EPM3512AFC256-7 [INTEL]

EE PLD, 7.5ns, 512-Cell, CMOS, PBGA256, FINE LINE, BGA-256;
EPM3512AFC256-7
型号: EPM3512AFC256-7
厂家: INTEL    INTEL
描述:

EE PLD, 7.5ns, 512-Cell, CMOS, PBGA256, FINE LINE, BGA-256

PC 输入元件 可编程逻辑
文件: 总46页 (文件大小:711K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MAX 3000A  
Programmable Logic  
Device Family  
®
June 2006, ver. 3.5  
Data Sheet  
High–performance, low–cost CMOS EEPROM–based programmable  
logic devices (PLDs) built on a MAX® architecture (see Table 1)  
3.3-V in-system programmability (ISP) through the built–in  
IEEE Std. 1149.1 Joint Test Action Group (JTAG) interface with  
advanced pin-locking capability  
Features...  
ISP circuitry compliant with IEEE Std. 1532  
Built–in boundary-scan test (BST) circuitry compliant with  
IEEE Std. 1149.1-1990  
Enhanced ISP features:  
Enhanced ISP algorithm for faster programming  
ISP_Done bit to ensure complete programming  
Pull-up resistor on I/O pins during in–system programming  
High–density PLDs ranging from 600 to 10,000 usable gates  
4.5–ns pin–to–pin logic delays with counter frequencies of up to  
227.3 MHz  
MultiVoltTM I/O interface enabling the device core to run at 3.3 V,  
while I/O pins are compatible with 5.0–V, 3.3–V, and 2.5–V logic  
levels  
Pin counts ranging from 44 to 256 in a variety of thin quad flat pack  
(TQFP), plastic quad flat pack (PQFP), plastic J–lead chip carrier  
(PLCC), and FineLine BGATM packages  
Hot–socketing support  
Programmable interconnect array (PIA) continuous routing structure  
for fast, predictable performance  
Industrial temperature range  
Table 1. MAX 3000A Device Features  
Feature  
EPM3032A  
EPM3064A  
EPM3128A  
EPM3256A  
EPM3512A  
Usable gates  
Macrocells  
600  
32  
2
1,250  
64  
2,500  
128  
8
5,000  
256  
16  
10,000  
512  
Logic array blocks  
4
32  
Maximum user I/O  
pins  
34  
66  
98  
161  
208  
t
t
t
f
PD (ns)  
4.5  
2.9  
4.5  
2.8  
5.0  
3.3  
7.5  
5.2  
7.5  
5.6  
SU (ns)  
CO1 (ns)  
CNT (MHz)  
3.0  
3.1  
3.4  
4.8  
4.7  
227.3  
222.2  
192.3  
126.6  
116.3  
Altera Corporation  
1
DS-MAX3000A-3.5  
MAX 3000A Programmable Logic Device Family Data Sheet  
PCI compatible  
...and More  
Features  
Bus–friendly architecture including programmable slew–rate control  
Open–drain output option  
Programmable macrocell flipflops with individual clear, preset,  
clock, and clock enable controls  
Programmable power–saving mode for a power reduction of over  
50% in each macrocell  
Configurable expander product–term distribution, allowing up to  
32 product terms per macrocell  
Programmable security bit for protection of proprietary designs  
Enhanced architectural features, including:  
6 or 10 pin– or logic–driven output enable signals  
Two global clock signals with optional inversion  
Enhanced interconnect resources for improved routability  
Programmable output slew–rate control  
Software design support and automatic place–and–route provided  
by Altera’s development systems for Windows–based PCs and Sun  
SPARCstations, and HP 9000 Series 700/800 workstations  
Additional design entry and simulation support provided by EDIF  
2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM),  
Verilog HDL, VHDL, and other interfaces to popular EDA tools from  
third–party manufacturers such as Cadence, Exemplar Logic, Mentor  
Graphics, OrCAD, Synopsys, Synplicity, and VeriBest  
Programming support with the Altera master programming unit  
(MPU), MasterBlasterTM communications cable, ByteBlasterMVTM  
parallel port download cable, BitBlasterTM serial download cable as  
well as programming hardware from third–party manufacturers and  
any in–circuit tester that supports JamTM Standard Test and  
Programming Language (STAPL) Files (.jam), Jam STAPL Byte-Code  
Files (.jbc), or Serial Vector Format Files (.svf)  
MAX 3000A devices are low–cost, high–performance devices based on the  
Altera MAX architecture. Fabricated with advanced CMOS technology,  
the EEPROM–based MAX 3000A devices operate with a 3.3-V supply  
voltage and provide 600 to 10,000 usable gates, ISP, pin-to-pin delays as  
fast as 4.5 ns, and counter speeds of up to 227.3 MHz. MAX 3000A devices  
in the –4, –5, –6, –7, and –10 speed grades are compatible with the timing  
requirements of the PCI Special Interest Group (PCI SIG) PCI Local Bus  
Specification, Revision 2.2. See Table 2.  
General  
Description  
2
Altera Corporation  
MAX 3000A Programmable Logic Device Family Data Sheet  
Table 2. MAX 3000A Speed Grades  
Device  
Speed Grade  
–6  
–4  
–5  
–7  
–10  
EPM3032A  
EPM3064A  
EPM3128A  
EPM3256A  
EPM3512A  
v
v
v
v
v
v
v
v
v
v
v
v
v
The MAX 3000A architecture supports 100% transistor-to-transistor logic  
(TTL) emulation and high–density small-scale integration (SSI),  
medium-scale integration (MSI), and large-scale integration (LSI) logic  
functions. The MAX 3000A architecture easily integrates multiple devices  
ranging from PALs, GALs, and 22V10s to MACH and pLSI devices.  
MAX 3000A devices are available in a wide range of packages, including  
PLCC, PQFP, and TQFP packages. See Table 3.  
Table 3. MAX 3000A Maximum User I/O Pins  
Note (1)  
Device  
44–Pin 44–Pin 100–Pin 144–Pin 208–Pin 256-Pin  
PLCC  
TQFP  
TQFP  
TQFP  
PQFP FineLine  
BGA  
EPM3032A  
EPM3064A  
EPM3128A  
EPM3256A  
EPM3512A  
34  
34  
34  
34  
66  
80  
96  
98  
116  
158  
172  
161  
208  
Note:  
(1) When the IEEE Std. 1149.1 (JTAG) interface is used for in–system programming or  
boundary–scan testing, four I/O pins become JTAG pins.  
MAX 3000A devices use CMOS EEPROM cells to implement logic  
functions. The user–configurable MAX 3000A architecture accommodates  
a variety of independent combinatorial and sequential logic functions.  
The devices can be reprogrammed for quick and efficient iterations  
during design development and debugging cycles, and can be  
programmed and erased up to 100 times.  
Altera Corporation  
3
MAX 3000A Programmable Logic Device Family Data Sheet  
MAX 3000A devices contain 32 to 512 macrocells, combined into groups  
of 16 macrocells called logic array blocks (LABs). Each macrocell has a  
programmable–AND/fixed–ORarray and a configurable register with  
independently programmable clock, clock enable, clear, and preset  
functions. To build complex logic functions, each macrocell can be  
supplemented with shareable expander and high–speed parallel  
expander product terms to provide up to 32 product terms per macrocell.  
MAX 3000A devices provide programmable speed/power optimization.  
Speed–critical portions of a design can run at high speed/full power,  
while the remaining portions run at reduced speed/low power. This  
speed/power optimization feature enables the designer to configure one  
or more macrocells to operate at 50% or lower power while adding only a  
nominal timing delay. MAX 3000A devices also provide an option that  
reduces the slew rate of the output buffers, minimizing noise transients  
when non–speed–critical signals are switching. The output drivers of all  
MAX 3000A devices can be set for 2.5 V or 3.3 V, and all input pins are  
2.5–V, 3.3–V, and 5.0-V tolerant, allowing MAX 3000A devices to be used  
in mixed–voltage systems.  
MAX 3000A devices are supported by Altera development systems,  
which are integrated packages that offer schematic, text—including  
VHDL, Verilog HDL, and the Altera Hardware Description Language  
(AHDL)—and waveform design entry, compilation and logic synthesis,  
simulation and timing analysis, and device programming. The software  
provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other  
interfaces for additional design entry and simulation support from other  
industry–standard PC– and UNIX–workstation–based EDA tools. The  
software runs on Windows–based PCs, as well as Sun SPARCstation, and  
HP 9000 Series 700/800 workstations.  
For more information on development tools, see the MAX+PLUS II  
Programmable Logic Development System & Software Data Sheet and the  
Quartus Programmable Logic Development System & Software Data Sheet.  
f
The MAX 3000A architecture includes the following elements:  
Functional  
Description  
Logic array blocks (LABs)  
Macrocells  
Expander product terms (shareable and parallel)  
Programmable interconnect array (PIA)  
I/O control blocks  
The MAX 3000A architecture includes four dedicated inputs that can be  
used as general–purpose inputs or as high–speed, global control signals  
(clock, clear, and two output enable signals) for each macrocell and I/O  
pin. Figure 1 shows the architecture of MAX 3000A devices.  
4
Altera Corporation  
MAX 3000A Programmable Logic Device Family Data Sheet  
Figure 1. MAX 3000A Device Block Diagram  
INPUT/GCLK1  
INPUT/OE2/GCLK2  
INPUT/OE1  
INPUT/GCLRn  
6 or 10 Output Enables (1)  
6 or 10 Output Enables (1)  
LAB A  
2 to  
LAB B  
2 to  
36  
36  
16  
I/O  
Control  
Block  
Macrocells  
1 to 16  
Macrocells  
17 to 32  
16  
I/O  
Control  
Block  
2 to 16 I/O  
2 to 16 I/O  
16  
16  
6 or 10  
2 to 16  
2 to 16  
6 or 10  
LAB C  
LAB D  
PIA  
2 to  
16  
2 to  
16  
36  
36  
I/O  
Control  
Block  
Macrocells  
33 to 48  
Macrocells  
49 to 64  
I/O  
Control  
Block  
2 to 16 I/O  
2 to 16 I/O  
16  
16  
6 or 10  
6 or 10  
2 to 16  
2 to 16  
Note:  
(1) EPM3032A, EPM3064A, EPM3128A, and EPM3256A devices have six output enables. EPM3512A devices have  
10 output enables.  
Logic Array Blocks  
The MAX 3000A device architecture is based on the linking of  
high–performance LABs. LABs consist of 16–macrocell arrays, as shown  
in Figure 1. Multiple LABs are linked together via the PIA, a global bus  
that is fed by all dedicated input pins, I/O pins, and macrocells.  
Each LAB is fed by the following signals:  
36 signals from the PIA that are used for general logic inputs  
Global controls that are used for secondary register functions  
Altera Corporation  
5
MAX 3000A Programmable Logic Device Family Data Sheet  
Macrocells  
MAX 3000A macrocells can be individually configured for either  
sequential or combinatorial logic operation. Macrocells consist of three  
functional blocks: logic array, product–term select matrix, and  
programmable register. Figure 2 shows a MAX 3000A macrocell.  
Figure 2. MAX 3000A Macrocell  
Global Global  
LAB Local Array  
Clear  
Clocks  
2
Parallel Logic  
Expanders  
