BXM80536GC1500F [INTEL]

RISC Microprocessor, 64-Bit, 1500MHz, CMOS, CPGA478;
BXM80536GC1500F
型号: BXM80536GC1500F
厂家: INTEL    INTEL
描述:

RISC Microprocessor, 64-Bit, 1500MHz, CMOS, CPGA478

外围集成电路
文件: 总84页 (文件大小:1488K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
®
Intel Pentium M Processor on  
90 nm Process with 2-MB L2  
Cache  
Datasheet  
January 2006  
Document Number: 302189-008  
®
IINFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY  
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN  
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS  
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES  
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER  
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
®
®
The Intel Pentium M processor on 90 nm process with 2-MB L2 cache may contain design defects or errors known as errata which may cause the  
product to deviate from published specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
.
Δ
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across  
different processor families. See www.intel.com/products/processor_number for details.  
Intel, Pentium, Celeron, MMX, Intel SpeedStep and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the  
United States and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2004—2006, Intel Corporation. All rights reserved  
2
Datasheet  
Contents  
1
Introduction....................................................................................................................................7  
1.1  
1.2  
Terminology..........................................................................................................................9  
References ...........................................................................................................................9  
2
Low Power Features....................................................................................................................11  
2.1  
Clock Control and Low Power States .................................................................................11  
2.1.1 Normal State..........................................................................................................11  
2.1.2 AutoHALT Power-Down State ...............................................................................11  
2.1.3 Stop-Grant State....................................................................................................12  
2.1.4 HALT/Grant Snoop State.......................................................................................12  
2.1.5 Sleep State ............................................................................................................13  
2.1.6 Deep Sleep State...................................................................................................13  
2.1.7 Deeper Sleep State ...............................................................................................14  
®
2.2  
2.3  
2.4  
Enhanced Intel SpeedStep Technology ...........................................................................14  
Front Side Bus Low Power Enhancements ........................................................................15  
Processor Power Status Indicator (PSI#) Signal ................................................................15  
3
Electrical Specifications .............................................................................................................17  
3.1  
Power and Ground Pins......................................................................................................17  
3.1.1 FSB Clock (BCLK[1:0]) and Processor Clocking ...................................................17  
Voltage Identification ..........................................................................................................17  
Catastrophic Thermal Protection ........................................................................................18  
Signal Terminations and Unused Pins................................................................................19  
FSB Frequency Select Signals (BSEL[1:0]) .......................................................................19  
FSB Signal Groups.............................................................................................................19  
CMOS Signals ....................................................................................................................20  
Maximum Ratings...............................................................................................................21  
Processor DC Specifications ..............................................................................................21  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4
5
Package Mechanical Specifications and Pin Information .......................................................47  
4.1  
4.2  
Processor Pinout and Pin List.............................................................................................54  
Alphabetical Signals Reference..........................................................................................70  
Thermal Specifications and Design Considerations................................................................77  
5.1  
Thermal Specifications .......................................................................................................80  
5.1.1 Thermal Diode .......................................................................................................80  
5.1.2 Thermal Diode Offset.............................................................................................81  
®
5.1.3 Intel Thermal Monitor...........................................................................................82  
Datasheet  
3
Figures  
2-1 Clock Control States...................................................................................................................11  
3-1 Illustration of Active State VCC Static and Ripple Tolerances (HFM- VID#A)............................31  
3-2 Illustration of Deep Sleep State VCC Static and Ripple Tolerances (LFM- VID#A) ...................32  
3-3 Illustration of Active State VCC Static and Ripple Tolerances (HFM- VID#B)............................33  
3-4 Illustration of Deep Sleep State VCC Static and Ripple Tolerances (LFM- VID#B) ...................34  
3-5 Illustration of Active State VCC Static and Ripple Tolerances (HFM- VID#C) ...........................35  
3-6 Illustration of Deep Sleep State VCC Static and Ripple Tolerances (LFM- VID#C)...................36  
3-7 Illustration of Active State VCC Static and Ripple Tolerances (HFM- VID#D) ...........................37  
3-8 Illustration of Deep Sleep State VCC Static and Ripple Tolerances (LFM- VID#D)...................38  
3-9 Illustration of Active State VCC Static and Ripple Tolerances (HFM- VID#E)............................39  
3-10Illustration of Deep Sleep State VCC Static and Ripple Tolerances (LFM- VID#E) ...................40  
3-11Active VCC and ICC Load Line ..................................................................................................43  
3-12Deep Sleep VCC and ICC Load Line .........................................................................................44  
4-1 Micro-FCPGA Package Top and Bottom Isometric Views .........................................................47  
4-2 Micro-FCPGA Package - Top and Side Views...........................................................................48  
4-3 Micro-FCPGA Package - Bottom View.......................................................................................49  
4-4 Micro-FCBGA Package Top and Bottom Isometric Views .........................................................51  
4-5 Micro-FCBGA Package Top and Side Views .............................................................................52  
4-6 Micro-FCBGA Package Bottom View.........................................................................................54  
4-7 The Coordinates of the Processor Pins as Viewed from the Top of the Package......................55  
4
Datasheet  
Tables  
1-1 References ...................................................................................................................................9  
3-1 Voltage Identification Definition ..................................................................................................18  
3-2 FSB Pin Groups..........................................................................................................................20  
3-3 Processor DC Absolute Maximum Ratings.................................................................................21  
3-4 Voltage and Current Specifications - Standard Voltage Processors ..........................................22  
3-5 Voltage and Current Specifications - Low Voltage Processors ..................................................24  
3-6 Voltage and Current Specifications - Ultra Low Voltage Processors..........................................26  
3-7 Voltage and Current Specifications (Continued).........................................................................28  
®
®
3-8 Voltage Tolerances for the Intel Pentium M Processor (Active State) VID#A ........................31  
®
®
3-9 Voltage Tolerances for the Intel Pentium M Processor (Deep Sleep State) VID#A ...............32  
®
®
3-10Voltage Tolerances for the Intel Pentium M Processor (Active State) VID#B ........................33  
®
®
3-11Voltage Tolerances for the Intel Pentium M Processor (Deep Sleep State) VID#B ...............34  
®
®
3-12Voltage Tolerances for the Intel Pentium M Processor (Active State) VID#C........................35  
®
®
3-13Voltage Tolerances for the Intel Pentium M Processor (Deep Sleep State) VID#C...............36  
®
®
3-14Voltage Tolerances for the Intel Pentium M Processor (Active State) VID#D........................37  
®
®
3-15Voltage Tolerances for the Intel Pentium M Processor (Deep Sleep State) VID#D...............38  
®
®
3-16Voltage Tolerances for the Intel Pentium M Processor (Active State) VID#E ........................39  
®
®
3-17Voltage Tolerances for the Intel Pentium M Processor (Deep Sleep State) VID#E ...............40  
®
®
3-18Voltage Tolerances for the Intel Pentium M Processor LV (Active State) ..............................41  
®
®
3-19Voltage Tolerances for the Intel Pentium M Processor LV (Deep Sleep State) .....................42  
®
®
3-20Voltage Tolerances for the Intel Pentium M Processor ULV (Active State)............................42  
®
®
3-21Voltage Tolerances for the Intel Pentium M Processor ULV (Deep Sleep State)...................43  
3-22FSB Differential BCLK Specifications.........................................................................................44  
3-23AGTL+ Signal Group DC Specifications.....................................................................................45  
3-24CMOS Signal Group DC Specifications......................................................................................45  
3-25Open Drain Signal Group DC Specifications..............................................................................46  
4-1 Micro-FCPGA Package Dimensions...........................................................................................50  
4-2 Micro-FCBGA Package Dimensions...........................................................................................53  
4-3 Pin Listing by Pin Name..............................................................................................................57  
4-4 Pin Listing by Pin Number ..........................................................................................................63  
4-5 Signal Description.......................................................................................................................70  
®
5-1 Power Specifications for the Intel Pentium M Processor..........................................................78  
5-2 Thermal Diode Interface .............................................................................................................81  
5-3 Thermal Diode Specification.......................................................................................................81  
Datasheet  
5
Revision History  
Revision  
Description  
Date  
001  
002  
Initial release of datasheet  
May 2004  
June 2004  
Added Intel® Pentium® M processor 725 and 715 specifications  
Specifications of Intel® Pentium® M processor Low Voltage 738  
and Ultra Low Voltage 733 & 723 added in chapter 3 and chapter  
5.  
Chapter 2 section 2.1.3 - Missing Stop Grant State title added.  
Description was previously merged with Auto Halt state section  
and is unchanged.  
003  
004  
July 2004  
Table 4 - Max ratings specifications updated  
Added Intel® Pentium® M processor 765 specifications  
October 2004  
Added Intel® Pentium® M processor 753 and 758 specifications  
Added Execute Disable support feature and lead free SLI  
(second layer interconnect) Micro-FCPGA packaging  
information in chapter 1  
005  
January 2005  
Added Table 3-20 AGTL + Signal Group Signal DC  
Specifications  
Table 3-18 - Voltage Tolerances for Intel® Pentium®  
processor ULV (Deep Sleep State) updated  
M
006  
007  
008  
Added Intel® Pentium® M processor 778 specifications  
July 2005  
July 2005  
Updated Intel® Pentium® M processor 753 and 733J specifications  
for optimized VID  
Added Intel® Pentium® M processor 773 specifications  
January 2006  
§
6
Datasheet  
Introduction  
1 Introduction  
The Intel® Pentium® M processor based on 90 nm process technology featuring 2-MB L2 cache  
and 400-MHz front side bus (FSB) is the next generation high- performance, low-power mobile  
processor based on the Intel® Pentium® processor architecture.  
Throughout this document, Intel Pentium M processor based on 90 nm technology featuring 2-MB  
L2 cache and 400 MHz FSB will be referred to as Pentium M processor, or simply the processor,  
including low voltage and ultra low voltage processors.  
This document contains specifications for the Pentium M processors 765/ 755/ 745/ 735/ 725/ 715  
Δ
Standard Voltage, 778/758/738 Low Voltage and 773/753/733J/733/723 Ultra Low Voltage .  
Δ
Intel processor numbers are not a measure of performance. Processor numbers differentiate  
features within each processor family, not across different processor families. See www.intel.com/  
products/processor_number for details.  
The following list provides some of the key features on this processor:  
Supports Intel® Architecture with Dynamic Execution  
On-die, primary 32-KB instruction cache and 32-KB write-back data cache  
On-die, 2 MB second level cache with Advanced Transfer Cache Architecture  
Way set associativity and ECC (Error Correcting Code) support  
Data Prefetch Logic  
Streaming SIMD extensions 2 (SSE2)  
400 MHz, source-synchronous FSB  
Advanced power management features including Enhanced Intel SpeedStep® technology  
Micro-FCPGA and Micro-FCBGA packaging technologies  
Manufactured on Intel’s advanced 90 nanometer process technology with copper interconnect.  
Support for MMX™ technology and Internet Streaming SIMD instructions  
The processor’s data prefetch logic fetches data to the L2 cache before L1 cache requests  
occurs, resulting in reduced bus cycle penalties and improved performance  
Micro-FCPGA and Micro-FCBGA packaging technologies, including lead free SLI (second  
level interconnect) technology for the Micro-FCBGA package (for Pentium M processors 755,  
745, 778, 758, 738, 773, 753, 733J/733, 723)  
Execute Disable Bit support for enhanced security (available on processors with CPU  
Signature = 06D8h and recommended for implementation on Intel® 915 Express chipset  
family-based platforms only)  
The Pentium M processor will be manufactured on Intel’s advanced 90 nm process technology  
with copper interconnect. The processor maintains support for MMX technology and Internet  
Streaming SIMD instructions and full compatibility with IA-32 software. The on-die, 32-KB  
Level 1 instruction and data caches along with the 2-MB L2 cache with advanced transfer cache  
Datasheet  
7
Introduction  
architecture enable significant performance improvement over existing mobile processors. The  
processor’s data prefetch logic fetches data to the L2 cache before L1 cache requests occurs,  
resulting in reduced bus cycle penalties and improved performance.  
The streaming SIMD extensions 2 (SSE2) enable break-through levels of performance in  
multimedia applications including 3-D graphics, video decoding/encoding, and speech recognition.  
The new packed double-precision floating-point instructions enhance performance for applications  
that require greater range and precision, including scientific and engineering applications and  
advanced 3-D geometry techniques, such as ray tracing.  
The Pentium M processor’s 400-MHz FSB utilizes a split-transaction, deferred reply protocol. The  
400-MHz FSB uses source-synchronous transfer (SST) of address and data to improve  
performance by transferring data four times per bus clock (4X data transfer rate, as in AGP 4X).  
Along with the 4X data bus, the address bus can deliver addresses two times per bus clock and is  
referred to as a “double-clocked” or 2X address bus. Working together, the 4X data bus and 2X  
address bus provide a data bus bandwidth of up to 3.2 GB/second. The FSB uses Advanced  
Gunning Transceiver Logic (AGTL+) signaling technology, a variant of GTL+ signaling  
technology with low power enhancements.  
The processor features Enhanced Intel SpeedStep technology, which enables real-time dynamic  
switching between multiple voltage and frequency points. This results in optimal performance  
without compromising low power. The processor features the Auto Halt, Stop Grant, Deep Sleep,  
and Deeper Sleep low power states.  
The Pentium M processor utilizes socketable Micro Flip-Chip Pin Grid Array (Micro-FCPGA) and  
surface mount Micro Flip-Chip Ball Grid Array (Micro-FCBGA) package technology. The Micro-  
FCPGA package plugs into a 479-hole, surface-mount, zero insertion force (ZIF) socket, which is  
referred to as the mPGA479M socket.  
Pentium M processors with CPU Signature = 06D8h will also include the Execute Disable Bit  
capability. This feature combined with a support operating system allows memory to be marked as  
executable or non executable. If code attempts to run in non-executable memory the processor  
raises an error to the operating system. This feature can prevent some classes of viruses or worms  
that exploit buffer overrun vulnerabilities and can thus help improve the overall security of the  
system. See the Intel® Architecture Software Developer's Manual for more detailed information.  
Intel will validate this feature only on Intel 915 Express chipset family based platforms and  
recommends customers implement BIOS changes related to this feature, only on Intel 915 Express  
chipset family based platforms.  
Note: The term AGTL+ is used to refer to Assisted GTL+ signalling technology on some Intel processors.  
8
Datasheet  
Introduction  
1.1  
Terminology  
Term  
Definition  
#
A “#” symbol after a signal name refers to an active low signal, indicating a signal is in  
the active state when driven to a low level. For example, when RESET# is low, a reset  
has been requested. Conversely, when NMI is high, a nonmaskable interrupt has  
occurred. In the case of signals where the name does not imply an active state but  
describes part of a binary sequence (such as address or data), the “#” symbol implies  
that the signal is inverted. For example, D[3:0] = “HLHL” refers to a hex ‘A’, and  
D[3:0]# = “LHLH” also refers to a hex “A” (H= High logic level, L= Low logic level).  
XXXX means that the specification or value is yet to be determined.  
Front Side Bus  
(FSB)  
Refers to the interface between the processor and system core logic (also known as  
the chipset components).  
1.2  
References  
Material and concepts available in the following documents may be beneficial when reading this  
document. Please note that “platform design guides,” when used throughout this document, refers  
to the platform design guides listed below:  
Table 1-1. References (Sheet 1 of 2)  
Document Number/  
Location1  
Document  
Intel® Pentium® M Processor on 90 nm Process with 2-MB L2 Cache -  
Specification Update  
http://www.intel.com/  
design/mobile/specupdt/  
302209.htm  
Mobile Intel® 915PM/GM/GMS and 910GML Express Chipset Datasheet  
http://www.intel.com/  
design/mobile/datashts/  
305264.htm  
Mobile Intel® 915PM/GM/GMS and 910GML Express Chipset Specification  
Update  
http://www.intel.com/  
design/mobile/specupdt/  
307167.htm  
Intel®855PM Chipset Platform Design Guide: For use with Intel®Pentium® M and http://developer.intel.com/  
Intel®Celeron®Processors  
design/mobile/desguide/  
252614.htm  
Intel® 855PM Chipset Memory Controller Hub (MCH) Datasheet  
http://developer.intel.com/  
design/chipsets/datashts/  
252613.htm  
Intel® 855PM Chipset MCH DDR 333/200/266 MHz Specification Update  
http://developer.intel.com/  
design/chipsets/specupdt/  
253488.htm  
Intel® 855GM/GME Chipset Graphics and Memory Controller Hub (GMCH)  
Datasheet  
http://developer.intel.com/  
design/chipsets/datashts/  
252615.htm  
Intel® 855GM/GME Chipset Graphics and Memory Controller Hub (GMCH)  
Chipset Specification Update  
http://developer.intel.com/  
design/chipsets/specupdt/  
253572.htm  
Intel®855GM/855GME Chipset Platform Design Guide  
http://developer.intel.com/  
design/mobile/desguide/  
252616.htm  
Datasheet  
9
Introduction  
Table 1-1. References (Sheet 2 of 2)  
Document Number/  
Location1  
Document  
IA-32 Intel® Architecture Software Developer's Manual  
Volume 1: Basic Architecture  
http://www.intel.com/  
design/pentium4/  
manuals/index_new.htm  
Volume 2A: Instruction Set Reference  
Volume 2B: Instruction Set Reference  
Volume 3: System Programming Guide  
NOTE: Contact your Intel representative for the latest revision and document number of this document.  
§
10  
Datasheet  
Low Power Features  
2 Low Power Features  
2.1  
Clock Control and Low Power States  
The Pentium M processor supports the AutoHALT Power-Down, Stop Grant, Sleep, Deep Sleep,  
and Deeper Sleep states for optimal power management. See Figure 2-1 for a visual representation  
of the processor low-power states.  
Figure 2-1. Clock Control States  
SLP# asserted  
STPCLK# asserted  
Stop  
Grant  
Normal  
Sleep  
STPCLK# deasserted  
SLP# deasserted  
STPCLK#  
asserted  
halt  
break  
DPSLP#  
de-asserted  
DPSLP#  
asserted  
snoop  
serviced  
HLT  
snoop  
occurs  
STPCLK#  
deasserted  
instruction  
core voltage raised  
snoop  
occurs  
HALT/  
Grant  
Snoop  
Deeper  
Sleep  
Deep  
Sleep  
Auto Halt  
snoop  
serviced  
core voltage lowered  
V0001-04  
Halt break - A20M#, INIT#, INTR, NMI, PREQ#, RESET#, SMI#, or APIC interrupt  
2.1.1  
2.1.2  
Normal State  
This is the normal operating state for the processor.  
AutoHALT Power-Down State  
AutoHALT Power-Down is a low-power state entered when the processor executes the HALT  
instruction. The processor will transition to the Normal state upon the occurrence of SMI#, INIT#,  
LINT[1:0] (NMI, INTR), or FSB interrupt message. RESET# will cause the processor to  
immediately initialize itself.  
A system management interrupt (SMI) handler will return execution to either Normal state or the  
®
AutoHALT Power-Down state. See the IA-32 Intel Architecture Software Developer's Manual,  
Volume 3: System Programmer's Guide for more information.  
Datasheet  
11  
Low Power Features  
The system can generate a STPCLK# while the processor is in the AutoHALT Power-Down state.  
When the system deasserts the STPCLK# interrupt, the processor will return execution to the  
HALT state.  
While in AutoHALT Power-Down state, the processor will process bus snoops and interrupts.  
2.1.3  
Stop-Grant State  
When the STPCLK# pin is asserted, the Stop-Grant state of the processor is entered 20 bus clocks  
after the response phase of the processor-issued Stop Grant Acknowledge special bus cycle.  
Since the AGTL+ signal pins receive power from the FSB, these pins should not be driven  
(allowing the level to return to VCCP) for minimum power drawn by the termination resistors in this  
