DJCE6353882077 [INTEL]

Nordig Unified DVB-T COFDM Terrestrial Demodulator for PC-TV and Hand-held Digital TV (DTV); NorDig统一DVB -T COFDM地面解调器为PC-TV和手持式数字电视( DTV )
DJCE6353882077
型号: DJCE6353882077
厂家: INTEL    INTEL
描述:

Nordig Unified DVB-T COFDM Terrestrial Demodulator for PC-TV and Hand-held Digital TV (DTV)
NorDig统一DVB -T COFDM地面解调器为PC-TV和手持式数字电视( DTV )

电视 PC
文件: 总26页 (文件大小:470K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CE6353  
Nordig Unified DVB-T COFDM Terrestrial  
Demodulator for  
PC-TV and Hand-held Digital TV (DTV)  
Data Sheet  
February 2006  
Features  
Compliant with ETSI 300 744 DVB-T, Unified  
Nordig and DTG performance specifications  
Ordering Information  
DJCE6353 882077  
WJCE6353 882206  
64 Pin LQFP Trays  
64 Pin LQFP* Trays  
DJCE6353 S L9EN 882128 64 Pin LQFP Tape and Reel  
WJCE6353 S L9G5 882170 64 Pin LQFP* Tape and Reel  
High performance with fast fully blind acquisition  
and tracking capability  
Low power consumption: less than 0.32 W, and  
eco-friendly standby and sleep modes  
*Pb Free Matte Tin  
Digital filtering of adjacent channels  
Pre and post Viterbi-decoder bit error rates, and  
uncorrectable block count  
Single 8 MHz SAW filter for 6, 7 & 8 MHz OFDM  
Superior single frequency network performance  
Fast AGC to track out signal fades  
Good Doppler tracking capability  
Enhanced frequency capture range to include  
triple offsets  
External 4 MHz clock or single low-cost  
20.48 MHz crystal, tolerance up to +/-200 ppm  
Automatic mode (2 K/8 K), guard and spectral  
inversion detection  
Very low driver software overhead due to on-chip  
state-machine control  
Novel RF level detect facility via a separate ADC  
Figure 1 - Block Diagram  
1
Intel Corporation  
Intel and the Intel logo are registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.  
*Other names and brands may be claimed as the property of others. Copyright © 2006 Intel Corporation. All rights reserved.  
D55752-001  
CE6353  
Data Sheet  
Applications  
Digital terrestrial set-top boxes  
Integrated digital televisions  
Personal video recorders  
PC-TV receivers  
Portable applications  
Description  
The CE6353 is a superior fourth generation fully compliant ETSI ETS300 744 COFDM demodulator that exceeds,  
with margin, the performance requirements of all known DVB-T digital terrestrial television standards, including  
Unified Nordig and DTG.  
A high performance 10 bit on-chip ADC is used to sample the 44 or 36 MHz IF analog signal. Advanced digital  
filtering of the upper and lower channel enables a single 8 MHz channel SAW filter to be used for 6, 7 and 8 MHz  
OFDM signal reception. All sampling and other internal clocks are derived from a single 20.48 MHz crystal or a 4  
MHz clock input, the tolerance of which may be relaxed as much as 200 ppm.  
The CE6353 has a wide frequency capture range able to automatically compensate for the combined offset  
introduced by the tuner xtal and broadcaster triple frequency offsets.  
An on-chip state machine controls all acquisition and tracking operations of the CE6353 as well as controlling the  
tuner via a 2-wire bus. Any frequency range can be automatically scanned for digital TV channels. This mechanism  
ensures minimal interaction, maximum flexibility and fast acquisition - very low software overhead.  
Also included in the design is a 7-bit ADC to detect the RF signal strength and thereby efficiently control the tuner  
RF AGC.  
Users have access to all the relevant signal quality information, including input signal power level, signal-to-noise  
ratio, pre-Viterbi BER, post-Viterbi BER, and the uncorrectable block counts. The error rate monitoring periods are  
programmable over a wide range.  
The device is packaged in a 10 x 10 mm 64-pin LQFP and is very low power.  
2
Intel Corporation  
CE6353  
Data Sheet  
Table of Contents  
1.0 Pin & Package Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1.1 Pin Outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1.2 Pin Allocation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
1.3 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.0 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.1 Analog-to-Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.2 Automatic Gain Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.3 IF to Baseband Conversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.4 Adjacent Channel Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.5 Interpolation and Clock Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.6 Carrier Frequency Synchronization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.7 Symbol Timing Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.8 Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.9 Common Phase Error Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2.10 Channel Equalization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2.11 Impulse Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2.12 Transmission Parameter Signalling (TPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2.13 De-Mapper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2.14 Symbol and Bit De-Interleaving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2.15 Viterbi Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2.16 