(from other  
macrocells)  
Programmable  
Register  
Register  
Bypass  
To I/O  
Control  
Block  
PRN  
D/T  
Q
Clock/  
Enable  
Select  
Product-  
Term  
Select  
Matrix  
ENA  
CLRN  
VCC  
Clear  
Select  
To PIA  
Shared Logic  
Expanders  
36 Signals  
from PIA  
16 Expander  
Product Terms  
Combinatorial logic is implemented in the logic array, which provides  
five product terms per macrocell. The product–term select matrix  
allocates these product terms for use as either primary logic inputs (to the  
ORand XORgates) to implement combinatorial functions, or as secondary  
inputs to the macrocell’s register preset, clock, and clock enable control  
functions.  
Two kinds of expander product terms (“expanders”) are available to  
supplement macrocell logic resources:  
Shareable expanders, which are inverted product terms that are fed  
back into the logic array  
Parallel expanders, which are product terms borrowed from adjacent  
macrocells  
The Altera development system automatically optimizes product–term  
allocation according to the logic requirements of the design.  
6
Altera Corporation  
MAX 3000A Programmable Logic Device Family Data Sheet  
For registered functions, each macrocell flipflop can be individually  
programmed to implement D, T, JK, or SR operation with programmable  
clock control. The flipflop can be bypassed for combinatorial operation.  
During design entry, the designer specifies the desired flipflop type; the  
Altera development system software then selects the most efficient  
flipflop operation for each registered function to optimize resource  
utilization.  
Each programmable register can be clocked in three different modes:  
Global clock signal mode, which achieves the fastest clock–to–output  
performance.  
Global clock signal enabled by an active–high clock enable. A clock  
enable is generated by a product term. This mode provides an enable  
on each flipflop while still achieving the fast clock–to–output  
performance of the global clock.  
Array clock implemented with a product term. In this mode, the  
flipflop can be clocked by signals from buried macrocells or I/O pins.  
Two global clock signals are available in MAX 3000A devices. As shown  
in Figure 1, these global clock signals can be the true or the complement of  
either of the two global clock pins, GCLK1or GCLK2.  
Each register also supports asynchronous preset and clear functions. As  
shown in Figure 2, the product–term select matrix allocates product terms  
to control these operations. Although the product–term–driven preset  
and clear from the register are active high, active–low control can be  
obtained by inverting the signal within the logic array. In addition, each  
register clear function can be individually driven by the active–low  
dedicated global clear pin (GCLRn).  
All registers are cleared upon power-up. By default, all registered outputs  
drive low when the device is powered up. You can set the registered  
outputs to drive high upon power-up through the Quartus® II software.  
Quartus II software uses the NOT Gate Push-Back method, which uses an  
additional macrocell to set the output high. To set this in the Quartus II  
software, go to the Assignment Editor and set the Power-Up Level  
assignment for the register to High.  
Altera Corporation  
7
MAX 3000A Programmable Logic Device Family Data Sheet  
Expander Product Terms  
Although most logic functions can be implemented with the five product  
terms available in each macrocell, highly complex logic functions require  
additional product terms. Another macrocell can be used to supply the  
required logic resources. However, the MAX 3000A architecture also  
offers both shareable and parallel expander product terms (“expanders”)  
that provide additional product terms directly to any macrocell in the  
same LAB. These expanders help ensure that logic is synthesized with the  
fewest possible logic resources to obtain the fastest possible speed.  
Shareable Expanders  
Each LAB has 16 shareable expanders that can be viewed as a pool of  
uncommitted single product terms (one from each macrocell) with  
inverted outputs that feed back into the logic array. Each shareable  
expander can be used and shared by any or all macrocells in the LAB to  
build complex logic functions. Shareable expanders incur a small delay  
(tSEXP). Figure 3 shows how shareable expanders can feed multiple  
macrocells.  
Figure 3. MAX 3000A Shareable Expanders  
Shareable expanders can be shared by any or all macrocells in an LAB.  
Macrocell  
Product-Term  
Logic  
Product-Term Select Matrix  
Macrocell  
Product-Term  
Logic  
36 Signals  
from PIA  
16 Shared  
Expanders  
8
Altera Corporation  
MAX 3000A Programmable Logic Device Family Data Sheet  
Parallel Expanders  
Parallel expanders are unused product terms that can be allocated to a  
neighboring macrocell to implement fast, complex logic functions.  
Parallel expanders allow up to 20 product terms to directly feed the  
macrocell ORlogic, with five product terms provided by the macrocell and  
15 parallel expanders provided by neighboring macrocells in the LAB.  
The Altera development system compiler can automatically allocate up to  
three sets of up to five parallel expanders to the macrocells that require  
additional product terms. Each set of five parallel expanders incurs a  
small, incremental timing delay (tPEXP). For example, if a macrocell  
requires 14 product terms, the compiler uses the five dedicated product  
terms within the macrocell and allocates two sets of parallel expanders;  
the first set includes five product terms, and the second set includes four  
product terms, increasing the total delay by 2 × tPEXP  
.
Two groups of eight macrocells within each LAB (e.g., macrocells 1  
through 8 and 9 through 16) form two chains to lend or borrow parallel  
expanders. A macrocell borrows parallel expanders from lower–  
numbered macrocells. For example, macrocell 8 can borrow parallel  
expanders from macrocell 7, from macrocells 7 and 6, or from macrocells  
7, 6, and 5. Within each group of eight, the lowest–numbered macrocell  
can only lend parallel expanders and the highest–numbered macrocell can  
only borrow them. Figure 4 shows how parallel expanders can be  
borrowed from a neighboring macrocell.  
Altera Corporation  
9
MAX 3000A Programmable Logic Device Family Data Sheet  
Figure 4. MAX 3000A Parallel Expanders  
Unused product terms in a macrocell can be allocated to a neighboring macrocell.  
From  
Previous  
Macrocell  
Preset  
Product-  
er  
Select  
Matrix  
Macrocell  
Product-  
Term Logic  
Clock  
Clear  
Preset  
Product-  
Term  
Select  
Matrix  
Macrocell  
Product-  
Term Logic  
Clock  
Clear  
To Next  
Macrocell  
36 Signals 16 Shared  
from PIA Expanders  
Programmable Interconnect Array  
Logic is routed between LABs on the PIA. This global bus is a  
programmable path that connects any signal source to any destination on  
the device. All MAX 3000A dedicated inputs, I/O pins, and macrocell  
outputs feed the PIA, which makes the signals available throughout the  
entire device. Only the signals required by each LAB are actually routed  
from the PIA into the LAB. Figure 5 shows how the PIA signals are routed  
into the LAB. An EEPROM cell controls one input to a two-input ANDgate,  
which selects a PIA signal to drive into the LAB.  
10  
Altera Corporation  
MAX 3000A Programmable Logic Device Family Data Sheet  
Figure 5. MAX 3000A PIA Routing  
To LAB  
PIA Signals  
While the routing delays of channel–based routing schemes in masked or  
FPGAs are cumulative, variable, and path–dependent, the MAX 3000A  
PIA has a predictable delay. The PIA makes a design’s timing  
performance easy to predict.  
I/O Control Blocks  
The I/O control block allows each I/O pin to be individually configured  
for input, output, or bidirectional operation. All I/O pins have a tri–state  
buffer that is individually controlled by one of the global output enable  
signals or directly connected to ground or VCC. Figure 6 shows the I/O  
control block for MAX 3000A devices. The I/O control block has 6 or  
10 global output enable signals that are driven by the true or complement  
of two output enable signals, a subset of the I/O pins, or a subset of the  
I/O macrocells.  
Altera Corporation  
11  
MAX 3000A Programmable Logic Device Family Data Sheet  
Figure 6. I/O Control Block of MAX 3000A Devices  
6 or 10 Global  
Output Enable Signals (1)  
PIA  
OE Select Multiplexer  
VCC  
to Other I/O Pins  
GND  
from  
Macrocell  
Open-Drain Output  
Slew-Rate Control  
to PIA  
Note:  
(1) EPM3032A, EPM3064A, EPM3128A, and EPM3256A devices have six output enables. EPM3512A devices have  
10 output enables.  
When the tri–state buffer control is connected to ground, the output is  
tri-stated (high impedance), and the I/O pin can be used as a dedicated  
input. When the tri–state buffer control is connected to VCC, the output is  
enabled.  
The MAX 3000A architecture provides dual I/O feedback, in which  
macrocell and pin feedbacks are independent. When an I/O pin is  
configured as an input, the associated macrocell can be used for buried  
logic.  
12  
Altera Corporation  
MAX 3000A Programmable Logic Device Family Data Sheet  
MAX 3000A devices can be programmed in–system via an industry–  
standard four–pin IEEE Std. 1149.1-1990 (JTAG) interface. In-system  
programmability (ISP) offers quick, efficient iterations during design  
development and debugging cycles. The MAX 3000A architecture  
internally generates the high programming voltages required to program  
its EEPROM cells, allowing in–system programming with only a single  
3.3–V power supply. During in–system programming, the I/O pins are  
tri–stated and weakly pulled–up to eliminate board conflicts. The pull–up  
value is nominally 50 kΩ.  
In–System  
Programma-  
bility  
MAX 3000A devices have an enhanced ISP algorithm for faster  
programming. These devices also offer an ISP_Donebit that ensures safe  
operation when in–system programming is interrupted. This ISP_Done  
bit, which is the last bit programmed, prevents all I/O pins from driving  
until the bit is programmed.  
ISP simplifies the manufacturing flow by allowing devices to be mounted  
on a printed circuit board (PCB) with standard pick–and–place equipment  
