EPM7256BFI256-5 [INTEL]

EE PLD, 5ns, 256-Cell, CMOS, PBGA256, FINE LINE, BGA-256;
EPM7256BFI256-5
型号: EPM7256BFI256-5
厂家: INTEL    INTEL
描述:

EE PLD, 5ns, 256-Cell, CMOS, PBGA256, FINE LINE, BGA-256

文件: 总66页 (文件大小:962K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MAX 7000B  
Programmable Logic  
Device  
®
September 2005, ver. 3.5  
Data Sheet  
High-performance 2.5-V CMOS EEPROM-based programmable logic  
devices (PLDs) built on second-generation Multiple Array MatriX  
(MAX®) architecture (see Table 1)  
Features...  
Pin-compatible with the popular 5.0-V MAX 7000S and 3.3-V  
MAX 7000A device families  
High-density PLDs ranging from 600 to 10,000 usable gates  
3.5-ns pin-to-pin logic delays with counter frequencies in excess  
of 303.0 MHz  
Advanced 2.5-V in-system programmability (ISP)  
Programs through the built-in IEEE Std. 1149.1 Joint Test Action  
Group (JTAG) interface with advanced pin-locking capability  
Enhanced ISP algorithm for faster programming  
ISP_Done bit to ensure complete programming  
Pull-up resistor on I/O pins during in-system programming  
ISP circuitry compliant with IEEE Std. 1532  
For information on in-system programmable 5.0-V MAX 7000S or 3.3-V  
MAX 7000A devices, see the MAX 7000 Programmable Logic Device Family  
Data Sheet or the MAX 7000A Programmable Logic Device Family Data Sheet.  
f
Table 1. MAX 7000B Device Features  
Feature  
EPM7032B  
EPM7064B  
EPM7128B  
EPM7256B  
EPM7512B  
Usable gates  
Macrocells  
600  
32  
2
1,250  
64  
2,500  
128  
8
5,000  
256  
16  
10,000  
512  
Logic array blocks  
4
32  
Maximum user I/O  
pins  
36  
68  
100  
164  
212  
t
PD (ns)  
SU (ns)  
3.5  
2.1  
3.5  
2.1  
4.0  
2.5  
5.0  
3.3  
5.5  
3.6  
t
tFSU (ns)  
CO1 (ns)  
1.0  
1.0  
1.0  
1.0  
1.0  
t
2.4  
2.4  
2.8  
3.3  
3.7  
fCNT (MHz)  
303.0  
303.0  
243.9  
188.7  
163.9  
Altera Corporation  
1
DS-MAX7000B-3.5  
MAX 7000B Programmable Logic Device Data Sheet  
System-level features  
...and More  
Features  
MultiVoltTM I/O interface enabling device core to run at 2.5 V,  
while I/O pins are compatible with 3.3-V, 2.5-V, and 1.8-V logic  
levels  
Programmable power-saving mode for 50% or greater power  
reduction in each macrocell  
Fast input setup times provided by a dedicated path from I/O  
pin to macrocell registers  
Support for advanced I/O standards, including SSTL-2 and  
SSTL-3, and GTL+  
Bus-hold option on I/O pins  
PCI compatible  
Bus-friendly architecture including programmable slew-rate  
control  
Open-drain output option  
Programmable security bit for protection of proprietary designs  
Built-in boundary-scan test circuitry compliant with  
IEEE Std. 1149.1  
Supports hot-socketing operation  
Programmable ground pins  
Advanced architecture features  
Programmable interconnect array (PIA) continuous routing  
structure for fast, predictable performance  
Configurable expander product-term distribution, allowing up  
to 32 product terms per macrocell  
Programmable macrocell registers with individual clear, preset,  
clock, and clock enable controls  
Two global clock signals with optional inversion  
Programmable power-up states for macrocell registers  
6 to 10 pin- or logic-driven output enable signals  
Advanced package options  
Pin counts ranging from 44 to 256 in a variety of thin quad flat  
pack (TQFP), plastic quad flat pack (PQFP), ball-grid array  
(BGA), space-saving FineLine BGATM, 0.8-mm Ultra  
FineLine BGA, and plastic J-lead chip carrier (PLCC) packages  
Pin-compatibility with other MAX 7000B devices in the same  
package  
Advanced software support  
Software design support and automatic place-and-route  
provided by Altera’s MAX+PLUS® II development system for  
Windows-based PCs and Sun SPARCstation, and HP 9000  
Series 700/800 workstations  
2
Altera Corporation  
MAX 7000B Programmable Logic Device Data Sheet  
Additional design entry and simulation support provided by  
EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized  
modules (LPMs), Verilog HDL, VHDL, and other interfaces to  
popular EDA tools from manufacturers such as Cadence,  
Exemplar Logic, Mentor Graphics, OrCAD, Synopsys,  
Synplicity, and VeriBest  
Programming support with Altera’s Master Programming Unit  
(MPU), MasterBlasterTM serial/universal serial bus (USB)  
communications cable, and ByteBlasterMVTM parallel port  
download cable, as well as programming hardware from third-  
party manufacturers and any JamTM STAPL File (.jam), Jam Byte-  
Code File (.jbc), or Serial Vector Format File (.svf)-capable in-  
circuit tester  
MAX 7000B devices are high-density, high-performance devices based on  
Altera’s second-generation MAX architecture. Fabricated with advanced  
CMOS technology, the EEPROM-based MAX 7000B devices operate with  
a 2.5-V supply voltage and provide 600 to 10,000 usable gates, ISP,  
pin-to-pin delays as fast as 3.5 ns, and counter speeds up to 303.0 MHz.  
See Table 2.  
General  
Description  
Table 2. MAX 7000B Speed Grades  
Note (1)  
Speed Grade  
Device  
-3  
-4  
-5  
-7  
-10  
EPM7032B  
v
v
v
v
v
v
v
v
EPM7064B  
v
EPM7128B  
EPM7256B  
EPM7512B  
v
v
v
v
v
v
Notes:  
(1) Contact Altera Marketing for up-to-date information on available device speed  
grades.  
The MAX 7000B architecture supports 100% TTL emulation and high-  
density integration of SSI, MSI, and LSI logic functions. It easily integrates  
multiple devices ranging from PALs, GALs, and 22V10s to MACH and  
pLSI devices. MAX 7000B devices are available in a wide range of  
packages, including PLCC, BGA, FineLine BGA, 0.8-mm Ultra FineLine  
BGA, PQFP, TQFP, and TQFP packages. See Table 3.  
Altera Corporation  
3
MAX 7000B Programmable Logic Device Data Sheet  
Table 3. MAX 7000B Maximum User I/O Pins  
Note (1)  
Device  
44-Pin 44-Pin 48-Pin 49-Pin  
PLCC TQFP TQFP 0.8-mm  
100-  
Pin  
TQFP  
100-Pin  
FineLine  
BGA (4)  
144- 169-Pin 208-  
256- 256-Pin  
Pin FineLine  
BGA BGA (4)  
Pin  
TQFP  
0.8-mm  
Ultra  
Pin  
PQFP  
(2)  
Ultra  
FineLine  
BGA (3)  
FineLine  
BGA (3)  
EPM7032B  
EPM7064B  
EPM7128B  
EPM7256B  
EPM7512B  
36  
36  
36  
36  
36  
40  
36  
41  
41  
68  
84  
84  
68  
84  
100  
120  
120  
100  
141  
141  
100  
164  
164  
176  
212  
212  
Notes:  
(1) When the IEEE Std. 1149.1 (JTAG) interface is used for in-system programming or boundary-scan testing, four I/O  
pins become JTAG pins.  
(2) Contact Altera for up-to-date information on available device package options.  
(3) All 0.8-mm Ultra FineLine BGA packages are footprint-compatible via the SameFrameTM pin-out feature. Therefore,  
designers can design a board to support a variety of devices, providing a flexible migration path across densities  
and pin counts. Device migration is fully supported by Altera development tools. See “SameFrame Pin-Outs” on  
page 14 for more details.  
(4) All FineLine BGA packages are footprint-compatible via the SameFrame pin-out feature. Therefore, designers can  
design a board to support a variety of devices, providing a flexible migration path across densities and pin counts.  
Device migration is fully supported by Altera development tools. See “SameFrame Pin-Outs” on page 14 for more  
details.  
MAX 7000B devices use CMOS EEPROM cells to implement logic  
functions. The user-configurable MAX 7000B architecture accommodates  
a variety of independent combinatorial and sequential logic functions.  
The devices can be reprogrammed for quick and efficient iterations  
during design development and debug cycles, and can be programmed  
and erased up to 100 times.  
MAX 7000B devices contain 32 to 512 macrocells that are combined into  
groups of 16 macrocells, called logic array blocks (LABs). Each macrocell  
has a programmable-AND/fixed-ORarray and a configurable register with  
independently programmable clock, clock enable, clear, and preset  
functions. To build complex logic functions, each macrocell can be  
supplemented with both shareable expander product terms and high-  
speed parallel expander product terms to provide up to 32 product terms  
per macrocell.  
4
Altera Corporation  
MAX 7000B Programmable Logic Device Data Sheet  
MAX 7000B devices provide programmable speed/power optimization.  
Speed-critical portions of a design can run at high speed/full power,  
while the remaining portions run at reduced speed/low power. This  
speed/power optimization feature enables the designer to configure one  
or more macrocells to operate up to 50% lower power while adding only  
a nominal timing delay. MAX 7000B devices also provide an option that  
reduces the slew rate of the output buffers, minimizing noise transients  
when non-speed-critical signals are switching. The output drivers of all  
MAX 7000B devices can be set for 3.3 V, 2.5 V, or 1.8 V and all input pins  
are 3.3-V, 2.5-V, and 1.8-V tolerant, allowing MAX 7000B devices to be  
used in mixed-voltage systems.  
MAX 7000B devices are supported by Altera development systems, which  
are integrated packages that offer schematic, text—including VHDL,  
Verilog HDL, and the Altera Hardware Description Language (AHDL)—  
and waveform design entry, compilation and logic synthesis, simulation  
and timing analysis, and device programming. Altera software provides  
EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for  
additional design entry and simulation support from other industry-  
standard PC- and UNIX-workstation-based EDA tools. Altera software  
runs on Windows-based PCs, as well as Sun SPARCstation, and HP 9000  
Series 700/800 workstations.  
For more information on development tools, see the MAX+PLUS II  
Programmable Logic Development System & Software Data Sheet and the  
Quartus Programmable Logic Development System & Software Data Sheet.  
f
The MAX 7000B architecture includes the following elements:  
Functional  
Description  
LABs  
Macrocells  
Expander product terms (shareable and parallel)  
PIA  
I/O control blocks  
The MAX 7000B architecture includes four dedicated inputs that can be  
used as general-purpose inputs or as high-speed, global control signals  
(clock, clear, and two output enable signals) for each macrocell and I/O  
pin. Figure 1 shows the architecture of MAX 7000B devices.  
Altera Corporation  
5
MAX 7000B Programmable Logic Device Data Sheet  
Figure 1. MAX 7000B Device Block Diagram  
INPUT/GCLK1  
INPUT/OE2/GCLK2  
INPUT/OE1  
INPUT/GCLRn  
6 or 10 Output Enables (1)  
6 or 10 Output Enables (1)  
LAB A  
LAB B  
2 to 16  
2 to 16  
2 to 16  
2 to 16  
36  
36  
Macrocells  
1 to 16  
Macrocells  
17 to 32  
I/O  
I/O  
2 to 16 I/O  
Control  
Block  
Control  
Block  
2 to 16 I/O  
16  
16  
6 or 10  
2 to 16  
2 to 16  
6 or 10  
LAB C  
LAB D  
2 to 16  
2 to 16  
PIA  
2 to 16  
2 to 16  
36  
36  
Macrocells  
33 to 48  
Macrocells  
49 to 64  
I/O  
Control  
Block  
I/O  
Control  
Block  
2 to 16 I/O  
2 to 16 I/O  
16  
16  
6 or 10  
6 or 10  
2 to 16  
2 to 16  
Note:  
(1) EPM7032B, EPM7064B, EPM7128B, and EPM7256B devices have six output enables. EPM7512B devices have ten  
output enables.  
Logic Array Blocks  
The MAX 7000B device architecture is based on the linking of  
high-performance LABs. LABs consist of 16 macrocell arrays, as shown in  
Figure 1. Multiple LABs are linked together via the PIA, a global bus that  
is fed by all dedicated input pins, I/O pins, and macrocells.  
Each LAB is fed by the following signals:  
36 signals from the PIA that are used for general logic inputs  
Global controls that are used for secondary register functions  
Direct input paths from I/O pins to the registers that are used for fast  
setup times  
6
Altera Corporation  
MAX 7000B Programmable Logic Device Data Sheet  
Macrocells  
The MAX 7000B macrocell can be individually configured for either  
sequential or combinatorial logic operation. The macrocell consists of  
three functional blocks: the logic array, the product-term select matrix,  
and the programmable register. Figure 2 shows the MAX 7000B  
macrocell.  
Figure 2. MAX 7000B Macrocell  
Global Global  
LAB Local Array  
Clear  
Clocks  
From  
2
I/O pin  
Parallel Logic  
Expanders  
(from other  
macrocells)  
Fast Input  
Select  
Programmable  
Register  
Register  
Bypass  
To I/O  
Control  
Block  
PRN  
D/T  
Q
Clock/  
Enable  
Select  
Product-  
Term  
Select  
Matrix  
ENA  
CLRN  
VCC  
Clear  
Select  
To PIA  
Shared Logic  
Expanders  
36 Signals  
from PIA  
16 Expander  
Product Terms  
Combinatorial logic is implemented in the logic array, which provides  
five product terms per macrocell. The product-term select matrix allocates  
these product terms for use as either primary logic inputs (to the ORand  
XORgates) to implement combinatorial functions, or as secondary inputs  
to the macrocell’s register preset, clock, and clock enable control  
functions.  
