FLLXT384BE.B1 [INTEL]

PCM Transceiver, 1-Func, CEPT PCM-30/E-1, CMOS, PBGA160, 13 X 13MM, BGA-160;
FLLXT384BE.B1
型号: FLLXT384BE.B1
厂家: INTEL    INTEL
描述:

PCM Transceiver, 1-Func, CEPT PCM-30/E-1, CMOS, PBGA160, 13 X 13MM, BGA-160

PC 电信 电信集成电路
文件: 总140页 (文件大小:1522K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Intel® LXT384 Octal T1/E1/J1 Short-Haul  
PCM Transceiver with Jitter Attenuation  
(JA)  
Datasheet  
Product Features  
Octal T1/E1/J1 Pulse-Code Modulation  
(PCM) Transceiver with Jitter Attenuation  
for use in both 1.544 Mbps (T1) and 2.048  
Mbps (E1) applications  
16 fully-independent receiver/transmitters  
Support for E1 standards:  
Transmitters  
Power-down mode with fast output  
tristate capability  
Transmit waveform shaping meets ITU  
G.703 and T1.102 specifications  
Exceeds ETSI ETS 300 166 transmit  
return-loss specifications  
Exceeds ETSI ETS 300 166  
Meets ETS 300 233  
Low-impedance transmit drivers,  
independent of transmit pattern and  
supply-voltage variations  
Low-power single-rail 3.3-V CMOS power  
supply, with 5-V tolerant I/Os  
Jitter attenuation  
Crystal-less  
Low-current transmit output option that  
can reduce power dissipation by up to  
15%. By changing the LXT384  
Transceiver output transformer ratio  
from 1:2 to 1:1.7, the savings occur  
whether TVCC is at 5 V or 3.3 V.  
130 mW per channel (typical). See  
Table 63 “Intel® LXT384 Transceiver  
Power Consumption” on page 104 and  
Table 64 “Load3 Power Consumption”  
on page 105.  
Digital clock recovery PLL  
Referenced to a low frequency 1.544  
MHz or 2.048-MHz clock. Normal  
operation requires only MCLK. Does  
not require a reference clock frequency  
higher than the line frequency.  
Can be switched between receive and  
transmit path  
Meets ETSI CTR12/13, ITU G.736,  
G.742, G.823, and AT&T Pub 62411  
HDB3, B8ZS, or AMI line encoder/decoder  
LOS per ITU G.775, T1.231, and ETS 300  
Optimized for Synchronous Optical  
NETwork (SONET) and Synchronous  
Digital Hierarchy (SDH) applications,  
meets ITU G.783 mapping jitter standard  
233  
Diagnostics:  
Can be configured for G.722-compliant,  
non-intrusive performance (protected)  
monitoring points  
Constant throughput delay  
Differential receiver architecture  
High margin for noise interference  
Operates at >12 dB of cable attenuation  
Intel® Hitless Protection Switching  
Industry-standard P1149.1 JTAG  
Boundary Scan test port  
Intel®/ Motorola* 8-bit parallel processor  
interface or 4 wire serial control interface  
Hardware and Software control modes  
Operating temperature -40 °C to 85 °C  
160-ball BGA or 144-pin LQFP packages  
Eliminates mechanical relays for  
redundancy 1+1 protection applications  
Increases quality of service  
Applications  
SONET/SDH tributary interfaces  
Digital cross connects  
Microwave transmission systems  
M13, E1-E3 MUX  
Public/private switching trunk line interfaces  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY  
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN  
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS  
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES  
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER  
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or  
in nuclear facility applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
The Intel® LXT384 Octal T1/E1/J1 Short-Haul Pulse-Code Modulation Transceiver with Jitter Attenuation may contain design defects or errors known  
as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-  
548-4725, or by visiting Intel's website at http://www.intel.com.  
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2005 Intel Corporation  
2
Datasheet  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Contents  
Contents  
1.0  
Introduction to this Document............................................................................11  
1.1  
1.2  
1.3  
Audience and Purpose........................................................................................11  
Conventions and Terminology.............................................................................12  
Related Documents.............................................................................................12  
2.0  
3.0  
4.0  
Product Summary....................................................................................................13  
Pin Assignments and Package...........................................................................16  
Multi-Function Pins .................................................................................................19  
4.1  
4.2  
Operating Mode Multi-Function Pins...................................................................19  
Framer/Mapper I/O Pins......................................................................................21  
5.0  
Signal Descriptions.................................................................................................23  
5.1  
5.2  
5.3  
Signal Groupings.................................................................................................23  
Microprocessor-Standard Bus and Interface Signals..........................................24  
Framer/Mapper Signals.......................................................................................27  
5.3.1 Bipolar vs. Unipolar Operation - Receive Side.......................................27  
5.3.2 Bipolar vs. Unipolar Operation - Transmit Side ......................................28  
5.3.3 Framer/Mapper Signals - Details............................................................29  
Line Interface Unit Signals ..................................................................................34  
Clocks and Clock-Related Signals ......................................................................37  
Configuration and Mode-Select Signals..............................................................39  
Signal Loss and Line-Code-Violation Signals .....................................................41  
Power and Grounds ............................................................................................43  
Test Signals.........................................................................................................44  
Intel® LXT384 Transceiver Line Length Equalizers.............................................45  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
5.10  
6.0  
Functional Description...........................................................................................46  
6.1  
6.2  
6.3  
Functional Overview............................................................................................47  
Initialization and Reset ........................................................................................47  
Receiver ..............................................................................................................48  
6.3.1 Receiver Clocking ..................................................................................48  
6.3.2 Receiver Inputs ......................................................................................48  
6.3.3 Receiver Loss-Of-Signal Detector..........................................................49  
6.3.4 Receiver Data Recovery Mode ..............................................................50  
6.3.5 Receiver Alarm Indication Signal (AIS) Detection ..................................50  
6.3.6 Receive Alarm Indication Signal (RAIS) Enable.....................................50  
6.3.7 Receiver In-Service Line-Code-Violation Monitoring..............................51  
Transmitter ..........................................................................................................52  
6.4.1 Transmitter Clocking ..............................................................................52  
6.4.2 Transmitter Pulse Shaping .....................................................................53  
6.4.3 Transmitter Outputs................................................................................55  
6.4.4 Transmitter Output Driver Power and Grounds......................................56  
Line-Interface Protection .....................................................................................57  
6.4  
6.5  
Datasheet  
3
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Contents  
6.6  
6.7  
Jitter Attenuation .................................................................................................60  
Loopbacks...........................................................................................................62  
6.7.1 Analog Loopback ...................................................................................62  
6.7.2 Digital Loopback.....................................................................................63  
6.7.3 Remote Loopback ..................................................................................64  
Transmit All Ones Operations.............................................................................65  
6.8.1 TAOS Generation...................................................................................65  
6.8.2 TAOS Generation with Analog Loopback ..............................................66  
6.8.3 TAOS Generation with Digital Loopback................................................66  
Performance Monitoring......................................................................................67  
Intel® Hitless Protection Switching......................................................................68  
6.8  
6.9  
6.10  
7.0  
Operating Mode Summary ...................................................................................69  
7.1  
7.2  
7.3  
7.4  
Interfacing with 5V Logic .....................................................................................69  
Hardware Mode...................................................................................................69  
Hardware Mode Settings.....................................................................................70  
Host Processor Modes........................................................................................71  
7.4.1 Host Processor Mode - Parallel Interface...............................................71  
7.4.2 Host Processor Mode - Serial Interface .................................................73  
Interrupt Handling................................................................................................74  
7.5.1 Interrupt Sources....................................................................................74  
7.5.2 Interrupt Enable......................................................................................74  
7.5.3 Interrupt Clear ........................................................................................74  
7.5  
8.0  
9.0  
Registers......................................................................................................................75  
8.1  
8.2  
8.3  
Register Summary ..............................................................................................75  
Register Addresses.............................................................................................77  
Register Descriptions..........................................................................................78  
JTAG Boundary Scan.............................................................................................86  
9.1  
9.2  
9.3  
9.4  
Overview .............................................................................................................86  
Architecture.........................................................................................................86  
TAP Controller.....................................................................................................87  
JTAG Register Description..................................................................................89  
9.4.1 Boundary Scan Register (BSR)..............................................................89  
9.4.2 Analog Port Scan Register (ASR) ..........................................................94  
9.4.3 Device Identification Register (IDR) .......................................................94  
9.4.4 Bypass Register (BYR) ..........................................................................94  
9.4.5 Instruction Register (IR) .........................................................................95  
10.0  
11.0  
Electrical Characteristics......................................................................................96  
Timing Characteristics.........................................................................................105  
11.1  
11.2  
Intel® LXT384 Transceiver Timing ....................................................................106  
Host Processor Mode - Parallel Interface Timing..............................................109  
11.2.1 Intel® Processor - Parallel Interface Timing .........................................109  
11.2.2 Motorola* Processor - Parallel Interface Timing...................................115  
Host Processor Mode - Serial Interface Timing ................................................121  
11.3  
4
Datasheet  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Contents  
12.0  
13.0  
14.0  
15.0  
16.0  
Line-Interface-Unit Circuit Specifications....................................................123  
Mask Specifications..............................................................................................124  
Jitter Performance.................................................................................................126  
Recommendations and Specifications .........................................................131  
Mechanical Specifications..................................................................................133  
16.1  
Top Label Markings...........................................................................................135  
17.0  
18.0  
19.0  
Product Ordering Information...........................................................................137  
Package Information.............................................................................................138  
Abbreviations and Acronyms ...........................................................................139  
Figures  
1
2
3
4
5
6
7
8
Intel® LXT384 Transceiver High-Level Block Diagram........................................14  
Intel® LXT384 Transceiver Detailed Block Diagram............................................15  
Intel® LXT384 Transceiver 144-Pin Assignments ...............................................17  
Intel® LXT384 Transceiver Plastic Ball Grid Array (PBGA) Pin Assignments.....18  
50% AMI Encoding..............................................................................................53  
Intel® LXT384 Transceiver External Transmit/Receive Line Circuitry.................58  
Jitter Attenuator...................................................................................................60  
Intel® LXT384 Transceiver Analog Loopback .....................................................62  
Intel® LXT384 Transceiver Digital Loopback.......................................................63  
Intel® LXT384 Transceiver Remote Loopback....................................................64  
TAOS Data Path for Intel® LXT384 Transceiver .................................................65  
TAOS with Analog Loopback for Intel® LXT384 Transceiver..............................66  
TAOS with Digital Loopback for Intel® LXT384 Transceiver ...............................66  
Host Processor Mode - Serial Interface Read Timing.........................................73  
JTAG Architecture...............................................................................................86  
JTAG State Diagram ...........................................................................................88  
Analog Test Port Application...............................................................................93  
JTAG Timing .......................................................................................................95  
Intel® LXT384 Transceiver - Transmit Timing ...................................................106  
Intel® LXT384 Transceiver - Receive Timing ....................................................108  
Intel® Processor Non-Multiplexed Interface - Read Timing...............................110  
Intel® Processor Multiplexed Interface - Read Timing.......................................111  
Intel® Processor Non-Multiplexed Interface - Write Timing ...............................113  
Intel® Processor Multiplexed Interface - Write Timing.......................................114  
Motorola Processor Non-Multiplexed Interface - Read Timing..........................116  
Motorola Processor Multiplexed Interface - Read Timing .................................117  
Motorola Processor Non-Multiplexed Interface - Write Timing..........................119  
Motorola Processor Multiplexed Interface - Write Timing..................................120  
Serial Input Timing ............................................................................................121  
Serial Output Timing..........................................................................................122  
E1, ITU G.703 Mask Template..........................................................................124  
T1, T1.102 Mask Templates for LXT384...........................................................125  
Intel® LXT384 Transceiver Jitter Tolerance Performance.................................128  
Intel® LXT384 Transceiver Jitter Transfer Performance ...................................129  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
Datasheet  
5
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Contents  
35  
36  
37  
38  
39  
40  
41  
42  
Intel® LXT384 Transceiver Output Jitter for ETSI CTR12/13 Applications........130  
Dimensions for 144-Pin Low Octal Flat Package (LQFP) .................................133  
Dimensions for 160-Ball Plastic Ball Grid Array (BGA).....................................134  
Sample LQFP Non-RoHS Package - Intel® LXT384 Transceiver.....................135  
Sample LQFP RoHS Package - Intel® LXT384 Transceiver.............................135  
Sample Plastic BGA Non-RoHS Package - Intel® LXT384 Transceiver ...........136  
Sample Plastic BGA RoHS Package - Intel® LXT384 Transceiver...................136  
Order Matrix ......................................................................................................138  
6
Datasheet  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Contents  
Tables  
1
2
3
4
5
6
7
8
Related Documents.............................................................................................12  
Intel® LXT384 Transceiver Package Top-Side Markings....................................16  
Operating Mode Selections.................................................................................19  
Operating Mode-Specific Signal Names .............................................................20  
Receiver Bipolar/Unipolar I/O Signal Functions ..................................................21  
Transmitter Bipolar/Unipolar I/O Signal Functions ..............................................22  
Microprocessor-Standard Bus and Interface Signals..........................................24  
Framer/Mapper Receive Signals.........................................................................29  
Framer/Mapper Transmit Signals........................................................................31  
Line Interface Unit Signals ..................................................................................34  
Clocks and Clock-Related Signals ......................................................................37  
Configuration and Mode-Select Signals..............................................................39  
Signal Loss and Line-Code-Violation Signals .....................................................41  
Performance-Monitoring Selections with A3:0 Pins ............................................42  
Power and Grounds ............................................................................................43  
JTAG Analog Interface Test Signals ...................................................................44  
JTAG Digital Interface Test Signals ....................................................................44  
Intel® LXT384 Transceiver Line Length Equalizers.............................................45  
Intel® LXT384 Transceiver Line Length Equalizer Inputs....................................45  
Line Length Equalizer Inputs...............................................................................54  
Component Values to Use with Transformer Circuit ...........................................59  
Transmitter Transformer Turns Ratio Selection ..................................................59  
Intel® LXT384 Transceiver Operation Mode Summary.......................................70  
Host Processor Mode - Parallel Interface Selections..........................................71  
Intel® LXT384 Transceiver Register Summary ...................................................75  
Register Bit Names .............................................................................................76  
Register Addresses for Serial and Parallel Interfaces.........................................77  
ID Register, ID - 00h............................................................................................78  
Analog Loopback Register, ALOOP - 01h...........................................................78  
Remote Loopback Register, RLOOP - 02h.........................................................78  
TAOS Enable Register, TAOS - 03h...................................................................78  
LOS Status Monitor Register, LOS - 04h ............................................................79  
DFM Status Monitor Register, DFM (05h) for Intel® LXT384 Transceiver ..........79  
LOS Interrupt Enable Register, LIE - 06h............................................................79  
DFM Interrupt Enable Register, DIE (07h) for Intel® LXT384 Transceiver..........79  
LOS Interrupt Status Register, LIS - 08h.............................................................79  
DFM Interrupt Status Register, DIS (09h) for Intel® LXT384 Transceiver...........79  
Reset Register, RES - 0Ah..................................................................................80  
Performance-Monitoring Register, MON - 0Bh ...................................................81  
Digital Loopback Register, DL - 0Ch...................................................................82  
LOS/AIS Criteria Selection Register, LACS - 0Dh ..............................................82  
Automatic TAOS Select Register, ATS - 0Eh......................................................82  
Global Control Register, GCR - 0Fh....................................................................83  
Pulse Shaping Indirect Address Register, PSIAD (10h)......................................84  
Pulse Shaping Data Register, PSDAT (11h) for Intel® LXT384 Transceiver ......84  
Output Enable Register, OER - 12h....................................................................84  
AIS Status Monitor Register, AIS - 13h...............................................................85  
AIS Interrupt Enable Register, AISIE - 14h .........................................................85  
AIS Interrupt Status Register, AISIS - 15h ..........................................................85  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
Datasheet  
7
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Contents  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
TAP State Description.........................................................................................87  
Boundary Scan Register (BSR) ..........................................................................89  
Analog Port Scan Register (ASR) .......................................................................94  
Device Identification Register (IDR) ....................................................................94  
Instruction Register (IR) ......................................................................................95  
JTAG Timing Characteristics ..............................................................................95  
Absolute Maximum Ratings ................................................................................96  
Recommended Operating Conditions.................................................................97  
Intel® LXT384 Transceiver Power Consumption.................................................98  
Load3 Power Consumption .................................................................................99  
DC Characteristics ............................................................................................100  
Intel® LXT384 Transceiver E1 Transmit Transmission Characteristics.............101  
Intel® LXT384 Transceiver T1 Transmit Transmission Characteristics.............101  
Intel® LXT384 Transceiver E1 Receive Transmission Characteristics..............103  
Intel® LXT384 Transceiver T1 Receive Transmission Characteristics..............104  
Intel® LXT384 Transceiver Transmit Timing Characteristics.............................106  
Intel® LXT384 Transceiver Receive Timing Characteristics .............................107  
Intel® Processor - Read Timing Characteristics................................................109  
Intel® Processor - Write Timing Characteristics................................................112  
Motorola Processor - Read Timing Characteristics...........................................115  
Motorola Processor - Write Timing Characteristics...........................................118  
Serial I/O Timing Characteristics.......................................................................121  
Line-Interface-Unit Circuit Specifications ..........................................................123  
Intel® LXT384 Transceiver Transformer Specifications ....................................123  
ITU G.703 2.048 Mbit/s Pulse Mask Specifications ..........................................124  
T1.102 1.544 Mbit/s Pulse Mask Specifications for Intel® LXT384 Transceiver125  
Intel® LXT384 Transceiver Jitter Attenuator Characteristics.............................126  
Intel® LXT384 Transceiver Analog Test Port Characteristics ...........................127  
Product Ordering Information............................................................................137  
Abbreviations, Acronyms, and Meanings..........................................................139  
8
Datasheet  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Contents  
Revision History  
Intel® LXT384 Transceiver - Revision 005  
Revision Date: November 2005  
Page  
Number  
Description  
1
Revised package information  
11  
Changed text in Chapter 1.0, “Audience and Purpose”  
135  
Added RoHS package information, starting at Section 16.1, “Top Label Markings”  
Intel® LXT384 Transceiver - Revision 004  
Revision Date: September 2005  
Page  
Number  
Description  
24  
84  
Table 7 “Microprocessor-Standard Bus and Interface Signals”. Change to table text.  
Table 45 “Pulse Shaping Data Register, PSDAT (11h) for Intel® LXT384 Transceiver”. Change  
to footnotes.  
Intel® LXT384 Transceiver - Revision 003  
Revision Date: July 2004  
Page  
Number  
Description  
Major editing/rewriting/reorganizing, based on results of extensive testing of this device, and on  
customer feedback about how the device is actually used.  
-
Intel® LXT384 Transceiver - Revision 002  
Revision Date: October 2003  
Page  
Number  
Description  
9
Revised Figure 3.  
21  
31  
Table 1, Sheet 11 of 12, revised description of Pin 115.  
Figure 6, added callout to graphic, for clarity.  
Intel® LXT384 Transceiver - Revision 001  
Revision Date: February 2003  
Page  
Number  
Description  
-
Initial release.  
Datasheet  
9
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Contents  
10  
Datasheet  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
1.0  
Introduction to this Document  
1.1  
Audience and Purpose  
The audience for this document is design engineers.  
The purpose of this document is to provide design information about the Intel® LXT384 Octal  
Short-Haul Pulse-Code Modulation Transceiver with Jitter Attenuation (called hereafter the  
LXT384 Transceiver).  
The rest of this document is organized as follows:  
Chapter 2.0, “Product Summary”  
Chapter 3.0, “Pin Assignments and Package”  
Chapter 4.0, “Multi-Function Pins”  
Chapter 5.0, “Signal Descriptions”  
Chapter 6.0, “Functional Description”  
Chapter 7.0, “Operating Mode Summary”  
Chapter 8.0, “Registers”  
Chapter 9.0, “JTAG Boundary Scan”  
Chapter 10.0, “Electrical Characteristics”  
Chapter 11.0, “Timing Characteristics”  
Chapter 12.0, “Line-Interface-Unit Circuit Specifications”  
Chapter 13.0, “Mask Specifications”  
Chapter 14.0, “Jitter Performance”  
Chapter 15.0, “Recommendations and Specifications”  
Chapter 16.0, “Mechanical Specifications”  
Chapter 17.0, “Product Ordering Information”  
Chapter 18.0, “Package Information”  
Chapter 19.0, “Abbreviations and Acronyms”  
11  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
1.2  
Conventions and Terminology  
Balls and pins. This document discusses two packages, both a low-profile octal-flat package (an  
LQFP, which uses pins for signals) and a pin ball-grid array (a PBGA, which uses balls for signals).  
In this document the term ‘pin’ refers to either a ball or a pin.  
Mark. An analog AMI (Alternate Mark Inversion) line-interface signal, containing a digital logic  
1. The mark is either a negative or a positive pulse.  
Recovered Clock. A clock that is not generated, but is instead derived from received data on a  
transceiver. The RTIP/RRING received signal is used to generate RCLK on the transceiver.  
X = Don’t care.  
1.3  
Related Documents  
Table 1 lists related documents for both the Intel® LXT385 Transceiver and the Intel® LXT384  
Transceiver.  
Use the Intel® LXT384 Transceiver for either E1 or T1 applications.  
The Intel® LXT385 Transceiver supports the E1 standard only.  
Table 1. Related Documents  
1+1 Protection without Relays Using Intel® LXT380/1/4/6/8 Hitless Protection Switching -  
Application Note  
249464  
Intel® LXD384 - Evaluation Board for Octal T1/E1 Applications - Developer Manual  
Intel® LXT380/1/4/6/8 Redundancy Applications - Application Note  
249214  
249134  