before they are programmed. MAX 3000A devices can be programmed by  
downloading the information via in–circuit testers, embedded processors,  
the MasterBlaster communications cable, the ByteBlasterMV parallel port  
download cable, and the BitBlaster serial download cable. Programming  
the devices after they are placed on the board eliminates lead damage on  
high–pin–count packages (e.g., QFP packages) due to device handling.  
MAX 3000A devices can be reprogrammed after a system has already  
shipped to the field. For example, product upgrades can be performed in  
the field via software or modem.  
The Jam STAPL programming and test language can be used to program  
MAX 3000A devices with in–circuit testers, PCs, or embedded processors.  
For more information on using the Jam STAPL programming and test  
language, see Application Note 88 (Using the Jam Language for ISP & ICR via  
an Embedded Processor), Application Note 122 (Using Jam STAPL for ISP &  
ICR via an Embedded Processor) and AN 111 (Embedded Programming Using  
the 8051 and Jam Byte-Code).  
f
The ISP circuitry in MAX 3000A devices is compliant with the IEEE Std.  
1532 specification. The IEEE Std. 1532 is a standard developed to allow  
concurrent ISP between multiple PLD vendors.  
Altera Corporation  
13  
MAX 3000A Programmable Logic Device Family Data Sheet  
Programming Sequence  
During in-system programming, instructions, addresses, and data are  
shifted into the MAX 3000A device through the TDIinput pin. Data is  
shifted out through the TDOoutput pin and compared against the  
expected data.  
Programming a pattern into the device requires the following six ISP  
stages. A stand-alone verification of a programmed pattern involves only  
stages 1, 2, 5, and 6.  
1. Enter ISP. The enter ISP stage ensures that the I/O pins transition  
smoothly from user mode to ISP mode. The enter ISP stage requires  
1 ms.  
2. Check ID. Before any program or verify process, the silicon ID is  
checked. The time required to read this silicon ID is relatively small  
compared to the overall programming time.  
3. Bulk Erase. Erasing the device in-system involves shifting in the  
instructions to erase the device and applying one erase pulse of  
100 ms.  
4. Program. Programming the device in-system involves shifting in the  
address and data and then applying the programming pulse to  
program the EEPROM cells. This process is repeated for each  
EEPROM address.  
5. Verify. Verifying an Altera device in-system involves shifting in  
addresses, applying the read pulse to verify the EEPROM cells, and  
shifting out the data for comparison. This process is repeated for  
each EEPROM address.  
6. Exit ISP. An exit ISP stage ensures that the I/O pins transition  
smoothly from ISP mode to user mode. The exit ISP stage requires  
1 ms.  
Programming Times  
The time required to implement each of the six programming stages can  
be broken into the following two elements:  
A pulse time to erase, program, or read the EEPROM cells.  
A shifting time based on the test clock (TCK) frequency and the  
number of TCKcycles to shift instructions, address, and data into the  
device.  
14  
Altera Corporation  
MAX 3000A Programmable Logic Device Family Data Sheet  
By combining the pulse and shift times for each of the programming  
stages, the program or verify time can be derived as a function of the TCK  
frequency, the number of devices, and specific target device(s). Because  
different ISP-capable devices have a different number of EEPROM cells,  
both the total fixed and total variable times are unique for a single device.  
Programming a Single MAX 3000A Device  
The time required to program a single MAX 3000A device in-system can  
be calculated from the following formula:  
Cycle  
PTCK  
t
= t  
+ -------------------------------  
PROG  
PPULSE  
f
TCK  
where: tPROG  
= Programming time  
= Sum of the fixed times to erase, program, and  
verify the EEPROM cells  
tPPULSE  
CyclePTCK = Number of TCKcycles to program a device  
fTCK = TCKfrequency  
The ISP times for a stand-alone verification of a single MAX 3000A device  
can be calculated from the following formula:  
Cycle  
VTCK  
t
= t  
+ --------------------------------  
VER  
VPULSE  
f
TCK  
where: tVER  
tVPULSE  
CycleVTCK = Number of TCKcycles to verify a device  
= Verify time  
= Sum of the fixed times to verify the EEPROM cells  
Altera Corporation  
15  
MAX 3000A Programmable Logic Device Family Data Sheet  
The programming times described in Tables 4 through 6 are associated  
with the worst-case method using the enhanced ISP algorithm.  
Table 4. MAX 3000A tPULSE & CycleTCK Values  
Device  
Programming  
Stand-Alone Verification  
tVPULSE (s) CycleVTCK  
tPPULSE (s)  
CyclePTCK  
EPM3032A  
EPM3064A  
EPM3128A  
EPM3256A  
EPM3512A  
2.00  
2.00  
2.00  
2.00  
2.00  
55,000  
105,000  
205,000  
447,000  
890,000  
0.002  
0.002  
0.002  
0.002  
0.002  
18,000  
35,000  
68,000  
149,000  
297,000  
Tables 5 and 6 show the in-system programming and stand alone  
verification times for several common test clock frequencies.  
Table 5. MAX 3000A In-System Programming Times for Different Test Clock Frequencies  
Device  
fTCK  
Units  
10 MHz 5 MHz  
2 MHz  
1 MHz 500 kHz 200 kHz 100 kHz 50 kHz  
EPM3032A  
EPM3064A  
EPM3128A  
EPM3256A  
EPM3512A  
2.01  
2.01  
2.02  
2.05  
2.09  
2.01  
2.02  
2.04  
2.09  
2.18  
2.03  
2.05  
2.10  
2.23  
2.45  
2.06  
2.11  
2.21  
2.45  
2.89  
2.11  
2.21  
2.41  
2.90  
3.78  
2.28  
2.53  
3.03  
4.24  
6.45  
2.55  
3.05  
3.10  
4.10  
s
s
s
s
s
4.05  
6.10  
6.47  
10.94  
19.80  
10.90  
Table 6. MAX 3000A Stand-Alone Verification Times for Different Test Clock Frequencies  
Device  
fTCK  
500 kHz 200 kHz 100 kHz 50 kHz  
Units  
10 MHz 5 MHz  
2 MHz  
1 MHz  
EPM3032A  
EPM3064A  
EPM3128A  
EPM3256A  
EPM3512A  
0.00  
0.01  
0.01  
0.02  
0.03  
0.01  
0.01  
0.02  
0.03  
0.06  
0.01  
0.02  
0.04  
0.08  
0.15  
0.02  
0.04  
0.07  
0.15  
0.30  
0.04  
0.07  
0.14  
0.30  
0.60  
0.09  
0.18  
0.34  
0.75  
1.49  
0.18  
0.35  
0.68  
1.49  
2.97  
0.36  
0.70  
1.36  
2.98  
5.94  
s
s
s
s
s
16  
Altera Corporation  
MAX 3000A Programmable Logic Device Family Data Sheet  
MAX 3000A devices can be programmed on Windows–based PCs with an  
Altera Logic Programmer card, MPU, and the appropriate device adapter.  
The MPU performs continuity checking to ensure adequate electrical  
contact between the adapter and the device.  
Programming  
with External  
Hardware  
For more information, see the Altera Programming Hardware Data Sheet.  
f
The Altera software can use text– or waveform–format test vectors created  
with the Altera Text Editor or Waveform Editor to test the programmed  
device. For added design verification, designers can perform functional  
testing to compare the functional device behavior with the results of  
simulation.  
Data I/O, BP Microsystems, and other programming hardware  
manufacturers also provide programming support for Altera devices.  
For more information, see Programming Hardware Manufacturers.  
f
MAX 3000A devices include the JTAG BST circuitry defined by IEEE  
Std. 1149.1–1990. Table 7 describes the JTAG instructions supported by  
MAX 3000A devices. The pin-out tables found on the Altera web site  
(http://www.altera.com) or the Altera Digital Library show the location of  
the JTAG control pins for each device. If the JTAG interface is not  
required, the JTAG pins are available as user I/O pins.  
IEEE Std.  
1149.1 (JTAG)  
Boundary–Scan  
Support  
Table 7. MAX 3000A JTAG Instructions  
JTAG Instruction  
Description  
SAMPLE/PRELOAD Allows a snapshot of signals at the device pins to be captured and examined during  
normal device operation, and permits an initial data pattern output at the device pins  
EXTEST  
Allows the external circuitry and board–level interconnections to be tested by forcing a  
test pattern at the output pins and capturing test results at the input pins  
BYPASS  
Places the 1–bit bypass register between the TDIand TDOpins, which allows the BST  
data to pass synchronously through a selected device to adjacent devices during normal  
device operation  
IDCODE  
Selects the IDCODE register and places it between the TDIand TDOpins, allowing the  
IDCODE to be serially shifted out of TDO  
USERCODE  
ISP Instructions  
Selects the 32–bit USERCODE register and places it between the TDIand TDOpins,  
allowing the USERCODE value to be shifted out of TDO  
These instructions are used when programming MAX 3000A devices via the JTAG ports  
with the MasterBlaster, ByteBlasterMV, or BitBlaster cable, or when using a Jam STAPL  
file, JBC file, or SVF file via an embedded processor or test equipment  
Altera Corporation  
17  
MAX 3000A Programmable Logic Device Family Data Sheet  
The instruction register length of MAX 3000A devices is 10 bits. The  
IDCODE and USERCODE register length is 32 bits. Tables 8 and 9 show  
the boundary–scan register length and device IDCODE information for  
MAX 3000A devices.  
Table 8. MAX 3000A Boundary–Scan Register Length  
Device  
Boundary–Scan Register Length  
EPM3032A  
EPM3064A  
EPM3128A  
EPM3256A  
EPM3512A  
96  
192  
288  
480  
624  
Table 9. 32–Bit MAX 3000A Device IDCODE Value Note (1)  
Device  
IDCODE (32 bits)  
Version  
(4 Bits)  
Part Number (16 Bits) Manufacturer’s 1 (1 Bit)  
Identity (11 Bits)  
(2)  
EPM3032A  
EPM3064A  
EPM3128A  
EPM3256A  
EPM3512A  
0001  
0001  
0001  
0001  
0001  
0111 0000 0011 0010 00001101110  
0111 0000 0110 0100 00001101110  
0111 0001 0010 1000 00001101110  
0111 0010 0101 0110 00001101110  
0111 0101 0001 0010 00001101110  
1
1
1
1
1
Notes:  
(1) The most significant bit (MSB) is on the left.  
(2) The least significant bit (LSB) for all JTAG IDCODEs is 1.  
See Application Note 39 (IEEE 1149.1 (JTAG) Boundary–Scan Testing in Altera  
Devices) for more information on JTAG BST.  
f
18  
Altera Corporation  
MAX 3000A Programmable Logic Device Family Data Sheet  
Figure 7 shows the timing information for the JTAG signals.  
Figure 7. MAX 3000A JTAG Waveforms  
TMS  
TDI  
tJCP  
tJCH  
t JCL  
tJPH  
tJPSU  
TCK  
TDO  
tJPXZ  
tJPZX  
tJPCO  
tJSSU  
tJSH  
Signal  
to Be  
Captured  
tJSCO  
tJSZX  
tJSXZ  
Signal  
to Be  
Driven  
Table 10 shows the JTAG timing parameters and values for MAX 3000A  
devices.  
Table 10. JTAG Timing Parameters & Values for MAX 3000A Devices  
Symbol  
Parameter  
Min Max Unit  
t
t
t
t
t
t
t
t
t
t
t
t
t
TCKclock period  
100  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
JCP  
TCKclock high time  
TCKclock low time  
JTAG port setup time  
JTAG port hold time  
JCH  
50  
JCL  
20  
45  
JPSU  
JPH  
JTAG port clock to output  
25  
25  
25  
JPCO  
JPZX  
JPXZ  
JSSU  
JSH  
JTAG port high impedance to valid output  
JTAG port valid output to high impedance  
Capture register setup time  
20  
45  
Capture register hold time  
Update register clock to output  
25  
25  
25  
JSCO  
JSZX  
JSXZ  
Update register high impedance to valid output  
Update register valid output to high impedance  
Altera Corporation  
19  
MAX 3000A Programmable Logic Device Family Data Sheet  
MAX 3000A devices offer a power–saving mode that supports low-power  
Programmable  
Speed/Power  
Control  
operation across user–defined signal paths or the entire device. This  
feature allows total power dissipation to be reduced by 50% or more  
because most logic applications require only a small fraction of all gates to  
operate at maximum frequency.  
The designer can program each individual macrocell in a MAX 3000A  
device for either high–speed or low–power operation. As a result,  
speed-critical paths in the design can run at high speed, while the  
remaining paths can operate at reduced power. Macrocells that run at low  
power incur a nominal timing delay adder (tLPA) for the tLAD, tLAC, tIC  
,
tACL, tEN, tCPPW and tSEXP parameters.  
MAX 3000A device outputs can be programmed to meet a variety of  
system–level requirements.  
Output  
Configuration  
MultiVolt I/O Interface  
The MAX 3000A device architecture supports the MultiVolt I/O interface  
feature, which allows MAX 3000A devices to connect to systems with  
differing supply voltages. MAX 3000A devices in all packages can be set  
for 2.5–V, 3.3–V, or 5.0–V I/O pin operation. These devices have one set of  
V
CC pins for internal operation and input buffers (VCCINT), and another  
set for I/O output drivers (VCCIO).  
The VCCIOpins can be connected to either a 3.3–V or 2.5–V power supply,  
depending on the output requirements. When the VCCIOpins are  
connected to a 2.5–V power supply, the output levels are compatible with  
2.5–V systems. When the VCCIOpins are connected to a 3.3–V power  
supply, the output high is at 3.3 V and is therefore compatible with 3.3-V  
or 5.0–V systems. Devices operating with VCCIO levels lower than 3.0 V  
incur a nominally greater timing delay of tOD2 instead of tOD1. Inputs can  
always be driven by 2.5–V, 3.3–V, or 5.0–V signals.  
Table 11 summarizes the MAX 3000A MultiVolt I/O support.  
Table 11. MAX 3000A MultiVolt I/O Support  
VCCIO Voltage  
Input Signal (V)  
3.3  
Output Signal (V)  
2.5  
5.0  
2.5  
3.3  
5.0  
2.5  
3.3  
v
v
v
v
v
v
v
v
v
v
Note:  
(1) When V  
is 3.3 V, a MAX 3000A device can drive a 2.5–V device that has 3.3–V  
CCIO  
tolerant inputs.  
20  
Altera Corporation  
MAX 3000A Programmable Logic Device Family Data Sheet  
Open–Drain Output Option  
MAX 3000A devices provide an optional open–drain (equivalent to  
open-collector) output for each I/O pin. This open–drain output enables  
the device to provide system–level control signals (e.g., interrupt and  
write enable signals) that can be asserted by any of several devices. It can  
also provide an additional wired–ORplane.  
Open-drain output pins on MAX 3000A devices (with a pull-up resistor to  
the 5.0-V supply) can drive 5.0-V CMOS input pins that require a high VIH.  
When the open-drain pin is active, it will drive low. When the pin is  
inactive, the resistor will pull up the trace to 5.0 V, thereby meeting CMOS  
requirements. The open-drain pin will only drive low or tri-state; it will  
never drive high. The rise time is dependent on the value of the pull-up  
resistor and load impedance. The IOL current specification should be  
considered when selecting a pull-up resistor  
Slew–Rate Control  
The output buffer for each MAX 3000A I/O pin has an adjustable output  
slew rate that can be configured for low–noise or high–speed  
performance. A faster slew rate provides high–speed transitions for  
high-performance systems. However, these fast transitions may introduce  
noise transients into the system. A slow slew rate reduces system noise,  
but adds a nominal delay of 4 to 5 ns. When the configuration cell is  
turned off, the slew rate is set for low–noise performance. Each I/O pin  
has an individual EEPROM bit that controls the slew rate, allowing  
designers to specify the slew rate on a pin–by–pin basis. The slew rate  
control affects both the rising and falling edges of the output signal.  
All MAX 3000A devices contain a programmable security bit that controls  
access to the data programmed into the device. When this bit is  
programmed, a design implemented in the device cannot be copied or  
retrieved. This feature provides a high level of design security because  
programmed data within EEPROM cells is invisible. The security bit that  
controls this function, as well as all other programmed data, is reset only  
when the device is reprogrammed.  
Design Security  
Generic Testing  
MAX 3000A devices are fully tested. Complete testing of each  
programmable EEPROM bit and all internal logic elements ensures 100%  
programming yield. AC test measurements are taken under conditions  
equivalent to those shown in Figure 8. Test patterns can be used and then  
erased during early stages of the production flow.  
Altera Corporation  
21  
MAX 3000A Programmable Logic Device Family Data Sheet  
Figure 8. MAX 3000A AC Test Conditions  
Power supply transients can affect AC  
measurements. Simultaneous transitions  
of multiple outputs should be avoided for  
accurate measurement. Threshold tests  
must not be performed under AC  
VCC  
703 Ω  
[521 Ω]  
conditions. Large–amplitude, fast–  
ground–current transients normally occur  
as the device outputs discharge the load  
capacitances. When these transients flow  
through the parasitic inductance between  
the device ground pin and the test system  
ground, significant reductions in  
observable noise immunity can result.  
Numbers in brackets are for 2.5–V  
outputs. Numbers without brackets are for  
3.3–V devices or outputs.  
Device  
Output  
To Test  
System  
620 Ω  
[481 Ω]  
C1 (includes jig  
capacitance)  
Device input  
rise and fall  
times < 2 ns  
Tables 12 through 15 provide information on absolute maximum ratings,  
recommended operating conditions, DC operating conditions, and  
capacitance for MAX 3000A devices.  
Operating  
Conditions  
Table 12. MAX 3000A Device Absolute Maximum Ratings  
Note (1)  
Symbol Parameter Conditions  
Min  
Max  
Unit  
V
V
Supply voltage  
With respect to ground (2)  
–0.5  
–2.0  
–25  
–65  
–65  
4.6  
5.75  
25  
V
CC  
DC input voltage  
V
I
I
DC output current, per pin  
Storage temperature  
Ambient temperature  
Junction temperature  
mA  
° C  
° C  
° C  
OUT  
T
T
T
No bias  
150  
135  
135  
STG  
A
Under bias  
PQFP and TQFP packages, under bias  
J
22  
Altera Corporation  
MAX 3000A Programmable Logic Device Family Data Sheet  
Table 13. MAX 3000A Device Recommended Operating Conditions  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
V
Supply voltage for internal logic and (10)  
3.0  
3.6  
V
CCINT  
input buffers  
V
Supply voltage for output drivers,  
3.3–V operation  
3.0  
2.3  
3.6  
2.7  
V
V
CCIO  
Supply voltage for output drivers,  
2.5–V operation  
V
V
V
Supply voltage during ISP  
3.0  
–0.5  
0
3.6  
V
V
CCISP  
Input voltage  
(3)  
5.75  
I
Output voltage  
V
V
O
A
CCIO  
70  
T
Ambient temperature  
Commercial range  
Industrial range  
0
° C  
° C  
° C  
° C  
ns  
ns  
–40  
0
85  
90  
T
Junction temperature  
Commercial range  
Industrial range (11)  
J
–40  
105  
40  
t
t
Input rise time  
Input fall time  
R
40  
F
Table 14. MAX 3000A Device DC Operating Conditions  
Note (4)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
V
V
V
High–level input voltage  
Low–level input voltage  
1.7  
–0.5  
2.4  
5.75  
0.8  
V
V
V
IH  
IL  
3.3–V high–level TTL output  
voltage  
I
I
= –8 mA DC, V  
= 3.00 V (5)  
CCIO  
OH  
OH  
OH  
3.3–V high–level CMOS output  
voltage  
= –0.1 mA DC, V  
= –100 µA DC, V  
= 3.00 V (5)  
= 2.30 V (5)  
V
– 0.2  
V
CCIO  
CCIO  
2.5–V high–level output voltage  
I
I
I
I
I
2.1  
2.0  
1.7  
V
V
V
V
V
OH  
OH  
OH  
OL  
OL  
CCIO  
= –1 mA DC, V  
= –2 mA DC, V  
= 2.30 V (5)  
= 2.30 V (5)  
CCIO  
CCIO  
V
3.3–V low–level TTL output voltage  
= 8 mA DC, V  
= 3.00 V (6)  
CCIO  
0.4  
0.2  
OL  
3.3–V low–level CMOS output  
voltage  
= 0.1 mA DC, V  
= 3.00 V (6)  
CCIO  
2.5–V low–level output voltage  
I
I
I
= 100 µA DC, V  
= 2.30 V (6)  
0.2  
0.4  
0.7  
10  
V
V
OL  
OL  
OL  
CCIO  
= 1 mA DC, V  
= 2 mA DC, V  
= 2.30 V (6)  
= 2.30 V (6)  
CCIO  
CCIO  
V
I
I
Input leakage current  
V = –0.5 to 5.5 V (7)  
–10  
–10  
20  
μA  
μA  
kΩ  
I
I
Tri–state output off–state current  
V = –0.5 to 5.5 V (7)  
10  
OZ  
I
R
Value of I/O pin pull–up resistor  
when programming in–system or  
during power–up  
V
= 2.3 to 3.6 V (8)  
CCIO  
74  
ISP  
Altera Corporation  
23  
MAX 3000A Programmable Logic Device Family Data Sheet  
Table 15. MAX 3000A Device Capacitance  
Note (9)  
Conditions  
Symbol  
Parameter  
Min  
Max  
Unit  
C
C
Input pin capacitance  
I/O pin capacitance  
V
V
= 0 V, f = 1.0 MHz  
8
8
pF  
pF  
IN  
IN  
= 0 V, f = 1.0 MHz  
I/O  
OUT  
Notes to tables:  
(1) See the Operating Requirements for Altera Devices Data Sheet.  
(2) Minimum DC input voltage is –0.5 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to  
5.75 V for input currents less than 100 mA and periods shorter than 20 ns.  
(3) All pins, including dedicated inputs, I/O pins, and JTAG pins, may be driven before V  
powered.  
and V  
are  
CCINT  
CCIO  
(4) These values are specified under the recommended operating conditions, as shown in Table 13 on page 23.  
(5) The parameter is measured with 50% of the outputs each sourcing the specified current. The I  
parameter refers  
OH  
to high–level TTL or CMOS output current.  
(6) The parameter is measured with 50% of the outputs each sinking the specified current. The I parameter refers to  