Two kinds of expander product terms (“expanders”) are available to  
supplement macrocell logic resources:  
Shareable expanders, which are inverted product terms that are fed  
back into the logic array  
Parallel expanders, which are product terms borrowed from adjacent  
macrocells  
Altera Corporation  
7
MAX 7000B Programmable Logic Device Data Sheet  
The Altera development system automatically optimizes product-term  
allocation according to the logic requirements of the design.  
For registered functions, each macrocell flipflop can be individually  
programmed to implement D, T, JK, or SR operation with programmable  
clock control. The flipflop can be bypassed for combinatorial operation.  
During design entry, the designer specifies the desired flipflop type; the  
MAX+PLUS II software then selects the most efficient flipflop operation  
for each registered function to optimize resource utilization.  
Each programmable register can be clocked in three different modes:  
Global clock signal. This mode achieves the fastest clock-to-output  
performance.  
Global clock signal enabled by an active-high clock enable. A clock  
enable is generated by a product term. This mode provides an enable  
on each flipflop while still achieving the fast clock-to-output  
performance of the global clock.  
Array clock implemented with a product term. In this mode, the  
flipflop can be clocked by signals from buried macrocells or I/O pins.  
Two global clock signals are available in MAX 7000B devices. As shown  
in Figure 1, these global clock signals can be the true or the complement of  
either of the global clock pins, GCLK1or GCLK2.  
Each register also supports asynchronous preset and clear functions. As  
shown in Figure 2, the product-term select matrix allocates product terms  
to control these operations. Although the product-term-driven preset and  
clear from the register are active high, active-low control can be obtained  
by inverting the signal within the logic array. In addition, each register  
clear function can be individually driven by the active-low dedicated  
global clear pin (GCLRn). Upon power-up, each register in a MAX 7000B  
device may be set to either a high or low state. This power-up state is  
specified at design entry.  
All MAX 7000B I/O pins have a fast input path to a macrocell register.  
This dedicated path allows a signal to bypass the PIA and combinatorial  
logic and be clocked to an input D flipflop with an extremely fast input  
setup time. The input path from the I/O pin to the register has a  
programmable delay element that can be selected to either guarantee zero  
hold time or to get the fastest possible set-up time (as fast as 1.0 ns).  
8
Altera Corporation  
MAX 7000B Programmable Logic Device Data Sheet  
Expander Product Terms  
Although most logic functions can be implemented with the five product  
terms available in each macrocell, more complex logic functions require  
additional product terms. Another macrocell can be used to supply the  
required logic resources. However, the MAX 7000B architecture also  
offers both shareable and parallel expander product terms (“expanders”)  
that provide additional product terms directly to any macrocell in the  
same LAB. These expanders help ensure that logic is synthesized with the  
fewest possible logic resources to obtain the fastest possible speed.  
Shareable Expanders  
Each LAB has 16 shareable expanders that can be viewed as a pool of  
uncommitted single product terms (one from each macrocell) with  
inverted outputs that feed back into the logic array. Each shareable  
expander can be used and shared by any or all macrocells in the LAB to  
build complex logic functions. A small delay (tSEXP) is incurred when  
shareable expanders are used. Figure 3 shows how shareable expanders  
can feed multiple macrocells.  
Figure 3. MAX 7000B Shareable Expanders  
Shareable expanders can be shared by any or all macrocells in an LAB.  
Macrocell  
Product-Term  
Logic  
Product-Term Select Matrix  
Macrocell  
Product-Term  
Logic  
36 Signals  
from PIA  
16 Shared  
Expanders  
Altera Corporation  
9
MAX 7000B Programmable Logic Device Data Sheet  
Parallel Expanders  
Parallel expanders are unused product terms that can be allocated to a  
neighboring macrocell to implement fast, complex logic functions.  
Parallel expanders allow up to 20 product terms to directly feed the  
macrocell ORlogic, with five product terms provided by the macrocell and  
15 parallel expanders provided by neighboring macrocells in the LAB.  
The Altera Compiler can automatically allocate up to three sets of up to  
five parallel expanders to the macrocells that require additional product  
terms. Each set of five parallel expanders incurs a small, incremental  
timing delay (tPEXP). For example, if a macrocell requires 14 product  
terms, the Compiler uses the five dedicated product terms within the  
macrocell and allocates two sets of parallel expanders; the first set  
includes five product terms and the second set includes four product  
terms, increasing the total delay by 2 × tPEXP  
.
Two groups of eight macrocells within each LAB (e.g., macrocells 1  
through 8, and 9 through 16) form two chains to lend or borrow parallel  
expanders. A macrocell borrows parallel expanders from lower-  
numbered macrocells. For example, macrocell 8 can borrow parallel  
expanders from macrocell 7, from macrocells 7 and 6, or from macrocells  
7, 6, and 5. Within each group of eight, the lowest-numbered macrocell  
can only lend parallel expanders and the highest-numbered macrocell can  
only borrow them. Figure 4 shows how parallel expanders can be  
borrowed from a neighboring macrocell.  
10  
Altera Corporation  
MAX 7000B Programmable Logic Device Data Sheet  
Figure 4. MAX 7000B Parallel Expanders  
Unused product terms in a macrocell can be allocated to a neighboring macrocell.  
From  
Previous  
Macrocell  
Preset  
Product-  
Term  
Select  
Matrix  
Macrocell  
Product-  
Term Logic  
Clock  
Clear  
Preset  
Product-  
Term  
Select  
Matrix  
Macrocell  
Product-  
Term Logic  
Clock  
Clear  
To Next  
Macrocell  
36 Signals 16 Shared  
from PIA  
Expanders  
Programmable Interconnect Array  
Logic is routed between LABs on the PIA. This global bus is a  
programmable path that connects any signal source to any destination on  
the device. All MAX 7000B dedicated inputs, I/O pins, and macrocell  
outputs feed the PIA, which makes the signals available throughout the  
entire device. Only the signals required by each LAB are actually routed  
from the PIA into the LAB. Figure 5 shows how the PIA signals are routed  
into the LAB. An EEPROM cell controls one input to a two-input ANDgate,  
which selects a PIA signal to drive into the LAB.  
Altera Corporation  
11  
MAX 7000B Programmable Logic Device Data Sheet  
Figure 5. MAX 7000B PIA Routing  
To LAB  
PIA Signals  
While the routing delays of channel-based routing schemes in masked or  
field-programmable gate arrays (FPGAs) are cumulative, variable, and  
path-dependent, the MAX 7000B PIA has a predictable delay. The PIA  
makes a design’s timing performance easy to predict.  
I/O Control Blocks  
The I/O control block allows each I/O pin to be individually configured  
for input, output, or bidirectional operation. All I/O pins have a tri-state  
buffer that is individually controlled by one of the global output enable  
signals or directly connected to ground or VCC. Figure 6 shows the I/O  
control block for MAX 7000B devices. The I/O control block has  
six or ten global output enable signals that are driven by the true or  
complement of two output enable signals, a subset of the I/O pins, or a  
subset of the I/O macrocells.  
12  
Altera Corporation  
MAX 7000B Programmable Logic Device Data Sheet  
Figure 6. I/O Control Block of MAX 7000B Devices  
6 or 10 Global  
Output Enable Signals (1)  
PIA  
OE Select Multiplexer  
VCC  
Programmable  
to Other I/O Pins  
GND  
Pull-up  
from  
Macrocell  
Open-Drain Output  
Slew-Rate Control  
I/O Standards  
Bus Hold  
Programmable  
Ground  
Fast Input to  
Macrocell  
Register  
Programmable Delay  
to PIA  
Note:  
(1) EPM7032B, EPM7064B, EPM7128B, and EPM7256B devices have six output enable signals. EPM7512B devices have  
ten output enable signals.  
When the tri-state buffer control is connected to ground, the output is  
tri-stated (high impedance) and the I/O pin can be used as a dedicated  
input. When the tri-state buffer control is connected to VCC, the output is  
enabled.  
The MAX 7000B architecture provides dual I/O feedback, in which  
macrocell and pin feedbacks are independent. When an I/O pin is  
configured as an input, the associated macrocell can be used for buried  
logic.  
Altera Corporation  
13  
MAX 7000B Programmable Logic Device Data Sheet  
MAX 7000B devices support the SameFrame pin-out feature for  
SameFrame  
Pin-Outs  
FineLine BGA and 0.8-mm Ultra FineLine BGA packages. The  
SameFrame pin-out feature is the arrangement of balls on FineLine BGA  
and 0.8-mm Ultra FineLine BGA packages such that the lower-ball-count  
packages form a subset of the higher-ball-count packages. SameFrame  
pin-outs provide the flexibility to migrate not only from device to device  
within the same package, but also from one package to another. FineLine  
BGA packages are compatible with other FineLine BGA packages, and  
0.8-mm Ultra FineLine BGA packages are compatible with other 0.8-mm  
Ultra FineLine BGA packages. A given printed circuit board (PCB) layout  
can support multiple device density/package combinations. For example,  
a single board layout can support a range of devices from an EPM7064B  
device in a 100-pin FineLine BGA package to an EPM7512B device in a  
256-pin FineLine BGA package.  
The Altera software provides support to design PCBs with SameFrame  
pin-out devices. Devices can be defined for present and future use. The  
Altera software generates pin-outs describing how to layout a board to  
take advantage of this migration (see Figure 7).  
Figure 7. SameFrame Pin-Out Example  
Printed Circuit Board  
Designed for 256-Pin FineLine BGA Package  
100-Pin  
FineLine  
BGA  
256-Pin  
FineLine  
BGA  
100-Pin FineLine BGA Package  
(Reduced I/O Count or  
256-Pin FineLine BGA Package  
(Increased I/O Count or  
Logic Requirements)  
Logic Requirements)  
14  
Altera Corporation  
MAX 7000B Programmable Logic Device Data Sheet  
MAX 7000B devices can be programmed in-system via an industry-  
standard 4-pin IEEE Std. 1149.1 (JTAG) interface. ISP offers quick, efficient  
iterations during design development and debugging cycles. The  
MAX 7000B architecture internally generates the high programming  
voltages required to program EEPROM cells, allowing in-system  
programming with only a single 2.5-V power supply. During in-system  
programming, the I/O pins are tri-stated and weakly pulled-up to  
eliminate board conflicts. The pull-up value is nominally 50 k¾.  
In-System  
Programma-  
bility (ISP)  
MAX 7000B devices have an enhanced ISP algorithm for faster  
programming. These devices also offer an ISP_Done bit that provides safe  
operation when in-system programming is interrupted. This ISP_Done  
bit, which is the last bit programmed, prevents all I/O pins from driving  
until the bit is programmed.  
ISP simplifies the manufacturing flow by allowing devices to be mounted  
on a PCB with standard pick-and-place equipment before they are  
programmed. MAX 7000B devices can be programmed by downloading  
the information via in-circuit testers, embedded processors, the Altera  
MasterBlaster communications cable, and the ByteBlasterMV parallel port  
download cable. Programming the devices after they are placed on the  
board eliminates lead damage on high-pin-count packages (e.g., QFP  
packages) due to device handling. MAX 7000B devices can be  
reprogrammed after a system has already shipped to the field. For  
example, product upgrades can be performed in the field via software or  
modem.  
In-system programming can be accomplished with either an adaptive or  
constant algorithm. An adaptive algorithm reads information from the  
unit and adapts subsequent programming steps to achieve the fastest  
possible programming time for that unit. A constant algorithm uses a  
pre-defined (non-adaptive) programming sequence that does not take  
advantage of adaptive algorithm programming time improvements.  
Some in-circuit testers cannot program using an adaptive algorithm.  
Therefore, a constant algorithm must be used. MAX 7000B devices can be  
programmed with either an adaptive or constant (non-adaptive)  
algorithm.  
The Jam Standard Test and Programming Language (STAPL), JEDEC  
standard JESD-71, can be used to program MAX 7000B devices with  
in-circuit testers, PCs, or embedded processors.  
For more information on using the Jam language, see Application Note 88  
(Using the Jam Language for ISP & ICR via an Embedded Processor) and  
Application Note 122 (Using STAPL for ISP & ICR via an Embedded Processor).  
f
The ISP circuitry in MAX 7000B devices is compliant with the IEEE  
Std. 1532 specification. The IEEE Std. 1532 is a standard developed to  
allow concurrent ISP between multiple PLD vendors.  
Altera Corporation  
15  
MAX 7000B Programmable Logic Device Data Sheet  
Programming Sequence  
During in-system programming, instructions, addresses, and data are  
shifted into the MAX 7000B device through the TDIinput pin. Data is  
shifted out through the TDOoutput pin and compared against the  
expected data.  
Programming a pattern into the device requires the following six ISP  
stages. A stand-alone verification of a programmed pattern involves only  
stages 1, 2, 5, and 6.  
1. Enter ISP. The enter ISP stage ensures that the I/O pins transition  
smoothly from user mode to ISP mode. The enter ISP stage requires  
1 ms.  
2. Check ID. Before any program or verify process, the silicon ID is  
checked. The time required to read this silicon ID is relatively small  
compared to the overall programming time.  
3. Bulk Erase. Erasing the device in-system involves shifting in the  
instructions to erase the device and applying one erase pulse of  
100 ms.  
4. Program. Programming the device in-system involves shifting in the  
address and data and then applying the programming pulse to  
program the EEPROM cells. This process is repeated for each  
EEPROM address.  
5. Verify. Verifying an Altera device in-system involves shifting in  
addresses, applying the read pulse to verify the EEPROM cells, and  
shifting out the data for comparison. This process is repeated for  
each EEPROM address.  
6. Exit ISP. An exit ISP stage ensures that the I/O pins transition  
smoothly from ISP mode to user mode. The exit ISP stage requires  
1 ms.  