Intel® LXT380/4 Octal T1/E1 LIUs - Interfacing with the Transwitch Octal Framers -  
Application Note  
249136  
253721  
Intel® LXT384 Octal LIU and Intel® LXT385 Octal PCM Transceiver. - Solutions for Slow  
Power-Up Rise Time - Application Note  
Intel® LXT384/6/8 Frequently Asked Questions  
249183  
249138  
251364  
Intel® LXT384/6/8 Twisted Pair Interface - Without Component Changes - Application Note  
Intel® LXT384/6/8 Universal 75/100/120 Ohm Interface  
T1/E1/J1, N+1 Redundancy with Analog Switches and Intel® LXT3x Line Interface Units -  
Preliminary Application Note  
278832  
249133  
Transformer Specification for Intel® Transceiver Applications - Application Note  
12  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
2.0  
Product Summary  
The Intel® LXT384 Octal T1/E1/J1 Short-Haul Pulse-Code Modulation Transceiver with Jitter  
Attenuation (called hereafter the LXT384 transceiver) is designed for use in 1.544 MBps (T1) or  
2.048-Mbps (E1) applications. It incorporates eight independent receivers and eight independent  
transmitters in either a single 144-pin LQFP or a 160-ball PBGA package.  
Transmitters. The LXT384 transceiver transmits shaped waveforms that meet ITU G.703  
specifications. The transmit drivers provide low impedance, independent of supply-voltage  
variation and transmit patterns. The output of the transmitters is stable over a variety of loads. The  
transmit return loss for the LXT384 transceiver exceeds typical specifications such as ETSI ETS  
300 166. All transmitters have a power-down mode with the capability for a fast transition to an  
output high-impedance tristate.  
Power Savings. The Intel® transmit output design allows you to use the transmitter output of the  
LXT384 Transceiver in a broad range of applications, while maintaining circuit stability. As a  
result, the LXT384 Transceiver can offer a low-current transmit output option that can reduce  
power dissipation by up to 15%. By changing the LXT384 Transceiver output transformer ratio  
from 1:2 to 1:1.7, the savings occur whether TVCC is at 5V or 3.3V.  
Receivers. The LXT384 Transceiver has a differential receiver architecture that provides a high  
noise-interference margin so that the receivers can operate well beyond 12 dB of cable attenuation.  
Jitter Attenuation. The LXT384 Transceiver incorporates a crystal-less jitter attenuator that can  
be switched to work inside either the receive or the transmit path, or it can be disabled entirely. The  
jitter-attenuation performance, optimized for synchronous digital hierarchy (SDH) applications,  
meets typical international specifications such as ETSI CTR12/13.  
Performance Monitoring. You can configure the LXT384 Transceiver for non-intrusive  
performance monitoring (also known as ‘protected monitoring’) that is compliant with ITU G.772.  
Intel® Hitless Protection Switching. The LXT384 Transceiver can operate in an Intel® Hitless  
Protection Switching mode, which uses one transceiver to back up another, in case the primary  
transceiver fails. This method is often referred to as 1+1 redundancy protection. Typical  
redundancy methods used external relays. Intel® Hitless Protection Switching is a solid-state  
solution, which reduces bit errors that can occur when using external relays for redundancy  
protection. This mode uses two LXT384 Transceivers in parallel, with one LXT384 Transceiver  
powered on, while the other LXT384 Transceiver is in standby mode. As a result, one LXT384  
Transceiver backs up another LXT384 Transceiver. See the 1+1 Protection without Relays Using  
Intel® LXT380/1/4/6/8 Hitless Protection Switching - Application Note.  
13  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Figure 1 is a high-level block diagram of the LXT384 Transceiver.  
Figure 1. Intel® LXT384 Transceiver High-Level Block Diagram  
MODE  
LOOP7:0  
JASEL  
CLKE  
JTAG  
Serial/  
Hardware / Host Processor / JTAG Interface  
Parallel  
Port  
MCLK  
LOS  
Data  
LOS  
Detector*  
Slicer  
JA RX  
or TX  
Path  
RPOS  
RCLK  
RNEG  
RTIP  
Clock  
Decoder  
Encoder  
Recovery  
RRING  
TPOS  
TCLK  
TNEG  
JA RX  
or TX  
Path  
TTIP  
Pulse  
Shaper  
TRING  
Line Driver  
0
1
2
3
4
5
6
7
JA  
= Jitter Attenuator  
JTAG = Joint Test Action Group  
LOS = Loss of Signal. (LOS Detector is used in data-recovery operations.)  
*
14  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Figure 2 is a detailed block diagram of the LXT384 Transceiver.  
.
Figure 2. Intel® LXT384 Transceiver Detailed Block Diagram  
JTAG  
SERIAL/  
PARALLEL  
MODE  
HARDWARE / SOFTWARE CONTROL  
(JTAG INTERFACE)  
LOOP 0..7  
JASEL  
CLKE  
PORT  
MCLK  
Transceiver 7  
LOS  
LOS7  
DATA SLICER  
RTIP7  
RPOS7  
RCLK7  
RNEG7  
JITTER  
CLOCK  
K  
RECOVERY  
ATTENUATOR  
RX OR TX  
PATH  
B8ZS / HDB3  
DECODER  
RRING7  
TTIP7  
LINE DRIVER  
TPOS7  
TCLK7  
TNEG7  
JITTER  
ATTENUATOR  
RX OR TX  
PATH  
E  
PULSE  
SHAPER  
B8ZS / HDB3  
ENCODER  
TRING7  
LOS6  
RTIP6/RRING6  
TTIP6/TRING6  
RPOS6/RNEG6/RCLK6  
TPOS6/TNEG6/TCLK6  
Transceiver 6  
Transceiver 5  
LOS5  
RTIP5/RRING5  
TTIP5/TRING5  
RPOS5/RNEG5/RCLK5  
TPOS5/TNEG5/TCLK5  
LOS4  
Transceiver 4  
RTIP4/RRING4  
TTIP4/TRING4  
RPOS4/RNEG4/RCLK4  
TPOS4/TNEG4/TCLK4  
LOS3  
RTIP3/RRING3  
TTIP3/TRING3  
Transceiver 3  
Transceiver 2  
Transceiver 1  
RPOS3/RNEG3/RCLK3  
TPOS3/TNEG3/TCLK3  
LOS2  
RTIP2/RRING2  
TTIP2/TRING2  
RPOS2/RNEG2/RCLK2  
TPOS2/TNEG2/TCLK2  
LOS1  
RTIP1/RRING1  
TTIP1/TRING1  
RPOS1/RNEG1/RCLK1  
TPOS1/TNEG1/TCLK1  
Transceiver 0  
LOS0  
LOS  
DATA SLICER  
RPOS0  
RCLK0  
RNEG0  
RTIP0  
JITTER  
ATTENUATOR  
RX OR TX  
PATH  
CLOCK  
K  
RECOVERY  
B8ZS / HDB3  
DECODER  
MUX  
RRING0  
LINE DRIVER  
TPOS0  
TCLK0  
TNEG0  
JITTER  
ATTENUATOR  
RX OR TX  
PATH  
E  
PULSE  
SHAPER  
TTIP0  
B8ZS / HDB3  
ENCODER  
TRING0  
A3 - A0  
15  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
3.0  
Pin Assignments and Package  
Table 2 lists the top-side markings for the LXT384 Transceiver, which has two packages:  
A 144-pin Low-Profile Octal-Flat Package, or ‘LQFP’ (Figure 3)  
A 160-ball Plastic Ball Grid Array package, or ‘PBGA(Figure 4)  
Table 2. Intel® LXT384 Transceiver Package Top-Side Markings  
Marking  
Definition  
Part Number  
Lot Number  
FPO Number  
Number of the unique identifier for this product family  
A lot (that is, ‘batch’) number  
Identifies the Finish Process Order number  
Number of the particular silicon revision, also known as a ‘stepping’. (For information on  
specific silicon steppings, see specification update documents for the LXT384 Transceiver.)  
Revision Number  
For signal descriptions, see Chapter 5.0, “Signal Descriptions”.  
For mechanical specifications, see Chapter 16.0, “Mechanical Specifications”.  
16  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Figure 3 shows a top view of the LXT384 Transceiver Low-profile Octal Flat Pack (LQFP)  
package, with pin assignments. For package information, see Chapter 18.0, “Package  
Information”.  
Figure 3. Intel® LXT384 Transceiver 144-Pin Assignments  
TPOS7/TDATA7  
TCLK7  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
1
2
3
4
5
6
7
8
9
TPOS4/TDATA4  
TCLK4  
LOS6  
LOS5  
RNEG6/BPV6  
RPOS6/RDATA6  
RCLK6  
RNEG5/BPV5  
RPOS5/RDATA5  
RCLK5  
TNEG6/UBS6  
TPOS6/TDATA6  
TCLK6  
TNEG5/UBS5  
TPOS5/TDATA5  
TCLK5  
TDI  
MCLK  
10  
11  
12  
13  
TDO  
MODE  
98  
TCK  
A4  
97  
TMS  
A3  
96  
TRST  
A2  
95  
14  
AT1  
A1  
15  
94  
AT2  
A0  
16
17
93  
VCCIO1  
GNDIO1  
VCC1  
VCCIO0  
92  
GNDIO0  
VCC0  
18  
91  
19  
90  
GND1  
GND0  
20  
89  
MOT/INTL/CODEN  
CS/JASEL  
ALE/SCLK/AS/LEN2  
R/W/RD/LEN1  
DS/WR/SDI/LEN0  
ACK/RDY/SDO  
LOOP0/D0  
LOOP1/D1  
LOOP2/D2  
LOOP3/D3  
LOOP4/D4  
LOOP5/D5  
LOOP6/D6  
LOOP7/D7  
TCLK1  
21  
88  
2
87  
23  
24
86  
85  
84  
25  
83  
26  
82  
27  
INT  
TCLK2  
81  
28  
80  
29  
TPOS2/TDATA2  
TNEG2/UBS2  
RCLK2  
TPOS1/TDATA1  
TNEG1/UBS1  
RCLK1  
79  
30  
78  
31  
77  
32  
RPOS2/RDATA2  
RNEG2/BPV2  
LOS2  
RPOS1/RDATA1  
RNEG1/BPV1  
LOS1  
76  
33  
75  
34  
35  
36  
74  
TCLK3  
TCLK0  
TPOS3/TDATA3  
73  
17  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Figure 4 shows a bottom view of the LXT384 Transceiver PBGA package and the pin assignments.  
Figure 4. Intel® LXT384 Transceiver Plastic Ball Grid Array (PBGA) Pin Assignments  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
RCLK  
4
RPOS  
4
RNEG  
4
TVCC  
4
TRING  
4
TGND  
4
RTIP  
4
RTIP  
7
TGND  
7
TRING  
7
TVCC  
7
RNEG  
7
RPOS  
7
RCLK  
7
A
A
B
C
D
E
F
TCLK  
4
TPOS  
4
TNEG  
4
TVCC  
4
TTIP  
4
TGND  
4
RRING  
4
RRING  
7
TGND  
7
TTIP  
7
TVCC  
7
TNEG  
7
TPOS  
7
TCLK  
7
B
C
D
E
F
RCLK  
5
RPOS  
5
RNEG  
5
TVCC  
5
TRING  
5
TGND  
5
RTIP  
5
RTIP  
6
TGND  
6
TRING  
6
TVCC  
6
RNEG  
6
RPOS  
6
RCLK  
6
TCLK  
5
TPOS  
5
TNEG  
5
TVCC  
5
TTIP  
5
TGND  
5
RRING  
5
RRING  
6
TGND  
6
TTIP  
6
TVCC  
6
TNEG  
6
TPOS  
6
TCLK  
6
LOS  
5
LOS  
4
LOS  
7
LOS  
6
OE  
CLKE  
TDO  
MODE  
MCLK  
A
4
A
3
A
2
A
1
TCK  
TDI  
TMS  
AT  
2
GNDIO  
0
A
0
LOOP  
0
VCCIO  
0
VCCIO  
1
GNDIO  
1
TRST  
MOT  
G
H
G
H
LXT384BE  
(BOTTOM VIEW)  
VCC  
1
AT  
1
GND  
1
GND  
0
LOOP  
1
LOOP  
2
VCC  
0
LOOP  
3
LOOP  
4
LOOP  
5
LOOP  
6
J
DS  
R/W  
INT  
ALE  
CS  
J
LOS  
2
LOS  
3
LOS  
0
LOS  
1
LOOP  
7
ACK  
MUX  
K
K
TCLK  
2
TPOS  
2
TNEG  
2
TVCC  
2
TTIP  
2
TGND  
2
RRING  
2
RRING  
1
TGND  
1
TTIP  
1
TVCC  
1
TNEG  
1
TPOS  
1
TCLK  
1
L
M
N
P
L
RCLK  
2
RPOS  
2
RNEG  
2
TVCC  
2
TRING  
2
TGND  
2
RTIP  
2
RTIP  
1
TGND  
1
TRING  
1
TVCC  
1
RNEG  
1
RPOS  
1
RCLK  
1
M
N
P
TCLK  
3
TPOS  
3
TNEG  
3
TVCC  
3
TTIP  
3
TGND  
3
RRING  
3
RRING  
0
TGND  
0
TTIP  
0
TVCC  
0
TNEG  
0
TPOS  
0
TCLK  
0
RCLK  
3
RPOS  
3
RNEG  
3
TVCC  
3
TRING  
3
TGND  
3
RTIP  
3
RTIP  
0
TGND  
0
TRING  
0
TVCC  
0
RNEG  
0
RPOS  
0
RCLK  
0
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
18  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
4.0  
Multi-Function Pins  
The LXT384 Transceiver has several pins that have more than one name and more than one  
function, depending on the mode selected. This chapter lists the multi-function pins. Descriptions  
of signal functions are in Chapter 5.0, “Signal Descriptions”.  
4.1  
Operating Mode Multi-Function Pins  
Table 3 lists the MODE and MOT/INTL pin setting combinations that control the selection of  
operating modes for the LXT384 Transceiver.  
Table 3. Operating Mode Selections  
Pin Settings  
Operating Mode Selected  
MODE  
MOT/INTL  
Connect either  
low or high.  
Low  
Hardware mode  
High  
High  
Low  
Host Processor mode - Motorola processor parallel interface  
Host Processor mode - Intel® processor parallel interface  
High  
Connect either  
low or high.  
VCC/2  
Host Processor mode - Serial interface  
Table 4 lists LXT384 Transceiver pins that have different names and functions depending on the  
specific operating mode selected. When the operating mode selected is the:  
Hardware mode, Column 1 names and functions apply.  
Host Processor mode with a parallel interface and the MOT/INTL pin is:  
— Low, Column 2 names and functions apply to a Motorola processor with a parallel  
interface.  
— High, Column 3 names and functions apply to an Intel® processor with a parallel  
interface.  
Host Processor mode with a serial interface, Column 4 names and functions apply to either a  
Motorola processor or an Intel® processor used with a serial interface.  
19  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 4. Operating Mode-Specific Signal Names  
Host Processor Mode  
1. Hardware Mode  
2. Parallel Interface - 3. Parallel Interface - 4. Serial Interface -  
Motorola Processor  
QFP PBGA  
Intel® Processor  
Motorola or Intel®  
Processor  
Pin  
Ball  
Signal  
Name  
Signal  
Function  
Signal  
Name  
Signal  
Function  
Signal  
Name  
Signal  
Function  
Signal  
Name  
Signal  
Function  
Must  
connect  
to ground  
Address  
select  
Address  
select  
No  
connect  
12  
F4  
A4  
A4  
A4  
A4  
13  
14  
15  
16  
F3  
F2  
F1  
G3  
A3  
A2  
A1  
A0  
Use for  
perfor-  
mance  
moni-  
A3  
A2  
A1  
A0  
A3  
A2  
A1  
A0  
A3  
A2  
A1  
A0  
Address  
select  
Address  
select  
No  
connect  
toring  
MOT  
(see  
Table 3  
on  
INTL  
(see  
Table 3  
on  
CODEN/  
INTL /  
MOT  
HDB3 /  
CODEN AMI  
select  
Motorola  
processor  
select  
Intel®  
processor  
select  
No  
connect  
88  
H12  
page 19)  
page 19)  
JA path  
select  
Chip  
select  
Chip  
select  
87  
J11  
JASEL  
CS  
Chip select CS  
CS  
28  
27  
26  
25  
24  
23  
22  
21  
K1  
J1  
LOOP7  
LOOP6  
LOOP5  
LOOP4  
LOOP3  
LOOP2  
LOOP1  
LOOP0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
J2  
Loopback  
mode  
select  
Must  
connect  
to ground  
J3  
J4  
D4  
D3  
D2  
D1  
D0  
Parallel  
data bus  
Parallel  
data bus  
H2  
H3  
G2  
Must  
connect  
to ground  
R/W /  
RD  
R/W /  
RD  
Read  
enable  
No  
connect  
85  
86  
J13  
J12  
R/W  
AS  
Read/write RD  
SCLK /  
Must  
connect  
to ground  
Address  
latch  
enable  
Address  
ALE  
Shift  
clock  
SCLK  
SDI  
AS /  
ALE /  
strobe  
SDI /  
Must  
connect  
to ground  
Data  
WR  
Write  
enable  
Serial  
data input  
84  
83  
J14  
K14  
DS  
DS /  
WR  
strobe  
Data  
transfer  
acknow-  
ledge  
SDO /  
Serial  
data  
output  
No  
connect  
ACK  
RDY  
Ready  
SDO  
ACK /  
RDY /  
.
20  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
4.2  
Framer/Mapper I/O Pins  
Depending on the state of a UBS7:0 pin, both the corresponding receiver and transmitter pins are  
automatically set for either bipolar I/O or unipolar I/O. When a UBS pin is connected:  
Low, bipolar I/O is selected.  
High for more than 16 consecutive MCLK clock cycles, unipolar I/O is selected.  
Note: For a description of operating in bipolar or unipolar mode, see Section 5.3.1, “Bipolar vs. Unipolar  
Operation - Receive Side” on page 27 and Section 5.3.2, “Bipolar vs. Unipolar Operation -  
Transmit Side” on page 28.  
Table 5 lists LXT384 Transceiver receiver pins that have different names and functions depending  
on the I/O mode selected.  
Table 5. Receiver Bipolar/Unipolar I/O Signal Functions  
Pins  
Balls  
Bipolar I/O Signal Functions  
Unipolar I/O Signal Functions  
141  
4
105  
112  
69  
A3  
C3  
RNEG7 Receive negative data  
BPV7  
BPV6  
BPV5  
BPV4  
BPV3  
BPV2  
BPV1  
BPV0  
Detect bipolar violations output  
output  
RNEG6  
RNEG5  
RNEG4  
RNEG3  
RNEG2  
RNEG1  
RNEG0  
C12  
A12  
P12  
M12  
M3  
76  
34  
41  
P3  
142  
5
A2  
C2  
RPOS7 Receive positive data  
RDATA7 Receive data output  
output  
RPOS6  
RPOS5  
RPOS4  
RPOS3  
RPOS2  
RPOS1  
RPOS0  
RDATA6  
RDATA5  
RDATA4  
RDATA3  
RDATA2  
RDATA1  
RDATA0  
104  
111  
70  
C13  
A13  
P13  
M13  
M2  
77  
33  
40  
P2  
143  
6
A1  
C1  
RCLK7 Receive clock output  
RCLK7  
RCLK6  
RCLK5  
RCLK4  
RCLK3  
RCLK2  
RCLK1  
RCLK0  
Receive clock output  
RCLK6  
RCLK5  
RCLK4  
RCLK3  
RCLK2  
RCLK1  
RCLK0  
103  
110  
71  
C14  
A14  
P14  
M14  
M1  
78  
32  
39  
P1  
21  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 6 lists LXT384 Transceiver transmitter pins that have different names and functions  
depending on the I/O mode selected.  
Table 6. Transmitter Bipolar/Unipolar I/O Signal Functions  
Pins  
Balls  
Bipolar I/O Signal Functions  
Unipolar I/O Signal Functions  
144  
7
B3  
D3  
TNEG7 Transmit negative data  
UBS7  
UBS6  
UBS5  
UBS4  
UBS3  
UBS2  
UBS1  
UBS0  
Unipolar/Bipolar Select input.  
input  
TNEG6  
TNEG5  
TNEG4  
TNEG3  
TNEG2  
TNEG1  
TNEG0  
In the transmit mode, when TNEG/  
UBS is high for 16 or more  
consecutive MCLK clock cycles,  
102  
109  
72  
D12  
B12  
N12  
L12  
L3  
unipolar I/O mode is selected.  
79  
31  
38  
N3  
1
8
B2  
D2  
TPOS7 Transmit positive data  
TDATA7 Transmit data input  
input  
TPOS6  
TPOS5  
TPOS4  
TPOS3  
TPOS2  
TPOS1  
TPOS0  
TDATA6  
TDATA5  
TDATA4  
TDATA3  
TDATA2  
TDATA1  
TDATA0  
101  
108  
73  
80  
30  
37  
D13  
B13  
N13  
L13  
L2  
N2  
2
9
B1  
D1  
TCLK7  
TCLK6  
TCLK5  
TCLK4  
TCLK3  
TCLK2  
TCLK1  
TCLK0  
Transmit clock input  
TCLK7  
TCLK6  
TCLK5  
TCLK4  
TCLK3  
TCLK2  
TCLK1  
TCLK0  
Transmit clock input  
100  
107  
74  
81  
29  
36  
D14  
B14  
N14  
L14  
L1  
N1  
22  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
5.0  
Signal Descriptions  
This chapter lists and describes LXT384 Transceiver signals by function. All digital I/O signals are  
5-V tolerant. (For package information, see Chapter 3.0, “Pin Assignments and Package” and  
Chapter 16.0, “Mechanical Specifications”.)  
5.1  
Signal Groupings  
Signal groupings discussed in this chapter include the following:  
Section 5.2, “Microprocessor-Standard Bus and Interface Signals”  
Section 5.3, “Framer/Mapper Signals”  
Section 5.4, “Line Interface Unit Signals”  
Section 5.5, “Clocks and Clock-Related Signals”  
Section 5.6, “Configuration and Mode-Select Signals”  
Section 5.7, “Signal Loss and Line-Code-Violation Signals”  
Section 5.8, “Power and Grounds”  
Section 5.9, “Test Signals”  
23  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
5.2  
Microprocessor-Standard Bus and Interface Signals  
Table 7 lists and describes the microprocessor-standard bus and interface signals for the LXT384  
Transceiver.  
For multi-function pins, the pin name in blue bold print indicates the signal being discussed.  
Note: For information on selecting parallel or serial interfaces, see the signal description for MODE in  
Section 5.6, “Configuration and Mode-Select Signals”, Table 12.  
Table 7. Microprocessor-Standard Bus and Interface Signals (Sheet 1 of 3)  
Signal  
Name  
QFP  
Pin  
PBGA Signal  
Signal Description  
Ball  
Type  
A4  
A3  
A2  
A1  
A0  
12  
13  
14  
15  
16  
F4  
F3  
F2  
F1  
G3  
DI  
Address Select Input 4:0.  
When the LXT384 Transceiver is in the:  
Host Processor mode using a parallel interface that is in the:  
Non-multiplexed mode, A4:0 function as address pins.  
Multiplexed mode, A4:0 must be connected to multiplexed  
Address/Data Bus (AD).  
Hardware mode, must be connected to ground. See Section  
5.7, “Signal Loss and Line-Code-Violation Signals” for other  
pin functions.  
ACK / RDY /  
83  
K14  
DO  
Data Transfer Acknowledge (Active Low) Output.  
SDO  
When the LXT384 Transceiver is in the Host Processor mode  
using a Motorola processor, ACK acts as a data transfer  
acknowledge. A low signal on ACK during a data bus operation  
that is a:  
Read operation indicates valid data.  
Write operation is an acknowledge signal that indicates a  
data transfer into an addressed register is accepted.  
NOTE: Wait states occur only if a write cycle immediately follows  
a previous read or write cycle (for example, read-modify-  
write).  
For other pin functions, see RDY and SDO.  
ALE / AS /  
86  
J12  
DI  
Address Latch Enable Input.  
SCLK/LEN2  
When the LXT384 Transceiver is in the:  
Host Processor mode using an Intel® processor in a parallel  
interface, ALE acts as an address latch enable. In this case,  
the address on the multiplexed address/data bus pins D7:0  
(also called AD7:0) is clocked into the LXT384 Transceiver  
with the falling edge of ALE.  
Hardware mode, ALE must be connected to ground.  
For other pin functions, see AS and SCLK.  
ALE / AS /  
86  
J12  
DI  
Address Strobe (Active Low) Input.  
SCLK/LEN2  
When the LXT384 Transceiver is in the:  
Host Processor mode using a Motorola processor in a  
parallel interface, AS acts as an active-low address strobe.  
Hardware mode, AS must be connected to ground.  
For other pin functions, see ALE and SCLK.  
1. DI: Digital Input. DI/O: Digital Bidirectional Port. DO: Digital Output. OD: Open Drain  
24  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 7. Microprocessor-Standard Bus and Interface Signals (Sheet 2 of 3)  
Signal  
Name  
QFP  
Pin  
PBGA Signal  
Signal Description  
Ball  
Type  
CS / JASEL  
87  
J11  
DI  
Chip Select (Active Low) Input.  
When the LXT384 Transceiver is in the:  
Host Processor mode, CS is used to select a specific  
LXT384 Transceiver device so the host processor can  
communicate with the registers of that LXT384 Transceiver.  
Hardware mode, CS functions as JA Select (JASEL). (See  
JASEL in Section 5.6, “Configuration and Mode-Select  
Signals”.)  
D7 / LOOP7  
D6 / LOOP6  
D5 / LOOP5  
D4 / LOOP4  
D3 / LOOP3  
D2 / LOOP2  
D1 / LOOP1  
D0 / LOOP0  
28  
27  
26  
25  
24  
23  
22  
21  
K1  
J1  
J2  
DI/O (Parallel) Data Bus Input/Output 7:0.  
When the LXT384 Transceiver is in the:  
Host Processor mode with a parallel interface that is:  
J3  
Non-multiplexed, D7:0 function as a bi-directional 8-bit  
data port.  
J4  
H2  
H3  
G2  
Multiplexed, D7:0 carry both bi-directional 8-bit data and  
the 8 least-significant address lines.  
Host processor mode with a serial interface, D7:0 must be  
grounded.  
Hardware mode, the D7:0 pins function as LOOP7:0. (See  
LOOP7:0 in Section 5.4, “Line Interface Unit Signals”.)  
DS / SDI / WR/  
LEN0  
84  
82  
J14  
DI  
Data Strobe (Active Low) Input.  
When the LXT384 Transceiver is in the:  
Host Processor mode using a Motorola processor, DS acts  
as a data strobe.  
Hardware mode, DS must be connected to ground.  
For other pin functions, see SDI and WR.  
INT  
K13  
OD,  
DO  
Interrupt (Active Low, Open Drain).  
INT is an active low, maskable, open drain output. If either an AIS  
or LOS interrupt enable bit is enabled, INT goes low to flag the  
host processor that the status of LXT384 Transceiver registers  
changed state.  
The host processor INT input must be set for level triggering.  
(For information on the LOS interrupt enable, see Table 34. For  
information on the AIS interrupt enable, see Table 48. For  
interrupt details, see Section 7.5, “Interrupt Handling”).  
INT requires an external 10kΩ pull-up resistor.  
RD / R/W/  
85  
J13  
DI  
Read Enable (Active Low) Input.  
LEN1  
When the LXT384 Transceiver is in the:  
Host Processor mode using an Intel® processor, RD  
functions as a read enable.  
Hardware mode, RD must be connected to ground.  
For other pin functions, see R/W.  
1. DI: Digital Input. DI/O: Digital Bidirectional Port. DO: Digital Output. OD: Open Drain  
25  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 7. Microprocessor-Standard Bus and Interface Signals (Sheet 3 of 3)  
Signal  
Name  
QFP  
Pin  
PBGA Signal  
Signal Description  
Ball  
Type  
ACK / RDY /  
83  
K14  
DO  
Ready Output.  
SDO  
When the LXT384 Transceiver is in the Host Processor mode  
using an Intel® processor and the signal on RDY is:  
Low, RDY indicates a data transfer operation is in progress.  
High, RDY indicates a register-access operation is  
completed.  
NOTE: RDY goes into a high-impedance tristate after  
completion of a bus cycle.  
For other pin functions, see ACK and SDO.  
RD / R/W/  
LEN1  
85  
86  
84  
83  
J13  
J12  
J14  
K14  
DI  
DI  
Read/Write Input (Write Is Active Low).  
When the LXT384 Transceiver is in the:  
Host Processor mode using a Motorola processor, R/W  
functions as a read/write signal.  
Hardware mode, R/W must be connected to ground.  
For other pin functions, see RD.  
ALE / AS /  
SCLK/LEN2  
Shift Clock Input.  
When SCLK is in the:  
Host Processor mode using a serial interface, SCLK acts as  
a serial shift clock.  
Hardware mode, SCLK must be connected to ground.  
For other pin functions, see AS and ALE.  
DS / SDI / WR/  
LEN0  
DI  
Serial Data Input.  
When the LXT384 Transceiver is in the:  
Host Processor mode using a serial interface, SDI is used as  
serial data input.  
Hardware mode, SDI must be connected to ground.  
For other pin functions, see DS and WR.  
ACK / RDY /  
DO  
Serial Data Output.  
SDO  
When the LXT384 Transceiver is in the Host Processor mode  
using a serial interface and the signal on CLKE is:  
Low, SDO is valid on the falling edge of SCLK.  
High, SDO is valid on the rising edge of SCLK.  
NOTE: SDO goes into a high-impedance tristate during a serial  
port write access.  
For other pin functions, see ACK and RDY.  
DS / SDI / WR/  
84  
J14  
DI  
Write Enable Input.  
LEN0  
When the LXT384 Transceiver is in:  
Host Processor mode using an Intel® processor, WR acts as  
a write enable.  
Hardware mode, WR must be connected to ground.  
For other pin functions, see DS and SDI.  
1. DI: Digital Input. DI/O: Digital Bidirectional Port. DO: Digital Output. OD: Open Drain  
26  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
5.3  
Framer/Mapper Signals  
Framer/mapper signals are used to interface the LXT384 Transceiver to a framer/mapper.  
5.3.1  
Bipolar vs. Unipolar Operation - Receive Side  
Table 5 on page 21 lists receive-side framer/mapper signals, which can connect to a framer/mapper  
using either bipolar or unipolar interface connections. Table 8 lists details.  
Depending on the state of a UBS7:0 pin, both the corresponding receiver and transmitter pins are  
automatically set for either bipolar I/O or unipolar I/O. When a UBS pin is connected:  
Low, bipolar I/O is selected.  
High for more than 16 consecutive MCLK clock cycles, unipolar I/O is selected.  
Receive side - Bipolar I/O. When TNEG/UBS is connected low, then bipolar I/O is selected and  
RNEG/RPOS functions are selected. In this case, the signal flow occurs as follows:  
1. The receiver routes receive analog signals from RTIP/RRING to a data recovery circuit.  
2. The data recovery circuit converts the incoming line AMI signals, which consist of positive  
and negative pulses, into a sequence of logic zeroes and ones. It then outputs the resulting  
information onto RNEG and RPOS.  
3. The recovered clock from RTIP/RRING is output at RCLK.  
4. The RNEG and RPOS data lines and the RCLK clock line connect the LXT384 Transceiver to  
a framer/mapper. A logic ‘1’ on:  
— RNEG indicates that a negative pulse is detected on the line, and corresponds to the  
receipt of a negative pulse on RRING/RTIP.  
— RPOS indicates that a positive pulse is detected on the line, and corresponds to the receipt  
of a positive pulse on RRING/RTIP.  
— The receiver outputs the recovered clock at RCLK. RCLK synchronizes the data transfer  
into the framer/mapper.  
5. RNEG/RPOS validation relative to RCLK is selectable with CLKE pin polarity. See the CLKE  
pin description in Table 11, “Clocks and Clock-Related Signals” on page 37.  
Note: In bipolar I/O mode, the framer/mapper is responsible for detecting any line-code violations that  
appear on the line. The framer/mapper also decodes HDB3.  
Receive side - Unipolar I/O. When TNEG/UBS is connected high for more than 16 consecutive  
MCLK cycles, then unipolar I/O is selected and RDATA/BPV functions are active. RDATA does  
not distinguish between a positive or a negative pulse on the line. In this case, the signal flow  
occurs as follows:  
1. RDATA and RCLK connect the LXT384 Transceiver to a framer/mapper, while BPV acts as a  
bipolar violation detector. The LXT384 Transceiver internally decodes HDB3/AMI.  
2. The receiver outputs the recovered clock at RCLK. RCLK synchronizes the data transfer into  
the framer/mapper.  
3. RDATA does not include information about the polarity of the marks at RTIP/RRING.  
4. RDATA validation relative to RCLK is selectable with CLKE pin polarity. See the CLKE pin  
description in Table 11, “Clocks and Clock-Related Signals” on page 37.  
27  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
5.3.2  
Bipolar vs. Unipolar Operation - Transmit Side  
Table 6 on page 22 lists transmit-side framer/mapper signals, which connect to a framer/mapper  
using either bipolar or unipolar interface connections. Table 8 lists details.  
TDATA - works in combination with BPV outputs, in unipolar mode.  
TNEG - works in combination with TPOS, in bipolar mode.  
Depending on the state of a UBS7:0 pin, both the corresponding receiver and transmitter pins are  
automatically set for either bipolar I/O or unipolar I/O.  
When a TNEG/UBS pin is connected low:  
TNEG/TPOS/TCLK lines are active, and bipolar I/O is selected.  
— A logic 1 on TNEG corresponds to the transmission of a negative pulse on TRING/TTIP.  
— A logic 1 on TPOS corresponds to the transmission of a positive pulse on TRING/TTIP.  
When a TNEG/UBS pin is connected high for more than 16 consecutive MCLK clock cycles:  
TDATA/TCLK lines are active, and unipolar I/O is selected.  
Polarity cannot be controlled on the TTIP/TRING outputs.  
TCLK supplies the input synchronization for data transfer.  
28  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
5.3.3  
Framer/Mapper Signals - Details  
Table 8 lists and describes the LXT384 Transceiver framer/mapper receive signals.  
Table 9 on page 31 lists and describes the LXT384 Transceiver framer/mapper transmit  
signals.  
For multi-function pins, the pin name in blue bold print indicates the signal being discussed.  
Table 8. Framer/Mapper Receive Signals (Sheet 1 of 2)  
Signal  
Name  
QFP  
Pin  
PBGA Signal  
Signal Description  
Ball  
Type  
BPV7 / RNEG7  
BPV6 / RNEG6  
BPV5 / RNEG5  
BPV4 / RNEG4  
BPV3 / RNEG3  
BPV2 / RNEG2  
BPV1 / RNEG1  
BPV0 / RNEG0  
141  
4
105  
112  
69  
A3  
C3  
DO  
Bipolar Violation Detect Output 7:0.  
When unipolar I/O is selected for the LXT384 Transceiver,  
BPV acts as an output line code violation detector. If the  
LXT384 Transceiver:  
C12  
A12  
P12  
M12  
M3  
Does not detect an in-service line code violation, BPV  
remains low.  
76  
Detects an in-service line code violation, it asserts BPV  
high.  
34  
41  
P3  
For details on Line Code Violations, see Section 5.7, “Signal  
Loss and Line-Code-Violation Signals”.  
For other pin functions, see RNEG.  
RCLK7  
RCLK6  
RCLK5  
RCLK4  
RCLK3  
RCLK2  
RCLK1  
RCLK0  
143  
6
103  
110  
71  
A1  
C1  
DO  
Receive Clock Output 7:0.  
Normally, this pin provides the recovered clock from the  
signal received at RTIP and RRING. Under LOS conditions,  
MCLK replaces RCLK at the RCLK output. For details, see  
Section 6.3.3, “Receiver Loss-Of-Signal Detector”.  
C14  
A14  
P14  
M14  
M1  
When MCLK is Low:  
78  
The LXT384 Transceiver enters the data recovery  
mode.  
32  
39  
P1  
RCLK will be in high impedance state.  
When MCLK is High:  
The clock recovery circuit is disabled.  
The RCLK output is then the EX-OR of RPOS and  
RNEG. This produces a pseudo-recovered clock.  
For details about the relationship between MCLK and  
RCLK, see Section 5.5, “Clocks and Clock-Related  
Signals”, especially Table 11 on page 37.  
RDATA7 / RPOS7  
RDATA6 / RPOS6  
RDATA5 / RPOS5  
RDATA4 / RPOS4  
RDATA3 / RPOS3  
RDATA2 / RPOS2  
RDATA1 / RPOS1  
RDATA0 / RPOS0  
142  
5
104  
111  
70  
A2  
C2  
DO  
Receive Data Output 7:0.  
When unipolar I/O is selected for the LXT384 Transceiver,  
RDATA acts as the receive data output.  
C13  
A13  
P13  
M13  
M2  