state. In addition, all other input pins on the FSB should be driven to the inactive state.  
RESET# will cause the processor to immediately initialize itself, but the processor will stay in  
Stop-Grant state. A transition back to the Normal state will occur with the de-assertion of the  
STPCLK# signal. When re-entering the Stop-Grant state from the Sleep state, STPCLK# should be  
deasserted ten or more bus clocks after the de-assertion of SLP#.  
A transition to the HALT/Grant Snoop state will occur when the processor detects a snoop on the  
FSB (see Section 2.1.3). A transition to the Sleep state (see Section 2.1.5) will occur with the  
assertion of the SLP# signal.  
While in the Stop-Grant State, SMI#, INIT# and LINT[1:0] will be latched by the processor, and  
only serviced when the processor returns to the Normal State. Only one occurrence of each event  
will be recognized upon return to the Normal state.  
While in Stop-Grant state, the processor will process snoops on the FSB and it will latch interrupts  
delivered on the FSB.  
The PBE# signal can be driven when the processor is in Stop-Grant state. PBE# will be asserted if  
there is any pending interrupt latched within the processor. Pending interrupts that are blocked by  
the EFLAGS.IF bit being clear will still cause assertion of PBE#. Assertion of PBE# indicates to  
system logic that it should return the processor to the Normal state.  
2.1.4  
HALT/Grant Snoop State  
The processor responds to snoop or interrupt transactions on the FSB while in Stop-Grant state or  
in AutoHALT Power-Down state. During a snoop or interrupt transaction, the processor enters the  
HALT/Grant Snoop state. The processor will stay in this state until the snoop on the FSB has been  
serviced (whether by the processor or another agent on the FSB) or the interrupt has been latched.  
After the snoop is serviced or the interrupt is latched, the processor will return to the Stop-Grant  
state or AutoHALT Power-Down state, as appropriate.  
12  
Datasheet  
Low Power Features  
2.1.5  
Sleep State  
A low power state in which the processor maintains its context, maintains the phase-locked loop  
(PLL), and has stopped all internal clocks. The Sleep state can be entered only from Stop-Grant  
state. Once in the Stop-Grant state, the processor will enter the Sleep state upon the assertion of the  
SLP# signal. The SLP# pin should only be asserted when the processor is in the Stop Grant state.  
SLP# assertions while the processor is not in the Stop-Grant state is out of specification and may  
result in unapproved operation.  
Snoop events that occur while in Sleep State or during a transition into or out of Sleep state will  
cause unpredictable behavior.  
In the Sleep state, the processor is incapable of responding to snoop transactions or latching  
interrupt signals. No transitions or assertions of signals (with the exception of SLP#, DPSLP# or  
RESET#) are allowed on the FSB while the processor is in Sleep state. Any transition on an input  
signal before the processor has returned to Stop-Grant state will result in unpredictable behavior.  
If RESET# is driven active while the processor is in the Sleep state, and held active as specified in  
the RESET# pin specification, then the processor will reset itself, ignoring the transition through  
Stop-Grant State. If RESET# is driven active while the processor is in the Sleep State, the SLP#  
and STPCLK# signals should be deasserted immediately after RESET# is asserted to ensure the  
processor correctly executes the reset sequence.  
While in the Sleep state, the processor is capable of entering an even lower power state, the Deep  
Sleep state by asserting the DPSLP# pin. (See Section 2.1.6.) While the processor is in the Sleep  
state, the SLP# pin must be deasserted if another asynchronous FSB event needs to occur.  
2.1.6  
Deep Sleep State  
Deep Sleep state is a very low power state the processor can enter while maintaining context. Deep  
Sleep state is entered by asserting the DPSLP# pin while in the Sleep state. BCLK may be stopped  
during the Deep Sleep state for additional platform level power savings.  
BCLK stop/restart timings on 855PM and Intel 855GM chipset-based platforms are as follows:  
Deep Sleep entry - DPSLP# and CPU_STP# are asserted simultaneously. The platform clock  
chip will stop/tristate BCLK within 2 BCLKs +/- a few nanoseconds.  
Deep Sleep exit - DPSLP# and CPU_STP# are deasserted simultaneously. The platform clock  
chip will drive BCLK to differential DC levels within 2-3 ns and starts toggling BCLK 2-6  
BCLK periods later.  
To re-enter the Sleep state, the DPSLP# pin must be deasserted. BCLK can be restarted after  
DPSLP# deassertion, as described above. A period of 30 microseconds (to allow for PLL  
stabilization) must occur before the processor can be considered to be in the Sleep State. Once in  
the Sleep state, the SLP# pin must be deasserted to re-enter the Stop-Grant state.  
While in Deep Sleep state, the processor is incapable of responding to snoop transactions or  
latching interrupt signals. No transitions of signals are allowed on the FSB while the processor is in  
Deep Sleep state. Any transition on an input signal before the processor has returned to Stop-Grant  
state will result in unpredictable behavior.  
When the processor is in Deep Sleep state, it will not respond to interrupts or snoop transactions.  
Datasheet  
13  
Low Power Features  
2.1.7  
Deeper Sleep State  
The Deeper Sleep state is the lowest power state the processor can enter. This state is functionally  
identical to the Deep Sleep state but at a lower core voltage. The control signals to the voltage  
regulator to initiate a transition to the Deeper Sleep state are provided on the platform. Please refer  
to the platform design guides listed in Table 1-1.  
®
2.2  
Enhanced Intel SpeedStep Technology  
The Pentium M processor features Enhanced Intel SpeedStep technology. Unlike previous  
implementations of Intel SpeedStep technology, this technology enables the processor to switch  
between multiple frequency and voltage points instead of two. This will enable superior  
performance with optimal power savings. Switching between states is software controlled unlike  
previous implementations where the GHI# pin is used to toggle between two states. Following are  
the key features of Enhanced Intel SpeedStep technology:  
Multiple voltage/frequency operating points provide optimal performance at the lowest power.  
Voltage/Frequency selection is software controlled by writing to processor MSR’s (Model  
Specific Registers) thus eliminating chipset dependency.  
— If the target frequency is higher than the current frequency, Vcc is ramped up by placing a  
new value on the VID pins and the PLL then locks to the new frequency.  
— If the target frequency is lower than the current frequency, the PLL locks to the new  
frequency and the Vcc is changed through the VID pin mechanism.  
— Software transitions are accepted at any time. If a previous transition is in progress, the  
new transition is deferred until its completion.  
The processor controls voltage ramp rates internally to ensure glitch free transitions.  
Low transition latency and large number of transitions possible per second.  
— Processor core (including L2 cache) is unavailable for up to 10 μs during the frequency  
transition  
— The bus protocol (BNR# mechanism) is used to block snooping  
No bus master arbiter disable required prior to transition and no processor cache flush  
necessary.  
Improved Intel® Thermal Monitor mode.  
— When the on-die thermal sensor indicates that the die temperature is too high, the  
processor can automatically perform a transition to a lower frequency/voltage specified in  
a software programmable MSR.  
— The processor waits for a fixed time period. If the die temperature is down to acceptable  
levels, an up transition to the previous frequency/voltage point occurs.  
— An interrupt is generated for the up and down Intel Thermal Monitor transitions enabling  
better system level thermal management.  
14  
Datasheet  
Low Power Features  
2.3  
Front Side Bus Low Power Enhancements  
The Pentium M processor incorporates the following front side bus (processor system bus) low  
power enhancements:  
Dynamic FSB Power Down  
BPRI# control for address and control input buffers  
Dynamic On Die Termination disabling  
Low VCCP (I/O termination voltage)  
The Pentium M processor incorporates the DPWR# signal that controls the data bus input buffers  
on the processor. The DPWR# signal disables the buffers when not used and activates them only  
when data bus activity occurs, resulting in significant power savings with no performance impact.  
BPRI# control also allows the processor address and control input buffers to be turned off when the  
BPRI# signal is inactive. The on-die termination on the processor FSB buffers is disabled when the  
signals are driven low, resulting in additional power savings. The low I/O termination voltage is on  
a dedicated voltage plane independent of the core voltage, enabling low I/O switching power at all  
times.  
2.4  
Processor Power Status Indicator (PSI#) Signal  
The Pentium M processor incorporates the PSI# signal that is asserted when the processor is in a  
low power (Deep Sleep or Deeper Sleep) state. This signal is asserted upon Deep Sleep entry and  
deasserted upon exit. PSI# can be used to improve the light load efficiency of the voltage regulator,  
resulting in platform power savings and extended battery life. PSI# can also be used to simplify  
voltage regulator designs since it removes the need for integrated 100 μs timers required to mask  
the PWRGOOD signal during Deeper Sleep transitions. It also helps loosen PWRGOOD  
monitoring requirements in the Deeper Sleep state.  
§
Datasheet  
15  
Low Power Features  
16  
Datasheet  
Electrical Specifications  
3 Electrical Specifications  
3.1  
Power and Ground Pins  
For clean, on-chip power distribution, the Pentium M processor has a large number of VCC (power)  
and VSS (ground) inputs. All power pins must be connected to VCC power planes while all VSS pins  
must be connected to system ground planes. Use of multiple power and ground planes is  
recommended to reduce I*R drop. Please refer to the platform design guides for more details. The  
processor VCC pins must be supplied the voltage determined by the VID (Voltage ID) pins.  
3.1.1  
FSB Clock (BCLK[1:0]) and Processor Clocking  
BCLK[1:0] directly controls the system bus interface speed as well as the core frequency of the  
processor. As in previous generation processors, the Pentium M processor core frequency is a  
multiple of the BCLK[1:0] frequency. In regards to processor clocking, the Pentium M processor  
uses a differential clocking implementation.  
3.2  
Voltage Identification  
The Pentium M processor uses six voltage identification pins, VID[5:0], to support automatic  
selection of power supply voltages. The VID pins for the Pentium M processor are CMOS outputs  
driven by the processor VID circuitry. Table 3-1 specifies the voltage level corresponding to the  
state of VID[5:0]. A “1” in this refers to a high-voltage level and a “0” refers to low-voltage level.  
Datasheet  
17  
Electrical Specifications  
Table 3-1. Voltage Identification Definition  
VID  
VID  
VCC  
V
VCC  
V
5
4
3
2
1
0
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.708  
1.692  
1.676  
1.660  
1.644  
1.628  
1.612  
1.596  
1.580  
1.564  
1.548  
1.532  
1.516  
1.500  
1.484  
1.468  
1.452  
1.436  
1.420  
1.404  
1.388  
1.372  
1.356  
1.340  
1.324  
1.308  
1.292  
1.276  
1.260  
1.244  
1.228  
1.212  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.196  
1.180  
1.164  
1.148  
1.132  
1.116  
1.100  
1.084  
1.068  
1.052  
1.036  
1.020  
1.004  
0.988  
0.972  
0.956  
0.940  
0.924  
0.908  
0.892  
0.876  
0.860  
0.844  
0.828  
0.812  
0.796  
0.780  
0.764  
0.748  
0.732  
0.716  
0.700  
3.3  
Catastrophic Thermal Protection  
The Pentium M processor supports the THERMTRIP# signal for catastrophic thermal protection.  
An external thermal sensor should also be used to protect the processor and the system against  
excessive temperatures. Even with the activation of THERMTRIP#, which halts all processor  
internal clocks and activity, leakage current can be high enough such that the processor cannot be  
protected in all conditions without the removal of power to the processor. If the external thermal  
sensor detects a catastrophic processor temperature of 125 °C (maximum), or if the THERMTRIP#  
signal is asserted, the VCC supply to the processor must be turned off within 500 ms to prevent  
permanent silicon damage due to thermal runaway.  
18  
Datasheet  
Electrical Specifications  
3.4  
Signal Terminations and Unused Pins  
All RSVD (RESERVED) pins must remain unconnected. Connection of these pins to VCC, VSS, or  
to any other signal (including each other) can result in component malfunction or incompatibility  
with future Pentium M processors. See Section 4.2 for a pin listing of the processor and the  
location of all RSVD pins.  
For reliable operation, always connect unused inputs or bidirectional signals to an appropriate  
signal level. Unused active low AGTL+ inputs may be left as no connects if AGTL+ termination is  
provided on the processor silicon. Unused active high inputs should be connected through a resistor  
to ground (VSS). Unused outputs can be left unconnected.  
For details on signal terminations, please refer to the platform design guides.  
The TEST1 and TEST2 pins must have a stuffing option connection to VSS separately via 1-kΩ,  
pull-down resistors.  
3.5  
3.6  
FSB Frequency Select Signals (BSEL[1:0])  
These signals are used to select the FSB clock frequency. They should be connected between the  
processor and the chipset MCH and clock generator on Intel 915 Express chipset family based  
platforms. These signals must be left unconnected on platforms designed with the Intel 855 chipset  
family. On these platforms, FSB clock frequency should be configured on the motherboard.  
FSB Signal Groups  
In order to simplify the following discussion, the FSB signals have been combined into groups by  
buffer type. AGTL+ input signals have differential input buffers, which use GTLREF as a reference  
level. In this document, the term "AGTL+ Input" refers to the AGTL+ input group as well as the  
AGTL+ I/O group when receiving. Similarly, "AGTL+ Output" refers to the AGTL+ output group  
as well as the AGTL+ I/O group when driving.  
With the implementation of a source synchronous data bus comes the need to specify two sets of  
timing parameters. One set is for common clock signals which are dependant upon the rising edge  
of BCLK0 (ADS#, HIT#, HITM#, etc.) and the second set is for the source synchronous signals  
which are relative to their respective strobe lines (data and address) as well as the rising edge of  
BCLK0. Asychronous signals are still present (A20M#, IGNNE#, etc.) and can become active at  
any time during the clock cycle. Table 3-2 identifies which signals are common clock, source  
synchronous, and asynchronous.  
Datasheet  
19  
Electrical Specifications  
Table 3-2. FSB Pin Groups  
Signal Group  
Type  
Signals1  
AGTL+ Common Clock Input  
Synchronous  
to BCLK[1:0]  
BPRI#, DEFER#, DPWR#, PREQ#, RESET#, RS[2:0]#,  
TRDY#  
AGTL+ Common Clock I/O  
Synchronous  
to BCLK[1:0]  
ADS#, BNR#, BPM[3:0]#, BR0#, DBSY#, DRDY#, HIT#,  
HITM#, LOCK#, PRDY#  
AGTL+ Source Synchronous I/O Synchronous  
to assoc.  
strobe  
Signals  
Associated Strobe  
ADSTB[0]#  
REQ[4:0]#, A[16:3]#  
A[31:17]#  
ADSTB[1]#  
D[15:0]#, DINV0#  
D[31:16]#, DINV1#  
D[47:32]#, DINV2#  
D[63:48]#, DINV3#  
DSTBP0#, DSTBN0#  
DSTBP1#, DSTBN1#  
DSTBP2#, DSTBN2#  
DSTBP3#, DSTBN3#  
AGTL+ Strobes  
CMOS Input  
Synchronous  
to BCLK[1:0]  
ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]#  
Asynchronous A20M#, DPSLP#, IGNNE#, INIT#, LINT0/INTR, LINT1/  
NMI, PWRGOOD, SMI#, SLP#, STPCLK#  
Open Drain Output  
CMOS Output  
CMOS Input  
Asynchronous FERR#, IERR#, PROCHOT#, THERMTRIP#  
Asynchronous PSI#, VID[5:0], BSEL[1:0]  
Synchronous  
to TCK  
TCK, TDI, TMS, TRST#  
Open Drain Output  
Synchronous  
to TCK  
TDO  
FSB Clock  
Clock  
BCLK[1:0], ITP_CLK[1:0]2  
Power/Other  
COMP[3:0], DBR#2, GTLREF, RSVD, TEST2, TEST1,  
THERMDA, THERMDC, VCC, VCCA[3:0], VCCP, VCCQ[1:0],  
V
CC_SENSE, VSS, VSS_SENSE  
NOTES:  
1. Refer to Chapter 4 for signal descriptions and termination requirements.  
2. BPM[2:0}# and PRDY# are AGTL+ output only signals.  
3. In processor systems where there is no debug port implemented on the system board, these signals are used  
to support a debug port interposer. In systems with the debug port implemented on the system board, these  
signals are no connects.  
3.7  
CMOS Signals  
CMOS input signals are shown in Table 3-2. Legacy output FERR#, IERR# and other non-AGTL+  
signals (THERMTRIP# and PROCHOT#) utilize Open Drain output buffers. These signals do not  
have setup or hold time specifications in relation to BCLK[1:0]. However, all of the CMOS signals  
are required to be asserted for at least three BCLKs in order for the processor to recognize them.  
See Section 3.9 for the DC and AC specifications for the CMOS signal groups.  
20  
Datasheet  
Electrical Specifications  
3.8  
Maximum Ratings  
Table 3-3 lists the processor’s maximum environmental stress ratings. The processor should not  
receive a clock while subjected to these conditions. Functional operating parameters are listed in  
the AC and DC tables. Extended exposure to the maximum ratings may affect device reliability.  
Furthermore, although the processor contains protective circuitry to resist damage from electro  
static discharge (ESD), one should always take precautions to avoid high static voltages or electric  
fields.  
Table 3-3. Processor DC Absolute Maximum Ratings  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
TSTORAGE  
Processor storage  
temperature  
-40  
85  
°C  
2
VCC  
Any processor supply  
voltage with respect to VSS  
-0.3  
-0.1  
-0.1  
1.6  
1.6  
1.6  
V
V
V
1
VinAGTL+  
AGTL+ buffer DC input  
voltage with respect to VSS  
1, 2  
1, 2  
VinAsynch_CMOS CMOS buffer DC input  
voltage with respect to VSS  
NOTES:  
1. This rating applies to any processor pin.  
2. Contact Intel for storage requirements in excess of one year.  
3.9  
Processor DC Specifications  
The processor DC specifications in this section are defined at the processor core (pads) unless  
noted otherwise. See Table 4-3 for the pin signal definitions and signal pin assignments. The DC  
specifications for these signals are listed in Table 3-24 and Table 3-25.  
Table 3-4 through Table 3-25 list the DC specifications for the Pentium M processor and are valid  
only while meeting specifications for junction temperature, clock frequency, and input voltages.  
The Highest Frequency mode (HFM) and Lowest Frequency mode (LFM) refer to the highest and  
lowest core operating frequencies supported on the processor. Active mode load line specifications  
apply in all states except in the Deep Sleep and Deeper Sleep states. V  
is the default  
CC,BOOT  
voltage driven by the voltage regulator at power up in order to set the VID values. Unless specified  
otherwise, all specifications for the Pentium M processor are at Tjunction = 100° C. Care should be  
taken to read all notes associated with each parameter.  
Datasheet  
21  
Electrical Specifications  
Table 3-4. Voltage and Current Specifications - Standard Voltage Processors (Sheet 1 of 2)  
VID#A  
Typical  
VID#B  
Typical  
VID#C  
Typical  
VID#D  
Typical  
VID#E  
Typical  
Symbol  
Parameter  
Unit  
Notes  
VCCD765  
Intel® Pentium® M Processor  
765 Core VCC FOR Enhanced  
Intel SpeedStep® Technology  
Operating Points:  
V
1, 2  
2.1 GHz  
1.8 GHz  
1.6 GHz  
1.4 GHz  
1.2 GHz  
1.0 GHz  
800 MHz  
600 MHz  
1.340  
1.276  
1.228  
1.180  
1.132  
1.084  
1.036  
0.988  
1.324  
1.260  
1.212  
1.180  
1.132  
1.084  
1.036  
0.988  
1.308  
1.244  
1.212  
1.164  
1.116  
1.084  
1.036  
0.988  
1.356  
1.292  
1.244  
1.196  
1.148  
1.100  
1.052  
0.988  
VCCD755  
Pentium M Processor 755  
Core VCC for Enhanced Intel  
SpeedStep Technology  
Operating Points:  
V
1, 2  
2.0 GHz  
1.8 GHz  
1.6 GHz  
1.4 GHz  
1.2 GHz  
1.0 GHz  
800 MHz  
600 MHz  
1.340  
1.292  
1.244  
1.196  
1.148  
1.100  
1.052  
0.988  
1.324  
1.276  
1.228  
1.180  
1.132  
1.084  
1.036  
0.988  
1.308  
1.276  
1.228  
1.180  
1.132  
1.084  
1.036  
0.988  
1.276  
1.244  
1.196  
1.164  
1.116  
1.084  
1.036  
0.988  
VCCD745  
Pentium M Processor 745  
Core VCC for Enhanced Intel  
SpeedStep Technology  
Operating Points:  
V
1, 2  
1.8 GHz  
1.6 GHz  
1.4 GHz  
1.2 GHz  
1.0 GHz  
800 MHz  
600 MHz  
1.340  
1.292  
1.228  
1.164  
1.116  
1.052  
0.988  
1.324  
1.276  
1.212  
1.164  
1.100  
1.052  
0.988  
1.308  
1.260  
1.212  
1.148  
1.100  
1.052  
0.988  
1.276  
1.228  
1.180  
1.132  
1.084  
1.036  
0.988  
22  
Datasheet  
Electrical Specifications  
Table 3-4. Voltage and Current Specifications - Standard Voltage Processors (Sheet 2 of 2)  
VID#A  
Typical  
VID#B  
Typical  
VID#C  
Typical  
VID#D  
Typical  
VID#E  
Typical  
Symbol  
Parameter  
Unit  
Notes  
VCCD735  
Pentium M Processor 735  
Core VCC for Enhanced Intel  
SpeedStep Technology  
Operating Points:  
V
1, 2  
1.7 GHz  
1.4 GHz  
1.2 GHz  
1.0 GHz  
800 MHz  
600 MHz  
1.340  
1.244  
1.180  
1.116  
1.052  
0.988  
1.324  
1.244  
1.180  
1.116  
1.052  
0.988  
1.308  
1.228  
1.164  
1.116  
1.052  
0.988  
1.276  
1.212  
1.148  
1.100  
1.052  
0.988  
VCCD725  
Pentium M Processor 725  
Core VCC for Enhanced Intel  
SpeedStep Technology  
Operating Points:  
V
1, 2  
1.6 GHz  
1.4 GHz  
1.2 GHz  
1.0 GHz  
800 MHz  
600 MHz  
1.340  
1.276  
1.212  
1.132  
1.068  
0.988  
1.324  
1.260  
1.196  
1.132  
1.068  
0.988  
1.308  
1.244  
1.180  
1.116  
1.052  
0.988  
1.276  
1.228  
1.164  
1.116  
1.052  
0.988  
VCCD715  
Pentium M Processor 715  
Core VCC for Enhanced Intel  
SpeedStep Technology  
Operating Points:  
V
1, 2  
1.5 GHz  
1.2 GHz  
1.0 GHz  
800 MHz  
600 MHz  
1.340  
1.228  
1.148  
1.068  
0.988  
1.324  
1.212  
1.148  
1.068  
0.988  
1.308  
1.212  
1.132  
1.068  
0.988  
1.276  
1.180  
1.116  
1.052  
0.988  
NOTES:  
1. The typical values shown are the VID encoded voltages. Static and ripple tolerances (for minimum and  
maximum voltages) are defined in the load line tables, Table 3-8 through Table 3-21. Adherence to loadline  
specifications for the Pentium M processor is required to ensure reliable processor operation.  
2. The voltage specifications are assumed to be measured at a via on the motherboard’s opposite side of the  
processor’s socket (or BGA) ball with a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe  
capacitance, and 1-MΩ minimum impedance. The maximum length of ground wire on the probe should be  
less than 5 mm. Ensure external noise from the system is not coupled in the scope probe.  
Datasheet  
23  
Electrical Specifications  
Table 3-5. Voltage and Current Specifications - Low Voltage Processors (Sheet 1 of 2)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
1, 2  
VCCD778  
Intel® Pentium®  
M
V
Processor, Low Voltage  
778 Core VCC for  
Enhanced Intel  
SpeedStep® Technology  
Operating Points:  
1.6 GHz  
1.5 GHz  
1.4 GHz  
1.3 GHz  
1.2 GHz  
1.1 GHz  
1.0 GHz  
900 GHz  
800 MHz  
600 MHz  
1.116  
1.116  
1.100  
1.084  
1.068  
1.052  
1.052  
1.036  
1.020  
0.988  
VCCD758  
Pentium M Processor,  
Low Voltage,  
V
1, 2  
758 Core VCC for  
Enhanced Intel  
SpeedStep Technology  
Operating Points:  
1.5 GHz  
1.4 GHz  
1.3 GHz  
1.2 GHz  
1.1 GHz  
1.0 GHz  
900 GHz  
800 MHz  
600 MHz  
1.116  
1.116  
1.100  
1.084  
1.068  
1.052  
1.036  
1.020  
0.988  
24  
Datasheet  
Electrical Specifications  
Table 3-5. Voltage and Current Specifications - Low Voltage Processors (Sheet 2 of 2)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
1, 2  
VCCD738  
Pentium M Processor,  
Low Voltage,  
V
738 Core VCC for  
Enhanced Intel  
SpeedStep Technology  
Operating Points:  
1.4 GHz  
1.3 GHz  
1.2 GHz  
1.1 GHz  