Programming Times  
The time required to implement each of the six programming stages can  
be broken into the following two elements:  
A pulse time to erase, program, or read the EEPROM cells.  
A shifting time based on the test clock (TCK) frequency and the  
number of TCKcycles to shift instructions, address, and data into the  
device.  
16  
Altera Corporation  
MAX 7000B Programmable Logic Device Data Sheet  
By combining the pulse and shift times for each of the programming  
stages, the program or verify time can be derived as a function of the TCK  
frequency, the number of devices, and specific target device(s). Because  
different ISP-capable devices have a different number of EEPROM cells,  
both the total fixed and total variable times are unique for a single device.  
Programming a Single MAX 7000B Device  
The time required to program a single MAX 7000B device in-system can  
be calculated from the following formula:  
Cycle  
PTCK  
t
= t  
+ -------------------------------  
PROG  
PPULSE  
f
TCK  
where: tPROG  
= Programming time  
= Sum of the fixed times to erase, program, and  
verify the EEPROM cells  
tPPULSE  
CyclePTCK = Number of TCKcycles to program a device  
fTCK = TCKfrequency  
The ISP times for a stand-alone verification of a single MAX 7000B device  
can be calculated from the following formula:  
Cycle  
VTCK  
t
= t  
+ --------------------------------  
VER  
VPULSE  
f
TCK  
where: tVER  
tVPULSE  
CycleVTCK = Number of TCKcycles to verify a device  
= Verify time  
= Sum of the fixed times to verify the EEPROM cells  
Altera Corporation  
17  
MAX 7000B Programmable Logic Device Data Sheet  
The programming times described in Tables 4 through 6 are associated  
with the worst-case method using the enhanced ISP algorithm.  
Table 4. MAX 7000B tPULSE & CycleTCK Values  
Device  
Programming  
Stand-Alone Verification  
tVPULSE (s) CycleVTCK  
tPPULSE (s)  
CyclePTCK  
EMP7032B  
EMP7064B  
EMP7128B  
EMP7256B  
EMP7512B  
2.12  
2.12  
2.12  
2.12  
2.12  
70,000  
120,000  
222,000  
466,000  
914,000  
0.002  
0.002  
0.002  
0.002  
0.002  
18,000  
35,000  
69,000  
151,000  
300,000  
Tables 5 and 6 show the in-system programming and stand alone  
verification times for several common test clock frequencies.  
Table 5. MAX 7000B In-System Programming Times for Different Test Clock Frequencies  
Device  
fTCK  
Units  
10 MHz 5 MHz  
2 MHz  
1 MHz 500 kHz 200 kHz 100 kHz 50 kHz  
EMP7032B  
EMP7064B  
EMP7128B  
EMP7256B  
EMP7512B  
2.13  
2.13  
2.14  
2.17  
2.21  
2.13  
2.14  
2.16  
2.21  
2.30  
2.15  
2.18  
2.23  
2.35  
2.58  
2.19  
2.24  
2.34  
2.58  
3.03  
2.26  
2.36  
2.56  
3.05  
3.95  
2.47  
2.72  
3.23  
4.45  
6.69  
2.82  
3.32  
4.34  
6.78  
11.26  
3.52  
4.52  
s
s
s
s
s
6.56  
11.44  
20.40  
Table 1. MAX 7000B Stand-Alone Verification Times for Different Test Clock Frequencies  
Device  
fTCK  
1 MHz 500 kHz 200 kHz 100 kHz 50 kHz  
Units  
10 MHz 5 MHz  
2 MHz  
EMP7032B  
EMP7064B  
EMP7128B  
EMP7256B  
EMP7512B  
0.00  
0.01  
0.01  
0.02  
0.03  
0.01  
0.01  
0.02  
0.03  
0.06  
0.01  
0.02  
0.04  
0.08  
0.15  
0.02  
0.04  
0.07  
0.15  
0.30  
0.04  
0.07  
0.14  
0.30  
0.60  
0.09  
0.18  
0.35  
0.76  
1.50  
0.18  
0.35  
0.69  
1.51  
3.00  
0.36  
0.70  
1.38  
3.02  
6.00  
s
s
s
s
s
18  
Altera Corporation  
MAX 7000B Programmable Logic Device Data Sheet  
MAX 7000B devices can be programmed on Windows-based PCs with an  
Altera Logic Programmer card, the Master Programming Unit (MPU),  
and the appropriate device adapter. The MPU performs continuity  
checking to ensure adequate electrical contact between the adapter and  
the device.  
Programming  
with External  
Hardware  
For more information, see the Altera Programming Hardware Data Sheet.  
f
The Altera software can use text- or waveform-format test vectors created  
with the Altera Text Editor or Waveform Editor to test the programmed  
device. For added design verification, designers can perform functional  
testing to compare the functional device behavior with the results of  
simulation.  
Data I/O, BP Microsystems, and other programming hardware  
manufacturers provide programming support for Altera devices. For  
more information, see Programming Hardware Manufacturers.  
MAX 7000B devices include the JTAG boundary-scan test circuitry  
defined by IEEE Std. 1149.1. Table 6 describes the JTAG instructions  
supported by MAX 7000B devices. The pin-out tables starting on page 59  
of this data sheet show the location of the JTAG control pins for each  
device. If the JTAG interface is not required, the JTAG pins are available  
as user I/O pins.  
IEEE Std.  
1149.1 (JTAG)  
Boundary-Scan  
Support  
Table 6. MAX 7000B JTAG Instructions  
JTAG Instruction  
Description  
SAMPLE/PRELOAD Allows a snapshot of signals at the device pins to be captured and examined during  
normal device operation, and permits an initial data pattern output at the device pins.  
EXTEST  
Allows the external circuitry and board-level interconnections to be tested by forcing a  
test pattern at the output pins and capturing test results at the input pins.  
BYPASS  
Places the 1-bit bypass register between the TDIand TDOpins, which allows the  
boundary-scan test data to pass synchronously through a selected device to adjacent  
devices during normal operation.  
CLAMP  
Allows the values in the boundary-scan register to determine pin states while placing the  
1-bit bypass register between the TDIand TDOpins.  
IDCODE  
Selects the IDCODE register and places it between the TDIand TDOpins, allowing the  
IDCODE to be serially shifted out of TDO.  
USERCODE  
ISP Instructions  
Selects the 32-bit USERCODE register and places it between the TDIand TDOpins,  
allowing the USERCODE value to be shifted out of TDO.  
These instructions are used when programming MAX 7000B devices via the JTAG ports  
with the MasterBlaster or ByteBlasterMV download cable, or using a Jam File (.jam),  
Jam Byte-Code File (.jbc), or Serial Vector Format File (.svf) via an embedded  
processor or test equipment.  
Altera Corporation  
19  
MAX 7000B Programmable Logic Device Data Sheet  
The instruction register length of MAX 7000B devices is ten bits. The  
MAX 7000B USERCODE register length is 32 bits. Tables 7 and 8 show the  
boundary-scan register length and device IDCODE information for  
MAX 7000B devices.  
Table 7. MAX 7000B Boundary-Scan Register Length  
Device  
Boundary-Scan Register Length  
EPM7032B  
EPM7064B  
EPM7128B  
EPM7256B  
EPM7512B  
96  
192  
288  
480  
624  
Table 8. 32-Bit MAX 7000B Device IDCODE Note (1)  
Device  
IDCODE (32 Bits)  
Version  
(4 Bits)  
Part Number (16 Bits) Manufacturer’s 1 (1 Bit)  
Identity (11 Bits)  
(2)  
EPM7032B  
EPM7064B  
EPM7128B  
EPM7256B  
EPM7512B  
0010  
0010  
0010  
0010  
0010  
0111 0000 0011 0010 00001101110  
0111 0000 0110 0100 00001101110  
0111 0001 0010 1000 00001101110  
0111 0010 0101 0110 00001101110  
0111 0101 0001 0010 00001101110  
1
1
1
1
1
Notes:  
(1) The most significant bit (MSB) is on the left.  
(2) The least significant bit (LSB) for all JTAG IDCODEs is 1.  
See Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera  
Devices) for more information on JTAG boundary-scan testing.  
f
Figure 8 shows the timing information for the JTAG signals.  
20  
Altera Corporation  
MAX 7000B Programmable Logic Device Data Sheet  
Figure 8. MAX 7000B JTAG Waveforms  
TMS  
TDI  
tJCP  
tJCH  
t JCL  
tJPH  
tJPSU  
TCK  
TDO  
tJPXZ  
tJPZX  
tJPCO  
tJSSU  
tJSH  
Signal  
to Be  
Captured  
tJSCO  
tJSZX  
tJSXZ  
Signal  
to Be  
Driven  
Table 9 shows the JTAG timing parameters and values for MAX 7000B  
devices.  
Table 9. JTAG Timing Parameters & Values for MAX 7000B Devices  
Note (1)  
Symbol  
Parameter  
Min Max Unit  
t
TCKclock period  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
JCP  
t
TCKclock high time  
50  
JCH  
t
TCKclock low time  
50  
JCL  
t
JTAG port setup time  
20  
45  
JPSU  
t
JTAG port hold time  
JPH  
t
JTAG port clock to output  
25  
25  
25  
JPCO  
t
JTAG port high impedance to valid output  
JTAG port valid output to high impedance  
Capture register setup time  
JPZX  
t
JPXZ  
t
20  
45  
JSSU  
t
Capture register hold time  
JSH  
t
Update register clock to output  
Update register high impedance to valid output  
Update register valid output to high impedance  
25  
25  
25  
JSCO  
t
JSZX  
t
JSXZ  
Note:  
(1) Timing parameters in this table apply to all V  
levels.  
CCIO  
Altera Corporation  
21  
MAX 7000B Programmable Logic Device Data Sheet  
MAX 7000B devices offer a power-saving mode that supports low-power  
Programmable  
Speed/Power  
Control  
operation across user-defined signal paths or the entire device. This  
feature allows total power dissipation to be reduced by 50% or more,  
because most logic applications require only a small fraction of all gates to  
operate at maximum frequency.  
The designer can program each individual macrocell in a MAX 7000B  
device for either high-speed or low-power operation. As a result, speed-  
critical paths in the design can run at high speed, while the remaining  
paths can operate at reduced power. Macrocells that run at low power  
incur a nominal timing delay adder (tLPA) for the tLAD, tLAC, tIC, tACL  
tCPPW, tEN, and tSEXP parameters.  
,
MAX 7000B device outputs can be programmed to meet a variety of  
system-level requirements.  
Output  
Configuration  
MultiVolt I/O Interface  
The MAX 7000B device architecture supports the MultiVolt I/O interface  
feature, which allows MAX 7000B devices to connect to systems with  
differing supply voltages. MAX 7000B devices in all packages can be set  
for 3.3-V, 2.5-V, or 1.8-V pin operation. These devices have one set of VCC  
pins for internal operation and input buffers (VCCINT), and another set for  
I/O output drivers (VCCIO).  
The VCCIOpins can be connected to either a 3.3-V, 2.5-V, or 1.8-V power  
supply, depending on the output requirements. When the VCCIOpins are  
connected to a 1.8-V power supply, the output levels are compatible with  
1.8-V systems. When the VCCIOpins are connected to a 2.5-V power  
supply, the output levels are compatible with 2.5-V systems. When the  
VCCIOpins are connected to a 3.3-V power supply, the output high is at  
3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices  
operating with VCCIO levels of 2.5 V or 1.8 V incur a nominal timing delay  
adder.  
Table 10 describes the MAX 7000B MultiVolt I/O support.  
22  
Altera Corporation  
MAX 7000B Programmable Logic Device Data Sheet  
Table 10. MAX 7000B MultiVolt I/O Support  
VCCIO (V)  
Input Signal (V)  
Output Signal (V)  
1.8  
2.5  
3.3  
5.0  
1.8  
2.5  
3.3  
5.0  
1.8  
2.5  
3.3  
v
v
v
v
v
v
v
v
v
v
v
v
v
Open-Drain Output Option  
MAX 7000B devices provide an optional open-drain (equivalent to  
open-collector) output for each I/O pin. This open-drain output enables  
the device to provide system-level control signals (e.g., interrupt and  
write enable signals) that can be asserted by any of several devices. It can  
also provide an additional wired-ORplane.  
Programmable Ground Pins  
Each unused I/O pin on MAX 7000B devices may be used as an additional  
ground pin. This programmable ground feature does not require the use  
of the associated macrocell; therefore, the buried macrocell is still  
available for user logic.  
Slew-Rate Control  
The output buffer for each MAX 7000B I/O pin has an adjustable output  
slew rate that can be configured for low-noise or high-speed performance.  
A faster slew rate provides high-speed transitions for high-performance  
systems. However, these fast transitions may introduce noise transients  
into the system. A slow slew rate reduces system noise, but adds a  
nominal delay of 4 to 5 ns. When the configuration cell is turned off, the  
slew rate is set for low-noise performance. Each I/O pin has an individual  
EEPROM bit that controls the slew rate, allowing designers to specify the  
slew rate on a pin-by-pin basis. The slew rate control affects both the rising  
and falling edges of the output signal.  
Advanced I/O Standard Support  
The MAX 7000B I/O pins support the following I/O standards: LVTTL,  
LVCMOS, 1.8-V I/O, 2.5-V I/O, GTL+, SSTL-3 Class I and II, and SSTL-2  
Class I and II.  
Altera Corporation  
23  
MAX 7000B Programmable Logic Device Data Sheet  
MAX 7000B devices contain two I/O banks. Both banks support all  
standards. Each I/O bank has its own VCCIOpins. A single device can  
support 1.8-V, 2.5-V, and 3.3-V interfaces; each bank can support a  
different standard independently. Within a bank, any one of the  
terminated standards can be supported.  
Figure 9 shows the arrangement of the MAX 7000B I/O banks.  