See Section 5.3.1, “Bipolar vs. Unipolar Operation - Receive  
Side” on page 27.  
For other pin functions, see RPOS.  
77  
33  
40  
P2  
1. AI: Analog Input. AO: Analog Output. DI: Digital Input. DI/O: Digital Bidirectional Port. DO: Digital Output.  
29  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 8. Framer/Mapper Receive Signals (Sheet 2 of 2)  
Signal  
Name  
QFP  
Pin  
PBGA Signal  
Signal Description  
Ball  
Type  
BPV7 / RNEG7  
BPV6 / RNEG6  
BPV5 / RNEG5  
BPV4 / RNEG4  
BPV3 / RNEG3  
BPV2 / RNEG2  
BPV1 / RNEG1  
BPV0 / RNEG0  
141  
4
A3  
C3  
DO  
Receive Negative Data Output 7:0.  
This signal description applies to both RNEG and RPOS in  
bipolar I/O mode. When the LXT384 Transceiver is in the:  
105  
112  
69  
C12  
A12  
P12  
M12  
M3  
Host processor mode, during an LOS condition, AIS  
can be inserted into the receive path. See the  
description of the GCR register RAISEN bit, in Section  
6.3.6, “Receive Alarm Indication Signal (RAIS) Enable”  
on page 50.  
76  
34  
41  
P3  
Hardware mode, RNEG and RPOS remain active  
during an LOS condition.  
When MCLK is provided with a clocking signal:  
The LXT384 Transceiver enters clock-recovery mode.  
RNEG[7:0] act as active-high bipolar Non Return to  
Zero (NRZ) receive signal outputs.  
A High signal on RNEG corresponds to receipt of a  
negative pulse on RTIP/RRING.  
A High signal on RPOS corresponds to receipt of a  
positive pulse on RTIP/RRING.  
These signals are valid on the falling or rising edges of  
RCLK, depending on the CLKE input. See the CLKE  
pin description in Table 11, “Clocks and Clock-Related  
Signals” on page 37.  
When MCLK is high:  
The LXT384 Transceiver enters data recovery mode.  
RNEG[7:0] act as RZ data receiver outputs.  
These signals are valid on the falling or rising edges of  
RCLK, depending on the CLKE input. See the CLKE  
pin description in Table 11, “Clocks and Clock-Related  
Signals” on page 37.  
When MCLK is low:  
RNEG and RPOS can be placed in a high-impedance  
tristate with the MCLK pin. (For details, see MCLK in  
Section 5.5, “Clocks and Clock-Related Signals”.)  
NOTE: For pin functions involving unipolar mode, see the  
BPV pin description.  
RDATA7 / RPOS7  
RDATA6 / RPOS6  
RDATA5 / RPOS5  
RDATA4 / RPOS4  
RDATA3 / RPOS3  
RDATA2 / RPOS2  
RDATA1 / RPOS1  
RDATA0 / RPOS0  
142  
5
104  
111  
70  
A2  
C2  
DO  
Receive Positive Data Output 7:0.  
For the RPOS description, see RNEG.  
C13  
A13  
P13  
M13  
M2  
NOTE: For pin functions involving unipolar mode, see the  
RDATA pin description.  
77  
33  
40  
P2  
1. AI: Analog Input. AO: Analog Output. DI: Digital Input. DI/O: Digital Bidirectional Port. DO: Digital Output.  
30  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 9. Framer/Mapper Transmit Signals (Sheet 1 of 3)  
Signal  
Name  
QFP  
Pin  
PBGA Signal  
Signal Description  
Ball  
Type  
TCLK7  
2
9
B1  
D1  
DI  
Transmit Clock Input 7:0.  
TCLK6  
TCLK5  
TCLK4  
TCLK3  
TCLK2  
TCLK1  
TCLK0  
When the LXT384 Transceiver is in Hardware mode and  
TCLK is:  
100  
107  
74  
81  
29  
36  
D14  
B14  
N14  
L14  
L1  
Operating with a normal clock signal, TPOS and TNEG  
are sampled on the falling edge of TCLK.  
Low and remains in a low state, the transmitter output  
drivers enter a low-power high-impedance tristate.  
High (for more than 16 consecutive MCLK clock  
cycles), and MCLK is:  
N1  
operating normally as a clock, the LXT384  
Transceiver enters the TAOS mode. (For details, see  
Section 6.8, “Transmit All Ones Operations”.  
not operating as a clock, but is either low or high, the  
pulse-shaper circuit shown in Figure 1 is disabled.  
For information on how to prevent damage to the  
LXT384 Transceiver when pulse shaping is disabled,  
see Section 6.4.2, “Transmitter Pulse Shaping”.)  
)
TCLK  
MCLK  
Result  
TNEG and TPOS  
sampled on falling  
edge of TCLK  
Don’t  
care  
Normal Clock  
Transmitter driver  
outputs enter high-  
impedance tristate  
Don’t  
care  
Low  
High for 16  
consecutive  
MCLK cycles  
Either  
high or  
low  
Disables transmit  
pulse shaping  
High for 16  
consecutive  
MCLK cycles  
Normal  
Clock  
TAOS  
NOTE: When the LXT384 Transceiver is in the Host  
Processor mode, TAOS mode can be selected  
using registers in Chapter 8.0, “Registers”.  
When pulse shaping is disabled, it is possible to overheat  
and damage the LXT384 Transceiver by leaving transmit  
inputs high continuously. For example a programmable  
ASIC might leave all outputs high over an extended period,  
until it is programmed. To prevent this, clock one of these  
signals: TPOS, TNEG, TCLK, or MCLK. Another solution is  
to set one of these signals low: TPOS, TNEG, TCLK, or OE.  
Note: The TAOS generator uses MCLK as a timing  
reference. In order to assure that the output  
frequency is within specification limits, MCLK must  
have the applicable stability.  
31  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 9. Framer/Mapper Transmit Signals (Sheet 2 of 3)  
Signal  
Name  
QFP  
Pin  
PBGA Signal  
Signal Description  
Ball  
Type  
TNEG7 / UBS7  
TNEG6 / UBS6  
TNEG5 / UBS5  
TNEG4 / UBS4  
TNEG3 / UBS3  
TNEG2 / UBS2  
TNEG1 / UBS1  
TNEG0 / UBS0  
144  
7
B3  
D3  
DI  
Transmit Negative Data Input 7:0.  
TNEG and TPOS have the following characteristics:  
102  
109  
72  
D12  
B12  
N12  
L12  
L3  
Operate in bipolar I/O mode.  
Active-high NRZ inputs.  
Remain active during an LOS condition.  
79  
TNEG/TPOS pin settings result in the selections shown in  
the following table.  
31  
38  
N3  
TPOS TNEG  
Selection  
Space  
0
0
1
1
0
1
0
1
Negative Mark  
Positive Mark  
Space (Not legal)  
TPOS indicates the transmission of a positive pulse.  
TNEG indicates the transmission of a negative pulse.  
For other pin functions, see UBS.  
TNEG7 / UBS7  
TNEG6 / UBS6  
TNEG5 / UBS5  
TNEG4 / UBS4  
TNEG3 / UBS3  
TNEG2 / UBS2  
TNEG1 / UBS1  
TNEG0 / UBS0  
144  
7
B3  
D3  
DI  
Unipolar/Bipolar Select Input 7:0.  
The mode-controlled UBS pins define the interface between  
the framer/mapper and the transceiver.  
102  
109  
72  
D12  
B12  
N12  
L12  
L3  
When the UBS is connected:  
Low selects bipolar I/O.  
79  
High selects unipolar I/O after 16 consecutive TCLK  
clock cycles. With unipolar I/O, the encoding/decoding  
type can be either B8ZS/HDB3 or AMI. When the mode  
is the:  
31  
38  
N3  
Host Processor mode, the encoding/decoding type is  
determined by the CODEN bit in the GCR register.  
(For CODEN bit details, see Chapter 8.0,  
“Registers”.)  
Hardware mode, the encoding/decoding type is  
determined by the CODEN pin discussed in Section  
5.6, “Configuration and Mode-Select Signals”.  
In unipolar I/O mode, TDATA is the data input.  
For other pin functions, see TNEG.  
TDATA7 / TPOS7  
TDATA6 / TPOS6  
TDATA5 / TPOS5  
TDATA4 / TPOS4  
TDATA3 / TPOS3  
TDATA2 / TPOS2  
TDATA1 / TPOS1  
TDATA0 / TPOS0  
1
8
B2  
D2  
DI  
Transmit Data Input 7:0.  
When unipolar I/O is selected for the LXT384 Transceiver,  
TDATA is the only data input pin. After passing through the  
transceiver, TDATA generates the TTIP/TRING outputs.  
101  
108  
73  
80  
30  
37  
D13  
B13  
N13  
L13  
L2  
For other pin functions, see TPOS.  
TPOS=Transmit Positive data input  
TDATA=Transmit Data input  
N2  
32  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 9. Framer/Mapper Transmit Signals (Sheet 3 of 3)  
Signal  
Name  
QFP  
Pin  
PBGA Signal  
Signal Description  
Ball  
Type  
TDATA7 / TPOS7  
TDATA6 / TPOS6  
TDATA5 / TPOS5  
TDATA4 / TPOS4  
TDATA3 / TPOS3  
TDATA2 / TPOS2  
TDATA1 / TPOS1  
TDATA0 / TPOS0  
1
8
B2  
D2  
DI  
Transmit Positive Data Input 7:0.  
For the TPOS description, see TNEG.  
For other pin functions, see TDATA.  
101  
108  
73  
80  
30  
37  
D13  
B13  
N13  
L13  
L2  
TPOS=Transmit Positive Data Input  
TDATA=Transmit data Input  
N2  
33  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
5.4  
Line Interface Unit Signals  
For multi-function pins, the pin name in blue bold print indicates the signal being discussed.  
Table 10. Line Interface Unit Signals (Sheet 1 of 3)  
Signal  
Name  
QFP  
Pin  
PBGA Signal  
Signal Description  
Ball  
Type  
D7 / LOOP7  
D6 / LOOP6  
D5 / LOOP5  
D4 / LOOP4  
D3 / LOOP3  
D2 / LOOP2  
D1 / LOOP1  
D0 / LOOP0  
28  
27  
26  
25  
24  
23  
22  
21  
K1  
J1  
DI/O Loopback Mode Input/Output.  
When the LXT384 Transceiver is in the Hardware mode and a  
LOOPx pin is:  
J2  
J3  
J4  
Low, the LXT384 Transceiver enters Remote loopback.  
This mode ignores data on TPOS and TNEG, although a  
TCLK input is still required. An option is to connect RCLK  
to TCLK externally, outside the transceiver.  
H2  
H3  
G2  
Data received on RTIP and RRING is looped around and  
retransmitted on TTIP and TRING.  
In data recovery mode, the pulse template cannot be  
guaranteed while in a remote loopback. (For details, see  
Section 6.7.3, “Remote Loopback”.)  
High, the LXT384 Transceiver enters Analog loopback.  
This mode ignores data received on RTIP and RRING.  
Data transmitted on TTIP and TRING is internally looped  
around and routed back to the receive inputs. (For details,  
see Section 6.7.1, “Analog Loopback”.)  
Left unconnected, LOOPx stays in a high-impedance tristate.  
Loopback is no longer selected.  
If the LXT384 Transceiver is used in Hardware mode, to  
minimize cross-talk, the layout design must not route  
signals with fast transitions near the LOOP7:0 pins. Also  
maintain a solid ground plane under these pins.  
When the LXT384 Transceiver is in the Host Processor mode with  
a:  
Parallel interface, see the signal descriptions for D7:0 in  
Section 5.2, “Microprocessor-Standard Bus and Interface  
Signals”.  
Serial interface, LOOP7:0 must be grounded.  
For other pin functions, see D7:0 in Section 5.2, “Microprocessor-  
Standard Bus and Interface Signals”.  
1. AI: Analog Input. AO: Analog Output. DI: Digital Input. DI/O: Digital Bidirectional Port. DO: Digital Output.  
34  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 10. Line Interface Unit Signals (Sheet 2 of 3)  
Signal  
Name  
QFP  
Pin  
PBGA Signal  
Signal Description  
Ball  
Type  
OE  
114  
E14  
DI  
Output Driver Enable Input.  
Either the (hardware) OE pin or the OER register can be used to  
place the transmitter TRING and TTIP outputs immediately into a  
high-impedance mode. This supports redundancy applications  
without external mechanical relays.  
When the LXT384 Transceiver is in the:  
Hardware mode and OE is connected:  
Low, OE is used to disable all transmit output drivers at one  
time, and to place TRING and TTIP outputs into high-  
impedance. All other internal circuitry stays active.  
High, OE is used to enable transmitter output drivers.  
Host Processor mode, instead of the OE pin, you can write a  
1 to the OE bit of the OER register to place individual TRING  
and TTIP outputs into high-impedance. (See Table 46 in  
Chapter 8.0, “Registers”.)  
NOTE: In Host Processor mode, the OE pin when set low  
overrides the OER register setting.  
RRING7  
RRING6  
RRING5  
RRING4  
RRING3  
RRING2  
RRING1  
RRING0  
138  
133  
126  
121  
66  
B7  
D7  
D8  
B8  
N8  
L8  
AI  
Receive Ring Input 7:0.  
RRING (and RTIP) are differential line receiver inputs (see  
Section 6.3.2, “Receiver Inputs” on page 48).  
The differential signal received at both RRING and RTIP provides  
either RDATA, or RPOS/RNEG, depending on mode of operation  
(unipolar or bipolar).  
61  
NOTE: In clock-recovery mode, the differential signal received at  
both RRING and RTIP also provides the recovery clock,  
RCLK. For more information on clock recovery, see  
Section 6.3.1, “Receiver Clocking”.  
54  
L7  
49  
N7  
RTIP7  
RTIP6  
RTIP5  
RTIP4  
RTIP3  
RTIP2  
RTIP1  
RTIP0  
139  
132  
127  
120  
67  
A7  
C7  
C8  
A8  
P8  
M8  
M7  
P7  
AI  
Receive Tip Input 7:0.  
For the RTIP description, see RRING (above).  
60  
55  
48  
TRING7  
TRING6  
TRING5  
TRING4  
TRING3  
TRING2  
TRING1  
TRING0  
135  
130  
123  
118  
63  
A5  
C5  
AO  
Transmit Ring Output 7:0.  
TRING (and TTIP) outputs are used to generate a differential  
output on the line side of the transmitter transformer.  
C10  
A10  
P10  
M10  
M5  
When the LXT384 Transceiver is in:  
Hardware mode, and either OE or TCLK is low, TTIP (and  
TRING) are placed in a high-impedance tristate.  
58  
51  
Host Processor mode, TRING and TTIP can be placed in a  
high-impedance tristate on a port-by-port basis by writing a 1  
to the OE bit in the Output Enable Register (OER). OE or  
TCLK low also places TTIP/TRING into high-impedance. (For  
more information, see Table 46 in Chapter 8.0, “Registers”.)  
46  
P5  
1. AI: Analog Input. AO: Analog Output. DI: Digital Input. DI/O: Digital Bidirectional Port. DO: Digital Output.  
35  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 10. Line Interface Unit Signals (Sheet 3 of 3)  
Signal  
Name  
QFP  
Pin  
PBGA Signal  
Signal Description  
Ball  
Type  
TTIP7  
136  
129  
124  
117  
64  
B5  
D5  
AO  
Transmit Tip Output 7:0.  
For the TTIP description, see TRING (above).  
TTIP6  
TTIP5  
TTIP4  
TTIP3  
TTIP2  
TTIP1  
TTIP0  
D10  
B10  
N10  
L10  
L5  
58  
52  
45  
N5  
1. AI: Analog Input. AO: Analog Output. DI: Digital Input. DI/O: Digital Bidirectional Port. DO: Digital Output.  
36  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
5.5  
Clocks and Clock-Related Signals  
Table 11 lists and describes LXT384 Transceiver clocks and clock-related signals.  
Note: Within this table, ‘RCLK’ references RCLK7:0 and ‘TCLK’ references TCLK7:0. Each RCLK  
and TCLK signal is used with corresponding signals.  
Example: RCLK6 is the receive clock used by RPOS6 and RNEG6.  
Example: TCLK5 is the transmit clock used by TPOS5 and TNEG5.  
Table 11. Clocks and Clock-Related Signals (Sheet 1 of 2)  
Signal  
Name  
QFP  
Pin  
PBGA Signal  
Signal Description  
Ball  
Type  
CLKE  
115  
E13  
DI  
Clock Edge Select Input.  
CLKE is used in clock and data recovery. When the recovery mode is  
for:  
Clock recovery (see Section 6.3.1, “Receiver Clocking”), setting  
the CLKE pin:  
Low causes (1) both RDATA or RPOS and RNEG to be valid on  
the rising edge of RCLK and (2) SDO to be valid on the falling  
edge of SCLK. (See Figure 20 in Section 19, “Intel® LXT384  
Transceiver - Transmit Timing”.)  
High causes (1) both RDATA or RPOS and RNEG to be valid on  
the falling edge of RCLK and (2) SDO to be valid on the rising  
edge of SCLK. (See Figure 20 in Section 19, “Intel® LXT384  
Transceiver - Transmit Timing”.)  
RCLK for Valid  
RNEG/RPOS  
SCLK for Valid  
SDO  
CLKE  
RCLK  
SCLK  
Low  
SCLK  
RCLK  
High  
Data recovery (see Section 6.3.4, “Receiver Data Recovery  
Mode”), the output polarity on both RDATA or RPOS and RNEG  
is:  
Active-low when CLKE is low.  
Active-high when CLKE is high  
1. DI: Digital Input  
37  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 11. Clocks and Clock-Related Signals (Sheet 2 of 2)  
Signal  
Name  
QFP  
Pin  
PBGA Signal  
Signal Description  
Ball  
Type  
MCLK  
10  
E1  
DI  
Master Clock Input.  
MCLK is an independent, free-running reference clock that must be  
used at 1.544 MHz for T1 operation or 2.048 MHz for E1 operation, to  
generate the following internal reference signals:  
Reference clock during a blue-alarm transmit-all-ones condition.  
Generation of RCLK signal during a loss-of-signal condition.  
Timing reference for the integrated clock-recovery unit, and the  
integrated digital jitter attenuator.  
Wait-state generation logic for host processors that use parallel  
interfaces.  
If MCLK is:  
Low continuously, the complete receive path is powered down and  
output pins RCLK, RPOS, and RNEG are switched to a high-  
impedance tristate.  
High continuously, the phase-locked loop clock-recovery circuit is  
disabled and the LXT384 Transceiver operates as only a simple  
data receiver (without clock recovery).  
NOTE:  
MCLK is not required if the LXT384 Transceiver is used as an  
analog front end without clock recovery and jitter attenuation.  
The TAOS generator uses MCLK as a timing reference. To ensure  
the output frequency is within specification limits, MCLK must  
have the applicable stability.  
If MCLK is not provided, the LXT384 Transceiver cannot be used  
for data recovery with Motorola processors because wait states  
cannot be added. (Wait-state generation through ACK is not  
available.)  
Caution: Whenever MCLK is not provided, the LXT384 Transceiver is  
forced into a static state, possibly causing the TTIP/TRING  
outputs to overheat. To prevent overheating, see Section  
6.5, “Line-Interface Protection”.  
RCLK  
SCLK  
Receive Clock Output 7:0.  
For information on RCLK, see Section 5.3, “Framer/Mapper Signals”.  
Shift Clock Input.  
For information on SCLK, see Section 5.2, “Microprocessor-Standard  
Bus and Interface Signals”.  
TCLK  
Transmit Clock Input 7:0.  
For information on TCLK, see Section 5.3, “Framer/Mapper Signals”.  
1. DI: Digital Input  
38  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
5.6  
Configuration and Mode-Select Signals  
Table 12 lists and describes the LXT384 Transceiver configuration and mode-select signals. For  
multi-function pins, the pin name in blue bold print indicates the signal being discussed.  
Table 12. Configuration and Mode-Select Signals (Sheet 1 of 2)  
Signal  
Name  
QFP PBGA  
I/O1  
Signal Description  
Pin  
Ball  
CODEN / INTL /  
88  
H12  
DI  
Codec Enable Select Input.  
MOT  
When the LXT384 Transceiver is in the Hardware mode, CODEN  
determines the line encoder/decoder selection when in unipolar  
mode. When CODEN is:  
Low, it enables an HDB3 encoder/decoder for E1 or a B8ZS  
encoder/decoder for T1.  
High, it enables an AMI encoder/decoder (transparent mode).  
NOTE: In the host processor mode, the encoding/decoding type  
is determined by the CODEN bit. (For CODEN bit details,  
see Chapter 8.0, “Registers”.)  
For other pin functions, see INTL/MOT.  
CODEN / INTL  
88  
H12  
DI  
Host Processor Select Input.  
/ MOT  
When the LXT384 Transceiver is in the host processor mode and  
this signal is:  
high, the host processor interface is configured for Intel®  
microcontrollers.  
low, the host processor interface is configured for Motorola  
microcontrollers.  
For other pin functions, see CODEN.  
CS / JASEL  
CS / JASEL  
87  
87  
J11  
J11  
DI  
DI  
Chip Select Input.  
In Host Mode, this active Low input is used to access the serial/  
parallel interface. For each read or write operation, CS must  
transition from High to Low, and remain Low.  
For information on the CS signal, see Section 5.2,  
“Microprocessor-Standard Bus and Interface Signals”.  
Jitter Attenuator Select Input.  
When the LXT384 Transceiver is in the Hardware mode, JASEL  
determines the jitter attenuator (JA) position, as listed in the  
following table.  
JASEL  
JA Position  
Low  
High  
Transmit path  
Receive path  
JA is disabled  
High impedance  
For other pin functions, see CS in Section 5.2, “Microprocessor-  
Standard Bus and Interface Signals”.  
1. DI: Digital Input  
39  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 12. Configuration and Mode-Select Signals (Sheet 2 of 2)  
Signal  
Name  
QFP PBGA  
I/O1  
Signal Description  
Pin  
Ball  
MODE  
11  
E2  
DI  
Mode Select Input.  
MODE is used to select the type of operating mode the LXT384  
Transceiver uses, as shown in the following table.  
MODE  
Low  
Operating Mode  
Hardware mode  
Host Processor mode - Parallel  
interface  
High  
VCC/2 Host Processor mode - Serial interface  
Note: VCC/2 can be obtained by connecting to a resistive divider  
consisting of two 10 kΩ resistors across VCC and Ground.  
In Hardware Mode (low), the parallel processor interface is  
disabled and hard-wired pins are used to control configuration  
and report status.  
In Parallel Host Mode (high), the parallel port interface pins  
are used to control configuration and report status.  
In Serial Host mode (VCC/2), the serial interface pins: SDI,  
SDO, SCLK, and CS are used.  
For details on modes in the table, see the following:  
Section 7.2, “Hardware Mode”  
Section 7.4.1, “Host Processor Mode - Parallel Interface”  
Section 7.4.2, “Host Processor Mode - Serial Interface”  
MUX  
43  
K2  
DI  
Multiplexed/Non-Multiplexed Select Input.  
When the LXT384 Transceiver is in parallel interface host  
processor mode, and MUX is:  
Low, operation is in non-multiplexed mode.  
High, operation is in multiplexed mode.  
In hardware mode, tie this unused input low.  
For timing diagrams, see Section 11.2, “Host Processor Mode -  
Parallel Interface Timing”.  
TNEG7 / UBS7  
TNEG6 / UBS6  
TNEG5 / UBS5  
TNEG4 / UBS4  
TNEG3 / UBS3  
TNEG2 / UBS2  
TNEG1 / UBS1  
TNEG0 / UBS0  
144  
7
B3  
D3  
DI  
Unipolar/Bipolar Select Input 7:0.  
For information on the UBS signals, see Section 5.3, “Framer/  
Mapper Signals”.  
102  
109  
72  
D12  
B12  
N12  
L12  
L3  
79  
31  
38  
N3  
1. DI: Digital Input  
40  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
5.7  
Signal Loss and Line-Code-Violation Signals  
Table 13 lists and the signal loss and line-code violation signals for the LXT384 Transceiver.  
Table 13. Signal Loss and Line-Code-Violation Signals  
Signal  
Name  
QFP  
Pin  
PBGA  
Ball  
I/O1  
Signal Description  
A4  
12  
13  
14  
15  
16  
F4  
F3  
F2  
F1  
G3  
DI  
Performance Monitoring Input.  
When the LXT384 Transceiver is in the:  
A3  
A2  
A1  
A0  
Hardware mode, the A3:0 pins make the performance-  
monitoring selections shown in Table 14. A4 must be connected  
to ground.  
Host Processor mode:  
These pins no longer control the monitoring function. Instead,  
in non-multiplexed host mode, these pins function as non-  
multiplexed address pins (see Section 5.2, “Microprocessor-  
Standard Bus and Interface Signals”).  
For information on how to control performance monitoring,  
see Table 39, “Performance-Monitoring Register, MON - 0Bh”  
on page 81.  
BPV7:0  
CLKE  
Bipolar Violation Detect Output 7:0.  
For information on the BPV signals, see Section 5.3, “Framer/  
Mapper Signals”.  
Clock Edge Select Input.  
For information on how CLKE is used for clock and data recovery,  
see Section 5.5, “Clocks and Clock-Related Signals”.  
LOS7  
LOS6  
LOS5  
LOS4  
LOS3  
LOS2  
LOS1  
LOS0  
140  
3
E4  
E3  
DO  
Loss of Signal Output.  
LOS is:  
106  
113  
68  
E12  
E11  
K11  
K12  
K3  
Low when a loss-of-signal condition is cleared (incoming signal  
with normal levels, being processed through the transceiver).  
High (indicating a loss of signal), when there is no incoming  
signal (sequence of marks for a specified time interval).  
75  
35  
NOTE: When a loss-of-signal condition is cleared, LOS returns to  
low when an incoming signal has a sufficient number of  
transitions in a specified time interval. (For details, see  
Section 6.3.3, “Receiver Loss-Of-Signal Detector”.)  
42  
K4  
RCLK7:0  
Receive Clock Output 7:0.  
For information on how RCLK is used for clock and data recovery,  
see Section 5.3, “Framer/Mapper Signals”.  
1. DI: Digital Input. DO: Digital Output.  
41  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 14 lists performance-monitoring selections that can be made when the LXT384 Transceiver  
is in the Hardware mode.  
Table 14. Performance-Monitoring Selections with A3:0 Pins  
Signal  
Name  
QFP  
Pin  
PBGA  
Ball  
Signal Description  
A3  
A2  
A1  
A0  
13  
14  
15  
16  
F3  
F2  
F1  
G3  
Performance Monitoring Input.  
When A0 through A2 are low, the LXT384 Transceiver is configured as an octal  
line transceiver without monitoring.  
When the LXT384 Transceiver is in Hardware mode, A3 is used in combination  
with A2:0 for non-intrusive performance monitoring.  
When A2:0 are all ‘0’, there is no performance monitoring of receivers, and  
the LXT384 Transceiver is configured as an octal line transceiver without  
monitoring capability.  
When A2:0 are not all ‘0’ and:  
When A3 = ‘0’, performance monitoring of receivers occurs as shown in  
the following table.  
A3  
A2  
A1  
A0  
Selection  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
No performance monitoring  
Performance monitoring of Receiver 1  
Performance monitoring of Receiver 2  
Performance monitoring of Receiver 3  
Performance monitoring of Receiver 4  
Performance monitoring of Receiver 5  
Performance monitoring of Receiver 6  
Performance monitoring of Receiver 7  
When A3 = ‘1’, performance monitoring of transmitters occurs as shown in  
the following table. (Transmitter monitoring is not supported when the  
respective channel is set to analog loopback mode.)  
A3  
A2  
A1  
A0  
Selection  
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
No performance monitoring  
Performance monitoring of Transmitter 1  
Performance monitoring of Transmitter 2  
Performance monitoring of Transmitter 3  
Performance monitoring of Transmitter 4  
Performance monitoring of Transmitter 5  
Performance monitoring of Transmitter 6  
Performance monitoring of Transmitter 7  
In non-multiplexed host processor mode, these pins function as processor  
address pins.  
42  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
5.8  
Power and Grounds  
Table 15 lists and describes the LXT384 Transceiver power and grounds.  
For low-noise operation, the LXT384 Transceiver is designed so that each transmitter has its own  
power and its own ground. These pins are not necessarily internally connected. For example, for  
channel 0 transmit, TGND0 is the corresponding ground pin and TVCC0 is the corresponding  
power pin.  
Table 15. Power and Grounds  
Signal  
Name  
QFP  
Pin  
PBGA  
Ball  
Signal  
Type  
Signal Description  
Ground (Core) 1:0.  
GND1  
89  
20  
H11  
H4  
G
S
GND0  
GND0 and GND1 pins are ground for the digital core.  
GNDIO1  
GNDIO0  
91  
18  
G11  
G4  
G
S
Ground (I/O) 1:0.  
GNDIO0and GNDIO1 pins are grounds for the digital I/O  
interface.  
TGND7  
TGND6  
TGND5  
TGND4  
TGND3  
TGND2  
TGND1  
TGND0  
134  
131  
122  
119  
62  
A6, B6  
C6, D6  
C9, D9  
A9, B9  
N9, P9  
L9, M9  
L6, M6  
N6, P6  
G
Transmit Driver Ground 7:0.  
TGND[7:0] pins are grounds for the output drivers. Must  
be tied to PC board ground at all times.  
59  
50  
47  
TVCC7  
TVCC6  
TVCC5  
TVCC4  
TVCC3  
TVCC2  
TVCC1  
TVCC0  
137  
128  
125  
116  
65  
A4, B4  
C4, D4  
P
Transmit Driver Power Supply 7:0.  
TVCC[7:0] pins are the power supply pins for the  
corresponding output drivers.  
C11, D11  
A11, B11  
N11, P11  
L11, M11  
L4, M4  
All TVCC pins can be connected to either a 3.3-V or a 5-V  
power supply. Never leave these pins disconnected.  
For details, see Section Section 6.4.4, “Transmitter  
Output Driver Power and Grounds”.  
56  
53  
44  
N4, P4  
VCC1  
VCC0  
90  
19  
H14  
H1  
P
S
Power (Core) 1:0.  
For details, see Chapter 10.0, “Electrical Characteristics”.  
VCCIO1  
VCCIO0  
92  
17  
G14  
G1  
P
S
Power (I/O) 1:0.  
For details, see Chapter 10.0, “Electrical Characteristics”.  
1. G: Ground. P: Power.  
43  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
5.9  
Test Signals  
Table 17 lists and describes the LXT384 Transceiver test signals, which are used to test all digital  
input, output, and input/output pins.  
The JTAG test signals are compatible with the IEEE 1149.1 boundary-scan test.  
Table 16. JTAG Analog Interface Test Signals  
Signal  
Name  
QFP  
Pin  
PBGA  
Ball  
Signal  
Type  
Signal Description  
AT2  
AT1  
93  
94  
G13  
H13  
AO  
AI  
JTAG Analog Test Port 2:1.  
AT2 is the JTAG analog output test port.  
AT1 is the JTAG analog input test port.  
Both test ports are used for test purposes.  
See Section 9.4.2, “Analog Port Scan Register (ASR)” on page 94  
and Figure 17, “Analog Test Port Application” on page 93.  
1. AI: Analog Input. AO: Analog Output.  
Table 17. JTAG Digital Interface Test Signals  
Signal  
Name  
QFP  
Pin  
PBGA  
Ball  
Signal  
Type  
Signal Description  
TCK  
97  
99  
F14  
F12  
DI  
DI  
JTAG Test Clock Input.  
TCK is the clock input for JTAG.  
When TCK is not used, connect it to ground.  
TDI  
JTAG Test Data Input.  
TDI, the test data input for JTAG, is used for loading serial  
instructions and data into internal test logic. TDI is sampled on the  
rising edge of TCK.  
TDI is connected high internally and can be left disconnected.  
TDO  
TMS  
98  
96  
F13  
F11  
DO  
DI  
JTAG Test Data Output.  
TDO, the test data output for JTAG, is used for reading all serial  
configuration and test data from the internal LXT384 Transceiver  
test logic. It is updated on the falling edge of TCK.  
JTAG Test Mode Select Input.  
TMS, used to control the test-logic state machine, is sampled on  
the rising edge of TCK.  
TMS is connected high internally and can be left disconnected.  
TRST  
95  
G12  
DI  
JTAG Controller Reset Input.  
TRST is used to reset the JTAG controller.  
TRST is connected high internally and can be left disconnected.  
1. DI: Digital Input. DO: Digital Output.  
2. See Section 9.4.5, “Instruction Register (IR)” on page 95. Figure 15, “JTAG Architecture” on page 86. and  
Figure 18, “JTAG Timing” on page 95.  
44  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
5.10  
Intel® LXT384 Transceiver Line Length Equalizers  
In Host Mode, the contents of the Pulse Shaping Data Register (PSDAT) determines the shape of  
pulse output at TTIP/TRING. Refer to Table 44 and Table 45.  
Table 18. Intel® LXT384 Transceiver Line Length Equalizers  
Signal  
Name  
QFP  
Pin  
PBGA  
Ball  
Signal  
Type  
Signal Description  
LEN0  
LEN1  
LEN2  
84  
85  
86  
J14  
J13  
J12  
DI  
Line Length Equalizer Input 2:0.  
In Hardware Mode for the LXT384 Transceiver, these pins  
determine the shape and amplitude of the transmit pulse.  
Table 19. Intel® LXT384 Transceiver Line Length Equalizer Inputs  
LEN2 LEN1 LEN0  
Line Length1  
Cable Loss2  
Operation Mode  
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
0 - 133 ft. ABAM  
0.6 dB  
1.2 dB  
1.8 dB  
2.4 dB  
3.0 dB  
133 - 266 ft. ABAM  
266 - 399 ft. ABAM  
399 - 533 ft. ABAM  
533 - 655 ft. ABAM  
T1  
E1 G.703, 75Ω coaxial cable and 120 Ω twisted pair  
cable.  
0
0
0
E1  
1. Line length from LXT384 Transceiver to DSX-1 cross-connect point.  
2. Maximum cable loss at 772KHz.  
45  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
6.0  
Functional Description  
This functional description chapter follows the flow of signals through an LXT384 Transceiver.  
This chapter discusses the following topics:  
Section 6.1, “Functional Overview”  
Section 6.2, “Initialization and Reset”  
Section 6.3, “Receiver”  
Section 6.4, “Transmitter”  
Section 6.5, “Line-Interface Protection”  
Section 6.6, “Jitter Attenuation”  
Section 6.7, “Loopbacks”  
Section 6.8, “Transmit All Ones Operations”  