1.0 GHz  
900 GHz  
800 MHz  
600 MHz  
1.116  
1.116  
1.100  
1.068  
1.052  
1.036  
1.020  
0.988  
NOTES:  
1. The typical values shown are the VID encoded voltages. Static and ripple tolerances (for minimum and  
maximum voltages) are defined in the load line tables, Table 3-8 through Table 3-21. Adherence to loadline  
specifications for the Pentium M processor is required to ensure reliable processor operation.  
2. The voltage specifications are assumed to be measured at a via on the motherboard’s opposite side of the  
processor’s socket (or BGA) ball with a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe  
capacitance, and 1-MΩ minimum impedance. The maximum length of ground wire on the probe should be  
less than 5 mm. Ensure external noise from the system is not coupled in the scope probe.  
Datasheet  
25  
Electrical Specifications  
Table 3-6. Voltage and Current Specifications - Ultra Low Voltage Processors (Sheet 1 of 2)  
VID#  
GTyp HTyp  
VID# VID#I VID#  
VID#  
VID#  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
Typ J Typ K Typ L Typ  
VCCD773  
Intel® Pentium®  
Processor, Ultra Low  
Voltage,  
M
V
2, 3  
773 Core VCC for  
Enhanced Intel  
SpeedStep®  
Technology Operating  
Points:  
1.3 GHz  
1.2 GHz  
1.1 GHz  
1.0 GHz  
900 MHz  
800 MHz  
600 MHz  
0.956 0.940 0.924 0.908 0.892 0.876  
0.940 0.924 0.908 0.908 0.892 0.876  
0.924 0.908 0.892 0.892 0.876 0.860  
0.908 0.892 0.876 0.876 0.860 0.860  
0.876 0.876 0.860 0.860 0.860 0.844  
0.860 0.860 0.844 0.844 0.844 0.844  
0.812 0.812 0.812 0.812 0.812 0.812  
VCCD753 Pentium M Processor,  
Ultra Low Voltage,  
753 Core VCC for  
Enhanced Intel  
V
2, 3  
SpeedStep  
Technology Operating  
Points:  
1.2 GHz  
1.1 GHz  
1.0 GHz  
900 MHz  
800 MHz  
600 MHz  
0.956 0.940 0.924 0.908 0.892 0.876  
0.940 0.924 0.908 0.892 0.892 0.876  
0.908 0.908 0.892 0.876 0.876 0.860  
0.892 0.876 0.876 0.860 0.860 0.844  
0.860 0.860 0.860 0.844 0.844 0.844  
0.812 0.812 0.812 0.812 0.812 0.812  
VCCD733J Pentium M Processor,  
Ultra Low Voltage,  
733J Core VCC for  
Enhanced Intel  
V
2, 3, 4  
SpeedStep  
Technology operating  
points:  
1.1 GHz  
1.0 GHz  
900 MHz  
800 MHz  
600 MHz  
0.956 0.940 0.924 0.908 0.892 0.876  
0.940 0.924 0.908 0.892 0.876 0.876  
0.908 0.892 0.892 0.876 0.860 0.860  
0.876 0.876 0.860 0.860 0.844 0.844  
0.812 0.812 0.812 0.812 0.812 0.812  
26  
Datasheet  
Electrical Specifications  
Table 3-6. Voltage and Current Specifications - Ultra Low Voltage Processors (Sheet 2 of 2)  
VID#  
GTyp HTyp  
VID# VID#I VID#  
VID#  
VID#  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
Typ J Typ K Typ L Typ  
VCCD733 Pentium M Processor,  
Ultra Low Voltage,  
733 Core VCC for  
Enhanced Intel  
V
1, 3  
SpeedStep  
Technology Operating  
Points:  
1.1 GHz  
1.0 GHz  
900 MHz  
800 MHz  
600 MHz  
0.940  
0.924  
0.892  
0.876  
0.812  
VCCD723 Pentium M Processor,  
Ultra Low Voltage,  
723 Core VCC for  
Enhanced Intel  
V
1, 3  
SpeedStep  
Technology Operating  
Points:  
1.0 GHz  
900 MHz  
800 MHz  
600 MHz  
0.940  
0.908  
0.876  
0.812  
NOTES:  
1. The typical values shown are the VID encoded voltages. Static and ripple tolerances (for minimum and  
maximum voltages) are defined in the load line tables, Table 3-8 through Table 3-21. Adherence to loadline  
specifications for the Pentium M processor is required to ensure reliable processor operation.  
2. These are VID values. Individual processor VID values may be calibrated during manufacturing such that two  
devices at the same speed may have different VID settings. Actual voltage supplied to the processor should  
be as specified in the load lines in Figure 3-11 and Figure 3-12. Adherence to load line specifications is  
required to ensure reliable processor operation.  
3. The voltage specifications are assumed to be measured at a via on the motherboard’s opposite side of the  
processor’s socket (or BGA) ball with a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe  
capacitance, and 1-MΩ minimum impedance. The maximum length of ground wire on the probe should be  
less than 5 mm. Ensure external noise from the system is not coupled in the scope probe.  
4. For 733J, CPU signature = 06D8h.  
Datasheet  
27  
Electrical Specifications  
Table 3-7. Voltage and Current Specifications (Continued) (Sheet 1 of 3)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
VCC,BOOT Default VCC Voltage for  
Initial Power-Up  
1.14  
1.20  
1.26  
V
2
VCCP  
AGTL+ Termination  
voltage  
0.997  
1.71  
1.05  
1.8  
1.102  
1.89  
V
2
VCCA  
PLL Supply Voltage  
V
V
2,  
VCCA for  
PLL Supply Voltage for  
2, 8  
778, 758, Pentium M Processors  
738 and  
753,733J,  
778/758/738  
1.71  
1.425  
0.695  
1.8  
1.5  
1.89  
1.575  
0.795  
733, 723  
753/733J/733/723  
VCCDPRS Transient Deeper Sleep  
0.748  
V
V
V
V
A
2
Voltage  
LP,TR1  
VCCDPRS Static Deeper Sleep  
0.705  
0.669  
0.679  
0.748  
0.726  
0.726  
0.785  
0.783  
0.793  
25  
2
Voltage  
VCCDPRS Transient Deeper Sleep  
LP,ST1  
2, 9  
2, 9  
5
Voltage  
LP,TR2  
VCCDPRS Static Deeper Sleep  
Voltage  
LP,ST2  
ICCDES  
ICC for Pentium M  
Processors  
Recommended Design  
Target  
ICC  
ICC for Pentium M  
Processors:  
A
3, 10  
765/755/745/778/758/738/  
735/725/715 at LFM Vcc  
8.1  
765/755/745/735/725/715  
at HFM Vcc  
21.0  
778/758/738 at HFM Vcc  
12.0  
4.0  
773/753/733J/733/723 at  
LFM Vcc  
773/753/733J at HFM Vcc  
773/733/723 at HFM Vcc  
7.5  
7.0  
28  
Datasheet  
Electrical Specifications  
Table 3-7. Voltage and Current Specifications (Continued) (Sheet 2 of 3)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
4, 10  
IAH,  
ISGNT  
ICC Auto-Halt & Stop-  
Grant for Pentium M  
Processors:  
A
765/755/745/778/758/738/  
735/725/715 at LFM Vcc  
6.0  
765/755/745/735/725/715  
at HFM Vcc  
15.1  
778/758/738 at HFM Vcc  
773/753/733J at LFM Vcc  
6.4  
2.3  
733/723 at LFM Vcc  
773/753/733J HFM Vcc  
733/723 at HFM Vcc  
2.1  
3.3  
3.1  
ISLP  
ICC Sleep for Pentium M  
Processors:  
A
4, 10  
765/755/745/778/758/738/  
735/725/715 at LFM Vcc  
5.9  
765/755/745/735/725/715  
at HFM Vcc  
14.8  
778/758/738 at HFM Vcc  
773/753/733J at LFM Vcc  
733/723 at LFM Vcc  
6.2  
2.2  
2.0  
3.2  
3.0  
773/753/733J at HFM Vcc  
733/723 at HFM Vcc  
IDSLP  
ICC Deep Sleep for  
Pentium M Processors:  
A
4, 10  
765/755/745/778/758/738/  
735/725/715 at LFM Vcc  
5.8  
765/755/745/735/725/715  
at HFM Vcc  
14.2  
778/758/738 at HFM Vcc  
773/753/733J at LFM Vcc  
733/723 at LFM Vcc  
5.7  
2.1  
1.9  
2.9  
2.7  
773/753/733J at HFM Vcc  
733/723 at HFM Vcc  
Datasheet  
29  
Electrical Specifications  
Table 3-7. Voltage and Current Specifications (Continued) (Sheet 3 of 3)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
IDPRSLP1  
ICC Deeper Sleep @  
0.748 V for Pentium M  
Processors:  
A
4, 9, 10  
765/755/745/778/758/738/  
735/725/715  
2.5  
1.6  
753/733J/733/723  
IDPRSLP1  
ICC Deeper Sleep @  
0.726 V for Pentium M  
Processors:  
A
4, 9, 10  
765/755/745/778/758/738/  
735/725/715  
2.3  
753/733J/733/723  
1.3  
0.5  
dICC/DT  
VCC power supply current  
slew rate  
A/ns  
6, 7  
ICCA  
ICCP  
ICC for VCCA supply  
ICC for VCCP supply  
120  
2.5  
mA  
A
NOTES:  
1. The typical values shown are the VID encoded voltages. Static and ripple tolerances (for minimum and  
maximum voltages) are defined in the load line tables i.e., Table 3-8 through Table 3-21. Adherence to  
loadline specifications for the Pentium M processor is required to ensure reliable processor operation.  
2. The voltage specifications are assumed to be measured at a via on the motherboard’s opposite side of the  
processor’s socket (or BGA) ball with a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe  
capacitance, and 1-Mohm minimum impedance. The maximum length of ground wire on the probe should be  
less than 5 mm. Ensure external noise from the system is not coupled in the scope probe.  
3. Specified at VCC,STATIC (nominal) under maximum signal loading conditions.  
4. Specified at the VID voltage.  
5. The ICCDES(max) specification comprehends future processor HFM frequencies. Platforms should be  
designed to this specification.  
6. Based on simulations and averaged over the duration of any change in current. Specified by design/  
characterization at nominal VCC. Not 100% tested.  
7. Measured at the bulk capacitors on the motherboard.  
8. Pentium M processors LV and ULV will support VCCA supply voltages of both 1.8 V ±5% and1.5 V ±5%.  
9. Deeper sleep voltage of 0.726 V (typical) is supported on LV and ULV Pentium M processors with CPU  
signature =06D8h. A typical voltage setting between 0.726 V and 0.748 V may be used but the minimum and  
maximum voltages specified in Table 3-7 should not be exceeded.  
10.For 733J, CPU signature = 06D8h.  
30  
Datasheet  
Electrical Specifications  
®
®
Table 3-8. Voltage Tolerances for the Intel Pentium M Processor (Active State) VID#A  
Highest Frequency Mode: VID=1.340V, Offset=0%  
Lowest Frequency Mode: VID=0.988V, Offset=0%  
MODE  
STATIC  
Ripple  
STATIC  
Ripple  
Min  
I
CC, A  
VCC, V  
ICC, A  
VCC, V  
Min  
Max  
Min  
Max  
Min  
Max  
1.003  
1.002  
1.000  
Max  
1.013  
1.012  
1.010  
0
1.340  
1.337  
1.334  
1.320  
1.317  
1.314  
1.360  
1.357  
1.355  
1.310  
1.307  
1.304  
1.370  
1.367  
1.365  
0.0  
0.4  
0.9  
0.988  
0.987  
0.985  
0.973  
0.972  
0.971  
0.963  
0.962  
0.961  
0.9  
1.9  
2.8  
3.7  
4.6  
5.6  
1.332  
1.329  
1.326  
1.323  
1.312  
1.309  
1.306  
1.303  
1.352  
1.349  
1.346  
1.343  
1.302  
1.299  
1.296  
1.293  
1.362  
1.359  
1.356  
1.353  
1.3  
1.7  
2.1  
2.6  
0.984  
0.983  
0.982  
0.980  
0.969  
0.968  
0.967  
0.966  
0.999  
0.998  
0.996  
0.995  
0.959  
0.958  
0.957  
0.956  
1.009  
1.008  
1.006  
1.005  
6.5  
7.4  
8.3  
1.321  
1.318  
1.315  
1.300  
1.298  
1.295  
1.341  
1.338  
1.335  
1.290  
1.288  
1.285  
1.351  
1.348  
1.345  
3.0  
3.4  
3.8  
0.979  
0.978  
0.976  
0.964  
0.963  
0.962  
0.994  
0.993  
0.991  
0.954  
0.953  
0.952  
1.004  
1.003  
1.001  
9.3  
1.312  
1.309  
1.307  
1.304  
1.292  
1.289  
1.287  
1.284  
1.332  
1.330  
1.327  
1.324  
1.282  
1.279  
1.277  
1.274  
1.342  
1.340  
1.337  
1.334  
4.3  
4.7  
5.1  
5.5  
0.975  
0.974  
0.973  
0.971  
0.960  
0.959  
0.958  
0.957  
0.990  
0.989  
0.987  
0.986  
0.950  
0.949  
0.948  
0.947  
1.000  
0.999  
0.997  
0.996  
10.2  
11.1  
12.0  
13.0  
13.9  
14.8  
1.301  
1.298  
1.296  
1.281  
1.278  
1.275  
1.321  
1.318  
1.316  
1.271  
1.268  
1.265  
1.331  
1.328  
1.326  
6.0  
6.4  
6.8  
0.970  
0.969  
0.968  
0.955  
0.954  
0.953  
0.985  
0.984  
0.982  
0.945  
0.944  
0.943  
0.995  
0.994  
0.992  
15.7  
16.7  
1.293  
1.290  
1.273  
1.270  
1.313  
1.310  
1.263  
1.260  
1.323  
1.320  
7.2  
7.7  
0.966  
0.965  
0.951  
0.950  
0.981  
0.980  
0.941  
0.940  
0.991  
0.990  
17.6  
18.5  
19.4  
1.287  
1.284  
1.282  
1.267  
1.264  
1.262  
1.307  
1.305  
1.302  
1.257  
1.254  
1.252  
1.317  
1.315  
1.312  
8.1  
8.6  
9.1  
0.964  
0.818  
0.817  
0.949  
0.806  
0.804  
0.979  
0.831  
0.829  
0.939  
0.796  
0.794  
0.989  
0.841  
0.839  
20.4  
21.3  
22.2  
1.279  
1.276  
1.273  
1.259  
1.256  
1.253  
1.299  
1.296  
1.293  
1.249  
1.246  
1.243  
1.309  
1.306  
1.303  
9.6  
10.1  
0.815  
0.814  
0.808  
0.803  
0.801  
0.796  
0.828  
0.826  
0.821  
0.793  
0.791  
0.786  
0.838  
0.836  
0.831  
11.935  
23.1  
24.1  
25.0  
1.271  
1.268  
1.265  
1.250  
1.248  
1.245  
1.291  
1.288  
1.285  
1.240  
1.238  
1.235  
1.301  
1.298  
1.295  
12.435  
12.935  
13.435  
0.807  
0.805  
0.804  
0.794  
0.793  
0.791  
0.819  
0.818  
0.816  
0.784  
0.783  
0.781  
0.829  
0.828  
0.826  
Figure 3-1. Illustration of Active State V Static and Ripple Tolerances (HFM- VID#A)  
CC  
Highest-Frequency Mode (VID = 1.340V): Active  
1.380  
1.360  
1.314.3040  
1.320  
1.300  
1.280  
1.260  
1.240  
1.220  
0
5
10  
15  
20  
25  
ICC, A  
STATIC  
Static Min  
Static Max  
Ripple Min  
Ripple Max  
Datasheet  
31  
Electrical Specifications  
®
®
Table 3-9. Voltage Tolerances for the Intel Pentium M Processor (Deep Sleep State) VID#A  
Highest Frequency Mode: VID=1.340V, Offset=-1.2%  
Lowest Frequency Mode: VID=0.988V, Offset=-1.2%  
MODE  
STATIC  
Ripple  
STATIC  
Ripple  
ICC, A  
VCC, V  
ICC, A  
VCC, V  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
0.0  
0.9  
1.9  
1.324  
1.321  
1.318  
1.304  
1.301  
1.298  
1.344  
1.341  
1.338  
1.294  
1.291  
1.288  
1.354  
1.351  
1.348  
0.0  
0.4  
0.8  
0.976  
0.975  
0.974  
0.961  
0.960  
0.959  
0.991  
0.990  
0.989  
0.951  
0.950  
0.949  
1.001  
1.000  
0.999  
2.8  
3.8  
1.315  
1.313  
1.295  
1.292  
1.336  
1.333  
1.285  
1.282  
1.346  
1.343  
1.2  
1.5  
0.973  
0.972  
0.958  
0.957  
0.987  
0.986  
0.948  
0.947  
0.997  
0.996  
4.7  
5.7  
6.6  
1.310  
1.307  
1.304  
1.290  
1.287  
1.284  
1.330  
1.327  
1.324  
1.280  
1.277  
1.274  
1.340  
1.337  
1.334  
1.9  
2.3  
2.7  
0.970  
0.969  
0.968  
0.956  
0.954  
0.953  
0.985  
0.984  
0.983  
0.946  
0.944  
0.943  
0.995  
0.994  
0.993  
7.6  
8.5  
9.5  
1.301  
1.298  
1.296  
1.281  
1.278  
1.275  
1.321  
1.318  
1.316  
1.271  
1.268  
1.265  
1.331  
1.328  
1.326  
3.1  
3.5  
3.9  
0.967  
0.966  
0.965  
0.952  
0.951  
0.950  
0.982  
0.981  
0.979  
0.942  
0.941  
0.940  
0.992  
0.991  
0.989  
10.4  
11.4  
12.3  
1.293  
1.290  
1.287  
1.273  
1.270  
1.267  
1.313  
1.310  
1.307  
1.263  
1.260  
1.257  
1.323  
1.320  
1.317  
4.3  
4.6  
5.0  
0.963  
0.962  
0.961  
0.949  
0.947  
0.946  
0.978  
0.977  
0.976  
0.939  
0.937  
0.936  
0.988  
0.987  
0.986  
13.3  
1.284  
1.264  
1.304  
1.254  
1.314  
5.4  
0.960  
0.945  
0.975  
0.935  
0.985  
14.2  
1.281  
1.261  
1.301  
1.251  
1.311  
5.8  
0.959  
0.944  
0.974  
0.934  
0.984  
Figure 3-2. Illustration of Deep Sleep State V Static and Ripple Tolerances (LFM- VID#A)  
CC  
Lowest-Frequency Mode (VID = 0.988V): Deep Sleep  
1.010  
1.000  
0.990  
0.980  
0.976  
0.970  
0.960  
0.950  
0.940  
0.930  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
STATIC  
Static Min  
Static Max  
Ripple Min  
Ripple Max  
32  
Datasheet  
Electrical Specifications  
®
®
Table 3-10. Voltage Tolerances for the Intel Pentium M Processor (Active State) VID#B  
Highest Frequency Mode: VID=1.324V, Offset=0%  
Lowest Frequency Mode: VID=0.988V, Offset=0%  
MODE  
STATIC  
Ripple  
STATIC  
Ripple  
ICC, A  
VCC, V  
ICC, A  
VCC, V  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
0
1.324  
1.321  
1.318  
1.304  
1.301  
1.299  
1.344  
1.341  
1.338  
1.294  
1.291  
1.289  
1.354  
1.351  
1.348  
0.0  
0.4  
0.9  
0.988  
0.987  
0.985  
0.973  
0.972  
0.971  
1.003  
1.002  
1.000  
0.963  
0.962  
0.961  
1.013  
1.012  
1.010  
0.9  
1.9  
2.8  
3.7  
4.6  
5.6  
1.316  
1.313  
1.310  
1.307  
1.296  
1.293  
1.290  
1.287  
1.336  
1.333  
1.330  
1.327  
1.286  
1.283  
1.280  
1.277  
1.346  
1.343  
1.340  
1.337  
1.3  
1.7  
2.1  
2.6  
0.984  
0.983  
0.982  
0.980  
0.969  
0.968  
0.967  
0.966  
0.999  
0.998  
0.996  
0.995  
0.959  
0.958  
0.957  
0.956  
1.009  
1.008  
1.006  
1.005  
6.5  
7.4  
8.3  
1.305  
1.302  
1.299  
1.285  
1.282  
1.279  
1.324  
1.322  
1.319  
1.275  
1.272  
1.269  
1.334  
1.332  
1.329  
3.0  
3.4  
3.8  
0.979  
0.978  
0.976  
0.964  
0.963  
0.962  
0.994  
0.993  
0.991  
0.954  
0.953  
0.952  
1.004  
1.003  
1.001  
9.3  
1.296  
1.293  
1.291  
1.288  
1.276  
1.274  
1.271  
1.268  
1.316  
1.313  
1.311  
1.308  
1.266  
1.264  
1.261  
1.258  
1.326  
1.323  
1.321  
1.318  
4.3  
4.7  
5.1  
5.5  
0.975  
0.974  
0.973  
0.971  
0.960  
0.959  
0.958  
0.957  
0.990  
0.989  
0.987  
0.986  
0.950  
0.949  
0.948  
0.947  
1.000  
0.999  
0.997  
0.996  
10.2  
11.1  
12.0  
13.0  
13.9  
14.8  
1.285  
1.282  
1.280  
1.265  
1.262  
1.260  
1.305  
1.302  
1.299  
1.255  
1.252  
1.250  
1.315  
1.312  
1.309  
6.0  
6.4  
6.8  
0.970  
0.969  
0.968  
0.955  
0.954  
0.953  
0.985  
0.984  
0.982  
0.945  
0.944  
0.943  
0.995  
0.994  
0.992  
15.7  
16.7  
1.277  
1.274  
1.257  
1.254  
1.297  
1.294  
1.247  
1.244  
1.307  
1.304  
7.2  
7.7  
0.966  
0.965  
0.951  
0.950  
0.981  
0.980  
0.941  
0.940  
0.991  
0.990  
17.6  
18.5  
19.4  
20.4  
21.3  
22.2  
1.271  
1.268  
1.266  
1.263  
1.260  
1.257  
1.251  
1.249  
1.246  
1.243  
1.240  
1.237  
1.291  
1.288  
1.286  
1.283  
1.280  
1.277  
1.241  
1.239  
1.236  
1.233  
1.230  
1.227  
1.301  
1.298  
1.296  
1.293  
1.290  
1.287  
8.1  
8.6  
0.964  
0.818  
0.817  
0.815  
0.814  
0.808  
0.949  
0.806  
0.804  
0.803  
0.801  
0.796  
0.979  
0.831  
0.829  
0.828  
0.826  
0.821  
0.939  
0.796  
0.794  
0.793  
0.791  
0.786  
0.989  
0.841  
0.839  
0.838  
0.836  
0.831  
9.1  
9.6  
10.1  
11.935  
23.1  
24.1  
25.0  
1.255  
1.252  
1.249  
1.235  
1.232  
1.229  
1.274  
1.272  
1.269  
1.225  
1.222  
1.219  
1.284  
1.282  
1.279  
12.435  
12.935  
13.435  
0.807  
0.805  
0.804  
0.794  
0.793  
0.791  
0.819  
0.818  
0.816  
0.784  
0.783  
0.781  
0.829  
0.828  
0.826  
Figure 3-3. Illustration of Active State V Static and Ripple Tolerances (HFM- VID#B)  
CC  
Highest-Frequency Mode (VID = 1.324V): Active  
1.380  
1.360  
1.340  
1.312.3024  
1.300  
1.280  
1.260  
1.240  
1.220  
1.200  
0
5
10  
15  
20  
25  
ICC, A  
STATIC  
Static Min  
Static Max  
Ripple Min  
Ripple Max  
Datasheet  
33  
Electrical Specifications  
®
®
Table 3-11. Voltage Tolerances for the Intel Pentium M Processor (Deep Sleep State) VID#B  
Highest Frequency Mode: VID=1.324V, Offset=-1.2%  
Lowest Frequency Mode: VID=0.988V, Offset=-1.2%  
MODE  
STATIC  
Ripple  
STATIC  
Ripple  
ICC, A  
VCC, V  
ICC, A  
VCC, V  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
0.0  
0.9  
1.9  
1.308  
1.305  
1.302  
1.288  
1.285  
1.283  
1.328  
1.325  
1.322  
1.278  
1.275  
1.273  
1.338  
1.335  
1.332  
0.0  
0.4  
0.8  
0.976  
0.975  
0.974  
0.961  
0.960  
0.959  
0.991  
0.990  
0.989  
0.951  
0.950  
0.949  
1.001  
1.000  
0.999  
2.8  
3.8  
1.300  
1.297  
1.280  
1.277  
1.319  
1.317  
1.270  
1.267  
1.329  
1.327  
1.2  
1.5  
0.973  
0.972  
0.958  
0.957  
0.987  
0.986  
0.948  
0.947  
0.997  
0.996  
4.7  
5.7  
6.6  
1.294  
1.291  
1.288  
1.274  
1.271  
1.268  
1.314  
1.311  
1.308  
1.264  
1.261  
1.258  
1.324  
1.321  
1.318  
1.9  
2.3  
2.7  
0.970  
0.969  
0.968  
0.956  
0.954  
0.953  
0.985  
0.984  
0.983  
0.946  
0.944  
0.943  
0.995  
0.994  
0.993  
7.6  
8.5  
9.5  
1.285  
1.283  
1.280  
1.266  
1.263  
1.260  
1.305  
1.302  
1.300  
1.256  
1.253  
1.250  
1.315  
1.312  
1.310  
3.1  
3.5  
3.9  
0.967  
0.966  
0.965  
0.952  
0.951  
0.950  
0.982  
0.981  
0.979  
0.942  
0.941  
0.940  
0.992  
0.991  
0.989  
10.4  
11.4  
12.3  
13.3  
14.2  
1.277  
1.274  
1.271  
1.268  
1.266  
1.257  
1.254  
1.251  
1.248  
1.246  
1.297  
1.294  
1.291  
1.288  
1.285  
1.247  
1.244  
1.241  
1.238  
1.236  
1.307  
1.304  
1.301  
1.298  
1.295  
4.3  
4.6  
5.0  
5.4  
5.8  
0.963  
0.962  
0.961  
0.960  
0.959  
0.949  
0.947  
0.946  
0.945  
0.944  
0.978  
0.977  
0.976  
0.975  
0.974  
0.939  
0.937  
0.936  
0.935  
0.934  
0.988  
0.987  
0.986  
0.985  
0.984  
Figure 3-4. Illustration of Deep Sleep State V Static and Ripple Tolerances (LFM- VID#B)  
CC  
Lowest-Frequency Mode (VID = 0.988V): Deep Sleep  
1.010  
1.000  
0.990  
0.980  
0.976  
0.970  
0.960  
0.950  
0.940  
0.930  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
STATIC  
Static Min  
Static Max  
Ripple Min  
Ripple Max  
34  
Datasheet  
Electrical Specifications  
®
®
Table 3-12. Voltage Tolerances for the Intel Pentium M Processor (Active State) VID#C  
Highest Frequency Mode: VID=1.308V, Offset=0%  
Lowest Frequency Mode: VID=0.988V, Offset=0%  
MODE  
STATIC  
Ripple  
STATIC  
Ripple  
ICC, A  
VCC, V  
ICC, A  
VCC, V  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
0
1.308  
1.305  
1.302  
1.288  
1.286  
1.283  
1.328  
1.325  
1.322  
1.278  
1.276  
1.273  
1.338  
1.335  
1.332  
0.0  
0.4  
0.9  
0.988  
0.987  
0.985  
0.973  
0.972  
0.971  
1.003  
1.002  
1.000  
0.963  
0.962  
0.961  
1.013  
1.012  
1.010  
0.9  
1.9  
2.8  
3.7  
4.6  
5.6  
1.300  
1.297  
1.294  
1.291  
1.280  
1.277  
1.274  
1.272  
1.319  
1.317  
1.314  
1.311  
1.270  
1.267  
1.264  
1.262  
1.329  
1.327  
1.324  
1.321  
1.3  
1.7  
2.1  
2.6  
0.984  
0.983  
0.982  
0.980  
0.969  
0.968  
0.967  
0.966  
0.999  
0.998  
0.996  
0.995  
0.959  
0.958  
0.957  
0.956  
1.009  
1.008  
1.006  
1.005  
6.5  
7.4  
8.3  
1.289  
1.286  
1.283  
1.269  
1.266  
1.263  
1.308  
1.305  
1.303  
1.259  
1.256  
1.253  
1.318  
1.315  
1.313  
3.0  
3.4  
3.8  
0.979  
0.978  
0.976  
0.964  
0.963  
0.962  
0.994  
0.993  
0.991  
0.954  
0.953  
0.952  
1.004  
1.003  
1.001  
9.3  
1.280  
1.277  
1.275  
1.272  
1.261  
1.258  
1.255  
1.252  
1.300  
1.297  
1.294  
1.292  
1.251  
1.248  
1.245  
1.242  
1.310  
1.307  
1.304  
1.302  
4.3  
4.7  
5.1  
5.5  
0.975  
0.974  
0.973  
0.971  
0.960  
0.959  
0.958  
0.957  
0.990  
0.989  
0.987  
0.986  
0.950  
0.949  
0.948  
0.947  
1.000  
0.999  
0.997  
0.996  
10.2  
11.1  
12.0  
13.0  
13.9  
14.8  
1.269  
1.266  
1.264  
1.249  
1.247  
1.244  
1.289  
1.286  
1.283  
1.239  
1.237  
1.234  
1.299  
1.296  
1.293  
6.0  
6.4  
6.8  
0.970  
0.969  
0.968  
0.955  
0.954  
0.953  
0.985  
0.984  
0.982  
0.945  
0.944  
0.943  
0.995  
0.994  
0.992  
15.7  
16.7  
1.261  
1.258  
1.241  
1.238  
1.280  
1.278  
1.231  
1.228  
1.290  
1.288  
7.2  
7.7  
0.966  
0.965  
0.951  
0.950  
0.981  
0.980  
0.941  
0.940  
0.991  
0.990  
17.6  
18.5  
19.4  
20.4  
21.3  
22.2  
1.255  
1.252  
1.250  
1.247  
1.244  
1.241  
1.236  
1.233  
1.230  
1.227  
1.224  
1.222  
1.275  
1.272  
1.269  
1.267  
1.264  
1.261  
1.226  
1.223  
1.220  
1.217  
1.214  
1.212  
1.285  
1.282  
1.279  
1.277  
1.274  
1.271  
8.1  
8.6  
0.964  
0.818  
0.817  
0.815  
0.814  
0.808  
0.949  
0.806  
0.804  
0.803  
0.801  
0.796  
0.979  
0.831  
0.829  
0.828  
0.826  
0.821  
0.939  
0.796  
0.794  
0.793  
0.791  
0.786  
0.989  
0.841  
0.839  
0.838  
0.836  
0.831  
9.1  
9.6  
10.1  
11.935  
23.1  
24.1  
25.0  
1.239  
1.236  
1.233  
1.219  
1.216  
1.213  
1.258  
1.255  
1.253  
1.209  
1.206  
1.203  
1.268  
1.265  
1.263  
12.435  
12.935  
13.435  
0.807  
0.805  
0.804  
0.794  
0.793  
0.791  
0.819  
0.818  
0.816  
0.784  
0.783  
0.781  
0.829  
0.828  
0.826  
Figure 3-5. Illustration of Active State V Static and Ripple Tolerances (HFM- VID#C)  
CC  
Highest-Frequency Mode (VID = 1.308V): Active  
1.360  
1.340  
1.320  
1.308  
1.300  
1.280  
1.260  
1.240  
1.220  
1.200  
1.180  
0
5
10  
15  
20  
25  
ICC, A  
STATIC  
Static Min  
Static Max  
Ripple Min  
Ripple Max  
Datasheet  
35  
Electrical Specifications  
®
®
Table 3-13. Voltage Tolerances for the Intel Pentium M Processor (Deep Sleep State) VID#C  
Highest Frequency Mode: VID=1.308V, Offset=-1.2%  
Lowest Frequency Mode: VID=0.988V, Offset=-1.2%  
MODE  
STATIC  
Ripple  
STATIC  
Ripple  
ICC, A  
VCC, V  
ICC, A  
VCC, V  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
0.0  
0.9  
1.9  
1.292  
1.289  
1.287  
1.273  
1.270  
1.267  
1.312  
1.309  
1.306  
1.263  
1.260  
1.257  
1.322  
1.319  
1.316  
0.0  
0.4  
0.8  
0.976  
0.975  
0.974  
0.961  
0.960  
0.959  
0.991  
0.990  
0.989  
0.951  
0.950  
0.949  
1.001  
1.000  
0.999  
2.8  
3.8  
1.284  
1.281  
1.264  
1.261  
1.303  
1.301  
1.254  
1.251  
1.313  
1.311  
1.2  
1.5  
0.973  
0.972  
0.958  
0.957  
0.987  
0.986  
0.948  
0.947  
0.997  
0.996  
4.7  
5.7  
6.6  
7.6  
8.5  
9.5  
1.278  
1.275  
1.272  
1.270  
1.267  
1.264  
1.258  
1.256  
1.253  
1.250  
1.247  
1.244  
1.298  
1.295  
1.292  
1.289  
1.286  
1.284  
1.248  
1.246  
1.243  
1.240  
1.237  
1.234  
1.308  
1.305  
1.302  
1.299  
1.296  
1.294  
1.9  
2.3  
2.7  
3.1  
3.5  
3.9  
0.970  
0.969  
0.968  
0.967  
0.966  
0.965  
0.956  
0.954  
0.953  
0.952  
0.951  
0.950  
0.985  
0.984  
0.983  
0.982  
0.981  
0.979  
0.946  
0.944  
0.943  
0.942  
0.941  
0.940  
0.995  
0.994  
0.993  
0.992  
0.991  
0.989  
10.4  
11.4  
12.3  
13.3  
14.2  
1.261  
1.258  
1.255  
1.253  
1.250  
1.241  
1.239  