Figure 9. MAX 7000B I/O Banks for Various Advanced I/O Standards  
Programmable I/O Banks  
Individual  
Power Bus  
Table 11 shows which macrocells have pins in each I/O bank.  
Table 11. Macrocell Pins Contained in Each I/O Bank  
Device  
Bank 1  
Bank 2  
EPM7032B  
EPM7064B  
EPM7128B  
EPM7256B  
EPM7512B  
1-16  
1-32  
17-32  
33-64  
1-64  
65-128  
1-128, 177-181  
1-265  
129-176, 182-256  
266-512  
Each MAX 7000B device has two VREFpins. Each can be set to a separate  
VREF level. Any I/O pin that uses one of the voltage-referenced standards  
(GTL+, SSTL-2, or SSTL-3) may use either of the two VREFpins. If these  
pins are not required as VREFpins, they may be individually  
programmed to function as user I/O pins.  
24  
Altera Corporation  
MAX 7000B Programmable Logic Device Data Sheet  
Programmable Pull-Up Resistor  
Each MAX 7000B device I/O pin provides an optional programmable  
pull-up resistor during user mode. When this feature is enabled for an I/O  
pin, the pull-up resistor (typically 50 k¾) weakly holds the output to  
VCCIO level.  
Bus Hold  
Each MAX 7000B device I/O pin provides an optional bus-hold feature.  
When this feature is enabled for an I/O pin, the bus-hold circuitry weakly  
holds the signal at its last driven state. By holding the last driven state of  
the pin until the next input signals is present, the bus-hold feature can  
eliminate the need to add external pull-up or pull-down resistors to hold  
a signal level when the bus is tri-stated. The bus-hold circuitry also pulls  
undriven pins away from the input threshold voltage where noise can  
cause unintended high-frequency switching. This feature can be selected  
individually for each I/O pin. The bus-hold output will drive no higher  
than VCCIO to prevent overdriving signals. The propagation delays  
through the input and output buffers in MAX 7000B devices are not  
affected by whether the bus-hold feature is enabled or disabled.  
The bus-hold circuitry weakly pulls the signal level to the last driven state  
through a resistor with a nominal resistance (RBH) of approximately  
8.5 k¾. Table 12 gives specific sustaining current that will be driven  
through this resistor and overdrive current that will identify the next  
driven input level. This information is provided for each VCCIO voltage  
level.  
Table 12. Bus Hold Parameters  
Parameter  
Conditions  
VCCIO Level  
2.5 V  
Units  
1.8 V  
3.3 V  
Min Max Min Max Min Max  
Low sustaining current  
VIN > VIL (max)  
30  
50  
70  
μA  
μA  
μA  
μA  
High sustaining current VIN < VIH (min)  
–30  
–50  
–70  
Low overdrive current  
High overdrive current  
0 V < VIN < VCCIO  
0 V < VIN < VCCIO  
200  
300  
500  
–295  
–435  
–680  
The bus-hold circuitry is active only during user operation. At power-up,  
the bus-hold circuit initializes its initial hold value as VCC approaches the  
recommended operation conditions. When transitioning from ISP to User  
Mode with bus hold enabled, the bus-hold circuit captures the value  
present on the pin at the end of programming.  
Altera Corporation  
25  
MAX 7000B Programmable Logic Device Data Sheet  
Two inverters implement the bus-hold circuitry in a loop that weakly  
drives back to the I/O pin in user mode.  
Figure 10 shows a block diagram of the bus-hold circuit.  
Figure 10. Bus-Hold Circuit  
Bus Hold Circuit  
Drive to  
VCCIO level  
R
BH  
I/O  
MAX 7000B devices are compatible with PCI applications as well as all  
3.3-V electrical specifications in the PCI Local Bus Specification  
Revision 2.2 except for the clamp diode. While having multiple clamp  
diodes on a signal trace may be redundant, designers can add an external  
clamp diode to meet the specification. Table 13 shows the MAX 7000B  
device speed grades that meet the PCI timing specifications.  
PCI  
Compatibility  
Table 13. MAX 7000B Device Speed Grades that Meet PCI Timing  
Specifications  
Device  
Specification  
33-MHz PCI  
66-MHz PCI  
EPM7032B  
EPM7064B  
EPM7128B  
EPM7256B  
EPM7512B  
All speed grades  
All speed grades  
All speed grades  
All speed grades  
All speed grades  
-3  
-3  
-4  
-5 (1)  
-5 (1)  
Note:  
(1) The EPM7256B and EPM7512B devices in a -5 speed grade meet all PCI timing  
specifications for 66-MHz operation except the Input Setup Time to CLK—Bused  
Signal parameter. However, these devices are within 1 ns of that parameter.  
EPM7256B and EPM7512B devices meet all other 66-MHz PCI timing  
specifications.  
26  
Altera Corporation  
MAX 7000B Programmable Logic Device Data Sheet  
Because MAX 7000B devices can be used in a mixed-voltage environment,  
they have been designed specifically to tolerate any possible power-up  
sequence. The VCCIO and VCCINT power planes can be powered in any  
order.  
Power  
Sequencing &  
Hot-Socketing  
Signals can be driven into MAX 7000B devices before and during power-  
up (and power-down) without damaging the device. Additionally,  
MAX 7000B devices do not drive out during power-up. Once operating  
conditions are reached, MAX 7000B devices operate as specified by the  
user.  
MAX 7000B device I/O pins will not source or sink more than 300 µA of  
DC current during power-up. All pins can be driven up to 4.1 V during  
hot-socketing.  
All MAX 7000B devices contain a programmable security bit that controls  
access to the data programmed into the device. When this bit is  
programmed, a design implemented in the device cannot be copied or  
retrieved. This feature provides a high level of design security, because  
programmed data within EEPROM cells is invisible. The security bit that  
controls this function, as well as all other programmed data, is reset only  
when the device is reprogrammed.  
Design Security  
Generic Testing  
MAX 7000B devices are fully functionally tested. Complete testing of each  
programmable EEPROM bit and all internal logic elements ensures 100%  
programming yield. AC test measurements are taken under conditions  
equivalent to those shown in Figure 11. Test patterns can be used and then  
erased during early stages of the production flow.  
Altera Corporation  
27  
MAX 7000B Programmable Logic Device Data Sheet  
Figure 11. MAX 7000B AC Test Conditions  
Power supply transients can affect AC  
measurements. Simultaneous transitions  
of multiple outputs should be avoided for  
accurate measurement. Threshold tests  
must not be performed under AC  
VCCIO  
S1  
conditions. Large-amplitude, fast-ground-  
current transients normally occur as the  
device outputs discharge the load  
capacitances. When these transients flow  
through the parasitic inductance between  
the device ground pin and the test system  
ground, significant reductions in  
720 Ω  
[521 Ω]  
Device  
Output  
To Test  
System  
observable noise immunity can result.  
Numbers in brackets are for 2.5-V  
outputs. Numbers without brackets are for  
3.3-V outputs. Switches S1 and S2 are  
open for all tests except output disable  
timing parameters.  
600 Ω  
[481 Ω]  
C1 (includes jig  
capacitance)  
Device input  
rise and fall  
times < 2 ns  
S2  
Tables 14 through 17 provide information on absolute maximum ratings,  
recommended operating conditions, operating conditions, and  
capacitance for MAX 7000B devices.  
Operating  
Conditions  
Table 14. MAX 7000B Device Absolute Maximum Ratings  
Note (1)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
V
Supply voltage  
–0.5  
–0.5  
–2.0  
–33  
–65  
–65  
–65  
3.6  
3.6  
4.6  
50  
V
V
CCINT  
V
Supply voltage  
CCIO  
V
I
DC input voltage  
(2)  
V
I
DC output current, per pin  
Storage temperature  
Ambient temperature  
Junction temperature  
mA  
° C  
° C  
° C  
OUT  
T
No bias  
150  
135  
135  
STG  
T
A
Under bias  
Under bias  
T
J
28  
Altera Corporation  
MAX 7000B Programmable Logic Device Data Sheet  
Table 15. MAX 7000B Device Recommended Operating Conditions  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
V
Supply voltage for internal logic and (10)  
input buffers  
2.375  
2.625  
V
CCINT  
V
Supply voltage for output drivers,  
3.3-V operation  
3.0  
3.6  
V
V
V
V
CCIO  
Supply voltage for output drivers,  
2.5-V operation  
2.375  
1.71  
2.625  
1.89  
Supply voltage for output drivers,  
1.8-V operation  
V
Supply voltage during in-system  
programming  
2.375  
2.625  
CCISP  
V
I
Input voltage  
(3)  
–0.5  
0
3.9  
VCCIO  
70  
V
V
O
Output voltage  
V
T
A
Ambient temperature  
For commercial use  
For industrial use (11)  
For commercial use  
For industrial use (11)  
0
° C  
° C  
° C  
° C  
ns  
–40  
0
85  
T
J
Junction temperature  
90  
–40  
105  
40  
t
Input rise time  
Input fall time  
R
t
40  
ns  
F
Altera Corporation  
29  
MAX 7000B Programmable Logic Device Data Sheet  
Table 16. MAX 7000B Device DC Operating Conditions  
Note (4)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
V
High-level input voltage for 3.3-V  
TTL/CMOS  
2.0  
3.9  
V
IH  
High-level input voltage for 2.5-V  
TTL/CMOS  
1.7  
3.9  
3.9  
V
V
High-level input voltage for 1.8-V  
TTL/CMOS  
0.65 ×  
VCCIO  
V
IL  
Low-level input voltage for 3.3-V  
TTL/CMOS and PCI compliance  
–0.5  
–0.5  
–0.5  
0.8  
0.7  
V
V
Low-level input voltage for 2.5-V  
TTL/CMOS  
Low-level input voltage for 1.8-V  
TTL/CMOS  
0.35 ×  
VCCIO  
V
3.3-V high-level TTL output voltage  
I
I
= –8 mA DC, V  
= 3.00 V (5)  
2.4  
V
V
OH  
OH  
CCIO  
3.3-V high-level CMOS output  
voltage  
= –0.1 mA DC, V  
= 3.00 V (5)  
= 2.30 V (5)  
CCIO  
VCCIO  
0.2  
OH  
CCIO  
2.5-V high-level output voltage  
I
I
I
I
I
I
= –100 μA DC, V  
2.1  
2.0  
1.7  
1.2  
V
V
V
V
V
V
OH  
OH  
OH  
OH  
OL  
OL  
= –1 mA DC, V  
= 2.30 V (5)  
= 2.30 V (5)  
=1.65 V (5)  
CCIO  
= –2 mA DC, V  
= –2 mA DC, V  
= 8 mA DC, V  
CCIO  
CCIO  
1.8-V high-level output voltage  
V
3.3-V low-level TTL output voltage  
= 3.00 V (6)  
= 3.00 V (6)  
0.4  
0.2  
OL  
CCIO  
3.3-V low-level CMOS output  
voltage  
= 0.1 mA DC, V  
CCIO  
2.5-V low-level output voltage  
I
I
I
I
= 100 μA DC, V  
= 2.30 V (6)  
CCIO  
0.2  
0.4  
0.7  
0.4  
10  
V
V
OL  
OL  
OL  
OL  
= 1 mA DC, V  
= 2.30 V (6)  
= 2.30 V (6)  
= 1.7 V (6)  
CCIO  
= 2 mA DC, V  
= 2 mA DC, V  
V
CCIO  
CCIO  
1.8-V low-level output voltage  
Input leakage current  
V
I
I
V = –0.5 to 3.9 V (7)  
–10  
–10  
20  
μA  
μA  
k¾  
I
I
Tri-state output off-state current  
V = –0.5 to 3.9 V (7)  
10  
OZ  
I
R
Value of I/O pin pull-up resistor  
during in-system programming or  
during power up  
V
= 1.7 to 3.6 V (8)  
CCIO  
74  
ISP  
30  
Altera Corporation  
MAX 7000B Programmable Logic Device Data Sheet  
Table 17. MAX 7000B Device Capacitance  
Note (9)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
C
Input pin capacitance  
V
V
= 0 V, f = 1.0 MHz  
= 0 V, f = 1.0 MHz  
OUT  
8
8
pF  
pF  
IN  
IN  
C
I/O pin capacitance  
I/O  
Notes to tables:  
(1) See the Operating Requirements for Altera Devices Data Sheet.  
(2) Minimum DC input voltage is –0.5 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 4.6 V  
for input currents less than 100 mA and periods shorter than 20 ns.  
(3) All pins, including dedicated inputs, I/O pins, and JTAG pins, may be driven before V  
powered.  
and V  
are  
CCINT  
CCIO  
(4) These values are specified under the Recommended Operating Conditions in Table 15 on page 29.  
(5) The parameter is measured with 50% of the outputs each sourcing the specified current. The I  
parameter refers  
OH  
to high-level TTL or CMOS output current.  
(6) The parameter is measured with 50% of the outputs each sinking the specified current. The I parameter refers to  
OL  
low-level TTL or CMOS output current.  
(7) This value is specified for normal device operation. During power-up, the maximum leakage current is 300 μA.  
(8) This pull-up exists while devices are being programmed in-system and in unprogrammed devices during  
power-up. The pull-up resistor is from the pins to V  
.
CCIO  
(9) Capacitance is measured at 25° C and is sample-tested only. Two of the dedicated input pins (OE1and GCLRN) have  
a maximum capacitance of 15 pF.  
(10) The POR time for all 7000B devices does not exceed 100 μs. The sufficient V  
voltage level for POR is 2.375 V.  
CCINT  
The device is fully initialized within the POR time after V  
reaches the sufficient POR voltage level.  
CCINT  
(11) These devices support in-system programming for –40° to 100° C. For in-system programming support between  
–40° and 0° C, contact Altera Applications.  
Altera Corporation  
31  
MAX 7000B Programmable Logic Device Data Sheet  
Figure 12 shows the typical output drive characteristics of MAX 7000B  
devices.  