Section 6.9, “Performance Monitoring”  
Section 6.10, “Intel® Hitless Protection Switching”  
46  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
6.1  
Functional Overview  
The LXT384 Transceiver is a fully integrated octal line interface unit designed for T1 1.544 Mbps  
and 2.048 Mbps (E1) short-haul applications. (For a block diagram, see Figure 1.)  
The LXT384 Transceiver can be controlled either by a ‘Hardware mode’ that uses hard-wired pins  
or by a ‘Host Processor mode’, which uses either a serial or parallel host processor interface that is  
controlled in software. (For more information on selecting an operating mode, see Table 3 in  
Section 4.1, “Operating Mode Multi-Function Pins”.)  
Each transceiver front end interfaces with four lines: one pair of two lines for transmit, and one pair  
of two lines for receive. These two pairs make up a digital data loop for full-duplex transmission.  
The TCLK pin provides the transmitter timing reference, and the MCLK pin provides the receiver  
reference clock. The LXT384 Transceiver is designed to operate without any reference clock when  
it is used as an analog front end (that is, for data recovery in the receiver path and as a line driver in  
the transmit path). MCLK is mandatory if on-chip clock recovery is required.  
Note: MCLK should be true to the recovered clock of the incoming data. It should be only  
plesiochronous to MCLK.  
All eight clock-recovery circuits share the same reference clock defined by the MCLK input signal.  
(For details on MCLK, see Table 11 in Section 5.5, “Clocks and Clock-Related Signals”.)  
6.2  
Initialization and Reset  
Initialization for the LXT384 Transceiver occurs as follows:  
1. During power-up, the LXT384 Transceiver is in an unknown state until the power supply  
reaches approximately 60% of VCC. Also during power-up, an initial reset sets all registers to  
their default values and resets the status and state machines for the LOS detector circuit.  
(Between 50 and 70% of VCC, the LXT384 Transceiver is in a critical zone. For more  
information about this critical zone, see the application note on slow power-up rise time,  
referenced in Section 1.3, “Related Documents”.)  
2. A write to the reset register (RES, Table 38) initiates a reset cycle that results in setting all  
LXT384 Transceiver registers to their default values. When the reset cycle occurs:  
a. In the Intel® processor non-multiplexed mode, the reset cycle is 2 microseconds long.  
b. In all other modes, the reset cycle is 1 microsecond long.  
Note: For more information related to reset, see Section 7.4.1, “Host Processor Mode - Parallel  
Interface”.  
47  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
6.3  
Receiver  
The LXT384 Transceiver has eight identical receivers.  
6.3.1  
Receiver Clocking  
In the receive mode, clocking for the LXT384 Transceiver receiver depends on the following.  
When the LXT384 Transceiver is in:  
Clock-recovery mode, the RCLK pin provides the recovered clock from the signal received at  
RRING and RTIP.  
Clock-recovery mode with LOS conditions, at the RCLK output there is a transition from  
RCLK (derived from recovered data) to MCLK. For more information on clock-recovery  
mode, see Section 6.3.3, “Receiver Loss-Of-Signal Detector” and Section 6.3.1, “Receiver  
Clocking”.  
Data-recovery mode and MCLK is:  
— Low, the RCLK pin is in a high-impedance tristate.  
— High, the RNEG and RPOS pins are internally connected to an EX-OR output to RCLK  
for external clock-recovery applications.  
For more information on data-recovery mode, see Section 6.3.4, “Receiver Data Recovery Mode”.  
6.3.2  
Receiver Inputs  
A receiver processes input signals as follows:  
1. Through the line interface step-down transformer, typically from either a twisted-pair or a  
coaxial cable. (For transformer specifications, see Figure 6 and Chapter 12.0, “Line-Interface-  
Unit Circuit Specifications”.) After the transformer, the signal is terminated and is sent to the  
receiver section of the LXT384 Transceiver.  
2. The receiver inputs, RTIP (receives positive pulses) and RRING (receives negative pulses),  
are processed through the internal differential amplifier. The differential amplifier then sends  
the signal to the peak detector.  
Recovered data is output at RPOS and RNEG in bipolar mode, or at RDATA in unipolar mode.  
The recovered clock is output at RCLK. Use the CLKE pin to select the RPOS/RNEG  
validation relative to the polarity of the edge of RCLK.  
3. The peak detector samples a received signal and determines its maximum peak value.  
The receiver can:  
— accurately recover signals in excess of 12 dB of attenuation  
— receive signal levels well below 500 mV.  
Regardless of received signal level, the peak detectors are held above a minimum level of  
0.150 V (typical), to provide immunity from impulsive noise.  
4. The peak detector sends a percentage of the maximum peak value to the data slicers. This  
percentage acts as a threshold level to ensure an optimum signal-to-noise ratio. The threshold  
level is typically 50% for E1 applications (see Table 63, “Intel® LXT384 Transceiver E1  
Receive Transmission Characteristics” on page 103) or 70% for T-1 applications (see  
Table 64, “Intel® LXT384 Transceiver T1 Receive Transmission Characteristics” on  
page 104).  
48  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
5. The data slicer processes the received signal, after which the signal simultaneously goes to  
both the clock and data-recovery sections.  
— The data and timing recovery circuits provide an input jitter tolerance better than required  
by ITU G.823, as shown in Test Specifications, Figure 33, “Intel® LXT384 Transceiver  
Jitter Tolerance Performance” on page 128.  
— Depending on the options selected, recovered clock and data signals may be routed  
through the jitter attenuator, through the HDB3/AMI decoder, and may be output to the  
framer as either bipolar or unipolar data.  
6.3.3  
Receiver Loss-Of-Signal Detector  
The LXT384 Transceiver loss-of-signal (LOS) detector circuit is designed to detect loss of signals  
in both analog and digital domains. This circuit is independent of the data slicer.  
In hardware mode, it complies with the latest ITU G.775 (for E1) and ANSI T1.231 (for T1)  
recommendations.  
Under software control, the detector can be configured to comply to the ETSI ETS 300 233  
specification (LACS Register).  
The receiver monitor loads a digital counter at the RCLK frequency. The counter is incremented  
each time a zero is received, and reset to zero each time a one (mark) is received. Depending on the  
operation mode, a certain number of consecutive zeros sets the LOS signal. The recovered clock is  
replaced by MCLK at the RCLK output with a minimum amount of phase errors. MCLK is  
required for receive operation. When the LOS condition is cleared, the LOS flag is reset and  
another transition replaces MCLK with the recovered clock at RCLK. RPOS/RNEG will reflect the  
data content at the receiver input during the entire LOS detection period for that channel.  
6.3.3.1  
G.755 and ETSI 300 233 - Loss of Signal Detection  
In G.775 mode a loss of signal is detected if the signal is below 200mV (typical) for 32  
consecutive pulse intervals. The LOS flag is reset when the received signal reaches 12.5%  
ones density (4 marks in a sliding 32-bit period) with no more than 15 consecutive zeros and  
the signal level exceeds 250mV (typical). Following the next MCLK transition, MCLK is  
replaced with a recovered clock at the RCLK output.  
In ETSI 300 233 mode, a loss of signal is detected if the signal is below 200mV for 2048  
consecutive intervals (1 ms). The LOS condition is cleared and the output pin returns to Low  
when the incoming signal has transitions when the signal level is equal or greater than 250mV  
for more than 32 consecutive pulse intervals. This mode is activated by setting the LACS  
register bit to one.  
6.3.3.2  
ANSI T1.231 - Loss of Signal Detection  
The T1.231 LOS detection criteria is employed. LOS is detected if the signal is below 200 mV for  
175 contiguous pulse positions. The LOS condition is terminated upon detecting an average pulse  
density of 12.5% over a period of 175 contiguous pulse positions starting with the receipt of a  
pulse. The incoming signal is considered to have transitions when the signal level is equal or  
greater than 250 mV.  
49  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
6.3.4  
Receiver Data Recovery Mode  
In data-recovery mode, the combined analog/digital LOS detector circuit uses only its LOS analog  
part, which complies with the ITU-G.775 recommendation. The LOS digital timing is derived from  
an internal self-timed circuit. RPOS/RNEG stay active during the loss of signal.  
The LXT384 Transceiver monitors the incoming signal amplitude. Typically, any signal below  
200mV for more than 30μs asserts the corresponding LOS pin. The LOS condition clears when the  
signal amplitude rises above 250mV. To declare an LOS condition in accordance to ITU G.775, the  
LXT384 Transceiver requires periods that are more than 10 bits and less than 255 bits.  
6.3.5  
Receiver Alarm Indication Signal (AIS) Detection  
The receiver performs an Alarm Indication Signal (AIS) detection independently of any loopback  
mode. This feature is available only in the Host Processor mode and only in the clock-recovery  
mode.  
Because there is no clock in the data-recovery mode, AIS detection does not work in that mode.  
AIS requires MCLK to be active, because the AIS function depends on a clock to count the number  
of ones in an interval.  
6.3.5.1  
E1 Mode  
After power-on reset, the LACS register (Table 41) can be set to select either the ITU G.775  
detection mode or the ETSI 3000 233 detection mode, both of which can be used for AIS. For both  
ITU G.775 and ETSI ETS 300 233, the AIS condition is:  
Declared when in a 512-bit period, the receiver detects less than 3 zeroes in the data stream.  
Cleared when in a 512-bit period, the receiver detects 3 or more zeroes in the data stream.  
6.3.5.2  
T1 Mode  
ANSI T1.231 detection is employed. The AIS condition is:  
Declared when less than 9 zeros are detected in any string of 8192 bits. This corresponds to a  
99.9% ones density over a period of 5.3 ms.  
Cleared when the received signal contains 9 or more zeros in any string of 8192 bits.  
6.3.6  
Receive Alarm Indication Signal (RAIS) Enable  
When an LOS condition is detected, enabling or disabling the Receive Alarm Indication Signal  
Enable (RAISEN) bit (bit 6) in the Global Control Register (GCR) affects the setting of the AIS  
Status Monitor register.  
For details on the RAISEN bit, see Table 43, “Global Control Register, GCR - 0Fh” on  
page 83.  
For details on the AIS Status Monitor register, see Table 47, “AIS Status Monitor Register,  
AIS - 13h” on page 85.  
50  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
When an LOS condition is detected and the RAISEN bit setting is:  
‘0’, AIS insertion into the receive path is disabled. In this case, there is no effect on the AIS  
Status Monitor register.  
‘1’, AIS insertion into the receive path is enabled. In this case, when the signals to the RTIP  
and RRING inputs to a receiver are:  
— All zeroes, the receiver generates all ones on the RPOS and RNEG outputs, and the AIS  
Status Monitor register sets to ‘1’.  
— All ones, the receiver generates all ones on the RPOS and RNEG outputs, and the AIS  
Status Monitor register clears to ‘0’.  
To prevent inadvertent interrupts during programming, before setting or resetting RAISEN, mask  
the AIS interrupt enable bit for the corresponding receiver. (See Table 48, “AIS Interrupt Enable  
Register, AISIE - 14h” on page 85)  
6.3.7  
Receiver In-Service Line-Code-Violation Monitoring  
Receiver in-service line-code-violation monitoring occurs only with unipolar I/O (that is, when  
TNEG/UBS is connected high for more than 16 consecutive MCLK cycles). In this case, when the  
LXT384 Transceiver is receiving a line input signal and an in-service line-code violation occurs,  
how this violation is reported depends on the type of decoder selected.  
If the LOS Detector circuit (see Section 6.3.3, “Receiver Loss-Of-Signal Detector”) detects an in-  
service line-code violation and the LXT384 Transceiver decoder type is:  
AMI, all bipolar violations (two consecutive pulses with the same polarity) are reported at the  
BPV output.  
HDB3, the following occurs:  
— First, the LXT384 Transceiver asserts the BPV pin high for one RCLK period for every  
bipolar violation that is not part of the zero-code substitution rules.  
— Next, the RDATA pin acts as the receive data output. (For details on the BPV and RDATA  
pin functions, see Section 5.3, “Framer/Mapper Signals”.)  
B8ZS, the following occurs:  
— The LXT384 Transceiver reports bipolar violations on BPV for one RCLK period, for  
every B8ZS violation that is not part of the zero code substitution rules.  
— Bipolar 8-zero substitution is an encoding method used on T1 circuits that inserts two  
successive ones of the same voltage—referred to as a bipolar violation—into a signal  
whenever eight consecutive zeros are transmitted. The device receiving the signal  
interprets the bipolar violation as a timing mark, which keeps the transmitting and  
receiving devices synchronized. Ordinarily, when successive ones are transmitted, one has  
a positive voltage and the other has a negative voltage.  
51  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
6.4  
Transmitter  
The LXT384 Transceiver has eight identical transmitters.  
6.4.1  
Transmitter Clocking  
The eight low-power transmitters of the LXT384 Transceiver are identical. Transmit data is  
clocked serially into the device at TPOS/TNEG in bipolar mode, or at TDATA in unipolar mode.  
For each channel, the transmit clock (TCLK) supplies the transmitter input synchronization.  
When TNEG/UBS is connected:  
High for more than 16 consecutive MCLK clock cycles, unipolar I/O and HDB3/B8ZS/AMI  
encoding/decoding is used. In this case, transmit data are clocked serially into the LXT384  
Transceiver at TPOS/TDATA, and the LXT384 Transceiver routes the transmit clock and data  
signals to its internal encoder.  
To an output that supports bipolar mode, the line does not exhibit more than 1 bit  
consecutively high for any period of time and the LXT384 Transceiver automatically defaults  
to bipolar operation. Transmit data are clocked serially into the LXT384 Transceiver at TPOS/  
TNEG.  
The transmitter samples TPOS/TNEG or TDATA inputs on the falling edge of TCLK. Refer to the  
Section 5.5, “Clocks and Clock-Related Signals” on page 37 for MCLK and TCLK timing  
characteristics.  
52  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
If TCLK:  
Is not supplied, the transmitter output remains powered down and the TTIP/TRING outputs  
are held in a high-impedance tristate. Fast output tristatability is also available through the OE  
pin (all ports) or the port’s OEx bit in the Output Enable Register (OER).  
Is supplied, the input signals that the transmitter samples depends on the TNEG/UBS setting.  
When TNEG/UBS is connected:  
— Low (bipolar I/O), the transmitter samples TPOS/TNEG input signals on the falling edge  
of TCLK.  
— High for more than 16 consecutive TCLK cycles (unipolar I/O), the transmitter samples  
TDATA inputs on the falling edge of TCLK.  
Zero suppression is available only in Unipolar Mode. The zero-suppression type is HDB3 (E1  
environment) or B8ZS (T1 environment). The scheme selected depends on whether the device is  
set for T1 or E1 operation (determined by LEN2-0 pulse shaping settings). The LXT384  
Transceiver also supports AMI line coding/decoding as shown in Figure 5.  
In Hardware mode, use the CODEN pin to select AMI coding/decoding.  
In host mode, bit 4 in the GCR (Global Control Register) selects AMI coding/decoding.  
Figure 5. 50% AMI Encoding  
TTIP  
Bit Cell  
1
1
0
TRING  
Each output driver is supplied by its own TVCC and TGND power-supply pins. The transmit pulse  
shaper is bypassed if no MCLK is supplied. When in this condition, if TCLK is pulled High, then  
TPOS and TNEG control the pulse width and polarity on TTIP and TRING. With MCLK supplied  
and TCLK pulled High, the driver enters TAOS (Transmit All Ones pattern).  
Note: The TAOS generator uses MCLK as a timing reference. To ensure that the output frequency is  
within specification limits, MCLK must have the applicable stability. TAOS is inhibited during  
Remote Loopback.  
6.4.2  
Transmitter Pulse Shaping  
Pulse shaping is a means of converting an input logic ‘1’ into a valid output mark so that the output  
pulse can be changed (or ‘shaped’) to adhere to the ITU-T G.703 pulse template (shown in Figure  
31 in Chapter 13.0, “Mask Specifications”).  
The transmit pulse shaper is bypassed if no MCLK is supplied. In this case, if TCLK is pulled high  
then TPOS and TNEG control the pulse width and polarity on TTIP and TRING. With MCLK  
supplied and TCLK pulled High, the driver enters TAOS (Transmit All Ones pattern).  
Note: The TAOS generator uses MCLK as a timing reference. To ensure that the output frequency is  
within specification limits, MCLK must have the applicable stability. TAOS is inhibited during  
Remote Loopback.  
53  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
In the Hardware mode, if TCLK is connected high 16 consecutive MCLK clock cycles and MCLK  
is:  
Not supplied (or ‘low’), the transmit pulse-shaper circuit shown in Figure 1 is bypassed (that  
is, disabled). In this case, TPOS and TNEG control the pulse width and polarity on TTIP and  
TRING.  
Supplied, the driver enters into a special mode known as Transmit All Ones, or ‘TAOS’. For  
more information on the TAOS mode, see Section 6.8, “Transmit All Ones Operations” and  
Chapter 8.0, “Registers”.  
Caution: When the pulse-shaping circuit is disabled, it is possible to overheat and damage the LXT384  
Transceiver by leaving transmit inputs connected high continuously. For example, if a  
programmable ASIC is used in a system that uses the LXT384 Transceiver, the ASIC outputs  
might be left high until the ASIC is fully programmed. To prevent damage to the LXT384  
Transceiver, use either one of the following practices:  
Apply a clock to one of these signals: TPOS, TNEG, TCLK, or MCLK.  
Set one of these signals low: TPOS, TNEG, TCLK, or OE.  
6.4.2.1  
LXT384 Transceiver Hardware Mode  
In hardware mode, pins LEN0-2 of the LXT384 Transceiver determine the pulse shaping as  
described in Table 20. The LEN settings also determine whether the operating mode is T1 or E1.  
Note: In hardware mode, all eight ports will share the same pulse shaping setting. Independent pulse  
shaping for each channel is available in host mode.  
6.4.2.2  
LXT384 Transceiver Host Mode  
In Host Mode, the contents of the Pulse Shaping Data Register (PSDAT) on the LXT384  
Transceiver determines the shape of pulse output at TTIP/TRING. Refer to Table 44 and Table 45.  
Table 20. Line Length Equalizer Inputs  
LEN2 LEN1 LEN0  
Line Length1  
Cable Loss2  
Operation Mode  
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
0 - 133 ft. ABAM  
0.6 dB  
1.2 dB  
1.8 dB  
2.4 dB  
3.0 dB  
133 - 266 ft. ABAM  
266 - 399 ft. ABAM  
399 - 533 ft. ABAM  
533 - 655 ft. ABAM  
T1  
E1 G.703, 75Ω coaxial cable and 120 Ω twisted pair  
cable.  
0
0
0
E1  
1. Line length from LXT384 Transceiver to DSX-1 cross-connect point.  
2. Maximum cable loss at 772KHz.  
54  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
6.4.2.3  
Output Driver Power Supply  
The output driver power supply (TVCC pins) can be either 3.3V or 5V nominal.  
When TVCC=5V, theLXT384 Transceiver drives both E1 (75Ω/120Ω) and T1 (100Ω) lines  
through a 1:2 transformer and 11Ω/9.1Ω series resistors.  
When TVCC=3.3V, the LXT384 Transceiver drives E1 (75Ω/120Ω) lines through a 1:2  
transformer and 11Ω series resistor. Use a configuration with a 1:2 transformer and without  
series resistors to drive T1 100Ω lines.  
The Channel 4 (TVCC4) power supply pin sets 3.3V or 5.0V transmit operation. See Table 21.  
Removing the series resistors for T1 applications with TVCC=3.3V, improves the power  
consumption of the device.  
However, series resistors in the transmit configuration improve the transmit return loss  
performance. Good transmit return loss performance minimizes reflections in harsh cable  
environments. In addition, series resistors provide protection against surges coupled to the device.  
The resistors should be used in systems requiring protection switching without external relays.  
Refer to Figure 6 for the recommended external line circuitry.  
6.4.2.4  
Power Sequencing  
For the LXT384 Transceiver, sequence TVCC first, then VCC second or at the same time as  
TVCC, to prevent excessive current draw.  
6.4.3  
Transmitter Outputs  
A transmitter transmits output signals as follows:  
1. Through a step-up transformer, a transmitter transmits an output signal, typically to either a  
twisted-pair or a coaxial cable. (For transformer specifications, see Figure 6 and Chapter 12.0,  
“Line-Interface-Unit Circuit Specifications”.)  
2. One polarity of the output signal (the positive pulse) is transmitted at TTIP, and the other  
polarity (the negative pulse) is transmitted at TRING.  
Note: If TCLK is not supplied, the transmitter is in a powered-down state and the TTIP and TRING  
outputs are held in a low-power high-impedance tristate.  
55  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
6.4.4  
Transmitter Output Driver Power and Grounds  
Each output driver is supplied by its own separate TVCC and TGND pins. The TVCC pins can be  
either 3.3 V or 5 V nominal. The LXT384 Transceiver drives either a 75Ω coaxial cable or a 120Ω  
twisted-pair cable.  
For output drive short-circuit protection, see Section 6.5, “Line-Interface Protection”.  
6.4.4.1  
6.4.4.2  
Transmit Output Standard Power Options  
The LXT384 Transceiver standard option uses a 1:2 transformer with two R = 11Ω resistors. This  
power option has more margin for return loss, compared to the low-power option discussed in the  
following section.  
T
Transmitter Output Low-Power Options  
The LXT384 Transceiver has a low-power option that meets all other specifications, with a built-in  
safety margin. This option allows a different turns ratio so that power can be saved on the LXT384  
Transceiver power dissipation. To achieve this low-power option, select the turns ratio to 1:1.7 and  
change the R resistor to 10Ω. (See Figure 6 and Table 21.)  
T
56  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
6.5  
Line-Interface Protection  
Figure 6 shows circuitry for line-interface protection. (While not mandatory for normal operation,  
Intel® strongly recommends these line-interface protection elements.) For the appropriate values  
and tolerances of devices used with line-interface protection circuitry, see Table 73 in Chapter 12.0,  
“Line-Interface-Unit Circuit Specifications”.  
Receive side. Two 1kΩ resistors protect the receiver against current surges that can couple  
into the LXT384 Transceiver. Due to the high receiver impedance (typically 70 kΩ), these  
resistors do not affect the receiver sensitivity.  
Transmit side. Resistors R and Schottky diodes D1-4 protect the output drivers from line  
T
surges. To protect the LXT384 Transceiver output driver from surge currents in excess of 100  
mA, a transient voltage suppressor TVS1 (such as Teccor P0080S) is required.  
For some power-up operations, on rare occasions there is no activity for several seconds on all of  
the following transmit-side pins: TPOS, TNEG, TCLK, and MCLK. If this lack of activity occurs  
for a period of several seconds, then it can cause transmitter outputs to remain in their last-known  
logic state. If the transmitter outputs are in static mode. As a result, then the transformer output  
appears as a short circuit to this static DC voltage.  
In the worst case of inactivity, one of the transmitter outputs is high while other transmitter outputs  
are low. In this case, outputs TTIP and TRING would draw excessive current through the  
transformer primary windings and the LXT384 Transceiver can overheat. To manage this type of  
power-up operation, do only one of the following:  
Set OE low until normal operations return.  
Set TCLK low until normal operations return.  
Set TNEG low until normal operations return.  
Set TPOS low until normal operations return.  
Provide MCLK with a frequency from 10 kHz to 10 MHz until normal operations return.  
Provide TCLK with a frequency from 100 kHz to 10 MHz until normal operations return.  
Toggle TNEG with a clock from 100 kHz to 10 MHz until normal operations return.  
Toggle TPOS with a clock from 100 kHz to 10 MHz until normal operations return.  
As shown in Figure 6, add a single 0.47 uF capacitor in series with one of the R output  
T
resistors.  
57  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Figure 6. Intel® LXT384 Transceiver External Transmit/Receive Line Circuitry  
TVCC  
TVCC  
TVS1  
68μF  
1
0.1μF  
TVCC  
4
RT  
D4  
1:2  
TTIP  
0.47μF  
D3  
3.3V  
Tx LINE  
2
VCC  
GND  
560pF  
TVCC  
0.1μF  
D2  
D1  
TRING  
RT  
Intel® LXT384  
3
Transceiver  
(ONE CHANNEL)  
1kΩ  
1:2  
RTIP  
RR  
Rx LINE  
0.22μF  
RR  
Intel® LXT384  
Transceiver  
RRING  
1kΩ  
1
Common decoupling capacitor for all TVCC and TGND pins.  
2
3
Typical value. Adjust for actual board parasitics to obtain optimum return loss.  
Refer to Transformer Specifications Table for transformer specifications.  
DC blocking capacitor needed when pulse shaping is disabled. See pin  
description for TCLK7, pin 2 of QFP package in Table 1.  
4
100Ω Twisted Pair  
100Ω Twisted Pair  
Component  
75Ω Coax  
120Ω Twisted Pair  
TVCC = 5V  
TVCC = 3.3V  
RT  
11Ω ± 1%  
11Ω ± 1%  
9.1Ω ± 1%  
0Ω  
RR  
9.31Ω ± 1%  
15.0Ω ± 1%  
12.4Ω ± 1%  
12.4Ω ± 1%  
International Rectifier.............11DQ04 or 10BQ060  
Motorola.......................................MBR0540T1  
D1 - D4  
TVS1  
SGS-Thomson..............SMLVT 3V3 3.3V Transient Voltage Suppressor (TVCC=3.3V)  
Semtech.......................SMCJ5.0AC 5.0V Transient Voltage Suppressor (TVCC=5.0V)  
58  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 21 lists the component values to use with the Figure 6 circuit, depending on the type of  
power used and the type of cable with which the component is used.  
Table 21. Component Values to Use with Transformer Circuit  
Component Value to Use with  
Component Value to Use with  
120 Ω Twisted-Pair Cable  
Component  
75 Ω Coaxial Cable  
RT Low-Power Value  
RT Standard-Power Value  
RR (Receive Resistor)  
10 Ω ± 1%  
11 Ω ± 1%  
10 Ω ± 1%  
11 Ω ± 1%  
15 Ω ± 1%  
9.31 Ω ± 1%  
Table 22 lists the transmitter transformer turns ratios that can selected.  
Table 22. Transmitter Transformer Turns Ratio Selection  
Transmitter Transformer  
Turns Ratio  
Component Value to Use with  
120 Ω Twisted-Pair Cable  
Characteristic Impedance  
Standard 75/120Ω  
Rt = 11 Ω ± 1%  
Rt = 10 Ω ± 1%  
1:2  
characteristic impedance  
1:1.7  
Low-power 75/120Ω  
characteristic impedance  
59  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
6.6  
Jitter Attenuation  
Figure 7 shows the internal LXT384 Transceiver jitter attenuation (JA) unit, which requires neither  
an external crystal nor a reference clock that has a frequency higher than the line frequency.  
Data signals are clocked into the FIFO with the associated clock signal (TCLKi or RCLKi) and are  
clocked out of the FIFO with the JA clock after removing jitter (TCLKo when TCLKi is used, or  
RCLKo when RCLKi is used). When the FIFO is within two bits of overflowing or underflowing,  
the FIFO adjusts the output clock by 1/8 of a bit period. For the associated path, the JA produces a  
constant throughput delay of either 16 bits (when a 32 x 2-bit register is used) or 32 bits (when a 64  
x 2-bit register is used).  
Figure 7. Jitter Attenuator  
FIFO64  
TPOSi  
RPOSi  
TPOSo  
RPOSo  
TNEGi  
RNEGi  
TNEGo  
RNEGo  
FIFO  
IN CLK  
OUT CLK  
TCLKi  
RCLKi  
TCLKo  
RCLKo  
IN  
OUT  
Clock Recovery Unit  
JASEL0-1  
JASEL0-1  
MCLK  
x 32  
GCR control bits  
i = inputs  
o = outputs  
60  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
When the LXT384 Transceiver is in the:  
Host Processor mode:  
— The Global Control Register (GCR, Table 43) JASEL bits determine whether the JA is  
positioned in the receive or transmit path.  
— Depending on the GCR register FIFO64 bit setting, the depth of the FIFO used in the JA is  
either a 32 x 2-bit FIFO or a 64 x 2-bit FIFO. (For FIFO64 bit details, see Table 43 in  
Chapter 8.0, “Registers”.)  
— The low-limit jitter attenuator corner frequency depends on the FIFO depth and the JACF  
bit setting in the GCR register. (For JACF bit details, see Table 43 in Chapter 8.0,  
“Registers”.)  
Hardware mode:  
— The JASEL pin determines whether JA is positioned in the receive or transmit path.  
— The FIFO length is fixed to 64 bits.  
— The low-limit jitter attenuator corner frequency is fixed to 3.5 Hz for E1 mode, or 6 Hz for  
T1 mode. (For more information on the JA corner frequency, see Table 76 in Chapter  
14.0, “Jitter Performance”.)  
For information on jitter attenuation as it applies specifically to the receiver, see Section 6.6, “Jitter  
Attenuation”.  
Standard E1 jitter-attenuation recommendations and specifications that the LXT384 Transceiver  
JA meets are the following. (For more recommendations and specifications, see Chapter 15.0,  
“Recommendations and Specifications”.)  
European Telecommunications Standards Institute (ETSI) publication, ETSI CTR12/13  
International Telecommunication Union (ITU) publications:  
— ITU-T G.736  
— ITU-T G.742, when used with the SXT6234 E2-E1 mux/demux.  
— ITU-T G.783, combined jitter when used with the SXT6251 21E1 mapper.  
BAPT220  
The LXT 384 Transceiver also supports the following T1 jitter attenuation specifications:  
AT&T Pub 62411  
GR-25-CORE, Category I, R5-203  
TR-TSY-000009  
61  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
6.7  
Loopbacks  
For diagnostics, the LXT384 Transceiver has the following loopback modes:  
Section 6.7.1, “Analog Loopback”  
Section 6.7.2, “Digital Loopback”  
Section 6.7.3, “Remote Loopback”  
To select a loopback mode when the mode is in:  
Hardware mode, the LOOP pins can be used to select either an analog or remote loopback.  
(See Section 5.4, “Line Interface Unit Signals”.)  
Host Processor mode, the ALOOP, DLOOP, and RLOOP registers can be used to select an  
analog, digital, or remote loopback. (See Chapter 8.0, “Registers”.)  
6.7.1  
Analog Loopback  