1.236  
1.233  
1.230  
1.281  
1.278  
1.275  
1.272  
1.269  
1.231  
1.229  
1.226  
1.223  
1.220  
1.291  
1.288  
1.285  
1.282  
1.279  
4.3  
4.6  
5.0  
5.4  
5.8  
0.963  
0.962  
0.961  
0.960  
0.959  
0.949  
0.947  
0.946  
0.945  
0.944  
0.978  
0.977  
0.976  
0.975  
0.974  
0.939  
0.937  
0.936  
0.935  
0.934  
0.988  
0.987  
0.986  
0.985  
0.984  
Figure 3-6. Illustration of Deep Sleep State V Static and Ripple Tolerances (LFM- VID#C)  
CC  
Lowest-Frequency Mode (VID = 0.988V): Deep Sleep  
1.010  
1.000  
0.990  
0.980  
0.976  
0.970  
0.960  
0.950  
0.940  
0.930  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
STATIC  
Static Min  
Static Max  
Ripple Min  
Ripple Max  
36  
Datasheet  
Electrical Specifications  
®
®
Table 3-14. Voltage Tolerances for the Intel Pentium M Processor (Active State) VID#D  
Highest Frequency Mode: VID=1.276V, Offset=0%  
Lowest Frequency Mode: VID=0.988V, Offset=0%  
MODE  
STATIC  
Ripple  
STATIC  
Ripple  
I
CC, A  
VCC, V  
ICC, A  
VCC, V  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
0
1.276  
1.273  
1.270  
1.257  
1.254  
1.251  
1.295  
1.292  
1.290  
1.247  
1.244  
1.241  
1.305  
1.302  
1.300  
0.0  
0.4  
0.9  
0.988  
0.987  
0.985  
0.973  
0.972  
0.971  
1.003  
1.002  
1.000  
0.963  
0.962  
0.961  
1.013  
1.012  
1.010  
0.9  
1.9  
2.8  
3.7  
4.6  
5.6  
1.268  
1.265  
1.262  
1.259  
1.249  
1.246  
1.243  
1.240  
1.287  
1.284  
1.281  
1.278  
1.239  
1.236  
1.233  
1.230  
1.297  
1.294  
1.291  
1.288  
1.3  
1.7  
2.1  
2.6  
0.984  
0.983  
0.982  
0.980  
0.969  
0.968  
0.967  
0.966  
0.999  
0.998  
0.996  
0.995  
0.959  
0.958  
0.957  
0.956  
1.009  
1.008  
1.006  
1.005  
6.5  
7.4  
8.3  
1.257  
1.254  
1.251  
1.237  
1.235  
1.232  
1.276  
1.273  
1.270  
1.227  
1.225  
1.222  
1.286  
1.283  
1.280  
3.0  
3.4  
3.8  
0.979  
0.978  
0.976  
0.964  
0.963  
0.962  
0.994  
0.993  
0.991  
0.954  
0.953  
0.952  
1.004  
1.003  
1.001  
9.3  
1.248  
1.245  
1.243  
1.240  
1.229  
1.226  
1.224  
1.221  
1.267  
1.265  
1.262  
1.259  
1.219  
1.216  
1.214  
1.211  
1.277  
1.275  
1.272  
1.269  
4.3  
4.7  
5.1  
5.5  
0.975  
0.974  
0.973  
0.971  
0.960  
0.959  
0.958  
0.957  
0.990  
0.989  
0.987  
0.986  
0.950  
0.949  
0.948  
0.947  
1.000  
0.999  
0.997  
0.996  
10.2  
11.1  
12.0  
13.0  
13.9  
14.8  
1.237  
1.234  
1.232  
1.218  
1.215  
1.212  
1.256  
1.253  
1.251  
1.208  
1.205  
1.202  
1.266  
1.263  
1.261  
6.0  
6.4  
6.8  
0.970  
0.969  
0.968  
0.955  
0.954  
0.953  
0.985  
0.984  
0.982  
0.945  
0.944  
0.943  
0.995  
0.994  
0.992  
15.7  
16.7  
1.229  
1.226  
1.210  
1.207  
1.248  
1.245  
1.200  
1.197  
1.258  
1.255  
7.2  
7.7  
0.966  
0.965  
0.951  
0.950  
0.981  
0.980  
0.941  
0.940  
0.991  
0.990  
17.6  
18.5  
19.4  
20.4  
1.223  
1.220  
1.218  
1.215  
1.204  
1.201  
1.199  
1.196  
1.242  
1.240  
1.237  
1.234  
1.194  
1.191  
1.189  
1.186  
1.252  
1.250  
1.247  
1.244  
8.1  
8.6  
9.1  
9.6  
0.964  
0.818  
0.817  
0.815  
0.949  
0.806  
0.804  
0.803  
0.979  
0.831  
0.829  
0.828  
0.939  
0.796  
0.794  
0.793  
0.989  
0.841  
0.839  
0.838  
21.3  
22.2  
1.212  
1.209  
1.193  
1.190  
1.231  
1.228  
1.183  
1.180  
1.241  
1.238  
10.1  
0.814  
0.808  
0.801  
0.796  
0.826  
0.821  
0.791  
0.786  
0.836  
0.831  
11.935  
23.1  
24.1  
25.0  
1.207  
1.204  
1.201  
1.187  
1.185  
1.182  
1.226  
1.223  
1.220  
1.177  
1.175  
1.172  
1.236  
1.233  
1.230  
12.435  
12.935  
13.435  
0.807  
0.805  
0.804  
0.794  
0.793  
0.791  
0.819  
0.818  
0.816  
0.784  
0.783  
0.781  
0.829  
0.828  
0.826  
Figure 3-7. Illustration of Active State V Static and Ripple Tolerances (HFM- VID#D)  
CC  
Highest-Frequency Mode (VID = 1.276V): Active  
1.320  
1.300  
1.280  
1.276  
1.260  
1.240  
1.220  
1.200  
1.180  
1.160  
0
5
10  
15  
20  
25  
ICC, A  
STATIC  
Static Min  
Static Max  
Ripple Min  
Ripple Max  
Datasheet  
37  
Electrical Specifications  
®
®
Table 3-15. Voltage Tolerances for the Intel Pentium M Processor (Deep Sleep State) VID#D  
Highest Frequency Mode: VID=1.276V, Offset=-1.2%  
Lowest Frequency Mode: VID=0.988V, Offset=-1.2%  
MODE  
STATIC Ripple  
STATIC  
Ripple  
ICC, A V , V  
ICC, A  
V , V  
CC  
CC  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
0.0  
0.9  
1.9  
1.261  
1.258  
1.255  
1.242  
1.239  
1.236  
1.280  
1.277  
1.274  
1.232  
1.229  
1.226  
1.290  
1.287  
1.284  
0.0  
0.4  
0.8  
0.976  
0.975  
0.974  
0.961  
0.960  
0.959  
0.991  
0.990  
0.989  
0.951  
0.950  
0.949  
1.001  
1.000  
0.999  
2.8  
3.8  
1.252  
1.249  
1.233  
1.230  
1.271  
1.268  
1.223  
1.220  
1.281  
1.278  
1.2  
1.5  
0.973  
0.972  
0.958  
0.957  
0.987  
0.986  
0.948  
0.947  
0.997  
0.996  
4.7  
5.7  
6.6  
7.6  
8.5  
9.5  
1.246  
1.244  
1.241  
1.238  
1.235  
1.232  
1.227  
1.225  
1.222  
1.219  
1.216  
1.213  
1.266  
1.263  
1.260  
1.257  
1.254  
1.251  
1.217  
1.215  
1.212  
1.209  
1.206  
1.203  
1.276  
1.273  
1.270  
1.267  
1.264  
1.261  
1.9  
2.3  
2.7  
3.1  
3.5  
3.9  
0.970  
0.969  
0.968  
0.967  
0.966  
0.965  
0.956  
0.954  
0.953  
0.952  
0.951  
0.950  
0.985  
0.984  
0.983  
0.982  
0.981  
0.979  
0.946  
0.944  
0.943  
0.942  
0.941  
0.940  
0.995  
0.994  
0.993  
0.992  
0.991  
0.989  
10.4  
11.4  
12.3  
13.3  
14.2  
1.229  
1.227  
1.224  
1.221  
1.210  
1.207  
1.205  
1.202  
1.249  
1.246  
1.243  
1.240  
1.237  
1.200  
1.197  
1.195  
1.192  
1.189  
1.259  
1.256  
1.253  
1.250  
1.247  
4.3  
4.6  
5.0  
5.4  
5.8  
0.963  
0.962  
0.961  
0.960  
0.959  
0.949  
0.947  
0.946  
0.945  
0.944  
0.978  
0.977  
0.976  
0.975  
0.974  
0.939  
0.937  
0.936  
0.935  
0.934  
0.988  
0.987  
0.986  
0.985  
0.984  
1.218 1.199  
Figure 3-8. Illustration of Deep Sleep State V Static and Ripple Tolerances (LFM- VID#D)  
CC  
Lowest-Frequency Mode (VID = 0.988V): Deep Sleep  
1.010  
1.000  
0.990  
0.980  
0.976  
0.970  
0.960  
0.950  
0.940  
0.930  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
STATIC  
Static Min  
Static Max  
Ripple Min  
Ripple Max  
38  
Datasheet  
Electrical Specifications  
®
®
Table 3-16. Voltage Tolerances for the Intel Pentium M Processor (Active State) VID#E  
Highest Frequency Mode: VID=1.356V, Offset=0%  
Lowest Frequency Mode: VID=0.988V, Offset=0%  
MODE  
STATIC  
Ripple  
STATIC  
Ripple  
ICC, A  
VCC, V  
ICC, A  
VCC, V  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
0
1.356  
1.353  
1.350  
1.336  
1.333  
1.330  
1.376  
1.374  
1.371  
1.326  
1.323  
1.320  
1.386  
1.384  
1.381  
0.0  
0.4  
0.9  
0.988  
0.987  
0.985  
0.973  
0.972  
0.971  
1.003  
1.002  
1.000  
0.963  
0.962  
0.961  
1.013  
1.012  
1.010  
0.9  
1.9  
2.8  
3.7  
4.6  
5.6  
1.348  
1.345  
1.342  
1.339  
1.327  
1.325  
1.322  
1.319  
1.368  
1.365  
1.362  
1.360  
1.317  
1.315  
1.312  
1.309  
1.378  
1.375  
1.372  
1.370  
1.3  
1.7  
2.1  
2.6  
0.984  
0.983  
0.982  
0.980  
0.969  
0.968  
0.967  
0.966  
0.999  
0.998  
0.996  
0.995  
0.959  
0.958  
0.957  
0.956  
1.009  
1.008  
1.006  
1.005  
6.5  
7.4  
8.3  
1.337  
1.334  
1.331  
1.316  
1.313  
1.311  
1.357  
1.354  
1.351  
1.306  
1.303  
1.301  
1.367  
1.364  
1.361  
3.0  
3.4  
3.8  
0.979  
0.978  
0.976  
0.964  
0.963  
0.962  
0.994  
0.993  
0.991  
0.954  
0.953  
0.952  
1.004  
1.003  
1.001  
9.3  
1.328  
1.325  
1.323  
1.320  
1.308  
1.305  
1.302  
1.300  
1.349  
1.346  
1.343  
1.340  
1.298  
1.295  
1.292  
1.290  
1.359  
1.356  
1.353  
1.350  
4.3  
4.7  
5.1  
5.5  
0.975  
0.974  
0.973  
0.971  
0.960  
0.959  
0.958  
0.957  
0.990  
0.989  
0.987  
0.986  
0.950  
0.949  
0.948  
0.947  
1.000  
0.999  
0.997  
0.996  
10.2  
11.1  
12.0  
13.0  
13.9  
14.8  
1.317  
1.314  
1.312  
1.297  
1.294  
1.291  
1.337  
1.335  
1.332  
1.287  
1.284  
1.281  
1.347  
1.345  
1.342  
6.0  
6.4  
6.8  
0.970  
0.969  
0.968  
0.955  
0.954  
0.953  
0.985  
0.984  
0.982  
0.945  
0.944  
0.943  
0.995  
0.994  
0.992  
15.7  
16.7  
1.309  
1.306  
1.288  
1.286  
1.329  
1.326  
1.278  
1.276  
1.339  
1.336  
7.2  
7.7  
0.966  
0.965  
0.951  
0.950  
0.981  
0.980  
0.941  
0.940  
0.991  
0.990  
17.6  
18.5  
19.4  
20.4  
1.303  
1.300  
1.298  
1.295  
1.283  
1.280  
1.277  
1.275  
1.324  
1.321  
1.318  
1.315  
1.273  
1.270  
1.267  
1.265  
1.334  
1.331  
1.328  
1.325  
8.1  
8.6  
9.1  
9.6  
0.964  
0.818  
0.817  
0.815  
0.949  
0.806  
0.804  
0.803  
0.979  
0.831  
0.829  
0.828  
0.939  
0.796  
0.794  
0.793  
0.989  
0.841  
0.839  
0.838  
21.3  
22.2  
1.292  
1.289  
1.272  
1.269  
1.312  
1.310  
1.262  
1.259  
1.322  
1.320  
10.1  
0.814  
0.808  
0.801  
0.796  
0.826  
0.821  
0.791  
0.786  
0.836  
0.831  
11.935  
23.1  
24.1  
25.0  
1.287  
1.284  
1.281  
1.266  
1.263  
1.261  
1.307  
1.304  
1.301  
1.256  
1.253  
1.251  
1.317  
1.314  
1.311  
12.435  
12.935  
13.435  
0.807  
0.805  
0.804  
0.794  
0.793  
0.791  
0.819  
0.818  
0.816  
0.784  
0.783  
0.781  
0.829  
0.828  
0.826  
Figure 3-9. Illustration of Active State V Static and Ripple Tolerances (HFM- VID#E)  
CC  
Highest-Frequency Mode (VID = 1.356V): Active  
1.400  
1.356  
1.350  
1.300  
1.250  
1.200  
0
5
10  
15  
20  
25  
ICC, A  
STATIC  
Static Min  
Static Max  
Ripple Min  
Ripple Max  
Datasheet  
39  
Electrical Specifications  
®
®
Table 3-17. Voltage Tolerances for the Intel Pentium M Processor (Deep Sleep State) VID#E  
Highest Frequency Mode: VID=1.356V, Offset=-1.2%  
Lowest Frequency Mode: VID=0.988V, Offset=-1.2%  
MODE  
STATIC  
Ripple  
STATIC  
Ripple  
ICC, A  
VCC, V  
ICC, A  
VCC, V  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
0.0  
0.9  
1.9  
1.340  
1.337  
1.334  
1.319  
1.317  
1.314  
1.360  
1.357  
1.354  
1.309  
1.307  
1.304  
1.370  
1.367  
1.364  
0.0  
0.4  
0.8  
0.976  
0.975  
0.974  
0.961  
0.960  
0.959  
0.991  
0.990  
0.989  
0.951  
0.950  
0.949  
1.001  
1.000  
0.999  
2.8  
3.8  
1.331  
1.328  
1.311  
1.308  
1.352  
1.349  
1.301  
1.298  
1.362  
1.359  
1.2  
1.5  
0.973  
0.972  
0.958  
0.957  
0.987  
0.986  
0.948  
0.947  
0.997  
0.996  
4.7  
5.7  
6.6  
7.6  
8.5  
9.5  
1.326  
1.323  
1.320  
1.317  
1.314  
1.311  
1.305  
1.302  
1.300  
1.297  
1.294  
1.291  
1.346  
1.343  
1.340  
1.337  
1.335  
1.332  
1.295  
1.292  
1.290  
1.287  
1.284  
1.281  
1.356  
1.353  
1.350  
1.347  
1.345  
1.342  
1.9  
2.3  
2.7  
3.1  
3.5  
3.9  
0.970  
0.969  
0.968  
0.967  
0.966  
0.965  
0.956  
0.954  
0.953  
0.952  
0.951  
0.950  
0.985  
0.984  
0.983  
0.982  
0.981  
0.979  
0.946  
0.944  
0.943  
0.942  
0.941  
0.940  
0.995  
0.994  
0.993  
0.992  
0.991  
0.989  
10.4  
11.4  
12.3  
13.3  
14.2  
1.308  
1.306  
1.303  
1.300  
1.297  
1.288  
1.285  
1.282  
1.280  
1.277  
1.329  
1.326  
1.323  
1.320  
1.317  
1.278  
1.275  
1.272  
1.270  
1.267  
1.339  
1.336  
1.333  
1.330  
1.327  
4.3  
4.6  
5.0  
5.4  
5.8  
0.963  
0.962  
0.961  
0.960  
0.959  
0.949  
0.947  
0.946  
0.945  
0.944  
0.978  
0.977  
0.976  
0.975  
0.974  
0.939  
0.937  
0.936  
0.935  
0.934  
0.988  
0.987  
0.986  
0.985  
0.984  
Figure 3-10. Illustration of Deep Sleep State V Static and Ripple Tolerances (LFM- VID#E)  
CC  
Lowest-Frequency Mode (VID = 0.988V): Deep Sleep  
1.010  
1.000  
0.990  
0.980  
0.976  
0.970  
0.960  
0.950  
0.940  
0.930  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
STATIC  
Static Min  
Static Max  
Ripple Min  
Ripple Max  
40  
Datasheet  
Electrical Specifications  
®
®
Table 3-18. Voltage Tolerances for the Intel Pentium M Processor LV (Active State)  
Highest Frequency Mode: VID=1.116V, Offset=0%  
Lowest Frequency Mode: VID=0.988V, Offset=0%  
MODE  
STATIC  
Ripple  
STATIC  
Ripple  
Min  
ICC, A  
VCC, V  
ICC, A  
VCC, V  
Min  
Max  
Min  
Max  
Min  
Max  
1.003  
1.002  
1.000  
Max  
1.013  
1.012  
1.010  
0
1.116  
1.115  
1.113  
1.099  
1.098  
1.097  
1.133  
1.131  
1.130  
1.089  
1.088  
1.087  
1.143  
1.141  
1.140  
0.0  
0.4  
0.9  
0.988  
0.987  
0.985  
0.973  
0.972  
0.971  
0.963  
0.962  
0.961  
0.4  
0.9  
1.3  
1.8  
2.2  
2.7  
1.112  
1.111  
1.109  
1.108  
1.095  
1.094  
1.093  
1.091  
1.129  
1.127  
1.126  
1.125  
1.085  
1.084  
1.083  
1.081  
1.139  
1.137  
1.136  
1.135  
1.3  
1.7  
2.1  
2.6  
0.984  
0.983  
0.982  
0.980  
0.969  
0.968  
0.967  
0.966  
0.999  
0.998  
0.996  
0.995  
0.959  
0.958  
0.957  
0.956  
1.009  
1.008  
1.006  
1.005  
3.1  
3.6  
4.0  
1.107  
1.105  
1.104  
1.090  
1.089  
1.087  
1.123  
1.122  
1.121  
1.080  
1.079  
1.077  
1.133  
1.132  
1.131  
3.0  
3.4  
3.8  
0.979  
0.978  
0.976  
0.964  
0.963  
0.962  
0.994  
0.993  
0.991  
0.954  
0.953  
0.952  
1.004  
1.003  
1.001  
4.4  
4.9  
5.3  
5.8  
1.103  
1.101  
1.100  
1.099  
1.086  
1.085  
1.083  
1.082  
1.119  
1.118  
1.117  
1.115  
1.076  
1.075  
1.073  
1.072  
1.129  
1.128  
1.127  
1.125  
4.3  
4.7  
5.1  
5.5  
0.975  
0.974  
0.973  
0.971  
0.960  
0.959  
0.958  
0.957  
0.990  
0.989  
0.987  
0.986  
0.950  
0.949  
0.948  
0.947  
1.000  
0.999  
0.997  
0.996  
6.2  
6.7  
7.1  
1.097  
1.096  
1.095  
1.081  
1.079  
1.078  
1.114  
1.113  
1.111  
1.071  
1.069  
1.068  
1.124  
1.123  
1.121  
6.0  
6.4  
6.8  
0.970  
0.969  
0.968  
0.955  
0.954  
0.953  
0.985  
0.984  
0.982  
0.945  
0.944  
0.943  
0.995  
0.994  
0.992  
7.6  
8.0  
1.093  
1.092  
1.077  
1.075  
1.110  
1.109  
1.067  
1.065  
1.120  
1.119  
7.2  
7.7  
0.966  
0.965  
0.951  
0.950  
0.981  
0.980  
0.941  
0.940  
0.991  
0.990  
8.1  
0.964  
0.949  
0.979  
0.939  
0.989  
8.4  
8.9  
1.091  
1.089  
1.088  
1.087  
1.085  
1.084  
1.074  
1.073  
1.071  
1.070  
1.069  
1.067  
1.107  
1.106  
1.105  
1.103  
1.102  
1.101  
1.064  
1.063  
1.061  
1.060  
1.059  
1.057  
1.117  
1.116  
1.115  
1.113  
1.112  
1.111  
9.3  
9.8  
10.2  
10.7  
11.1  
11.6  
12.0  
1.083  
1.081  
1.080  
1.066  
1.065  
1.063  
1.099  
1.098  
1.097  
1.056  
1.055  
1.053  
1.109  
1.108  
1.107  
Datasheet  
41  
Electrical Specifications  
®
®
Table 3-19. Voltage Tolerances for the Intel Pentium M Processor LV (Deep Sleep State)  
Highest Frequency Mode: VID=1.116V, Offset=-1.2%  
Lowest Frequency Mode: VID=0.988V, Offset=-1.2%  
MODE  
STATIC  
Ripple  
STATIC  
Ripple  
ICC, A  
VCC, V  
ICC, A  
VCC, V  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
0.0  
0.4  
0.8  
1.2  
1.103  
1.101  
1.100  
1.099  
1.086  
1.085  
1.083  
1.082  
1.119  
1.118  
1.117  
1.116  
1.076  
1.075  
1.073  
1.072  
1.129  
1.128  
1.127  
1.126  
0.0  
0.4  
0.8  
1.2  
0.976  
0.975  
0.974  
0.973  
0.961  
0.960  
0.959  
0.958  
0.991  
0.990  
0.989  
0.987  
0.951  
0.950  
0.949  
0.948  
1.001  
1.000  
0.999  
0.997  
1.6  
2.0  
1.098  
1.097  
1.081  
1.080  
1.114  
1.113  
1.071  
1.070  
1.124  
1.123  
1.5  
1.9  
0.972  
0.970  
0.957  
0.956  
0.986  
0.985  
0.947  
0.946  
0.996  
0.995  
2.4  
2.8  
3.3  
3.7  
4.1  
4.5  
1.095  
1.094  
1.093  
1.092  
1.090  
1.089  
1.079  
1.077  
1.076  
1.075  
1.074  
1.072  
1.112  
1.111  
1.110  
1.108  
1.107  
1.106  
1.069  
1.067  
1.066  
1.065  
1.064  
1.062  
1.122  
1.121  
1.120  
1.118  
1.117  
1.116  
2.3  
2.7  
3.1  
3.5  
3.9  
4.3  
0.969  
0.968  
0.967  
0.966  
0.965  
0.963  
0.954  
0.953  
0.952  
0.951  
0.950  
0.949  
0.984  
0.983  
0.982  
0.981  
0.979  
0.978  
0.944  
0.943  
0.942  
0.941  
0.940  
0.939  
0.994  
0.993  
0.992  
0.991  
0.989  
0.988  
4.9  
5.3  
5.7  
6.1  
1.088  
1.087  
1.086  
1.084  
1.071  
1.070  
1.069  
1.068  
1.105  
1.103  
1.102  
1.101  
1.061  
1.060  
1.059  
1.058  
1.115  
1.113  
1.112  
1.111  
4.6  
5.0  
5.4  
5.8  
0.962  
0.961  
0.960  
0.959  
0.947  
0.946  
0.945  
0.944  
0.977  
0.976  
0.975  
0.974  
0.937  
0.936  
0.935  
0.934  
0.987  
0.986  
0.985  
0.984  
®
®
Table 3-20. Voltage Tolerances for the Intel Pentium M Processor ULV (Active State)  
Highest Frequency Mode: VID=0.940V, Offset=0%  
Lowest Frequency Mode: VID=0.812V, Offset=0%  
MODE  
STATIC  
Ripple  
STATIC  
Ripple  
Min  
ICC, A  
VCC, V  
ICC, A  
VCC, V  
Min  
Max  
Min  
Max  
Min  
Max  
Max  
0.835  
0.834  
0.833  
0
0.940  
0.939  
0.938  
0.926  
0.925  
0.924  
0.954  
0.953  
0.953  
0.916  
0.915  
0.914  
0.964  
0.963  
0.963  
0.0  
0.2  
0.4  
0.812  
0.811  
0.811  
0.799  
0.799  
0.798  
0.825  
0.824  
0.823  
0.789  
0.789  
0.788  
0.3  
0.5  
0.8  
1.0  
1.3  
1.6  
0.938  
0.937  
0.936  
0.935  
0.924  
0.923  
0.922  
0.921  
0.952  
0.951  
0.950  
0.949  
0.914  
0.913  
0.912  
0.911  
0.962  
0.961  
0.960  
0.959  
0.6  
0.8  
1.1  
1.3  
0.810  
0.809  
0.809  
0.808  
0.797  
0.797  
0.796  
0.796  
0.823  
0.822  
0.822  
0.821  
0.787  
0.787  
0.786  
0.786  
0.833  
0.832  
0.832  
0.831  
1.8  
2.1  
2.3  
0.935  
0.934  
0.933  
0.920  
0.920  
0.919  
0.949  
0.948  
0.947  
0.910  
0.910  
0.909  
0.959  
0.958  
0.957  
1.5  
1.7  
1.9  
0.808  
0.807  
0.806  
0.795  
0.794  
0.794  
0.820  
0.820  
0.819  
0.785  
0.784  
0.784  
0.830  
0.830  
0.829  
2.6  
2.9  
3.1  
3.4  
0.932  
0.931  
0.931  
0.930  
0.918  
0.917  
0.917  
0.916  
0.946  
0.946  
0.945  
0.944  
0.908  
0.907  
0.907  
0.906  
0.956  
0.956  
0.955  
0.954  
2.1  
2.3  
2.5  
2.7  
0.806  
0.805  
0.804  
0.804  
0.793  
0.792  
0.792  
0.791  
0.818  
0.818  
0.817  
0.816  
0.783  
0.782  
0.782  
0.781  
0.828  
0.828  
0.827  
0.826  
3.6  
3.9  
4.1  
0.929  
0.928  
0.928  
0.915  
0.914  
0.913  
0.943  
0.942  
0.942  
0.905  
0.904  
0.903  
0.953  
0.952  
0.952  
2.9  
3.2  
3.4  
0.803  
0.803  
0.802  
0.790  
0.790  
0.789  
0.816  
0.815  
0.815  
0.780  
0.780  
0.779  
0.826  
0.825  
0.825  
4.4  
4.7  
0.927  
0.926  
0.913  
0.912  
0.941  
0.940  
0.903  
0.902  
0.951  
0.950  
3.6  
3.8  
0.801  
0.801  
0.789  
0.788  
0.814  
0.813  
0.779  
0.778  
0.824  
0.823  
4.9  
5.2  
5.4  
5.7  
6.0  
6.2  
0.925  
0.924  
0.924  
0.923  
0.922  
0.921  
0.911  
0.910  
0.910  
0.909  
0.908  
0.907  
0.939  
0.939  
0.938  
0.937  
0.936  
0.935  
0.901  
0.900  
0.900  
0.899  
0.898  
0.897  
0.949  
0.949  
0.948  
0.947  
0.946  
0.945  
4.0  
4.5  
5
0.800  
0.831  
0.829  
0.828  
0.826  
0.808  
0.787  
0.818  
0.816  
0.815  
0.813  
0.796  
0.813  
0.843  
0.842  
0.840  
0.839  
0.821  
0.777  
0.808  
0.806  
0.805  
0.803  
0.786  
0.823  
0.853  
0.852  
0.850  
0.849  
0.831  
5.5  
6
11.935  
6.5  
6.7  
7.0  
0.921  
0.920  
0.919  
0.906  
0.906  
0.905  
0.935  
0.934  
0.933  
0.896  
0.896  
0.895  
0.945  
0.944  
0.943  
12.435  
12.935  
13.435  
0.807  
0.805  
0.804  
0.794  
0.793  
0.791  
0.819  
0.818  
0.816  
0.784  
0.783  
0.781  
0.829  
0.828  
0.826  
42  
Datasheet  
Electrical Specifications  
®
®
Table 3-21. Voltage Tolerances for the Intel Pentium M Processor ULV (Deep Sleep State)  
Highest Frequency Mode: VID=0.940V, Offset=-1.2%  
STATIC Ripple  
Lowest Frequency Mode: VID=0.812V, Offset=-1.2%  
STATIC Ripple  
MODE  
ICC, A V , V  
ICC, A V , V  
CC  
CC  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
0.0  
0.2  
0.4  
0.6  
0.929  
0.928  
0.928  
0.927  
0.915  
0.914  
0.913  
0.913  
0.943  
0.942  
0.942  
0.941  
0.905  
0.904  
0.903  
0.903  
0.953  
0.952  
0.952  
0.951  
0.0  
0.1  
0.3  
0.4  
0.802  
0.802  
0.801  
0.801  
0.758  
0.757  
0.757  
0.756  
0.847  
0.847  
0.846  
0.846  
0.757  
0.756  
0.756  
0.756  
0.848  
0.847  
0.847  
0.847  
0.8  
1.0  
0.926  
0.926  
0.912  
0.912  
0.940  
0.940  
0.902  
0.902  
0.950  
0.950  
0.5  
0.7  
0.801  
0.800  
0.756  
0.756  
0.845  
0.845  
0.755  
0.755  
0.846  
0.846  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
0.925  
0.925  
0.924  
0.923  
0.923  
0.922  
0.911  
0.910  
0.910  
0.909  
0.909  
0.908  
0.939  
0.939  
0.938  
0.937  
0.937  
0.936  
0.901  
0.900  
0.900  
0.899  
0.899  
0.898  
0.949  
0.949  
0.948  
0.947  
0.947  
0.946  
0.8  
0.9  
1.1  
1.2  
1.3  
1.5  
0.800  
0.799  
0.799  
0.799  
0.798  
0.798  
0.755  
0.755  
0.754  
0.754  
0.754  
0.753  
0.845  
0.844  
0.844  
0.843  
0.843  
0.843  
0.754  
0.754  
0.754  
0.753  
0.753  
0.752  
0.845  
0.845  
0.845  
0.844  
0.844  
0.843  
2.4  
2.6  
0.922  
0.921  
0.920  
0.907  
0.907  
0.906  
0.936  
0.935  
0.934  
0.897  
0.897  
0.896  
0.946  
0.945  
0.944  
1.6  
1.7  
0.797  
0.797  
0.797  
0.753  
0.752  
0.752  
0.842  
0.842  
0.841  
0.752  
0.752  
0.751  
0.843  
0.843  
0.842  
2.8  
1.9  
3.0  
0.920 0.906 0.934 0.896 0.944  
2.0  
0.796 0.752 0.841 0.751 0.842  
Figure 3-11. Active V and I Load Line  
CC  
CC  
VCC [V]  
Slope= -3.0 mV/A  
VCC Max {HFM | LFM}  
VCC, DC Max {HFM | LFM}  
CC Nom {HFM | LFM}  
10mV= RIPPLE  
V
VCC, DC Min {HFM | LFM}  
VCC Min {HFM | LFM}  
+/-1.5% from Nominal =VR Error  
I CC  
[A]  
0
ICC  
max  
{HFM | LFM}  
Datasheet  
43  
Electrical Specifications  
Figure 3-12. Deep Sleep V and I Load Line  
CC  
CC  
VCC [V]  
Slope= -3.0 mV/A  
10mV= RIPPLE  
Vcc nom {HFM | LFM}  
- 1.2%  
+/-1.5% from Nominal =VR Error  
I CC  
[A]  
0
ICC  
max  
Deep Sleep  
{HFM | LFM}  
Table 3-22. FSB Differential BCLK Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit Notes1  
VL  
Input Low Voltage  
0
V
V
V
V
VH  
Input High Voltage  
Crossing Voltage  
0.660  
0.25  
N/A  
0.710  
0.35  
N/A  
0.850  
0.55  
VCROSS  
2
6
Range of Crossing Points  
0.140  
ΔVCROSS  
VTH  
Threshold Region  
Input Leakage Current  
Pad Capacitance  
VCROSS -0.100  
VCROSS+0.100  
± 100  
V
3
4
5
ILI  
µA  
pF  
Cpad  
1.8  
2.3  
2.75  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. Crossing Voltage is defined as absolute voltage where rising edge of BCLK0 is equal to the falling edge of  
BCLK1.  
3. Threshold Region is defined as a region entered about the crossing voltage in which the differential receiver  
switches. It includes input threshold hysteresis.  
4. For Vin between 0 V and VH.  
5. Cpad includes die capacitance only. No package parasitics are included.  
6. VCROSS is defined as the total variation of all crossing voltages as defined in note 2  
44  
Datasheet  
Electrical Specifications  
Table 3-23. AGTL+ Signal Group DC Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit Notes1  
VCCP  
I/O Voltage  
0.997  
1.05  
1.102  
V
GTLREF  
Reference Voltage  
2/3 VCCP -  
2%  
2/3 VCCP  
2/3 VCCP +  
2%  
V
6
VIH  
VIL  
Input High Voltage  
Input Low Voltage  
GTLREF+0.1  
-0.1  
VCCP+0.1  
V
V
3,6  
2,4  
6
GTLREF-0.1  
VOH  
RTT  
RON  
Output High Voltage  
Termination Resistance  
Buffer On Resistance  
VCCP  
55  
47  
63  
Ω
7
17.7  
24.7  
32.9  
5
Ω
µA  
pF  
ILI  
Input Leakage Current  
Pad Capacitance  
± 100  
2.75  
8
9
Cpad  
1.8  
2.3  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. VIL is defined as the maximum voltage level at a receiving agent that will be interpreted as a logical low value.  
3. VIH is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high  
value.  
4. VIH and VOH may experience excursions above VCCP. However, input signal drivers must comply with the  
signal quality specifications in Chapter 3.  
5. This is the pull down driver resistance. Refer to processor I/O buffer models for I/V characteristics. Measured  
at 0.31*VCCP. RON (min) = 0.38*RTT, RON (typ) = 0.45*RTT, RON (max) = 0.52*RTT.  
6. GTLREF should be generated from VCCP with a 1% tolerance resistor divider. The VCCP referred to in these  
specifications is the instantaneous VCCP.  
7. RTT is the on-die termination resistance measured at VOL of the AGTL+ output driver. Measured at  
0.31*VCCP. RTT is connected to VCCP on die. Refer to processor I/O buffer models for I/V characteristics.  
8. Specified with on die RTT and RON are turned off.  
9. Cpad includes die capacitance only. No package parasitics are included.  
Table 3-24. CMOS Signal Group DC Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit Notes1  
VCCP  
VIL  
I/O Voltage  
0.997  
-0.1  
1.05  
1.102  
V
Input Low Voltage  
CMOS  
0.3*VCCP  
V
2, 3  
VIH  
VOL  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Output Low Current  
Output High Current  
Leakage Current  
0.7*VCCP  
-0.1  
VCCP+0.1  
0.1*VCCP  
VCCP+0.1  
4.08  
V
V
2
2
2
4
5
6
0
VOH  
0.9*VCCP  
1.49  
VCCP  
V
IOL  
mA  
mA  
µA  
pF  
IOH  
1.49  
4.08  
ILI  
± 100  
Cpad  
Pad Capacitance  
1.0  
2.3  