MPEG Frame Aligner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2.17 De-interleaver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2.18 Reed-Solomon Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2.19 De-scrambler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2.20 MPEG Transport Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.0 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.1 2-Wire Bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.1.1 Host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.1.2 Tuner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.1.3 Examples of 2-Wire Bus Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.1.4 Primary 2-Wire Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.2 MPEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.2.1 Data Output Header Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.2.2 MPEG Data Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.2.3 MPEG Output Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.2.4 MOCLKINV = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.2.5 MOCLKINV = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
4.0 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
4.1 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
4.2 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
4.3 DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
4.4 Crystal Specification and External Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
4.4.1 Selection of External Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.4.1.1 Loop Gain Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.4.1.2 List of Equation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.4.1.3 Calculating Crystal Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
4.4.1.4 Capacitor Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
4.4.1.5 Oscillator/Clock Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
5.0 Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3
Intel Corporation  
CE6353  
Data Sheet  
List of Figures  
Figure 1 - Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 2 - Pin Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Figure 3 - OFDM Demodulator Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 4 - FEC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 5 - Primary 2-Wire Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 6 - DVB Transport Packet Header Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 7 - MPEG Output Data Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 8 - MPEG Timing - MOCLKINV = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 9 - MPEG Timing - MOCLKINV = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 10 - Crystal Oscillator Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 11 - External Clocking via AC Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 12 - Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
4
Intel Corporation  
CE6353  
Data Sheet  
List of Tables  
Table 1 - Pin Names - numeric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 2 - Pin Names - alphabetical order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 3 - Timing of 2-Wire Bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5
Intel Corporation  
CE6353  
Data Sheet  
1.0 Pin & Package Details  
1.1 Pin Outline  
Figure 2 - Pin Outline  
6
Intel Corporation  
CE6353  
Data Sheet  
1.2 Pin Allocation  
Pin  
Function  
Vss  
Pin  
17  
Function  
SADD1  
Pin  
Function  
Pin  
49  
Function  
1
2
3
4
5
6
7
8
9
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
Vdd  
MDO0  
Vdd  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
SADD0  
CVdd  
Vss  
RFLEV  
CLK2/GPP0  
DATA2/GPP1  
CVdd  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
MDO1  
MDO2  
MDO3  
MDO4  
Vdd  
Vss  
CLK1  
DATA1  
IRQ  
PLLVdd  
PLLGND  
XTI  
Vss  
CVdd  
Vss  
CVdd  
Vss  
XTO  
Vss  
MDO5  
MDO6  
MDO7  
CVdd  
Vss  
RESET  
SLEEP  
STATUS  
Vss  
AGC2/GPP2  
AGC1  
10  
11  
12  
13  
14  
15  
16  
PLLTEST  
OSCMODE  
AVdd  
GPP3  
SMTEST  
Vdd  
Vdd  
Vss  
AGnd  
VIN  
MOCLK  
BKERR  
MICLK  
CVdd  
Vss  
VIN  
MOSTRT  
MOVAL  
AGnd  
Table 1 - Pin Names - numeric  
Function  
Pin  
42  
Function  
GPP3  
Pin  
43  
Function  
PLLTEST  
Pin  
26  
Function  
Pin  
54  
AGC1  
Vdd  
VIN  
VIN  
Vss  
Vss  
Vss  
Vss  
Vss  
Vss  
Vss  
Vss  
Vss  
AGC2/GPP2  
AGnd  
41  
29  
32  
28  
62  
4
IRQ  
6
PLLVdd  
RESET  
RFLEV  
SADD0  
SADD1  
N/C  
21  
9
30  
31  
1
MDO0  
MDO1  
MDO2  
MDO3  
MDO4  
MDO5  
MDO6  
MDO7  
MICLK  
MOCLK  
49  
50  
51  
52  
53  
56  
57  
58  
63  
61  
AGnd  
34  
18  
17  
16  
15  
12  
10  
44  
11  
AVdd  
3
BKERR  
CLK1  
8
14  
20  
25  
38  
40  
46  
CLK2/GPP0  
CVdd  
35  
7
N/C  
N/C  
CVdd  
19  
37  
39  
SLEEP  
SMTEST  
STATUS  
CVdd  
CVdd  
Table 2 - Pin Names - alphabetical order  
7
Intel Corporation  
CE6353  
Data Sheet  
CVdd  
59  
64  
5
MOSTRT  
MOVAL  
47  
Vdd  
Vdd  
Vdd  
Vdd  
2
Vss  
Vss  
XTI  
55  
60  
23  
24  
CVdd  
48  
27  
22  
13  
33  
45  
DATA1  
OSCMODE  
PLLGND  
DATA2/GPP1  
36  
XTO  
Table 2 - Pin Names - alphabetical order (continued)  
1.3 Pin Description  
Pin Description Table  
Pin No  
Name  
Pin Description  
I/O  
Type  
V
mA  
MPEG pins  
47  
MOSTRT  
MOVAL  
MPEG packet start  