As Figure 8 shows, when analog loopback is selected, the transmitter TTIP and TRING outputs are  
connected internally to the receiver inputs RTIP and RRING. For the corresponding receiver, clock  
and data signals are output at RCLK, RPOS, and RNEG. (For the LOOP pin settings that select  
analog loopback, see Section 5.4, “Line Interface Unit Signals”.)  
When the LXT384 Transceiver is in an analog loopback, it ignores signals on RTIP and RRING.  
Figure 8. Intel® LXT384 Transceiver Analog Loopback  
TCLK  
TPOS  
TNEG  
TTIP  
Timing &  
Control  
JA*  
JA*  
TRING  
RCLK  
RTIP  
Timing  
Recovery  
RPOS  
RNEG  
RRING  
* If Enabled  
62  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
6.7.2  
Digital Loopback  
The digital loopback function is available in the Host Processor mode only.  
As Figure 9 shows, when digital loopback is selected, the transmit clock TCLK and transmit data  
inputs TPOS and TNEG are looped back and are output on the RCLK, RPOS, and RNEG pins. The  
data on TPOS and TNEG is also output on the TTIP and TRING pins. (To select digital loopback,  
see Table 40 in Chapter 8.0, “Registers”.)  
When the LXT384 Transceiver is in a digital loopback, it ignores input signals on RTIP and  
RRING.  
Figure 9. Intel® LXT384 Transceiver Digital Loopback  
TCLK  
TTIP  
Timing &  
Control  
TPOS  
JA*  
JA*  
TRING  
TNEG  
RCLK  
RPOS  
RNEG  
RTIP  
Timing  
Recovery  
RRING  
* If Enabled  
63  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
6.7.3  
Remote Loopback  
As Figure 10 shows, when a remote loopback is selected, the RCLK, RPOS, and RNEG outputs  
route to the transmit circuits, and data are output on the TTIP and TRING pins. (For the LOOP pin  
settings that select remote loopback, see Section 5.4, “Line Interface Unit Signals”.)  
When the LXT384 Transceiver is in a remote loopback:  
It ignores input signals on the TCLK, TPOS, and TNEG.  
The pulse template cannot be guaranteed in data-recovery mode.  
Figure 10. Intel® LXT384 Transceiver Remote Loopback  
TCLK  
TTIP  
Timing &  
Control  
JA*  
JA*  
TPOS  
TNEG  
TRING  
RCLK  
RPOS  
RNEG  
RTIP  
Timing  
Recovery  
RRING  
* If Enabled  
64  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
6.8  
Transmit All Ones Operations  
For Transmit All Ones (TAOS) operations, the LXT384 Transceiver has the following TAOS  
modes:  
Section 6.8.1, “TAOS Generation”  
Section 6.8.2, “TAOS Generation with Analog Loopback”  
Section 6.8.3, “TAOS Generation with Digital Loopback”  
Note: The TAOS mode is inhibited during Remote loopback.  
6.8.1  
TAOS Generation  
When the LXT384 Transceiver is set for a:  
Hardware mode, the TAOS mode is set by connecting the TCLK pin high for more than 16  
MCLK cycles.  
Host Processor mode, the TAOS mode is set by asserting the corresponding bit in the TAOS  
register. In case of LOS, Automatic TAOS Select (ATS) insertion can be set with the ATS  
register (Table 42).  
Note:  
The TAOS generator uses the clock signal on the MCLK pin as a timing reference. As a result,  
when the LXT384 Transceiver is set for data-recovery mode with a Motorola processor, TAOS  
does not work because wait states cannot be added. To ensure the output frequency is within  
specification limits, MCLK must have the applicable stability.  
When TAOS is active, DLOOP does not function.  
Figure 11 shows how the LXT384 Transceiver generates the Transmit All Ones mode.  
Figure 11. TAOS Data Path for Intel® LXT384 Transceiver  
MCLK  
TAOS mode  
Timing &  
Control  
TTIP  
TCLK  
TPOS  
TNEG  
TRING  
(ALL 1's)  
RCLK  
RPOS  
RNEG  
RTIP  
Timing  
Recovery  
JA*  
RRING  
* If Enabled  
65  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
6.8.2  
TAOS Generation with Analog Loopback  
Figure 12 shows how the TAOS mode affects the receive path after analog loopback.  
Figure 12. TAOS with Analog Loopback for Intel® LXT384 Transceiver  
MCLK  
TAOS Mode  
Timing &  
Control  
TCLK  
TTIP  
TPOS  
TRING  
(ALL 1's)  
TNEG  
RCLK  
RPOS  
RNEG  
RTIP  
Timing  
Recovery  
JA*  
RRING  
* If Enabled  
6.8.3  
TAOS Generation with Digital Loopback  
Figure 13 shows how the TAOS mode affects the receive path after digital loopback.  
Figure 13. TAOS with Digital Loopback for Intel® LXT384 Transceiver  
MCLK  
TAOS Mode  
Timing &  
Control  
TTIP  
TCLK  
JA*  
JA*  
TPOS  
TNEG  
TRING  
(ALL 1's)  
RCLK  
RPOS  
RNEG  
RTIP  
Timing  
Recovery  
RRING  
* If Enabled  
66  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
6.9  
Performance Monitoring  
The LXT384 Transceiver can be set for either one of the following configurations:  
All eight channels 0 through 7 operating as regular transceivers  
Channels 1 through 7 operating as regular transceivers and the channel 0 transceiver  
configured for non-intrusive performance monitoring of one of the other channels, per ITU-T  
G.722  
The LXT384 Transceiver can be configured to monitor the performance of either (1) one of the  
line-side receivers 1 through 7 or (2) one of the line-side transmitters 1 through 7. The  
configuration can be performed using either the Hardware mode (see Table 14 in Section 5.7,  
“Signal Loss and Line-Code-Violation Signals”) or the Host Processor mode (see Table 39 in  
Chapter 8.0, “Registers”).  
Performance Monitoring through Clock and Data Recovery. Performance monitoring of either  
(1) analog inputs to channels 1 through 7 or (2) analog outputs from any one of channels 1 through  
7 can be accomplished through clock and data recovery as follows.  
1. As shown in Figure 1 in Chapter 2.0, “Product Summary”, the analog input from the channel  
selected for monitoring is processed by the channel 0 transceiver clock and data recovery.  
2. The line signal from the channel selected can then be observed digitally at RCLK0/RPOS0/  
RNEG0. Channel 0 displays the appropriate LOS state for the line signal of the channel  
selected, both in transmit and receive directions.  
Performance Monitoring through Remote Loopback. Performance monitoring of either  
(1) analog line inputs RTIP/RRING to any one of channels 1 through 7 or (2) analog line outputs  
TTIP/TRING from any one of channels 1 through 7 can be accomplished through remote loopback  
as follows:  
1. Configure the LXT384 Transceiver as shown in Figure 10 in Section 6.7.3, “Remote  
Loopback”. (TCLK must be active for remote loopback to operate.)  
2. The monitored channel and channel 0 output the same data. By connecting the channel 0  
output data (TTIP0/TRING0) to standard test equipment, the line signal from the channel  
selected can be monitored.  
Note: A benefit of performance-monitoring is that the monitored signal can be sent to channel 0, where it  
can be used as a timing reference clock.  
67  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
6.10  
Intel® Hitless Protection Switching  
The LXT384 Transceiver has a feature that allows it to be used in an Intel® Hitless Protection-  
Switching application. Intel® Hitless Protection-Switching is an alternative redundancy (backup)  
method that uses very fast silicon switching instead of slow mechanical relays. This method is best  
implemented using 1+1 circuitry.  
The LXT384 Transceiver can provide Intel® Hitless Protection-Switching for the following  
reasons:  
The transmit outputs from the LXT384 Transceiver can be placed immediately into a high-  
impedance tristate, which allows two outputs to be connected directly while one output is  
turned off.  
The jitter attenuator produces a constant throughput delay for smooth switching of data.  
For more information about Intel® Hitless Protection-Switching, see the document 1+1 Protection  
without Relays Using Intel® LXT380/1/4/6/8 Hitless Protection Switching - Application Note listed  
in Section 1.3, “Related Documents”.  
68  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
7.0  
Operating Mode Summary  
This section discusses the following operating modes:  
Section 7.1, “Interfacing with 5V Logic”  
Section 7.2, “Hardware Mode”  
Section 7.3, “Hardware Mode Settings”  
Section 7.4, “Host Processor Modes”  
Section 7.5, “Interrupt Handling”  
7.1  
7.2  
Interfacing with 5V Logic  
The LXT384 Transceiver can interface directly with 5V TTL family devices. The internal input  
pads can tolerate 5V outputs from TTL and CMOS family devices.  
Hardware Mode  
The Hardware mode is selected when the MODE pin is connected low, which disables the Host  
Processor interface. In the Hardware mode, the Host Processor interface pins have different  
functions, in that they can be hard-wired to control the LXT384 Transceiver for various operation  
modes and to report on the status of operations.  
69  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
7.3  
Hardware Mode Settings  
Table 23 lists LXT384 Transceiver hardware mode settings for receive, transmit, and loopback  
operations.  
Table 23. Intel® LXT384 Transceiver Operation Mode Summary  
MCLK  
TCLK  
LOOP1  
Receive Mode  
Transmit Mode  
Loopback  
Clocked Clocked  
Clocked Clocked  
Clocked Clocked  
Open  
Data/Clock recovery  
Data/Clock recovery  
Data/Clock recovery  
Data/Clock recovery  
Data/Clock Recovery  
Data/Clock Recovery  
Data/Clock Recovery  
Data/Clock Recovery  
Data/Clock Recovery  
Power Down  
Pulse Shaping ON  
Pulse Shaping ON  
Pulse Shaping ON  
Power down  
No Loopback  
Remote Loopback  
Analog Loopback  
No Loopback  
L
H
Clocked  
L
Open  
Clocked  
L
L
Power down  
No effect on op.  
No Analog Loopback  
No Loopback  
Clocked  
L
H
Power down  
Clocked  
H
Open  
Transmit All Ones  
Pulse Shaping ON  
Transmit All Ones  
Pulse Shaping ON  
Pulse Shaping ON  
Pulse Shaping ON  
Pulse Shaping OFF  
Pulse Shaping OFF  
Pulse Shaping OFF  
Power down  
Clocked  
H
L
Remote Loopback  
No effect on op.  
No Loopback  
Clocked  
H
H
L
L
Clocked  
Open  
Clocked  
L
Power Down  
No Remote Loopback  
No effect on op.  
No Loopback  
L
Clocked  
H
Power Down  
L
H
Open  
Power Down  
L
H
L
Power Down  
No Remote Loop  
No effect on op.  
No Loopback  
L
H
H
Power Down  
L
L
X
Open  
L
Power Down  
H
H
H
H
H
H
H
H
Clocked  
Data Recovery  
Pulse Shaping ON  
Pulse Shaping OFF  
Pulse Shaping ON  
Power down  
No Loopback  
Clocked  
Data Recovery  
Remote Loopback  
Analog Loopback  
No Loopback  
Clocked  
H
Data Recovery  
L
L
Open  
L
Data Recovery  
Data Recovery  
Pulse Shaping OFF  
Pulse Shaping OFF  
Pulse Shaping OFF  
Pulse Shaping OFF  
Remote Loopback  
No Loopback  
H
H
H
Open  
L
Data Recovery  
Data Recovery  
Remote Loopback  
Analog Loopback  
H
Data Recovery  
1. Hardware mode only.  
70  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
7.4  
Host Processor Modes  
When the MODE pin is connected high, the following Host Processor modes are available.  
Section 7.4.1, “Host Processor Mode - Parallel Interface”  
Section 7.4.2, “Host Processor Mode - Serial Interface”  
7.4.1  
Host Processor Mode - Parallel Interface  
The parallel interface (listed in Table 3 in Section 4.1, “Operating Mode Multi-Function Pins”) is  
used to control configuration of the LXT384 Transceiver and to report the status of various  
operations. The LXT384 Transceiver has a flexible, generic 8-bit parallel host processor interface  
designed to support both non-multiplexed and multiplexed address/data bus systems for both  
Motorola bus and Intel® bus topologies. Table 24 lists the four parallel interface modes that can be  
selected with the pins MODE, MOT/INTL, and MUX.  
Table 24. Host Processor Mode - Parallel Interface Selections  
MOT/  
INTL  
MODE  
MUX  
Interface Selected  
High  
High  
High  
High  
Low  
Low  
High  
High  
Low  
High  
Low  
High  
Host Processor mode, Motorola processor parallel interface, non-multiplexed  
Host Processor mode, Motorola processor parallel interface, multiplexed  
Host Processor mode, Intel® processor parallel interface, non-multiplexed  
Host Processor mode, Intel® processor parallel interface, multiplexed  
The Host Processor mode parallel interface includes an address bus (A4:0) and a data bus (D7:0)  
for non-multiplexed operation and an 8-bit address/data bus for multiplexed operation. The  
LXT384 Transceiver has a 5-bit address bus and provides 22 user-accessible 8-bit registers for  
configuration, alarm monitoring, and control of the LXT384 Transceiver.  
Control signals that the LXT384 Transceiver and host processors have in common include ACK/  
RDY, ALE, CS, DS, INT, RD, R/W, and WR. An internal wait-state generator controls the ACK/  
RDY handshake output signal, which is compatible with both Motorola and Intel® processors.  
When the processor interface selected is for a:  
Motorola processor and ACK is low, then during a:  
— Read cycle, ACK indicates that valid information is on the data bus.  
— Write cycle, ACK indicates the LXT384 Transceiver has accepted the write data from the  
Motorola processor.  
Intel® processor and RDY is:  
— Low, the LXT384 Transceiver indicates to the Intel® processor a bus cycle is in progress.  
Note: When an Intel® processor is used with a non-multiplexed interface, there is one exception to how  
write-cycle timing operates that involves the use of Register 0Ah, the reset register. At the start of  
the write cycle, the RDY line remains high instead of signaling the completion of the write cycle  
with a transition to a low state. The overall duration of the reset cycle from when the signal on CS  
is low to the completion of the reset cycle is a total of 3 microseconds. As a result, upon writing to  
Register 0Ah, allow a minimum of 2 microseconds of constant throughput delay before attempting  
the next read/write operation. (For more information on the reset cycle, see Table 38 in Section 8.3,  
“Register Descriptions”.)  
71  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
7.4.1.1  
Host Processor Mode - Parallel Interface, Motorola* Processor  
The Motorola processor interface is selected by asserting the LXT384 Transceiver MOT/INTL pin  
low. The R/W signal indicates if a data transfer is to be a read or write. The DS signal is the timing  
reference for all data transfers and typically has a duty cycle of 50%. When the Motorola processor  
attempts to:  
Read data from the LXT384 Transceiver, it asserts R/W high on the falling edge on DS, and  
the LXT384 Transceiver drives the data bus.  
Write data to the LXT384 Transceiver, it asserts R/W low on the rising edge on DS, and the  
Motorola processor drives the data bus.  
When a Motorola processor is used, CS and DS can be connected. Both read and write cycles  
require the CS signal to be low and the Motorola processor to actively drive the address pins. The  
LXT384 Transceiver supports a:  
Non-multiplexed Motorola processor parallel interface when MUX is asserted low. In non-  
multiplexed mode, the falling edge of DS is used to latch the address information on the  
address bus, and AS must be connected high.  
Multiplexed Motorola processor parallel interface when MUX is asserted high. The address on  
the multiplexed address data bus is latched into the LXT384 Transceiver on the falling edge of  
AS.  
7.4.1.2  
Host Processor Mode - Parallel Interface, Intel® Processor  
The Intel® processor interface is selected by asserting the LXT384 Transceiver MOT/INTL pin  
high. Both the read and write cycles require CS to be low. When the Intel® processor attempts to:  
Read data from the LXT384 Transceiver, it asserts RD low while WR is held high.  
Write data to the LXT384 Transceiver, it asserts WR low while RD is held high.  
The LXT384 Transceiver supports a:  
Non-multiplexed Intel® processor parallel interface when MUX is asserted low. In non-  
multiplexed mode, ALE must be connected high and the address and data lines are separate.  
Multiplexed Intel®processor parallel interface when MUX is asserted high. In the multiplexed  
mode, the falling edge of ALE latches the address.  
72  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
7.4.2  
Host Processor Mode - Serial Interface  
A Host Processor mode with a serial interface consisting of the CS, SCLK, SDI, and SDO pins is  
selected by connecting the MODE pin to a voltage that is equal to 1/2 VCC (which can be  
accomplished by connecting one 10k Ω resistor to VCC and a second 10k Ω resistor to ground).  
Figure 14 shows timing for the host processor interface when it is in serial mode. Registers are  
accessible through a 16-bit word consisting of the following:  
An 8-bit Address/Command byte.  
— The signal on the R/W pin determines whether a read or a write operation occurs.  
— The signals on pins A1-A5 go to an address decoder that decodes an address. (The address  
decoder ignores signals on the A6 and A7 pins.)  
A subsequent 8-bit Data byte. (Depending on the R/W state, the D0-D7 values are valid on  
either SDI or SDO, but never are the D0-D7 values valid on both SDI and SDO.)  
— When R/W = 0, D0-D7 on SDO are don’t cares. The D0-D7 values on SDI are active,  
with valid data being written to the LXT384 Transceiver.  
— When R/W = 1, the D0-D7 values on SDO are active, with valid data that the LXT384  
Transceiver writes to the host processor. The D0-D7 values on SDI are don’t cares.  
Figure 14. Host Processor Mode - Serial Interface Read Timing  
CS  
SCLK  
Address / Command Byte  
Input (Write) Data Byte  
A6  
A7  
R/W  
A1  
A2  
A3  
A4  
A5  
(Don't (Don't  
care) care)  
D0  
D0  
D1  
D1  
D2  
D2  
D3  
D3  
D4  
D4  
D5  
D5  
D6  
D6  
D7  
D7  
SDI  
High Impedance  
SDO  
Output (Read) Data Byte  
R/W = 1: Read operation  
R/W = 0: Write operation (SDO remains high impedance)  
73  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
7.5  
Interrupt Handling  
7.5.1  
Interrupt Sources  
Interrupt sources include the following:  
1. Status change in the LOS (Loss of Signal) Status register (04h, Table 32). The LXT384  
Transceiver continuously monitors the receiver signal and updates the specific LOS status bit  
to indicate either the presence or absence of an LOS condition.  
2. Status change in the AIS (Alarm Indication Signal) Status register (13h, Table 47). The LOS  
(Loss of Signal) Status register (04h, Table 32). The LOS (Loss of Signal) Status register (04h,  
Table 32). The LXT384 Transceiver monitors the incoming data stream and updates the  
specific AIS status bit to indicate either the presence or absence of a AIS condition.  
7.5.2  
Interrupt Enable  
The LXT384 Transceiver provides a latched interrupt output (INT). An interrupt occurs any time  
there is a transition on any enabled bit in the corresponding status register.  
Register 06h (Table 34) is the LOS Interrupt Enable register, and register 14h (Table 48) is the AIS  
Interrupt Enable register. Writing a logic ‘1’ into the corresponding mask register enables a bit in  
the corresponding interrupt status register to generate an interrupt. The power-on default value is  
all zeroes. The setting of the interrupt enable bit does not affect the operation of the status registers.  
Register 08h (Table 36) is the LOS Interrupt Status register, and register 15h (Table 49) is the RAIS  
Interrupt Status register. When there is a transition on any enabled bit in a status register, the  
associated bit of the interrupt status register is set and an interrupt is generated (if one is not already  
pending). When an interrupt occurs, the INT pin is asserted low. The output circuitry of the INT pin  
consists of an active pull-down device (an open drain). An external pull-up resistor of  
approximately 10kΩ is required to support wired-OR operation with other LXT384 Transceivers.  
7.5.3  
Interrupt Clear  
When an interrupt occurs, the interrupt service routine (ISR) operates as follows:  
1. The ISR must read the interrupt status registers (08h and 15h) to identify the interrupt source.  
2. The ISR must then read the corresponding status monitor register to obtain the current status of  
the LXT384 Transceiver.  
Note:  
Reading an interrupt-status register clears the ‘sticky’ status bit set by the interrupt. (A ‘sticky’  
status bit is a bit that, once set, remains set until it is explicitly cleared.) Automatically clearing  
an interrupt-status register prepares the register for the next interrupt.  
The status-monitor registers are the LOS Status register (04h, Table 32)and the AIS Status  
register (13h, Table 47). Reading a status-monitor register clears its corresponding interrupts  
on the rising edge of the read or data strobe. When all pending interrupts are cleared, the signal  
on INT goes high.  
74  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
8.0  
Registers  
This chapter discusses the LXT384 Transceiver registers.  
8.1  
Register Summary  
Table 25 lists LXT384 Transceiver registers by the hex address of each.  
Table 25. Intel® LXT384 Transceiver Register Summary  
Address  
(Hex)  
Mnemonic  
Cross-Reference  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
ID  
ALOOP  
RLOOP  
TAOS  
LOS  
-
Table 28, “ID Register, ID - 00h”  
Table 29, “Analog Loopback Register, ALOOP - 01h”  
Table 30, “Remote Loopback Register, RLOOP - 02h”  
Table 31, “TAOS Enable Register, TAOS - 03h”  
Table 32, “LOS Status Monitor Register, LOS - 04h”  
Reserved  
LIE  
Table 34, “LOS Interrupt Enable Register, LIE - 06h”  
Reserved  
-
LIS  
Table 36, “LOS Interrupt Status Register, LIS - 08h”  
Reserved  
-
RES  
MON  
DL  
Table 38, “Reset Register, RES - 0Ah”  
Table 39, “Performance-Monitoring Register, MON - 0Bh”  
Table 40, “Digital Loopback Register, DL - 0Ch”  
Table 41, “LOS/AIS Criteria Selection Register, LACS - 0Dh”  
Table 42, “Automatic TAOS Select Register, ATS - 0Eh”  
Table 43, “Global Control Register, GCR - 0Fh”  
Reserved  
LACS  
ATS  
GCR  
-
-
Reserved  
12  
13  
14  
15  
OER  
AIS  
Table 46, “Output Enable Register, OER - 12h”  
Table 47, “AIS Status Monitor Register, AIS - 13h”  
Table 48, “AIS Interrupt Enable Register, AISIE - 14h”  
Table 49, “AIS Interrupt Status Register, AISIS - 15h”  
AISIE  
AISIS  
75  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 26 groups the LXT384 Transceiver registers by function and lists the bit names.  
Table 26. Register Bit Names  
Register  
Bit Names  
Mne-  
Name  
RW  
7
6
5
4
3
2
1
0
monic  
ID, Reset, and Control Registers  
ID  
ID  
R
ID7  
ID6  
ID5  
ID4  
ID3  
ID2  
ID1  
ID0  
Reset  
RES  
R/W  
RES7  
RES6  
RES5  
RES4  
RES3  
RES2  
RES1  
RES0  
Re-  
served  
Global Control  
GCR  
R/W  
RAISEN  
CDIS  
CODEN FIFO64  
JACF  
JASEL1 JASEL0  
Loopback Registers  
Analog  
ALOOP  
R/W  
R/W  
R/W  
AL7  
DL7  
RL7  
AL6  
DL6  
RL6  
AL5  
DL5  
RL5  
AL4  
DL4  
RL4  
AL3  
DL3  
RL3  
AL2  
DL2  
RL2  
AL1  
DL1  
RL1  
AL0  
DL0  
RL0  
Loopback  
Digital  
Loopback  
DL  
Remote  
Loopback  
RLOOP  
Enable and Select Registers  
AIS Interrupt  
AISIE  
LIE  
R/W  
R/W  
AISIE7  
LIE7  
AISIE6  
LIE6  
AISIE5  
LIE5  
AISIE4  
LIE4  
AISIE3  
LIE3  
AISIE2  
LIE2  
AISIE1  
LIE1  
AISIE0  
LIE0  
Enable  
LOS Interrupt  
Enable  
Output Enable  
TAOS Enable  
OER  
R/W  
R/W  
OE7  
OE6  
OE5  
OE4  
OE3  
OE2  
OE1  
OE0  
TAOS  
TAOS7  
TAOS6  
TAOS5  
TAOS4  
TAOS3  
TAOS2  
TAOS1  
TAOS0  
Automatic  
ATS  
R/W  
R/W  
ATS7  
ATS6  
ATS5  
ATS4  
ATS3  
ATS2  
ATS1  
ATS0  
TAOS Select  
LOS/AIS  
Criteria Select  
LACS  
LACS7  
LACS6  
LACS5  
LACS4  
LACS3  
LACS2  
LACS1  
LACS0  
Status and Monitoring Registers  
AIS Interrupt  
AISIS  
AIS  
R
R
R
AISIS7  
AIS7  
AISIS6  
AIS6  
AISIS5  
AIS5  
AISIS4  
AIS4  
AISIS3  
AIS3  
AISIS2  
AIS2  
AISIS1  
AIS1  
AISIS0  
AIS0  
Status  
AIS Status  
LOS Interrupt  
Status  
LIS  
LIS7  
LIS6  
LIS5  
LIS4  
LIS3  
LIS2  
LIS1  
LIS0  
LOS Status  
Monitor  
LOS  
R
LOS7  
LOS6  
LOS5  
LOS4  
LOS3  
A3  
LOS2  
A2  
LOS1  
A1  
LOS0  
A0  
Performance  
Monitoring  
Re-  
served  
Re-  
served  
Re-  
served  
Re-  
served  
MON  
R/W  
76  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
8.2  
Register Addresses  
Table 27 lists the register names and register addresses on:  
Pins A7:1 (used for the LXT384 Transceiver Host Processor mode with a serial interface)  
Pins A7:0 (used for the LXT384 Transceiver Host Processor mode with a parallel interface)  
Table 27. Register Addresses for Serial and Parallel Interfaces  
Host Processor Mode Registers Addresses  
Register Name  
Mode  
Serial Interface  
Parallel Interface  
(Address from Pins A7:1) (Address from Pins A7:0)  
ID  
xx00000  
xx00001  
xx00010  
xx00011  
xx00100  
xx00110  
xx01000  
xx01010  
xx01011  
xx01100  
xx01101  
xx01110  
xx01111  
xx10010  
xx10011  
xx10100  
xx10101  
xxx00000  
xxx00001  
xxx00010  
xxx00011  
xxx00100  
xxx00110  
xxx01000  
xxx01010  
xxx01011  
xxx01100  
xxx01101  
xxx01110  
xxx01111  
xxx10010  
xxx10011  
xxx10100  
xxx10101  
R
Analog Loopback  
Remote Loopback  
TAOS Enable  
R/W  
R/W  
R/W  
R
LOS Status Monitor  
LOS Interrupt Enable  
LOS Interrupt Status  
Reset  
R/W  
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Performance Monitoring  
Digital Loopback  
LOS/AIS Criteria Selection  
Automatic TAOS Select  
Global Control  
Output Enable  
AIS Status Monitor  
AIS Interrupt Enable  
AIS Interrupt Status  
R/W  
R
77  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
8.3  
Register Descriptions  
Table 28. ID Register, ID - 00h  
Bit  
Name  
Description  
R/W  
Identification.  
The identification register contains a unique revision code that is factory  
programmed for each revision of the LXT384 Transceiver.  
7:0  
ID7:0  
R
Revision code for the LXT384 Transceiver stepping A4 is 00h.  
Revision code for the LXT384 Transceiver stepping A5 is 15h.  
Table 29. Analog Loopback Register, ALOOP - 01h  
Bit  
Name  
Description  
R/W  
Analog Loopback.  
7:0  
AL7:0  
R/W  
Setting one of the AL bits to ‘1’ enables analog loopback for its corresponding  
transceiver.  
Table 30. Remote Loopback Register, RLOOP - 02h  
Bit  
Name  
Description  
R/W  
Remote Loopback.  
7:0  
RL7:0  
R/W  
Setting one of the RL bits to ‘1’ enables remote loopback for its corresponding  
transceiver.  
Table 31. TAOS Enable Register, TAOS - 03h  
Bit  
Name  
Description  
R/W  
Transmit All Ones (Enable).  
On power-up, the TAOS7:0 bits are cleared to ‘0’.  
Setting one of the TAOS bits to ‘1’ causes a continuous stream of marks  
(that is, ones) to be sent out to the TTIP pin and TRING pin of the  
corresponding transmitter.  
There are two possible timing references for these bits, depending on the  
availability of MCLK. If MCLK:  
7:0  
TAOS7:0  
R/W  
Is not available, then the channel TCLK is used as the timing reference  
for the output.  
Is available, MCLK is used as the timing reference for the output.  
NOTE: TAOS is not available in data-recovery mode or the line-driver mode  
(that is, when both MCLK = High and TCLK = High).  
78  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 32. LOS Status Monitor Register, LOS - 04h  
Bit  
Name  
Description  
R/W  
Loss Of Signal Status Monitor.  
On power-up, the LOS7:0 bits are cleared to ‘0’.  
7:0  
LOS7:0  
R
All LOS interrupts are cleared by a single read operation.  
Each time the LOS detector detects a valid loss-of-signal condition on a  
receiver, its corresponding LOS bit is set to ‘1’.  
Table 33. DFM Status Monitor Register, DFM (05h) for Intel® LXT384 Transceiver  
Bit  
Name  
Function1  
Respective bit(s) are set to “1” every time the short circuit monitor detects a valid  
secondary output driver short circuit condition in transceivers 7-0. Note: DFM is  
available only in configurations with no transmit series resistors (T1 mode with  
TVCC=3.3V).  
7-0  
DFM7-DFM0  
1. On power-up all the register bits are set to “0”. All DFM interrupts are cleared by a single read operation.  
Table 34. LOS Interrupt Enable Register, LIE - 06h  
Bit  
Name  
Description  
R/W  
Loss Of Signal Interrupt Enable.  
On power-up, the LIE7:0 bits are cleared to ‘0’ and all LOS interrupts are  
disabled.  
7:0  
LIE7:0  
R/W  
Writing a ‘1’ to an LIE bit enables an LOS interrupt for its corresponding  
receiver.  
Table 35. DFM Interrupt Enable Register, DIE (07h) for Intel® LXT384 Transceiver  
Bit  
Name  
Function1  
7-0  
DIE7-DIE0  
Transceiver 7-0 DFM interrupts are enabled by writing a “1” to the respective bit.  
1. On power-up all the register bits are set to “0” and all interrupts are disabled.  
Table 36. LOS Interrupt Status Register, LIS - 08h  
Bit  
Name  
Description  
R/W  
Loss Of Signal Interrupt Status.  
On power-up, the LIS7:0 bits are cleared to ‘0’.  
7:0  
LIS7:0  
R
After an LOS interrupt is cleared, then each time there is a change in the  
LOS status of a receiver, the corresponding LIS bit is set to ‘1’.  
Table 37. DFM Interrupt Status Register, DIS (09h) for Intel® LXT384 Transceiver  
Bit  
Name  
Function1  
These bits are set to “1” every time a DFM status change has occurred since the last  
cleared interrupt in transceivers 7-0 respectively.  
7-0  
DIS7-DIS0  
1. On power up all register bits are set to “0”.  
79  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 38. Reset Register, RES - 0Ah  
Bit  
Name  
Description  
R/W  
Reset.  
The RES7:0 bits are used to set all LXT384 Transceiver registers to their  
default values.  
Except when using an Intel® processor in a non-multiplexed mode, writing  
to this field initiates a 1-microsecond software reset cycle.  
When using Intel® processor in a non-multiplexed mode, to use this field  
extend the software reset cycle time to 2 microseconds. (For more  
information on the software reset cycle when using an Intel® processor in a  
non-multiplexed mode, see Section 7.4.1, “Host Processor Mode - Parallel  
Interface”.)  
7:0  
RES7:0  
R/W  
For details on non-multiplexed and multiplexed modes, see Section 7.4, “Host  
Processor Modes”.  
80  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 39 lists and describes the A3:0 bits that can be used to monitor the performance of one of  
either Receivers 1 through 7 or one of Transmitters 1 through 7, depending on the setting on the A3  
bit. (For more information on performance monitoring, see Section 6.9, “Performance  
Monitoring”.)  
Table 39. Performance-Monitoring Register, MON - 0Bh  
Bit  
Name  
Description  
R/W  
7:4  
A7:4  
Reserved.  
-
A3:0 (Performance Monitoring Select).  
When bits A3:0 are all ‘0’, there is no performance monitoring of receivers, and  
the LXT384 Transceiver is configured as an octal line transceiver without  
monitoring capability.  
When A3 is cleared to ‘0’, the following table is used to select how to  
monitor the performance of receivers.  
A3  
A2  
A1  
A0  
Selection  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
No performance monitoring  
Performance monitoring of Receiver 1  
Performance monitoring of Receiver 2  
Performance monitoring of Receiver 3  
Performance monitoring of Receiver 4  
Performance monitoring of Receiver 5  