3.0  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. The VCCP referred to in these specifications refers to instantaneous VCCP.  
3. Refer to the processor I/O buffer models for I/V characteristics.  
4. Measured at 0.1*VCCP.  
5. Measured at 0.9*VCCP.  
6. For Vin between 0 V and VCCP. Measured when the driver is tristated.  
7. Cpad includes die capacitance only. No package parasitics are included  
Datasheet  
45  
Electrical Specifications  
Table 3-25. Open Drain Signal Group DC Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit Notes1  
VOH  
VOL  
IOL  
Output High Voltage  
Output Low Voltage  
Output Low Current  
Leakage Current  
VCCP  
V
V
3
0
0.20  
50  
16  
mA  
µA  
pF  
2
4
5
ILO  
± 200  
3.0  
Cpad  
Pad Capacitance  
1.7  
2.3  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. Measured at 0.2 V.  
3. VOH is determined by value of the external pullup resistor to VCCP. Please refer to the platform design guides  
for details.  
4. For Vin between 0 V and VOH  
.
5. Cpad includes die capacitance only. No package parasitics are included.  
§
46  
Datasheet  
Package Mechanical Specifications and Pin Information  
4 Package Mechanical  
Specifications and Pin Information  
The Pentium M Processor is available in 478-pin, Micro-FCPGA and 479-ball, Micro-FCBGA  
packages. Different views of the Micro-FCPGA package are shown in Figure 4-1 through  
Figure 4-3. Package dimensions are shown in Table 4-1. Different views of the Micro-FCBGA  
package are shown in Figure 4-4 through Figure 4-6. Package dimensions are shown in Table 4-2.  
The Micro-FCBGA package may have capacitors placed in the area surrounding the die. Because  
the die-side capacitors are electrically conductive, and only slightly shorter than the die height, care  
should be taken to avoid contacting the capacitors with electrically conductive materials. Doing so  
may short the capacitors, and possibly damage the device or render it inactive. The use of an  
insulating material between the capacitors and any thermal solution should be considered to  
prevent capacitor shorting.  
Figure 4-1. Micro-FCPGA Package Top and Bottom Isometric Views  
PACKAGE KEEPOUT  
CAPACITOR AREA  
DIE  
LABEL  
TOP VIEW  
BOTTOM VIEW  
NOTE: All dimensions in millimeters. Values shown for reference only. Refer to Table 4-1 for details.  
Datasheet  
47  
Package Mechanical Specifications and Pin Information  
Figure 4-2. Micro-FCPGA Package - Top and Side Views  
0.286  
A
SUBSTRATE KEEPO UT ZO NE  
DO NO T CONTACT PACKAG E  
INSIDE THIS LINE  
7 (K1)  
8 places  
5 (K)  
4 places  
1.25 MAX  
(A3)  
D 1  
35 (D )  
Ø 0.32 (B)  
478 places  
A2  
E1  
2.03 ± 0.08  
35 (E)  
(A1)  
PIN A1 C OR N ER  
NOTE: MDie is centered on the Package. All dimensions in millimeters. Values shown for reference only. Refer  
to Table 4-1 for details.  
48  
Datasheet  
Package Mechanical Specifications and Pin Information  
Figure 4-3. Micro-FCPGA Package - Bottom View  
14 (K3)  
AF  
AD  
AB  
Y
AE  
AC  
AA  
W
U
V
T
R
P
14 (K3)  
N
M
K
L
J
H
G
F
E
D
C
B
A
1
3
5
7
9
11 13  
10 12  
15  
17  
19  
21 23  
22  
25  
25X 1.27  
(e)  
2
4
6
8
14  
16  
18  
20  
24  
26  
25X 1.27  
(e)  
NOTE: All dimensions in millimeters. Values shown for reference only. Refer to Table 4-1 for details.  
Datasheet  
49  
Package Mechanical Specifications and Pin Information  
Table 4-1. Micro-FCPGA Package Dimensions  
Symbol  
Parameter  
Min  
Max  
Unit  
A
Overall height, top of die to package seating plane  
1.88  
4.74  
2.02  
5.16  
mm  
mm  
Overall height, top of die to PCB surface, including  
socket (Refer to Note 1)  
A1  
A2  
A3  
B
Pin length  
1.95  
2.11  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
each  
kPa  
g
Die height  
0.820  
Pin-side capacitor height  
Pin diameter  
1.25  
0.36  
35.1  
35.1  
0.28  
34.9  
34.9  
D
Package substrate length  
Package substrate width  
Die length  
E
D1  
E1  
e
12.54  
6.99  
1.27  
5
Die width  
Pin Pitch  
K
Package edge keep-out  
Package corner keep-out  
Pin-side capacitor boundary  
Pin count  
K1  
K3  
N
7
14  
478  
Pdie  
W
Allowable pressure on the die for thermal solution  
Package weight  
689  
4.5  
0.286  
mm  
Package Surface Flatness  
NOTE: Overall height with socket is based on design dimensions of the Micro-FCPGA package with no thermal  
solution attached. Values are based on design specifications and tolerances. This dimension is subject  
to change based on socket design, OEM motherboard design or OEM SMT process.  
50  
Datasheet  
Package Mechanical Specifications and Pin Information  
Figure 4-4. Micro-FCBGA Package Top and Bottom Isometric Views  
PACKAGE KEEPOUT  
CAPACITOR AREA  
DIE  
LABEL  
TOP VIEW  
BOTTOM VIEW  
Datasheet  
51  
Package Mechanical Specifications and Pin Information  
Figure 4-5. Micro-FCBGA Package Top and Side Views  
SUBSTRATE KEEPOUT ZONE  
DO NOT CONTACT PACKAGE  
INSIDE THIS LINE  
7 (K1)  
8 places  
0.20  
A
5 (K)  
4 places  
A2  
D1  
35 (D)  
Ø 0.78 (b)  
479 places  
K2  
E1  
35 (E)  
PIN A1 CORNER  
NOTE: Die is centered on the Package. All dimensions in millimeters. Values shown for reference only. Refer to  
Table 4-2 for details.  
52  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 4-2. Micro-FCBGA Package Dimensions  
Symbol  
Parameter  
Min  
Max  
Unit  
A
A2  
b
Overall height, as delivered (Refer to Note 1)  
Die height  
2.60  
2.85  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
each  
mm  
kPa  
g
0.82  
0.78  
Ball diameter  
D
Package substrate length  
Package substrate width  
Die length  
34.9  
34.9  
35.1  
35.1  
E
D1  
E1  
e
12.54  
6.99  
1.27  
5
Die width  
Ball Pitch  
K
Package edge keep-out  
Package corner keep-out  
Die-side capacitor height  
Package edge to first ball center  
Ball count  
K1  
K2  
S
7
0.7  
1.625  
479  
N
Solder ball coplanarity  
Allowable pressure on the die for thermal solution  
Package weight  
0.2  
Pdie  
W
689  
4.5  
NOTE: Overall height as delivered. Values are based on design specifications and tolerances. This dimension  
is subject to change based on OEM motherboard design or OEM SMT process.  
Datasheet  
53  
Package Mechanical Specifications and Pin Information  
Figure 4-6. Micro-FCBGA Package Bottom View  
1.625 (S)  
4 places  
AF  
AE  
AD  
AC  
AB  
AA  
Y
1.625 (S)  
4 places  
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
3
13 15 17  
11  
10 12 14 16 18  
5
7
9
19 21 23 25  
25X 1.27  
(e)  
2
4
6
8
22 24 26  
20  
25X 1.27  
(e)  
NOTE: All dimensions in millimeters. Values shown for reference only. Refer to Table 4-2 for details.  
4.1  
Processor Pinout and Pin List  
Figure 4-7 on the next page shows the top view pinout of the Pentium M Processor. The pin list  
arranged in two different formats is shown in the following pages.  
54  
Datasheet  
Package Mechanical Specifications and Pin Information  
Figure 4-7. The Coordinates of the Processor Pins as Viewed from the Top of the Package  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26  
A
B
A
B
ITP_CLK  
[1]  
THER  
MDC  
ITP_CLK  
[0]  
IGNNE# IERR#  
VSS  
INIT#  
TEST1  
VSS  
SLP# DBR#  
VSS BPM[2]# PRDY# VSS  
BPM  
TDO  
TCK  
VSS  
VSS  
D[0]#  
VSS  
VSS  
D[6]# D[2]#  
VSS  
D[4]# D[1]#  
VSS  
VSS  
PROC THER  
HOT# MDA  
RSVD  
VSS  
SMI#  
VSS  
VSS DPSLP#  
VSS PREQ# RESET# VSS TRST# BCLK1 BCLK0 VSS  
D[7]# D[3]#  
VSS D[13]# D[9]#  
DSTBP DSTBN  
VSS  
D[5]#  
VCCA[1]  
VSS  
[1]#  
C
C
STP  
VSS  
BPM  
[0]#  
BPM  
[3]#  
THERM  
A20M# RSVD  
VSS  
VCCP  
VSS  
TMS  
VSS  
TDI  
VCCP  
VSS  
VSS BSEL[1] VSS BSEL[0]  
VSS DPWR# D[8]#  
VSS  
VSS  
VCC  
VSS  
VSS D[15]# D[12]#  
CLK#  
TRIP#  
[0]#  
[0]#  
D
D
DINV  
[0]#  
LINT0  
VSS FERR# LINT1  
PWR  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCCP  
VSS  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VCCP  
VSS  
VCCP  
VSS  
VSS  
VCCP  
VSS  
VCCP  
VSS  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS D[10]#  
VSS  
E
E
PSI# VID[0]  
VCC  
VCC  
VSS  
VCCP  
VSS  
VCC  
VSS  
D[14]# D[11]# VSS  
RSVD  
VSS  
VSS  
VCC  
VSS  
GOOD  
F
F
VSS  
VID[1] VID[2]  
VSS  
VSS  
VCCP  
VCCP  
VCCP  
VCCP  
VSS VCC  
VSS D[21]# VCCA[0]  
TEST2  
G
G
RSVD  
VSS  
VID[3] VID[4] VCC  
VCC  
VSS  
VCC  
VSS  
VCCP  
VSS  
VCCP  
VSS D[22]# D[17]#  
VSS  
H
H
RS[0]# DRDY# VSS  
VSS LOCK# BPRI#  
VID[5]  
VSS  
VSS  
VCC  
VCC D[16]# D[20]# VSS D[29]#  
DINV  
J
J
VSS D[23]#  
VSS D[25]#  
[1]#  
K
K
DSTBN  
[1]#  
RS[1]# VSS  
HIT# HITM# VSS  
VCC  
VSS  
D[31]# VSS  
L
L
DSTBP  
[1]#  
VCCP  
DEFER#  
BNR# RS[2]# VSS  
VSS D[18]#  
VSS D[26]#  
M
N
M
N
DBSY# TRDY# VSS  
VSS  
VCCP  
VSS  
VCCP D[24]# VSS D[28]# D[19]#  
VSS  
VCCA[2] ADS#  
VSS  
BR0# VCCP  
VSS  
VCCP  
VSS  
VSS D[27]# D[30]# VSS  
COMP COMP  
TOP VIEW  
P
P
REQ  
VSS  
[3]#  
REQ  
[1]#  
VCCQ[0]  
VSS  
A[3]#  
VSS  
VSS  
VCCP  
VSS  
VCC  
VSS  
VCCP  
VSS  
VSS  
[0]  
[1]  
R
R
REQ  
VSS  
VCCP  
A[6]#  
VSS  
D[39]# D[37]# VSS D[38]#  
[0]#  
T
T
REQ  
[4]#  
REQ  
[2]#  
DINV  
[2]#  
A[9]#  
A[4]#  
VSS  
VCCP  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCCP  
VSS  
D[34]# VSS  
U
U
ADSTB  
[0]#  
A[13]# VSS  
VCCP  
VSS D[35]# VSS D[43]# D[41]#  
V
V
VSS  
A[7]#  
A[5]#  
VSS  
VCC  
VCC D[36]# D[42]# VSS D[44]#  
DSTBP DSTBN  
W
Y
W
Y
A[8]# A[10]# VSS VCCQ[1] VCC  
VSS  
VSS  
VSS  
[2]#  
[2]#  
A[12]# VSS A[15]#  
VSS  
VCC  
VSS  
VSS  
VCC  
VCC D[45]# VSS D[47]# D[32]#  
A[11]#  
AA  
AB  
AC  
AD  
AE  
AF  
AA  
AB  
AC  
AD  
AE  
AF  
VSS  
VSS A[16]# A[14]# VSS  
COMP COMP  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
D[40]# D[33]# VSS D[46]#  
VSS D[50]# D[48]# VSS  
VSS  
VSS  
VCC VSS  
VCC  
A[24]#  
[3]  
[2]  
VSS A[20]# A[18]# VSS  
A[25]# A[19]# VSS  
VCC D[51]#  
VSS D[52]# D[49]#  
VSS D[53]# VCCA[3]  
RSVD  
DINV  
VSS  
VSS A[23]# A[21]# VSS  
A[28]# VSS  
VCC  
VSS  
VCC  
D[60]# VSS D[54]# D[57]# VSS GTLREF  
DSTBN DSTBP  
A[26]#  
[3]#  
ADSTB  
[1]#  
VCC  
VSS  
A[30]# A[27]# VSS A[22]#  
VCC  
VSS D[59]# D[55]# VSS  
VSS  
VSS  
VCC  
[3]#  
[3]#  
SENSE  
VSS  
SENSE  
A[31]# VSS A[29]#  
A[31]#  
A[17]# VSS  
RSVD  
VSS D[58]# VSS D[62]# D[56]# VSS D[61]# D[63]#  
vss  
VCC  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26  
Pin B2 is depopulated on the Micro-FCPGA package  
VSS  
VCC Other  
Datasheet  
55  
Package Mechanical Specifications and Pin Information  
This page is intentionally left blank.  
56  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 4-3. Pin Listing by Pin Name  
Pin  
Number  
Signal Buffer  
Type  
Table 4-3. Pin Listing by Pin Name  
Pin Name  
Direction  
Pin  
Number  
Signal Buffer  
Type  
BPM[1]#  
B8  
Common Clock Output  
Common Clock Output  
Common Clock Input/Output  
Common Clock Input  
Pin Name  
Direction  
BPM[2]#  
BPM[3]#  
BPRI#  
BR0#  
A9  
A[3]#  
P4  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
CMOS  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input  
C9  
A[4]#  
U4  
J3  
A[5]#  
V3  
N4  
Common Clock Input/Output  
A[6]#  
R3  
BSEL[1]  
BSEL[0]  
COMP[0]  
COMP[1]  
COMP[2]  
COMP[3]  
D[0]#  
C14  
C16  
P25  
P26  
AB2  
AB1  
A19  
A25  
A22  
B21  
A24  
B26  
A21  
B20  
C20  
B24  
D24  
E24  
C26  
B23  
E23  
C25  
H23  
G25  
L23  
M26  
H24  
F25  
G24  
J23  
M23  
J25  
L26  
CMOS  
Output  
A[7]#  
V2  
CMOS  
Output  
A[8]#  
W1  
T4  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
A[9]#  
A[10]#  
A[11]#  
A[12]#  
A[13]#  
A[14]#  
A[15]#  
A[16]#  
A[17]#  
A[18]#  
A[19]#  
A[20]#  
A[21]#  
A[22]#  
A[23]#  
A[24]#  
A[25]#  
A[26]#  
A[27]#  
A[28]#  
A[29]#  
A[30]#  
A[31]#  
A20M#  
ADS#  
W2  
Y4  
Y1  
U1  
D[1]#  
AA3  
Y3  
D[2]#  
D[3]#  
AA2  
AF4  
AC4  
AC7  
AC3  
AD3  
AE4  
AD2  
AB4  
AC6  
AD5  
AE2  
AD6  
AF3  
AE1  
AF1  
C2  
D[4]#  
D[5]#  
D[6]#  
D[7]#  
D[8]#  
D[9]#  
D[10]#  
D[11]#  
D[12]#  
D[13]#  
D[14]#  
D[15]#  
D[16]#  
D[17]#  
D[18]#  
D[19]#  
D[20]#  
D[21]#  
D[22]#  
D[23]#  
D[24]#  
D[25]#  
D[26]#  
N2  
Common Clock Input/Output  
ADSTB[0]#  
ADSTB[1]#  
BCLK[0]  
BCLK[1]  
BNR#  
U3  
Source Synch  
Source Synch  
Bus Clock  
Input/Output  
Input/Output  
Input  
AE5  
B15  
B14  
L1  
Bus Clock  
Input  
Common Clock Input/Output  
Common Clock Output  
BPM[0]#  
C8  
Datasheet  
57  
Package Mechanical Specifications and Pin Information  
Table 4-3. Pin Listing by Pin Name  
Table 4-3. Pin Listing by Pin Name  
Pin  
Number  
Signal Buffer  
Type  
Pin  
Number  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
D[27]#  
N24  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
CMOS  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Output  
DBSY#  
M2  
Common Clock Input/Output  
Common Clock Input  
D[28]#  
D[29]#  
D[30]#  
D[31]#  
D[32]#  
D[33]#  
D[34]#  
D[35]#  
D[36]#  
D[37]#  
D[38]#  
D[39]#  
D[40]#  
D[41]#  
D[42]#  
D[43]#  
D[44]#  
D[45]#  
D[46]#  
D[47]#  
D[48]#  
D[49]#  
D[50]#  
D[51]#  
D[52]#  
D[53]#  
D[54]#  
D[55]#  
D[56]#  
D[57]#  
D[58]#  
D[59]#  
D[60]#  
D[61]#  
D[62]#  
D[63]#  
DBR#  
M25  
H26  
DEFER#  
DINV[0]#  
DINV[1]#  
DINV[2]#  
DINV[3]#  
DPSLP#  
DPWR#  
L4  
D25  
J26  
T24  
AD20  
B7  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
CMOS  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input  
N25  
K25  
Y26  
AA24  
T25  
C19  
H2  
Common Clock Input  
U23  
DRDY#  
Common Clock Input/Output  
V23  
DSTBN[0]#  
DSTBN[1]#  
DSTBN[2]#  
DSTBN[3]#  
DSTBP[0]#  
DSTBP[1]#  
DSTBP[2]#  
DSTBP[3]#  
FERR#  
C23  
K24  
W25  
AE24  
C22  
L24  
W24  
AE25  
D3  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Open Drain  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Output  
R24  
R26  
R23  
AA23  
U26  
V24  
U25  
V26  
Y23  
GTLREF  
HIT#  
AD26  
K3  
Power/Other  
Input  
AA26  
Y25  
Common Clock Input/Output  
Common Clock Input/Output  
HITM#  
K4  
AB25  
AC23  
AB24  
AC20  
AC22  
AC25  
AD23  
AE22  
AF23  
AD24  
AF20  
AE21  
AD21  
AF25  
AF22  
AF26  
A7  
IERR#  
A4  
Open Drain  
CMOS  
Output  
Input  
Input  
input  
input  
Input  
Input  
IGNNE#  
INIT#  
A3  
B5  
CMOS  
ITP_CLK[0]  
ITP_CLK[1]  
LINT0  
A16  
A15  
D1  
CMOS  
CMOS  
CMOS  
LINT1  
D4  
CMOS  
LOCK#  
J2  
Common Clock Input/Output  
Common Clock Output  
Common Clock Input  
PRDY#  
A10  
B10  
B17  
E1  
PREQ#  
PROCHOT#  
PSI#  
Open Drain  
CMOS  
Output  
Output  
PWRGOOD  
REQ[0]#  
REQ[1]#  
REQ[2]#  
REQ[3]#  
E4  
CMOS  
Input  
R2  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
P3  
T2  
P1  
58  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 4-3. Pin Listing by Pin Name  
Table 4-3. Pin Listing by Pin Name  
Pin  
Number  
Signal Buffer  
Type  
Pin  
Number  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
REQ[4]#  
T1  
Source Synch  
Input/Output  
VCC  
F18  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
RESET#  
RS[0]#  
RS[1]#  
RS[2]#  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
SLP#  
B11  
H1  
Common Clock Input  
Common Clock Input  
Common Clock Input  
Common Clock Input  
Reserved  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
F20  
F22  
K1  
G5  
L2  
G21  
H6  
AF7  
B2  
Reserved  
H22  
J5  
C3  
Reserved  
E26  
G1  
Reserved  
J21  
Reserved  
K22  
AC1  
A6  
Reserved  
U5  
CMOS  
Input  
Input  
Input  
Input  
Input  
Output  
V6  
SMI#  
B4  
CMOS  
V22  
STPCLK#  
TCK  
C6  
CMOS  
W5  
A13  
C12  
A12  
C5  
CMOS  
W21  
Y6  
TDI  
CMOS  
TDO  
Open Drain  
Test  
Y22  
TEST1  
TEST2  
THERMDA  
THERMDC  
AA5  
AA7  
AA9  
AA11  
AA13  
AA15  
AA17  
AA19  
AA21  
AB6  
AB8  
AB10  
AB12  
AB14  
AB16  
AB18  
AB20  
AB22  
AC9  
AC11  
AC13  
F23  
B18  
A18  
Test  
Power/Other  
Power/Other  
Open Drain  
CMOS  
THERMTRIP# C17  
Output  
Input  
TMS  
TRDY#  
TRST#  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
C11  
M3  
B13  
D6  
Common Clock Input  
CMOS  
Input  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
D8  
D18  
D20  
D22  
E5  
E7  
E9  
E17  
E19  
E21  
F6  
F8  
Datasheet  
59  
Package Mechanical Specifications and Pin Information  
Table 4-3. Pin Listing by Pin Name  
Table 4-3. Pin Listing by Pin Name  
Pin  
Number  
Signal Buffer  
Type  
Pin  
Number  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
VCC  
AC15  
AC17  
AC19  
AD8  
AD10  
AD12  
AD14  
AD16  
AD18  
AE9  
AE11  
AE13  
AE15  
AE17  
AE19  
AF8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCCP  
L21  
M6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
CMOS  
VCC  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCQ[0]  
VCCQ[1]  
VCCSENSE  
VID[0]  
VID[1]  
VID[2]  
VID[3]  
VID[4]  
VID[5]  
VSS  
VCC  
M22  
N5  
VCC  
VCC  
N21  
P6  
VCC  
VCC  
P22  
R5  
VCC  
VCC  
R21  
T6  
VCC  
VCC  
T22  
U21  
P23  
W4  
AE7  
E2  
VCC  
VCC  
VCC  
VCC  
Output  
VCC  
Output  
Output  
Output  
Output  
Output  
Output  
VCC  
AF10  
AF12  
AF14  
AF16  
AF18  
F26  
F2  
CMOS  
VCC  
F3  
CMOS  
VCC  
G3  
CMOS  
VCC  
G4  
CMOS  
VCC  
H4  
CMOS  
VCCA[0]  
VCCA[1]  
VCCA[2]  
VCCA[3]  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
A2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
B1  
VSS  
A5  
N1  
VSS  
A8  
AC26  
D10  
VSS  
A11  
A14  
A17  
A20  
A23  
A26  
B3  
VSS  
D12  
VSS  
D14  
VSS  
D16  
VSS  
E11  
VSS  
E13  
VSS  
E15  
VSS  
B6  
F10  
VSS  
B9  
F12  
VSS  
B12  
B16  
B19  
B22  
B25  
F14  
VSS  
F16  
VSS  
K6  
VSS  
L5  
VSS  
60  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 4-3. Pin Listing by Pin Name  
Table 4-3. Pin Listing by Pin Name  
Pin  
Number  
Signal Buffer  
Type  
Pin  
Number  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
VSS  
C1  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
F13  
F15  
F17  
F19  
F21  
F24  
G2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
C4  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
C7  
C10  
C13  
C15  
C18  
C21  
C24  
D2  
G6  
G22  
G23  
G26  
H3  
D5  
D7  
D9  
H5  
D11  
D13  
D15  
D17  
D19  
D21  
D23  
D26  
E3  
H21  
H25  
J1  
J4  
J6  
J22  
J24  
K2  
K5  
E6  
K21  
K23  
K26  
L3  
E8  
E10  
E12  
E14  
E16  
E18  
E20  
E22  
E25  
F1  
L6  
L22  
L25  
M1  
M4  
M5  
M21  
M24  
N3  
F4  
F5  
F7  
N6  
F9  
N22  
N23  
F11  
Datasheet  
61  
Package Mechanical Specifications and Pin Information  
Table 4-3. Pin Listing by Pin Name  
Table 4-3. Pin Listing by Pin Name  
Pin  
Number  
Signal Buffer  
Type  
Pin  
Number  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
VSS  
N26  
P2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
AA12  
AA14  
AA16  
AA18  
AA20  
AA22  
AA25  
AB3  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
P5  
P21  
P24  
R1  
R4  
R6  
R22  
R25  
T3  
AB5  
AB7  
AB9  
T5  
AB11  
AB13  
AB15  
AB17  
AB19  
AB21  
AB23  
AB26  
AC2  
T21  
T23  
T26  
U2  
U6  
U22  
U24  
V1  
V4  
AC5  
V5  
AC8  
V21  
V25  
W3  
W6  
W22  
W23  
W26  
Y2  
AC10  
AC12  
AC14  
AC16  
AC18  
AC21  
AC24  
AD1  
Y5  
AD4  
Y21  
Y24  
AA1  
AA4  
AA6  
AA8  
AA10  
AD7  
AD9  
AD11  
AD13  
AD15  
AD17  
AD19  
62  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 4-3. Pin Listing by Pin Name  
Table 4-4. Pin Listing by Pin Number  
Pin  
Number  
Signal Buffer  
Type  
Pin  
Number  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
Input  
VSS  
AD22  
AD25  
AE3  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
A13  
TCK  
CMOS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSSSENSE  
A14  
VSS  
Power/Other  
CMOS  
A15  
ITP_CLK[1]  
ITP_CLK[0]  
VSS  
input  
input  
AE6  
A16  
CMOS  
AE8  
A17  
Power/Other  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
AE10  
AE12  
AE14  
AE16  
AE18  
AE20  
AE23  
AE26  
AF2  
A18  
THERMDC  
D[0]#  
VSS  
A19  
Input/Output  
A20  
A21  
D[6]#  
D[2]#  
VSS  
Input/Output  
Input/Output  
A22  
A23  
A24  
D[4]#  
D[1]#  
VSS  
Input/Output  
Input/Output  
A25  
A26  
AF5  
AA1  
AA2  
AA3  
AA4  
AA5  
AA6  
AA7  
AA8  
AA9  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AA23  
AA24  
VSS  
AF9  
A[16]#  
A[14]#  
VSS  
Input/Output  
Input/Output  
AF11  
AF13  
AF15  
AF17  
AF19  
AF21  
AF24  
AF6  
VCC  
VSS  
VCC  
VSS  
VCC  
Output  
VSS  
VCC  
Table 4-4. Pin Listing by Pin Number  
VSS  
Pin  
Number  
Signal Buffer  
Type  
VCC  
Pin Name  
Direction  
VSS  
A2  
VSS  
Power/Other  
CMOS  
VCC  
A3  
IGNNE#  
IERR#  
VSS  
Input  
VSS  
A4  
Open Drain  
Power/Other  
CMOS  
Output  
VCC  
A5  
VSS  
A6  
SLP#  
Input  
VCC  
A7  
DBR#  
VSS  
CMOS  
Output  
VSS  
A8  
Power/Other  
VCC  
A9  
BPM[2]#  
PRDY#  
VSS  
Common Clock Output  
Common Clock Output  
Power/Other  
VSS  
A10  
A11  
A12  
D[40]#  
D[33]#  
Input/Output  
Input/Output  
TDO  
Open Drain  
Output  
Datasheet  
63  
Package Mechanical Specifications and Pin Information  
Table 4-4. Pin Listing by Pin Number  
Table 4-4. Pin Listing by Pin Number  
Pin  
Number  
Signal Buffer  
Type  
Pin  
Number  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
AA25  
AA26  
AB1  
VSS  
Power/Other  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Reserved  
AC11  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
AC20  
AC21  
AC22  
AC23  
AC24  
AC25  
AC26  
AD1  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
D[46]#  
COMP[3]  
COMP[2]  
VSS  
Input/Output  
Input/Output  
Input/Output  
VSS  
VCC  
AB2  
VSS  
AB3  
VCC  
AB4  
A[24]#  
VSS  
Input/Output  
VSS  
AB5  
VCC  
AB6  
VCC  
VSS  
AB7  
VSS  
VCC  
AB8  
VCC  
D[51]#  
VSS  
Input/Output  
AB9  
VSS  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
AB23  
AB24  
AB25  
AB26  
AC1  
VCC  
D[52]#  
D[49]#  
VSS  
Input/Output  
Input/Output  
VSS  
VCC  
VSS  
D[53]#  
VCCA[3]  
VSS  
Input/Output  
VCC  
VSS  
VCC  
AD2  
A[23]#  
A[21]#  
VSS  
Input/Output  
Input/Output  
VSS  
AD3  
VCC  
AD4  
VSS  
AD5  
A[26]#  
A[28]#  
VSS  
Input/Output  
Input/Output  
VCC  
AD6  
VSS  
AD7  
VCC  
AD8  
VCC  
VSS  
AD9  
VSS  
D[50]#  
D[48]#  
VSS  
Input/Output  
Input/Output  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
VCC  
VSS  
VCC  
RSVD  
VSS  
VSS  
AC2  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
VCC  
AC3  
A[20]#  
A[18]#  
VSS  
Input/Output  
Input/Output  
VSS  
AC4  
VCC  
AC5  
VSS  
AC6  
A[25]#  
A[19]#  
VSS  
Input/Output  
Input/Output  
VCC  
AC7  
VSS  
AC8  
DINV[3]#  
D[60]#  
VSS  
Input/Output  
Input/Output  
AC9  
VCC  
AC10  
VSS  
64  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 4-4. Pin Listing by Pin Number  
Table 4-4. Pin Listing by Pin Number  
Pin  
Number  
Signal Buffer  
Type  
Pin  
Number  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
AD23  
AD24  
AD25  
AD26  
AE1  
D[54]#  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Reserved  
Input/Output  
Input/Output  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
AF16  
AF17  
AF18  
AF19  
AF20  
AF21  
AF22  
AF23  
AF24  
AF25  
AF26  
B1  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Reserved  
D[57]#  
VSS  
VCC  
VSS  
GTLREF  
A[30]#  
A[27]#  
VSS  
VCC  
Input/Output  
Input/Output  
VSS  
AE2  
VCC  
AE3  
VSS  
AE4  
A[22]#  
ADSTB[1]#  
VSS  
Input/Output  
Input/Output  
VCC  
AE5  
VSS  
AE6  
VCC  
AE7  
VCCSENSE  
VSS  
Output  
VSS  
AE8  
D[58]#  
VSS  
Input/Output  
AE9  
VCC  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
AE20  
AE21  
AE22  
AE23  
AE24  
AE25  
AE26  
AF1  
VSS  
D[62]#  
D[56]#  
VSS  
Input/Output  
Input/Output  
VCC  
VSS  
VCC  
D[61]#  
D[63]#  
VCCA[1]  
RSVD  
VSS  
Input/Output  
Input/Output  
VSS  
VCC  
VSS  
B2  
VCC  
B3  
Power/Other  
CMOS  
VSS  
B4  
SMI#  
Input  
Input  
VCC  
B5  
INIT#  
CMOS  
VSS  
B6  
VSS  
Power/Other  
CMOS  
D[59]#  
D[55]#  
VSS  
Input/Output  
Input/Output  
B7  
DPSLP#  
BPM[1]#  
VSS  
Input  
B8  
Common Clock Output  
Power/Other  
B9  
DSTBN[3]#  
DSTBP[3]#  
VSS  
Input/Output  
Input/Output  
B10  
B11  
PREQ#  
RESET#  
VSS  
Common Clock Input  
Common Clock Input  
Power/Other  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
A[31]#  
VSS  
Input/Output  
TRST#  
BCLK[1]  
BCLK[0]  
VSS  
CMOS  
Input  
Input  
Input  
AF2  
Bus Clock  
AF3  
A[29]#  
A[17]#  
VSS  
Input/Output  
Input/Output  
Bus Clock  
AF4  
Power/Other  
Open Drain  
Power/Other  
Power/Other  
Source Synch  
AF5  
PROCHOT#  
THERMDA  
VSS  
Output  
AF6  
VSSSENSE  
RSVD  
VCC  
Output  
AF7  
AF8  
Power/Other  
D[7]#  
Input/Output  
Datasheet  
65  
Package Mechanical Specifications and Pin Information  
Table 4-4. Pin Listing by Pin Number  
Table 4-4. Pin Listing by Pin Number  
Pin  
Number  
Signal Buffer  
Type  
Pin  
Number  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
B21  
B22  
B23  
B24  
B25  
B26  
C1  
D[3]#  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
CMOS  
Input/Output  
D7  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
CMOS  
VSS  
D8  
VCC  
D[13]#  
D[9]#  
Input/Output  
Input/Output  
D9  
VSS  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
E1  
VCCP  
VSS  
VSS  
D[5]#  
Input/Output  
Input  
VCCP  
VSS  
VSS  
C2  
A20M#  
RSVD  
VSS  
VCCP  
VSS  
C3  
Reserved  
C4  
Power/Other  
Test  
VCCP  
VSS  
C5  
TEST1  
STPCLK#  
VSS  
C6  
CMOS  
Input  
VCC  
C7  
Power/Other  
VSS  
C8  
BPM[0]#  
BPM[3]#  
VSS  
Common Clock Output  
Common Clock Input/Output  
Power/Other  
VCC  
C9  
VSS  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
D1  
VCC  
TMS  
CMOS  
Input  
Input  
VSS  
TDI  
CMOS  
D[10]#  
DINV[0]#  
VSS  
Input/Output  
Input/Output  
VSS  
Power/Other  
CMOS  
BSEL[1]  
VSS  
Output  
Power/Other  
CMOS  
PSI#  
VID[0]  
VSS  
Output  
Output  
BSEL[0]  
Output  
Output  
E2  
CMOS  
THERMTRIP# Open Drain  
E3  
Power/Other  
CMOS  
VSS  
Power/Other  
Common Clock Input  
E4  
PWRGOOD  
VCC  
Input  
DPWR#  
D[8]#  
E5  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
CMOS  
Input/Output  
E6  
VSS  
VSS  
E7  
VCC  
DSTBP[0]#  
DSTBN[0]#  
VSS  
Input/Output  
Input/Output  
E8  
VSS  
E9  
VCC  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
VSS  
D[15]#  
D[12]#  
LINT0  
VSS  
Input/Output  
Input/Output  
Input  
VCCP  
VSS  
VCCP  
VSS  
D2  
Power/Other  
Open Drain  
CMOS  
D3  
FERR#  
LINT1  
VSS  
Output  
Input  
VCCP  
VSS  
D4  
D5  
Power/Other  
Power/Other  
VCC  
D6  
VCC  
VSS  
66  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 4-4. Pin Listing by Pin Number  
Table 4-4. Pin Listing by Pin Number  
Pin  
Number  
Signal Buffer  
Type  
Pin  
Number  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
E19  
E20  
E21  
E22  
E23  
E24  
E25  
E26  
F1  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Reserved  
G5  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
VSS  
G6  
VSS  
VCC  
G21  
G22  
G23  
G24  
G25  
G26  
H1  
VCC  
VSS  
VSS  
D[14]#  
D[11]#  
VSS  
Input/Output  
Input/Output  
VSS  
D[22]#  
D[17]#  
VSS  
Input/Output  
Input/Output  
RSVD  
VSS  
Power/Other  
CMOS  
RS[0]#  
DRDY#  
VSS  
Common Clock Input  
Common Clock Input/Output  
Power/Other  
F2  
VID[1]  
VID[2]  
VSS  
Output  
Output  
H2  
F3  
CMOS  
H3  
F4  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Test  
H4  
VID[5]  
VSS  
CMOS  
Output  
F5  
VSS  
H5  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
F6  
VCC  
H6  
VCC  
F7  
VSS  
H21  
H22  
H23  
H24  
H25  
H26  
J1  
VSS  
F8  
VCC  
VCC  
F9  
VSS  
D[16]#  
D[20]#  
VSS  
Input/Output  
Input/Output  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
F23  
F24  
F25  
F26  
G1  
VCCP  
VSS  
VCCP  
VSS  
D[29]#  
VSS  
Input/Output  
VCCP  
VSS  
J2  
LOCK#  
BPRI#  
VSS  
Common Clock Input/Output  
Common Clock Input  
Power/Other  
J3  
VCCP  
VSS  
J4  
J5  
VCC  
Power/Other  
VCC  
J6  
VSS  
Power/Other  
VSS  
J21  
J22  
J23  
J24  
J25  
J26  
K1  
VCC  
Power/Other  
VCC  
VSS  
Power/Other  
VSS  
D[23]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Input/Output  
VCC  
TEST2  
VSS  
D[25]#  
DINV[1]#  
RS[1]#  
VSS  
Input/Output  
Input/Output  
Power/Other  
Source Synch  
Power/Other  
Reserved  
D[21]#  
VCCA[0]  
RSVD  
VSS  
Input/Output  
Common Clock Input  
Power/Other  
K2  
K3  
HIT#  
Common Clock Input/Output  
Common Clock Input/Output  
Power/Other  
G2  
Power/Other  
CMOS  
K4  
HITM#  
VSS  
G3  
VID[3]  
VID[4]  
Output  
Output  
K5  
G4  
CMOS  
K6  
VCCP  
Power/Other  
Datasheet  
67  
Package Mechanical Specifications and Pin Information  
Table 4-4. Pin Listing by Pin Number  
Table 4-4. Pin Listing by Pin Number  
Pin  
Number  
Signal Buffer  
Type  
Pin  
Number  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
K21  
K22  
K23  
K24  
K25  
K26  
L1  
VSS  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
N23  
N24  
N25  
N26  
P1  
VSS  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
CMOS  
VCC  
D[27]#  
D[30]#  
VSS  
Input/Output  
Input/Output  
VSS  
DSTBN[1]#  
D[31]#  
VSS  
Input/Output  
Input/Output  
REQ[3]#  
VSS  
Input/Output  
P2  
BNR#  
RS[2]#  
VSS  
Common Clock Input/Output  
Common Clock Input  
Power/Other  
P3  
REQ[1]#  
A[3]#  
Input/Output  
Input/Output  
L2  
P4  
L3  
P5  
VSS  
L4  
DEFER#  
VCCP  
VSS  
Common Clock Input  
Power/Other  
P6  
VCCP  
VSS  
L5  
P21  
P22  
P23  
P24  
P25  
P26  
R1  
L6  
Power/Other  
VCCP  
VCCQ[0]  
VSS  
L21  
L22  
L23  
L24  
L25  
L26  
M1  
VCCP  
VSS  
Power/Other  
Power/Other  
D[18]#  
DSTBP[1]#  
VSS  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Input/Output  
Input/Output  
COMP[0]  
COMP[1]  
VSS  
Input/Output  
Input/Output  
D[26]#  
VSS  
Input/Output  
R2  
REQ[0]#  
A[6]#  
Input/Output  
Input/Output  
R3  
M2  
DBSY#  
TRDY#  
VSS  
Common Clock Input/Output  
Common Clock Input  
Power/Other  
R4  
VSS  
M3  
R5  
VCCP  
VSS  
M4  
R6  
M5  
VSS  
Power/Other  
R21  
R22  
R23  
R24  
R25  
R26  
T1  
VCCP  
VSS  
M6  
VCCP  
VSS  
Power/Other  
M21  
M22  
M23  
M24  
M25  
M26  
N1  
Power/Other  
D[39]#  
D[37]#  
VSS  
Input/Output  
Input/Output  
VCCP  
D[24]#  
VSS  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Input/Output  
D[38]#  
REQ[4]#  
REQ[2]#  
VSS  
Input/Output  
Input/Output  
Input/Output  
D[28]#  
D[19]#  
VCCA[2]  
ADS#  
VSS  
Input/Output  
Input/Output  
T2  
T3  
N2  
Common Clock Input/Output  
Power/Other  
T4  
A[9]#  
Input/Output  
N3  
T5  
VSS  
N4  
BR0#  
VCCP  
VSS  
Common Clock Input/Output  
Power/Other  
T6  
VCCP  
VSS  
N5  
T21  
T22  
T23  
T24  
N6  
Power/Other  
VCCP  
VSS  
N21  
N22  
VCCP  
VSS  
Power/Other  
Power/Other  
DINV[2]#  
Input/Output  
68  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 4-4. Pin Listing by Pin Number  
Table 4-4. Pin Listing by Pin Number  
Pin  
Number  
Signal Buffer  
Type  
Pin  
Number  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
T25  
T26  
U1  
D[34]#  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Input/Output  
Y1  
A[12]#  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Input/Output  
VSS  
Y2  
VSS  
A[13]#  
VSS  
Input/Output  
Y3  
A[15]#  
A[11]#  
VSS  
Input/Output  
Input/Output  
U2  
Y4  
U3  
ADSTB[0]#  
A[4]#  
Input/Output  
Input/Output  
Y5  
U4  
Y6  
VCC  
U5  
VCC  
Y21  
Y22  
Y23  
Y24  
Y25  
Y26  
VSS  
U6  
VSS  
VCC  
U21  
U22  
U23  
U24  
U25  
U26  
V1  
VCCP  
VSS  
D[45]#  
VSS  
Input/Output  
D[35]#  
VSS  
Input/Output  
D[47]#  
D[32]#  
Input/Output  
Input/Output  
D[43]#  
D[41]#  
VSS  
Input/Output  
Input/Output  
V2  
A[7]#  
Input/Output  
Input/Output  
V3  
A[5]#  
V4  
VSS  
V5  
VSS  
V6  
VCC  
V21  
V22  
V23  
V24  
V25  
V26  
W1  
W2  
W3  
W4  
W5  
W6  
W21  
W22  
W23  
W24  
W25  
W26  
VSS  
VCC  
D[36]#  
D[42]#  
VSS  
Input/Output  
Input/Output  
D[44]#  
A[8]#  
Input/Output  
Input/Output  
Input/Output  
A[10]#  
VSS  
VCCQ[1]  
VCC  
VSS  
VCC  
VSS  
VSS  
DSTBP[2]#  
DSTBN[2]#  
VSS  
Input/Output  
Input/Output  
Datasheet  
69  
Package Mechanical Specifications and Pin Information  
4.2  
Alphabetical Signals Reference  
Table 4-5. Signal Description (Sheet 1 of 7)  
Name  
A[31:3]#  
Type  
Description  
Input/  
Output  
A[31:3]# (Address) define a 232-byte physical memory address space. In sub-  
phase 1 of the address phase, these pins transmit the address of a transaction.  
In sub-phase 2, these pins transmit transaction type information. These signals  
must connect the appropriate pins of both agents on the Intel®Pentium®  
M
Processor FSB. A[31:3]# are source synchronous signals and are latched into  
the receiving buffers by ADSTB[1:0]#. Address signals are used as straps which  
are sampled before RESET# is deasserted.  
A20M#  
Input  
If A20M# (Address-20 Mask) is asserted, the processor masks physical address  
bit 20 (A20#) before looking up a line in any internal cache and before driving a  
read/write transaction on the bus. Asserting A20M# emulates the 8086  
processor's address wrap-around at the 1-Mbyte boundary. Assertion of A20M#  
is only supported in real mode.  
A20M# is an asynchronous signal. However, to ensure recognition of this signal  
following an Input/Output write instruction, it must be valid along with the TRDY#  
assertion of the corresponding Input/Output Write bus transaction.  
ADS#  
Input/  
Output  
ADS# (Address Strobe) is asserted to indicate the validity of the transaction  
address on the A[31:3]# and REQ[4:0]# pins. All bus agents observe the ADS#  
activation to begin parity checking, protocol checking, address decode, internal  
snoop, or deferred reply ID match operations associated with the new  
transaction.  
ADSTB[1:0]#  
Input/  
Output  
Address strobes are used to latch A[31:3]# and REQ[4:0]# on their rising and  
falling edges. Strobes are associated with signals as shown below.  
Signals  
Associated Strobe  
REQ[4:0]#, A[16:3]#  
A[31:17]#  
ADSTB[0]#  
ADSTB[1]#  
BCLK[1:0]  
BNR#  
Input  
The differential pair BCLK (Bus Clock) determines the FSB frequency. All FSB  
agents must receive these signals to drive their outputs and latch their inputs.  
All external timing parameters are specified with respect to the rising edge of  
BCLK0 crossing VCROSS  
.
Input/  
Output  
BNR# (Block Next Request) is used to assert a bus stall by any bus agent who is  
unable to accept new bus transactions. During a bus stall, the current bus owner  
cannot issue any new transactions.  
BPM[2:0]#  
BPM[3]  
BPM[3:0]# (Breakpoint Monitor) are breakpoint and performance monitor  
signals. They are outputs from the processor which indicate the status of  
breakpoints and programmable counters used for monitoring processor  
performance. BPM[3:0]# should connect the appropriate pins of all Intel®  
Pentium® M FSB agents.This includes debug or performance monitoring tools.  
Output  
Input/  
Output  
Please refer to the platform design guides for more detailed information.  
BPRI#  
BR0#  
Input  
BPRI# (Bus Priority Request) is used to arbitrate for ownership of the FSB. It  
must connect the appropriate pins of both FSB agents. Observing BPRI# active  
(as asserted by the priority agent) causes the other agent to stop issuing new  
requests, unless such requests are part of an ongoing locked operation. The  
priority agent keeps BPRI# asserted until all of its requests are completed, then  
releases the bus by deasserting BPRI#.  
Input/  
Output  
BR0# is used by the processor to request the bus. The arbitration is done  
between Intel®Pentium® M (Symmetric Agent) and Intel 855 chipset family  
MCH-M (High Priority Agent).  
70  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 4-5. Signal Description (Sheet 2 of 7)  
Name  
Type  
Description  
BSEL[1:0]  
Output  
These signals are used to select the FSB clock frequency. They should be  
connected between the processor and the chipset MCH and clock generator on  
Intel 915 chipset family based platforms. These signals must be left  
unconnected on platforms designed with the Intel 855 chipset family. On these  
platforms, FSB clock frequency should be configured on the motherboard.  
COMP[3:0]  
D[63:0]#  
Analog  
COMP[3:0] must be terminated on the system board using precision (1%  
tolerance) resistors. Refer to the platform design guides for more details on  
implementation.  
Input/  
Output  
D[63:0]# (Data) are the data signals. These signals provide a 64-bit data path  
between the FSB agents, and must connect the appropriate pins on both agents.  
The data driver asserts DRDY# to indicate a valid data transfer.  
D[63:0]# are quad-pumped signals and will thus be driven four times in a  
common clock period. D[63:0]# are latched off the falling edge of both  
DSTBP[3:0]# and DSTBN[3:0]#. Each group of 16 data signals correspond to a  
pair of one DSTBP# and one DSTBN#. The following table shows the grouping  
of data signals to data strobes and DINV#.  
Quad-Pumped Signal Groups  
DSTBN#/  
Data Group  
DINV#  
DSTBP#  
D[15:0]#  
D[31:16]#  
D[47:32]#  
D[63:48]#  
0
1
2
3
0
1
2
3
Furthermore, the DINV# pins determine the polarity of the data signals. Each  
group of 16 data signals corresponds to one DINV# signal. When the DINV#  
signal is active, the corresponding data group is inverted and therefore sampled  
active high.  
DBR#  
Output  
DBR# (Data Bus Reset) is used only in processor systems where no debug port  
is implemented on the system board. DBR# is used by a debug port interposer  
so that an in-target probe can drive system reset. If a debug port is implemented  
in the system, DBR# is a no connect in the system. DBR# is not a processor  
signal.  
DBSY#  
Input/  
Output  
DBSY# (Data Bus Busy) is asserted by the agent responsible for driving data on  
the FSB to indicate that the data bus is in use. The data bus is released after  
DBSY# is deasserted. This signal must connect the appropriate pins on both  
FSB agents.  
DEFER#  
Input  
DEFER# is asserted by an agent to indicate that a transaction cannot be  
guaranteed in-order completion. Assertion of DEFER# is normally the  
responsibility of the addressed memory or Input/Output agent. This signal must  
connect the appropriate pins of both FSB agents.  
Datasheet  
71  
Package Mechanical Specifications and Pin Information  
Table 4-5. Signal Description (Sheet 3 of 7)  
Name  
Type  
Description  
DINV[3:0]#  
Input/  
Output  
DINV[3:0]# (Data Bus Inversion) are source synchronous and indicate the  
polarity of the D[63:0]# signals. The DINV[3:0]# signals are activated when the  
data on the data bus is inverted. The bus agent will invert the data bus signals if  
more than half the bits, within the covered group, would change level in the next  
cycle.  
DINV[3:0]# Assignment To Data Bus  
Bus Signal  
Data Bus Signals  
DINV[3]#  
DINV[2]#  
DINV[1]#  
DINV[0]#  
D[63:48]#  
D[47:32]#  
D[31:16]#  
D[15:0]#  
DPSLP#  
Input  
Input  
DPSLP# when asserted on the platform causes the processor to transition from  
the Sleep State to the Deep Sleep state. In order to return to the Sleep state,  
DPSLP# must be deasserted. DPSLP# is driven by the ICH4-M component and  
also connects to the Intel 855 chipset family MCH-M component.  
DPWR#  
DRDY#  
DPWR# is a control signal from the Intel® 852/855 and 915 chipset family used  
to reduce power on the Intel® Pentium® M data bus input buffers.  
Input/  
Output  
DRDY# (Data Ready) is asserted by the data driver on each data transfer,  
indicating valid data on the data bus. In a multi-common clock data transfer,  
DRDY# may be deasserted to insert idle clocks. This signal must connect the  
appropriate pins of both FSB agents.  
DSTBN[3:0]#  
Input/  
Data strobe used to latch in D[63:0]#.  
Output  
Signals  
Associated Strobe  
D[15:0]#, DINV[0]#  
D[31:16]#, DINV[1]#  
D[47:32]#, DINV[2]#  
D[63:48]#, DINV[3]#  
DSTBN[0]#  
DSTBN[1]#  
DSTBN[2]#  
DSTBN[3]#  
DSTBP[3:0]#  
Input/  
Data strobe used to latch in D[63:0]#.  
Output  
Signals  
Associated Strobe  
D[15:0]#, DINV[0]#  
D[31:16]#, DINV[1]#  
D[47:32]#, DINV[2]#  
D[63:48]#, DINV[3]#  
DSTBP[0]#  
DSTBP[1]#  
DSTBP[2]#  
DSTBP[3]#  
72  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 4-5. Signal Description (Sheet 4 of 7)  
Name  
Type  
Description  
FERR#/PBE#  
Output  
FERR# (Floating-point Error)PBE#(Pending Break Event) is a multiplexed signal  
and its meaning is qualified with STPCLK#. When STPCLK# is not asserted,  
FERR#/PBE# indicates a floating point when the processor detects an  
unmasked floating-point error. FERR# is similar to the ERROR# signal on the  
Intel 387 coprocessor, and is included for compatibility with systems using MS-  
DOS*-type floating-point error reporting. When STPCLK# is asserted, an  
assertion of FERR#/PBE# indicates that the processor has a pending break  
event waiting for service. The assertion of FERR#/PBE# indicates that the  
processor should be returned to the Normal state. When FERR#/PBE# is  
asserted, indicating a break event, it will remain asserted until STPCLK# is  
deasserted. Assertion of PREQ# when STPCLK# is active will also cause an  
FERR# break event.  
For additional information on the pending break event functionality, including  
identification of support of the feature and enable/disable information, refer to  
Volume 3 of the Intel Architecture Software Developer’s Manual and the Intel ꢀ  
Processor Identification and CPUID Instruction application note.  
For termination requirements please refer to the platform design guides.  
GTLREF  
Input  
GTLREF determines the signal reference level for AGTL+ input pins. GTLREF  
should be set at 2/3 VCCP. GTLREF is used by the AGTL+ receivers to determine  
if a signal is a logical 0 or logical 1. Please refer to the platform design guides for  
details on GTLREF implementation.  
HIT#  
Input/  
Output  
HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction snoop operation  
results. Either FSB agent may assert both HIT# and HITM# together to indicate  
that it requires a snoop stall, which can be continued by reasserting HIT# and  
HITM# together.  
HITM#  
Input/  
Output  
IERR#  
Output  
Input  
IERR# (Internal Error) is asserted by a processor as the result of an internal  
error. Assertion of IERR# is usually accompanied by a SHUTDOWN transaction  
on the FSB. This transaction may optionally be converted to an external error  
signal (e.g., NMI) by system core logic. The processor will keep IERR# asserted  
until the assertion of RESET#, BINIT#, or INIT#.  
For termination requirements please refer to the platform design guides.  
IGNNE#  
IGNNE# (Ignore Numeric Error) is asserted to force the processor to ignore a  
numeric error and continue to execute noncontrol floating-point instructions. If  
IGNNE# is deasserted, the processor generates an exception on a noncontrol  
floating-point instruction if a previous floating-point instruction caused an error.  
IGNNE# has no effect when the NE bit in control register 0 (CR0) is set.  
IGNNE# is an asynchronous signal. However, to ensure recognition of this signal  
following an Input/Output write instruction, it must be valid along with the TRDY#  
assertion of the corresponding Input/Output Write bus transaction.  
INIT#  
Input  
INIT# (Initialization), when asserted, resets integer registers inside the processor  
without affecting its internal caches or floating-point registers. The processor  
then begins execution at the power-on Reset vector configured during power-on  
configuration. The processor continues to handle snoop requests during INIT#  
assertion. INIT# is an asynchronous signal. However, to ensure recognition of  
this signal following an Input/Output Write instruction, it must be valid along with  
the TRDY# assertion of the corresponding Input/Output Write bus transaction.  
INIT# must connect the appropriate pins of both FSB agents.  
If INIT# is sampled active on the active to inactive transition of RESET#, then the  
processor executes its Built-in Self-Test (BIST)  
For termination requirements please refer to the platform design guides.  
ITP_CLK[1:0]  
Input  
ITP_CLK[1:0] are copies of BCLK that are used only in processor systems  
where no debug port is implemented on the system board. ITP_CLK[1:0] are  
used as BCLK[1:0] references for a debug port implemented on an interposer. If  
a debug port is implemented in the system, ITP_CLK[1:0] are no connects in the  
system. These are not processor signals.  
Datasheet  
73  
Package Mechanical Specifications and Pin Information  
Table 4-5. Signal Description (Sheet 5 of 7)  
Name  
Type  
Description  
LINT[1:0]  
Input  
LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins of all APIC  
Bus agents. When the APIC is disabled, the LINT0 signal becomes INTR, a  
maskable interrupt request signal, and LINT1 becomes NMI, a nonmaskable  
interrupt. INTR and NMI are backward compatible with the signals of those  
names on the Pentium Processor. Both signals are asynchronous.  
Both of these signals must be software configured via BIOS programming of the  
APIC register space to be used either as NMI/INTR or LINT[1:0]. Because the  
APIC is enabled by default after reset, operation of these pins as LINT[1:0] is the  
default configuration.  
LOCK#  
Input/  
Output  
LOCK# indicates to the system that a transaction must occur atomically. This  
signal must connect the appropriate pins of both FSB agents. For a locked  
sequence of transactions, LOCK# is asserted from the beginning of the first  
transaction to the end of the last transaction.  
When the priority agent asserts BPRI# to arbitrate for ownership of the FSB, it  
will wait until it observes LOCK# deasserted. This enables symmetric agents to  
retain ownership of the FSB throughout the bus locked operation and ensure the  
atomicity of lock.  
PRDY#  
Output  
Input  
Probe Ready signal used by debug tools to determine processor debug  
readiness.  
Please refer to the platform design guides for more implementation details.  
PREQ#  
Probe Request signal used by debug tools to request debug operation of the  
processor.  
Please refer to the platform design guides for more implementation details.  
PROCHOT#  
Output  
PROCHOT# (Processor Hot) will go active when the processor temperature  
monitoring sensor detects that the processor has reached its maximum safe  
operating temperature. This indicates that the processor Thermal Control Circuit  
has been activated, if enabled. See Chapter 5 for more details.  
For termination requirements please refer to the platform design guides.  
This signal may require voltage translation on the motherboard. Please refer to  
the platform design guides for more details.  
PSI#  
Output  
Input  
Processor Power Status Indicator signal. This signal is asserted when the  
processor is in a lower state (Deep Sleep and Deeper Sleep). See Section 2.1.6  
for more details.  
PWRGOOD  
PWRGOOD (Power Good) is a processor input. The processor requires this  
signal to be a clean indication that the clocks and power supplies are stable and  
within their specifications. Clean implies that the signal will remain low (capable  
of sinking leakage current), without glitches, from the time that the power  
supplies are turned on until they come within specification. The signal must then  
transition monotonically to a high state.  
The PWRGOOD signal must be supplied to the processor; it is used to protect  
internal circuits against voltage sequencing issues. It should be driven high  
throughout boundary scan operation.  
For termination requirements please refer to the platform design guides.  
REQ[4:0]#  
RESET#  
Input/  
Output  
REQ[4:0]# (Request Command) must connect the appropriate pins of both FSB  
agents. They are asserted by the current bus owner to define the currently active  
transaction type. These signals are source synchronous to ADSTB[0]#.  
Input  
Asserting the RESET# signal resets the processor to a known state and  
invalidates its internal caches without writing back any of their contents. For a  
power-on Reset, RESET# must stay active for at least two milliseconds after  
VCC and BCLK have reached their proper specifications. On observing active  
RESET#, both FSB agents will deassert their outputs within two clocks. All  
processor straps must be valid within the specified setup time before RESET# is  
deasserted.  
Please refer to the Platform Design Guides for termination requirements and  
implementation details. There is a 55 ohm (nominal) on die pullup resistor on this  
signal.  
74  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 4-5. Signal Description (Sheet 6 of 7)  
Name  
RS[2:0]#  
Type  
Description  
Input  
RS[2:0]# (Response Status) are driven by the response agent (the agent  
responsible for completion of the current transaction), and must connect the  
appropriate pins of both FSB agents.  
RSVD  
SLP#  
Reserved/ These pins are RESERVED and must be left unconnected on the board.  
No  
Connect  
However, it is recommended that routing channels to these pins on the board be  
kept open for possible future use. Please refer to the platform design guides for  
more details.  
Input  
SLP# (Sleep), when asserted in Stop-Grant state, causes the processor to enter  
the Sleep state. During Sleep state, the processor stops providing internal clock  
signals to all units, leaving only the Phase-Locked Loop (PLL) still operating.  
Processors in this state will not recognize snoops or interrupts. The processor  
will recognize only assertion of the RESET# signal, deassertion of SLP#, and  
removal of the BCLK input while in Sleep state. If SLP# is deasserted, the  
processor exits Sleep state and returns to Stop-Grant state, restarting its internal  
clock signals to the bus and processor core units. If DPSLP# is asserted while in  
the Sleep state, the processor will exit the Sleep state and transition to the Deep  
Sleep state.  
SMI#  
Input  
Input  
SMI# (System Management Interrupt) is asserted asynchronously by system  
logic. On accepting a System Management Interrupt, the processor saves the  
current state and enter System Management mode (SMM). An SMI  
Acknowledge transaction is issued, and the processor begins program execution  
from the SMM handler.  
If SMI# is asserted during the deassertion of RESET# the processor will tristate  
its outputs.  
STPCLK#  
STPCLK# (Stop Clock), when asserted, causes the processor to enter a low  
power Stop-Grant state. The processor issues a Stop-Grant Acknowledge  
transaction, and stops providing internal clock signals to all processor core units  
except the FSB and APIC units. The processor continues to snoop bus  
transactions and service interrupts while in Stop-Grant state. When STPCLK# is  
deasserted, the processor restarts its internal clock to all units and resumes  
execution. The assertion of STPCLK# has no effect on the bus clock; STPCLK#  
is an asynchronous input.  
TCK  
TDI  
Input  
Input  
TCK (Test Clock) provides the clock input for the processor test bus (also known  
as the Test Access Port).  
Please refer to the platform design guides for termination requirements and  
implementation details.  
TDI (Test Data In) transfers serial test data into the processor. TDI provides the  
serial input needed for JTAG specification support.  
Please refer to the platform design guides for termination requirements and  
implementation details.  
TDO  
Output  
Input  
TDO (Test Data Out) transfers serial test data out of the processor. TDO  
provides the serial output needed for JTAG specification support.  
Please refer to the platform design guides for termination requirements and  
implementation details.  
TEST1,  
TEST2  
TEST1 and TEST2 must have a stuffing option of separate pull down resistors to  
VSS. Please refer to the platform design guides for more details.  
THERMDA  
Other  
Other  
Thermal Diode Anode.  
Thermal Diode Cathode.  
THERMDC  
THERMTRIP#  
Output  
The processor protects itself from catastrophic overheating by use of an internal  
thermal sensor. This sensor is set well above the normal operating temperature  
to ensure that there are no false trips. The processor will stop all execution when  
the junction temperature exceeds approximately 125 °C. This is signalled to the  
system by the THERMTRIP# (Thermal Trip) pin.  
For termination requirements please refer to the platform design guides .  
Datasheet  
75  
Package Mechanical Specifications and Pin Information  
Table 4-5. Signal Description (Sheet 7 of 7)  
Name  
TMS  
Type  
Description  
Input  
TMS (Test Mode Select) is a JTAG specification support signal used by debug  
tools.  
Please refer to the platform design guides for termination requirements and  
implementation details.  
TRDY#  
TRST#  
Input  
Input  
TRDY# (Target Ready) is asserted by the target to indicate that it is ready to  
receive a write or implicit writeback data transfer. TRDY# must connect the  
appropriate pins of both FSB agents.  
TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST# must be  
driven low during power on Reset. Please refer to the platform design guides for  
termination requirements and implementation details.  
VCC  
Input  
Input  
Processor core power supply.  
VCCA[3:0]  
VCCA provides isolated power for the internal processor core PLL’s. Refer to the  
platform design guides for complete implementation details.  
VCCP  
Input  
Input  
Processor I/O power supply.  
VCCQ[1:0]  
Quiet power supply for on die COMP circuitry. These pins should be connected  
to VCCP on the motherboard. However, these connections should enable addition  
of decoupling on the VCCQ lines if necessary.  
VCCSENSE  
VID[5:0]  
Output  
Output  
VCCSENSE is an isolated low impedance connection to processor core power  
(VCC). It can be used to sense or measure power near the silicon with little noise.  
Please refer to the platform design guides for termination recommendations and  
more details.  
VID[5:0] (Voltage ID) pins are used to support automatic selection of power  
supply voltages (Vcc). Unlike some previous generations of processors, these  
are CMOS signals that are driven by the Intel®Pentium® M processor. The  
voltage supply for these pins must be valid before the VR can supply Vcc to the  
processor. Conversely, the VR output must be disabled until the voltage supply  
for the VID pins becomes valid. The VID pins are needed to support the  
processor voltage specification variations. See Table 3-1 for definitions of these  
pins. The VR must supply the voltage that is requested by the pins, or disable  
itself.  
VSSSENSE  
Output  
VSSSENSE is an isolated low impedance connection to processor core VSS. It can  
be used to sense or measure ground near the silicon with little noise. Please  
refer to the platform design guides for termination recommendations and more  
details.  
§§  
76  
Datasheet  
Thermal Specifications and Design Considerations  
5 Thermal Specifications and  
Design Considerations  
The Pentium M Processor requires a thermal solution to maintain temperatures within operating  
limits as set forth in Section 5.1. Any attempt to operate that processor outside these operating  
limits may result in permanent damage to the processor and potentially other components in the  
system. As processor technology changes, thermal management becomes increasingly crucial  
when building computer systems. Maintaining the proper thermal environment is key to reliable,  
long-term system operation. A complete thermal solution includes both component and system  
level thermal management features. Component level thermal solutions include active or passive  
heatsinks or heat exchangers attached to the processor exposed die. The solution should make firm  
contact to the die while maintaining processor mechanical specifications such as pressure. A  
typical system level thermal solution may consist of a processor fan ducted to a heat exchanger that  
is thermally coupled to the processor via a heat pipe or direct die attachment. A secondary fan or air  
from the processor fan may also be used to cool other platform components or lower the internal  
ambient temperature within the system.  
To allow for the optimal operation and long-term reliability of Intel processor-based systems, the  
system/processor thermal solution should be designed such that the processor must remain within  
the minimum and maximum junction temperature (Tj) specifications at the corresponding thermal  
design power (TDP) value listed in Table 5-1. Thermal solutions not design to provide this level of  
thermal capability may affect the long-term reliability of the processor and system.  
The maximum junction temperature is defined by an activation of the processor Intel Thermal  
Monitor. Refer to Section 5.1.3 for more details. Analysis indicates that real applications are  
unlikely to cause the processor to consume the theoretical maximum power dissipation for  
sustained time periods. Intel recommends that complete thermal solution designs target the TDP  
indicated in Table 5-1. The Intel Thermal Monitor feature is designed to help protect the processor  
in the unlikely event that an application exceeds the TDP recommendation for a sustained period of  
time. For more details on the usage of this feature, refer to Section 5.1.3. In all cases the Intel  
Thermal Monitor feature must be enabled for the processor to remain within specification.  
Datasheet  
77  
Thermal Specifications and Design Considerations  
®
Table 5-1. Power Specifications for the Intel Pentium M Processor (Sheet 1 of 3)  
Processor  
Number  
Core Frequency  
& Voltage  
Thermal Design  
Power  
Symbol  
Unit  
Notes  
TDP  
765  
2.1 GHz & HFM Vcc  
2.0 GHz & HFM Vcc  
1.8 GHz & HFM Vcc  
1.7 GHz & HFM Vcc  
1.6 GHz & HFM Vcc  
1.5 GHz & HFM Vcc  
1.6 GHz & HFM Vcc  
1.5 GHz & HFM Vcc  
1.4 GHz & HFM Vcc  
600 MHz & LFM Vcc  
21  
21  
21  
21  
21  
21  
10  
10  
10  
7.5  
W
At 100°C, Notes 1,  
4, 5  
755  
745  
735  
725  
715  
778  
758  
738  
765/755/745/  
735/725/715 &  
778/758/738  
773  
753  
733J  
733  
723  
1.3 GHz & HFM Vcc  
1.2 GHz & HFM Vcc  
1.1 GHz & HFM Vcc  
1.1 GHz & HFM Vcc  
1.0 GHz & HFM Vcc  
600 MHz & LFM Vcc  
5.5  
5.5  
5.5  
5.0  
5.0  
3.0  
773/753/733J/  
733/723  
Processor  
Number  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
PAH,  
765/755/745/  
735/725/715  
Auto Halt, Stop Grant  
Power:  
W
At 50°C, Note 2  
PSGNT  
LFM Vcc  
HFM Vcc  
3.3  
10.9  
778/758/738  
773/753/733J  
733/723  
Auto Halt, Stop Grant  
Power:  
W
W
W
At 50°C, Note 2  
At 50°C, Note 2, 5  
At 50°C, Note 2  
LFM Vcc  
HFM Vcc  
3.3  
4.2  
Auto Halt, Stop Grant  
Power:  
LFM Vcc  
HFM Vcc  
1.1  
1.9  
Auto Halt, Stop Grant  
Power:  
LFM Vcc  
HFM Vcc  
1.0  
1.8  
78  
Datasheet  
Thermal Specifications and Design Considerations  
®
Table 5-1. Power Specifications for the Intel Pentium M Processor (Sheet 2 of 3)  
Processor  
Number  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
PSLP  
765/755/745/  
735/725/715  
Sleep Power:  
LFM Vcc  
W
At 50 °C, Note 2  
3.2  
HFM Vcc  
10.5  
778/758/738  
773/753/733J  
733/723  
Sleep Power:  
LFM Vcc  
W
W
W
W
W
W
W
At 50 °C, Note 2  
At 50 °C, Note 2, 5  
At 50 °C, Note 2  
At 35 °C, Note 2  
At 35 °C, Note 2  
At 35 °C, Note 2, 5  
At 35 °C, Note 2  
3.2  
4.0  
HFM Vcc  
Sleep Power:  
LFM Vcc  
1.0  
1.7  
HFM Vcc  
Sleep Power:  
LFM Vcc  
0.9  
1.7  
HFM Vcc  
PDSLP  
765/755/745/  
735/725/715  
Deep Sleep Power:  
LFM Vcc  
2.5  
8.8  
HFM Vcc  
778/758/738  
773/753/733J  
733/723  
Deep Sleep Power:  
LFM Vcc  
2.5  
2.9  
HFM Vcc  
Deep Sleep Power:  
LFM Vcc  
0.7  
HFM Vcc  
1.25  
Deep Sleep Power:  
LFM Vcc  
0.6  
1.2  
0.8  
HFM Vcc  
PDPRSL 765/755/745/  
Deeper Sleep Power  
@ 0.748V  
W
W
At 35 °C, Note 2  
735/725/715 &  
778/758/738  
P1  
753/733J/733/  
723  
Deeper Sleep Power  
(ULV only)@ 0.748V  
0.5  
At 35 °C, Note 2, 5  
Datasheet  
79  
Thermal Specifications and Design Considerations  
®
Table 5-1. Power Specifications for the Intel Pentium M Processor (Sheet 3 of 3)  
Processor  
Number  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
PDPRSL 765/755/745/  
Deeper Sleep Power  
@ 0.726V  
0.7  
W
At 35 °C, Note 2  
735/725/715 &  
778/758/738  
P2  
753/733J/733/  
723  
Deeper Sleep Power  
(ULV only)@ 0.726  
0.4  
W
At 35 °C, Note 2, 5  
Notes 3, 4  
TJ  
Junction  
Temperature  
0
100  
°C  
NOTES:  
1. The Thermal Design Power (TDP) specification should be used to design the processor thermal solution. The  
TDP is not the maximum theoretical power the processor can dissipate.  
2. Not 100% tested. These power specifications are determined by characterization of the processor currents at  
higher temperatures and extrapolating the values for the temperature indicated.  
3. As measured by the on-die Intel Thermal Monitor. The Intel Thermal Monitor’s automatic mode is used to  
indicate that the maximum TJ has been reached. Refer to Section 5.1 for more details.  
4. The Intel Thermal Monitor automatic mode must be enabled for the processor to operate within  
specifications.  
5. For 733J, CPU Signature = 06D8h.  
5.1  
Thermal Specifications  
5.1.1  
Thermal Diode  
The Pentium M Processor incorporates two methods of monitoring die temperature, the Intel  
Thermal Monitor and the thermal diode. The Intel Thermal Monitor (detailed in Section 5.1) must  
be used to determine when the maximum specified processor junction temperature has been  
reached. The second method, the thermal diode, can be read by an off-die analog/digital converter  
(a thermal sensor) located on the motherboard, or a stand-alone measurement kit. The thermal  
diode may be used to monitor the die temperature of the processor for thermal management or  
instrumentation purposes but cannot be used to indicate that the maximum T of the processor has  
J
been reached. When using the thermal diode, a temperature offset value must be read from a  
processor Model Specific register (MSR) and applied. See Section 5.1.2 for more details. Please  
see Section 5.1.3 for thermal diode usage recommendation when the PROCHOT# signal is not  
asserted. Table 5-2 and Table 5-3 provide the diode interface and specifications.  
Note: The reading of the external thermal sensor (on the motherboard) connected to the processor  
thermal diode signals, will not necessarily reflect the temperature of the hottest location on the die.  
This is due to inaccuracies in the external thermal sensor, on-die temperature gradients between the  
location of the thermal diode and the hottest location on the die, and time based variations in the die  
temperature measurement. Time-based variations can occur when the sampling rate of the thermal  
diode (by the thermal sensor) is slower than the rate at which the T temperature can change.  
J
Offset between the thermal diode based temperature reading and the Intel Thermal Monitor reading  
may be characterized using the Intel Thermal Monitor’s Automatic mode activation of thermal  
control circuit. This temperature offset must be taken into account when using the processor  
thermal diode to implement power management events.  
80  
Datasheet  
Thermal Specifications and Design Considerations  
5.1.2  
Thermal Diode Offset  
A temperature offset value (specified as Toffset in Table 5-3) will be programmed into a  
Pentium M Processor Model Specific Register (MSR). This offset is determined by using a thermal  
diode ideality factor mean value of n = 1.0022 (shown in Table 5-3) as a reference. This offset must  
be applied to the junction temperature read by the thermal diode. Any temperature adjustments due  
to differences between the reference ideality value of 1.0022 and the default ideality values  
programmed into the on-board thermal sensors, will have to be made before the above offset is  
applied.  
Table 5-2. Thermal Diode Interface  
Signal Name  
Pin/Ball Number  
Signal Description  
THERMDA  
THERMDC  
B18  
A18  
Thermal diode anode  
Thermal diode cathode  
Table 5-3. Thermal Diode Specification  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
IFW  
Forward Bias Current  
5
300  
11  
μA  
Note 1  
2, 6  
Toffset  
Thermal diode temperature  
offset  
-4  
°C  
n
Reference Diode Ideality  
Factor used to calculate  
temperature offset  
1.0022  
3.06  
Notes 2, 3, 4  
2, 3, 5  
RT  
Series Resistance  
Ohms  
NOTES:  
1. Intel does not support or recommend operation of the thermal diode under reverse bias. Intel does not  
support or recommend operation of the thermal diode when the processor power supplies are not within their  
specified tolerance range.  
2. Characterized at 100 °C.  
3. Not 100% tested. Specified by design/characterization.  
4. The ideality factor, n, represents the deviation from ideal diode behavior as exemplified by the diode  
equation:  
IFW=Is *(e(qVD/nkT) -1)  
Where IS = saturation current, q = electronic charge, VD = voltage across the diode, k = Boltzmann Constant,  
and T = absolute temperature (Kelvin).  
Value shown in the table is not the Pentium M Processor thermal diode ideality factor. It is a reference value  
used to calculate the Pentium M Processor thermal diode temperature offset.  
5. The series resistance, RT, is provided to allow for a more accurate measurement of the diode junction  
temperature. RT as defined includes the pins of the processor but does not include any socket resistance or  
board trace resistance between the socket and the external remote diode thermal sensor. RT can be used by  
remote diode thermal sensors with automatic series resistance cancellation to calibrate out this error term.  
Another application is that a temperature offset can be manually calculated and programmed into an offset  
register in the remote diode thermal sensors as exemplified by the equation:  
Terror = [RT*(N-1)*IFWmin]/[(no/q)*ln N  
6. Offset value is programmed in processor Model Specific Register.  
Datasheet  
81  
Thermal Specifications and Design Considerations  
5.1.3  
Intel® Thermal Monitor  
The Intel Thermal Monitor helps control the processor temperature by activating the TCC when the  
processor silicon reaches its maximum operating temperature. The temperature at which Intel  
Thermal Monitor activates the thermal control circuit is not user configurable and is not software  
visible. Bus traffic is snooped in the normal manner, and interrupt requests are latched (and  
serviced during the time that the clocks are on) while the TCC is active.  
With a properly designed and characterized thermal solution, it is anticipated that the TCC would  
only be activated for very short periods of time when running the most power intensive  
applications. The processor performance impact due to these brief periods of TCC activation is  
expected to be so minor that it would not be detectable. An under-designed thermal solution that is  
not able to prevent excessive activation of the TCC in the anticipated ambient environment may  
cause a noticeable performance loss, and may affect the long-term reliability of the processor. In  
addition, a thermal solution that is significantly under designed may not be capable of cooling the  
processor even when the TCC is active continuously.  
The Intel Thermal Monitor controls the processor temperature by modulating (starting and  
stopping) the processor core clocks or by initiating an Enhanced Intel SpeedStep technology  
transition when the processor silicon reaches its maximum operating temperature. The Intel  
Thermal Monitor uses two modes to activate the TCC: Automatic mode and On-Demand mode. If  
both modes are activated, Automatic mode takes precedence.  
Caution: The Intel Thermal Monitor Automatic Mode mst be enabled via BIOS for the processor to be  
operating within specifications.  
There are two automatic modes called Intel Thermal Monitor 1 and Intel Thermal Monitor 2. These  
modes are selected by writing values to the Model Specific registers (MSRs) of the processor. After  
Automatic mode is enabled, the TCC will activate only when the internal die temperature reaches  
the maximum allowed value for operation.  
Likewise, when Intel Thermal Monitor 2 is enabled, and a high temperature situation exists, the  
processor will perform an Enhanced Intel SpeedStep technology transition to a lower operating  
point. When the processor temperature drops below the critical level, the processor will make an  
Enhanced Intel SpeedStep technology transition to the last requested operating point. Intel Thermal  
Monitor 2 is the recommended mode on the Intel® Pentium® M processors.  
If a processor load based Enhanced Intel SpeedStep technology transition (through MSR write) is  
initiated when an Intel Thermal Monitor 2 period is active, there are two possible results:  
1.If the processor load based Enhanced Intel SpeedStep technology transition target frequency is  
higher than the Intel Thermal Monitor 2 transition based target frequency, the processor load-  
based transition will be deferred until the Intel Thermal Monitor 2 event has been completed.  
2.If the processor load-based Enhanced Intel SpeedStep technology transition target frequency is  
lower than the Intel Thermal Monitor 2 transition based target frequency, the processor will  
transition to the processor load-based Enhanced Intel SpeedStep technology target frequency  
point.  
When Intel Thermal Monitor 1 is enabled, and a high temperature situation exists, the clocks will  
be modulated by alternately turning the clocks off and on at a 50% duty cycle. Cycle times are  
processor speed dependent and will decrease linearly as processor core frequencies increase. Once  
the temperature has returned to a non-critical level, modulation ceases and TCC goes inactive. A  
small amount of hysteresis has been included to prevent rapid active/inactive transitions of the  
TCC when the processor temperature is near the trip point. The duty cycle is factory configured  
82  
Datasheet  
Thermal Specifications and Design Considerations  
and cannot be modified. Also, automatic mode does not require any additional hardware, software  
drivers, or interrupt handling routines. Processor performance will be decreased by the same  
amount as the duty cycle when the TCC is active, however, with a properly designed and  
characterized thermal solution the TCC most likely will never be activated, or only will be  
activated briefly during the most power intensive applications.  
The TCC may also be activated via On-Demand mode. If bit 4 of the ACPI Intel Thermal Monitor  
Control Register is written to a 1, the TCC will be activated immediately, independent of the  
processor temperature. When using On-Demand mode to activate the TCC, the duty cycle of the  
clock modulation is programmable via bits 3:1 of the same ACPI Intel Thermal Monitor Control  
Register. In automatic mode, the duty cycle is fixed at 50% on, 50% off, however in On-Demand  
mode, the duty cycle can be programmed from 12.5% on/ 87.5% off, to 87.5% on/12.5% off in  
12.5% increments. On-Demand mode may be used at the same time Automatic mode is enabled,  
however, if the system tries to enable the TCC via On-Demand mode at the same time automatic  
mode is enabled and a high temperature condition exists, automatic mode will take precedence.  
An external signal, PROCHOT# (processor hot) is asserted when the processor detects that its  
temperature is above the thermal trip point. Bus snooping and interrupt latching are also active  
while the TCC is active.  
Besides the thermal sensor and thermal control circuit, the Intel Thermal Monitor feature also  
includes one ACPI register, one performance counter register, three model specific registers  
(MSR), and one I/O pin (PROCHOT#). All are available to monitor and control the state of the  
Intel Thermal Monitor feature. The Intel Thermal Monitor can be configured to generate an  
interrupt upon the assertion or deassertion of PROCHOT#.  
Note: PROCHOT# will not be asserted when the processor is in the Stop Grant, Sleep, Deep Sleep, and  
Deeper Sleep low power states (internal clocks stopped), hence the thermal diode reading must be  
used as a safeguard to maintain the processor junction temperature within the 100 °C (maximum)  
specification. If the platform thermal solution is not able to maintain the processor junction  
temperature within the maximum specification, the system must initiate an orderly shutdown to  
prevent damage. If the processor enters one of the above low power states with PROCHOT#  
already asserted, PROCHOT# will remain asserted until the processor exits the Low Power state  
and the processor junction temperature drops below the thermal trip point.  
If automatic mode is disabled, the processor will be operating out of specification. Regardless of  
enabling the automatic or On-Demand modes, in the event of a catastrophic cooling failure, the  
processor will automatically shut down when the silicon has reached a temperature of  
approximately 125 °C. At this point the FSB signal THERMTRIP# will go active. THERMTRIP#  
activation is independent of processor activity and does not generate any bus cycles. When  
THERMTRIP# is asserted, the processor core voltage must be shut down within the time specified  
in Chapter 3.  
§
Datasheet  
83  
Thermal Specifications and Design Considerations  
84  
Datasheet  

相关型号:

BXM80536GC1500F/SL7GL

RISC Microprocessor, 64-Bit, 1500MHz, CMOS, CPGA478
INTEL

BXM80536GC1600F

Microprocessor, 32-Bit, 1600MHz, CMOS, CPGA478, FLIP CHIP, PGA-478
INTEL

BXM80536GC1600FSL7EG

RISC Microprocessor, 64-Bit, 1600MHz, CMOS, CPGA478
INTEL

BXM80536GC1700F

RISC Microprocessor, 64-Bit, 1700MHz, CMOS, PPGA478
INTEL

BXM80536GC1700FSL7EP

RISC Microprocessor, 64-Bit, 1700MHz, CMOS, PPGA478
INTEL

BXM80536GC1800F

Microprocessor, 32-Bit, 1800MHz, CMOS, CPGA478, FLIP CHIP, PGA-478
INTEL

BXM80536GC1800FSL7EN

Microprocessor, 32-Bit, 1800MHz, CMOS, PPGA478, PLASTIC, UFCPGA-478
INTEL

BXM80536GC2000F

RISC Microprocessor, 64-Bit, 2000MHz, CMOS, PPGA478
INTEL

BXM80536GC2000F/SL7EM

RISC Microprocessor, 64-Bit, 2000MHz, CMOS, PPGA478
INTEL

BXM80536GC2100F

Microprocessor, 32-Bit, 2100MHz, CMOS, CPGA478, FLIP CHIP, PGA-478
INTEL

BXM80536GC2100FSL7V3

RISC Microprocessor, 64-Bit, 2100MHz, CMOS, CPGA478
INTEL

BXM80536NC1300E

RISC Microprocessor, 64-Bit, 1.3MHz, CMOS, PPGA478
INTEL