Figure 12. Output Drive Characteristics of MAX 7000B Devices  
3.3-V VCCIO  
2.5-V VCCIO  
150  
120  
150  
IOL  
IOL  
120  
VCCINT = 2.5 V  
VCCIO = 3.0 V  
Typical IO  
Output  
Current (mA)  
Typical IO  
Output  
90  
60  
90  
60  
VCCINT = 2.5 V  
VCCIO = 2.5 V  
Room Temperature Current (mA)  
Room Temperature  
30  
30  
IOH  
IOH  
1
2
3
4
1
2
3
4
VO Output Voltage (V)  
VO Output Voltage (V)  
1.8-V VCCIO  
150  
IOL  
120  
Typical IO  
Output  
Current (mA)  
90  
60  
VCCINT = 2.5 V  
VCCIO = 1.8 V  
Room Temperature  
30  
IOH  
1
2
3
4
VO Output Voltage (V)  
32  
Altera Corporation  
MAX 7000B Programmable Logic Device Data Sheet  
MAX 7000B device timing can be analyzed with the Altera software, with  
a variety of popular industry-standard EDA simulators and timing  
analyzers, or with the timing model shown in Figure 13. MAX 7000B  
devices have predictable internal delays that enable the designer to  
determine the worst-case timing of any design. The Altera software  
provides timing simulation, point-to-point delay prediction, and detailed  
timing analysis for device-wide performance evaluation.  
Timing Model  
Figure 13. MAX 7000B Timing Model  
Internal Output  
Enable Delay  
tIOE  
Global Control  
Delay  
Input  
Delay  
t I N  
Output  
Delay  
tGLOB  
Register  
Delay  
tSU  
Parallel  
Expander Delay  
tPEXP  
Logic Array  
Delay  
t LAD  
tOD1  
tOD2  
tOD3  
tXZ  
tZX1  
tZX2  
tZX3  
PIA  
Delay  
tPIA  
tH  
tPRE  
tCLR  
tRD  
tCOMB  
tFSU  
tFH  
Register  
Control Delay  
tLAC  
tIC  
tEN  
I/O  
Delay  
tIO  
Shared  
Expander Delay  
tSEXP  
Fast  
Input Delay  
tFIN  
+
tFIN tFIND  
The timing characteristics of any signal path can be derived from the  
timing model and parameters of a particular device. External timing  
parameters, which represent pin-to-pin timing delays, can be calculated  
as the sum of internal parameters. Figure 14 shows the timing relationship  
between internal and external delay parameters.  
See Application Note 94 (Understanding MAX 7000 Timing) for more  
information.  
f
Altera Corporation  
33  
MAX 7000B Programmable Logic Device Data Sheet  
Figure 14. MAX 7000B Switching Waveforms  
tR & tF < 2 ns. Inputs are  
driven at 3.0 V for a logic  
high and 0 V for a logic  
low. All timing  
characteristics are  
measured at 1.5 V.  
Combinatorial Mode  
tIN  
Input Pin  
I/O Pin  
tIO  
tPIA  
PIA Delay  
tSEXP  
Shared Expander  
Delay  
tLAC , tLAD  
Logic Array  
Input  
tPEXP  
Parallel Expander  
Delay  
tCOMB  
Logic Array  
Output  
tOD  
Output Pin  
Global Clock Mode  
tR  
tCH  
tCL  
tF  
Global  
Clock Pin  
tIN  
tGLOB  
Global Clock  
at Register  
tSU  
tH  
Data or Enable  
(Logic Array Output)  
Array Clock Mode  
tR  
tACH  
tACL  
tF  
Input or I/O Pin  
Clock into PIA  
tIN  
tIO  
tPIA  
Clock into  
Logic Array  
tIC  
tSU  
Clock at  
Register  
tH  
Data from  
Logic Array  
tRD  
tPIA  
tPIA  
tCLR , tPRE  
Register to PIA  
to Logic Array  
tOD  
tOD  
Register Output  
to Pin  
34  
Altera Corporation  
MAX 7000B Programmable Logic Device Data Sheet  
Tables 18 through 32 show MAX 7000B device timing parameters.  
Table 18. EPM7032B External Timing Parameters  
Notes (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-5.0  
Unit  
-3.5  
-7.5  
Min  
Max  
Min  
Max  
Min  
Max  
t
Input to non-registered  
output  
C1 = 35 pF (2)  
3.5  
5.0  
7.5  
ns  
ns  
PD1  
t
I/O input to non-registered C1 = 35 pF (2)  
output  
3.5  
5.0  
7.5  
PD2  
t
t
t
Global clock setup time  
Global clock hold time  
(2)  
(2)  
2.1  
0.0  
1.0  
3.0  
0.0  
1.0  
4.5  
0.0  
1.5  
ns  
ns  
ns  
SU  
H
Global clock setup time of  
fast input  
FSU  
t
Global clock hold time of  
fast input  
1.0  
2.0  
1.0  
2.5  
1.0  
3.0  
ns  
ns  
FH  
t
Global clock setup time of  
fast input with zero hold  
time  
FZHSU  
t
t
Global clock hold time of  
fast input with zero hold  
time  
0.0  
1.0  
0.0  
1.0  
0.0  
1.0  
ns  
ns  
FZHH  
Global clock to output  
delay  
C1 = 35 pF  
2.4  
3.6  
3.4  
5.1  
5.0  
7.6  
CO1  
t
t
t
t
t
t
t
t
Global clock high time  
Global clock low time  
Array clock setup time  
Array clock hold time  
1.5  
1.5  
0.9  
0.2  
1.0  
1.5  
1.5  
1.5  
2.0  
2.0  
1.3  
0.3  
1.0  
2.0  
2.0  
2.0  
3.0  
3.0  
1.9  
0.6  
1.0  
3.0  
3.0  
3.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CH  
CL  
(2)  
(2)  
ASU  
AH  
Array clock to output delay C1 = 35 pF (2)  
Array clock high time  
ACO1  
ACH  
ACL  
CPPW  
Array clock low time  
Minimum pulse width for  
clear and preset  
t
f
t
f
Minimum global clock  
period  
(2)  
3.3  
3.3  
4.7  
4.7  
7.0  
7.0  
ns  
MHz  
ns  
CNT  
Maximum internal global  
clock frequency  
(2), (3)  
(2)  
303.0  
303.0  
212.8  
212.8  
142.9  
142.9  
CNT  
Minimum array clock  
period  
ACNT  
ACNT  
Maximum internal array  
clock frequency  
(2), (3)  
MHz  
Altera Corporation  
35  
MAX 7000B Programmable Logic Device Data Sheet  
Table 19. EPM7032B Internal Timing Parameters  
Notes (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-5.0  
Unit  
-3.5  
-7.5  
Min Max Min Max Min Max  
Input pad and buffer delay  
I/O input pad and buffer delay  
Fast input delay  
tIN  
0.3  
0.3  
0.9  
1.0  
0.5  
0.5  
1.3  
1.5  
0.7  
0.7  
2.0  
1.5  
ns  
ns  
ns  
ns  
tIO  
tFIN  
tFIND  
Programmable delay adder for  
fast input  
Shared expander delay  
Parallel expander delay  
Logic array delay  
tSEXP  
tPEXP  
tLAD  
tLAC  
tIOE  
1.5  
0.4  
1.4  
1.2  
0.1  
0.9  
2.1  
0.6  
2.0  
1.7  
0.2  
1.2  
3.2  
0.9  
3.1  
2.6  
0.3  
1.8  
ns  
ns  
ns  
ns  
ns  
ns  
Logic control array delay  
Internal output enable delay  
Output buffer and pad delay  
slow slew rate = off  
C1 = 35 pF  
C1 = 35 pF  
C1 = 35 pF  
C1 = 35 pF  
C1 = 5 pF  
tOD1  
V
= 3.3 V  
CCIO  
Output buffer and pad delay  
slow slew rate = on  
tOD3  
tZX1  
tZX3  
5.9  
1.6  
6.6  
1.6  
6.2  
2.2  
7.2  
2.2  
6.8  
3.4  
8.4  
3.4  
ns  
ns  
ns  
V
= 2.5 V or 3.3 V  
CCIO  
Output buffer enable delay  
slow slew rate = off  
V
= 3.3 V  
CCIO  
Output buffer enable delay  
slow slew rate = on  
V
= 2.5 V or 3.3 V  
CCIO  
Output buffer disable delay  
Register setup time  
Register hold time  
tXZ  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSU  
0.7  
0.4  
0.8  
1.2  
1.1  
0.5  
0.8  
1.2  
1.6  
0.9  
1.1  
1.4  
tH  
Register setup time of fast input  
Register hold time of fast input  
Register delay  
tFSU  
tFH  
tRD  
0.5  
0.2  
1.2  
1.2  
0.7  
1.0  
1.0  
0.7  
1.5  
0.6  
0.3  
1.8  
1.7  
1.1  
1.3  
1.3  
1.0  
2.1  
0.9  
0.5  
2.8  
2.6  
1.6  
1.9  
1.9  
1.4  
3.2  
Combinatorial delay  
Array clock delay  
tCOMB  
tIC  
Register enable time  
Global control delay  
Register preset time  
Register clear time  
PIA delay  
tEN  
tGLOB  
tPRE  
tCLR  
tPIA  
tLPA  
(2)  
(4)  
Low-power adder  
36  
Altera Corporation  
MAX 7000B Programmable Logic Device Data Sheet  
Table 20. EPM7032B Selectable I/O Standard Timing Adder Delays  
Parameter  
Notes (1)  
I/O Standard  
3.3 V TTL/CMOS  
2.5 V TTL/CMOS  
1.8 V TTL/CMOS  
SSTL-2 Class I  
SSTL-2 Class II  
SSTL-3 Class I  
SSTL-3 Class II  
GTL+  
Speed Grade  
-5.0  
Unit  
-3.5  
Min  
-7.5  
Max Min Max  
Min Max  
Input to (PIA)  
0.0  
0.0  
0.0  
0.0  
0.3  
0.3  
0.2  
0.2  
0.5  
0.5  
0.4  
1.2  
1.3  
1.2  
0.9  
0.0  
1.3  
1.2  
0.9  
–0.1  
1.2  
0.9  
0.8  
0.0  
1.2  
0.9  
0.8  
0.0  
1.6  
1.6  
1.5  
0.0  
0.0  
0.0  
0.0  
0.0  
0.4  
0.4  
0.3  
0.3  
0.8  
0.8  
0.5  
1.8  
1.9  
1.8  
1.3  
0.0  
1.9  
1.8  
1.3  
–0.1  
1.8  
1.3  
1.1  
0.0  
1.8  
1.3  
1.1  
0.0  
2.3  
2.3  
2.1  
0.0  
0.0  
0.0  
0.0  
0.0  
0.6  
0.6  
0.4  
0.4  
1.1  
1.1  
0.8  
2.6  
2.8  
2.6  
1.9  
0.0  
2.8  
2.6  
1.9  
–0.2  
2.6  
1.9  
1.7  
0.0  
2.6  
1.9  
1.7  
0.0  
3.4  
3.4  
3.2  
0.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Input to global clock and clear  
Input to fast input register  
All outputs  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Altera Corporation  
37  
MAX 7000B Programmable Logic Device Data Sheet  
Table 20. EPM7032B Selectable I/O Standard Timing Adder Delays  
Notes (1)  
I/O Standard  
Parameter  
Speed Grade  
-5.0  
Unit  
-3.5  
Min  
-7.5  
Max Min Max  
Min Max  
PCI  
Input to PIA  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
ns  
ns  
ns  
ns  
Input to global clock and clear  
Input to fast input register  
All outputs  
Notes to tables:  
(1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for  
more information on switching waveforms.  
(2) These values are specified for a PIA fan-out of all LABs.  
(3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.  
(4) The t  
parameter must be added to the t  
, t  
, t , t  
, t  
, t , and t parameters for macrocells  
LPA  
LAD LAC IC ACL CPPW EN  
SEXP  
running in low-power mode.  