Performance monitoring of Receiver 6  
Performance monitoring of Receiver 7  
3:0  
A3:0  
R/W  
When A3 is set to ‘1’, the following table is used to select how to monitor  
the performance of transmitters. (Transmitter monitoring is not supported  
when the respective channel is set to analog loopback mode.)  
A3  
A2  
A1  
A0  
Selection  
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
No performance monitoring  
Performance monitoring of Transmitter 1  
Performance monitoring of Transmitter 2  
Performance monitoring of Transmitter 3  
Performance monitoring of Transmitter 4  
Performance monitoring of Transmitter 5  
Performance monitoring of Transmitter 6  
Performance monitoring of Transmitter 7  
81  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 40. Digital Loopback Register, DL - 0Ch  
Bit  
Name  
Description  
R/W  
Digital Loopback.  
On power-up, the DL7:0 bits are cleared to ‘0’, and all digital loopback  
channels are disabled.  
Setting a DL bit to ‘1’ enables digital loopback for its corresponding  
transceiver.  
7:0  
DL7:0  
R/W  
During digital loopback, LOS and TAOS stay active and independent of TCLK,  
while data received on TPOS, TNEG, and CKLK loop back to RPOS, RNEG,  
and RCLK.  
Table 41. LOS/AIS Criteria Selection Register, LACS - 0Dh  
Bit  
Name  
Description  
R/W  
Loss of Signal / Alarm Indication Signal Selection Criteria.  
At power-up, all LACS7:0 bits are cleared to ‘0’.  
After power-up, programming an LACS bit to:  
‘0’ selects the ITU G.775 mode [for LOS, AIS, and remote detect  
indication (RDI)] for its corresponding receiver.  
7:0  
LACS7:0  
R/W  
‘1’ selects the ETSI 300 233 LOS and AIS detection mode for the  
corresponding receiver.  
In T1 mode, this register is “Don’t Care.” The LXT384 Transceiver uses  
T1.231 compliant LOS/AIS detection.  
Table 42. Automatic TAOS Select Register, ATS - 0Eh  
Bit  
Name  
Description  
R/W  
Automatic Transmit-All-Ones Select.  
On power-on, all ATS7:0 bits are cleared to ‘0’.  
When this field is set to ‘1’, then when there is an LOS condition, TAOS  
can be generated automatically.  
7:0  
ATS7:0  
R/W  
NOTE: This register does not work during either data-recovery mode or line-  
driver mode (that is, when both MCLK = High and TCLK = High).  
82  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 43. Global Control Register, GCR - 0Fh  
Bit  
Name  
Description  
R/W  
7
-
Reserved.  
R/W  
Receive Alarm Indication Signal Enable.  
This bit controls automatic AIS insertion in the receive path when LOS occurs.  
0 = Receive path AIS insertion is disabled on LOS.  
1 = Receive path AIS insertion is enabled on LOS, and the effective output  
appears on RPOS/RNEG.  
6
5
RAISEN  
R/W  
R/W  
NOTE: This feature is not available in data-recovery mode (that is, when  
MCLK is high). When changing the value of the RAISEN bit, disable  
AIS interrupts to prevent inadvertent interrupts.  
Circuit Disable.  
This bit enables/disables the short-circuit protection feature for the transmitters.  
CDIS  
0 = Enable  
1 = Disable  
Code Enable.  
This bit selects one of two available zero-suppression codes. Zero suppression  
operations are available only with unipolar I/O.  
0 = High-Density Bipolar three (HDB3) for E1 or B8ZS for T1  
1 = Alternate Mark Inversion, or ‘AMI’. The following figure shows AMI  
coding that is 1:1 (or ‘50%’), indicating that for every one bit sit to a ‘1’,  
there is a corresponding ‘0’ logic state.  
4
CODEN  
R/W  
TTIP  
Bit Cell  
1
1
0
TRING  
First-In First-Out 64-Bit Select.  
This bit determines the jitter attenuator FIFO depth as follows:  
3
2
FIFO64  
JACF  
R/W  
R/W  
0 = Jitter attenuator FIFO is 32 bits deep.  
1 = Jitter attenuator FIFO is 64 bits deep.  
Jitter Attenuator Corner Frequency.  
This bit determines the jitter attenuator low-limit 3-dB corner frequency. For  
more information, see Chapter 14.0, “Jitter Performance”.  
Jitter Attenuator Select.  
These bits determine the jitter attenuator position as follows:  
JASEL1  
JASEL0  
Jitter Attenuator Position  
Jitter attenuator is disabled.  
1:0  
JASEL1:0  
R/W  
x
0
1
0
1
1
Jitter attenuator position is the transmit path.  
Jitter attenuator position is the receive path.  
1. On power-on reset, the register is set to ‘0’.  
83  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 44. Pulse Shaping Indirect Address Register, PSIAD (10h)  
Bit1  
Name  
Function  
The three bit value written to these bits determine the channel to be addressed. Data  
can be read from (written to) the Pulse Shaping Data Register (PSDAT).  
LENAD 0-2  
Channel  
LENAD 0-2  
Channel  
0h  
1h  
2h  
3h  
0
1
2
3
4h  
5h  
6h  
7h  
4
5
6
7
0-2  
LENAD 0-2  
3 - 7  
-
Reserved.  
1. On power-on reset the register is set to “0”.  
Table 45. Pulse Shaping Data Register, PSDAT (11h) for Intel® LXT384 Transceiver  
Bit  
Name  
Function  
LEN0-2 determine the operation mode of the LXT384 Transceiver: T1 or E1. In  
addition, for T1 operation, LEN2-0 set the pulse shaping to meet the T1.102 pulse  
template at the DSX-1 cross-connect point for various cable lengths:  
Operation  
Mode  
LEN2 LEN1 LEN0  
Line Length  
Cable Loss2  
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
0 - 133 ft. ABAM  
0.6 dB  
1.2 dB  
1.8 dB  
2.4 dB  
3.0 dB  
0-2  
LEN 0-21  
133 - 266 ft. ABAM  
266 - 399 ft. ABAM  
399 - 533 ft. ABAM  
533 - 655 ft. ABAM  
T1  
E1 G.703, 75Ω coaxial cable and 120Ω  
twisted pair cable.  
0
0
0
E1  
3 - 7  
-
Reserved.  
1. On power-on reset the register is set to “0”.  
2. Maximum cable loss at 772 KHz.  
3. When reading LEN, bit values appear inverted.  
Table 46. Output Enable Register, OER - 12h  
Bit  
Name  
Description  
R/W  
Output Enable.  
On power-up, all OE7:0 bits are cleared to ‘0’.  
7:0  
OE7:0  
R/W  
When an OE bit is set to ‘1’, the output driver of its corresponding  
transmitter goes into a high-impedance tristate.  
84  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 47. AIS Status Monitor Register, AIS - 13h  
Bit  
Name  
Description  
R/W  
Alarm Indication Signal Status Monitor.  
On power-up, all AIS7:0 bits are cleared to ‘0’.  
7:0  
AIS7:0  
R
All AIS interrupts are cleared by a single read operation.  
Each time a channel receiver detects an AIS condition, its corresponding  
AIS bit is set to ‘1’.  
Table 48. AIS Interrupt Enable Register, AISIE - 14h  
Bit  
Name  
Description  
R/W  
Alarm Indication Signal Interrupt Enable.  
On power-up, all AISIE7:0 bits are cleared to ‘0’.  
7:0  
AISIE7:0  
R/W  
When an AISIE bit is set to ‘1’, it enables an AIS interrupt for its  
corresponding receiver.  
Table 49. AIS Interrupt Status Register, AISIS - 15h  
Bit  
Name  
Description  
R/W  
Alarm Indication Signal Interrupt Status.  
On power-up, all AISIS7:0 bits are cleared to ‘0’.  
7:0  
AISIS7:0  
R
Each time there is a change in the AIS status of a receiver, its  
corresponding AISIS bit is set to ‘1’.  
After the host processor reads this register, all AISIS bits clear to ‘0’.  
85  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
9.0  
JTAG Boundary Scan  
9.1  
Overview  
The LXT384 Transceiver supports IEEE 1149.1 compliant JTAG boundary scan. Boundary scan  
allows easy access to the interface pins for board testing purposes.  
In addition to the traditional IEE1149.1 digital boundary scan capabilities, the LXT384 Transceiver  
also includes analog test port capabilities. This feature provides access to the TIP and RING signals  
in each channel (transmit and receive). This way, the signal path integrity across the primary  
winding of each coupling transformer can be tested.  
9.2  
Architecture  
The basic JTAG architecture of the LXT384 Transceiver is illustrated in Figure 15.  
The LXT384 Transceiver JTAG architecture includes a TAP Test Access Port Controller, data  
registers and an instruction register. The following paragraphs describe these blocks in detail.  
Figure 15. JTAG Architecture  
Boundry Scan Data Register  
BSR  
Analog Port Scan Register  
ASR  
Device Identification Register  
MUX  
TDO  
TDI  
IDR  
Bypass Register  
BYR  
Instruction Register  
IR  
TCK  
TAP  
Controller  
TMS  
TRST  
86  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
9.3  
TAP Controller  
The TAP controller is a 16-state synchronous state machine controlled by the TMS input and  
clocked by TCK (see Figure 16).The TAP controls whether the LXT384 Transceiver is in reset  
mode, receiving an instruction, receiving data, transmitting data or in an idle state. Table 50  
describes in detail each of the states represented in Figure 16.  
Table 50. TAP State Description  
State  
Description  
In this state the test logic is disabled. The device is set to normal operation mode. While in  
this state, the instruction register is set to the ICODE instruction.  
Test Logic Reset  
Run -Test / Idle  
Capture - DR  
Shift - DR  
The TAP controller stays in this state as long as TMS is Low. Used to perform tests.  
The Boundary Scan Data Register (BSR) is loaded with input pin data.  
Shifts the selected test data registers by one stage toward its serial output.  
Data is latched into the parallel output of the BSR when selected.  
Used to load the instruction register with a fixed instruction.  
Shifts the instruction register by one stage.  
Update - DR  
Capture - IR  
Shift - IR  
Update - IR  
Loads a new instruction into the instruction register.  
Pause - IR  
Pause - DR  
Momentarily pauses shifting of data through the data/instruction registers.  
Exit1 - IR  
Exit1 - DR  
Exit2 - IR  
Exit2 - DR  
Temporary states that can be used to terminate the scanning process.  
87  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Figure 16. JTAG State Diagram  
1
TEST-LOGIC  
RESET  
0
0
1
1
1
RUN TEST/IDLE  
SELECT-DR  
SELECT-IR  
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
0
0
SHIFT-DR  
SHIFT-IR  
1
1
1
0
1
0
EXIT1-DR  
EXIT1-IR  
0
0
PAUSE-DR  
PAUSE-IR  
1
1
0
0
EXIT2-DR  
EXIT2-IR  
1
0
UPDATE-DR  
UPDATE-IR  
1
0
1
0
88  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
9.4  
JTAG Register Description  
The following paragraphs describe each of the registers represented in Figure 15.  
9.4.1  
Boundary Scan Register (BSR)  
The BSR is a shift register that provides access to all the digital I/O pins. The BSR is used to apply  
and read test patterns to/from the board. Each pin is associated with a scan cell in the BSR register.  
Bidirectional pins or tristate pins require more than one position in the register. Table 51 shows the  
BSR scan cells and their functions. Data into the BSR is shifted in LSB first.  
The Analog Test Port can be used to verify continuity across the coupling transformer’s primary  
winding as shown in Figure 17. By applying a stimulus to the AT1 input, a known voltage will  
appear at AT2 for a given load. This, in effect, tests the continuity of a receive or transmit interface.  
Table 51. Boundary Scan Register (BSR) (Sheet 1 of 4)  
Pin  
Signal  
Bit  
Symbol  
Bit #  
I/O Type  
Comments  
0
1
LOOP0  
LOOP0  
LOOP1  
LOOP1  
LOOP2  
LOOP2  
LOOP3  
LOOP3  
LOOP4  
LOOP4  
LOOP5  
LOOP5  
LOOP6  
LOOP6  
LOOP7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PADD0  
PDO0  
2
PADD1  
PDO1  
3
4
PADD2  
PDO2  
5
6
PADD3  
PDO3  
7
8
PADD4  
PDO4  
9
10  
11  
12  
13  
14  
PADD5  
PDO5  
PADD6  
PDO6  
PADD7  
PDOENB controls the LOOP0 through LOOP7 pins.  
Setting PDOENB to “0” configures the pins as outputs. The  
output value to the pin is set in PDO[0...7].  
15  
N/A  
-
PDOENB  
Setting PDOENB to “1” tristates all the pins. The input value  
to the pins can be read in PADD[0...7].  
16  
17  
18  
19  
20  
21  
LOOP7  
TCLK1  
TPOS1  
TNEG1  
RCLK1  
RPOS1  
I/O  
I
PDO7  
TCLK1  
TPOS1  
TNEG1  
RCLK1  
RPOS1  
I
I
O
O
89  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 51. Boundary Scan Register (BSR) (Sheet 2 of 4)  
Pin  
Signal  
Bit  
Symbol  
Bit #  
I/O Type  
Comments  
HIZ1 controls the RPOS1, RNEG1 and RCLK1 pins. Setting  
HIZ1 to “0” enables output on the pins. Setting HIZ1 to “1”  
tristates the pins.  
22  
N/A  
-
HIZ1  
23  
24  
25  
26  
27  
28  
29  
RNEG1  
LOS1  
O
O
I
RNEG1  
LOS1  
TCLK0  
TPOS0  
TNEG0  
RCLK0  
RPOS0  
TCLK0  
TPOS0  
TNEG0  
RCLK0  
RPOS0  
I
I
O
O
HIZ0 controls the RPOS0, RNEG0 and RCLK0 pins. Setting  
HIZ0 to “0” enables output on the pins. Setting HIZ0 to “1”  
tristates the pins.  
30  
N/A  
-
HIZ0  
31  
32  
33  
34  
35  
RNEG0  
LOS0  
O
O
I
RNEG0  
LOS0  
MUX  
MUX  
LOS3  
O
O
LOS3  
RNEG3  
RNEG3  
HIZ3 controls the RPOS3, RNEG3 and RCLK3 pins. Setting  
HIZ3 to “0” enables output on the pins. Setting HIZ3 to “1”  
tristates the pins.  
36  
N/A  
-
HIZ3  
37  
38  
39  
40  
41  
42  
43  
RPOS3  
RCLK3  
TNEG3  
TPOS3  
TCLK3  
LOS2  
O
O
I
RPOS3  
RCLK3  
TNEG3  
TPOS3  
TCLK3  
LOS2  
I
I
O
O
RNEG2  
RNEG2  
HIZ2 controls the RPOS2, RNEG2 and RCLK2 pins. Setting  
HIZ2 to “0” enables output on the pins. Setting HIZ2 to “1”  
tristates the pins.  
44  
N/A  
-
HIZ2  
45  
46  
47  
48  
49  
50  
RPOS2  
RCLK2  
TNEG2  
TPOS2  
TCLK2  
INT  
O
O
I
RPOS2  
RCLK2  
TNEG2  
TPOS2  
TCLK2  
INT  
I
I
O
SDOACKENB controls the ACK pin. Setting SDOACKEN to  
51  
52  
N/A  
-
SDOACKENB “0” enables output on ACK pin. Setting SDOACKEN to “1”  
tristates the pin.  
ACK  
O
ACK  
90  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 51. Boundary Scan Register (BSR) (Sheet 3 of 4)  
Pin  
Signal  
Bit  
Symbol  
Bit #  
I/O Type  
Comments  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
DS  
R/W  
I
I
WRB  
RDB  
ALE  
I
ALE  
CS  
I
CSB  
MOT/INTL  
TCLK5  
TPOS5  
TNEG5  
RCLK5  
RPOS5  
I
MOTO  
TCLK5  
TPOS5  
TNEG5  
RCLK5  
RPOS5  
I
I
I
O
O
HIZ5 controls the RPOS5, RNEG5 and RCLK5 pins. Setting  
HIZ5 to “0” enables output on the pins. Setting HIZ5 to “1”  
tristates the pins.  
63  
N/A  
-
HIZ5  
64  
65  
66  
67  
68  
69  
70  
RNEG5  
LOS5  
O
O
I
RNEG5  
LOS5  
TCLK4  
TPOS4  
TNEG4  
RCLK4  
RPOS4  
TCLK4  
TPOS4  
TNEG4  
RCLK4  
RPOS4  
I
I
O
O
HIZ4 controls the RPOS4, RNEG4 and RCLK4 pins. Setting  
HIZ4 to “0” enables output on the pins. Setting HIZ4 to “1”  
tristates the pins.  
71  
N/A  
-
HIZ4  
72  
73  
74  
75  
76  
77  
RNEG4  
LOS4  
OE  
O
O
I
RNEG4  
LOS4  
OE  
CLKE  
LOS7  
RNEG7  
I
CLKE  
LOS7  
RNEG7  
O
O
HIZ7 controls the RPOS7, RNEG7 and RCLK7 pins. Setting  
HIZ7 to “0” enables output on the pins. Setting HIZ7 to “1”  
tristates the pins.  
78  
N/A  
-
HIZ7  
79  
80  
81  
82  
83  
84  
85  
RPOS7  
RCLK7  
TNEG7  
TPOS7  
TCLK7  
LOS6  
O
O
I
RPOS7  
RCLK7  
TNEG7  
TPOS7  
TCLK7  
LOS6  
I
I
O
O
RNEG6  
RNEG6  
91  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 51. Boundary Scan Register (BSR) (Sheet 4 of 4)  
Pin  
Signal  
Bit  
Symbol  
Bit #  
I/O Type  
Comments  
HIZ6 controls the RPOS6, RNEG6 and RCLK6 pins. Setting  
HIZ6 to “0” enables output on the pins. Setting HIZ6 to “1”  
tristates the pins.  
86  
N/A  
-
HIZ6  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
RPOS6  
RCLK6  
TNEG6  
TPOS6  
TCLK6  
MCLK  
MODE  
A4  
O
O
I
RPOS6  
RCLK6  
TNEG6  
TPOS6  
TCLK6  
MCLK  
MODE  
A4  
I
I
I
I
I
A3  
I
A3  
A2  
I
A2  
A1  
I
A1  
A0  
I
A0  
92  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Figure 17. Analog Test Port Application  
JTAG Port  
ASR Register  
RTIP7  
Transceiver 7  
Transceiver 6  
RRING7  
TTIP7  
TRING7  
RTIP6  
RRING6  
TTIP6  
TRING6  
RTIP0  
1K  
Transceiver 0  
RRING0  
1K  
AT2  
AT1  
93  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
9.4.2  
Analog Port Scan Register (ASR)  
The ASR is a 5 bit shift register used to control the analog test port at pins AT1, AT2. When the  
INTEST_ANALOG instruction is selected, TDI connects to the ASR input and TDO connects to  
the ASR output. After 5 TCK rising edges, a 5 bit control code is loaded into the ASR. Data into  
the ASR is shifted in LSB first.  
Table 52 shows the 16 possible control codes and the corresponding operation on the analog port.  
Table 52. Analog Port Scan Register (ASR)  
ASR Control Code AT1 Forces Voltage To: AT2 Senses Voltage From:  
11111  
11110  
11101  
11100  
11011  
11010  
11001  
11000  
10111  
10110  
10101  
10100  
10011  
10010  
10001  
10000  
TTIP0  
TTIP1  
TTIP2  
TTIP3  
TTIP4  
TTIP5  
TTIP6  
TTIP7  
RTIP0  
RTIP1  
RTIP2  
RTIP3  
RTIP4  
RTIP5  
RTIP6  
RTIP7  
TRING0  
TRING1  
TRING2  
TRING3  
TRING4  
TRING5  
TRING6  
TRING7  
RRING0  
RRING1  
RRING2  
RRING3  
RRING4  
RRING5  
RRING6  
RRING7  
9.4.3  
Device Identification Register (IDR)  
The IDR register provides access to the manufacturer number, part number and the LXT384  
Transceiver revision. The register is arranged per IEEE 1149.1 and is represented in Table 53. Data  
into the IDR is shifted in LSB first.  
Table 53. Device Identification Register (IDR)  
Bit #  
Comments  
31 - 28  
27 - 12  
11 - 1  
0
Revision number  
Part number  
Manufacturer number  
Set to “1”  
9.4.4  
Bypass Register (BYR)  
The Bypass Register is a 1 bit register that allows direct connection between the TDI input and the  
TDO output.  
94  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
9.4.5  
Instruction Register (IR)  
The IR is a 3 bit shift register that loads the instruction to be performed. The instructions are shifted  
LSB first. Table 54 shows the valid instruction codes and the corresponding instruction description.  
Table 54. Instruction Register (IR)  
Instruction  
EXTEST  
Code #  
000  
Comments  
Connects the BSR to TDI and TDO. Input pins values are loaded into the  
BSR. Output pins values are loaded from the BSR.  
Connects the ASR to TDI and TDO. Allows voltage forcing/sensing through  
AT1 and AT2. Refer to Table 52.  
INTEST_ANALOG  
010  
100  
Connects the BSR to TDI and TDO. The normal path between the LXT384  
Transceiver logic and the I/O pins is maintained. The BSR is loaded with the  
signals in the I/O pins.  
SAMPLE / PRELOAD  
IDCODE  
BYPASS  
110  
111  
Connects the IDR to the TDO pin.  
Serial data from the TDI input is passed to the TDO output through the 1 bit  
Bypass Register.  
Table 55. JTAG Timing Characteristics  
Parameter  
Sym Min. Typ Max Unit  
Test Conditions  
Cycle time  
Tcyc 200  
-
-
-
-
-
-
ns  
ns  
ns  
ns  
J-TMS/J-TDI to J-TCK rising edge time  
J-CLK rising to J-TMS/L-TDI hold time  
J-TCLK falling to J-TDO valid  
Tsut  
Tht  
50  
50  
-
-
Tdod  
50  
Figure 18. JTAG Timing  
tCYC  
TCK  
tSUR  
tHT  
TMS  
TDI  
tDOD  
TDO  
95  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
10.0  
Electrical Characteristics  
The tables in this chapter specify the electrical characteristics of the LXT384 Transceiver. The  
specifications are guaranteed by test except, where noted, by design. The minimum and maximum  
values listed are guaranteed over the specified recommended operating conditions.  
Table 56 lists the absolute maximum ratings for the LXT384 Transceiver.  
Table 56. Absolute Maximum Ratings  
Parameter  
Symbol  
Minimum  
Maximum  
Unit  
Voltages and Power  
DC supply core voltage for VCC1:0 and VCCIO1:0  
(referenced to ground)  
VCC and VCCIO  
-0.5  
4.0  
V
DC supply I/O voltage for TVCC7:0  
(referenced to ground)  
TVCC  
VIN  
-0.5  
7.0  
5.5  
V
V
V
Input voltage on any digital pin  
Input voltage on RTIP, RRING1  
GND - 0.5  
GND - 0.5  
2000  
VCC0 + 0.5  
VCC1 + 0.5  
VIN  
ESD voltage on any pin 2  
VIN  
V
Maximum power dissipation in package  
PMax  
1.6  
W
Currents  
Transient latch-up current on any pin  
Input current on any digital pin 3  
DC input current on TTIP, TRING 3  
DC input current on RTIP, RRING 3  
IIN  
IIN  
IIN  
IIN  
100  
10  
mA  
mA  
mA  
mA  
-10  
-65  
±100  
±100  
Temperatures  
Storage temperature  
TSTG  
TCASE  
TCASE  
+150  
120  
°C  
°C  
°C  
Case temperature, LQFP  
Case temperature, PBGA  
120  
Caution: Exceeding these values can cause permanent damage. Functional operation under these  
conditions is not implied. Exposure to absolute maximum rating conditions for extended periods can  
affect the device reliability.  
1. Referenced to ground.  
2. ESD sensitivity classification: Human body model  
3. Constant input current.  
96  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 57 lists recommended values for LXT384 Transceiver operating conditions.  
Table 57. Recommended Operating Conditions  
Parameter  
Symbol  
Min.  
Typical  
Max.  
Unit  
Ambient operating temperature  
TA  
IVCC  
RL  
-40  
25  
90  
+85  
120  
°C  
mA  
Ω
Average digital power supply current 1, 2  
Output load at TTIP and TRING  
25  
DC Supply Voltages  
DC supply core voltage for VCC1:0 and VCCIO1:0  
(referenced to ground)  
VCC  
3.14  
3.30  
3.47  
V
DC supply voltage rise time 3  
VCC  
TVCC  
TVCC  
0
25  
ms  
V
DC supply voltage for TVCC7:0 = 5-V nominal  
DC supply voltage for TVCC7:0 = 3.3-V nominal  
4.75  
3.14  
5.0  
5.25  
3.47  
3.30  
V
1. Current consumption over full range of the operating temperature and power supply voltage for the  
LXT384 Transceiver. Includes all channels.  
2. Digital inputs are within 10% of the supply rails, and digital outputs are driving a 50-pF load.  
3. If the DC supply voltage rise time exceeds 25 ms, see the LXT384 Transceiver application note on slow  
power-up rise time referenced in Chapter 1.0, “Introduction to this Document”.  
97  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 58 lists power consumption values for the LXT384 Transceiver.  
Table 58. Intel® LXT384 Transceiver Power Consumption  
Mode  
TVCC Load  
LEN  
Typ  
Max1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
760  
1270  
640  
-
75 Ω  
3.3V  
000  
1420  
E1  
-
120 Ω  
000  
1110  
1020  
1820  
1000  
1730  
820  
1280  
-
2100  
-
T12  
E1  
3.3V 100 Ω 101-111  
75 Ω  
000  
000  
1940  
-
5.0V  
120 Ω  
1500  
1400  
2670  
1730  
-
T12  
5.0V 100 Ω 101-111  
2960  
98  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
The LXT384 transceiver dissipates power in two ways:  
Power dissipation of the transceiver itself.  
Load power dissipation on external resistors and capacitors.  
The maximum load power (current draw) for the LXT384 transceiver is the sum of these two  
power dissipation factors.  
Table 59 lists load power consumption values. Load includes the power being dissipated in the two  
RT resistors, the termination resistor, cables, and the transformer.  
.
Table 59. Load3 Power Consumption  
Transmit  
Transmit  
1:2 Transformer  
1:1.7 Transformer  
Parameter  
TVCC  
Typic Maximu  
al  
Maximu  
Typical  
Unit  
Test Condition  
m1,2  
m1,2  
Load  
760  
1270  
640  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
50% marks (1:1)  
100% ones (marks)  
50% marks (1:1)  
100% ones (marks)  
50% marks (1:1)  
100% ones (marks)  
50% marks (1:1)  
100% ones (marks)  
50% marks (1:1)  
100% ones (marks)  
50% marks (1:1)  
100% ones (marks)  
75Ω  
1420  
1280  
1940  
1730  
1650  
1450  
3.3V  
120Ω  
75Ω  
1110  
1000  
1730  
820  
5.0V  
(1:2 trans-  
former)  
120Ω  
75Ω  
1500  
850  
5.0V  
1450  
700  
(Low power -  
1:1.17 trans-  
former)  
120Ω  
1260  
1. Current consumption over full range of the operating temperature and power supply voltage for the  
LXT384 Transceiver. Includes all channels.  
2. Power consumption includes power absorbed by the line load external to the LXT384 Transceiver  
drivers.  
3. Load includes the power being dissipated in the two RT resistors, the termination resistor, cables, and  
transformer  
99  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 60 lists the DC characteristics for the LXT384 Transceiver.  
Table 60. DC Characteristics  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Unit Test Condition  
Low-level input voltage  
VIL  
VIH  
0.8  
V
V
High-level input voltage  
Low-level output voltage1  
High-level output voltage1  
TTIP, TRING - output current  
2.0  
0.0  
2.4  
VOL  
VOH  
IHZ  
0.4  
VCCIO  
+/- 1  
V
V
I
I
= 1.6 mA  
= 400 µA  
OUT  
OUT  
µA  
HIgh-impedance tristate leakage  
current  
Ihz  
-10  
+10  
µA  
Input leakage current  
Tristate output current  
Iil  
-10  
+10  
1
µA  
µA  
Ihz  
TTIP, TRING  
2 x 11 Ω series  
resistors and  
1:2 transformer  
mA  
Line short circuit current  
Input leakage  
50  
50  
RMS  
TMS  
TDI  
µA  
TRST  
Special Input Conditions for JASEL, LOOP7:0, and MODE  
(2/3 VCC) +  
High-level input voltage  
Low-level input current  
High-level input current  
VINH  
V
0.22  
IINL  
50  
50  
µA  
µA  
IINH  
1. Output drivers output CMOS logic levels into CMOS loads.  
2. VCC supply refers to VCC0 or VCC1 only.  
100  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 61 (E1) and Table 62 (T1) list the AC characteristics for the LXT384 Transceiver transmitter.  
Table 61. Intel® LXT384 Transceiver E1 Transmit Transmission Characteristics  
Parameter  
Sym Min.  
Typ  
Max Unit  
Test Condition  
75Ω  
120Ω  
2.14  
2.37  
3.0  
2.60  
3.3  
V
V
Output pulse  
amplitude  
Tested at the line side  
2.7  
75Ω  
120Ω  
-0.237  
0.237  
0.3  
V
V
Peak voltage of a  
space  
-0.3  
Transmit amplitude variation with supply  
Difference between pulse sequences  
-1  
+1  
%
For 17 consecutive  
pulses  
200  
mV  
Pulse width ratio of the positive and negative  
pulses  
At the nominal half  
amplitude  
0.95  
1.05  
Transmit transformer turns ratio for  
1:2  
Rt = 11 Ω ± 1%  
75/120Ω characteristic impedance  
51kHz to 102 kHz  
Transmit return  
15  
15  
15  
17  
17  
17  
dB  
Using components in  
loss 75 Ω coaxial  
102 kHz to 2.048 MHz  
dB the LXD384  
cable1  
evaluation board.  
2.048 MHz to 3.072 MHz  
dB  
dB  
51kHz to 102 kHz  
15  
15  
15  
20  
20  
20  
Transmit return  
Using components in  
loss 120 Ω twisted 102 kHz to 2.048 MHz  
dB the LXD384  
evaluation board  
dB  
pair cable1  
2.048 MHz to 3.072 MHz  
Tx path TCLK is jitter  
free  
Transmit intrinsic jitter: 20Hz to 100kHz  
0.030 0.050 U.I.  
Bipolar mode  
Transmit path  
2
7
U.I.  
U.I.  
JA Disabled  
delay  
Unipolar mode  
1. Guaranteed by design and other correlation methods.  
Table 62. Intel® LXT384 Transceiver T1 Transmit Transmission Characteristics (Sheet 1 of 2)  
Parameter  
Output pulse amplitude  
Sym Min. Typ Max  
Unit  
Test Condition  
2.4  
-0.15  
3.0  
3.6  
+0.15  
V
V
Ω
Measured at the DSX  
Peak voltage of a space  
Driver output impedance1  
1
@ 772 KHz  
Transmit amplitude variation with power  
supply  
-1  
+1  
%
Ratio of positive to negative pulse amplitude  
Difference between pulse sequences  
Pulse width variation at half amplitude  
10Hz - 8KHz  
0.95  
1.05  
200  
20  
T1.102, isolated pulse  
mV  
ns  
For 17 consecutive  
pulses, GR-499-CORE  
0.020  
0.025  
0.025  
0.050  
Jitter added by  
8KHz - 40KHz  
Transmitter1  
AT&T Pub 62411  
TCLK is jitter free  
UIpk-pk  
10Hz - 40KHz  
Wide Band  
1. Guaranteed by design and other correlation methods.  
2. Power measured in a 3 KHz bandwidth at the point the signal arrives at the distribution frame for an all 1’s  
pattern.  
101  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 62. Intel® LXT384 Transceiver T1 Transmit Transmission Characteristics (Sheet 2 of 2)  
Parameter  
Sym Min. Typ Max  
Unit  
Test Condition  
Output power  
levels2  
T1.102 - 1993  
@ 772 KHz  
12.6  
dBm  
dBm  
17.9  
Referenced to power at  
772 KHz  
@ 1544 KHz  
-29  
With transmit series  
resistors (TVCC=5V).  
Using components in  
the LXD384 evaluation  
board.  
51kHz to 102 kHz  
15  
15  
15  
21  
21  
21  
dB  
dB  
dB  
Transmit Return  
Loss 1  
102 kHz to 2.048 MHz  
2.048 MHz to 3.072 MHz  
Bipolar mode  
2
7
U.I.  
U.I.  
Transmit path  
delay  
JA Disabled  
Unipolar mode  
1. Guaranteed by design and other correlation methods.  
2. Power measured in a 3 KHz bandwidth at the point the signal arrives at the distribution frame for an all 1’s  
pattern.  
102  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 63 (E1) and Table 64(T1) list the AC characteristics for the LXT384 Transceiver receiver.  
Table 63. Intel® LXT384 Transceiver E1 Receive Transmission Characteristics  
Parameter  
Sym Min.  
Typ  
Max  
Unit  
Test Condition  
@1024 kHz  
Permissible cable attenuation  
Receiver dynamic range  
12  
dB  
Vp  
DR  
0.5  
Per G.703, O.151 @ 6  
dB cable Attenuation  
Signal to noise interference margin  
Data decision threshold  
S/I  
-15  
43  
dB  
%
Relative to peak input  
voltage  
SRE  
50  
57  
Data slicer threshold  
Loss of signal threshold  
LOS hysteresis  
150  
200  
50  
mV  
mV  
mV  
G.775  
32  
recommendation  
Consecutive zeros before loss of signal  
LOS reset  
2048  
ETSI 300 233  
specification  
12.5%  
1’s density  
G735  
recommendation  
Low limit  
1Hz to 20Hz  
36  
1.5  
0.2  
U.I.  
U.I.  
U.I.  
input jitter  
tolerance 1  
20Hz to 2.4kHz  
18kHz to 100kHz  
Note 1  
Cable Attenuation is 6  
dB  
Differential receiver input impedance  
Input termination resistor tolerance  
Common mode input impedance to ground  
70  
±1  
k Ω  
%
@1.024 MHz  
20  
k Ω  
Measured against  
nominal impedance  
using components in  
the LXD384  
51 kHz - 102 kHz  
20  
20  
20  
dB  
dB  
dB  
Input return  
102 - 2048 kHz  
loss1  
2048kHz - 3072 kHz  
evaluation board.  
LOS delay time  
10  
30  
µs  
Data recovery mode  
LOS reset  
255  
marks Data recovery mode  
Receive intrinsic jitter, RCLK output  
0.040 0.0625  
U.I.  
U.I.  
U.I.  
Wide band jitter  
Bipolar mode  
Receive  
1
6
JA Disabled  
path delay  
Unipolar mode  
1. Guaranteed by design and other correlation methods.  
103  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 64. Intel® LXT384 Transceiver T1 Receive Transmission Characteristics  
Parameter  
Sym Min.  
Typ  
Max  
Unit  
Test Condition  
Permissible cable attenuation  
Receiver dynamic range  
12  
dB @ 772 KHz  
Vp  
DR  
0.5  
@ 655 ft. of 22 ABAM  
cable  
Signal to noise interference margin  
Data decision threshold  
S/I  
-16.5  
63  
dB  
%
Relative to peak input  
voltage  
SRE  
70  
77  
Data slicer threshold  
Loss of signal threshold  
LOS hysteresis  
150  
200  
50  
mV  
mV  
mV  
Consecutive zeros before loss of signal  
LOS reset  
100  
12.5%  
175  
250  
T1.231 - 1993  
1’s density  
Low limit  
0.1Hz to 1Hz  
138  
28  
U.I.  
input jitter  
tolerance 1  
4.9Hz to 300Hz  
10KHz to 100KHz  
-
-
-
U.I. AT&T Pub. 62411  
U.I.  
0.4  
Differential receiver input impedance  
Input termination resistor tolerance  
Common mode input impedance to ground  
-
-
-
-
-
-
70  
-
±1  
-
k Ω @772 kHz  
%
20  
-
k Ω  
Measured against  
nominal impedance.  
51 KHz - 102 KHz  
20  
20  
20  
dB  
Input return  
102 - 2048 KHz  
loss1  
-
-
dB Using components in  
the LXD384 evaluation  
board.  
2048 KHz - 3072 KHz  
dB  
LOS delay time  
-
-
-
-
10  
-
30  
-
-
µs Data recovery mode  
LOS reset  
255  
-
Data recovery mode  
Receive intrinsic jitter, RCLK output1  
0.035 0.0625 U.I. Wide band jitter  
Bipolar mode  
Receive  
1
6
U.I.  