O
O
O
O
O
I
1
1
1
1
1
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
5
48  
MPEG data valid  
MPEG data bus  
MPEG clock out  
Block error  
49-53, 56-58  
MDO(0:4)/MDO(5:7)  
CMOS Tristate  
61  
62  
63  
11  
MOCLK  
BKERR  
MICLK  
STATUS  
IRQ  
MPEG clock in  
Status output  
CMOS  
O
O
1
6
6
Interrupt output  
Open drain  
Control pins  
4
Serial clock  
I
CMOS  
5
5
CLK1  
5
Serial data  
I/O Open drain  
6
DATA1  
23  
Low phase noise oscillator  
I
XTI  
24  
XTO  
O
I
10  
SLEEP  
Device power down  
Serial address set  
Production test (only set low)  
Serial clock tuner  
Serial data tuner  
3.3  
3.3  
3.3  
5
12, 15-18  
SADD(4:0)  
SMTEST  
CLK2/GPP0  
DATA2/GPP1  
AGC1  
I
CMOS  
I
44  
35  
36  
42  
41  
43  
9
I/O  
I/O  
6
6
6
6
6
5
Primary AGC  
O
I/O  
I/O  
I
Open drain  
5
AGC2/GPP2  
GPP(3)  
Secondary AGC  
5
General purpose I/O  
Device reset  
5
CMOS  
5
RESET  
27  
26  
OSCMODE  
Crystal oscillator mode  
PLL analog test  
I
CMOS  
3.3  
PLLTEST  
O
(tristated)  
8
Intel Corporation  
CE6353  
Data Sheet  
Pin Description Table (continued)  
Pin No  
Name  
Pin Description  
I/O  
Type  
V
mA  
Analog inputs  
30  
VIN  
positive input  
I
I
31  
negative input  
RF level  
VIN  
34  
I
RFLEV  
Supply pins  
21  
PLLVdd  
PLLGnd  
CVdd  
PLL supply  
S
S
S
S
1.8  
0
22  
7, 19, 37, 39, 59, 64  
2, 13, 45, 54,  
Core logic power  
I/O ring power  
1.8  
3.3  
0
Vdd  
1, 3, 8, 14, 20, 25,  
38, 40, 46, 55, 60  
Vss  
Core and I/O ground  
ADC analog supply  
S
28  
AVdd  
AGnd  
Vdd  
S
S
S
1.8  
0
29, 32  
33  
2nd ADC supply  
3.3  
9
Intel Corporation  
CE6353  
Data Sheet  
2.0 Functional Description  
A functional block diagram of the CE6353 OFDM demodulator is shown in Figure 3. This accepts an IF analog  
signal and delivers a stream of demodulated soft decision data to the on-chip Viterbi decoder. Clock, timing and  
frequency synchronization operations are all digital and there are no analog control loops except the AGC. The  
frequency capture range is large enough for all practical applications. This demodulator has novel algorithms to  
combat impulse noise as well as co-channel and adjacent channel interference. If the modulation is hierarchical,  
the OFDM outputs both high and low priority data streams. Only one of these streams is FEC-decoded, but the FEC  
can be switched from one stream to another with minimal interruption to the transport stream.  
Figure 3 - OFDM Demodulator Diagram  
The FEC module shown in Figure 4 consists of a concatenated convolutional (Viterbi) and Reed-Solomon decoder  
separated by a depth-12 convolutional de-interleaver. The Viterbi decoder operates on 5-bit soft decisions to  
provide the best performance over a wide range of channel conditions. The trace-back depth of 128 ensures  
minimum loss of performance due to inevitable survivor truncation, especially at high code rates. Both the Viterbi  
and Reed-Solomon decoders are equipped with bit-error monitors. The former provides the bit error rate (BER) at  
the OFDM output. The latter is the more useful measure as it gives the Viterbi output BER. The error collecting  
intervals of these are programmable over a very wide range.  
10  
Intel Corporation  
CE6353  
Data Sheet  
Figure 4 - FEC Block Diagram  
The FSM controller shown in Figure 3 controls both the demodulator and the FEC. It also drives the 2-wire bus to  
the tuner. The controller facilitates the automated search of all parameters or any sub-set of parameters of the  
received signal. It can also be used to scan any defined frequency range searching for OFDM channels. This  
mechanism provides the fast channel scan and acquisition performance, whilst requiring minimal software  
overhead in the host driver.  
The algorithms and architectures used in the CE6353 have been optimized to minimize power consumption.  
2.1 Analog-to-Digital Converter  
The CE6353 has a high performance 10-bit analog-to-digital converter (ADC) which can sample a 6, 7 or 8 MHz  
bandwidth OFDM signal, with its spectrum centred at:  
36.17 MHz IF  
43.75 MHz IF  
5 - 10 MHz near-zero IF  
An on-chip programmable phase locked loop (PLL) is used to generate the ADC sampling clock. The PLL is highly  
programmable allowing a wide choice of sampling frequencies to suit any IF frequency, and all signal bandwidths.  
2.2 Automatic Gain Control  
An AGC module compares the absolute value of the digitized signal with a programmable reference. The error  
signal is filtered and is used to control the gain of the amplifier. A sigma-delta modulated output is provided, which  
has to be RC low-pass filtered to obtain the voltage to control the amplifier.  
The programmable AGC reference has been optimized. A large value for the reference leads to excessive ADC  
clipping and a small value results in excessive quantization noise. Hence the optimum value has been determined  
assuming the input signal amplitude to be Gaussian distributed. The latter is justified by applying the central limit  
theorem in statistics to the OFDM signal, which consists of a large number of randomly modulated carriers. This  
reference or target value may have to be lowered slightly for some applications. Slope control bits have been  