38  
Altera Corporation  
MAX 7000B Programmable Logic Device Data Sheet  
Table 21. EPM7064B External Timing Parameters  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-5  
Unit  
-3  
-7  
Min  
Max  
Min  
Max  
Min  
Max  
t
Input to non-registered  
output  
C1 = 35 pF (2)  
3.5  
5.0  
7.5  
ns  
ns  
PD1  
PD2  
t
I/O input to non-registered C1 = 35 pF (2)  
output  
3.5  
5.0  
7.5  
t
t
t
Global clock setup time  
Global clock hold time  
(2)  
(2)  
2.1  
0.0  
1.0  
3.0  
0.0  
1.0  
4.5  
0.0  
1.5  
ns  
ns  
ns  
SU  
H
Global clock setup time of  
fast input  
FSU  
t
t
Global clock hold time of  
fast input  
1.0  
2.0  
1.0  
2.5  
1.0  
3.0  
ns  
ns  
FH  
Global clock setup time of  
fast input with zero hold  
time  
FZHSU  
t
t
Global clock hold time of  
fast input with zero hold  
time  
0.0  
1.0  
0.0  
1.0  
0.0  
1.0  
ns  
ns  
FZHH  
CO1  
Global clock to output  
delay  
C1 = 35 pF  
2.4  
3.6  
3.4  
5.1  
5.0  
7.6  
t
t
t
t
t
t
t
t
Global clock high time  
Global clock low time  
Array clock setup time  
Array clock hold time  
1.5  
1.5  
0.9  
0.2  
1.0  
1.5  
1.5  
1.5  
2.0  
2.0  
1.3  
0.3  
1.0  
2.0  
2.0  
2.0  
3.0  
3.0  
1.9  
0.6  
1.0  
3.0  
3.0  
3.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CH  
CL  
(2)  
(2)  
ASU  
AH  
Array clock to output delay C1 = 35 pF (2)  
Array clock high time  
ACO1  
ACH  
ACL  
CPPW  
Array clock low time  
Minimum pulse width for  
clear and preset  
t
f
t
f
Minimum global clock  
period  
(2)  
3.3  
3.3  
4.7  
4.7  
7.0  
7.0  
ns  
MHz  
ns  
CNT  
Maximum internal global  
clock frequency  
(2), (3)  
(2)  
303.0  
303.0  
212.8  
212.8  
142.9  
142.9  
CNT  
Minimum array clock  
period  
ACNT  
ACNT  
Maximum internal array  
clock frequency  
(2), (3)  
MHz  
Altera Corporation  
39  
MAX 7000B Programmable Logic Device Data Sheet  
Table 22. EPM7064B Internal Timing Parameters  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-5  
Unit  
-3  
-7  
Min Max Min Max Min Max  
Input pad and buffer delay  
I/O input pad and buffer delay  
Fast input delay  
tIN  
0.3  
0.3  
0.9  
1.0  
0.5  
0.5  
1.3  
1.5  
0.7  
0.7  
2.0  
1.5  
ns  
ns  
ns  
ns  
tIO  
tFIN  
tFIND  
Programmable delay adder for  
fast input  
Shared expander delay  
Parallel expander delay  
Logic array delay  
tSEXP  
tPEXP  
tLAD  
tLAC  
tIOE  
1.5  
0.4  
1.4  
1.2  
0.1  
0.9  
2.1  
0.6  
2.0  
1.7  
0.2  
1.2  
3.2  
0.9  
3.1  
2.6  
0.3  
1.8  
ns  
ns  
ns  
ns  
ns  
ns  
Logic control array delay  
Internal output enable delay  
Output buffer and pad delay  
slow slew rate = off  
C1 = 35 pF  
C1 = 35 pF  
C1 = 35 pF  
C1 = 35 pF  
C1 = 5 pF  
tOD1  
V
= 3.3 V  
CCIO  
Output buffer and pad delay  
slow slew rate = on  
tOD3  
tZX1  
tZX3  
5.9  
1.6  
6.6  
1.6  
6.2  
2.2  
7.2  
2.2  
6.8  
3.4  
8.4  
3.4  
ns  
ns  
ns  
V
= 2.5 V or 3.3 V  
CCIO  
Output buffer enable delay  
slow slew rate = off  
V
= 3.3 V  
CCIO  
Output buffer enable delay  
slow slew rate = on  
V
= 2.5 V or 3.3 V  
CCIO  
Output buffer disable delay  
Register setup time  
Register hold time  
tXZ  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSU  
0.7  
0.4  
0.8  
1.2  
1.1  
0.5  
0.8  
1.2  
1.6  
0.9  
1.1  
1.4  
tH  
Register setup time of fast input  
Register hold time of fast input  
Register delay  
tFSU  
tFH  
tRD  
0.5  
0.2  
1.2  
1.2  
0.7  
1.0  
1.0  
0.7  
1.5  
0.6  
0.3  
1.8  
1.7  
1.1  
1.3  
1.3  
1.0  
2.1  
0.9  
0.5  
2.8  
2.6  
1.6  
1.9  
1.9  
1.4  
3.2  
Combinatorial delay  
Array clock delay  
tCOMB  
tIC  
Register enable time  
Global control delay  
Register preset time  
Register clear time  
PIA delay  
tEN  
tGLOB  
tPRE  
tCLR  
tPIA  
tLPA  
(2)  
(4)  
Low-power adder  
40  
Altera Corporation  
MAX 7000B Programmable Logic Device Data Sheet  
Table 23. EPM7064B Selectable I/O Standard Timing Adder Delays (Part 1 of 2)  
Note (1)  
I/O Standard  
Parameter  
Speed Grade  
-5  
Unit  
-3  
-7  
Min  
Max Min Max  
Min Max  
3.3 V TTL/CMOS  
Input to PIA  
0.0  
0.0  
0.0  
0.0  
0.3  
0.3  
0.2  
0.2  
0.5  
0.5  
0.4  
1.2  
1.3  
1.2  
0.9  
0.0  
1.3  
1.2  
0.9  
–0.1  
1.2  
0.9  
0.8  
0.0  
1.2  
0.9  
0.8  
0.0  
1.6  
1.6  
1.5  
0.0  
0.0  
0.0  
0.0  
0.0  
0.4  
0.4  
0.3  
0.3  
0.7  
0.7  
0.6  
1.7  
1.9  
1.7  
1.3  
0.0  
1.9  
1.7  
1.3  
–0.1  
1.7  
1.3  
1.1  
0.0  
1.7  
1.3  
1.1  
0.0  
2.3  
2.3  
2.1  
0.0  
0.0  
0.0  
0.0  
0.0  
0.6  
0.6  
0.4  
0.4  
1.1  
1.1  
0.9  
2.6  
2.8  
2.6  
1.9  
0.0  
2.8  
2.6  
1.9  
–0.2  
2.6  
1.9  
1.7  
0.0  
2.6  
1.9  
1.7  
0.0  
3.4  
3.4  
3.2  
0.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Input to global clock and clear  
Input to fast input register  
All outputs  
2.5 V TTL/CMOS  
1.8 V TTL/CMOS  
SSTL-2 Class I  
SSTL-2 Class II  
SSTL-3 Class I  
SSTL-3 Class II  
GTL+  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Altera Corporation  
41  
MAX 7000B Programmable Logic Device Data Sheet  
Table 23. EPM7064B Selectable I/O Standard Timing Adder Delays (Part 2 of 2)  
Note (1)  
I/O Standard  
Parameter  
Speed Grade  
-5  
Unit  
-3  
-7  
Min  
Max Min Max  
Min Max  
PCI  
Input to PIA  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
ns  
ns  
ns  
ns  
Input to global clock and clear  
Input to fast input register  
All outputs  
Notes to tables:  
(1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for  
more information on switching waveforms.  
(2) These values are specified for a PIA fan-out of all LABs.  
(3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.  
(4) The t  
parameter must be added to the t  
, t  
, t , t  
, t  
, t , and t parameters for macrocells  
LPA  
LAD LAC IC ACL CPPW EN  
SEXP  
running in low-power mode.  
42  
Altera Corporation  
MAX 7000B Programmable Logic Device Data Sheet  
Table 24. EPM7128B External Timing Parameters  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-7  
Unit  
-4  
-10  
Min  
Max  
Min  
Max  
Min  
Max  
t
Input to non-registered  
output  
C1 = 35 pF (2)  
4.0  
7.5  
10.0  
ns  
ns  
PD1  
PD2  
t
I/O input to non-registered C1 = 35 pF (2)  
output  
4.0  
7.5  
10.0  
t
t
t
Global clock setup time  
Global clock hold time  
(2)  
(2)  
2.5  
0.0  
1.0  
4.5  
0.0  
1.5  
6.1  
0.0  
1.5  
ns  
ns  
ns  
SU  
H
Global clock setup time of  
fast input  
FSU  
t
t
Global clock hold time of  
fast input  
1.0  
2.0  
1.0  
3.0  
1.0  
3.0  
ns  
ns  
FH  
Global clock setup time of  
fast input with zero hold  
time  
FZHSU  
t
t
Global clock hold time of  
fast input with zero hold  
time  
0.0  
1.0  
0.0  
1.0  
0.0  
1.0  
ns  
ns  
FZHH  
CO1  
Global clock to output  
delay  
C1 = 35 pF  
2.8  
4.1  
5.7  
8.2  
7.5  
t
t
t
t
t
t
t
t
Global clock high time  
Global clock low time  
Array clock setup time  
Array clock hold time  
1.5  
1.5  
1.2  
0.2  
1.0  
1.5  
1.5  
1.5  
3.0  
3.0  
2.0  
0.7  
1.0  
3.0  
3.0  
3.0  
4.0  
4.0  
2.8  
0.9  
1.0  
4.0  
4.0  
4.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CH  
CL  
(2)  
(2)  
ASU  
AH  
Array clock to output delay C1 = 35 pF (2)  
Array clock high time  
10.8  
ACO1  
ACH  
ACL  
CPPW  
Array clock low time  
Minimum pulse width for  
clear and preset  
t
f
t
f
Minimum global clock  
period  
(2)  
4.1  
4.1  
7.9  
7.9  
10.6  
10.6  
ns  
MHz  
ns  
CNT  
Maximum internal global  
clock frequency  
(2), (3)  
(2)  
243.9  
243.9  
126.6  
126.6  
94.3  
94.3  
CNT  
Minimum array clock  
period  
ACNT  
ACNT  
Maximum internal array  
clock frequency  
(2), (3)  
MHz  
Altera Corporation  
43  
MAX 7000B Programmable Logic Device Data Sheet  
Table 25. EPM7128B Internal Timing Parameters  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-7  
Unit  
-4  
-10  
Min Max Min Max Min Max  
Input pad and buffer delay  
I/O input pad and buffer delay  
Fast input delay  
tIN  
0.3  
0.3  
1.3  
1.0  
0.6  
0.6  
2.9  
1.5  
0.8  
0.8  
3.7  
1.5  
ns  
ns  
ns  
ns  
tIO  
tFIN  
tFIND  
Programmable delay adder for  
fast input  
Shared expander delay  
Parallel expander delay  
Logic array delay  
tSEXP  
tPEXP  
tLAD  
tLAC  
tIOE  
1.5  
0.4  
1.6  
1.4  
0.1  
0.9  
2.8  
0.8  
2.9  
2.6  
0.3  
1.7  
3.8  
1.0  
3.8  
3.4  
0.4  
2.2  
ns  
ns  
ns  
ns  
ns  
ns  
Logic control array delay  
Internal output enable delay  
Output buffer and pad delay  
slow slew rate = off  
C1 = 35 pF  
C1 = 35 pF  
C1 = 35 pF  
C1 = 35 pF  
C1 = 5 pF  
tOD1  
V
= 3.3 V  
CCIO  
Output buffer and pad delay  
slow slew rate = on  
tOD3  
tZX1  
tZX3  
5.9  
1.8  
6.8  
1.8  
6.7  
3.3  
8.3  
3.3  
7.2  
4.4  
9.4  
4.4  
ns  
ns  
ns  
V
= 2.5 V or 3.3 V  
CCIO  
Output buffer enable delay  
slow slew rate = off  
V
= 3.3 V  
CCIO  
Output buffer enable delay  
slow slew rate = on  
V
= 2.5 V or 3.3 V  
CCIO  
Output buffer disable delay  
Register setup time  
Register hold time  
tXZ  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSU  
1.0  
0.4  
0.8  
1.2  
1.9  
0.8  
0.9  
1.6  
2.6  
1.1  
0.9  
1.6  
tH  
Register setup time of fast input  
Register hold time of fast input  
Register delay  
tFSU  
tFH  
tRD  
0.5  
0.2  
1.4  
1.4  
1.1  
1.0  
1.0  
1.0  
1.5  
1.1  
0.3  
2.8  
2.6  
2.3  
1.9  
1.9  
2.0  
2.8  
1.4  
0.4  
3.6  
3.4  
3.1  
2.6  
2.6  
2.8  
3.8  
Combinatorial delay  
Array clock delay  
tCOMB  
tIC  
Register enable time  
Global control delay  
Register preset time  
Register clear time  
PIA delay  
tEN  
tGLOB  
tPRE  
tCLR  
tPIA  
tLPA  
(2)  
(4)  
Low-power adder  
44  
Altera Corporation  
MAX 7000B Programmable Logic Device Data Sheet  
Table 26. EPM7128B Selectable I/O Standard Timing Adder Delays (Part 1 of 2)  
Note (1)  
I/O Standard  
Parameter  
Speed Grade  
-7  
Unit  
-4  
-10  
Min  
Max Min Max  
Min Max  
3.3 V TTL/CMOS  
Input to PIA  
0.0  
0.0  
0.0  
0.0  
0.3  
0.3  
0.2  
0.2  
0.5  
0.5  
0.4  
1.2  
1.4  
1.2  
1.0  
0.0  
1.4  
1.2  
1.0  
–0.1  
1.3  
1.0  
0.9  
0.0  
1.3  
1.0  
0.9  
0.0  
1.7  
1.7  
1.6  
0.0  
0.0  
0.0  
0.0  
0.0  
0.6  
0.6  
0.4  
0.4  
0.9  
0.9  
0.8  
2.3  
2.6  
2.3  
1.9  
0.0  
2.6  
2.3  
1.9  
–0.2  
2.4  
1.9  
1.7  
0.0  
2.4  
1.9  
1.7  
0.0  
3.2  
3.2  
3.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.8  
0.8  
0.5  
0.5  
1.3  
1.3  
1.0  
3.0  
3.5  
3.0  
2.5  
0.0  
3.5  
3.0  
2.5  
–0.3  
3.3  
2.5  
2.3  
0.0  
3.3  
2.5  
2.3  
0.0  
4.3  
4.3  
4.0  
0.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Input to global clock and clear  
Input to fast input register  
All outputs  
2.5 V TTL/CMOS  
1.8 V TTL/CMOS  
SSTL-2 Class I  
SSTL-2 Class II  
SSTL-3 Class I  
SSTL-3 Class II  
GTL+  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Altera Corporation  
45  
MAX 7000B Programmable Logic Device Data Sheet  
Table 26. EPM7128B Selectable I/O Standard Timing Adder Delays (Part 2 of 2)  
Note (1)  
I/O Standard  
Parameter  
Speed Grade  
-7  
Unit  
-4  
-10  
Min  
Max Min Max  
Min Max  
PCI  
Input to PIA  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
ns  
ns  
ns  
ns  
Input to global clock and clear  
Input to fast input register  
All outputs  
Notes to tables:  
(1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for  
more information on switching waveforms.  
(2) These values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these  
devices, add an additional 0.1 ns to the PIA timing value.  
(3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.  