OL  
low–level TTL, PCI, or CMOS output current.  
(7) This value is specified during normal device operation. During power-up, the maximum leakage current is  
300 μA.  
(8) This pull–up exists while devices are programmed in–system and in unprogrammed devices during power–up.  
(9) Capacitance is measured at 25° C and is sample–tested only. The OE1pin (high–voltage pin during programming)  
has a maximum capacitance of 20 pF.  
(10) The POR time for all MAX 3000A devices does not exceed 100 μs. The sufficient V  
voltage level for POR is  
reaches the sufficient POR voltage level.  
CCINT  
3.0 V. The device is fully initialized within the POR time after V  
CCINT  
(11) These devices support in-system programming for –40° to 100° C. For in-system programming support between –40°  
and 0° C, contact Altera Applications.  
Figure 9 shows the typical output drive characteristics of MAX 3000A  
devices.  
24  
Altera Corporation  
MAX 3000A Programmable Logic Device Family Data Sheet  
Figure 9. Output Drive Characteristics of MAX 3000A Devices  
3.3 V  
150  
100  
IOL  
Typical IO  
Output  
Current (mA)  
VCCINT = 3.3 V  
VCCIO = 3.3 V  
= 25 OC  
Temperature  
50  
IOH  
0
0
1
2
3
4
VO Output Voltage (V)  
2.5 V  
150  
100  
IOL  
Typical IO  
Output  
VCCINT = 3.3 V  
VCCIO = 2.5 V  
Temperature  
= 25 OC  
Current (mA)  
50  
IOH  
0
0
1
2
3
4
VO Output Voltage (V)  
Because MAX 3000A devices can be used in a mixed–voltage  
environment, they have been designed specifically to tolerate any possible  
power–up sequence. The VCCIO and VCCINT power planes can be  
powered in any order.  
Power  
Sequencing &  
Hot–Socketing  
Signals can be driven into MAX 3000A devices before and during  
power-up without damaging the device. In addition, MAX 3000A devices  
do not drive out during power-up. Once operating conditions are  
reached, MAX 3000A devices operate as specified by the user.  
Altera Corporation  
25  
MAX 3000A Programmable Logic Device Family Data Sheet  
MAX 3000A device timing can be analyzed with the Altera software, with  
Timing Model  
a variety of popular industry–standard EDA simulators and timing  
analyzers, or with the timing model shown in Figure 10. MAX 3000A  
devices have predictable internal delays that enable the designer to  
determine the worst–case timing of any design. The software provides  
timing simulation, point–to–point delay prediction, and detailed timing  
analysis for device–wide performance evaluation.  
Figure 10. MAX 3000A Timing Model  
Internal Output  
Enable Delay  
tIOE  
Global Control  
Delay  
Input  
Delay  
tIN  
Output  
Delay  
tGLOB  
Register  
Delay  
tSU  
Parallel  
Expander Delay  
tPEXP  
Logic Array  
Delay  
tLAD  
tOD1  
tOD2  
tOD3  
tXZ  
tZX1  
tZX2  
tZX3  
PIA  
Delay  
tPIA  
tH  
tPRE  
tCLR  
tRD  
Register  
Control Delay  
tCOMB  
tLAC  
tIC  
tEN  
I/O  
Delay  
tIO  
Shared  
Expander Delay  
tSEXP  
The timing characteristics of any signal path can be derived from the  
timing model and parameters of a particular device. External timing  
parameters, which represent pin–to–pin timing delays, can be calculated  
as the sum of internal parameters. Figure 11 shows the timing relationship  
between internal and external delay parameters.  
26  
Altera Corporation  
MAX 3000A Programmable Logic Device Family Data Sheet  
Figure 11. MAX 3000A Switching Waveforms  
tR & tF < 2 ns. Inputs are  
driven at 3 V for a logic  
high and 0 V for a logic  
low. All timing  
characteristics are  
measured at 1.5 V.  
Combinatorial Mode  
tIN  
Input Pin  
I/O Pin  
tIO  
tPIA  
PIA Delay  
tSEXP  
Shared Expander  
Delay  
tLAC , tLAD  
Logic Array  
Input  
tPEXP  
Parallel Expander  
Delay  
tCOMB  
Logic Array  
Output  
tOD  
Output Pin  
Global Clock Mode  
tR  
tCH  
tCL  
tF  
Global  
Clock Pin  
tIN  
tGLOB  
Global Clock  
at Register  
tSU  
tH  
Data or Enable  
(Logic Array Output)  
Array Clock Mode  
tR  
tACH  
tACL  
tF  
Input or I/O Pin  
Clock into PIA  
tIN  
tIO  
tPIA  
Clock into  
Logic Array  
tIC  
Clock at  
Register  
tSU  
tH  
Data from  
Logic Array  
tRD  
tPIA  
tPIA  
tCLR , tPRE  
Register to PIA  
to Logic Array  
tOD  
tOD  
Register Output  
to Pin  
Altera Corporation  
27  
MAX 3000A Programmable Logic Device Family Data Sheet  
Tables 16 through 23 show EPM3032A, EPM3064A, EPM3128A,  
EPM3256A, and EPM3512A timing information.  
Table 16. EPM3032A External Timing Parameters  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
–7  
Unit  
–4  
–10  
Min  
Max  
Min  
Max  
Min  
Max  
tPD1  
tPD2  
tSU  
Input to non–  
registered output  
C1 = 35 pF  
(2)  
4.5  
7.5  
10  
ns  
ns  
ns  
I/O input to non–  
registered output  
C1 = 35 pF  
(2)  
4.5  
7.5  
5.0  
10  
Global clock setup  
time  
(2)  
2.9  
4.7  
6.3  
tH  
Global clock hold time (2)  
0.0  
1.0  
0.0  
1.0  
0.0  
1.0  
ns  
ns  
tCO1  
Global clock to output C1 = 35 pF  
delay  
3.0  
6.7  
tCH  
Global clock high time  
2.0  
2.0  
1.6  
0.3  
1.0  
3.0  
3.0  
2.5  
0.5  
1.0  
4.0  
4.0  
3.6  
0.5  
1.0  
ns  
ns  
ns  
ns  
ns  
tCL  
Global clock low time  
tASU  
tAH  
Array clock setup time (2)  
Array clock hold time (2)  
Array clock to output C1 = 35 pF  
tACO1  
4.3  
7.2  
9.4  
delay  
(2)  
tACH  
tACL  
Array clock high time  
Array clock low time  
2.0  
2.0  
2.0  
3.0  
3.0  
3.0  
4.0  
4.0  
4.0  
ns  
ns  
ns  
tCPPW  
Minimum pulse width (3)  
for clear and preset  
tCNT  
Minimum global clock (2)  
period  
4.4  
4.4  
7.2  
7.2  
9.7  
9.7  
ns  
MHz  
ns  
fCNT  
Maximum internal  
(2), (4)  
227.3  
227.3  
138.9  
138.9  
103.1  
103.1  
global clock frequency  
tACNT  
fACNT  
Minimum array clock (2)  
period  
Maximum internal  
(2), (4)  
MHz  
array clock frequency  
28  
Altera Corporation  
MAX 3000A Programmable Logic Device Family Data Sheet  
Table 17. EPM3032A Internal Timing Parameters (Part 1 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
–7  
Unit  
–4  
–10  
Min  
Max Min  
Max  
Min Max  
tIN  
tIO  
Input pad and buffer delay  
0.7  
0.7  
1.2  
1.2  
1.5  
1.5  
ns  
ns  
I/O input pad and buffer  
delay  
tSEXP  
tPEXP  
tLAD  
tLAC  
tIOE  
Shared expander delay  
Parallel expander delay  
Logic array delay  
1.9  
0.5  
1.5  
0.6  
0.0  
0.8  
3.1  
0.8  
2.5  
1.0  
0.0  
1.3  
4.0  
1.0  
3.3  
1.2  
0.0  
1.8  
ns  
ns  
ns  
ns  
ns  
ns  
Logic control array delay  
Internal output enable delay  
tOD1  
Output buffer and pad  
delay, slow slew rate = off  
C1 = 35 pF  
C1 = 35 pF  
C1 = 35 pF  
V
CCIO = 3.3 V  
tOD2  
tOD3  
tZX1  
tZX2  
tZX3  
Output buffer and pad  
delay, slow slew rate = off  
1.3  
5.8  
4.0  
4.5  
9.0  
1.8  
6.3  
4.0  
4.5  
9.0  
4.0  
2.3  
6.8  
ns  
ns  
ns  
ns  
ns  
V
CCIO = 2.5 V  
Output buffer and pad  
delay, slow slew rate = on  
VCCIO = 2.5 V or 3.3 V  
Output buffer enable delay, C1 = 35 pF  
slow slew rate = off  
VCCIO = 3.3 V  
5.0  
Output buffer enable delay, C1 = 35 pF  
slow slew rate = off  
VCCIO = 2.5 V  
5.5  
Output buffer enable delay, C1 = 35 pF  
slow slew rate = on  
VCCIO = 2.5 V or 3.3 V  
10.0  
tXZ  
Output buffer disable delay C1 = 5 pF  
Register setup time  
Register hold time  
4.0  
2.0  
1.0  
0.7  
0.6  
1.2  
0.6  
0.8  
1.2  
1.2  
5.0  
2.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSU  
1.3  
0.6  
tH  
1.3  
tRD  
Register delay  
1.2  
1.0  
2.0  
1.0  
1.3  
1.9  
1.9  
1.5  
tCOMB  
tIC  
Combinatorial delay  
Array clock delay  
1.3  
2.5  
tEN  
Register enable time  
Global control delay  
Register preset time  
Register clear time  
1.2  
tGLOB  
tPRE  
tCLR  
1.9  
2.6  
2.6  
Altera Corporation  
29  
MAX 3000A Programmable Logic Device Family Data Sheet  
Table 17. EPM3032A Internal Timing Parameters (Part 2 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
–7  
Unit  
–4  
–10  
Min  
Max Min  
Max  
Min  
Max  
tPIA  
PIA delay  
Low–power adder  
(2)  
(5)  
0.9  
2.5  
1.5  
4.0  
2.1  
5.0  
ns  
ns  
tLPA  
Table 18. EPM3064A External Timing Parameters  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
–7  
Unit  
–4  
–10  
Min  
Max  
Min  
Max  
Min  
Max  
tPD1  
tPD2  
Input to non–registered  
output  
C1 = 35 pF (2)  
4.5  
7.5  
10.0  
ns  
ns  
I/O input to non–registered C1 = 35 pF (2)  
4.5  
7.5  
10.0  
output  
tSU  
Global clock setup time  
Global clock hold time  
(2)  
(2)  
2.8  
0.0  
1.0  
2.0  
2.0  
1.6  
0.3  
1.0  
2.0  
2.0  
2.0  
4.7  
0.0  
1.0  
3.0  
3.0  
2.6  
0.4  
1.0  
3.0  
3.0  
3.0  
6.2  
0.0  
1.0  
4.0  
4.0  
3.6  
0.6  
1.0  
4.0  
4.0  
4.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tH  
tCO1  
tCH  
Global clock to output delay C1 = 35 pF  
Global clock high time  
3.1  
5.1  
7.0  
tCL  
Global clock low time  
tASU  
tAH  
Array clock setup time  
Array clock hold time  
(2)  
(2)  
tACO1  
tACH  
tACL  
tCPPW  
Array clock to output delay C1 = 35 pF (2)  
Array clock high time  
4.3  
7.2  
9.6  
Array clock low time  
Minimum pulse width for  
clear and preset  
(3)  
tCNT  
fCNT  
Minimum global clock  
period  
(2)  
4.5  
4.5  
7.4  
7.4  
10.0  
10.0  
ns  
Maximum internal global  
clock frequency  
(2), (4)  
222.2  
222.2  
135.1  
135.1  
100.0  
100.0  
MHz  
tACNT  
fACNT  
Minimum array clock period (2)  
ns  
Maximum internal array  
clock frequency  
(2), (4)  
MHz  
30  
Altera Corporation  
MAX 3000A Programmable Logic Device Family Data Sheet  
Table 19. EPM3064A Internal Timing Parameters (Part 1 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
–7  
Unit  
–4  
–10  
Min  
Max Min  
Max  
Min Max  
tIN  
tIO  
Input pad and buffer delay  
0.6  
0.6  
1.1  
1.1  
1.4  
1.4  
ns  
ns  
I/O input pad and buffer  
delay  
tSEXP  
tPEXP  
tLAD  
tLAC  
tIOE  
Shared expander delay  
Parallel expander delay  
Logic array delay  
1.8  
0.4  
1.5  
0.6  
0.0  
0.8  
3.0  
0.7  
2.5  
1.0  
0.0  
1.3  
3.9  
0.9  
3.2  
1.2  
0.0  
1.8  
ns  
ns  
ns  
ns  
ns  
ns  
Logic control array delay  
Internal output enable delay  
tOD1  
Output buffer and pad  
delay, slow slew rate = off  
VCCIO = 3.3 V  
C1 = 35 pF  
C1 = 35 pF  
C1 = 35 pF  
tOD2  
tOD3  
tZX1  
tZX2  
tZX3  
Output buffer and pad  
delay, slow slew rate = off  
VCCIO = 2.5 V  
1.3  
5.8  
4.0  
4.5  
9.0  
1.8  
6.3  
4.0  
4.5  
9.0  
4.0  
2.3  
6.8  
ns  
ns  
ns  
ns  
ns  
Output buffer and pad  
delay, slow slew rate = on  
V
CCIO = 2.5 V or 3.3 V  