provided for the AGCs and these have to be set correctly depending on the gain-versus-voltage slope of the gain  
control amplifiers.  
11  
Intel Corporation  
CE6353  
Data Sheet  
The bandwidth of the AGC is set to a large value for quick acquisition then reduced to a small value for tracking.  
The AGC is free running during OFDM channel changes and locks to the new channel while the tuner lock is being  
established. This is one of the features of CE6353 used to minimize acquisition time. A robust AGC lock  
mechanism is provided and the other parts of the CE6353 begin to acquire only after the AGC has locked.  
2.3 IF to Baseband Conversion  
Sampling a 36.17 MHz IF signal at 45 MHz results in a spectrally inverted OFDM signal centred at  
approximately 8.9 MHz. The first step of the demodulation process is to convert this signal to a complex (in-phase  
and quadrature) signal in baseband. A correction for spectral inversion is implemented during this conversion  
process. Note also that the CE6353 has control mechanisms to search automatically for an unknown spectral  
inversion status.  
2.4 Adjacent Channel Filtering  
Adjacent channels, in particular the Nicam digital sound signal associated with analog channels, are filtered prior to  
the FFT.  
2.5 Interpolation and Clock Synchronization  
CE6353 uses digital timing recovery and this eliminates the need for an external VCXO. The ADC samples the  
signal at a fixed rate, for example, 45.056 MHz. Conversion of the 45.056 MHz signal to the OFDM sample rate is  
achieved using the time-varying interpolator. The OFDM sample rate is 64/7 MHz for 8 MHz and this is scaled by  
factors 6/8 and 7/8 for 6 and 7 MHz channel bandwidths. The nominal ratio of the ADC to OFDM sample rate is  
programmed in a CE6353 register (defaults are for 45 MHz sampling and 8 MHz OFDM). The clock recovery phase  
locked loop in the CE6353 compensates for inaccuracies in this ratio due to uncertainties of the frequency of the  
sampling clock.  
2.6 Carrier Frequency Synchronization  
There can be frequency offsets in the signal at the input to OFDM, partly due to tuner step size and partly due to  
broadcast frequency shifts, typically 1/6 MHz. These are tracked out digitally, up to 1 MHz in 2 K and 8 K modes,  
without the need for an analog frequency control (AFC) loop.  
The default frequency capture range has been set to ±286 kHz in the 2 K and 8 K mode. However, these values  
can be increased, if necessary, by programming an on-chip register (see 7.4.1). It is recommended that a larger  
capture range be used for channel scan in order to find channels with broadcast frequency shifts, without having to  
adjust the tuner. After the OFDM module has locked (the AFC will have been previously disabled), the frequency  
offset can be read from an on-chip register.  
2.7 Symbol Timing Synchronization  
This module computes the optimum sample position to trigger the FFT in order to eliminate or minimize inter-  
symbol interference in the presence of multi-path distortion. Furthermore, this trigger point is continuously updated  
to dynamically adapt to time-variations in the transmission channel.  
2.8 Fast Fourier Transform  
The FFT module uses the trigger information from the timing synchronization module to set the start point for an  
FFT. It then uses either a 2 K or 8 K FFT to transform the data from the time domain to the frequency domain. An  
extremely hardware-efficient and highly accurate algorithm has been used for this purpose.  
12  
Intel Corporation  
CE6353  
Data Sheet  
2.9 Common Phase Error Correction  
This module subtracts the common phase offset from all the carriers of the OFDM signal to minimize the effect of  
the tuner phase noise on system performance.  
2.10 Channel Equalization  
This consists of two parts. The first part involves estimating the channel frequency response from pilot information.  
Efficient algorithms have been used to track time-varying channels with a minimum of hardware.  
The second part involves applying a correction to the data carriers based on the estimated frequency response of  
the channel. This module also generates dynamic channel state information (CSI) for every carrier in every symbol.  
2.11 Impulse Filtering  
CE6353 contains several mechanisms to reduce the impact of impulse noise on system performance.  
2.12 Transmission Parameter Signalling (TPS)  
An OFDM frame consists of 68 symbols and a superframe is made up of four such frames. There is a set of TPS  
carriers in every symbol and all these carry one bit of TPS. These bits, when combined, include information about  
the transmission mode, guard ratio, constellation, hierarchy and code rate, as defined in ETS 300 744. In addition,  
the first eight bits of the cell identifier are contained in even frames and the second eight bits of the cell identifier are  
in odd frames. The TPS module extracts all the TPS data, and presents these to the host processor in a structured  
manner.  
2.13 De-Mapper  
This module generates soft decisions for demodulated bits using the channel-equalized in-phase and quadrature  
components of the data carriers as well as per-carrier channel state information (CSI). The de-mapping algorithm  
depends on the constellation (QPSK, 16QAM or 64QAM) and the hierarchy (α = 0, 1, 2 or 4). Soft decisions for both  
