 4  
12M total 4  
12M total 4  
12M total 4  
12M total 4  
12M total 4  
12M total 4  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
BX80574X5470P  
BX80574X5470A  
EU80574KL072N  
BX80574X5460P  
BX80574X5460A  
BX80574X5450P  
BX80574X5450A  
BX80574E5450P  
BX80574E5450A  
BX80574E5440P  
BX80574E5440A  
BX80574E5430P  
BX80574E5430A  
BX80574L5420P  
BX80574L5420A  
BX80574E5420P  
BX80574E5420A  
BX80574L5410P  
BX80574L5410A  
BX80574E5410P  
BX80574E5410A  
BX80574E5405P  
BX80574E5405A  
AT80573KL0966M  
2U Passive  
45nm  
Active or 1U 45nm  
not included 45nm  
2U Passive  
Active or 1U 45nm  
2U Passive 45nm  
Active or 1U 45nm  
2U Passive 45nm  
Active or 1U 45nm  
2U Passive 45nm  
Active or 1U 45nm  
2U Passive 45nm  
Active or 1U 45nm  
2U Passive 45nm  
Active or 1U 45nm  
2U Passive 45nm  
Active or 1U 45nm  
2U Passive 45nm  
Active or 1U 45nm  
2U Passive 45nm  
Active or 1U 45nm  
2U Passive 45nm  
45nm  
Active or 1U 45nm  
not included 45nm  
6M total  
2
Y
http://www.intel.com/cd/channel/reseller/asmo-na/e...products/server/processors/q5400/feature/index.htm (3 of 6) [17-Feb-2009 6:38:13 AM]  
Intel® Xeon® Processor 5400 Series, Features  
AT80573KJ1006M  
AT80573KJ0936M  
AT80573JJ0806M  
BX80574E5205A  
BX80574E5205P  
not included 45nm  
X5270  
X5260  
L5240  
E5205  
E5205  
3.50 GHz (80W)  
3.33 GHz (80W)  
3.20 GHz (40W)  
1.86 GHz (65W)  
1.86 GHz (65W)  
1333  
1333  
1333  
1066  
1066  
6M total  
6M total  
6M total  
6M total  
6M total  
2
2
2
2
2
Y
Y
Y
Y
Y
not included 45nm  
not included 45nm  
Active or 1U 45nm  
2U Passive  
45nm  
Back to Top  
Intel® Xeon® Processor 5400 Series Features  
Key Features  
Benefits  
45nm technology boosts performance on a range of work  
Increased headroom for multi-threaded applications and  
scenarios.  
Multi-core processing  
Helps boost system utilization through virtualization and  
responsiveness.  
Boosts performance on multiple applications, user enviro  
demanding workloads, while enabling denser data center  
improved performance per watt.  
Enhanced Intel® Core™ microarchitecture  
The new 45nm Enhanced Intel Core microarchitecture de  
more performance per watt in the same platforms and at  
level.6  
Reduced idle processor power lowers average server pow  
Increases efficiency of L2 cache-to-core data transfers, m  
to processor bandwidth.  
Up to 12 MB of on-die L2 cache  
(2 x 6MB)  
Reduces latency by storing larger data sets closer to the  
number of trips to main memory.  
Up to 6 MB of L2 cache can be allocated to one core.  
A suite of processor enhancements that assists virtualiza  
more efficient virtualization solutions and greater capabil  
OS support.  
Intel® Virtualization Technology7 (Intel® VT)  
Fully buffered DIMM (FBDIMM) or native DDR2 registered DIMM technology  
support (depending on chipset used)  
Flexibility to optimize system for performance and capac  
and power efficiency.  
Next-generation improvements designed to significantly  
across the entire platform through CPU utilization and lat  
Intel® I/O Acceleration Technology (Intel® I/OAT) with next generation  
improvements  
New dedicated high-speed bus design enables increased  
between each of the processors and the chipset.  
Supporting from 1066 up to 1333 or 1600 MHz.  
Enhanced Front-Side Bus (FSB)  
Intel® 64 architecture8  
Back to Top  
Flexibility for 64-bit and 32-bit applications and operating  
Boxed Intel® Xeon® Processor 5400 Series Thermal Solution Guide  
http://www.intel.com/cd/channel/reseller/asmo-na/e...products/server/processors/q5400/feature/index.htm (4 of 6) [17-Feb-2009 6:38:13 AM]  
Intel® Xeon® Processor 5400 Series, Features  
Ordering Code  
Thermal Solution  
Included with 120W CPUs  
Chassis  
BX80574xxxxxA10  
Non-ducted pedestal or 1U chassis Examples:  
Included with 80W and lower CPUs  
SC5299-e  
SR1500  
SR1550  
BX80574xxxxxP10  
Included with 120W CPUs Included with 80W and lower CPUs Ducted pedestal or 2U chassis  
Examples:  
SC5400  
SR2500  
Back to Top  
Please refer to the Integration Overview for detailed boxed Intel® Xeon® processor installation instructions. Please consult non-Intel chas  
specific boxed Intel Xeon processor compatibility information.  
Benchmark for Performance Comparison for the Intel Xeon processor 5400 series: SPECint*_ rate2006: X5460 vs X5365 - Published/mea  
rate2006 - October 2, 2007 with 64-Bit SUSE LINUX* Enterprise Server 10 16 GB (8x2 GB). SPEC binaries built with Intel® Compiler 10.1  
1 Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not a  
families. See www.intel.com/products/processor_number for details.  
2Intel® Xeon® processor 5300 series ("CTN"). Up to 25% (1.25x) higher performance X5460 vs X5365 - Published/measured results on S  
07.  
3 Intel® Xeon® processor 5100 series ("WDC"). Up to 119% (2.19x) higher performance X5460 vs 5160 - Published/measured results on  
4 64-bit Intel® Xeon® processor 3.80GHz. Up to 443% (5.43x) higher performance X5460 vs Xeon 3.80 - Published/ measured results on  
Oct 2, 07.  
5Intel® Xeon® processor 5300 series ("CTN"). Up to 38% (1.38x) higher Perf/Watt E5450 vs E5335 - Published/measured results on SPE  
6 Intel Server pre-production platform with twoIntel® Xeon® processor E5450 3.0 GHz, 2x6 MB L2 Cache or E5335, 2x4 MB L2 Cache, 13  
Memory DDR2-667 FBDIMM, Microsoft Windows Server 2003 Enterprise* x64 Edition SP1 (64-bit), BEA JRockit* 5.0 P27.2.0. Intel interna  
September 2007. Perf/Watt calculated by dividing the performance by measured system power during steady state window.  
7 Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor (VMM) an  
platform software enabled for it. Functionality, performance or other benefits will vary depending on hardware and software configurations  
update. Software applications may not be compatible with all operating systems. Please check with your application vendor.  
864-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and  
Intel® 64 architecture. Performance will vary depending on your hardware and software configurations. Consult with your system vendor  
Performance and competitive information is accurate at time of document publication. For latest competitive and performance information  
www.intel.com/performance.  
9 Backward compatibility for live VM migration also exists with current Intel® Core™ microarchitecture products (Xeon 5100 and Xeon 30  
compatibility with future dual and multi-core processors. Contact your preferred VMM vendor for support requirements.  
10 Insert processor number where "xxxxx" is located (ex X5355)  
http://www.intel.com/cd/channel/reseller/asmo-na/e...products/server/processors/q5400/feature/index.htm (5 of 6) [17-Feb-2009 6:38:13 AM]  
Intel® Xeon® Processor 5400 Series, Features  
Site MapRSSJobsInvestor RelationsPress RoomContact Us  
Terms of Use*TrademarksPrivacy©Intel Corporation  
http://www.intel.com/cd/channel/reseller/asmo-na/e...products/server/processors/q5400/feature/index.htm (6 of 6) [17-Feb-2009 6:38:13 AM]  

相关型号:

BX80574E5420A

Microprocessor, CMOS, PBGA771, 37.5 X 37.5 MM, LGA-771
INTEL

BX80574E5420P

Microprocessor, CMOS, PBGA771, 37.5 X 37.5 MM, LGA-771
INTEL

BX80574E5420P/SLBBL

RISC Microprocessor, 64-Bit, 2500MHz, CMOS, PBGA771
INTEL

BX80574E5430A

Microprocessor, CMOS, PBGA771, 37.5 X 37.5 MM, LGA-771
INTEL

BX80574E5430A/SLBBK

RISC Microprocessor, 64-Bit, 2660MHz, CMOS, PBGA771
INTEL

BX80574E5430P

Microprocessor, CMOS, PBGA771, 37.5 X 37.5 MM, LGA-771
INTEL

BX80574E5440A

Microprocessor, 64-Bit, 2830MHz, CMOS, PBGA771, 37.5 X 37.5 MM, LGA-771
INTEL

BX80574E5440P

Microprocessor, 64-Bit, 2830MHz, CMOS, PBGA771, 37.5 X 37.5 MM, LGA-771
INTEL

BX80574E5440P/SLBBJ

RISC Microprocessor, 64-Bit, 2830MHz, CMOS, PBGA771
INTEL

BX80574E5450A

Microprocessor, CMOS, PBGA771, 37.5 X 37.5 MM, LGA-771
INTEL

BX80574E5450P

Microprocessor, CMOS, PBGA771, 37.5 X 37.5 MM, LGA-771
INTEL

BX80574E5450PSLANQ

RISC Microprocessor, 64-Bit, 3000MHz, CMOS, PBGA771
INTEL