U.I.  
JA Disabled  
path delay  
Unipolar mode  
1. Guaranteed by design and other correlation methods.  
104  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
11.0  
Timing Characteristics  
This chapter discusses the following timing characteristics:  
Section 11.1, “Intel® LXT384 Transceiver Timing”  
Section 11.2, “Host Processor Mode - Parallel Interface Timing”  
Section 11.2.1, “Intel® Processor - Parallel Interface Timing”  
Section 11.2.2, “Motorola* Processor - Parallel Interface Timing”  
Section 11.3, “Host Processor Mode - Serial Interface Timing”  
105  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
11.1  
Intel® LXT384 Transceiver Timing  
Table 65 lists transmit timing characteristics for the LXT384 Transceiver.  
Table 65. Intel® LXT384 Transceiver Transmit Timing Characteristics  
Parameter  
Sym  
Min. Typ  
Max Unit  
Test Condition  
E1  
T1  
MCLK  
MCLK  
2.048  
1.544  
MHz  
MHz  
Master clock frequency  
Master clock tolerance  
Master clock duty cycle  
-100  
40  
219  
291  
-
100 ppm  
60  
269  
356  
-
%
ns  
E1  
T1  
E1  
T1  
Tw  
244  
324  
2.048  
1.544  
Output pulse width  
Tw  
ns  
Tclke1  
Tclkt1  
Tclkt  
Tclkb  
Tdc  
MHz  
MHz  
Transmit clock frequency  
-
-
Transmit clock tolerance  
Transmit clock burst rate  
Transmit clock duty cycle  
-50  
-
+50 ppm  
20  
90  
MHz Gapped transmit clock  
10  
%
NRZ mode  
RZ mode (TCLK = H for  
>16 clock cycles)  
E1 TPOS/TNEG pulse width (RZ mode) Tmpwe1 236  
252  
ns  
TPOS/TNEG to TCLK setup time  
TCLK to TPOS/TNEG hold time  
Delay time OE Low to driver High Z  
Delay time TCLK Low to driver High Z  
Tsut  
Tht  
20  
20  
-
-
-
-
-
ns  
ns  
μs  
μs  
Toez  
Ttz  
-
1
50  
60  
75  
Figure 19 is a transmit timing diagram for the LXT384 Transceiver.  
Figure 19. Intel® LXT384 Transceiver - Transmit Timing  
TCLK  
tSUT  
tHT  
TPOS  
TNEG  
106  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 66 lists receive timing characteristics for the LXT384 Transceiver.  
Table 66. Intel® LXT384 Transceiver Receive Timing Characteristics  
Parameter  
Sym Min. Typ Max Unit  
Test Condition  
E1  
T1  
±80  
ppm Relative to nominal  
frequency  
Clock recovery capture range  
±180  
ppm  
MCLK = ±100 ppm  
Receive clock duty cycle 1  
Receive clock pulse width 1  
Rckd  
40  
50  
488  
648  
244  
324  
244  
324  
60  
529  
713  
285  
389  
285  
389  
%
E1 Tpw  
T1 Tpw  
447  
583  
203  
259  
ns  
ns  
E1 Tpwl  
T1 Tpwl  
ns  
Receive clock pulse width Low time  
ns  
E1 Tpwh 203  
T1 Tpwh 259  
ns  
Receive clock pulse width High time  
Rise/fall time 4  
ns  
Tr  
20  
ns @ CL=15 pF  
E1 Tpwdl 200  
T1 Tpwdl 250  
244  
324  
244  
324  
244  
324  
300  
400  
ns  
RPOS/RNEG pulse width (MCLK=H) 2  
ns  
E1  
T1  
E1  
T1  
200  
200  
200  
200  
ns  
RPOS/RNEG to RCLK rising setup time  
RCLK Rising to RPOS/RNEG hold time  
Tsur  
ns  
ns  
Thr  
ns  
Delay time between RPOS/RNEG and RCLK  
5
ns MCLK = H 3  
1. RCLK duty cycle widths will vary depending on extent of received pulse jitter displacement. Maximum and  
minimum RCLK duty cycles are for worst case jitter conditions (0.2UI displacement for E1 per ITU G.823).  
2. Clock recovery is disabled in this mode.  
3. If MCLK = H the receive PLLs are replaced by a simple EXOR circuit.  
4. For all digital outputs.  
107  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Figure 20 is a receive timing diagram for the LXT384 Transceiver.  
Figure 20. Intel® LXT384 Transceiver - Receive Timing  
tPW  
RCLK  
tPWH  
tSUR  
tPWL  
tHR  
RPOS  
RNEG  
CLKE = 1  
tSUR  
tHR  
RPOS  
RNEG  
CLKE = 0  
108  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
11.2  
Host Processor Mode - Parallel Interface Timing  
This sections gives timing characteristics and timing diagrams for both Intel® processors and  
Motorola processors.  
11.2.1  
Intel® Processor - Parallel Interface Timing  
Table 67 lists read timing characteristics for the Intel® processor.  
Table 67. Intel® Processor - Read Timing Characteristics  
Test  
Conditions  
Parameter  
Sym.  
Min.1 Max.1  
Unit  
Address setup time to latch  
tSALR  
tVL  
10  
30  
10  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Valid address latch pulse width  
Latch active to active read setup time  
Chip select setup time to active read  
Chip select hold time from inactive read  
Address hold time from inactive ALE  
Active read to data valid delay time  
Address setup time to RD inactive  
Address hold time from RD inactive  
tSLR  
tSCSR  
tHSCR  
tHALR  
tPRD  
tHAR  
tSAR  
0
5
CLoad = 100  
pF on D7:0.  
10  
1
50  
All other  
5
outputs are  
loaded with  
50 pF.  
Inactive read to data high-impedance tristate delay  
time  
tZRD  
3
35  
ns  
Valid read signal pulse width  
tVRD  
tINT  
60  
ns  
ns  
ns  
ns  
ns  
Inactive read to inactive INT delay time  
Active chip select to RDY delay time  
Active ready low time  
10  
12  
40  
3
tDRDY  
tVRDY  
tRDYZ  
0
Inactive ready to high-impedance tristate delay time  
1. Minimum and maximum values are at 25 C° and are for design aid only, not guaranteed, and not subject  
to production testing.  
109  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Figure 21 is a timing diagram for the Intel® processor in the Host Processor mode, with a non-  
multiplexed interface, and a read cycle takes place.  
Figure 21. Intel® Processor Non-Multiplexed Interface - Read Timing  
tSAR  
ADDRESS  
A4:0  
tHAR  
ALE  
CS  
(Connected High)  
tHCSR  
tSCSR  
tVRD  
RD  
tPRD  
tZRD  
D7:0  
INT  
DATA OUT  
tINT  
tDRDY  
tRDYZ  
tDRDY  
tVRDY  
Tristate  
Tristate  
RDY  
110  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Figure 22 is a timing diagram for the Intel® processor in the Host Processor mode, with a  
multiplexed interface, and a read cycle takes place.  
Figure 22. Intel® Processor Multiplexed Interface - Read Timing  
tVL  
tSLR  
ALE  
tSCSR  
tHSCR  
CS  
RD  
tVRD  
tPRD  
tSALR  
tZRD  
tHALR  
ADDRESS  
DATA OUT  
AD7-AD0  
INT  
tINT  
tDRDY  
tDRDY  
tVRDY  
tRDYZ  
Tristate  
Tristate  
RDY  
111  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 68 lists write timing characteristics for the Intel® processor.  
Table 68. Intel® Processor - Write Timing Characteristics  
Test  
Conditions  
Parameter  
Sym.  
Min.1 Max.1  
Unit  
Address setup time to latch  
tSALW  
tVL  
10  
30  
10  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Valid address latch pulse width  
Latch active to active write setup time  
Chip select setup time to active write  
Chip select hold time from inactive write  
Address hold time from inactive ALE  
Data valid to write active setup time  
Data hold time to active write  
tSLW  
tSCSW  
tHCSW  
tHALW  
tSDW  
tHDW  
tHAW  
tSAW  
tVWR  
tINT  
0
5
CLoad = 100  
pF on D7:0.  
40  
30  
2
All other  
Address setup time to WR inactive  
Address hold time from WR inactive  
Valid write signal pulse width  
outputs are  
loaded with  
50 pF.  
6
60  
Inactive write to inactive INT delay time  
Chip select to RDY delay time2  
Low time for active RDY  
10  
12  
40  
tDRDY  
tVRDY  
0
Delay time between inactive RDY to high-  
impedance tristate2  
tRDYZ  
3
ns  
1. Minimum and maximum values are at 25 C° and are for design aid only, not guaranteed, and not subject to  
production testing.  
2. Timing parameters do not apply for Reset Register 0Ah. For details, see Section 7.4.1, “Host Processor  
Mode - Parallel Interface”.  
112  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Figure 23 is a timing diagram for the Intel® processor in the Host Processor mode, with a non-  
multiplexed interface, and a write cycle takes place.  
Figure 23. Intel® Processor Non-Multiplexed Interface - Write Timing  
tSAW  
A4:0  
ADDRESS  
(Connected High)  
ALE  
CS  
tHAW  
tSCSW  
tHCSW  
tVWR  
WR  
tHDW  
tSDW  
D7:0  
WRITE DATA  
tINT  
INT  
tDRDY  
tDRDY  
tVRDY  
tRDYZ  
Tristate  
Tristate  
RDY  
113  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Figure 24 is a timing diagram for the Intel® processor in the Host Processor mode, with a  
multiplexed interface, and a write cycle takes place.  
Figure 24. Intel® Processor Multiplexed Interface - Write Timing  
tSLW  
ALE  
tVL  
tSCSW  
tHCSW  
CS  
tVWR  
WR  
tHALW  
tSALW  
tHDW  
tSDW  
ADDRESS  
WRITE DATA  
AD7-AD0  
tINT  
INT  
tDRDY  
tDRDYZ  
Tristate  
tDRDY  
tVRDY  
Tristate  
RDY  
114  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
11.2.2  
Motorola* Processor - Parallel Interface Timing  
Table 69 lists read timing characteristics for the Motorola processor.  
Table 69. Motorola Processor - Read Timing Characteristics  
Test  
Conditions  
Parameter  
Sym.  
Min.1 Max.1 Unit  
Address setup time to address or data strobe  
Address hold time from address or data strobe  
Valid address strobe pulse width  
tSAR  
tHAR  
tVAS  
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
95  
10  
0
R/W setup time to active data strobe  
tSRW  
tHRW  
tSCS  
R/W hold time from inactive data strobe  
Chip select setup time to active data strobe  
Chip select hold time from inactive data strobe  
Address strobe active to data strobe active delay  
Delay time from active data strobe to valid data  
Delay time from inactive data strobe to data high impedance  
Valid data strobe pulse width  
0
CL= 100pF  
on D7:0.  
tHCS  
tASDS  
tPDS  
0
20  
3
All other  
30  
30  
outputs are  
loaded with  
50 pF.  
tDZ  
3
tVDS  
60  
Inactive data strobe to inactive INT delay time  
Data strobe inactive to address strobe inactive delay  
DS asserted to ACK asserted delay  
tINT  
10  
tDSAS  
tDACKP  
tDACK  
tPACK  
15  
40  
10  
0
DS deasserted to ACK deasserted delay  
Active ACK to valid data delay  
1. Minimum and maximum values are at 25 C° and are for design aid only, not guaranteed, and not subject to  
production testing.  
115  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Figure 25 is a timing diagram for the Motorola processor in the Host Processor mode, with a non-  
multiplexed interface, and a read cycle takes place.  
Figure 25. Motorola Processor Non-Multiplexed Interface - Read Timing  
A4:0  
ADDRESS  
tSAR tHAR  
AS  
(Connected High)  
tSRW  
tHRW  
R/W  
tSCS  
tHCS  
CS  
DS  
tVDS  
tPDS  
tDZ  
D7:0  
INT  
DATA OUT  
tINT  
tDACKP  
tPACK  
tDACK  
ACK  
116  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Figure 26 is a timing diagram for the Motorola processor in the Host Processor mode with a  
multiplexed interface, and a read cycle takes place.  
Figure 26. Motorola Processor Multiplexed Interface - Read Timing  
tVAS  
tDSAS  
AS  
tSRW  
tHRW  
tHCS  
R/W  
CS  
tSCS  
tASDS  
tVDS  
DS  
tPDS  
tSAR  
tHAR  
ADDRESS  
tDZ  
DATA OUT  
D7-D0  
INT  
tINT  
tDACKP  
tDACK  
tPACK  
ACK  
117  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 70 lists write timing characteristics for the Motorola processor.  
Table 70. Motorola Processor - Write Timing Characteristics  
Test  
Conditions  
Parameter  
Sym.  
Min.1  
Max.1  
Unit  
Address setup time to address strobe  
Address hold time to address strobe  
tSAS  
tHAS  
10  
5
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Valid address strobe pulse width  
tVAS  
95  
10  
0
-
R/W setup time to active data strobe  
R/W hold time from inactive data strobe  
Chip select setup time to active data strobe  
Chip select hold time from inactive data strobe  
Address strobe active to data strobe active delay  
Data setup time to DS deassertion  
tSRW  
tHRW  
tSCS  
-
-
0
-
CL= 100 pF  
on D7:0.  
tHCS  
0
-
All other  
tASDS  
tSDW  
tHDW  
tVDS  
20  
40  
30  
60  
-
-
outputs are  
loaded with  
50 pF.  
-
Data hold time from DS deassertion  
-
Valid data strobe pulse width  
-
Inactive data strobe to inactive INT delay time  
Data strobe inactive to address strobe inactive delay  
Active data strobe to ACK output enable time  
DS asserted to ACK asserted delay  
tINT  
10  
-
tDSAS  
tDACK  
tDACKP  
15  
0
12  
40  
-
1. Minimum and maximum figures are at 25 C° and are for design aid only, not guaranteed, and not subject to  
production testing.  
118  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Figure 27 is a timing diagram for the Motorola processor in the Host Processor mode, with a non-  
multiplexed interface, and a write cycle takes place.  
Figure 27. Motorola Processor Non-Multiplexed Interface - Write Timing  
A4:0  
AS  
ADDRESS  
tSAS  
tHAS  
(Connected High)  
tSRW  
tHRW  
tHCS  
R/W  
CS  
tSCS  
tVDS  
DS  
tSDW tHDW  
WRITE DATA  
D7:0  
INT  
tINT  
tDACKP  
tDACK  
ACK  
119  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Figure 28 is a timing diagram for the Motorola processor in the Host Processor mode, with a  
multiplexed interface, and a write cycle takes place.  
Figure 28. Motorola Processor Multiplexed Interface - Write Timing  
tVAS  
tDSAS  
AS  
tHRW  
tSRW  
R/W  
tHCS  
tSCS  
CS  
tASDS  
tVDS  
DS  
tHDW  
tSAS  
tHAS  
tSDW  
WRITE DATA  
ADDRESS  
D7-D0  
tINT  
INT  
tDACKP  
tDACK  
ACK  
120  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
11.3  
Host Processor Mode - Serial Interface Timing  
Table 71 lists serial I/O timing for a Motorola or Intel® processor in the Host Processor mode with  
a serial interface.  
Table 71. Serial I/O Timing Characteristics  
Test  
Condition  
Parameter  
Sym. Min. Typ.1 Max. Unit  
Rise/fall time any pin  
Trf  
Tdc  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SDI to SCLK setup time  
SCLK to SDI hold time  
SCLK low time  
5
5
Tcdh  
Tcl  
25  
25  
SCLK high time  
Tch  
SCLK rise and fall time  
CS falling edge to SCLK rising edge  
Last SCLK edge to CS rising edge  
CS inactive time  
Tr, Tf  
Tcc  
50  
C
Load = 1.6  
mA, 50 pF  
10  
10  
50  
Tcch  
Tcwh  
Tcdv  
SCLK to SDO valid delay time  
5
SCLK falling edge or CS rising edge to SDO high  
impedance  
Tcdz  
10  
ns  
1. Typical figures are at 25 C° and are for design aid only, not guaranteed, and not subject to production  
testing.  
Figure 29 is a timing diagram for serial input to the Host Processor interface.  
Figure 29. Serial Input Timing  
CS  
t
CWH  
t
CC  
tCH  
tCCH  
tCL  
SCLK  
SDI  
tCDH  
tCDH  
t
DC  
LSB  
LSB  
MSB  
CONTROL BYTE  
DATA BYTE  
121  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Figure 30 is a timing diagram for serial output from the Host Processor interface.  
Figure 30. Serial Output Timing  
CLKE = 0  
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
11  
12  
13  
14  
15  
16  
1
1
SCLK  
CS  
tCCH  
t
CDZ  
SDO  
4
0
1
2
3
5
6
7
CLKE = 1  
10  
11  
12  
13  
14  
15  
16  
SCLK  
CS  
t
CCH  
t
CDZ  
4
0
1
2
3
5
6
7
SDO  
122  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
12.0  
Line-Interface-Unit Circuit Specifications  
Table 72 lists specifications for the LIU circuits with which the LXT384 Transceiver is designed to  
operate. (For a diagram of an LIU circuit to be used with the LXT384 Transceiver, see Figure 6 in  
Section 6.5, “Line-Interface Protection”).  
Table 72. Line-Interface-Unit Circuit Specifications  
Parameter  
Minimum  
Typical  
Maximum  
Units  
Termination Resistor Tolerance  
RRING/RTIP termination resistor RR - Receiver Resistor  
75Ω Coaxial Cable  
9.3Ω ± 1%  
Ω
Ω
120Ω Twisted Pair Cable  
15.0Ω ± 1%  
TRING/TTIP termination resistor RT - Transmitter Resistor  
75Ω Coaxial Cable  
8.7Ω ± 1%  
9.1Ω ± 1%  
11.0Ω ± 1%  
Ω
Ω
120Ω Twisted Pair Cable  
10.5Ω ± 1%  
Table 73 lists specifications for transformers with which the LXT384 Transceiver is designed to  
operate in an LIU circuit.  
Table 73. Intel® LXT384 Transceiver Transformer Specifications  
Primary  
Inductance  
mH  
Leakage  
Inductance Capacitance  
μH  
(max.)  
Interwinding  
DielectricBreakdown  
DCR  
Ω
(max.)  
Voltage  
Tx/Rx Turns Ratio2  
pF  
(max.)  
V1  
(min.)  
(min.)  
0.70 pri  
TX  
RX  
1:2  
1:2  
1.2  
1.2  
0.60  
0.60  
60  
60  
1500 Vrms  
1500 Vrms  
1.20 sec  
1.10 pri  
1.10 sec  
1. This parameter is application dependent.  
2. LIU side: Line side. Transformer turns ratio accuracy is 2%.  
123  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
13.0  
Mask Specifications  
This chapter discusses the specifications for the mask into which the LXT384 Transceiver  
transmitter output pulses must fit. The mask specification has two parts.  
Part 1 (Table 74) lists specifications on how the pulse relates to load resistance.  
Part 2 (Figure 31) shows the border limits (the mask template) into which the pulse must fit.  
Note: For information on pulse shaping, see Section 6.4.2, “Transmitter Pulse Shaping”.  
Table 74. ITU G.703 2.048 Mbit/s Pulse Mask Specifications  
Twisted-  
Pair Cable  
Coaxial  
Cable  
Parameter  
Unit  
Test load impedance  
120  
3.00  
75  
2.37  
Ω
V
Nominal peak voltage for a mark  
Nominal peak voltage for a space  
Nominal pulse width  
0 ± 0.300  
244  
0 ± 0.237  
244  
V
ns  
Ratio (in terms of percentage) of the positive mark amplitude to the  
negative mark amplitude, with both marks referenced to a space  
Ratio  
in %  
95 to 105  
95 to 105  
Figure 31. E1, ITU G.703 Mask Template  
269 ns  
(244 + 25)  
20%  
10%  
V = 100%  
194 ns  
(244 – 50)  
10%  
20%  
Nominal pulse  
50%  
244 ns  
219 ns  
(244 – 25)  
10%  
10%  
10%  
10%  
0%  
20%  
488 ns  
(244 + 244)  
Note: V corresponds to the nominal peak value.  
124  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 75. T1.102 1.544 Mbit/s Pulse Mask Specifications for Intel® LXT384 Transceiver  
Cable  
Parameter  
Unit  
TWP  
Test load impedance  
100  
3.0  
Ω
V
Nominal peak mark voltage  
Nominal peak space voltage  
Nominal pulse width  
0 ±0.15  
324  
V
ns  
%
Ratio of positive and negative pulse amplitudes  
95-105  
Figure 32. T1, T1.102 Mask Templates for LXT384  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
-0.80  
-0.60  
-0.40  
-0.20  
0.00  
-0.20  
0.20  
0.40  
0.60  
0.80  
1.00  
1.20  
-0.40  
-0.60  
Time [UI]  
125  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
14.0  
Jitter Performance  
This chapter includes tables and figures on jitter performance. For more information on jitter, see:  
Section 6.6, “Jitter Attenuation”  
Table 43 in Chapter 8.0, “Registers”  
Table 76 lists jitter attenuator characteristics for the LXT384 Transceiver.  
Table 76. Intel® LXT384 Transceiver Jitter Attenuator Characteristics  
Parameter  
Min.  
Typ Max Unit  
Test Condition  
32bit  
FIFO  
-
2.5  
3.5  
2.5  
3.5  
3
-
-
-
-
-
-
-
-
Hz  
Hz  
Hz  
Hz  
Hz  
Hz  
Hz  
Hz  
JACF=0  
JACF=1  
JACF=0  
JACF=1  
64bit  
FIFO  
-
-
-
-
-
-
-
E1 jitter attenuator 3dB  
corner frequency, host  
mode1  
32bit  
FIFO  
64bit  
FIFO  
32bit  
FIFO  
Sinusoidal jitter modulation  
64bit  
FIFO  
3
T1 jitter attenuator 3dB  
corner frequency, host  
mode1  
32bit  
FIFO  
6
64bit  
FIFO  
6
E1  
T1  
-
-
3.5  
6
-
-
Hz  
Hz  
Jitter attenuator 3dB corner frequency,  
hardware mode1  
32bit  
FIFO  
Delay through the Jitter  
attenuator only. Add receive and  
transmit path delay for total  
throughput delay.  
-
-
-
-
16  
32  
24  
56  
-
-
-
-
UI  
UI  
UI  
UI  
Data latency delay  
64bit  
FIFO  
32bit  
FIFO  
Input jitter tolerance before FIFO  
overflow or underflow  
64bit  
FIFO  
@ 3 Hz  
-0.5  
-0.5  
+19.5  
@ 40 Hz  
E1 jitter attenuation  
@ 400 Hz  
ITU-T G.736, See Figure 34 on  
page 129  
dB  
dB  
@ 100 KHz  
+19.5  
@ 1 Hz  
@ 20 Hz  
0
0
AT&T Pub. 62411, See Figure  
34 on page 129  
T1 jitter attenuation  
@ 1 KHz  
@ 1.4 KHz  
@ 70 KHz  
33.3  
40  
40  
Output Jitter in remote loopback1  
1. Guaranteed by design and other correlation methods.  
0.060 0.11  
UI ETSI CTR12/13 Output jitter  
126  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Table 77. Intel® LXT384 Transceiver Analog Test Port Characteristics  
Parameter  
3 dB bandwidth  
Sym  
Min. Typ Max  
Unit  
Test Condition  
At13db  
-
5
-
-
MHz  
VCC0  
VCC1  
Input voltage range  
Output voltage range  
At1iv  
0
V
V
VCC0  
VCC1  
At2ov  
0
-
127  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Figure 33 shows the typical LXT384 Transceiver jitter tolerance.  
Figure 33. Intel® LXT384 Transceiver Jitter Tolerance Performance  
1000 UI  
100 UI  
28 UI  
@ 4.9 Hz  
AT&T 62411, Dec 1990 (T1)  
18 UI @ 1.8 Hz  
28 UI  
@ 300 Hz  
LXT384 typ.  
10 UI  
GR-499-CORE, Dec 1995  
(T1)  
5 UI @ 500 Hz  
0.4 UI  
@ 10 kHz  
ITU G.823, Mar 1993  
(E1)  
1 UI  
1.5 UI  
@ 2.4 kHz  
1.5 UI  
0.2 UI  
@ 18 kHz  
@ 20 Hz  
0.1 UI @ 8 kHz  
.1 UI  
1 Hz  
10 Hz  
100 Hz  
1 kHz  
10 kHz  
100 kHz  
Frequency  
128  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Figure 34 shows the typical jitter transfer performance for the LXT384 Transceiver.  
Figure 34. Intel® LXT384 Transceiver Jitter Transfer Performance  
E1  
10 dB  
ITU G.736 Template  
0.5 dB @ 3Hz  
0.5 dB @ 40Hz  
0 dB  
-10 dB  
f 3dB=2.5 Hz  
-19.5 dB @ 20 kHz  
-20 dB  
f
3dB=3.5 Hz  
-19.5 dB @ 400 Hz  
-30 dB  
-40 dB  
-60 dB  
-80 dB  
LXT384 typ.  
1 Hz  
10 Hz  
100 Hz  
1 kHz  
10 kHz 100 kHz  
Frequency  
10 dB  
T1  
0 dB @ 1 Hz 0 dB @ 20 Hz0.1 dB @ 40 Hz 0.5 dB @ 350 Hz  
0 dB  
AT&T Pub 62411  
GR-253-CORE  
TR-TSY-000009  
-10 dB  
-6 dB @  
2 Hz  
-20 dB  
-30 dB  
-33.3 dB @ 1 kHz  
-33.7 dB @ 2.5kHz  
-40 dB @ 1.4 kHz  
f 3dB= 3 Hz  
-40 dB @ 70 kHz  
-49.2 dB @ 15kHz  
f
3dB= 6 Hz  
-40 dB  
-60 dB  
-80 dB  
LXT384 typ.  
-60 dB @ 57 Hz  
1 Hz  
10 Hz  
100 Hz  
1 kHz  
10 kHz 100 kHz  
Frequency  
129  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Figure 35 shows the typical jitter performance of the LXT384 Transceiver when it is used in ETSI  
CTR12/13 applications that place the LXT384 Transceiver in a system with other devices.  
As Figure 35 shows, the LXT384 Transceiver output jitter is below the specified jitter requirement  
(indicated in the figure by the dark line).  
Figure 35. Intel® LXT384 Transceiver Output Jitter for ETSI CTR12/13 Applications  
0.2  
0.15  
0.1  
Intel® LXT384 Transceiver typical,  
F
= 2.5 Hz and 3.5 Hz  
3 dB  
0.05  
0
10 Hz  
20 Hz  
100 Hz  
1 kHz  
10 kHz  
100 kHz  
Frequency  
130  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
15.0  
Recommendations and Specifications  
AT&T* - Technical Reference 62411 “Private Line Services - Description and Interface  
Specification”, December 1990.  
ANSI T1.102 - 199X Digital Hierarchy Electrical Interface  
ANSI T1.231 - 1993 Digital Hierarchy Layer 1 In-Service Digital Transmission Performance  
Monitoring  
European Telecommunications Standards Institute (ETSI) publications:  
— ETSI CTR12/13 -  
TCTR 012 Reference DTR/NA-004001. Network Aspects (NA). ONP study on  
possible new interfaces at the network side of the NT1  
TCTR 013 Reference: DTR/NA-001001. Network Aspects (NA). Network support of  
cordless terminal mobility  
— ETSI ETS 300 166 - Transmission and Multiplexing - Physical and electrical  
characteristics of hierarchical digital interfaces for equipment using the 2048 kbit/s  
— ETS 300386-1 Electromagnetic Compatibility Requirement  
IEEE 1149.1, Standard Test Access Port and Boundary-Scan Architecture  
International Telecommunication Union (ITU) publications:  
G.703 Physical/electrical characteristics of hierarchical digital interfaces  
G.704 Functional characteristics of interfaces associated with network nodes  
G.735 Characteristics of Primary PCM multiplex equipment operating at 2048 kbit/s and  
offering digital access at 384 kbit/s and/or synchronous digital access at 64 kbit/s  
G.736 Characteristics of a synchronous digital multiplex equipment operating at 2048  
kbit/s  
G.772 Protected monitoring points provided on digital transmission systems  
G.775 Loss Of Signal (LOS), Alarm Indication Signal (AIS) and Remote Defect  
Indication (RDI) and clearance criteria for PDH signals  
G.783 Characteristics of synchronous digital hierarchy (SDH) equipment functional  
blocks  
G.823 The control of jitter and wander within digital networks which are based on 2048  
kbit/s hierarchy  
— O.151 Error performance measuring equipment operating at the primary rate and above  
(This publication specifies instruments to measure error performance in digital systems.)  
131  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Office of Telecommunications (United Kingdom) publication: OFTEL OTR-001 Short Circuit  
Current Requirements  
Telcordia* publications. (Telcordia was formerly known as Bellcore.)  
— GR-253-CORE SONET Transport Systems Common Generic Criteria  
— GR-499-CORE Transport Systems Generic Requirements  
— TR-TSY-000009 Asynchronous Digital Multiplexes Requirements and Objectives  
132  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
16.0  
Mechanical Specifications  
Figure 36. Dimensions for 144-Pin Low Octal Flat Package (LQFP)  
144-Pin LQFP  
Part Number LXT384LE  
Extended Temperature Range (-40° C to 85° C)  
D
NOTE: All dimensions in millimeters.  
D/2  
b
e
E/2  
E1/2  
e/2  
M
E1  
E
0 DEG. MIN.  
A2  
0.08 / 0.20 R.  
D1/2  
A1  
D1  
0.08 R. MIN.  
0.25  
L
A
0 - 7 DEG.  
1.00  
REF.  
Millimeters  
Nominal  
Dimension1  
Minimum  
Maximum  
A
A1  
A2  
b
-
-
1.60  
0.15  
1.45  
0.27  
0.05  
1.35  
0.17  
0.10  
1.40  
0.22  
D
22.00 Basic Spacing between Centers (BSC)  
D1  
E
20.00 BSC  
22.00 BSC  
20.00 BSC  
0.50 BSC  
E1  
e
L
0.45  
0.14  
0.60  
-
0.75  
M
-
1. See Joint Electronic Devices Engineering Council (JEDEC) publications for additional  
specifications.  
133  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Figure 37. Dimensions for 160-Ball Plastic Ball Grid Array (BGA)  
160-Pin PBGA  
Part Number LXT384BE  
Extended Temperature Range (-40° C to 85° C)  
15.00  
13.00 ±0.20  
4.72 ±0.10  
1.00 REF  
13.00  
PIN #A1  
CORNER  
1.00  
A
B
C
D
E
F
0.50  
±0.10  
PIN #A1 ID  
4.72 ±0.10  
1.00  
G
H
J
13.00  
±0.20  
15.00  
13.00  
K
L
M
N
P
Ø1.00  
(3 plcs)  
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
1.00 REF  
TOP VIEW  
BOTTOM VIEW  
1.81  
± 0.19  
NOTE:  
0.85  
1. ALL DIMENSIONS IN MILLIMETERS.  
2. ALL DIMENSIONS AND TOLERANCES  
CONFORM TO ASME Y 14.5M-1994.  
3. TOLERANCE = ± 0.05 UNLESS  
SPECIFIED OTHERWISE.  
0.56  
±0.04  
0.40  
± 0.10  
SEATING PLANE  
SIDE VIEW  
134  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
16.1  
Top Label Markings  
Figure 38 shows a sample LQFP non-RoHS package for the LXT384 Transceiver.  
Note: In contrast to Pb-Free (RoHS-compliant) LQFP packages, the non-RoHS-compliant packages do  
not have the “e3” symbol in the last line of the package label.  
Figure 38. Sample LQFP Non-RoHS Package - Intel® LXT384 Transceiver  
Pin 1  
Part Number  
LXT384LE B1  
FPO Number  
XXXXXXXX  
BSMC  
Bottom Side Mark Code  
B5400-01  
Figure 39 shows a sample LQFP RoHS package for the LXT384 Transceiver.  
Figure 39. Sample LQFP RoHS Package - Intel® LXT384 Transceiver  
Pin1  
Part Number  
WJLXT384E B1  
XXXXXXXX  
FPO Number  
BSMC  
Pb- Free Indication  
Bottom Side Mark Code  
e3  
B5401-02  
135  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
Figure 40 shows a sample plastic BGA non-RoHS package for the LXT384 Transceiver.  
Note: In contrast to Pb-Free (RoHS-compliant) plastic BGA packages, non-RoHS-compliant packages  
do not have the “e3” symbol in the last line of the package label.  
Figure 40. Sample Plastic BGA Non-RoHS Package - Intel® LXT384 Transceiver  
Pin 1  
Part Number  
LXT384BE B1  
FPO Number  
XXXXXXXX  
BSMC  
Bottom Side Mark Code  
B5402-01  
Figure 41 shows a sample plastic BGA RoHS package for the LXT384 Transceiver.  
Figure 41. Sample Plastic BGA RoHS Package - Intel® LXT384 Transceiver  
Pin1  
Part Number  
ELLXT384E B1  
FPO Number  
XXXXXXXX  
BSMC  
Pb- Free Indication  
e3  
Bottom Side Mark Code  
B5403-01  
136  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
17.0  
Product Ordering Information  
Table 78 lists product ordering information for the LXT384 Transceiver.  
Table 78. Product Ordering Information  
Package  
Type  
Pin  
RoHS  
Product Number Revision  
Figure  
Count Compliant  
Figure 38, “Sample LQFP Non-RoHS  
Package - Intel® LXT384 Transceiver”  
DJLXT384LE.B1  
WJLXT384LE.B1  
FLLXT384BE.B1  
ELLXT384BE.B1  
B1  
B1  
B1  
B1  
LQFP  
144  
144  
160  
160  
No  
Yes  
No  
Figure 39, “Sample LQFP RoHS Package -  
Intel® LXT384 Transceiver”  
LQFP  
BGA  
BGA  
Figure 40, “Sample Plastic BGA Non-RoHS  
Package - Intel® LXT384 Transceiver”  
Figure 41, “Sample Plastic BGA RoHS  
Package - Intel® LXT384 Transceiver”  
Yes  
137  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
18.0  
Package Information  
Figure 42 shows an order matrix with sample information on how to order a LXT384 product.  
Figure 42. Order Matrix  
WJ  
LXT  
384  
L
E
B1  
Product Revision  
xn = 2 Alphanumeric characters  
Temperature Range  
A = Ambient (0 – 550 C)  
C = Commercial (0 – 700 C)  
E = Extended (-40 – 850 C)  
Internal Package Designator  
L = LQFP  
P = PLCC  
N = DIP  
Q = PQFP  
H = QFP  
T = TQFP  
B = BGA  
C = CBGA  
E = TBGA  
K = HSBGA (BGA with heat slug  
Product Code  
xxxxx = 3-5 Digit alphanumeric  
IXA Product Prefix  
LXT = PHY layer device  
IXE = Switching engine  
IXF = Formatting device (MAC/Framer)  
IXP = Network processor  
Intel Package Designator  
Pb-Free  
Package  
Leaded  
WB  
WJ  
HQFP  
LQFP  
HB  
DJ  
FA  
BJ  
JA  
TQFP  
TQFP  
PQFP  
PQFP  
PQFP  
QFN  
FA  
HD  
KU  
S
WD  
QU  
EG  
WG  
UB  
UC  
EP  
EE  
RU  
PC  
EL  
HG  
LB  
PD  
PA  
N
QFN  
PDIP  
SSOP  
PLCC  
MMAP  
MMAP  
PBGA  
PBGA  
PBGA  
PBGA  
CBGA  
FCBGA  
TBGA  
HZ  
RC  
FL  
FW  
GD  
GW  
HF  
HL  
TL  
PR  
LU  
EW  
WF  
JP  
SC  
B5405-02  
138  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
19.0  
Abbreviations and Acronyms  
Table 79 lists abbreviations and acronyms and their meanings.  
Table 79. Abbreviations, Acronyms, and Meanings  
Abbreviation or  
Meaning of Abbreviation or Acronym  
Acronym  
AIS  
Alarm Indication Signal  
Alternate Mark Inversion  
Bipolar 8-Zero Substitution  
BiPolar Violation  
AMI  
B8ZS  
BPV  
ESD  
FCS  
FIFO  
HDB3  
I/O  
Electro-Static Discharge  
Frame Check Sequence  
First In, First Out  
High Density Bipolar Three  
In/Out  
ITU  
International Telecommunication Union  
Jitter Attenuator  
JA  
JA  
Jitter Attenuator  
JEDEC  
JTAG  
LIU  
Joint Electronic Devices Engineering Council  
Joint Test Action Group  
Line Interface Unit  
Loss Of Signal  
LOS  
LQFP  
Max.  
Mbps  
Min.  
Low Octal Flat Package  
Maximum  
Megabits per second  
Minimum  
NEG  
NRZ  
PBGA  
PLL  
Negative  
Non-Return to Zero  
Plastic Ball Grid Array  
Phase-Locked Loop  
Positive  
POS  
REBE  
RZ  
Remote End Block Error  
Return to Zero  
Sym.  
TAOS  
Typ.  
Symbol  
Transmit All Ones  
Typical  
UI  
Unit Interval  
UIpp  
Unit Interval peak-to-peak  
139  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  
Intel® LXT384 Octal T1/E1/J1 S/H PCM Transceiver with JA  
140  
Document Number: 248994  
Revision Number: 005  
Revision Date: November 28, 2005  