low- and high-priority data streams are generated.  
2.14 Symbol and Bit De-Interleaving  
The OFDM transmitter interleaves the bits within each carrier and also the carriers within each symbol. The de-  
interleaver modules consist largely of memory to invert these interleaving functions and present the soft decisions  
to the FEC in the original order.  
13  
Intel Corporation  
CE6353  
Data Sheet  
2.15 Viterbi Decoder  
The Viterbi decoder accepts the soft decision data from the OFDM demodulator and outputs a decoded bit-stream.  
The decoder does the de-puncturing of the input data for all code rates other than 1/2. It then evaluates the branch  
metrics and passes these to a 64-state path-metric updating unit, which in turn outputs a 64-bit word to the survivor  
memory. The Viterbi decoded bits are obtained by tracing back the survivor paths in this memory. A trace-back  
depth of 128 is used to minimize any loss in performance, especially at high code rates.  
The decoder re-encodes the decoded bits and compares these with received data (delayed) to compute bit errors  
at its input, on the assumption that the Viterbi output BER is significantly lower than its input BER.  
2.16 MPEG Frame Aligner  
The Viterbi decoded bit stream is aligned into 204-byte frames. A robust synchronization algorithm is used to  
ensure correct lock and to prevent loss of lock due to noise impulses.  
2.17 De-interleaver  
Errors at the Viterbi output occur in bursts and the function of the de-interleaver is to spread these errors over a  
number of 204-byte frames to give the Reed-Solomon decoder a better chance of correcting these. The de-  
interleaver is a memory unit which implements the inverse of the convolutional interleaving function introduced by  
the transmitter.  
2.18 Reed-Solomon Decoder  
Every 188-byte transport packet is encoded by the transmitter into a 204-byte frame, using a truncated version of a  
systematic (255,239) Reed-Solomon code. The corresponding (204,188) Reed-Solomon decoder is capable of  
correcting up to eight byte errors in a 204-byte frame. It may also detect frames with more than eight byte errors.  
In addition to efficiently performing this decoding function, the Reed-Solomon decoder in CE6353 keeps a count of  
the number of bit errors corrected over a programmable period and the number of uncorrectable blocks. This  
information can be used to compute the post-Viterbi BER.  
2.19 De-scrambler  
The de-scrambler de-randomizes the Reed-Solomon decoded data by generating the exclusive-OR of this with a  
pseudo-random bit sequence (PRBS). This outputs 188-byte MPEG transport packets. The TEI bit of the packet  
header may be set if required to indicate uncorrectable packets.  
2.20 MPEG Transport Interface  
MPEG data can be output in parallel or serial mode. The output clock frequency is automatically chosen to present  
the MPEG data as uniformly spaced as possible to the transport processor. This frequency depends on the guard  
ratio, constellation, hierarchy and code rate. There is also an option for the data to be extracted from the CE6353  
with a clock provided by the user.  
14  
Intel Corporation  
CE6353  
Data Sheet  
3.0 Interfaces  
3.1 2-Wire Bus  
3.1.1 Host  
The primary 2-wire bus serial interface uses pins:  
DATA1 (pin 5) serial data, the most significant bit is sent first.  
CLK1 (pin 4) serial clock.  
The 2-wire bus address is determined by applying VDD or VSS to the SADD[4:0] pins.  
In TNIM evaluation applications, the 2-wire bus address is 0001 111 R/W with the pins connected as follows:  
ADDR[7] ADDR[6] ADDR[5] ADDR[4] ADDR[3] ADDR[2] ADDR[1]  
Not programmable  
VSS VDD  
SADD[1] SADD[0]  
VDD VDD  
VSS  
VSS  
VDD  
When the CE6353 is powered up, the RESET pin 9 should be held low for at least 50 ms after VDD has reached  
normal operation levels. As the RESET pin goes high, the logic levels on SADD[4:0] are latched as the 2-wire bus  
address. ADDR[0] is the R/W bit.  
The circuit works as a slave transmitter with the lsb set high or as a slave receiver with the lsb set low. In receive  
mode, the first data byte is written to the RADD virtual register, which forms the register sub-address. The RADD  
register takes an 8-bit value that determines which of 256 possible register addresses is written to by the following  
byte. Not all addresses are valid and many are reserved registers that must not be changed from their default  
values. Multiple byte reads or writes will auto-increment the value in RADD, but care should be taken not to access  
the reserved registers accidentally.  
Following a valid chip address, the 2-wire bus STOP command resets the RADD register to 00. If the chip address  
is not recognized, the CE6353 will ignore all activity until a valid chip address is received. The 2-wire bus START  
command does NOT reset the RADD register to 00. This allows a combined 2-wire bus message, to point to a  
particular read register with a write command, followed immediately with a read data command. If required, this  
could next be followed with a write command to continue from the latest address. RADD would not be sent in this  
case. Finally, a STOP command should be sent to free the bus.  
When the 2-wire bus is addressed (after a recognized STOP command) with the read bit set, the first byte read out  
is the contents of register 00.  
3.1.2 Tuner  
The CE6353 has a General Purpose Port that can be configured to provide a secondary 2-wire bus. See register  
GPP_CTL address 0x8C.  
Master control mode is selected by setting register SCAN_CTL (0x62) [b3] = 1.  
The allocation of the pins is: GPP0 pin 35 = CLK2, GPP1 pin 36 = DATA2.  
15  
Intel Corporation  
CE6353  
Data Sheet  
3.1.3 Examples of 2-Wire Bus Messages  
KEY:  
S
Start condition  
Stop condition  
Acknowledge  
CE6353 output  
W
R
Write (= 0)  
Read (= 1)  
P
A
NA  
NOT Acknowledge  
Italics  
RADD Register Address  
Write operation - as a slave receiver:  
S
DEVICE  
W
A
RADD  
(n)  
A
DATA  
A
DATA  
(reg n+1)  
A
P
ADDRESS  
(reg n)  
Read operation - CE6353 as a slave transmitter:  
S
DEVICE  
R
A
DATA  
A
DATA  
A
DATA NA  
P
ADDRESS  
(reg 0)  
(reg 1)  
(reg 2)  
Write/read operation with repeated start - CE6353 as a slave transmitter:  
S
DEVICE  
W
A
RADD  
(n)  
A
S
DEVICE  
R
A
DATA  
A
DATA  
NA  
P
ADDRESS  
ADDRESS  
(reg n)  
(reg n+1)  
3.1.4 Primary 2-Wire Bus Timing  
tBUFF  
Sr  
P
DATA1  
tLOW  
tR  
tF  
CLK1  
P
S
tSU;STO  
tHIGH  
tSU;DAT tSU;STA  
tHD;STA  
tHD;DAT  
Figure 5 - Primary 2-Wire Bus Timing  
Where:  
S = Start  
Sr = Restart, i.e., start without stopping first.  
P = Stop.  
16  
Intel Corporation  
CE6353  
Data Sheet  
Value  
Parameter  
Symbol  
Unit  
Min.  
Max.  
CLK clock frequency (Primary)  
fCLK  
0
400 1  
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Bus free time between a STOP and START condition.  
Hold time (repeated) START condition.  
LOW period of CLK clock.  
tBUFF  
tHD;STA  
tLOW  
200  
200  
1300  
600  
200  
100  
100  
HIGH period of CLK clock.  
tHIGH  
Set-up time for a repeated START condition.  
Data hold time (when input).  
tSU;STA  
tHD;DAT  
tSU;DAT  
tR  
Data set-up time  
Rise time of both CLK and DATA signals.  
note 2  
Fall time of both CLK and DATA signals, (100 pF to ground). tF  
Set-up time for a STOP condition. tSU;STO  
Table 3 - Timing of 2-Wire Bus  
20  
200  
1. If operating with an external 4 MHz clock, the serial clock frequency is reduced to 100 kHz maximum.  
2. The rise time depends on the external bus pull up resistor. Loading prevents full speed operation.  
17  
Intel Corporation  
CE6353  
Data Sheet  
3.2 MPEG  
3.2.1 Data Output Header Format  
188 byte packet output  
184 Transport packet bytes  
Transport  
Packet  
Header  
4 bytes  
1st byte  
2nd byte  
0
1
0
0
0
1
1
1
TEI  
MDO[7]  
MDO[0]  
Figure 6 - DVB Transport Packet Header Byte  
After decoding the 188-byte MPEG packet, it is output on the MDO pins in 188 consecutive clock cycles.  
Additionally when the TEI_En bit in the OP_CTRL_0 register (0x5A) is set high (default), the TEI bit of any  
uncorrectable packet will automatically be set to ‘1’. If TEI_En bit is low then TEI bit will not be changed (but note  
that if this bit is already 1, for example, due to a channel error which has not been corrected, it will remain high at  
output).  
18  
Intel Corporation  
CE6353  
Data Sheet  
3.2.2 MPEG Data Output Signals  
The MPEGEN bit in the CONFIG register must be set low to enable the MPEG data. The maximum movement in  
the packet synchronization byte position is limited to ±1 output clock period. MOCLK will be a continuously running  
clock once symbol lock has been achieved, and is derived from the symbol clock. MOCLK is shown in Figure 7 with  
MOCLKINV = ‘1’, the default state, see register 0x50.  
All output data and signals (MDO[7:0], MOSTRT, MOVAL & BKERR) change on the negative edge of MOCLK  
(MOCLKINV = 1) to present stable data and signals on the positive edge of the clock.  
A complete packet is output on MDO[7:0] on 188 consecutive clocks and the MDO[7:0] pins will remain low during  
the inter-packet gaps. MOSTRT goes high for the first byte clock of a packet. MOVAL goes high on the first byte of  
a packet and remains high until the last byte has been clocked out. BKERR goes low on the first byte of a packet  
where uncorrectable bytes are detected and will remain low until the last byte has been clocked out.  
188 byte packet n  
1st byte packet n  
MOCLKINV=1  
1st byte packet n+1  
MOCLK  
MDO7:0  
MOSTRT  
MOVAL  
BKERR  
Tp  
Ti  
Figure 7 - MPEG Output Data Waveforms  
3.2.3 MPEG Output Timing  
Maximum delay conditions: VDD = 3.0V, CVDD = 1.62V, Tamb = 80oC, Output load = 10pF.  
Minimum delay conditions: VDD = 3.6V, CVDD = 1.98V, Tamb = -10oC, Output load = 10pF.  
MOCLK frequency = 45.06 MHz.  
19  
Intel Corporation  
CE6353  
Data Sheet  
3.2.4 MOCLKINV = 1  
Delay conditions  
Maximum Minimum  
Parameter  
Units  
Data output delay tD  
Setup Time tSU  
Hold Time tH  
3.0  
7.0  
7.0  
1.0  
10.0  
10.0  
ns  
MOCLK  
tD  
MDO  
MOSTRT  
MOVAL  
BKERR  
}
tSU  
tH  
Figure 8 - MPEG Timing - MOCLKINV = 1  
3.2.5 MOCLKINV = 0  
MDOSWAP = 0  
Delay conditions  
Units  
Parameter  
Maximum  
Minimum  
Data output delay tD  
Setup Time tSU  
Hold Time tH  
3.0  
1.0  
18.0  
1.0  
20.0  
0.2  
ns  
The hold time is better when MOCLKINV = 1, therefore this should be used if possible.  
MOCLK  
tD  
MDO  
MOSTRT  
MOVAL  
BKERR  
}
tSU  
tH  
Figure 9 - MPEG Timing - MOCLKINV = 0  
20  
Intel Corporation  
CE6353  
Data Sheet  
4.0 Electrical Characteristics  
4.1 Recommended Operating Conditions  
Parameter  
Symbol  
Min.  
3.0  
Typ.  
Max.  
Units  
3.3  
1.8  
3.6  
Power supply voltage:  
periphery  
core  
VDD  
CVDD  
IDDP  
IDDC  
XTI  
V
V
1.62  
1.98  
Power supply current:  
periphery 1  
core  
mA  
mA 2  
MHz  
kHz  
°C  
1
170  
20.48  
Input clock frequency 3  
16.00  
-10  
25.00  
400  
80  
CLK1 primary serial clock frequency 4  
Ambient operating temperature  
fCLK  
1. Current from the 3.3 V supply will be mainly dependent on the external loads.  
2. Current given is for optimum performance, lower current is possible with reduced performance.  
3. The min/max frequencies given are those supported by the oscillator cell. Required system frequencies are as defined in the design  
manual. Frequencies outside these limits are acceptable with an external clock signal.  
4. If operating with an external 4 MHz clock, the serial clock frequency is reduced to 100 kHz maximum.  
4.2 Absolute Maximum Ratings  
Maximum Operating Conditions  
Parameter  
Symbol  
Min.  
Max.  
Unit  
Power supply  
VDD  
CVDD  
VI  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-55  
+3.6  
+2.0  
V
V
Voltage on input pins (5 V rated)  
Voltage on input pins (3.3 V rated)  
Voltage on output pins (5 V rated)  
Voltage on output pins (3.3 V rated)  
Storage temperature  
5.5  
V
VI  
VDD + 0.3  
5.5  
V
VO  
V
VO  
VDD + 0.3  
150  
V
TSTG  
TOP  
TJ  
°C  
°C  
°C  
Operating ambient temperature  
Junction temperature  
-10  
80  
125  
Note: Stresses exceeding these listed under absolute maximum ratings may induce failure. Exposure to absolute maximum ratings for  
extended periods may reduce reliability. Functionality at or above these conditions is not implied.  
21  
Intel Corporation  
CE6353  
Data Sheet  
4.3 DC Electrical Characteristics  
DC Electrical Characteristics  
Parameter  
Conditions  
Pins  
Symbol  
VDD  
Min.  
Typ.  
Max. Unit  
Operating  
periphery  
3.0  
3.3  
3.6  
V
voltage  
core  
CVDD  
1.62  
1.8  
170  
300  
1.98  
V
Supply current 1  
1.62>CVDD>1.98  
IDDCORE  
mA  
μA  
Supply current sleep mode  
Outputs  
Output levels  
IOH 2mA  
3.0>VDD>3.6  
MDO(7:0), MOVAL, VOH  
MOSTRT, MOCLK,  
2.4  
V
V
STATUS, BKERR  
IOL 2mA  
3.0>VDD>3.6  
VOL  
0.4  
0.4  
IOL 6mA  
3.0>VDD>3.6  
GPP(3:0), DATA1,  
AGC1, AGC2, IRQ  
VOL  
V
Output capacitance  
Not including track MDO(7:0), MOVAL,  
MOSTRT, MOCLK,  
3.0  
3.6  
pF  
STATUS, BKERR  
GPP(3:0), DATA1,  
AGC1, AGC2,IRQ  
pF  
Output leakage (tri-state)  
Inputs  
1
μA  
Input levels  
3.0>VDD>3.6  
-0.5 Vin ≥  
VDD+0.5V  
MICLK, SADD(4:0) VIH  
SLEEP, OSCMODE  
2.0  
2.0  
V
V
Input levels  
3.0>VDD>3.6  
-0.5 Vin +5.5V DATA1, RESET  
GPP(3:0), CLK1,  
VIH  
VIL  
Input levels  
3.0>VDD>3.6  
All inputs  
0.8  
±1  
V
Input leakage Current  
Input capacitance  
SLEEP, SMTEST,  
MICLK, CLK1,  
OSCMODE  
μA  
pF  
Capacitances do  
not include track  
1.8  
3.6  
Input capacitance  
SADD(4:0), DATA1,  
GPP(3:0)  
pF  
1. Current given is for optimum performance, lower current is possible with reduced performance.  
4.4 Crystal Specification and External Clocking  
Parallel resonant fundamental frequency (preferred)  
Tolerance over operating temperature range  
Tolerance overall  
20.4800 MHz  
± 150 ppm  
± 200 ppm  
27 pF  
Typical load capacitance  
Drive level  
Equivalent series resistance  
0.4 mW max  
<25 Ω  
22  
Intel Corporation  
CE6353  
Data Sheet  
XTI  
XT0  
OSCMODE  
XTI  
C1  
C2  
Figure 10 - Crystal Oscillator Circuit  
4.4.1 Selection of External Components  
The capacitor values used must ensure correct operation of the Pierce oscillator such that the total loop gain is  
greater than unity. Correct selection of the two capacitors is very important and the following method is  
recommended to obtain values for C1 and C2.  
4.4.1.1 Loop Gain Equation  
Although oscillation may still occur if the loop gain is just above 1, a loop gain of between 5 and 25 is optimum to  
ensure that oscillations will occur across all variations in temperature, process and supply voltage, and that the  
circuit will exhibit good start-up characteristics.  
C
out.gm  
Cin  
Cout + Cin  
Rf.Cin  
1
1
-1  
Equation 1 - - A =  
+
+
Zin  
Zo  
1
Equation 2 -  
- Zin =  
(2.π.f.Cout)2.ESR  
4.4.1.2 List of Equation Parameters  
A
total loop gain (between 5 and 25)  
C1 + Cpar  
Cin  
Cout C2 + Cpar  
Cpar parasitic capacitance associated with each oscillator pin (XTI and XTO). It consists of track  
capacitances, package capacitance and cell input capacitance. Normally Cpar 4pF.  
Zo  
gm  
Rf  
9.143 kΩ - output impedance of amplifier at 1.8 V operation - typical  
8.736 mA/V - transconductance of amplifier at 1.8 V operation -typical  
2.3 MΩ - internal feedback resistor  
ESR  
f
maximum equivalent series resistance of crystal - given by crystal manufacturer (Ω)  
fundamental frequency of crystal (Hz)  
23  
Intel Corporation  
CE6353  
Data Sheet  
4.4.1.3 Calculating Crystal Power Dissipation  
To calculate the power dissipated in a crystal the following equation can be used.  
2
Vpp  
Pc =  
Equation 3 -  
8.Zin  
Pc = power dissipated in crystal at resonant frequency (W)  
Vpp = maximum peak to peak output swing of amplifier is 1.8 V for all CVDD  
Zin = crystal network impedance (see Equation 2)  
4.4.1.4 Capacitor Values  
Using the loop gain limits (5 < A < 25), the maximum and minimum values for C1 and C2 can be calculated with  
Equation 4 below.  
gm  
A
2
1
1
.
Cin = Cout  
=
Equation 4 -  
-
-
(2.π.f)2.ESR  
when: C1 = C2 = Cout - Cpar  
Rf Zo  
Note: Equation 4 was derived from Equation 1 and Equation 2 using the premise that C1 = C2.  
Within these limits, any value for C1 and C2 can now be selected. Normally C1 and C2 are chosen such that the  
resulting crystal load capacitance CL (see Equation 5) is close to the crystal manufacturers recommended CL  
(standard values for CL are 15 pF, 20 pF and 30 pF). The crystal will then operate very near its specified frequency.  
Cout . Cin  
- CL =  
Cpar12  
+
Equation 5 -  
Cout + Cin  
Cpar12 = parasitic capacitance between the XTI and XTO pins. It consists of the IC package’s pin-to-pin  
capacitance (including any socket used) and the printed circuit board’s track-to-track capacitance.  
Cpar12 2pF.  
If some frequency pulling can be tolerated, a crystal load capacitance different from the crystal manufacturer’s  
recommended CL may be acceptable. Larger values of CL tend to reduce the influence of circuit variations and  
tolerances on frequency stability. Smaller values of CL tend to reduce startup time and crystal power dissipation.  
Care must however be taken that CL does not fall outside the crystal pulling range or the circuit may fail to start up  
altogether. It is also possible to quote CL to the crystal manufacturer who can then cut a crystal to order which will  
resonate, under the specified load conditions, at the desired frequency.  
Finally the power dissipation in the crystal must be checked. If Pc is too high C1 and C2 must be reduced. If this is  
not feasible C2 alone may be reduced. Unbalancing C1 and C2 will, however, require checking if the loop gain  
condition is still satisfied. This must be done using Equation 1.  
C2  
Note:  
2 >  
> 0.5  
C1  
24  
Intel Corporation  
CE6353  
Data Sheet  
4.4.1.5 Oscillator/Clock Application Notes  
On the printed circuit board, the tracks to the crystal and capacitors must be made as short as possible.  
Other signal tracks must not be allowed to cross through this area. The component tracks should preferably  
be ringed by a ground track connected to the chip ground (0 V) on adjacent pins either side of the crystal  
pins. It is also advisable to provide a ground plane for the circuit to reduce noise.  
External clock signals, applied to XTI and/or XTO, must not exceed the cell supply limits (i.e., 0V and CVDD)  
and current into or out of XTI and/or XTO must be limited to less than 10mA to avoid damaging the cell’s  
amplitude clamping circuit.  
An external, DC coupled, single ended square wave clock signal may be applied to XTI if OSCMODE = 0. To  
limit the current taken from the signal source a resistor should be placed between the clock source and XTI.  
The recommended value for this series resistor is 470 Ω for a clock signal switching between 0 V and  
CVDD. The current the clock source needs to source/sink is then <1.9 mA. The XTO pin must be left  
unconnected in this configuration.  
AC coupling of a single ended external clock to XTI, with OSCMODE = 0, is not recommended. The duty  
cycle of the OSCOUT signal cannot be guaranteed in such a configuration.  
AC coupling of a single ended external clock to XTI, with OSCMODE = 1, is possible. It is recommended that  
the circuit shown in Figure 11 be used to correctly bias the oscillator inputs: The common-mode voltage VCM  
for XTI and XTO, (set by the 36 kΩ and 22 kΩ resistors) must be 800 mV < VCM < CVDD and the amplitude  
Vpp of the clock signal must be >100 mV.  
XTO  
XTI  
Vdd  
OSCMODE  
36k  
100k  
10nF  
External clock  
22k  
10nF  
Figure 11 - External Clocking via AC Coupling  
External, differential clock signals may be applied to XTI and XTO if OSCMODE = 1. The common-mode  
voltage VCM for the differential clock signals must be 800 mV < VCM < CVDD, and the peak-to-peak signal  
amplitude Vpp must be >100 mV. It is recommended that differential clock signals have VCM = 1.0V. For  
Vpp > 400 mV a resistor of >390 Ω in series with XTI or XTO may be required to limit the current taken from  
or supplied to the clock sources.  
25  
Intel Corporation  
CE6353  
Data Sheet  
5.0 Application Circuit  
Figure 12 - Typical Application Circuit  
26  
Intel Corporation  

相关型号:

DJCE6353SL9EN882128

Nordig Unified DVB-T COFDM Terrestrial Demodulator for PC-TV and Hand-held Digital TV (DTV)
INTEL

DJCE6355882134

Video Discriminator, LQFP-64
INTEL

DJCE6355SL9G3882135

Video Discriminator, LQFP-64
INTEL

DJIXE972MBAA4

Single-Port 10/100 Mbps PHY Transceiver
INTEL

DJIXE972MBCA4

Single-Port 10/100 Mbps PHY Transceiver
INTEL

DJIXE972MBEA4

Single-Port 10/100 Mbps PHY Transceiver
INTEL

DJIXE972MCAA4

Single-Port 10/100 Mbps PHY Transceiver
INTEL

DJIXE972MCCA4

Single-Port 10/100 Mbps PHY Transceiver
INTEL

DJIXE972MCEA4

Single-Port 10/100 Mbps PHY Transceiver
INTEL

DJIXE972MEAA4

Single-Port 10/100 Mbps PHY Transceiver
INTEL

DJIXE972MECA4

Single-Port 10/100 Mbps PHY Transceiver
INTEL

DJIXE972MEEA4

Single-Port 10/100 Mbps PHY Transceiver
INTEL