(4) The t  
parameter must be added to the t  
, t  
, t , t  
, t  
, t , and t parameters for macrocells  
LPA  
LAD LAC IC ACL CPPW EN  
SEXP  
running in low-power mode.  
46  
Altera Corporation  
MAX 7000B Programmable Logic Device Data Sheet  
Table 27. EPM7256B External Timing Parameters  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-7  
Unit  
-5  
-10  
Min  
Max  
Min  
Max  
Min  
Max  
t
Input to non-registered  
output  
C1 = 35 pF (2)  
5.0  
7.5  
10.0  
ns  
ns  
PD1  
t
I/O input to non-registered C1 = 35 pF (2)  
output  
5.0  
7.5  
10.0  
PD2  
t
t
t
Global clock setup time  
Global clock hold time  
(2)  
(2)  
3.3  
0.0  
1.0  
4.8  
0.0  
1.5  
6.6  
0.0  
1.5  
ns  
ns  
ns  
SU  
H
Global clock setup time of  
fast input  
FSU  
t
Global clock hold time for  
fast input  
1.0  
2.5  
1.0  
3.0  
1.0  
3.0  
ns  
ns  
FH  
t
Global clock setup time of  
fast input with zero hold  
time  
FZHSU  
t
t
Global clock hold time of  
fast input with zero hold  
time  
0.0  
1.0  
0.0  
1.0  
0.0  
1.0  
ns  
ns  
FZHH  
Global clock to output  
delay  
C1 = 35 pF  
3.3  
5.2  
5.1  
7.9  
6.7  
CO1  
t
t
t
t
t
t
t
t
Global clock high time  
Global clock low time  
Array clock setup time  
Array clock hold time  
2.0  
2.0  
1.4  
0.4  
1.0  
2.0  
2.0  
2.0  
3.0  
3.0  
2.0  
0.8  
1.0  
3.0  
3.0  
3.0  
4.0  
4.0  
2.8  
1.0  
1.0  
4.0  
4.0  
4.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CH  
CL  
(2)  
(2)  
ASU  
AH  
Array clock to output delay C1 = 35 pF (2)  
Array clock high time  
10.5  
ACO1  
ACH  
ACL  
CPPW  
Array clock low time  
Minimum pulse width for  
clear and preset  
t
f
t
f
Minimum global clock  
period  
(2)  
5.3  
5.3  
7.9  
7.9  
10.6  
10.6  
ns  
MHz  
ns  
CNT  
Maximum internal global  
clock frequency  
(2), (3)  
(2)  
188.7  
188.7  
126.6  
126.6  
94.3  
94.3  
CNT  
Minimum array clock  
period  
ACNT  
ACNT  
Maximum internal array  
clock frequency  
(2), (3)  
MHz  
Altera Corporation  
47  
MAX 7000B Programmable Logic Device Data Sheet  
Table 28. EPM7256B Internal Timing Parameters  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-7  
Unit  
-5  
-10  
Min Max Min Max Min Max  
Input pad and buffer delay  
I/O input pad and buffer delay  
Fast input delay  
tIN  
0.4  
0.4  
1.5  
1.5  
0.6  
0.6  
2.5  
1.5  
0.8  
0.8  
3.1  
1.5  
ns  
ns  
ns  
ns  
tIO  
tFIN  
tFIND  
Programmable delay adder for  
fast input  
Shared expander delay  
Parallel expander delay  
Logic array delay  
tSEXP  
tPEXP  
tLAD  
tLAC  
tIOE  
1.5  
0.4  
1.7  
1.5  
0.1  
0.9  
2.3  
0.6  
2.5  
2.2  
0.2  
1.4  
3.0  
0.8  
3.3  
2.9  
0.3  
1.9  
ns  
ns  
ns  
ns  
ns  
ns  
Logic control array delay  
Internal output enable delay  
Output buffer and pad delay  
slow slew rate = off  
C1 = 35 pF  
C1 = 35 pF  
C1 = 35 pF  
C1 = 35 pF  
C1 = 5 pF  
tOD1  
V
= 3.3 V  
CCIO  
Output buffer and pad delay  
slow slew rate = on  
tOD3  
tZX1  
tZX3  
5.9  
2.2  
7.2  
2.2  
6.4  
3.3  
8.3  
3.3  
6.9  
4.5  
9.5  
4.5  
ns  
ns  
ns  
V
= 2.5 V or 3.3 V  
CCIO  
Output buffer enable delay  
slow slew rate = off  
V
= 3.3 V  
CCIO  
Output buffer enable delay  
slow slew rate = on  
V
= 2.5 V or 3.3 V  
CCIO  
Output buffer disable delay  
Register setup time  
Register hold time  
tXZ  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSU  
1.2  
0.6  
0.8  
1.2  
1.8  
1.0  
1.1  
1.4  
2.5  
1.3  
1.1  
1.4  
tH  
Register setup time of fast input  
Register hold time of fast input  
Register delay  
tFSU  
tFH  
tRD  
0.7  
0.3  
1.5  
1.5  
1.3  
1.0  
1.0  
1.7  
2.0  
1.0  
0.4  
2.3  
2.2  
2.1  
1.6  
1.6  
2.6  
3.0  
1.3  
0.5  
3.0  
2.9  
2.7  
2.1  
2.1  
3.3  
4.0  
Combinatorial delay  
Array clock delay  
tCOMB  
tIC  
Register enable time  
Global control delay  
Register preset time  
Register clear time  
PIA delay  
tEN  
tGLOB  
tPRE  
tCLR  
tPIA  
tLPA  
(2)  
(4)  
Low-power adder  
48  
Altera Corporation  
MAX 7000B Programmable Logic Device Data Sheet  
Table 29. EPM7256B Selectable I/O Standard Timing Adder Delays (Part 1 of 2)  
Note (1)  
I/O Standard  
Parameter  
Speed Grade  
-7  
Unit  
-5  
-10  
Min  
Max Min Max  
Min Max  
3.3 V TTL/CMOS  
Input to PIA  
0.0  
0.0  
0.0  
0.0  
0.4  
0.3  
0.2  
0.2  
0.6  
0.6  
0.5  
1.3  
1.5  
1.3  
1.1  
0.0  
1.5  
1.3  
1.1  
–0.1  
1.4  
1.1  
1.0  
0.0  
1.4  
1.1  
1.0  
0.0  
1.8  
1.8  
1.7  
0.0  
0.0  
0.0  
0.0  
0.0  
0.6  
0.5  
0.3  
0.3  
0.9  
0.9  
0.8  
2.0  
2.3  
2.0  
1.7  
0.0  
2.3  
2.0  
1.7  
–0.2  
2.1  
1.7  
1.5  
0.0  
2.1  
1.7  
1.5  
0.0  
2.7  
2.7  
2.6  
0.0  
0.0  
0.0  
0.0  
0.0  
0.8  
0.6  
0.4  
0.4  
1.2  
1.2  
1.0  
2.6  
3.0  
2.6  
2.2  
0.0  
3.0  
2.6  
2.2  
–0.2  
2.8  
2.2  
2.0  
0.0  
2.8  
2.2  
2.0  
0.0  
3.6  
3.6  
3.4  
0.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Input to global clock and clear  
Input to fast input register  
All outputs  
2.5 V TTL/CMOS  
1.8 V TTL/CMOS  
SSTL-2 Class I  
SSTL-2 Class II  
SSTL-3 Class I  
SSTL-3 Class II  
GTL+  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Altera Corporation  
49  
MAX 7000B Programmable Logic Device Data Sheet  
Table 29. EPM7256B Selectable I/O Standard Timing Adder Delays (Part 2 of 2)  
Note (1)  
I/O Standard  
Parameter  
Speed Grade  
-7  
Unit  
-5  
-10  
Min  
Max Min Max  
Min Max  
PCI  
Input to PIA  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
ns  
ns  
ns  
ns  
Input to global clock and clear  
Input to fast input register  
All outputs  
Notes to tables:  
(1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for  
more information on switching waveforms.  
(2) These values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these  
devices, add an additional 0.1 ns to the PIA timing value.  
(3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.  
(4) The t  
parameter must be added to the t  
, t  
, t , t  
, t  
, t , and t parameters for macrocells  
LPA  
LAD LAC IC ACL CPPW EN  
SEXP  
running in low-power mode.  
50  
Altera Corporation  
MAX 7000B Programmable Logic Device Data Sheet  
Table 30. EPM7512B External Timing Parameters  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-7  
Unit  
-5  
-10  
Min  
Max  
Min  
Max  
Min  
Max  
t
Input to non-registered  
output  
C1 = 35 pF (2)  
5.5  
7.5  
10.0  
ns  
ns  
PD1  
PD2  
t
I/O input to non-registered C1 = 35 pF (2)  
output  
5.5  
7.5  
10.0  
t
t
t
Global clock setup time  
Global clock hold time  
(2)  
(2)  
3.6  
0.0  
1.0  
4.9  
0.0  
1.5  
6.5  
0.0  
1.5  
ns  
ns  
ns  
SU  
H
Global clock setup time of  
fast input  
FSU  
t
t
Global clock hold time of  
fast input  
1.0  
2.5  
1.0  
3.0  
1.0  
3.0  
ns  
ns  
FH  
Global clock setup time of  
fast input with zero hold  
time  
FZHSU  
t
t
Global clock hold time of  
fast input with zero hold  
time  
0.0  
1.0  
0.0  
1.0  
0.0  
1.0  
ns  
ns  
FZHH  
CO1  
Global clock to output  
delay  
C1 = 35 pF  
3.7  
5.9  
5.0  
8.0  
6.7  
t
t
t
t
t
t
t
t
Global clock high time  
Global clock low time  
Array clock setup time  
Array clock hold time  
3.0  
3.0  
1.4  
0.5  
1.0  
3.0  
3.0  
3.0  
3.0  
3.0  
1.9  
0.6  
1.0  
3.0  
3.0  
3.0  
4.0  
4.0  
2.5  
0.8  
1.0  
4.0  
4.0  
4.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CH  
CL  
(2)  
(2)  
ASU  
AH  
Array clock to output delay C1 = 35 pF (2)  
Array clock high time  
10.7  
ACO1  
ACH  
ACL  
CPPW  
Array clock low time  
Minimum pulse width for  
clear and preset  
t
f
t
f
Minimum global clock  
period  
(2)  
6.1  
6.1  
8.4  
8.4  
11.1  
11.1  
ns  
MHz  
ns  
CNT  
Maximum internal global  
clock frequency  
(2), (3)  
(2)  
163.9  
163.9  
119.0  
119.0  
90.1  
90.1  
CNT  
Minimum array clock  
period  
ACNT  
ACNT  
Maximum internal array  
clock frequency  
(2), (3)  
MHz  
Altera Corporation  
51  
MAX 7000B Programmable Logic Device Data Sheet  
Table 31. EPM7512B Internal Timing Parameters  
Note (1)  
Symbol  
Parameter  
Conditions  
Speed Grade  
-7  
Unit  
-5  
-10  
Min Max Min Max Min Max  
Input pad and buffer delay  
I/O input pad and buffer delay  
Fast input delay  
tIN  
0.3  
0.3  
2.2  
1.5  
0.3  
0.3  
3.2  
1.5  
0.5  
0.5  
4.0  
1.5  
ns  
ns  
ns  
ns  
tIO  
tFIN  
tFIND  
Programmable delay adder for  
fast input  
Shared expander delay  
Parallel expander delay  
Logic array delay  
tSEXP  
tPEXP  
tLAD  
tLAC  
tIOE  
1.5  
0.4  
1.7  
1.5  
0.1  
0.9  
2.1  
0.5  
2.3  
2.0  
0.2  
1.2  
2.7  
0.7  
3.0  
2.6  
0.2  
1.6  
ns  
ns  
ns  
ns  
ns  
ns  
Logic control array delay  
Internal output enable delay  
Output buffer and pad delay  
slow slew rate = off  
C1 = 35 pF  
C1 = 35 pF  
C1 = 35 pF  
C1 = 35 pF  
C1 = 5 pF  
tOD1  
V
= 3.3 V  
CCIO  
Output buffer and pad delay  
slow slew rate = on  
tOD3  
tZX1  
tZX3  
5.9  
2.8  
7.8  
2.8  
6.2  
3.8  
8.8  
3.8  
6.6  
5.0  
ns  
ns  
ns  
V
= 2.5 V or 3.3 V  
CCIO  
Output buffer enable delay  
slow slew rate = off  
V
= 3.3 V  
CCIO  
Output buffer enable delay  
slow slew rate = on  
10.0  
5.0  
V
= 2.5 V or 3.3 V  
CCIO  
Output buffer disable delay  
Register setup time  
Register hold time  
tXZ  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSU  
1.5  
0.4  
0.8  
1.2  
2.0  
0.5  
1.1  
1.4  
2.6  
0.7  
1.1  
1.4  
tH  
Register setup time of fast input  
Register hold time of fast input  
Register delay  
tFSU  
tFH  
tRD  
0.5  
0.2  
1.8  
1.5  
2.0  
1.0  
1.0  
2.4  
2.0  
0.7  
0.3  
2.4  
2.0  
2.8  
1.4  
1.4  
3.4  
2.7  
1.0  
0.4  
3.1  
2.6  
3.6  
1.9  
1.9  
4.5  
3.6  
Combinatorial delay  
Array clock delay  
tCOMB  
tIC  
Register enable time  
Global control delay  
Register preset time  
Register clear time  
PIA delay  
tEN  
tGLOB  
tPRE  
tCLR  
tPIA  
tLPA  
(2)  
(4)  
Low-power adder  
52  
Altera Corporation  
MAX 7000B Programmable Logic Device Data Sheet  
Table 32. EPM7512B Selectable I/O Standard Timing Adder Delays (Part 1 of 2)  
Note (1)  
I/O Standard  
Parameter  
Speed Grade  
-7  
Unit  
-5  
-10  
Min  
Max Min Max  
Min Max  
3.3 V TTL/CMOS  
Input to PIA  
0.0  
0.0  
0.0  
0.0  
0.4  
0.3  
0.2  
0.2  
0.7  
0.6  
0.5  
1.3  
1.5  
1.4  
1.1  
0.0  
1.5  
1.4  
1.1  
–0.1  
1.4  
1.2  
1.0  
0.0  
1.4  
1.2  
1.0  
0.0  
1.8  
1.9  
1.8  
0.0  
0.0  
0.0  
0.0  
0.0  
0.5  
0.4  
0.3  
0.3  
1.0  
0.8  
0.6  
1.8  
2.0  
1.9  
1.5  
0.0  
2.0  
1.9  
1.5  
–0.1  
1.9  
1.6  
1.4  
0.0  
1.9  
1.6  
1.4  
0.0  
2.5  
2.6  
2.5  
0.0  
0.0  
0.0  
0.0  
0.0  
0.7  
0.5  
0.3  
0.3  
1.3  
1.0  
0.8  
2.3  
2.7  
2.5  
2.0  
0.0  
2.7  
2.5  
2.0  
–0.2  
2.5  
2.2  
1.8  
0.0  
2.5  
2.2  
1.8  
0.0  
3.3  
3.5  
3.3  
0.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Input to global clock and clear  
Input to fast input register  
All outputs  
2.5 V TTL/CMOS  
1.8 V TTL/CMOS  
SSTL-2 Class I  
SSTL-2 Class II  
SSTL-3 Class I  
SSTL-3 Class II  
GTL+  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Input to PIA  
Input to global clock and clear  
Input to fast input register  
All outputs  
Altera Corporation  
53  
MAX 7000B Programmable Logic Device Data Sheet  
Table 32. EPM7512B Selectable I/O Standard Timing Adder Delays (Part 2 of 2)  
Note (1)  
I/O Standard  
Parameter  
Speed Grade  
-7  
Unit  
-5  
-10  
Min  
Max Min Max  
Min Max  
PCI  
Input to PIA  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
ns  
ns  
ns  
ns  
Input to global clock and clear  
Input to fast input register  
All outputs  
Notes to tables:  
(1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for  
more information on switching waveforms.  