相关型号:

FLLXT384BEB1

PCM Transceiver, 1-Func, CMOS, PBGA160, 13 X 13MM, BGA-160
INTEL

FLLXT385BE

Telecom IC, CMOS, PBGA160
INTEL

FLLXT971ABC.A4

Ethernet Transceiver, PBGA64, PLASTIC, TPBGA-64
INTEL

FLLXT971ABC.A4SE000

Ethernet Transceiver, 1-Trnsvr, CMOS, PBGA64, PLASTIC, BGA-64
INTEL

FLLXT971ABC.A4SE001

Ethernet Transceiver, 1-Trnsvr, CMOS, PBGA64, PLASTIC, BGA-64
INTEL

FLLXT971ABCA4

3.3V Dual-Speed Fast Ethernet PHY Transceiver
INTEL

FLLXT971ABE.A4

Ethernet Transceiver, PBGA64, PLASTIC, TPBGA-64
INTEL

FLLXT971ABE.A4SE000

Ethernet Transceiver, 1-Trnsvr, CMOS, PBGA64, PLASTIC, BGA-64
INTEL

FLLXT971ABE.A4SE001

Ethernet Transceiver, 1-Trnsvr, CMOS, PBGA64, PLASTIC, BGA-64
INTEL

FLLXT971ABEA4

3.3V Dual-Speed Fast Ethernet PHY Transceiver
INTEL

FLM

Axial Lead and Cartridge Fuses - Midget
LITTELFUSE

FLM-00-K

Space-saving Plug-in Signal Conditioners F-UNIT
MSYSTEM