Output buffer enable delay, C1 = 35 pF  
slow slew rate = off  
5.0  
V
CCIO = 3.3 V  
Output buffer enable delay, C1 = 35 pF  
slow slew rate = off  
VCCIO = 2.5 V  
5.5  
Output buffer enable delay, C1 = 35 pF  
slow slew rate = on  
VCCIO = 2.5 V or 3.3 V  
10.0  
tXZ  
Output buffer disable delay C1 = 5 pF  
Register setup time  
Register hold time  
4.0  
2.0  
1.0  
0.7  
0.6  
1.2  
0.6  
1.0  
1.3  
5.0  
2.9  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSU  
1.3  
0.6  
tH  
1.3  
tRD  
Register delay  
1.2  
0.9  
1.9  
1.0  
1.5  
2.1  
1.6  
tCOMB  
tIC  
Combinatorial delay  
Array clock delay  
1.3  
2.5  
tEN  
Register enable time  
Global control delay  
Register preset time  
1.2  
tGLOB  
tPRE  
2.2  
2.9  
Altera Corporation  
31  
MAX 3000A Programmable Logic Device Family Data Sheet  
Table 19. EPM3064A Internal Timing Parameters (Part 2 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
–7  
Unit  
–4  
–10  
Min  
Max Min  
Max  
Min  
Max  
tCLR  
tPIA  
Register clear time  
PIA delay  
1.3  
1.0  
3.5  
2.1  
1.7  
4.0  
2.9  
2.3  
5.0  
ns  
ns  
ns  
(2)  
(5)  
tLPA  
Low–power adder  
Table 20. EPM3128A External Timing Parameters  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
–7  
Unit  
–5  
–10  
Min  
Max  
Min  
Max  
Min  
Max  
tPD1  
tPD2  
tSU  
Input to non–  
registered output  
C1 = 35 pF  
(2)  
5.0  
7.5  
10  
ns  
ns  
ns  
I/O input to non–  
registered output  
C1 = 35 pF  
(2)  
5.0  
7.5  
5.0  
10  
Global clock setup  
time  
(2)  
3.3  
4.9  
6.6  
tH  
Global clock hold time (2)  
0.0  
1.0  
0.0  
1.0  
0.0  
1.0  
ns  
ns  
tCO1  
Global clock to output C1 = 35 pF  
delay  
3.4  
6.6  
tCH  
Global clock high time  
2.0  
2.0  
1.8  
0.2  
1.0  
3.0  
3.0  
2.8  
0.3  
1.0  
4.0  
4.0  
3.8  
0.4  
1.0  
ns  
ns  
ns  
ns  
ns  
tCL  
Global clock low time  
tASU  
tAH  
Array clock setup time (2)  
Array clock hold time (2)  
Array clock to output C1 = 35 pF  
tACO1  
4.9  
7.1  
9.4  
delay  
(2)  
tACH  
tACL  
Array clock high time  
Array clock low time  
2.0  
2.0  
2.0  
3.0  
3.0  
3.0  
4.0  
4.0  
4.0  
ns  
ns  
ns  
tCPPW  
Minimum pulse width (3)  
for clear and preset  
tCNT  
fCNT  
tACNT  
Minimum global clock (2)  
period  
5.2  
5.2  
7.7  
7.7  
10.2  
10.2  
ns  
MHz  
ns  
Maximum internal  
(2), (4)  
192.3  
129.9  
98.0  
global clock frequency  
Minimum array clock (2)  
period  
32  
Altera Corporation  
MAX 3000A Programmable Logic Device Family Data Sheet  
Table 20. EPM3128A External Timing Parameters  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
–7  
Unit  
–5  
–10  
Min  
Max  
Min  
Max  
Min  
Max  
fACNT  
Maximum internal  
(2), (4)  
192.3  
129.9  
98.0  
MHz  
array clock frequency  
Table 21. EPM3128A Internal Timing Parameters (Part 1 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
–7  
Unit  
–5  
–10  
Min  
Max Min  
Max  
Min Max  
tIN  
tIO  
Input pad and buffer delay  
0.7  
0.7  
1.0  
1.0  
1.4  
1.4  
ns  
ns  
I/O input pad and buffer  
delay  
tSEXP  
tPEXP  
tLAD  
tLAC  
tIOE  
Shared expander delay  
Parallel expander delay  
Logic array delay  
2.0  
0.4  
1.6  
0.7  
0.0  
0.8  
2.9  
0.7  
2.4  
1.0  
0.0  
1.2  
3.8  
0.9  
3.1  
1.3  
0.0  
1.6  
ns  
ns  
ns  
ns  
ns  
ns  
Logic control array delay  
Internal output enable delay  
tOD1  
Output buffer and pad  
delay, slow slew rate = off  
VCCIO = 3.3 V  
C1 = 35 pF  
C1 = 35 pF  
C1 = 35 pF  
tOD2  
tOD3  
tZX1  
tZX2  
tZX3  
tXZ  
Output buffer and pad  
delay, slow slew rate = off  
VCCIO = 2.5 V  
1.3  
5.8  
4.0  
4.5  
9.0  
4.0  
1.7  
6.2  
4.0  
4.5  
9.0  
4.0  
2.1  
6.6  
ns  
ns  
ns  
ns  
ns  
ns  
Output buffer and pad  
delay, slow slew rate = on  
V
CCIO = 2.5 V or 3.3 V  
Output buffer enable delay, C1 = 35 pF  
slow slew rate = off  
5.0  
V
CCIO = 3.3 V  
Output buffer enable delay, C1 = 35 pF  
slow slew rate = off  
VCCIO = 2.5 V  
5.5  
Output buffer enable delay, C1 = 35 pF  
slow slew rate = on  
VCCIO = 2.5 V or 3.3 V  
10.0  
5.0  
Output buffer disable delay C1 = 5 pF  
Altera Corporation  
33  
MAX 3000A Programmable Logic Device Family Data Sheet  
Table 21. EPM3128A Internal Timing Parameters (Part 2 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
–7  
Unit  
–5  
–10  
Min  
Max Min  
Max  
Min  
Max  
tSU  
Register setup time  
Register hold time  
Register delay  
1.4  
0.6  
2.1  
1.0  
2.9  
1.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tH  
tRD  
0.8  
1.2  
0.9  
1.7  
1.0  
1.6  
2.0  
2.0  
2.0  
4.0  
1.6  
1.3  
2.2  
1.3  
2.0  
2.7  
2.7  
2.6  
5.0  
tCOMB  
tIC  
Combinatorial delay  
Array clock delay  
Register enable time  
Global control delay  
Register preset time  
Register clear time  
PIA delay  
0.5  
1.2  
tEN  
0.7  
tGLOB  
tPRE  
tCLR  
tPIA  
tLPA  
1.1  
1.4  
1.4  
(2)  
(5)  
1.4  
Low–power adder  
4.0  
Table 22. EPM3256A External Timing Parameters  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
Unit  
–7  
–10  
Min  
Max  
Min  
Max  
tPD1  
Input to non–registered  
output  
C1 = 35 pF (2)  
7.5  
10  
ns  
ns  
tPD2  
I/O input to non–registered C1 = 35 pF (2)  
output  
7.5  
4.8  
10  
tSU  
tH  
Global clock setup time  
Global clock hold time  
(2)  
5.2  
0.0  
1.0  
6.9  
0.0  
1.0  
ns  
ns  
ns  
(2)  
tCO1  
Global clock to output  
delay  
C1 = 35 pF  
6.4  
9.7  
tCH  
Global clock high time  
Global clock low time  
Array clock setup time  
Array clock hold time  
3.0  
3.0  
2.7  
0.3  
1.0  
3.0  
3.0  
3.0  
4.0  
4.0  
3.6  
0.5  
1.0  
4.0  
4.0  
4.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCL  
tASU  
tAH  
(2)  
(2)  
tACO1  
tACH  
tACL  
tCPPW  
Array clock to output delay C1 = 35 pF (2)  
Array clock high time  
7.3  
Array clock low time  
Minimum pulse width for  
clear and preset  
(3)  
34  
Altera Corporation  
MAX 3000A Programmable Logic Device Family Data Sheet  
Table 22. EPM3256A External Timing Parameters  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
Unit  
–7  
–10  
Min  
Max  
Min  
Max  
tCNT  
Minimum global clock  
period  
(2)  
7.9  
10.5  
ns  
MHz  
ns  
fCNT  
Maximum internal global  
clock frequency  
(2), (4)  
(2)  
126.6  
95.2  
95.2  
tACNT  
fACNT  
Minimum array clock  
period  
7.9  
10.5  
Maximum internal array  
clock frequency  
(2), (4)  
126.6  
MHz  
Table 23. EPM3256A Internal Timing Parameters (Part 1 of 2)  
Note (1)  
Speed Grade  
Symbol  
Parameter  
Conditions  
Unit  
–7  
–10  
Min  
Max  
Min  
Max  
tIN  
Input pad and buffer delay  
I/O input pad and buffer delay  
Shared expander delay  
Parallel expander delay  
Logic array delay  
0.9  
0.9  
2.8  
0.5  
2.2  
1.0  
0.0  
1.2  
1.2  
1.2  
3.7  
0.6  
2.8  
1.3  
0.0  
1.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tIO  
tSEXP  
tPEXP  
tLAD  
tLAC  
tIOE  
Logic control array delay  
Internal output enable delay  
tOD1  
Output buffer and pad delay,  
slow slew rate = off  
VCCIO = 3.3 V  
C1 = 35 pF  
tOD2  
Output buffer and pad delay,  
slow slew rate = off  
C1 = 35 pF  
C1 = 35 pF  
1.7  
6.2  
2.1  
6.6  
ns  
ns  
V
CCIO = 2.5 V  
tOD3  
Output buffer and pad delay,  
slow slew rate = on  
VCCIO = 2.5 V or 3.3 V  
tZX1  
tZX2  
Output buffer enable delay, slow C1 = 35 pF  
slew rate = off VCCIO = 3.3 V  
4.0  
4.5  
5.0  
5.5  
ns  
ns  
Output buffer enable delay, slow C1 = 35 pF  
slew rate = off VCCIO = 2.5 V  
Altera Corporation  
35  
MAX 3000A Programmable Logic Device Family Data Sheet  
Table 23. EPM3256A Internal Timing Parameters (Part 2 of 2)  
Note (1)  
Speed Grade  
Symbol  
Parameter  
Conditions  
Unit  
–7  
–10  
Min  
Max  
Min  
Max  
tZX3  
Output buffer enable delay, slow C1 = 35 pF  
slew rate = on  
9.0  
10.0  
ns  
VCCIO = 2.5 V or 3.3 V  
tXZ  
Output buffer disable delay  
Register setup time  
Register hold time  
Register delay  
C1 = 5 pF  
4.0  
5.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSU  
2.1  
0.9  
2.9  
1.2  
tH  
tRD  
1.2  
0.8  
1.6  
1.0  
1.5  
2.3  
2.3  
2.4  
4.0  
1.6  
1.2  
2.1  
1.3  
2.0  
3.0  
3.0  
3.2  
5.0  
tCOMB  
tIC  
Combinatorial delay  
Array clock delay  
Register enable time  
Global control delay  
Register preset time  
Register clear time  
PIA delay  
tEN  
tGLOB  
tPRE  
tCLR  
tPIA  
tLPA  
(2)  
(5)  
Low–power adder  
Table 24. EPM3512A External Timing Parameters  
Note (1)  
Symbol Parameter Conditions  
Speed Grade  
Unit  
-7  
-10  
Min  
Max  
Min  
Max  
tPD1  
Input to non-registered output C1 = 35 pF (2)  
7.5  
7.5  
10.0  
10.0  
ns  
ns  
tPD2  
I/O input to non-registered  
output  
C1 = 35 pF (2)  
tSU  
tH  
Global clock setup time  
Global clock hold time  
(2)  
(2)  
5.6  
0.0  
3.0  
7.6  
0.0  
3.0  
ns  
ns  
ns  
tFSU  
Global clock setup time of fast  
input  
tFH  
Global clock hold time of fast  
input  
0.0  
0.0  
ns  
tCO1  
tCH  
Global clock to output delay  
Global clock high time  
Global clock low time  
Array clock setup time  
C1 = 35 pF  
1.0  
3.0  
3.0  
2.5  
4.7  
1.0  
4.0  
4.0  
3.5  
6.3  
ns  
ns  
ns  
ns  
tCL  
tASU  
(2)  
36  
Altera Corporation  
MAX 3000A Programmable Logic Device Family Data Sheet  
Table 24. EPM3512A External Timing Parameters  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
Unit  
-7  
-10  
Min  
Max  
Min  
Max  
tAH  
tACO1  
tACH  
Array clock hold time  
Array clock to output delay  
Array clock high time  
Array clock low time  
(2)  
C1 = 35 pF (2)  
0.2  
1.0  
3.0  
3.0  
3.0  
0.3  
1.0  
4.0  
4.0  
4.0  
ns  
ns  
ns  
ns  
ns  
7.8  
10.4  
tACL  
tCPPW  
Minimum pulse width for clear (3)  
and preset  
tCNT  
fCNT  
Minimum global clock period  
(2)  
8.6  
8.6  
11.5  
11.5  
ns  
Maximum internal global clock (2), (4)  
frequency  
116.3  
116.3  
87.0  
87.0  
MHz  
tACNT  
fACNT  
Minimum array clock period  
(2)  
ns  
Maximum internal array clock (2), (4)  
MHz  
frequency  
Table 25. EPM3512A Internal Timing Parameters (Part 1 of 2)  
Note (1)  
Speed Grade  
Symbol  
Parameter  
Conditions  
Unit  
-7  
-10  
Min  
Max  
Min  
Max  
tIN  
Input pad and buffer delay  
I/O input pad and buffer delay  
Fast input delay  
0.7  
0.7  
3.1  
2.7  
0.4  
2.2  
1.0  
0.0  
1.0  
0.9  
0.9  
3.6  
3.5  
0.5  
2.8  
1.3  
0.0  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tIO  
tFIN  
tSEXP  
tPEXP  
tLAD  
tLAC  
tIOE  
Shared expander delay  
Parallel expander delay  
Logic array delay  
Logic control array delay  
Internal output enable delay  
tOD1  
Output buffer and pad delay,  
slow slew rate = off  
VCCIO = 3.3 V  
C1 = 35 pF  
C1 = 35 pF  
tOD2  
Output buffer and pad delay,  
slow slew rate = off  
VCCIO = 2.5 V  
1.5  
2.0  
ns  
Altera Corporation  
37  
MAX 3000A Programmable Logic Device Family Data Sheet  
Table 25. EPM3512A Internal Timing Parameters (Part 2 of 2)  
Note (1)  
Speed Grade  
Symbol  
Parameter  
Conditions  
Unit  
-7  
-10  
Min  
Max  
Min  
Max  
tOD3  
Output buffer and pad delay,  
slow slew rate = on  
VCCIO = 2.5 V or 3.3 V  
C1 = 35 pF  
C1 = 35 pF  
C1 = 35 pF  
C1 = 35 pF  
C1 = 5 pF  
6.0  
6.5  
ns  
ns  
ns  
ns  
tZX1  
tZX2  
tZX3  
Output buffer enable delay,  
slow slew rate = off  
4.0  
4.5  
9.0  
4.0  
5.0  
5.5  
V
CCIO = 3.3 V  
Output buffer enable delay,  
slow slew rate = off  
V
CCIO = 2.5 V  
Output buffer enable delay,  
slow slew rate = on  
VCCIO = 3.3 V  
10.0  
5.0  
tXZ  
Output buffer disable delay  
Register setup time  
Register hold time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSU  
2.1  
0.6  
1.6  
1.4  
3.0  
0.8  
1.6  
1.4  
tH  
tFSU  
tFH  
Register setup time of fast input  
Register hold time of fast input  
Register delay  
tRD  
1.3  
0.6  
1.8  
1.0  
1.7  
1.0  
1.0  
3.0  
4.5  
1.7  
0.8  
2.3  
1.3  
2.2  
1.4  
1.4  
4.0  
5.0  
tCOMB  
tIC  
Combinatorial delay  
Array clock delay  
tEN  
Register enable time  
Global control delay  
Register preset time  
Register clear time  
PIA delay  
tGLOB  
tPRE  
tCLR  
tPIA  
tLPA  
(2)  
(5)  
Low-power adder  
Notes to tables:  
(1) These values are specified under the recommended operating conditions, as shown in Table 13 on page 23. See  
Figure 11 on page 27 for more information on switching waveforms.  
(2) These values are specified for a PIA fan–out of one LAB (16 macrocells). For each additional LAB fan–out in these  
devices, add an additional 0.1 ns to the PIA timing value.  
(3) This minimum pulse width for preset and clear applies for both global clear and array controls. The t  
parameter  
LPA  
must be added to this minimum width if the clear or reset signal incorporates the t  
parameter into the signal  
LAD  
path.  
(4) These parameters are measured with a 16–bit loadable, enabled, up/down counter programmed into each LAB.  
(5) The t  
parameter must be added to the t  
, t  
, t , t , t  
, t  
, and t parameters for macrocells  
LPA  
LAD LAC IC EN SEXP ACL  
CPPW  
running in low–power mode.  
38  
Altera Corporation  
MAX 3000A Programmable Logic Device Family Data Sheet  
Supply power (P) versus frequency (fMAX, in MHz) for MAX 3000A  
devices is calculated with the following equation:  
Power  
Consumption  
P = PINT + PIO = ICCINT × VCC + PIO  
The PIO value, which depends on the device output load characteristics  
and switching frequency, can be calculated using the guidelines given in  
Application Note 74 (Evaluating Power for Altera Devices).  
The ICCINT value depends on the switching frequency and the application  
logic. The ICCINT value is calculated with the following equation:  
ICCINT  
=
(A × MCTON) + [B × (MCDEV – MCTON)] + (C × MCUSED × fMAX × togLC  
)
The parameters in the ICCINT equation are:  
MCTON  
=
Number of macrocells with the Turbo BitTM option turned  
on, as reported in the Quartus II or MAX+PLUS II Report  
File (.rpt)  
MCDEV  
MCUSED  
=
=
Number of macrocells in the device  
Total number of macrocells in the design, as reported in  
the RPT File  
fMAX  
togLC  
=
=
Highest clock frequency to the device  
Average percentage of logic cells toggling at each clock  
(typically 12.5%)  
A, B, C  
=
Constants (shown in Table 26)  
Table 26. MAX 3000A ICC Equation Constants  
Device  
A
B
C
EPM3032A  
EPM3064A  
EPM3128A  
EPM3256A  
EPM3512A  
0.71  
0.71  
0.71  
0.71  
0.71  
0.30  
0.30  
0.30  
0.30  
0.30  
0.014  
0.014  
0.014  
0.014  
0.014  
The ICCINT calculation provides an ICC estimate based on typical  
conditions using a pattern of a 16–bit, loadable, enabled, up/down  
counter in each LAB with no output load. Actual ICC should be verified  
during operation because this measurement is sensitive to the actual  
pattern in the device and the environmental operating conditions.  
Figures 12 and 13 show the typical supply current versus frequency for  
MAX 3000A devices.  
Altera Corporation  
39  
MAX 3000A Programmable Logic Device Family Data Sheet  
Figure 12. ICC vs. Frequency for MAX 3000A Devices  
EPM3064A  
EPM3032A  
40  
35  
30  
80  
70  
60  
VCC = 3.3 V  
Room Temperature  
VCC = 3.3 V  
Room Temperature  
227.3 MHz  
222.2 MHz  
High Speed  
25  
50  
40  
30  
High Speed  
Typical ICC  
Active (mA)  
Typical ICC  
Active (mA)  
20  
15  
144.9 MHz  
125.0 MHz  
20  
10  
10  
5
Low Power  
Low Power  
0
50  
100  
15  
0
0
50  
100  
150  
200  
250  
200  
250  
Frequency (MHz)  
Frequency (MHz)  
EPM3128A  
160  
140  
120  
VCC = 3.3 V  
Room Temperature  
192.3 MHz  
100  
80  
60  
40  
20  
High Speed  
Typical ICC  
Active (mA)  
108.7 MHz  
Low Power  
0
50  
100  
150  
200  
250  
Frequency (MHz)  
40  
Altera Corporation  
MAX 3000A Programmable Logic Device Family Data Sheet  
Figure 13. ICC vs. Frequency for MAX 3000A Devices  
EPM3512A  
EPM3256A  
600  
500  
400  
300  
200  
100  
300  
VCC = 3.3 V  
Room Temperature  
VCC = 3.3 V  
Room Temperature  
250  
200  
172.4 MHz  
116.3 MHz  
High Speed  
Typical ICC  
Active (mA)  
Typical ICC  
Active (mA)  
High Speed  
150  
100  
50  
102.0 MHz  
76.3 MHz  
Low Power  
Low Power  
0
20  
40  
60  
80  
100  
120  
140  
0
50  
100  
150  
200  
Frequency (MHz)  
Frequency (MHz)  
Altera Corporation  
41  
MAX 3000A Programmable Logic Device Family Data Sheet  
See the Altera web site (http://www.altera.com) or the Altera Digital  
Library for pin–out information.  
Device  
Pin–Outs  
Figures 14 through 18 show the package pin–out diagrams for  
MAX 3000A devices.  
Figure 14. 44–Pin PLCC/TQFP Package Pin–Out Diagram  
Package outlines not drawn to scale.  
Pin 34  
Pin 1  
6
5
4
3
2
1 44 43 42 41 40  
7
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
I/O/TDI  
I/O  
I/O  
I/O/TDI  
I/O  
I/O  
8
I/O/TDO  
I/O  
I/O/TDO  
9
I/O  
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
GND  
I/O  
GND  
VCC  
I/O  
GND  
I/O  
GND  
VCC  
I/O  
I/O  
EPM3032A  
EPM3064A  
EPM3032A  
EPM3064A  
I/O  
I/O/TMS  
I/O  
I/O  
I/O/TMS  
I/O  
I/O/TCK  
I/O  
I/O  
I/O/TCK  
I/O  
VCC  
I/O  
VCC  
GND  
I/O  
GND  
I/O  
GND  
I/O  
GND  
18 19 20 21 22 23 24 25 26 27 28  
Pin 12  
Pin 23  
44-Pin PLCC  
44-Pin TQFP  
42  
Altera Corporation  
MAX 3000A Programmable Logic Device Family Data Sheet  
Figure 15. 100–Pin TQFP Package Pin–Out Diagram  
Package outline not drawn to scale.  
Pin 1  
Pin 76  
EPM3064A  
EPM3128A  
Pin 26  
Pin 51  
Figure 16. 144–Pin TQFP Package Pin–Out Diagram  
Package outline not drawn to scale.  
Indicates location  
of Pin 1  
Pin 1  
Pin 109  
EPM3128A  
EPM3256A  
Pin 37  
Pin 73  
Altera Corporation  
43  
MAX 3000A Programmable Logic Device Family Data Sheet  
Figure 17. 208–Pin PQFP Package Pin–Out Diagram  
Package outline not drawn to scale.  
Pin 1  
Pin 157  
EPM3256A  
EPM3512A  
Pin 53  
Pin 105  
44  
Altera Corporation  
MAX 3000A Programmable Logic Device Family Data Sheet  
Figure 18. 256-Pin FineLine BGA Package Pin-Out Diagram  
Package outline not drawn to scale.  
A1 Ball  
Pad Corner  
A
Indicates  
Location of  
Ball A1  
B
C
D
E
F
G
H
J
EPM3512A  
K
L
M
N
P
R
T
16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
The information contained in the MAX 3000A Programmable Logic Device  
Data Sheet version 3.5 supersedes information published in previous  
versions. The following changes were made in the MAX 3000A  
Programmable Logic Device Data Sheet version 3.5:  
Revision  
History  
Version 3.5  
The following changes were made in the MAX 3000A Programmable Logic  
Device Data Sheet version 3.5:  
New paragraph added before “Expander Product Terms”.  
Version 3.4  
The following changes were made in the MAX 3000A Programmable Logic  
Device Data Sheet version 3.4:  
Updated Table 1.  
Altera Corporation  
45  
MAX 3000A Programmable Logic Device Family Data Sheet  
Version 3.3  
The following changes were made in the MAX 3000A Programmable Logic  
Device Data Sheet version 3.3:  
Updated Tables 3, 13, and 26.  
Added Tables 4 through 6.  
Updated Figures 12 and 13.  
Added “Programming Sequence” on page 14 and “Programming  
Times” on page 14  
Version 3.2  
The following change were made in the MAX 3000A Programmable Logic  
Device Data Sheet version 3.2:  
Updated the EPM3512 ICC versus frequency graph in Figure 13.  
Version 3.1  
The following changes were made in the MAX 3000A Programmable Logic  
Device Data Sheet version 3.1:  
Updated timing information in Table 1 for the EPM3256A device.  
Updated Note (10) of Table 15.  
Version 3.0  
The following changes were made in the MAX 3000A Programmable Logic  
Device Data Sheet version 3.0:  
Added EPM3512A device.  
Updated Tables 2 and 3.  
101 Innovation Drive  
San Jose, CA 95134  
(408) 544-7000  
http://www.altera.com  
Applications Hotline:  
(800) 800-EPLD  
Customer Marketing:  
(408) 544-7104  
Literature Services:  
lit_req@altera.com  
Copyright © 2006 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the  
stylized Altera logo, specific device designations, and all other words and logos that are identified as  
trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera  
Corporation in the U.S. and other countries. All other product or service names are the property of their  
respective holders. Altera products are protected under numerous U.S. and foreign patents and pending  
applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to  
current specifications in accordance with Altera's standard warranty, but reserves the right  
to make changes to any products and services at any time without notice. Altera assumes no  
responsibility or liability arising out of the application or use of any information, product, or  
service described herein except as expressly agreed to in writing by Altera Corporation.  
Altera customers are advised to obtain the latest version of device specifications before  
relying on any published information and before placing orders for products or services  
46  
Altera Corporation  

相关型号:

EPM3512AFC256-7N

EE PLD, 7.5ns, 512-Cell, CMOS, PBGA256, FINE LINE, BGA-256
INTEL

EPM3512AFI256-10

EE PLD, 10ns, 512-Cell, CMOS, PBGA256, FINE LINE, BGA-256
INTEL

EPM3512AFI256-10

EE PLD, 10ns, 512-Cell, CMOS, PBGA256, FINE LINE, BGA-256
ALTERA

EPM3512AFI256-10N

EE PLD, 10ns, 512-Cell, CMOS, PBGA256, FINE LINE, BGA-256
INTEL

EPM3512AFI256-10N

EE PLD, 10ns, 512-Cell, CMOS, PBGA256, FINE LINE, BGA-256
ALTERA

EPM3512AQC208-10

EE PLD, 10ns, 512-Cell, CMOS, PQFP208, PLASTIC, QFP-208
ALTERA

EPM3512AQC208-10

EE PLD, 10ns, 512-Cell, CMOS, PQFP208, PLASTIC, QFP-208
INTEL

EPM3512AQC208-10N

Programmable Logic Device Family
ALTERA

EPM3512AQC208-10N

EE PLD, 10ns, 512-Cell, CMOS, PQFP208, PLASTIC, QFP-208
INTEL

EPM3512AQC208-7

EE PLD, 7.5ns, 512-Cell, CMOS, PQFP208, PLASTIC, QFP-208
ALTERA

EPM3512AQC208-7N

EE PLD, 7.5ns, 512-Cell, CMOS, PQFP208, PLASTIC, QFP-208
INTEL

EPM3512AQC208-7N

EE PLD, 7.5ns, 512-Cell, CMOS, PQFP208, PLASTIC, QFP-208
ALTERA