(2) These values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these  
devices, add an additional 0.12 ns to the PIA timing value.  
(3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.  
(4) The t  
parameter must be added to the t  
, t  
, t , t  
, t  
, t , and t  
parameters for macrocells  
LPA  
LAD LAC IC ACL CPPW EN  
SEXP  
running in low-power mode.  
Supply power (P) versus frequency (fMAX, in MHz) for MAX 7000B  
devices is calculated with the following equation:  
Power  
Consumption  
P = PINT + PIO = ICCINT × VCC + PIO  
The PIO value, which depends on the device output load characteristics  
and switching frequency, can be calculated using the guidelines given in  
Application Note 74 (Evaluating Power for Altera Devices).  
54  
Altera Corporation  
MAX 7000B Programmable Logic Device Data Sheet  
The ICCINT value depends on the switching frequency and the application  
logic. The ICCINT value is calculated with the following equation:  
ICCINT  
=
(A × MCTON) + [B × (MCDEV – MCTON)] + (C × MCUSED × fMAX × togLC  
)
The parameters in this equation are:  
MCTON  
=
Number of macrocells with the Turbo BitTM option turned  
on, as reported in the MAX+PLUS II Report File (.rpt)  
Number of macrocells in the device  
Total number of macrocells in the design, as reported in  
the Report File  
MCDEV  
MCUSED  
=
=
fMAX  
togLC  
=
=
Highest clock frequency to the device  
Average percentage of logic cells toggling at each clock  
(typically 12.5%)  
A, B, C  
=
Constants, shown in Table 33  
Table 33. MAX 7000B ICC Equation Constants  
Device  
A
B
C
EPM7032B  
EPM7064B  
EPM7128B  
EPM7256B  
EPM7512B  
0.91  
0.91  
0.91  
0.91  
0.91  
0.54  
0.54  
0.54  
0.54  
0.54  
0.010  
0.012  
0.016  
0.017  
0.019  
This calculation provides an ICC estimate based on typical conditions  
using a pattern of a 16-bit, loadable, enabled, up/down counter in each  
LAB with no output load. Actual ICC should be verified during operation  
because this measurement is sensitive to the actual pattern in the device  
and the environmental operating conditions.  
Altera Corporation  
55  
MAX 7000B Programmable Logic Device Data Sheet  
Figure 15. ICC vs. Frequency for EPM7032B Devices  
45  
40  
35  
30  
25  
20  
15  
10  
5
EPM7032B  
285.7 MHz  
VCC = 2.5 V  
Room Temperature  
High Speed  
Typical ICC  
Active (mA)  
153.8 MHz  
Low Power  
0
50  
100  
150  
200  
250  
300  
Frequency (MHz)  
Figure 16. ICC vs. Frequency for EPM7064B Devices  
90  
EPM7064B  
285.7 MHz  
VCC = 2.5 V  
Room Temperature  
80  
70  
60  
50  
40  
30  
High Speed  
Typical ICC  
Active (mA)  
153.8 MHz  
Low Power  
20  
10  
0
50  
100  
150  
200  
250  
300  
Frequency (MHz)  
56  
Altera Corporation  
MAX 7000B Programmable Logic Device Data Sheet  
Figure 17. ICC vs. Frequency for EPM7128B Devices  
220  
200  
180  
160  
EPM7128B  
VCC = 2.5 V  
Room Temperature  
238.1 MHz  
140  
120  
High Speed  
Typical ICC  
Active (mA)  
100  
80  
129.9 MHz  
Low Power  
60  
40  
20  
0
50  
100  
150  
200  
250  
Frequency (MHz)  
Figure 18. ICC vs. Frequency for EPM7256B Devices  
400  
EPM7256B  
VCC = 2.5 V  
Room Temperature  
350  
300  
188.7 MHz  
High Speed  
250  
Typical ICC  
Active (mA)  
200  
150  
107.5 MHz  
Low Power  
100  
50  
0
50  
100  
Frequency (MHz)  
150  
200  
Altera Corporation  
57  
MAX 7000B Programmable Logic Device Data Sheet  
Figure 19. ICC vs. Frequency for EPM7512B Devices  
700  
EPM7512B  
163.9 MHz  
VCC = 2.5 V  
Room Temperature  
600  
500  
400  
High Speed  
99.0 MHz  
Typical ICC  
Active (mA)  
300  
200  
Low Power  
100  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
Frequency (MHz)  
58  
Altera Corporation  
MAX 7000B Programmable Logic Device Data Sheet  
See the Altera web site (http://www.altera.com) or the Altera Digital  
Library for pin-out information.  
Device  
Pin-Outs  
Figures 20 through 29 show the package pin-out diagrams for  
MAX 7000B devices.  
Figure 20. 44-Pin PLCC/TQFP Package Pin-Out Diagram  
Package outlines not drawn to scale.  
Pin 34  
Pin 1  
6
5
4
3
2
1 44 43 42 41 40  
7
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
I/O  
I/O/TDI  
I/O  
I/O/TDI  
I/O  
I/O  
8
I/O/TDO  
I/O  
I/O/TDO  
9
I/O  
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
VCC  
I/O  
VCC  
I/O  
I/O  
EPM7032B  
EPM7064B  
EPM7032B  
EPM7064B  
I/O  
I/O  
I/O/TMS  
I/O  
I/O  
I/O/TMS  
I/O  
I/O/TCK  
I/O  
I/O/TCK  
I/O  
VCC  
I/O  
GND  
I/O  
VCC  
I/O  
I/O  
GND  
I/O  
I/O  
18 19 20 21 22 23 24 25 26 27 28  
Pin 12  
Pin 23  
44-Pin PLCC  
44-Pin TQFP  
Altera Corporation  
59  
MAX 7000B Programmable Logic Device Data Sheet  
Figure 21. 48-Pin VTQFP Package Pin-Out Diagram  
Package outlines not drawn to scale.  
48 47 46 45 44 43 42 41 40 39 38 37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
I/O  
1
N/C  
I/O/TDI  
I/O  
I/O/TDO  
I/O  
2
3
I/O  
I/O  
4
VCCIO2  
I/O  
GNDIO  
I/O / VREFA  
I/O  
5
6
EPM7032B  
EPM7064B  
I/O  
7
I/O/TCK  
I/O / VREFB  
GNDIO  
I/O  
I/O/TMS  
I/O  
8
9
VCCIO1  
I/O  
10  
11  
12  
I/O  
I/O  
13 14 15 16 17 18 19 20 21 22 23 24  
48-Pin VTQFP  
Figure 22. 49-Pin Ultra FineLine BGA Package Pin-Out Diagram  
Package outline not drawn to scale.  
A1 Ball  
Pad Corner  
Indicates  
location of  
Ball A1  
A
B
C
D
E
F
EPM7032B  
EPM7064B  
EPM7128B  
G
7
6
5
4
3
2
1
60  
Altera Corporation  
MAX 7000B Programmable Logic Device Data Sheet  
Figure 23. 100-Pin TQFP Package Pin-Out Diagram  
Package outline not drawn to scale.  
Pin 1  
Pin 76  
EPM7064B  
EPM7128B  
EPM7256B  
Pin 26  
Pin 51  
Figure 24. 100-Pin FineLine BGA Package Pin-Out Diagram  
Package outline not drawn to scale.  
A1 Ball  
Pad Corner  
Indicates  
location of  
Ball A1  
A
B
C
D
E
F
G
H
EPM7064B  
EPM7128B  
EPM7256B  
J
K
10  
9
8
7
6
5
4
3
2
1
Altera Corporation  
61  
MAX 7000B Programmable Logic Device Data Sheet  
Figure 25. 144-Pin TQFP Package Pin-Out Diagram  
Package outline not drawn to scale.  
Indicates location  
of Pin 1  
Pin 1  
Pin 109  
EPM7128B  
EPM7256B  
EPM7512B  
Pin 37  
Pin 73  
Figure 26. 169-Pin Ultra FineLine BGA Pin-Out Diagram  
Package outline not drawn to scale.  
A1 Ball  
Pad Corner  
Indicates  
Location of  
Ball A1  
A
B
C
D
E
F
G
H
J
K
EPM7128AE  
L
M
N
13 12 11 10  
9
8
7
6
5
4
3
2
1
62  
Altera Corporation  
MAX 7000B Programmable Logic Device Data Sheet  
Figure 27. 208-Pin PQFP Package Pin-Out Diagram  
Package outline not drawn to scale.  
Pin 1  
Pin 157  
EPM7256B  
EPM7512B  
Pin 53  
Pin 105  
Altera Corporation  
63  
MAX 7000B Programmable Logic Device Data Sheet  
Figure 28. 256-Pin BGA Package Pin-Out Diagram  
Package outline not drawn to scale.  
A1 Ball  
Pad Corner  
Indicates  
Location of  
Ball A1  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
EPM7512B  
U
V
W
Y
20 19 18 17 16 15 14 13 12 11 10  
9 8 7 6 5 4 3 2 1  
64  
Altera Corporation  
MAX 7000B Programmable Logic Device Data Sheet  
Figure 29. 256-Pin FineLine BGA Package Pin-Out Diagram  
Package outline not drawn to scale.  
A1 Ball  
Pad Corner  
A
Indicates  
Location of  
Ball A1  
B
C
D
E
F
G
H
J
K
EPM7128B  
EPM7256B  
EPM7512B  
L
M
N
P
R
T
16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
The information contained in the MAX 7000B Programmable Logic Device  
Family Data Sheet version 3.5 supersedes information published in  
previous versions.  
Revision  
History  
Version 3.5  
The following changes were made to the MAX 7000B Programmable Logic  
Device Family Data Sheet version 3.5:  
Updated Figure 28.  
Version 3.4  
The following changes were made to the MAX 7000B Programmable Logic  
Device Family Data Sheet version 3.4:  
Updated text in the “Power Sequencing & Hot-Socketing” section.  
Altera Corporation  
65  
MAX 7000B Programmable Logic Device Data Sheet  
Version 3.3  
The following changes were made to the MAX 7000B Programmable Logic  
Device Family Data Sheet version 3.3:  
Updated Table 3.  
Added Tables 4 through 6.  
Version 3.2  
The following changes were made to the MAX 7000B Programmable Logic  
Device Family Data Sheet version 3.2:  
Updated Note (10) and added ambient temperature (TA) information  
to Table 15.  
Version 3.1  
The following changes were made to the MAX 7000B Programmable Logic  
Device Family Data Sheet version 3.1:  
Updated VIH and VIL specifications in Table 16.  
Updated leakage current conditions in Table 16.  
Version 3.0  
The following changes were made to the MAX 7000B Programmable Logic  
Device Family Data Sheet version 3.0:  
Updated timing numbers in Table 1.  
Updated Table 16.  
Updated timing in Tables 18, 19, 21, 22, 24, 25, 27, 28, 30, and 31.  
101 Innovation Drive  
San Jose, CA 95134  
(408) 544-7000  
http://www.altera.com  
Applications Hotline:  
(800) 800-EPLD  
Customer Marketing:  
(408) 544-7104  
Literature Services:  
lit_req@altera.com  
Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the  
stylized Altera logo, specific device designations, and all other words and logos that are identified as  
trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera  
Corporation in the U.S. and other countries. All other product or service names are the property of their  
respective holders. Altera products are protected under numerous U.S. and foreign patents and pending  
applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to  
current specifications in accordance with Altera's standard warranty, but reserves the right  
to make changes to any products and services at any time without notice. Altera assumes no  
responsibility or liability arising out of the application or use of any information, product, or  
service described herein except as expressly agreed to in writing by Altera Corporation.  
Altera customers are advised to obtain the latest version of device specifications before  
relying on any published information and before placing orders for products or services.  
66  
Altera Corporation  
Printed on Recycled Paper.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY